xref: /freebsd/sys/vm/uma_int.h (revision 2546665afcaf0d53dc2c7058fee96354b3680f5a)
1 /*
2  * Copyright (c) 2002, Jeffrey Roberson <jeff@freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  *
28  */
29 
30 /*
31  * This file includes definitions, structures, prototypes, and inlines that
32  * should not be used outside of the actual implementation of UMA.
33  */
34 
35 /*
36  * Here's a quick description of the relationship between the objects:
37  *
38  * Kegs contain lists of slabs which are stored in either the full bin, empty
39  * bin, or partially allocated bin, to reduce fragmentation.  They also contain
40  * the user supplied value for size, which is adjusted for alignment purposes
41  * and rsize is the result of that.  The Keg also stores information for
42  * managing a hash of page addresses that maps pages to uma_slab_t structures
43  * for pages that don't have embedded uma_slab_t's.
44  *
45  * The uma_slab_t may be embedded in a UMA_SLAB_SIZE chunk of memory or it may
46  * be allocated off the page from a special slab zone.  The free list within a
47  * slab is managed with a linked list of indexes, which are 8 bit values.  If
48  * UMA_SLAB_SIZE is defined to be too large I will have to switch to 16bit
49  * values.  Currently on alpha you can get 250 or so 32 byte items and on x86
50  * you can get 250 or so 16byte items.  For item sizes that would yield more
51  * than 10% memory waste we potentially allocate a separate uma_slab_t if this
52  * will improve the number of items per slab that will fit.
53  *
54  * Other potential space optimizations are storing the 8bit of linkage in space
55  * wasted between items due to alignment problems.  This may yield a much better
56  * memory footprint for certain sizes of objects.  Another alternative is to
57  * increase the UMA_SLAB_SIZE, or allow for dynamic slab sizes.  I prefer
58  * dynamic slab sizes because we could stick with 8 bit indexes and only use
59  * large slab sizes for zones with a lot of waste per slab.  This may create
60  * ineffeciencies in the vm subsystem due to fragmentation in the address space.
61  *
62  * The only really gross cases, with regards to memory waste, are for those
63  * items that are just over half the page size.   You can get nearly 50% waste,
64  * so you fall back to the memory footprint of the power of two allocator. I
65  * have looked at memory allocation sizes on many of the machines available to
66  * me, and there does not seem to be an abundance of allocations at this range
67  * so at this time it may not make sense to optimize for it.  This can, of
68  * course, be solved with dynamic slab sizes.
69  *
70  * Kegs may serve multiple Zones but by far most of the time they only serve
71  * one.  When a Zone is created, a Keg is allocated and setup for it.  While
72  * the backing Keg stores slabs, the Zone caches Buckets of items allocated
73  * from the slabs.  Each Zone is equipped with an init/fini and ctor/dtor
74  * pair, as well as with its own set of small per-CPU caches, layered above
75  * the Zone's general Bucket cache.
76  *
77  * The PCPU caches are protected by their own locks, while the Zones backed
78  * by the same Keg all share a common Keg lock (to coalesce contention on
79  * the backing slabs).  The backing Keg typically only serves one Zone but
80  * in the case of multiple Zones, one of the Zones is considered the
81  * Master Zone and all Zone-related stats from the Keg are done in the
82  * Master Zone.  For an example of a Multi-Zone setup, refer to the
83  * Mbuf allocation code.
84  */
85 
86 /*
87  *	This is the representation for normal (Non OFFPAGE slab)
88  *
89  *	i == item
90  *	s == slab pointer
91  *
92  *	<----------------  Page (UMA_SLAB_SIZE) ------------------>
93  *	___________________________________________________________
94  *     | _  _  _  _  _  _  _  _  _  _  _  _  _  _  _   ___________ |
95  *     ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |slab header||
96  *     ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |___________||
97  *     |___________________________________________________________|
98  *
99  *
100  *	This is an OFFPAGE slab. These can be larger than UMA_SLAB_SIZE.
