xref: /freebsd/sys/vm/uma_int.h (revision 1e62ecedf2c8ee7449442807647f69d2d0c62acd)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org>
5  * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice unmodified, this list of conditions, and the following
13  *    disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  *
31  */
32 
33 #include <sys/counter.h>
34 #include <sys/_bitset.h>
35 #include <sys/_domainset.h>
36 #include <sys/_task.h>
37 
38 /*
39  * This file includes definitions, structures, prototypes, and inlines that
40  * should not be used outside of the actual implementation of UMA.
41  */
42 
43 /*
44  * The brief summary;  Zones describe unique allocation types.  Zones are
45  * organized into per-CPU caches which are filled by buckets.  Buckets are
46  * organized according to memory domains.  Buckets are filled from kegs which
47  * are also organized according to memory domains.  Kegs describe a unique
48  * allocation type, backend memory provider, and layout.  Kegs are associated
49  * with one or more zones and zones reference one or more kegs.  Kegs provide
50  * slabs which are virtually contiguous collections of pages.  Each slab is
51  * broken down int one or more items that will satisfy an individual allocation.
52  *
53  * Allocation is satisfied in the following order:
54  * 1) Per-CPU cache
55  * 2) Per-domain cache of buckets
56  * 3) Slab from any of N kegs
57  * 4) Backend page provider
58  *
59  * More detail on individual objects is contained below:
60  *
61  * Kegs contain lists of slabs which are stored in either the full bin, empty
62  * bin, or partially allocated bin, to reduce fragmentation.  They also contain
63  * the user supplied value for size, which is adjusted for alignment purposes
64  * and rsize is the result of that.  The Keg also stores information for
65  * managing a hash of page addresses that maps pages to uma_slab_t structures
66  * for pages that don't have embedded uma_slab_t's.
67  *
68  * Keg slab lists are organized by memory domain to support NUMA allocation
69  * policies.  By default allocations are spread across domains to reduce the
70  * potential for hotspots.  Special keg creation flags may be specified to
71  * prefer location allocation.  However there is no strict enforcement as frees
72  * may happen on any CPU and these are returned to the CPU-local cache
73  * regardless of the originating domain.
74  *
75  * The uma_slab_t may be embedded in a UMA_SLAB_SIZE chunk of memory or it may
76  * be allocated off the page from a special slab zone.  The free list within a
77  * slab is managed with a bitmask.  For item sizes that would yield more than
78  * 10% memory waste we potentially allocate a separate uma_slab_t if this will
79  * improve the number of items per slab that will fit.
80  *
81  * The only really gross cases, with regards to memory waste, are for those
82  * items that are just over half the page size.   You can get nearly 50% waste,
83  * so you fall back to the memory footprint of the power of two allocator. I
84  * have looked at memory allocation sizes on many of the machines available to
85  * me, and there does not seem to be an abundance of allocations at this range
86  * so at this time it may not make sense to optimize for it.  This can, of
87  * course, be solved with dynamic slab sizes.
88  *
89  * Kegs may serve multiple Zones but by far most of the time they only serve
90  * one.  When a Zone is created, a Keg is allocated and setup for it.  While
91  * the backing Keg stores slabs, the Zone caches Buckets of items allocated
92  * from the slabs.  Each Zone is equipped with an init/fini and ctor/dtor
93  * pair, as well as with its own set of small per-CPU caches, layered above
94  * the Zone's general Bucket cache.
95  *
96  * The PCPU caches are protected by critical sections, and may be accessed
97  * safely only from their associated CPU, while the Zones backed by the same
98  * Keg all share a common Keg lock (to coalesce contention on the backing
99  * slabs).  The backing Keg typically only serves one Zone but in the case of
100  * multiple Zones, one of the Zones is considered the Master Zone and all
101  * Zone-related stats from the Keg are done in the Master Zone.  For an
102  * example of a Multi-Zone setup, refer to the Mbuf allocation code.
103  */
104 
105 /*
106  *	This is the representation for normal (Non OFFPAGE slab)
107  *
108  *	i == item
109  *	s == slab pointer
110  *
111  *	<----------------  Page (UMA_SLAB_SIZE) ------------------>
112  *	___________________________________________________________
113  *     | _  _  _  _  _  _  _  _  _  _  _  _  _  _  _   ___________ |
114  *     ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |slab header||
115  *     ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |___________||
116  *     |___________________________________________________________|
117  *
118  *
119  *	This is an OFFPAGE slab. These can be larger than UMA_SLAB_SIZE.
