1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice unmodified, this list of conditions, and the following 13 * disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 * 29 * $FreeBSD$ 30 * 31 */ 32 33 #include <sys/counter.h> 34 #include <sys/_bitset.h> 35 #include <sys/_domainset.h> 36 #include <sys/_task.h> 37 38 /* 39 * This file includes definitions, structures, prototypes, and inlines that 40 * should not be used outside of the actual implementation of UMA. 41 */ 42 43 /* 44 * The brief summary; Zones describe unique allocation types. Zones are 45 * organized into per-CPU caches which are filled by buckets. Buckets are 46 * organized according to memory domains. Buckets are filled from kegs which 47 * are also organized according to memory domains. Kegs describe a unique 48 * allocation type, backend memory provider, and layout. Kegs are associated 49 * with one or more zones and zones reference one or more kegs. Kegs provide 50 * slabs which are virtually contiguous collections of pages. Each slab is 51 * broken down int one or more items that will satisfy an individual allocation. 52 * 53 * Allocation is satisfied in the following order: 54 * 1) Per-CPU cache 55 * 2) Per-domain cache of buckets 56 * 3) Slab from any of N kegs 57 * 4) Backend page provider 58 * 59 * More detail on individual objects is contained below: 60 * 61 * Kegs contain lists of slabs which are stored in either the full bin, empty 62 * bin, or partially allocated bin, to reduce fragmentation. They also contain 63 * the user supplied value for size, which is adjusted for alignment purposes 64 * and rsize is the result of that. The Keg also stores information for 65 * managing a hash of page addresses that maps pages to uma_slab_t structures 66 * for pages that don't have embedded uma_slab_t's. 67 * 68 * Keg slab lists are organized by memory domain to support NUMA allocation 69 * policies. By default allocations are spread across domains to reduce the 70 * potential for hotspots. Special keg creation flags may be specified to 71 * prefer location allocation. However there is no strict enforcement as frees 72 * may happen on any CPU and these are returned to the CPU-local cache 73 * regardless of the originating domain. 74 * 75 * The uma_slab_t may be embedded in a UMA_SLAB_SIZE chunk of memory or it may 76 * be allocated off the page from a special slab zone. The free list within a 77 * slab is managed with a bitmask. For item sizes that would yield more than 78 * 10% memory waste we potentially allocate a separate uma_slab_t if this will 79 * improve the number of items per slab that will fit. 80 * 81 * The only really gross cases, with regards to memory waste, are for those 82 * items that are just over half the page size. You can get nearly 50% waste, 83 * so you fall back to the memory footprint of the power of two allocator. I 84 * have looked at memory allocation sizes on many of the machines available to 85 * me, and there does not seem to be an abundance of allocations at this range 86 * so at this time it may not make sense to optimize for it. This can, of 87 * course, be solved with dynamic slab sizes. 