xref: /freebsd/sys/vm/uma_int.h (revision a0409676120c1e558d0ade943019934e0f15118d)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org>
5  * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice unmodified, this list of conditions, and the following
13  *    disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  *
31  */
32 
33 #include <sys/counter.h>
34 #include <sys/_bitset.h>
35 #include <sys/_domainset.h>
36 #include <sys/_task.h>
37 
38 /*
39  * This file includes definitions, structures, prototypes, and inlines that
40  * should not be used outside of the actual implementation of UMA.
41  */
42 
43 /*
44  * The brief summary;  Zones describe unique allocation types.  Zones are
45  * organized into per-CPU caches which are filled by buckets.  Buckets are
46  * organized according to memory domains.  Buckets are filled from kegs which
47  * are also organized according to memory domains.  Kegs describe a unique
48  * allocation type, backend memory provider, and layout.  Kegs are associated
49  * with one or more zones and zones reference one or more kegs.  Kegs provide
50  * slabs which are virtually contiguous collections of pages.  Each slab is
51  * broken down int one or more items that will satisfy an individual allocation.
52  *
53  * Allocation is satisfied in the following order:
54  * 1) Per-CPU cache
55  * 2) Per-domain cache of buckets
56  * 3) Slab from any of N kegs
57  * 4) Backend page provider
58  *
59  * More detail on individual objects is contained below:
60  *
61  * Kegs contain lists of slabs which are stored in either the full bin, empty
62  * bin, or partially allocated bin, to reduce fragmentation.  They also contain
63  * the user supplied value for size, which is adjusted for alignment purposes
64  * and rsize is the result of that.  The Keg also stores information for
65  * managing a hash of page addresses that maps pages to uma_slab_t structures
66  * for pages that don't have embedded uma_slab_t's.
67  *
68  * Keg slab lists are organized by memory domain to support NUMA allocation
69  * policies.  By default allocations are spread across domains to reduce the
70  * potential for hotspots.  Special keg creation flags may be specified to
71  * prefer location allocation.  However there is no strict enforcement as frees
72  * may happen on any CPU and these are returned to the CPU-local cache
73  * regardless of the originating domain.
74  *
75  * The uma_slab_t may be embedded in a UMA_SLAB_SIZE chunk of memory or it may
76  * be allocated off the page from a special slab zone.  The free list within a
77  * slab is managed with a bitmask.  For item sizes that would yield more than
78  * 10% memory waste we potentially allocate a separate uma_slab_t if this will
79  * improve the number of items per slab that will fit.
80  *
81  * The only really gross cases, with regards to memory waste, are for those
82  * items that are just over half the page size.   You can get nearly 50% waste,
83  * so you fall back to the memory footprint of the power of two allocator. I
84  * have looked at memory allocation sizes on many of the machines available to
85  * me, and there does not seem to be an abundance of allocations at this range
86  * so at this time it may not make sense to optimize for it.  This can, of
87  * course, be solved with dynamic slab sizes.
88  *
89  * Kegs may serve multiple Zones but by far most of the time they only serve
90  * one.  When a Zone is created, a Keg is allocated and setup for it.  While
91  * the backing Keg stores slabs, the Zone caches Buckets of items allocated
92  * from the slabs.  Each Zone is equipped with an init/fini and ctor/dtor
93  * pair, as well as with its own set of small per-CPU caches, layered above
94  * the Zone's general Bucket cache.
95  *
96  * The PCPU caches are protected by critical sections, and may be accessed
97  * safely only from their associated CPU, while the Zones backed by the same
98  * Keg all share a common Keg lock (to coalesce contention on the backing
99  * slabs).  The backing Keg typically only serves one Zone but in the case of
100  * multiple Zones, one of the Zones is considered the Primary Zone and all
101  * Zone-related stats from the Keg are done in the Primary Zone.  For an
102  * example of a Multi-Zone setup, refer to the Mbuf allocation code.
103  */
104 
105 /*
106  *	This is the representation for normal (Non OFFPAGE slab)
107  *
108  *	i == item
109  *	s == slab pointer
110  *
111  *	<----------------  Page (UMA_SLAB_SIZE) ------------------>
112  *	___________________________________________________________
113  *     | _  _  _  _  _  _  _  _  _  _  _  _  _  _  _   ___________ |
114  *     ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |slab header||
115  *     ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |___________||
116  *     |___________________________________________________________|
117  *
118  *
119  *	This is an OFFPAGE slab. These can be larger than UMA_SLAB_SIZE.
