xref: /freebsd/sys/vm/uma_int.h (revision 94942af266ac119ede0ca836f9aa5a5ac0582938)
1 /*-
2  * Copyright (c) 2002, 2003, 2004, 2005 Jeffrey Roberson <jeff@FreeBSD.org>
3  * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  * $FreeBSD$
28  *
29  */
30 
31 /*
32  * This file includes definitions, structures, prototypes, and inlines that
33  * should not be used outside of the actual implementation of UMA.
34  */
35 
36 /*
37  * Here's a quick description of the relationship between the objects:
38  *
39  * Kegs contain lists of slabs which are stored in either the full bin, empty
40  * bin, or partially allocated bin, to reduce fragmentation.  They also contain
41  * the user supplied value for size, which is adjusted for alignment purposes
42  * and rsize is the result of that.  The Keg also stores information for
43  * managing a hash of page addresses that maps pages to uma_slab_t structures
44  * for pages that don't have embedded uma_slab_t's.
45  *
46  * The uma_slab_t may be embedded in a UMA_SLAB_SIZE chunk of memory or it may
47  * be allocated off the page from a special slab zone.  The free list within a
48  * slab is managed with a linked list of indexes, which are 8 bit values.  If
49  * UMA_SLAB_SIZE is defined to be too large I will have to switch to 16bit
50  * values.  Currently on alpha you can get 250 or so 32 byte items and on x86
51  * you can get 250 or so 16byte items.  For item sizes that would yield more
52  * than 10% memory waste we potentially allocate a separate uma_slab_t if this
53  * will improve the number of items per slab that will fit.
54  *
55  * Other potential space optimizations are storing the 8bit of linkage in space
56  * wasted between items due to alignment problems.  This may yield a much better
57  * memory footprint for certain sizes of objects.  Another alternative is to
58  * increase the UMA_SLAB_SIZE, or allow for dynamic slab sizes.  I prefer
59  * dynamic slab sizes because we could stick with 8 bit indexes and only use
60  * large slab sizes for zones with a lot of waste per slab.  This may create
61  * ineffeciencies in the vm subsystem due to fragmentation in the address space.
62  *
63  * The only really gross cases, with regards to memory waste, are for those
64  * items that are just over half the page size.   You can get nearly 50% waste,
65  * so you fall back to the memory footprint of the power of two allocator. I
66  * have looked at memory allocation sizes on many of the machines available to
67  * me, and there does not seem to be an abundance of allocations at this range
68  * so at this time it may not make sense to optimize for it.  This can, of
69  * course, be solved with dynamic slab sizes.
70  *
71  * Kegs may serve multiple Zones but by far most of the time they only serve
72  * one.  When a Zone is created, a Keg is allocated and setup for it.  While
73  * the backing Keg stores slabs, the Zone caches Buckets of items allocated
74  * from the slabs.  Each Zone is equipped with an init/fini and ctor/dtor
75  * pair, as well as with its own set of small per-CPU caches, layered above
76  * the Zone's general Bucket cache.
77  *
78  * The PCPU caches are protected by critical sections, and may be accessed
79  * safely only from their associated CPU, while the Zones backed by the same
80  * Keg all share a common Keg lock (to coalesce contention on the backing
81  * slabs).  The backing Keg typically only serves one Zone but in the case of
82  * multiple Zones, one of the Zones is considered the Master Zone and all
83  * Zone-related stats from the Keg are done in the Master Zone.  For an
84  * example of a Multi-Zone setup, refer to the Mbuf allocation code.
85  */
86 
87 /*
88  *	This is the representation for normal (Non OFFPAGE slab)
89  *
90  *	i == item
91  *	s == slab pointer
92  *
93  *	<----------------  Page (UMA_SLAB_SIZE) ------------------>
94  *	___________________________________________________________
95  *     | _  _  _  _  _  _  _  _  _  _  _  _  _  _  _   ___________ |
96  *     ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |slab header||
97  *     ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |___________||
98  *     |___________________________________________________________|
99  *
100  *
101  *	This is an OFFPAGE slab. These can be larger than UMA_SLAB_SIZE.