88 * 89 * Kegs may serve multiple Zones but by far most of the time they only serve 90 * one. When a Zone is created, a Keg is allocated and setup for it. While 91 * the backing Keg stores slabs, the Zone caches Buckets of items allocated 92 * from the slabs. Each Zone is equipped with an init/fini and ctor/dtor 93 * pair, as well as with its own set of small per-CPU caches, layered above 94 * the Zone's general Bucket cache. 95 * 96 * The PCPU caches are protected by critical sections, and may be accessed 97 * safely only from their associated CPU, while the Zones backed by the same 98 * Keg all share a common Keg lock (to coalesce contention on the backing 99 * slabs). The backing Keg typically only serves one Zone but in the case of 100 * multiple Zones, one of the Zones is considered the Master Zone and all 101 * Zone-related stats from the Keg are done in the Master Zone. For an 102 * example of a Multi-Zone setup, refer to the Mbuf allocation code. 103 */ 104 105 /* 106 * This is the representation for normal (Non OFFPAGE slab) 107 * 108 * i == item 109 * s == slab pointer 110 * 111 * <---------------- Page (UMA_SLAB_SIZE) ------------------> 112 * ___________________________________________________________ 113 * | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___________ | 114 * ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |slab header|| 115 * ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |___________|| 116 * |___________________________________________________________| 117 * 118 * 119 * This is an OFFPAGE slab. These can be larger than UMA_SLAB_SIZE. 120 * 121 * ___________________________________________________________ 122 * | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | 123 * ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| | 124 * ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| | 125 * |___________________________________________________________| 126 * ___________ ^ 127 * |slab header| | 128 * |___________|---* 129 * 130 */ 131 132 #ifndef VM_UMA_INT_H 133 #define VM_UMA_INT_H 134 135 #define UMA_SLAB_SIZE PAGE_SIZE /* How big are our slabs? */ 136 #define UMA_SLAB_MASK (PAGE_SIZE - 1) /* Mask to get back to the page */ 137 #define UMA_SLAB_SHIFT PAGE_SHIFT /* Number of bits PAGE_MASK */ 138 139 /* Max waste percentage before going to off page slab management */ 140 #define UMA_MAX_WASTE 10 141 142 143 /* 144 * Hash table for freed address -> slab translation. 145 * 146 * Only zones with memory not touchable by the allocator use the 147 * hash table. Otherwise slabs are found with vtoslab(). 148 */ 149 #define UMA_HASH_SIZE_INIT 32 150 151 #define UMA_HASH(h, s) ((((uintptr_t)s) >> UMA_SLAB_SHIFT) & (h)->uh_hashmask) 152 153 #define UMA_HASH_INSERT(h, s, mem) \ 154 LIST_INSERT_HEAD(&(h)->uh_slab_hash[UMA_HASH((h), \ 155 (mem))], (uma_hash_slab_t)(s), uhs_hlink) 156 157 #define UMA_HASH_REMOVE(h, s) \ 158 LIST_REMOVE((uma_hash_slab_t)(s), uhs_hlink) 159 160 LIST_HEAD(slabhashhead, uma_hash_slab); 161 162 struct uma_hash { 163 struct slabhashhead *uh_slab_hash; /* Hash table for slabs */ 164 u_int uh_hashsize; /* Current size of the hash table */ 165 u_int uh_hashmask; /* Mask used during hashing */ 166 }; 167 168 /* 169 * align field or structure to cache line 170 */ 171 #if defined(__amd64__) || defined(__powerpc64__) 172 #define UMA_ALIGN __aligned(128) 173 #else 174 #define UMA_ALIGN 175 #endif 176 177 /* 178 * Structures for per cpu queues. 