120  *
121  *	___________________________________________________________
122  *     | _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _   |
123  *     ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i|  |
124  *     ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_|  |
125  *     |___________________________________________________________|
126  *       ___________    ^
127  *	|slab header|   |
128  *	|___________|---*
129  *
130  */
131 
132 #ifndef VM_UMA_INT_H
133 #define VM_UMA_INT_H
134 
135 #define UMA_SLAB_SIZE	PAGE_SIZE	/* How big are our slabs? */
136 #define UMA_SLAB_MASK	(PAGE_SIZE - 1)	/* Mask to get back to the page */
137 #define UMA_SLAB_SHIFT	PAGE_SHIFT	/* Number of bits PAGE_MASK */
138 
139 /* Max waste percentage before going to off page slab management */
140 #define UMA_MAX_WASTE	10
141 
142 
143 /*
144  * Hash table for freed address -> slab translation.
145  *
146  * Only zones with memory not touchable by the allocator use the
147  * hash table.  Otherwise slabs are found with vtoslab().
148  */
149 #define UMA_HASH_SIZE_INIT	32
150 
151 #define UMA_HASH(h, s) ((((uintptr_t)s) >> UMA_SLAB_SHIFT) & (h)->uh_hashmask)
152 
153 #define UMA_HASH_INSERT(h, s, mem)					\
154 	LIST_INSERT_HEAD(&(h)->uh_slab_hash[UMA_HASH((h),		\
155 	    (mem))], (uma_hash_slab_t)(s), uhs_hlink)
156 
157 #define UMA_HASH_REMOVE(h, s)						\
158 	LIST_REMOVE((uma_hash_slab_t)(s), uhs_hlink)
159 
160 LIST_HEAD(slabhashhead, uma_hash_slab);
161 
162 struct uma_hash {
163 	struct slabhashhead	*uh_slab_hash;	/* Hash table for slabs */
164 	u_int		uh_hashsize;	/* Current size of the hash table */
165 	u_int		uh_hashmask;	/* Mask used during hashing */
166 };
167 
168 /*
169  * align field or structure to cache line
170  */
171 #if defined(__amd64__) || defined(__powerpc64__)
172 #define UMA_ALIGN	__aligned(128)
173 #else
174 #define UMA_ALIGN
175 #endif
176 
177 /*
178  * Structures for per cpu queues.
179  */
180 
181 struct uma_bucket {
182 	TAILQ_ENTRY(uma_bucket)	ub_link;	/* Link into the zone */
183 	int16_t	ub_cnt;				/* Count of items in bucket. */
184 	int16_t	ub_entries;			/* Max items. */
185 	void	*ub_bucket[];			/* actual allocation storage */
186 };
187 
188 typedef struct uma_bucket * uma_bucket_t;
189 
190 struct uma_cache {
191 	uma_bucket_t	uc_freebucket;	/* Bucket we're freeing to */
192 	uma_bucket_t	uc_allocbucket;	/* Bucket to allocate from */
193 	uma_bucket_t	uc_crossbucket;	/* cross domain bucket */
194 	uint64_t	uc_allocs;	/* Count of allocations */
195 	uint64_t	uc_frees;	/* Count of frees */
196 } UMA_ALIGN;
197 
198 typedef struct uma_cache * uma_cache_t;
199 
200 LIST_HEAD(slabhead, uma_slab);
201 
202 /*
203  * Per-domain memory list.  Embedded in the kegs.
204  */
205 struct uma_domain {
206 	struct slabhead	ud_part_slab;	/* partially allocated slabs */
207 	struct slabhead	ud_free_slab;	/* completely unallocated slabs */
208 	struct slabhead ud_full_slab;	/* fully allocated slabs */
209 };
210 
211 typedef struct uma_domain * uma_domain_t;
212 
213 /*
214  * Keg management structure
215  *
216  * TODO: Optimize for cache line size
217  *
218  */
219 struct uma_keg {
220 	struct mtx	uk_lock;	/* Lock for the keg must be first.