101  *
102  *	___________________________________________________________
103  *     | _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _   |
104  *     ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i|  |
105  *     ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_|  |
106  *     |___________________________________________________________|
107  *       ___________    ^
108  *	|slab header|   |
109  *	|___________|---*
110  *
111  */
112 
113 #ifndef VM_UMA_INT_H
114 #define VM_UMA_INT_H
115 
116 #define UMA_SLAB_SIZE	PAGE_SIZE	/* How big are our slabs? */
117 #define UMA_SLAB_MASK	(PAGE_SIZE - 1)	/* Mask to get back to the page */
118 #define UMA_SLAB_SHIFT	PAGE_SHIFT	/* Number of bits PAGE_MASK */
119 
120 #define UMA_BOOT_PAGES		40	/* Pages allocated for startup */
121 
122 /* Max waste before going to off page slab management */
123 #define UMA_MAX_WASTE	(UMA_SLAB_SIZE / 10)
124 
125 /*
126  * I doubt there will be many cases where this is exceeded. This is the initial
127  * size of the hash table for uma_slabs that are managed off page. This hash
128  * does expand by powers of two.  Currently it doesn't get smaller.
129  */
130 #define UMA_HASH_SIZE_INIT	32
131 
132 /*
133  * I should investigate other hashing algorithms.  This should yield a low
134  * number of collisions if the pages are relatively contiguous.
135  *
136  * This is the same algorithm that most processor caches use.
137  *
138  * I'm shifting and masking instead of % because it should be faster.
139  */
140 
141 #define UMA_HASH(h, s) ((((unsigned long)s) >> UMA_SLAB_SHIFT) &	\
142     (h)->uh_hashmask)
143 
144 #define UMA_HASH_INSERT(h, s, mem)					\
145 		SLIST_INSERT_HEAD(&(h)->uh_slab_hash[UMA_HASH((h),	\
146 		    (mem))], (s), us_hlink);
147 #define UMA_HASH_REMOVE(h, s, mem)					\
148 		SLIST_REMOVE(&(h)->uh_slab_hash[UMA_HASH((h),		\
149 		    (mem))], (s), uma_slab, us_hlink);
150 
151 /* Hash table for freed address -> slab translation */
152 
153 SLIST_HEAD(slabhead, uma_slab);
154 
155 struct uma_hash {
156 	struct slabhead	*uh_slab_hash;	/* Hash table for slabs */
157 	int		uh_hashsize;	/* Current size of the hash table */
158 	int		uh_hashmask;	/* Mask used during hashing */
159 };
160 
161 /*
162  * Structures for per cpu queues.
163  */
164 
165 struct uma_bucket {
166 	LIST_ENTRY(uma_bucket)	ub_link;	/* Link into the zone */
167 	int16_t	ub_cnt;				/* Count of free items. */
168 	int16_t	ub_entries;			/* Max items. */
169 	void	*ub_bucket[];			/* actual allocation storage */
170 };
171 
172 typedef struct uma_bucket * uma_bucket_t;
173 
174 struct uma_cache {
175 	uma_bucket_t	uc_freebucket;	/* Bucket we're freeing to */
176 	uma_bucket_t	uc_allocbucket;	/* Bucket to allocate from */
177 	u_int64_t	uc_allocs;	/* Count of allocations */
178 };
179 
180 typedef struct uma_cache * uma_cache_t;
181 
182 /*
183  * Keg management structure
184  *
185  * TODO: Optimize for cache line size
186  *
187  */
188 struct uma_keg {
189 	LIST_ENTRY(uma_keg)	uk_link;	/* List of all kegs */
190 
191 	struct mtx	uk_lock;	/* Lock for the keg */
192 	struct uma_hash	uk_hash;
193 
194 	LIST_HEAD(,uma_zone)	uk_zones;	/* Keg's zones */
195 	LIST_HEAD(,uma_slab)	uk_part_slab;	/* partially allocated slabs */
196 	LIST_HEAD(,uma_slab)	uk_free_slab;	/* empty slab list */
197 	LIST_HEAD(,uma_slab)	uk_full_slab;	/* full slabs */
198 
199 	u_int32_t	uk_recurse;	/* Allocation recursion count */
200 	u_int32_t	uk_align;	/* Alignment mask */
201 	u_int32_t	uk_pages;	/* Total page count */
202 	u_int32_t	uk_free;	/* Count of items free in slabs */
203 	u_int32_t	uk_size;	/* Requested size of each item */
204 	u_int32_t	uk_rsize;	/* Real size of each item */
205 	u_int32_t	uk_maxpages;	/* Maximum number of pages to alloc */
206 
207 	uma_init	uk_init;	/* Keg's init routine */