179 */ 180 181 struct uma_bucket { 182 TAILQ_ENTRY(uma_bucket) ub_link; /* Link into the zone */ 183 int16_t ub_cnt; /* Count of items in bucket. */ 184 int16_t ub_entries; /* Max items. */ 185 void *ub_bucket[]; /* actual allocation storage */ 186 }; 187 188 typedef struct uma_bucket * uma_bucket_t; 189 190 struct uma_cache { 191 uma_bucket_t uc_freebucket; /* Bucket we're freeing to */ 192 uma_bucket_t uc_allocbucket; /* Bucket to allocate from */ 193 uma_bucket_t uc_crossbucket; /* cross domain bucket */ 194 uint64_t uc_allocs; /* Count of allocations */ 195 uint64_t uc_frees; /* Count of frees */ 196 } UMA_ALIGN; 197 198 typedef struct uma_cache * uma_cache_t; 199 200 LIST_HEAD(slabhead, uma_slab); 201 202 /* 203 * Per-domain memory list. Embedded in the kegs. 204 */ 205 struct uma_domain { 206 struct slabhead ud_part_slab; /* partially allocated slabs */ 207 struct slabhead ud_free_slab; /* completely unallocated slabs */ 208 struct slabhead ud_full_slab; /* fully allocated slabs */ 209 }; 210 211 typedef struct uma_domain * uma_domain_t; 212 213 /* 214 * Keg management structure 215 * 216 * TODO: Optimize for cache line size 217 * 218 */ 219 struct uma_keg { 220 struct mtx uk_lock; /* Lock for the keg must be first. 221 * See shared uz_keg/uz_lockptr 222 * member of struct uma_zone. */ 223 struct uma_hash uk_hash; 224 LIST_HEAD(,uma_zone) uk_zones; /* Keg's zones */ 225 226 struct domainset_ref uk_dr; /* Domain selection policy. */ 227 uint32_t uk_align; /* Alignment mask */ 228 uint32_t uk_pages; /* Total page count */ 229 uint32_t uk_free; /* Count of items free in slabs */ 230 uint32_t uk_reserve; /* Number of reserved items. */ 231 uint32_t uk_size; /* Requested size of each item */ 232 uint32_t uk_rsize; /* Real size of each item */ 233 234 uma_init uk_init; /* Keg's init routine */ 235 uma_fini uk_fini; /* Keg's fini routine */ 236 uma_alloc uk_allocf; /* Allocation function */ 237 uma_free uk_freef; /* Free routine */ 238 239 u_long uk_offset; /* Next free offset from base KVA */ 240 vm_offset_t uk_kva; /* Zone base KVA */ 241 uma_zone_t uk_slabzone; /* Slab zone backing us, if OFFPAGE */ 242 243 uint32_t uk_pgoff; /* Offset to uma_slab struct */ 244 uint16_t uk_ppera; /* pages per allocation from backend */ 245 uint16_t uk_ipers; /* Items per slab */ 246 uint32_t uk_flags; /* Internal flags */ 247 248 /* Least used fields go to the last cache line. */ 249 const char *uk_name; /* Name of creating zone. */ 250 LIST_ENTRY(uma_keg) uk_link; /* List of all kegs */ 251 252 /* Must be last, variable sized. */ 253 struct uma_domain uk_domain[]; /* Keg's slab lists. */ 254 }; 255 typedef struct uma_keg * uma_keg_t; 256 257 /* 258 * Free bits per-slab. 259 */ 260 #define SLAB_MAX_SETSIZE (PAGE_SIZE / UMA_SMALLEST_UNIT) 261 #define SLAB_MIN_SETSIZE _BITSET_BITS 262 BITSET_DEFINE(slabbits, SLAB_MAX_SETSIZE); 263 BITSET_DEFINE(noslabbits, 0); 264 265 /* 266 * The slab structure manages a single contiguous allocation from backing 267 * store and subdivides it into individually allocatable items. 