102  *
103  *	___________________________________________________________
104  *     | _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _   |
105  *     ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i|  |
106  *     ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_|  |
107  *     |___________________________________________________________|
108  *       ___________    ^
109  *	|slab header|   |
110  *	|___________|---*
111  *
112  */
113 
114 #ifndef VM_UMA_INT_H
115 #define VM_UMA_INT_H
116 
117 #define UMA_SLAB_SIZE	PAGE_SIZE	/* How big are our slabs? */
118 #define UMA_SLAB_MASK	(PAGE_SIZE - 1)	/* Mask to get back to the page */
119 #define UMA_SLAB_SHIFT	PAGE_SHIFT	/* Number of bits PAGE_MASK */
120 
121 #define UMA_BOOT_PAGES		48	/* Pages allocated for startup */
122 
123 /* Max waste before going to off page slab management */
124 #define UMA_MAX_WASTE	(UMA_SLAB_SIZE / 10)
125 
126 /*
127  * I doubt there will be many cases where this is exceeded. This is the initial
128  * size of the hash table for uma_slabs that are managed off page. This hash
129  * does expand by powers of two.  Currently it doesn't get smaller.
130  */
131 #define UMA_HASH_SIZE_INIT	32
132 
133 /*
134  * I should investigate other hashing algorithms.  This should yield a low
135  * number of collisions if the pages are relatively contiguous.
136  *
137  * This is the same algorithm that most processor caches use.
138  *
139  * I'm shifting and masking instead of % because it should be faster.
140  */
141 
142 #define UMA_HASH(h, s) ((((unsigned long)s) >> UMA_SLAB_SHIFT) &	\
143     (h)->uh_hashmask)
144 
145 #define UMA_HASH_INSERT(h, s, mem)					\
146 		SLIST_INSERT_HEAD(&(h)->uh_slab_hash[UMA_HASH((h),	\
147 		    (mem))], (s), us_hlink);
148 #define UMA_HASH_REMOVE(h, s, mem)					\
149 		SLIST_REMOVE(&(h)->uh_slab_hash[UMA_HASH((h),		\
150 		    (mem))], (s), uma_slab, us_hlink);
151 
152 /* Hash table for freed address -> slab translation */
153 
154 SLIST_HEAD(slabhead, uma_slab);
155 
156 struct uma_hash {
157 	struct slabhead	*uh_slab_hash;	/* Hash table for slabs */
158 	int		uh_hashsize;	/* Current size of the hash table */
159 	int		uh_hashmask;	/* Mask used during hashing */
160 };
161 
162 /*
163  * Structures for per cpu queues.
164  */
165 
166 struct uma_bucket {
167 	LIST_ENTRY(uma_bucket)	ub_link;	/* Link into the zone */
168 	int16_t	ub_cnt;				/* Count of free items. */
169 	int16_t	ub_entries;			/* Max items. */
170 	void	*ub_bucket[];			/* actual allocation storage */
171 };
172 
173 typedef struct uma_bucket * uma_bucket_t;
174 
175 struct uma_cache {
176 	uma_bucket_t	uc_freebucket;	/* Bucket we're freeing to */
177 	uma_bucket_t	uc_allocbucket;	/* Bucket to allocate from */
178 	u_int64_t	uc_allocs;	/* Count of allocations */
179 	u_int64_t	uc_frees;	/* Count of frees */
180 };
181 
182 typedef struct uma_cache * uma_cache_t;
183 
184 /*
185  * Keg management structure
186  *
187  * TODO: Optimize for cache line size
188  *
189  */
190 struct uma_keg {
191 	LIST_ENTRY(uma_keg)	uk_link;	/* List of all kegs */
192 
193 	struct mtx	uk_lock;	/* Lock for the keg */
194 	struct uma_hash	uk_hash;
195 
196 	LIST_HEAD(,uma_zone)	uk_zones;	/* Keg's zones */
197 	LIST_HEAD(,uma_slab)	uk_part_slab;	/* partially allocated slabs */
198 	LIST_HEAD(,uma_slab)	uk_free_slab;	/* empty slab list */
199 	LIST_HEAD(,uma_slab)	uk_full_slab;	/* full slabs */
200 
201 	u_int32_t	uk_recurse;	/* Allocation recursion count */
202 	u_int32_t	uk_align;	/* Alignment mask */
203 	u_int32_t	uk_pages;	/* Total page count */
204 	u_int32_t	uk_free;	/* Count of items free in slabs */
205 	u_int32_t	uk_size;	/* Requested size of each item */
206 	u_int32_t	uk_rsize;	/* Real size of each item */
207 	u_int32_t	uk_maxpages;	/* Maximum number of pages to alloc */
208 
209 	uma_init	uk_init;	/* Keg's init routine */