120  *
121  *	___________________________________________________________
122  *     | _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _   |
123  *     ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i|  |
124  *     ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_|  |
125  *     |___________________________________________________________|
126  *       ___________    ^
127  *	|slab header|   |
128  *	|___________|---*
129  *
130  */
131 
132 #ifndef VM_UMA_INT_H
133 #define VM_UMA_INT_H
134 
135 #define UMA_SLAB_SIZE	PAGE_SIZE	/* How big are our slabs? */
136 #define UMA_SLAB_MASK	(PAGE_SIZE - 1)	/* Mask to get back to the page */
137 #define UMA_SLAB_SHIFT	PAGE_SHIFT	/* Number of bits PAGE_MASK */
138 
139 /* Max waste percentage before going to off page slab management */
140 #define UMA_MAX_WASTE	10
141 
142 /* Max size of a CACHESPREAD slab. */
143 #define	UMA_CACHESPREAD_MAX_SIZE	(128 * 1024)
144 
145 /*
146  * These flags must not overlap with the UMA_ZONE flags specified in uma.h.
147  */
148 #define	UMA_ZFLAG_OFFPAGE	0x00200000	/*
149 						 * Force the slab structure
150 						 * allocation off of the real
151 						 * memory.
152 						 */
153 #define	UMA_ZFLAG_HASH		0x00400000	/*
154 						 * Use a hash table instead of
155 						 * caching information in the
156 						 * vm_page.
157 						 */
158 #define	UMA_ZFLAG_VTOSLAB	0x00800000	/*
159 						 * Zone uses vtoslab for
160 						 * lookup.
161 						 */
162 #define	UMA_ZFLAG_CTORDTOR	0x01000000	/* Zone has ctor/dtor set. */
163 #define	UMA_ZFLAG_LIMIT		0x02000000	/* Zone has limit set. */
164 #define	UMA_ZFLAG_CACHE		0x04000000	/* uma_zcache_create()d it */
165 #define	UMA_ZFLAG_RECLAIMING	0x08000000	/* Running zone_reclaim(). */
166 #define	UMA_ZFLAG_BUCKET	0x10000000	/* Bucket zone. */
167 #define	UMA_ZFLAG_INTERNAL	0x20000000	/* No offpage no PCPU. */
168 #define	UMA_ZFLAG_TRASH		0x40000000	/* Add trash ctor/dtor. */
169 
170 #define	UMA_ZFLAG_INHERIT						\
171     (UMA_ZFLAG_OFFPAGE | UMA_ZFLAG_HASH | UMA_ZFLAG_VTOSLAB |		\
172      UMA_ZFLAG_BUCKET | UMA_ZFLAG_INTERNAL)
173 
174 #define	PRINT_UMA_ZFLAGS	"\20"	\
175     "\37TRASH"				\
176     "\36INTERNAL"			\
177     "\35BUCKET"				\
178     "\34RECLAIMING"			\
179     "\33CACHE"				\
180     "\32LIMIT"				\
181     "\31CTORDTOR"			\
182     "\30VTOSLAB"			\
183     "\27HASH"				\
184     "\26OFFPAGE"			\
185     "\23SMR"				\
186     "\22ROUNDROBIN"			\
187     "\21FIRSTTOUCH"			\
188     "\20PCPU"				\
189     "\17NODUMP"				\
190     "\16CACHESPREAD"			\
191     "\14MAXBUCKET"			\
192     "\13NOBUCKET"			\
193     "\12SECONDARY"			\
194     "\11NOTPAGE"			\
195     "\10VM"				\
196     "\7MTXCLASS"			\
197     "\6NOFREE"				\
198     "\5MALLOC"				\
199     "\4NOTOUCH"				\
200     "\3CONTIG"				\
201     "\2ZINIT"
202 
203 /*
204  * Hash table for freed address -> slab translation.
205  *
206  * Only zones with memory not touchable by the allocator use the
207  * hash table.  Otherwise slabs are found with vtoslab().
