xref: /freebsd/sys/vm/uma_int.h (revision 28f4385e45a2681c14bd04b83fe1796eaefe8265)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org>
5  * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice unmodified, this list of conditions, and the following
13  *    disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  *
31  */
32 
33 #include <sys/counter.h>
34 #include <sys/_bitset.h>
35 #include <sys/_domainset.h>
36 #include <sys/_task.h>
37 
38 /*
39  * This file includes definitions, structures, prototypes, and inlines that
40  * should not be used outside of the actual implementation of UMA.
41  */
42 
43 /*
44  * The brief summary;  Zones describe unique allocation types.  Zones are
45  * organized into per-CPU caches which are filled by buckets.  Buckets are
46  * organized according to memory domains.  Buckets are filled from kegs which
47  * are also organized according to memory domains.  Kegs describe a unique
48  * allocation type, backend memory provider, and layout.  Kegs are associated
49  * with one or more zones and zones reference one or more kegs.  Kegs provide
50  * slabs which are virtually contiguous collections of pages.  Each slab is
51  * broken down int one or more items that will satisfy an individual allocation.
52  *
53  * Allocation is satisfied in the following order:
54  * 1) Per-CPU cache
55  * 2) Per-domain cache of buckets
56  * 3) Slab from any of N kegs
57  * 4) Backend page provider
58  *
59  * More detail on individual objects is contained below:
60  *
61  * Kegs contain lists of slabs which are stored in either the full bin, empty
62  * bin, or partially allocated bin, to reduce fragmentation.  They also contain
63  * the user supplied value for size, which is adjusted for alignment purposes
64  * and rsize is the result of that.  The Keg also stores information for
65  * managing a hash of page addresses that maps pages to uma_slab_t structures
66  * for pages that don't have embedded uma_slab_t's.
67  *
68  * Keg slab lists are organized by memory domain to support NUMA allocation
69  * policies.  By default allocations are spread across domains to reduce the
70  * potential for hotspots.  Special keg creation flags may be specified to
71  * prefer location allocation.  However there is no strict enforcement as frees
72  * may happen on any CPU and these are returned to the CPU-local cache
73  * regardless of the originating domain.
74  *
75  * The uma_slab_t may be embedded in a UMA_SLAB_SIZE chunk of memory or it may
76  * be allocated off the page from a special slab zone.  The free list within a
77  * slab is managed with a bitmask.  For item sizes that would yield more than
78  * 10% memory waste we potentially allocate a separate uma_slab_t if this will
79  * improve the number of items per slab that will fit.
80  *
81  * The only really gross cases, with regards to memory waste, are for those
82  * items that are just over half the page size.   You can get nearly 50% waste,
83  * so you fall back to the memory footprint of the power of two allocator. I
84  * have looked at memory allocation sizes on many of the machines available to
85  * me, and there does not seem to be an abundance of allocations at this range
86  * so at this time it may not make sense to optimize for it.  This can, of
87  * course, be solved with dynamic slab sizes.
88  *
89  * Kegs may serve multiple Zones but by far most of the time they only serve
90  * one.  When a Zone is created, a Keg is allocated and setup for it.  While
91  * the backing Keg stores slabs, the Zone caches Buckets of items allocated
92  * from the slabs.  Each Zone is equipped with an init/fini and ctor/dtor
93  * pair, as well as with its own set of small per-CPU caches, layered above
94  * the Zone's general Bucket cache.
95  *
96  * The PCPU caches are protected by critical sections, and may be accessed
97  * safely only from their associated CPU, while the Zones backed by the same
98  * Keg all share a common Keg lock (to coalesce contention on the backing
99  * slabs).  The backing Keg typically only serves one Zone but in the case of
100  * multiple Zones, one of the Zones is considered the Master Zone and all
101  * Zone-related stats from the Keg are done in the Master Zone.  For an
102  * example of a Multi-Zone setup, refer to the Mbuf allocation code.
103  */
104 
105 /*
106  *	This is the representation for normal (Non OFFPAGE slab)
107  *
108  *	i == item
109  *	s == slab pointer
110  *
111  *	<----------------  Page (UMA_SLAB_SIZE) ------------------>
112  *	___________________________________________________________
113  *     | _  _  _  _  _  _  _  _  _  _  _  _  _  _  _   ___________ |
114  *     ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |slab header||
115  *     ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |___________||
116  *     |___________________________________________________________|
117  *
118  *
119  *	This is an OFFPAGE slab. These can be larger than UMA_SLAB_SIZE.