208 	uma_fini	uk_fini;	/* Keg's fini routine */
209 	uma_alloc	uk_allocf;	/* Allocation function */
210 	uma_free	uk_freef;	/* Free routine */
211 
212 	struct vm_object	*uk_obj;	/* Zone specific object */
213 	vm_offset_t	uk_kva;		/* Base kva for zones with objs */
214 	uma_zone_t	uk_slabzone;	/* Slab zone backing us, if OFFPAGE */
215 
216 	u_int16_t	uk_pgoff;	/* Offset to uma_slab struct */
217 	u_int16_t	uk_ppera;	/* pages per allocation from backend */
218 	u_int16_t	uk_ipers;	/* Items per slab */
219 	u_int16_t	uk_flags;	/* Internal flags */
220 };
221 
222 /* Simpler reference to uma_keg for internal use. */
223 typedef struct uma_keg * uma_keg_t;
224 
225 /* Page management structure */
226 
227 /* Sorry for the union, but space efficiency is important */
228 struct uma_slab_head {
229 	uma_keg_t	us_keg;			/* Keg we live in */
230 	union {
231 		LIST_ENTRY(uma_slab)	_us_link;	/* slabs in zone */
232 		unsigned long	_us_size;	/* Size of allocation */
233 	} us_type;
234 	SLIST_ENTRY(uma_slab)	us_hlink;	/* Link for hash table */
235 	u_int8_t	*us_data;		/* First item */
236 	u_int8_t	us_flags;		/* Page flags see uma.h */
237 	u_int8_t	us_freecount;	/* How many are free? */
238 	u_int8_t	us_firstfree;	/* First free item index */
239 };
240 
241 /* The standard slab structure */
242 struct uma_slab {
243 	struct uma_slab_head	us_head;	/* slab header data */
244 	struct {
245 		u_int8_t	us_item;
246 	} us_freelist[1];			/* actual number bigger */
247 };
248 
249 /*
250  * The slab structure for UMA_ZONE_REFCNT zones for whose items we
251  * maintain reference counters in the slab for.
252  */
253 struct uma_slab_refcnt {
254 	struct uma_slab_head	us_head;	/* slab header data */
255 	struct {
256 		u_int8_t	us_item;
257 		u_int32_t	us_refcnt;
258 	} us_freelist[1];			/* actual number bigger */
259 };
260 
261 #define	us_keg		us_head.us_keg
262 #define	us_link		us_head.us_type._us_link
263 #define	us_size		us_head.us_type._us_size
264 #define	us_hlink	us_head.us_hlink
265 #define	us_data		us_head.us_data
266 #define	us_flags	us_head.us_flags
267 #define	us_freecount	us_head.us_freecount
268 #define	us_firstfree	us_head.us_firstfree
269 
270 typedef struct uma_slab * uma_slab_t;
271 typedef struct uma_slab_refcnt * uma_slabrefcnt_t;
272 
273 /*
274  * These give us the size of one free item reference within our corresponding
275  * uma_slab structures, so that our calculations during zone setup are correct
276  * regardless of what the compiler decides to do with padding the structure
277  * arrays within uma_slab.
278  */
279 #define	UMA_FRITM_SZ	(sizeof(struct uma_slab) - sizeof(struct uma_slab_head))
280 #define	UMA_FRITMREF_SZ	(sizeof(struct uma_slab_refcnt) -	\
281     sizeof(struct uma_slab_head))
282 
283 /*
284  * Zone management structure
285  *
286  * TODO: Optimize for cache line size
287  *
288  */
289 struct uma_zone {
290 	char		*uz_name;	/* Text name of the zone */
291 	struct mtx	*uz_lock;	/* Lock for the zone (keg's lock) */
292 	uma_keg_t	uz_keg;		/* Our underlying Keg */
293 
294 	LIST_ENTRY(uma_zone)	uz_link;	/* List of all zones in keg */
295 	LIST_HEAD(,uma_bucket)	uz_full_bucket;	/* full buckets */
296 	LIST_HEAD(,uma_bucket)	uz_free_bucket;	/* Buckets for frees */
297 
298 	uma_ctor	uz_ctor;	/* Constructor for each allocation */
299 	uma_dtor	uz_dtor;	/* Destructor */
300 	uma_init	uz_init;	/* Initializer for each item */
301 	uma_fini	uz_fini;	/* Discards memory */
302 
303 	u_int64_t	uz_allocs;	/* Total number of allocations */
304 	uint16_t	uz_fills;	/* Outstanding bucket fills */
305 	uint16_t	uz_count;	/* Highest value ub_ptr can have */
306 
307 	/*
308 	 * This HAS to be the last item because we adjust the zone size
309 	 * based on NCPU and then allocate the space for the zones.