208  */
209 #define UMA_HASH_SIZE_INIT	32
210 
211 #define UMA_HASH(h, s) ((((uintptr_t)s) >> UMA_SLAB_SHIFT) & (h)->uh_hashmask)
212 
213 #define UMA_HASH_INSERT(h, s, mem)					\
214 	LIST_INSERT_HEAD(&(h)->uh_slab_hash[UMA_HASH((h),		\
215 	    (mem))], slab_tohashslab(s), uhs_hlink)
216 
217 #define UMA_HASH_REMOVE(h, s)						\
218 	LIST_REMOVE(slab_tohashslab(s), uhs_hlink)
219 
220 LIST_HEAD(slabhashhead, uma_hash_slab);
221 
222 struct uma_hash {
223 	struct slabhashhead	*uh_slab_hash;	/* Hash table for slabs */
224 	u_int		uh_hashsize;	/* Current size of the hash table */
225 	u_int		uh_hashmask;	/* Mask used during hashing */
226 };
227 
228 /*
229  * Align field or structure to cache 'sector' in intel terminology.  This
230  * is more efficient with adjacent line prefetch.
231  */
232 #if defined(__amd64__) || defined(__powerpc64__)
233 #define UMA_SUPER_ALIGN	(CACHE_LINE_SIZE * 2)
234 #else
235 #define UMA_SUPER_ALIGN	CACHE_LINE_SIZE
236 #endif
237 
238 #define	UMA_ALIGN	__aligned(UMA_SUPER_ALIGN)
239 
240 /*
241  * The uma_bucket structure is used to queue and manage buckets divorced
242  * from per-cpu caches.  They are loaded into uma_cache_bucket structures
243  * for use.
244  */
245 struct uma_bucket {
246 	STAILQ_ENTRY(uma_bucket)	ub_link; /* Link into the zone */
247 	int16_t		ub_cnt;			/* Count of items in bucket. */
248 	int16_t		ub_entries;		/* Max items. */
249 	smr_seq_t	ub_seq;			/* SMR sequence number. */
250 	void		*ub_bucket[];		/* actual allocation storage */
251 };
252 
253 typedef struct uma_bucket * uma_bucket_t;
254 
255 /*
256  * The uma_cache_bucket structure is statically allocated on each per-cpu
257  * cache.  Its use reduces branches and cache misses in the fast path.
258  */
259 struct uma_cache_bucket {
260 	uma_bucket_t	ucb_bucket;
261 	int16_t		ucb_cnt;
262 	int16_t		ucb_entries;
263 	uint32_t	ucb_spare;
264 };
265 
266 typedef struct uma_cache_bucket * uma_cache_bucket_t;
267 
268 /*
269  * The uma_cache structure is allocated for each cpu for every zone
270  * type.  This optimizes synchronization out of the allocator fast path.
271  */
272 struct uma_cache {
273 	struct uma_cache_bucket	uc_freebucket;	/* Bucket we're freeing to */
274 	struct uma_cache_bucket	uc_allocbucket;	/* Bucket to allocate from */
275 	struct uma_cache_bucket	uc_crossbucket;	/* cross domain bucket */
276 	uint64_t		uc_allocs;	/* Count of allocations */
277 	uint64_t		uc_frees;	/* Count of frees */
278 } UMA_ALIGN;
279 
280 typedef struct uma_cache * uma_cache_t;
281 
282 LIST_HEAD(slabhead, uma_slab);
283 
284 /*
285  * The cache structure pads perfectly into 64 bytes so we use spare
286  * bits from the embedded cache buckets to store information from the zone
287  * and keep all fast-path allocations accessing a single per-cpu line.
288  */
289 static inline void
290 cache_set_uz_flags(uma_cache_t cache, uint32_t flags)
291 {
292 
293 	cache->uc_freebucket.ucb_spare = flags;
294 }
295 
296 static inline void
297 cache_set_uz_size(uma_cache_t cache, uint32_t size)
298 {
299 
300 	cache->uc_allocbucket.ucb_spare = size;
301 }
302 
303 static inline uint32_t
304 cache_uz_flags(uma_cache_t cache)
305 {
306 
307 	return (cache->uc_freebucket.ucb_spare);
308 }
309 
310 static inline uint32_t
311 cache_uz_size(uma_cache_t cache)
312 {
313 
314 	return (cache->uc_allocbucket.ucb_spare);
315 }
316 
317 /*
318  * Per-domain slab lists.  Embedded in the kegs.