120  *
121  *	___________________________________________________________
122  *     | _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _   |
123  *     ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i|  |
124  *     ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_|  |
125  *     |___________________________________________________________|
126  *       ___________    ^
127  *	|slab header|   |
128  *	|___________|---*
129  *
130  */
131 
132 #ifndef VM_UMA_INT_H
133 #define VM_UMA_INT_H
134 
135 #define UMA_SLAB_SIZE	PAGE_SIZE	/* How big are our slabs? */
136 #define UMA_SLAB_MASK	(PAGE_SIZE - 1)	/* Mask to get back to the page */
137 #define UMA_SLAB_SHIFT	PAGE_SHIFT	/* Number of bits PAGE_MASK */
138 
139 /* Max waste percentage before going to off page slab management */
140 #define UMA_MAX_WASTE	10
141 
142 /*
143  * Actual size of uma_slab when it is placed at an end of a page
144  * with pointer sized alignment requirement.
145  */
146 #define	SIZEOF_UMA_SLAB	((sizeof(struct uma_slab) & UMA_ALIGN_PTR) ?	  \
147 			    (sizeof(struct uma_slab) & ~UMA_ALIGN_PTR) +  \
148 			    (UMA_ALIGN_PTR + 1) : sizeof(struct uma_slab))
149 
150 /*
151  * Size of memory in a not offpage single page slab available for actual items.
152  */
153 #define	UMA_SLAB_SPACE	(PAGE_SIZE - SIZEOF_UMA_SLAB)
154 
155 /*
156  * I doubt there will be many cases where this is exceeded. This is the initial
157  * size of the hash table for uma_slabs that are managed off page. This hash
158  * does expand by powers of two.  Currently it doesn't get smaller.
159  */
160 #define UMA_HASH_SIZE_INIT	32
161 
162 /*
163  * I should investigate other hashing algorithms.  This should yield a low
164  * number of collisions if the pages are relatively contiguous.
165  */
166 
167 #define UMA_HASH(h, s) ((((uintptr_t)s) >> UMA_SLAB_SHIFT) & (h)->uh_hashmask)
168 
169 #define UMA_HASH_INSERT(h, s, mem)					\
170 		SLIST_INSERT_HEAD(&(h)->uh_slab_hash[UMA_HASH((h),	\
171 		    (mem))], (s), us_hlink)
172 #define UMA_HASH_REMOVE(h, s, mem)					\
173 		SLIST_REMOVE(&(h)->uh_slab_hash[UMA_HASH((h),		\
174 		    (mem))], (s), uma_slab, us_hlink)
175 
176 /* Hash table for freed address -> slab translation */
177 
178 SLIST_HEAD(slabhead, uma_slab);
179 
180 struct uma_hash {
181 	struct slabhead	*uh_slab_hash;	/* Hash table for slabs */
182 	int		uh_hashsize;	/* Current size of the hash table */
183 	int		uh_hashmask;	/* Mask used during hashing */
184 };
185 
186 /*
187  * align field or structure to cache line
188  */
189 #if defined(__amd64__) || defined(__powerpc64__)
190 #define UMA_ALIGN	__aligned(128)
191 #else
192 #define UMA_ALIGN
193 #endif
194 
195 /*
196  * Structures for per cpu queues.
197  */
198 
199 struct uma_bucket {
200 	LIST_ENTRY(uma_bucket)	ub_link;	/* Link into the zone */
201 	int16_t	ub_cnt;				/* Count of items in bucket. */
202 	int16_t	ub_entries;			/* Max items. */
203 	void	*ub_bucket[];			/* actual allocation storage */
204 };
205 
206 typedef struct uma_bucket * uma_bucket_t;
207 
208 struct uma_cache {
209 	uma_bucket_t	uc_freebucket;	/* Bucket we're freeing to */
210 	uma_bucket_t	uc_allocbucket;	/* Bucket to allocate from */
211 	uint64_t	uc_allocs;	/* Count of allocations */
212 	uint64_t	uc_frees;	/* Count of frees */
213 } UMA_ALIGN;
214 
215 typedef struct uma_cache * uma_cache_t;
216 
217 /*
218  * Per-domain memory list.  Embedded in the kegs.