221 					 * See shared uz_keg/uz_lockptr
222 					 * member of struct uma_zone. */
223 	struct uma_hash	uk_hash;
224 	LIST_HEAD(,uma_zone)	uk_zones;	/* Keg's zones */
225 
226 	struct domainset_ref uk_dr;	/* Domain selection policy. */
227 	uint32_t	uk_align;	/* Alignment mask */
228 	uint32_t	uk_pages;	/* Total page count */
229 	uint32_t	uk_free;	/* Count of items free in slabs */
230 	uint32_t	uk_reserve;	/* Number of reserved items. */
231 	uint32_t	uk_size;	/* Requested size of each item */
232 	uint32_t	uk_rsize;	/* Real size of each item */
233 
234 	uma_init	uk_init;	/* Keg's init routine */
235 	uma_fini	uk_fini;	/* Keg's fini routine */
236 	uma_alloc	uk_allocf;	/* Allocation function */
237 	uma_free	uk_freef;	/* Free routine */
238 
239 	u_long		uk_offset;	/* Next free offset from base KVA */
240 	vm_offset_t	uk_kva;		/* Zone base KVA */
241 	uma_zone_t	uk_slabzone;	/* Slab zone backing us, if OFFPAGE */
242 
243 	uint32_t	uk_pgoff;	/* Offset to uma_slab struct */
244 	uint16_t	uk_ppera;	/* pages per allocation from backend */
245 	uint16_t	uk_ipers;	/* Items per slab */
246 	uint32_t	uk_flags;	/* Internal flags */
247 
248 	/* Least used fields go to the last cache line. */
249 	const char	*uk_name;		/* Name of creating zone. */
250 	LIST_ENTRY(uma_keg)	uk_link;	/* List of all kegs */
251 
252 	/* Must be last, variable sized. */
253 	struct uma_domain	uk_domain[];	/* Keg's slab lists. */
254 };
255 typedef struct uma_keg	* uma_keg_t;
256 
257 #ifdef _KERNEL
258 /*
259  * Free bits per-slab.
260  */
261 #define	SLAB_MAX_SETSIZE	(PAGE_SIZE / UMA_SMALLEST_UNIT)
262 #define	SLAB_MIN_SETSIZE	_BITSET_BITS
263 BITSET_DEFINE(slabbits, SLAB_MAX_SETSIZE);
264 BITSET_DEFINE(noslabbits, 0);
265 
266 /*
267  * The slab structure manages a single contiguous allocation from backing
268  * store and subdivides it into individually allocatable items.
269  */
270 struct uma_slab {
271 	LIST_ENTRY(uma_slab)	us_link;	/* slabs in zone */
272 	uint16_t	us_freecount;		/* How many are free? */
273 	uint8_t		us_flags;		/* Page flags see uma.h */
274 	uint8_t		us_domain;		/* Backing NUMA domain. */
275 	struct noslabbits us_free;		/* Free bitmask, flexible. */
276 };
277 _Static_assert(sizeof(struct uma_slab) == offsetof(struct uma_slab, us_free),
278     "us_free field must be last");
279 #if MAXMEMDOM >= 255
280 #error "Slab domain type insufficient"
281 #endif
282 
283 typedef struct uma_slab * uma_slab_t;
284 
285 /*
286  * On INVARIANTS builds, the slab contains a second bitset of the same size,
287  * "dbg_bits", which is laid out immediately after us_free.
288  */
289 #ifdef INVARIANTS
290 #define	SLAB_BITSETS	2
291 #else
292 #define	SLAB_BITSETS	1
293 #endif
294 
295 /* These three functions are for embedded (!OFFPAGE) use only. */
296 size_t slab_sizeof(int nitems);
297 size_t slab_space(int nitems);
298 int slab_ipers(size_t size, int align);
299 
300 /*
301  * Slab structure with a full sized bitset and hash link for both
302  * HASH and OFFPAGE zones.