319  */
320 struct uma_domain {
321 	struct mtx_padalign ud_lock;	/* Lock for the domain lists. */
322 	struct slabhead	ud_part_slab;	/* partially allocated slabs */
323 	struct slabhead	ud_free_slab;	/* completely unallocated slabs */
324 	struct slabhead ud_full_slab;	/* fully allocated slabs */
325 	uint32_t	ud_pages;	/* Total page count */
326 	uint32_t	ud_free_items;	/* Count of items free in all slabs */
327 	uint32_t	ud_free_slabs;	/* Count of free slabs */
328 } __aligned(CACHE_LINE_SIZE);
329 
330 typedef struct uma_domain * uma_domain_t;
331 
332 /*
333  * Keg management structure
334  *
335  * TODO: Optimize for cache line size
336  *
337  */
338 struct uma_keg {
339 	struct uma_hash	uk_hash;
340 	LIST_HEAD(,uma_zone)	uk_zones;	/* Keg's zones */
341 
342 	struct domainset_ref uk_dr;	/* Domain selection policy. */
343 	uint32_t	uk_align;	/* Alignment mask */
344 	uint32_t	uk_reserve;	/* Number of reserved items. */
345 	uint32_t	uk_size;	/* Requested size of each item */
346 	uint32_t	uk_rsize;	/* Real size of each item */
347 
348 	uma_init	uk_init;	/* Keg's init routine */
349 	uma_fini	uk_fini;	/* Keg's fini routine */
350 	uma_alloc	uk_allocf;	/* Allocation function */
351 	uma_free	uk_freef;	/* Free routine */
352 
353 	u_long		uk_offset;	/* Next free offset from base KVA */
354 	vm_offset_t	uk_kva;		/* Zone base KVA */
355 
356 	uint32_t	uk_pgoff;	/* Offset to uma_slab struct */
357 	uint16_t	uk_ppera;	/* pages per allocation from backend */
358 	uint16_t	uk_ipers;	/* Items per slab */
359 	uint32_t	uk_flags;	/* Internal flags */
360 
361 	/* Least used fields go to the last cache line. */
362 	const char	*uk_name;		/* Name of creating zone. */
363 	LIST_ENTRY(uma_keg)	uk_link;	/* List of all kegs */
364 
365 	/* Must be last, variable sized. */
366 	struct uma_domain	uk_domain[];	/* Keg's slab lists. */
367 };
368 typedef struct uma_keg	* uma_keg_t;
369 
370 /*
371  * Free bits per-slab.
372  */
373 #define	SLAB_MAX_SETSIZE	(PAGE_SIZE / UMA_SMALLEST_UNIT)
374 #define	SLAB_MIN_SETSIZE	_BITSET_BITS
375 BITSET_DEFINE(noslabbits, 0);
376 
377 /*
378  * The slab structure manages a single contiguous allocation from backing
379  * store and subdivides it into individually allocatable items.
380  */
381 struct uma_slab {
382 	LIST_ENTRY(uma_slab)	us_link;	/* slabs in zone */
383 	uint16_t	us_freecount;		/* How many are free? */
384 	uint8_t		us_flags;		/* Page flags see uma.h */
385 	uint8_t		us_domain;		/* Backing NUMA domain. */
386 	struct noslabbits us_free;		/* Free bitmask, flexible. */
387 };
388 _Static_assert(sizeof(struct uma_slab) == __offsetof(struct uma_slab, us_free),
389     "us_free field must be last");
390 _Static_assert(MAXMEMDOM < 255,
391     "us_domain field is not wide enough");
392 
393 typedef struct uma_slab * uma_slab_t;
394 
395 /*
396  * Slab structure with a full sized bitset and hash link for both
397  * HASH and OFFPAGE zones.