219  */
220 struct uma_domain {
221 	LIST_HEAD(,uma_slab)	ud_part_slab;	/* partially allocated slabs */
222 	LIST_HEAD(,uma_slab)	ud_free_slab;	/* empty slab list */
223 	LIST_HEAD(,uma_slab)	ud_full_slab;	/* full slabs */
224 };
225 
226 typedef struct uma_domain * uma_domain_t;
227 
228 /*
229  * Keg management structure
230  *
231  * TODO: Optimize for cache line size
232  *
233  */
234 struct uma_keg {
235 	struct mtx	uk_lock;	/* Lock for the keg must be first.
236 					 * See shared uz_keg/uz_lockptr
237 					 * member of struct uma_zone. */
238 	struct uma_hash	uk_hash;
239 	LIST_HEAD(,uma_zone)	uk_zones;	/* Keg's zones */
240 
241 	struct domainset_ref uk_dr;	/* Domain selection policy. */
242 	uint32_t	uk_align;	/* Alignment mask */
243 	uint32_t	uk_pages;	/* Total page count */
244 	uint32_t	uk_free;	/* Count of items free in slabs */
245 	uint32_t	uk_reserve;	/* Number of reserved items. */
246 	uint32_t	uk_size;	/* Requested size of each item */
247 	uint32_t	uk_rsize;	/* Real size of each item */
248 
249 	uma_init	uk_init;	/* Keg's init routine */
250 	uma_fini	uk_fini;	/* Keg's fini routine */
251 	uma_alloc	uk_allocf;	/* Allocation function */
252 	uma_free	uk_freef;	/* Free routine */
253 
254 	u_long		uk_offset;	/* Next free offset from base KVA */
255 	vm_offset_t	uk_kva;		/* Zone base KVA */
256 	uma_zone_t	uk_slabzone;	/* Slab zone backing us, if OFFPAGE */
257 
258 	uint32_t	uk_pgoff;	/* Offset to uma_slab struct */
259 	uint16_t	uk_ppera;	/* pages per allocation from backend */
260 	uint16_t	uk_ipers;	/* Items per slab */
261 	uint32_t	uk_flags;	/* Internal flags */
262 
263 	/* Least used fields go to the last cache line. */
264 	const char	*uk_name;		/* Name of creating zone. */
265 	LIST_ENTRY(uma_keg)	uk_link;	/* List of all kegs */
266 
267 	/* Must be last, variable sized. */
268 	struct uma_domain	uk_domain[];	/* Keg's slab lists. */
269 };
270 typedef struct uma_keg	* uma_keg_t;
271 
272 /*
273  * Free bits per-slab.
274  */
275 #define	SLAB_SETSIZE	(PAGE_SIZE / UMA_SMALLEST_UNIT)
276 BITSET_DEFINE(slabbits, SLAB_SETSIZE);
277 
278 /*
279  * The slab structure manages a single contiguous allocation from backing
280  * store and subdivides it into individually allocatable items.
281  */
282 struct uma_slab {
283 	uma_keg_t	us_keg;			/* Keg we live in */
284 	union {
285 		LIST_ENTRY(uma_slab)	_us_link;	/* slabs in zone */
286 		unsigned long	_us_size;	/* Size of allocation */
287 	} us_type;
288 	SLIST_ENTRY(uma_slab)	us_hlink;	/* Link for hash table */
289 	uint8_t		*us_data;		/* First item */
290 	struct slabbits	us_free;		/* Free bitmask. */
291 #ifdef INVARIANTS
292 	struct slabbits	us_debugfree;		/* Debug bitmask. */
293 #endif
294 	uint16_t	us_freecount;		/* How many are free? */
295 	uint8_t		us_flags;		/* Page flags see uma.h */
296 	uint8_t		us_domain;		/* Backing NUMA domain. */
297 };
298 
299 #define	us_link	us_type._us_link
300 #define	us_size	us_type._us_size
301 
302 #if MAXMEMDOM >= 255
303 #error "Slab domain type insufficient"
304 #endif
305 
306 typedef struct uma_slab * uma_slab_t;
307 typedef uma_slab_t (*uma_slaballoc)(uma_zone_t, uma_keg_t, int, int);