210 	uma_fini	uk_fini;	/* Keg's fini routine */
211 	uma_alloc	uk_allocf;	/* Allocation function */
212 	uma_free	uk_freef;	/* Free routine */
213 
214 	struct vm_object	*uk_obj;	/* Zone specific object */
215 	vm_offset_t	uk_kva;		/* Base kva for zones with objs */
216 	uma_zone_t	uk_slabzone;	/* Slab zone backing us, if OFFPAGE */
217 
218 	u_int16_t	uk_pgoff;	/* Offset to uma_slab struct */
219 	u_int16_t	uk_ppera;	/* pages per allocation from backend */
220 	u_int16_t	uk_ipers;	/* Items per slab */
221 	u_int32_t	uk_flags;	/* Internal flags */
222 };
223 
224 /* Simpler reference to uma_keg for internal use. */
225 typedef struct uma_keg * uma_keg_t;
226 
227 /* Page management structure */
228 
229 /* Sorry for the union, but space efficiency is important */
230 struct uma_slab_head {
231 	uma_keg_t	us_keg;			/* Keg we live in */
232 	union {
233 		LIST_ENTRY(uma_slab)	_us_link;	/* slabs in zone */
234 		unsigned long	_us_size;	/* Size of allocation */
235 	} us_type;
236 	SLIST_ENTRY(uma_slab)	us_hlink;	/* Link for hash table */
237 	u_int8_t	*us_data;		/* First item */
238 	u_int8_t	us_flags;		/* Page flags see uma.h */
239 	u_int8_t	us_freecount;	/* How many are free? */
240 	u_int8_t	us_firstfree;	/* First free item index */
241 };
242 
243 /* The standard slab structure */
244 struct uma_slab {
245 	struct uma_slab_head	us_head;	/* slab header data */
246 	struct {
247 		u_int8_t	us_item;
248 	} us_freelist[1];			/* actual number bigger */
249 };
250 
251 /*
252  * The slab structure for UMA_ZONE_REFCNT zones for whose items we
253  * maintain reference counters in the slab for.
254  */
255 struct uma_slab_refcnt {
256 	struct uma_slab_head	us_head;	/* slab header data */
257 	struct {
258 		u_int8_t	us_item;
259 		u_int32_t	us_refcnt;
260 	} us_freelist[1];			/* actual number bigger */
261 };
262 
263 #define	us_keg		us_head.us_keg
264 #define	us_link		us_head.us_type._us_link
265 #define	us_size		us_head.us_type._us_size
266 #define	us_hlink	us_head.us_hlink
267 #define	us_data		us_head.us_data
268 #define	us_flags	us_head.us_flags
269 #define	us_freecount	us_head.us_freecount
270 #define	us_firstfree	us_head.us_firstfree
271 
272 typedef struct uma_slab * uma_slab_t;
273 typedef struct uma_slab_refcnt * uma_slabrefcnt_t;
274 
275 /*
276  * These give us the size of one free item reference within our corresponding
277  * uma_slab structures, so that our calculations during zone setup are correct
278  * regardless of what the compiler decides to do with padding the structure
279  * arrays within uma_slab.
280  */
281 #define	UMA_FRITM_SZ	(sizeof(struct uma_slab) - sizeof(struct uma_slab_head))
282 #define	UMA_FRITMREF_SZ	(sizeof(struct uma_slab_refcnt) -	\
283     sizeof(struct uma_slab_head))
284 
285 /*
286  * Zone management structure
287  *
288  * TODO: Optimize for cache line size
289  *
290  */
291 struct uma_zone {
292 	char		*uz_name;	/* Text name of the zone */
293 	struct mtx	*uz_lock;	/* Lock for the zone (keg's lock) */
294 	uma_keg_t	uz_keg;		/* Our underlying Keg */
295 
296 	LIST_ENTRY(uma_zone)	uz_link;	/* List of all zones in keg */
297 	LIST_HEAD(,uma_bucket)	uz_full_bucket;	/* full buckets */
298 	LIST_HEAD(,uma_bucket)	uz_free_bucket;	/* Buckets for frees */
299 
300 	uma_ctor	uz_ctor;	/* Constructor for each allocation */
301 	uma_dtor	uz_dtor;	/* Destructor */
302 	uma_init	uz_init;	/* Initializer for each item */
303 	uma_fini	uz_fini;	/* Discards memory */
304 
305 	u_int64_t	uz_allocs;	/* Total number of allocations */
306 	u_int64_t	uz_frees;	/* Total number of frees */
307 	u_int64_t	uz_fails;	/* Total number of alloc failures */
308 	uint16_t	uz_fills;	/* Outstanding bucket fills */
309 	uint16_t	uz_count;	/* Highest value ub_ptr can have */
310 
311 	/*
312 	 * This HAS to be the last item because we adjust the zone size
313 	 * based on NCPU and then allocate the space for the zones.