398  */
399 struct uma_hash_slab {
400 	LIST_ENTRY(uma_hash_slab) uhs_hlink;	/* Link for hash table */
401 	uint8_t			*uhs_data;	/* First item */
402 	struct uma_slab		uhs_slab;	/* Must be last. */
403 };
404 
405 typedef struct uma_hash_slab * uma_hash_slab_t;
406 
407 static inline uma_hash_slab_t
408 slab_tohashslab(uma_slab_t slab)
409 {
410 
411 	return (__containerof(slab, struct uma_hash_slab, uhs_slab));
412 }
413 
414 static inline void *
415 slab_data(uma_slab_t slab, uma_keg_t keg)
416 {
417 
418 	if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) == 0)
419 		return ((void *)((uintptr_t)slab - keg->uk_pgoff));
420 	else
421 		return (slab_tohashslab(slab)->uhs_data);
422 }
423 
424 static inline void *
425 slab_item(uma_slab_t slab, uma_keg_t keg, int index)
426 {
427 	uintptr_t data;
428 
429 	data = (uintptr_t)slab_data(slab, keg);
430 	return ((void *)(data + keg->uk_rsize * index));
431 }
432 
433 static inline int
434 slab_item_index(uma_slab_t slab, uma_keg_t keg, void *item)
435 {
436 	uintptr_t data;
437 
438 	data = (uintptr_t)slab_data(slab, keg);
439 	return (((uintptr_t)item - data) / keg->uk_rsize);
440 }
441 
442 STAILQ_HEAD(uma_bucketlist, uma_bucket);
443 
444 struct uma_zone_domain {
445 	struct uma_bucketlist uzd_buckets; /* full buckets */
446 	uma_bucket_t	uzd_cross;	/* Fills from cross buckets. */
447 	long		uzd_nitems;	/* total item count */
448 	long		uzd_imax;	/* maximum item count this period */
449 	long		uzd_imin;	/* minimum item count this period */
450 	long		uzd_wss;	/* working set size estimate */
451 	smr_seq_t	uzd_seq;	/* Lowest queued seq. */
452 	struct mtx	uzd_lock;	/* Lock for the domain */
453 } __aligned(CACHE_LINE_SIZE);
454 
455 typedef struct uma_zone_domain * uma_zone_domain_t;
456 
457 /*
458  * Zone structure - per memory type.
459  */
460 struct uma_zone {
461 	/* Offset 0, used in alloc/free fast/medium fast path and const. */
462 	uint32_t	uz_flags;	/* Flags inherited from kegs */
463 	uint32_t	uz_size;	/* Size inherited from kegs */
464 	uma_ctor	uz_ctor;	/* Constructor for each allocation */
465 	uma_dtor	uz_dtor;	/* Destructor */
466 	smr_t		uz_smr;		/* Safe memory reclaim context. */
467 	uint64_t	uz_max_items;	/* Maximum number of items to alloc */
468 	uint64_t	uz_bucket_max;	/* Maximum bucket cache size */
469 	uint16_t	uz_bucket_size;	/* Number of items in full bucket */
470 	uint16_t	uz_bucket_size_max; /* Maximum number of bucket items */
471 	uint32_t	uz_sleepers;	/* Threads sleeping on limit */
472 	counter_u64_t	uz_xdomain;	/* Total number of cross-domain frees */
473 
474 	/* Offset 64, used in bucket replenish. */
475 	uma_keg_t	uz_keg;		/* This zone's keg if !CACHE */
476 	uma_import	uz_import;	/* Import new memory to cache. */
477 	uma_release	uz_release;	/* Release memory from cache. */
478 	void		*uz_arg;	/* Import/release argument. */
479 	uma_init	uz_init;	/* Initializer for each item */
480 	uma_fini	uz_fini;	/* Finalizer for each item. */
481 	volatile uint64_t uz_items;	/* Total items count & sleepers */
482 	uint64_t	uz_sleeps;	/* Total number of alloc sleeps */
483 
484 	/* Offset 128 Rare stats, misc read-only. */
485 	LIST_ENTRY(uma_zone) uz_link;	/* List of all zones in keg */
486 	counter_u64_t	uz_allocs;	/* Total number of allocations */
487 	counter_u64_t	uz_frees;	/* Total number of frees */
488 	counter_u64_t	uz_fails;	/* Total number of alloc failures */
489 	const char	*uz_name;	/* Text name of the zone */
490 	char		*uz_ctlname;	/* sysctl safe name string. */
491 	int		uz_namecnt;	/* duplicate name count. */
492 	uint16_t	uz_bucket_size_min; /* Min number of items in bucket */
493 	uint16_t	uz_pad0;
494 
495 	/* Offset 192, rare read-only. */
496 	struct sysctl_oid *uz_oid;	/* sysctl oid pointer. */
497 	const char	*uz_warning;	/* Warning to print on failure */
498 	struct timeval	uz_ratecheck;	/* Warnings rate-limiting */
499 	struct task	uz_maxaction;	/* Task to run when at limit */
500 
501 	/* Offset 256. */
502 	struct mtx	uz_cross_lock;	/* Cross domain free lock */
503 
504 	/*
505 	 * This HAS to be the last item because we adjust the zone size
506 	 * based on NCPU and then allocate the space for the zones.