310 	 */
311 	struct uma_cache	uz_cpu[1];	/* Per cpu caches */
312 };
313 
314 /*
315  * These flags must not overlap with the UMA_ZONE flags specified in uma.h.
316  */
317 #define UMA_ZFLAG_PRIVALLOC	0x1000		/* Use uz_allocf. */
318 #define UMA_ZFLAG_INTERNAL	0x2000		/* No offpage no PCPU. */
319 #define UMA_ZFLAG_FULL		0x4000		/* Reached uz_maxpages */
320 #define UMA_ZFLAG_CACHEONLY	0x8000		/* Don't ask VM for buckets. */
321 
322 /* Internal prototypes */
323 static __inline uma_slab_t hash_sfind(struct uma_hash *hash, u_int8_t *data);
324 void *uma_large_malloc(int size, int wait);
325 void uma_large_free(uma_slab_t slab);
326 
327 /* Lock Macros */
328 
329 #define	ZONE_LOCK_INIT(z, lc)					\
330 	do {							\
331 		if ((lc))					\
332 			mtx_init((z)->uz_lock, (z)->uz_name,	\
333 			    (z)->uz_name, MTX_DEF | MTX_DUPOK);	\
334 		else						\
335 			mtx_init((z)->uz_lock, (z)->uz_name,	\
336 			    "UMA zone", MTX_DEF | MTX_DUPOK);	\
337 	} while (0)
338 
339 #define	ZONE_LOCK_FINI(z)	mtx_destroy((z)->uz_lock)
340 #define	ZONE_LOCK(z)	mtx_lock((z)->uz_lock)
341 #define ZONE_UNLOCK(z)	mtx_unlock((z)->uz_lock)
342 
343 #define	CPU_LOCK_INIT(cpu)					\
344 	mtx_init(&uma_pcpu_mtx[(cpu)], "UMA pcpu", "UMA pcpu",	\
345 	    MTX_DEF | MTX_DUPOK)
346 
347 #define CPU_LOCK(cpu)						\
348 	mtx_lock(&uma_pcpu_mtx[(cpu)])
349 
350 #define CPU_UNLOCK(cpu)						\
351 	mtx_unlock(&uma_pcpu_mtx[(cpu)])
352 
353 /*
354  * Find a slab within a hash table.  This is used for OFFPAGE zones to lookup
355  * the slab structure.
356  *
357  * Arguments:
358  *	hash  The hash table to search.
359  *	data  The base page of the item.
360  *
361  * Returns:
362  *	A pointer to a slab if successful, else NULL.
363  */
364 static __inline uma_slab_t
365 hash_sfind(struct uma_hash *hash, u_int8_t *data)
366 {
367         uma_slab_t slab;
368         int hval;
369 
370         hval = UMA_HASH(hash, data);
371 
372         SLIST_FOREACH(slab, &hash->uh_slab_hash[hval], us_hlink) {
373                 if ((u_int8_t *)slab->us_data == data)
374                         return (slab);
375         }
376         return (NULL);
377 }
378 
379 static __inline uma_slab_t
380 vtoslab(vm_offset_t va)
381 {
382 	vm_page_t p;
383 	uma_slab_t slab;
384 
385 	p = PHYS_TO_VM_PAGE(pmap_kextract(va));
386 	slab = (uma_slab_t )p->object;
387 
388 	if (p->flags & PG_SLAB)
389 		return (slab);
390 	else
391 		return (NULL);
392 }
393 
394 static __inline void
395 vsetslab(vm_offset_t va, uma_slab_t slab)
396 {
397 	vm_page_t p;
398 
399 	p = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)va));
400 	p->object = (vm_object_t)slab;
401 	p->flags |= PG_SLAB;
402 }
403 
404 static __inline void
405 vsetobj(vm_offset_t va, vm_object_t obj)
406 {
407 	vm_page_t p;
408 
409 	p = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)va));
410 	p->object = obj;
411 	p->flags &= ~PG_SLAB;
412 }
413 
414 /*
415  * The following two functions may be defined by architecture specific code
416  * if they can provide more effecient allocation functions.  This is useful
417  * for using direct mapped addresses.
418  */
419 void *uma_small_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait);
420 void uma_small_free(void *mem, int size, u_int8_t flags);
421 
422 #endif /* VM_UMA_INT_H */
423