268 */ 269 struct uma_slab { 270 LIST_ENTRY(uma_slab) us_link; /* slabs in zone */ 271 uint16_t us_freecount; /* How many are free? */ 272 uint8_t us_flags; /* Page flags see uma.h */ 273 uint8_t us_domain; /* Backing NUMA domain. */ 274 #ifdef INVARIANTS 275 struct slabbits us_debugfree; /* Debug bitmask. */ 276 #endif 277 struct noslabbits us_free; /* Free bitmask. */ 278 }; 279 #if MAXMEMDOM >= 255 280 #error "Slab domain type insufficient" 281 #endif 282 283 typedef struct uma_slab * uma_slab_t; 284 285 /* These three functions are for embedded (!OFFPAGE) use only. */ 286 size_t slab_sizeof(int nitems); 287 size_t slab_space(int nitems); 288 int slab_ipers(size_t size, int align); 289 290 /* 291 * Slab structure with a full sized bitset and hash link for both 292 * HASH and OFFPAGE zones. 293 */ 294 struct uma_hash_slab { 295 struct uma_slab uhs_slab; /* Must be first. */ 296 struct slabbits uhs_bits; /* Must be second. */ 297 LIST_ENTRY(uma_hash_slab) uhs_hlink; /* Link for hash table */ 298 uint8_t *uhs_data; /* First item */ 299 }; 300 301 typedef struct uma_hash_slab * uma_hash_slab_t; 302 303 static inline void * 304 slab_data(uma_slab_t slab, uma_keg_t keg) 305 { 306 307 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) 308 return ((void *)((uintptr_t)slab - keg->uk_pgoff)); 309 else 310 return (((uma_hash_slab_t)slab)->uhs_data); 311 } 312 313 static inline void * 314 slab_item(uma_slab_t slab, uma_keg_t keg, int index) 315 { 316 uintptr_t data; 317 318 data = (uintptr_t)slab_data(slab, keg); 319 return ((void *)(data + keg->uk_rsize * index)); 320 } 321 322 static inline int 323 slab_item_index(uma_slab_t slab, uma_keg_t keg, void *item) 324 { 325 uintptr_t data; 326 327 data = (uintptr_t)slab_data(slab, keg); 328 return (((uintptr_t)item - data) / keg->uk_rsize); 329 } 330 331 TAILQ_HEAD(uma_bucketlist, uma_bucket); 332 333 struct uma_zone_domain { 334 struct uma_bucketlist uzd_buckets; /* full buckets */ 335 long uzd_nitems; /* total item count */ 336 long uzd_imax; /* maximum item count this period */ 337 long uzd_imin; /* minimum item count this period */ 338 long uzd_wss; /* working set size estimate */ 339 }; 340 341 typedef struct uma_zone_domain * uma_zone_domain_t; 342 343 /* 344 * Zone management structure 345 * 346 * TODO: Optimize for cache line size 347 * 348 */ 349 struct uma_zone { 350 /* Offset 0, used in alloc/free fast/medium fast path and const. */ 351 union { 352 uma_keg_t uz_keg; /* This zone's keg */ 353 struct mtx *uz_lockptr; /* To keg or to self */ 354 }; 355 struct uma_zone_domain *uz_domain; /* per-domain buckets */ 356 uint32_t uz_flags; /* Flags inherited from kegs */ 357 uint32_t uz_size; /* Size inherited from kegs */ 358 uma_ctor uz_ctor; /* Constructor for each allocation */ 359 uma_dtor uz_dtor; /* Destructor */ 360 uint64_t uz_items; /* Total items count */ 361 uint64_t uz_max_items; /* Maximum number of items to alloc */ 362 uint32_t uz_sleepers; /* Number of sleepers on memory */ 363 uint16_t uz_bucket_size; /* Number of items in full bucket */ 364 uint16_t uz_bucket_size_max; /* Maximum number of bucket items */ 365 366 /* Offset 64, used in bucket replenish. */ 367 uma_import uz_import; /* Import new memory to cache. */ 368 uma_release uz_release; /* Release memory from cache. */ 369 void *uz_arg; /* Import/release argument. */ 370 uma_init uz_init; /* Initializer for each item */ 371 uma_fini uz_fini; /* Finalizer for each item. */ 372 void *uz_spare; 373 uint64_t uz_bkt_count; /* Items in bucket cache */ 374 uint64_t uz_bkt_max; /* Maximum bucket cache size */ 375 376 /* Offset 128 Rare. */ 377 /* 378 * The lock is placed here to avoid adjacent line prefetcher 379 * in fast paths and to take up space near infrequently accessed 380 * members to reduce alignment overhead. 