507 	 */
508 	struct uma_cache	uz_cpu[]; /* Per cpu caches */
509 
510 	/* domains follow here. */
511 };
512 
513 /*
514  * Macros for interpreting the uz_items field.  20 bits of sleeper count
515  * and 44 bit of item count.
516  */
517 #define	UZ_ITEMS_SLEEPER_SHIFT	44LL
518 #define	UZ_ITEMS_SLEEPERS_MAX	((1 << (64 - UZ_ITEMS_SLEEPER_SHIFT)) - 1)
519 #define	UZ_ITEMS_COUNT_MASK	((1LL << UZ_ITEMS_SLEEPER_SHIFT) - 1)
520 #define	UZ_ITEMS_COUNT(x)	((x) & UZ_ITEMS_COUNT_MASK)
521 #define	UZ_ITEMS_SLEEPERS(x)	((x) >> UZ_ITEMS_SLEEPER_SHIFT)
522 #define	UZ_ITEMS_SLEEPER	(1LL << UZ_ITEMS_SLEEPER_SHIFT)
523 
524 #define	ZONE_ASSERT_COLD(z)						\
525 	KASSERT(uma_zone_get_allocs((z)) == 0,				\
526 	    ("zone %s initialization after use.", (z)->uz_name))
527 
528 /* Domains are contiguous after the last CPU */
529 #define	ZDOM_GET(z, n)							\
530 	(&((uma_zone_domain_t)&(z)->uz_cpu[mp_maxid + 1])[n])
531 
532 #undef	UMA_ALIGN
533 
534 #ifdef _KERNEL
535 /* Internal prototypes */
536 static __inline uma_slab_t hash_sfind(struct uma_hash *hash, uint8_t *data);
537 
538 /* Lock Macros */
539 
540 #define	KEG_LOCKPTR(k, d)	(struct mtx *)&(k)->uk_domain[(d)].ud_lock
541 #define	KEG_LOCK_INIT(k, d, lc)						\
542 	do {								\
543 		if ((lc))						\
544 			mtx_init(KEG_LOCKPTR(k, d), (k)->uk_name,	\
545 			    (k)->uk_name, MTX_DEF | MTX_DUPOK);		\
546 		else							\
547 			mtx_init(KEG_LOCKPTR(k, d), (k)->uk_name,	\
548 			    "UMA zone", MTX_DEF | MTX_DUPOK);		\
549 	} while (0)
550 
551 #define	KEG_LOCK_FINI(k, d)	mtx_destroy(KEG_LOCKPTR(k, d))
552 #define	KEG_LOCK(k, d)							\
553 	({ mtx_lock(KEG_LOCKPTR(k, d)); KEG_LOCKPTR(k, d); })
554 #define	KEG_UNLOCK(k, d)	mtx_unlock(KEG_LOCKPTR(k, d))
555 #define	KEG_LOCK_ASSERT(k, d)	mtx_assert(KEG_LOCKPTR(k, d), MA_OWNED)
556 
557 #define	KEG_GET(zone, keg) do {					\
558 	(keg) = (zone)->uz_keg;					\
559 	KASSERT((void *)(keg) != NULL,				\
560 	    ("%s: Invalid zone %p type", __func__, (zone)));	\
561 	} while (0)
562 
563 #define	KEG_ASSERT_COLD(k)						\
564 	KASSERT(uma_keg_get_allocs((k)) == 0,				\
565 	    ("keg %s initialization after use.", (k)->uk_name))
566 
567 #define	ZDOM_LOCK_INIT(z, zdom, lc)					\
568 	do {								\
569 		if ((lc))						\
570 			mtx_init(&(zdom)->uzd_lock, (z)->uz_name,	\
571 			    (z)->uz_name, MTX_DEF | MTX_DUPOK);		\
572 		else							\
573 			mtx_init(&(zdom)->uzd_lock, (z)->uz_name,	\
574 			    "UMA zone", MTX_DEF | MTX_DUPOK);		\
575 	} while (0)
576 #define	ZDOM_LOCK_FINI(z)	mtx_destroy(&(z)->uzd_lock)
577 #define	ZDOM_LOCK_ASSERT(z)	mtx_assert(&(z)->uzd_lock, MA_OWNED)
578 
579 #define	ZDOM_LOCK(z)	mtx_lock(&(z)->uzd_lock)
580 #define	ZDOM_OWNED(z)	(mtx_owner(&(z)->uzd_lock) != NULL)
581 #define	ZDOM_UNLOCK(z)	mtx_unlock(&(z)->uzd_lock)
582 
583 #define	ZONE_LOCK(z)	ZDOM_LOCK(ZDOM_GET((z), 0))