308 
309 struct uma_zone_domain {
310 	LIST_HEAD(,uma_bucket)	uzd_buckets;	/* full buckets */
311 	long		uzd_nitems;	/* total item count */
312 	long		uzd_imax;	/* maximum item count this period */
313 	long		uzd_imin;	/* minimum item count this period */
314 	long		uzd_wss;	/* working set size estimate */
315 };
316 
317 typedef struct uma_zone_domain * uma_zone_domain_t;
318 
319 /*
320  * Zone management structure
321  *
322  * TODO: Optimize for cache line size
323  *
324  */
325 struct uma_zone {
326 	/* Offset 0, used in alloc/free fast/medium fast path and const. */
327 	union {
328 		uma_keg_t	uz_keg;		/* This zone's keg */
329 		struct mtx 	*uz_lockptr;	/* To keg or to self */
330 	};
331 	struct uma_zone_domain	*uz_domain;	/* per-domain buckets */
332 	uint32_t	uz_flags;	/* Flags inherited from kegs */
333 	uint32_t	uz_size;	/* Size inherited from kegs */
334 	uma_ctor	uz_ctor;	/* Constructor for each allocation */
335 	uma_dtor	uz_dtor;	/* Destructor */
336 	uint64_t	uz_items;	/* Total items count */
337 	uint64_t	uz_max_items;	/* Maximum number of items to alloc */
338 	uint32_t	uz_sleepers;	/* Number of sleepers on memory */
339 	uint16_t	uz_count;	/* Amount of items in full bucket */
340 	uint16_t	uz_count_max;	/* Maximum amount of items there */
341 
342 	/* Offset 64, used in bucket replenish. */
343 	uma_import	uz_import;	/* Import new memory to cache. */
344 	uma_release	uz_release;	/* Release memory from cache. */
345 	void		*uz_arg;	/* Import/release argument. */
346 	uma_init	uz_init;	/* Initializer for each item */
347 	uma_fini	uz_fini;	/* Finalizer for each item. */
348 	uma_slaballoc	uz_slab;	/* Allocate a slab from the backend. */
349 	uint64_t	uz_bkt_count;    /* Items in bucket cache */
350 	uint64_t	uz_bkt_max;	/* Maximum bucket cache size */
351 
352 	/* Offset 128 Rare. */
353 	/*
354 	 * The lock is placed here to avoid adjacent line prefetcher
355 	 * in fast paths and to take up space near infrequently accessed
356 	 * members to reduce alignment overhead.
357 	 */
358 	struct mtx	uz_lock;	/* Lock for the zone */
359 	LIST_ENTRY(uma_zone) uz_link;	/* List of all zones in keg */
360 	const char	*uz_name;	/* Text name of the zone */
361 	/* The next two fields are used to print a rate-limited warnings. */
362 	const char	*uz_warning;	/* Warning to print on failure */
363 	struct timeval	uz_ratecheck;	/* Warnings rate-limiting */
364 	struct task	uz_maxaction;	/* Task to run when at limit */
365 	uint16_t	uz_count_min;	/* Minimal amount of items in bucket */
366 
367 	/* Offset 256, stats. */
368 	counter_u64_t	uz_allocs;	/* Total number of allocations */
369 	counter_u64_t	uz_frees;	/* Total number of frees */
370 	counter_u64_t	uz_fails;	/* Total number of alloc failures */
371 	uint64_t	uz_sleeps;	/* Total number of alloc sleeps */
372 
373 	/*
374 	 * This HAS to be the last item because we adjust the zone size
375 	 * based on NCPU and then allocate the space for the zones.
376 	 */
377 	struct uma_cache	uz_cpu[]; /* Per cpu caches */
378 
379 	/* uz_domain follows here. */
380 };
381 
382 /*
383  * These flags must not overlap with the UMA_ZONE flags specified in uma.h.