381 */ 382 struct mtx uz_lock; /* Lock for the zone */ 383 LIST_ENTRY(uma_zone) uz_link; /* List of all zones in keg */ 384 const char *uz_name; /* Text name of the zone */ 385 /* The next two fields are used to print a rate-limited warnings. */ 386 const char *uz_warning; /* Warning to print on failure */ 387 struct timeval uz_ratecheck; /* Warnings rate-limiting */ 388 struct task uz_maxaction; /* Task to run when at limit */ 389 uint16_t uz_bucket_size_min; /* Min number of items in bucket */ 390 391 /* Offset 256+, stats and misc. */ 392 counter_u64_t uz_allocs; /* Total number of allocations */ 393 counter_u64_t uz_frees; /* Total number of frees */ 394 counter_u64_t uz_fails; /* Total number of alloc failures */ 395 uint64_t uz_sleeps; /* Total number of alloc sleeps */ 396 uint64_t uz_xdomain; /* Total number of cross-domain frees */ 397 char *uz_ctlname; /* sysctl safe name string. */ 398 struct sysctl_oid *uz_oid; /* sysctl oid pointer. */ 399 int uz_namecnt; /* duplicate name count. */ 400 401 /* 402 * This HAS to be the last item because we adjust the zone size 403 * based on NCPU and then allocate the space for the zones. 404 */ 405 struct uma_cache uz_cpu[]; /* Per cpu caches */ 406 407 /* uz_domain follows here. */ 408 }; 409 410 /* 411 * These flags must not overlap with the UMA_ZONE flags specified in uma.h. 412 */ 413 #define UMA_ZFLAG_CACHE 0x04000000 /* uma_zcache_create()d it */ 414 #define UMA_ZFLAG_RECLAIMING 0x08000000 /* Running zone_reclaim(). */ 415 #define UMA_ZFLAG_BUCKET 0x10000000 /* Bucket zone. */ 416 #define UMA_ZFLAG_INTERNAL 0x20000000 /* No offpage no PCPU. */ 417 #define UMA_ZFLAG_TRASH 0x40000000 /* Add trash ctor/dtor. */ 418 #define UMA_ZFLAG_CACHEONLY 0x80000000 /* Don't ask VM for buckets. */ 419 420 #define UMA_ZFLAG_INHERIT \ 421 (UMA_ZFLAG_INTERNAL | UMA_ZFLAG_CACHEONLY | UMA_ZFLAG_BUCKET) 422 423 #define PRINT_UMA_ZFLAGS "\20" \ 424 "\40CACHEONLY" \ 425 "\37TRASH" \ 426 "\36INTERNAL" \ 427 "\35BUCKET" \ 428 "\34RECLAIMING" \ 429 "\33CACHE" \ 430 "\22MINBUCKET" \ 431 "\21NUMA" \ 432 "\20PCPU" \ 433 "\17NODUMP" \ 434 "\16VTOSLAB" \ 435 "\15CACHESPREAD" \ 436 "\14MAXBUCKET" \ 437 "\13NOBUCKET" \ 438 "\12SECONDARY" \ 439 "\11HASH" \ 440 "\10VM" \ 441 "\7MTXCLASS" \ 442 "\6NOFREE" \ 443 "\5MALLOC" \ 444 "\4OFFPAGE" \ 445 "\3STATIC" \ 446 "\2ZINIT" \ 447 "\1PAGEABLE" 448 449 #undef UMA_ALIGN 450 451 #ifdef _KERNEL 452 /* Internal prototypes */ 453 static __inline uma_slab_t hash_sfind(struct uma_hash *hash, uint8_t *data); 454 455 /* Lock Macros */ 456 457 #define KEG_LOCK_INIT(k, lc) \ 458 do { \ 459 if ((lc)) \ 460 mtx_init(&(k)->uk_lock, (k)->uk_name, \ 461 (k)->uk_name, MTX_DEF | MTX_DUPOK); \ 462 else \ 463 mtx_init(&(k)->uk_lock, (k)->uk_name, \ 464 "UMA zone", MTX_DEF | MTX_DUPOK); \ 465 } while (0) 466 467 #define KEG_LOCK_FINI(k) mtx_destroy(&(k)->uk_lock) 468 #define KEG_LOCK(k) mtx_lock(&(k)->uk_lock) 469 #define KEG_UNLOCK(k) mtx_unlock(&(k)->uk_lock) 470 #define KEG_LOCK_ASSERT(k) mtx_assert(&(k)->uk_lock, MA_OWNED) 471 472 #define KEG_GET(zone, keg) do { \ 473 (keg) = (zone)->uz_keg; \ 474 KASSERT((void *)(keg) != (void *)&(zone)->uz_lock, \ 475 ("%s: Invalid zone %p type", __func__, (zone))); \ 476 } while (0) 477 478 #define ZONE_LOCK_INIT(z, lc) \ 479 do { \ 480 if ((lc)) \ 481 mtx_init(&(z)->uz_lock, (z)->uz_name, \ 482 (z)->uz_name, MTX_DEF | MTX_DUPOK); \ 483 else \ 484 mtx_init(&(z)->uz_lock, (z)->uz_name, \ 485 "UMA zone", MTX_DEF | MTX_DUPOK); \ 486 } while (0) 487 488 #define ZONE_LOCK(z) mtx_lock((z)->uz_lockptr) 489 #define ZONE_TRYLOCK(z) mtx_trylock((z)->uz_lockptr) 490 #define ZONE_UNLOCK(z) mtx_unlock((z)->uz_lockptr) 491 #define ZONE_LOCK_FINI(z) mtx_destroy(&(z)->uz_lock) 492 #define ZONE_LOCK_ASSERT(z) mtx_assert((z)->uz_lockptr, MA_OWNED) 493 494 /* 495 * Find a slab within a hash table. This is used for OFFPAGE zones to lookup 496 * the slab structure. 497 * 498 * Arguments: 499 * hash The hash table to search. 500 * data The base page of the item. 501 * 502 * Returns: 503 * A pointer to a slab if successful, else NULL. 504 */ 505 static __inline uma_slab_t 506 hash_sfind(struct uma_hash *hash, uint8_t *data) 507 { 508 uma_hash_slab_t slab; 509 u_int hval; 510 511 hval = UMA_HASH(hash, data); 512 513 LIST_FOREACH(slab, &hash->uh_slab_hash[hval], uhs_hlink) { 514 if ((uint8_t *)slab->uhs_data == data) 515 return (&slab->uhs_slab); 516 } 517 return (NULL); 518 } 519 520 static __inline uma_slab_t 521 vtoslab(vm_offset_t va) 522 { 523 vm_page_t p; 524 525 p = PHYS_TO_VM_PAGE(pmap_kextract(va)); 526 return (p->plinks.uma.slab); 527 } 528 529 static __inline void 530 vtozoneslab(vm_offset_t va, uma_zone_t *zone, uma_slab_t *slab) 531 { 532 vm_page_t p; 533 534 p = PHYS_TO_VM_PAGE(pmap_kextract(va)); 535 *slab = p->plinks.uma.slab; 536 *zone = p->plinks.uma.zone; 537 } 538 539 static __inline void 540 vsetzoneslab(vm_offset_t va, uma_zone_t zone, uma_slab_t slab) 541 { 542 vm_page_t p; 543 544 p = PHYS_TO_VM_PAGE(pmap_kextract(va)); 545 p->plinks.uma.slab = slab; 546 p->plinks.uma.zone = zone; 547 } 548 549 extern unsigned long uma_kmem_limit; 550 extern unsigned long uma_kmem_total; 551 552 /* Adjust bytes under management by UMA. */ 553 static inline void 554 uma_total_dec(unsigned long size) 555 { 556 557 atomic_subtract_long(&uma_kmem_total, size); 558 } 559 560 static inline void 561 uma_total_inc(unsigned long size) 562 { 563 564 if (atomic_fetchadd_long(&uma_kmem_total, size) > uma_kmem_limit) 565 uma_reclaim_wakeup(); 566 } 567 568 /* 569 * The following two functions may be defined by architecture specific code 570 * if they can provide more efficient allocation functions. This is useful 571 * for using direct mapped addresses. 572 */ 573 void *uma_small_alloc(uma_zone_t zone, vm_size_t bytes, int domain, 574 uint8_t *pflag, int wait); 575 void uma_small_free(void *mem, vm_size_t size, uint8_t flags); 576 577 /* Set a global soft limit on UMA managed memory. */ 578 void uma_set_limit(unsigned long limit); 579 #endif /* _KERNEL */ 580 581 #endif /* VM_UMA_INT_H */ 582