584 #define	ZONE_UNLOCK(z)	ZDOM_UNLOCK(ZDOM_GET((z), 0))
585 
586 #define	ZONE_CROSS_LOCK_INIT(z)					\
587 	mtx_init(&(z)->uz_cross_lock, "UMA Cross", NULL, MTX_DEF)
588 #define	ZONE_CROSS_LOCK(z)	mtx_lock(&(z)->uz_cross_lock)
589 #define	ZONE_CROSS_UNLOCK(z)	mtx_unlock(&(z)->uz_cross_lock)
590 #define	ZONE_CROSS_LOCK_FINI(z)	mtx_destroy(&(z)->uz_cross_lock)
591 
592 /*
593  * Find a slab within a hash table.  This is used for OFFPAGE zones to lookup
594  * the slab structure.
595  *
596  * Arguments:
597  *	hash  The hash table to search.
598  *	data  The base page of the item.
599  *
600  * Returns:
601  *	A pointer to a slab if successful, else NULL.
602  */
603 static __inline uma_slab_t
604 hash_sfind(struct uma_hash *hash, uint8_t *data)
605 {
606         uma_hash_slab_t slab;
607         u_int hval;
608 
609         hval = UMA_HASH(hash, data);
610 
611         LIST_FOREACH(slab, &hash->uh_slab_hash[hval], uhs_hlink) {
612                 if ((uint8_t *)slab->uhs_data == data)
613                         return (&slab->uhs_slab);
614         }
615         return (NULL);
616 }
617 
618 static __inline uma_slab_t
619 vtoslab(vm_offset_t va)
620 {
621 	vm_page_t p;
622 
623 	p = PHYS_TO_VM_PAGE(pmap_kextract(va));
624 	return (p->plinks.uma.slab);
625 }
626 
627 static __inline void
628 vtozoneslab(vm_offset_t va, uma_zone_t *zone, uma_slab_t *slab)
629 {
630 	vm_page_t p;
631 
632 	p = PHYS_TO_VM_PAGE(pmap_kextract(va));
633 	*slab = p->plinks.uma.slab;
634 	*zone = p->plinks.uma.zone;
635 }
636 
637 static __inline void
638 vsetzoneslab(vm_offset_t va, uma_zone_t zone, uma_slab_t slab)
639 {
640 	vm_page_t p;
641 
642 	p = PHYS_TO_VM_PAGE(pmap_kextract(va));
643 	p->plinks.uma.slab = slab;
644 	p->plinks.uma.zone = zone;
645 }
646 
647 extern unsigned long uma_kmem_limit;
648 extern unsigned long uma_kmem_total;
649 
650 /* Adjust bytes under management by UMA. */
651 static inline void
652 uma_total_dec(unsigned long size)
653 {
654 
655 	atomic_subtract_long(&uma_kmem_total, size);
656 }
657 
658 static inline void
659 uma_total_inc(unsigned long size)
660 {
661 
662 	if (atomic_fetchadd_long(&uma_kmem_total, size) > uma_kmem_limit)
663 		uma_reclaim_wakeup();
664 }
665 
666 /*
667  * The following two functions may be defined by architecture specific code
668  * if they can provide more efficient allocation functions.  This is useful
669  * for using direct mapped addresses.
670  */
671 void *uma_small_alloc(uma_zone_t zone, vm_size_t bytes, int domain,
672     uint8_t *pflag, int wait);
673 void uma_small_free(void *mem, vm_size_t size, uint8_t flags);
674 
675 /* Set a global soft limit on UMA managed memory. */
676 void uma_set_limit(unsigned long limit);
677 
678 #endif /* _KERNEL */
679 
680 #endif /* VM_UMA_INT_H */
681