314 	 */
315 	struct uma_cache	uz_cpu[1];	/* Per cpu caches */
316 };
317 
318 /*
319  * These flags must not overlap with the UMA_ZONE flags specified in uma.h.
320  */
321 #define UMA_ZFLAG_PRIVALLOC	0x10000000	/* Use uz_allocf. */
322 #define UMA_ZFLAG_INTERNAL	0x20000000	/* No offpage no PCPU. */
323 #define UMA_ZFLAG_FULL		0x40000000	/* Reached uz_maxpages */
324 #define UMA_ZFLAG_CACHEONLY	0x80000000	/* Don't ask VM for buckets. */
325 
326 #ifdef _KERNEL
327 /* Internal prototypes */
328 static __inline uma_slab_t hash_sfind(struct uma_hash *hash, u_int8_t *data);
329 void *uma_large_malloc(int size, int wait);
330 void uma_large_free(uma_slab_t slab);
331 
332 /* Lock Macros */
333 
334 #define	ZONE_LOCK_INIT(z, lc)					\
335 	do {							\
336 		if ((lc))					\
337 			mtx_init((z)->uz_lock, (z)->uz_name,	\
338 			    (z)->uz_name, MTX_DEF | MTX_DUPOK);	\
339 		else						\
340 			mtx_init((z)->uz_lock, (z)->uz_name,	\
341 			    "UMA zone", MTX_DEF | MTX_DUPOK);	\
342 	} while (0)
343 
344 #define	ZONE_LOCK_FINI(z)	mtx_destroy((z)->uz_lock)
345 #define	ZONE_LOCK(z)	mtx_lock((z)->uz_lock)
346 #define ZONE_UNLOCK(z)	mtx_unlock((z)->uz_lock)
347 
348 /*
349  * Find a slab within a hash table.  This is used for OFFPAGE zones to lookup
350  * the slab structure.
351  *
352  * Arguments:
353  *	hash  The hash table to search.
354  *	data  The base page of the item.
355  *
356  * Returns:
357  *	A pointer to a slab if successful, else NULL.
358  */
359 static __inline uma_slab_t
360 hash_sfind(struct uma_hash *hash, u_int8_t *data)
361 {
362         uma_slab_t slab;
363         int hval;
364 
365         hval = UMA_HASH(hash, data);
366 
367         SLIST_FOREACH(slab, &hash->uh_slab_hash[hval], us_hlink) {
368                 if ((u_int8_t *)slab->us_data == data)
369                         return (slab);
370         }
371         return (NULL);
372 }
373 
374 static __inline uma_slab_t
375 vtoslab(vm_offset_t va)
376 {
377 	vm_page_t p;
378 	uma_slab_t slab;
379 
380 	p = PHYS_TO_VM_PAGE(pmap_kextract(va));
381 	slab = (uma_slab_t )p->object;
382 
383 	if (p->flags & PG_SLAB)
384 		return (slab);
385 	else
386 		return (NULL);
387 }
388 
389 static __inline void
390 vsetslab(vm_offset_t va, uma_slab_t slab)
391 {
392 	vm_page_t p;
393 
394 	p = PHYS_TO_VM_PAGE(pmap_kextract(va));
395 	p->object = (vm_object_t)slab;
396 	p->flags |= PG_SLAB;
397 }
398 
399 static __inline void
400 vsetobj(vm_offset_t va, vm_object_t obj)
401 {
402 	vm_page_t p;
403 
404 	p = PHYS_TO_VM_PAGE(pmap_kextract(va));
405 	p->object = obj;
406 	p->flags &= ~PG_SLAB;
407 }
408 
409 /*
410  * The following two functions may be defined by architecture specific code
411  * if they can provide more effecient allocation functions.  This is useful
412  * for using direct mapped addresses.
413  */
414 void *uma_small_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait);
415 void uma_small_free(void *mem, int size, u_int8_t flags);
416 #endif /* _KERNEL */
417 
418 #endif /* VM_UMA_INT_H */
419