384  */
385 #define	UMA_ZFLAG_CACHE		0x04000000	/* uma_zcache_create()d it */
386 #define	UMA_ZFLAG_DRAINING	0x08000000	/* Running zone_drain. */
387 #define	UMA_ZFLAG_BUCKET	0x10000000	/* Bucket zone. */
388 #define UMA_ZFLAG_INTERNAL	0x20000000	/* No offpage no PCPU. */
389 #define UMA_ZFLAG_CACHEONLY	0x80000000	/* Don't ask VM for buckets. */
390 
391 #define	UMA_ZFLAG_INHERIT						\
392     (UMA_ZFLAG_INTERNAL | UMA_ZFLAG_CACHEONLY | UMA_ZFLAG_BUCKET)
393 
394 #undef UMA_ALIGN
395 
396 #ifdef _KERNEL
397 /* Internal prototypes */
398 static __inline uma_slab_t hash_sfind(struct uma_hash *hash, uint8_t *data);
399 void *uma_large_malloc(vm_size_t size, int wait);
400 void *uma_large_malloc_domain(vm_size_t size, int domain, int wait);
401 void uma_large_free(uma_slab_t slab);
402 
403 /* Lock Macros */
404 
405 #define	KEG_LOCK_INIT(k, lc)					\
406 	do {							\
407 		if ((lc))					\
408 			mtx_init(&(k)->uk_lock, (k)->uk_name,	\
409 			    (k)->uk_name, MTX_DEF | MTX_DUPOK);	\
410 		else						\
411 			mtx_init(&(k)->uk_lock, (k)->uk_name,	\
412 			    "UMA zone", MTX_DEF | MTX_DUPOK);	\
413 	} while (0)
414 
415 #define	KEG_LOCK_FINI(k)	mtx_destroy(&(k)->uk_lock)
416 #define	KEG_LOCK(k)	mtx_lock(&(k)->uk_lock)
417 #define	KEG_UNLOCK(k)	mtx_unlock(&(k)->uk_lock)
418 #define	KEG_LOCK_ASSERT(k)	mtx_assert(&(k)->uk_lock, MA_OWNED)
419 
420 #define	KEG_GET(zone, keg) do {					\
421 	(keg) = (zone)->uz_keg;					\
422 	KASSERT((void *)(keg) != (void *)&(zone)->uz_lock,	\
423 	    ("%s: Invalid zone %p type", __func__, (zone)));	\
424 	} while (0)
425 
426 #define	ZONE_LOCK_INIT(z, lc)					\
427 	do {							\
428 		if ((lc))					\
429 			mtx_init(&(z)->uz_lock, (z)->uz_name,	\
430 			    (z)->uz_name, MTX_DEF | MTX_DUPOK);	\
431 		else						\
432 			mtx_init(&(z)->uz_lock, (z)->uz_name,	\
433 			    "UMA zone", MTX_DEF | MTX_DUPOK);	\
434 	} while (0)
435 
436 #define	ZONE_LOCK(z)	mtx_lock((z)->uz_lockptr)
437 #define	ZONE_TRYLOCK(z)	mtx_trylock((z)->uz_lockptr)
438 #define	ZONE_UNLOCK(z)	mtx_unlock((z)->uz_lockptr)
439 #define	ZONE_LOCK_FINI(z)	mtx_destroy(&(z)->uz_lock)
440 #define	ZONE_LOCK_ASSERT(z)	mtx_assert((z)->uz_lockptr, MA_OWNED)
441 
442 /*
443  * Find a slab within a hash table.  This is used for OFFPAGE zones to lookup
444  * the slab structure.
445  *
446  * Arguments:
447  *	hash  The hash table to search.
448  *	data  The base page of the item.
449  *
450  * Returns:
451  *	A pointer to a slab if successful, else NULL.
452  */
453 static __inline uma_slab_t
454 hash_sfind(struct uma_hash *hash, uint8_t *data)
455 {
456         uma_slab_t slab;
457         int hval;
458 
459         hval = UMA_HASH(hash, data);
460 
461         SLIST_FOREACH(slab, &hash->uh_slab_hash[hval], us_hlink) {
462                 if ((uint8_t *)slab->us_data == data)
463                         return (slab);
464         }
465         return (NULL);
466 }
467 
468 static __inline uma_slab_t
469 vtoslab(vm_offset_t va)
470 {
471 	vm_page_t p;
472 
473 	p = PHYS_TO_VM_PAGE(pmap_kextract(va));
474 	return ((uma_slab_t)p->plinks.s.pv);
475 }
476 
477 static __inline void
478 vsetslab(vm_offset_t va, uma_slab_t slab)
479 {
480 	vm_page_t p;
481 
482 	p = PHYS_TO_VM_PAGE(pmap_kextract(va));
483 	p->plinks.s.pv = slab;
484 }
485 
486 /*
487  * The following two functions may be defined by architecture specific code
488  * if they can provide more efficient allocation functions.  This is useful
489  * for using direct mapped addresses.
490  */
491 void *uma_small_alloc(uma_zone_t zone, vm_size_t bytes, int domain,
492     uint8_t *pflag, int wait);
493 void uma_small_free(void *mem, vm_size_t size, uint8_t flags);
494 
495 /* Set a global soft limit on UMA managed memory. */
496 void uma_set_limit(unsigned long limit);
497 #endif /* _KERNEL */
498 
499 #endif /* VM_UMA_INT_H */
500