303  */
304 struct uma_hash_slab {
305 	struct uma_slab		uhs_slab;	/* Must be first. */
306 	struct slabbits		uhs_bits1;	/* Must be second. */
307 #ifdef INVARIANTS
308 	struct slabbits		uhs_bits2;	/* Must be third. */
309 #endif
310 	LIST_ENTRY(uma_hash_slab) uhs_hlink;	/* Link for hash table */
311 	uint8_t			*uhs_data;	/* First item */
312 };
313 
314 typedef struct uma_hash_slab * uma_hash_slab_t;
315 
316 static inline void *
317 slab_data(uma_slab_t slab, uma_keg_t keg)
318 {
319 
320 	if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0)
321 		return ((void *)((uintptr_t)slab - keg->uk_pgoff));
322 	else
323 		return (((uma_hash_slab_t)slab)->uhs_data);
324 }
325 
326 static inline void *
327 slab_item(uma_slab_t slab, uma_keg_t keg, int index)
328 {
329 	uintptr_t data;
330 
331 	data = (uintptr_t)slab_data(slab, keg);
332 	return ((void *)(data + keg->uk_rsize * index));
333 }
334 
335 static inline int
336 slab_item_index(uma_slab_t slab, uma_keg_t keg, void *item)
337 {
338 	uintptr_t data;
339 
340 	data = (uintptr_t)slab_data(slab, keg);
341 	return (((uintptr_t)item - data) / keg->uk_rsize);
342 }
343 #endif /* _KERNEL */
344 
345 TAILQ_HEAD(uma_bucketlist, uma_bucket);
346 
347 struct uma_zone_domain {
348 	struct uma_bucketlist uzd_buckets; /* full buckets */
349 	long		uzd_nitems;	/* total item count */
350 	long		uzd_imax;	/* maximum item count this period */
351 	long		uzd_imin;	/* minimum item count this period */
352 	long		uzd_wss;	/* working set size estimate */
353 };
354 
355 typedef struct uma_zone_domain * uma_zone_domain_t;
356 
357 /*
358  * Zone management structure
359  *
360  * TODO: Optimize for cache line size
361  *
362  */
363 struct uma_zone {
364 	/* Offset 0, used in alloc/free fast/medium fast path and const. */
365 	union {
366 		uma_keg_t	uz_keg;		/* This zone's keg */
367 		struct mtx 	*uz_lockptr;	/* To keg or to self */
368 	};
369 	struct uma_zone_domain	*uz_domain;	/* per-domain buckets */
370 	uint32_t	uz_flags;	/* Flags inherited from kegs */
371 	uint32_t	uz_size;	/* Size inherited from kegs */
372 	uma_ctor	uz_ctor;	/* Constructor for each allocation */
373 	uma_dtor	uz_dtor;	/* Destructor */
374 	uint64_t	uz_items;	/* Total items count */
375 	uint64_t	uz_max_items;	/* Maximum number of items to alloc */
376 	uint32_t	uz_sleepers;	/* Number of sleepers on memory */
377 	uint16_t	uz_bucket_size;	/* Number of items in full bucket */
378 	uint16_t	uz_bucket_size_max; /* Maximum number of bucket items */
379 
380 	/* Offset 64, used in bucket replenish. */
381 	uma_import	uz_import;	/* Import new memory to cache. */
382 	uma_release	uz_release;	/* Release memory from cache. */
383 	void		*uz_arg;	/* Import/release argument. */
384 	uma_init	uz_init;	/* Initializer for each item */
385 	uma_fini	uz_fini;	/* Finalizer for each item. */
386 	void		*uz_spare;
387 	uint64_t	uz_bkt_count;    /* Items in bucket cache */
388 	uint64_t	uz_bkt_max;	/* Maximum bucket cache size */
389 
390 	/* Offset 128 Rare. */
391 	/*
392 	 * The lock is placed here to avoid adjacent line prefetcher
393 	 * in fast paths and to take up space near infrequently accessed
394 	 * members to reduce alignment overhead.
395 	 */
396 	struct mtx	uz_lock;	/* Lock for the zone */
397 	LIST_ENTRY(uma_zone) uz_link;	/* List of all zones in keg */
398 	const char	*uz_name;	/* Text name of the zone */
399 	/* The next two fields are used to print a rate-limited warnings. */
400 	const char	*uz_warning;	/* Warning to print on failure */
401 	struct timeval	uz_ratecheck;	/* Warnings rate-limiting */
402 	struct task	uz_maxaction;	/* Task to run when at limit */
403 	uint16_t	uz_bucket_size_min; /* Min number of items in bucket */
404 
405 	/* Offset 256+, stats and misc. */
406 	counter_u64_t	uz_allocs;	/* Total number of allocations */
407 	counter_u64_t	uz_frees;	/* Total number of frees */
408 	counter_u64_t	uz_fails;	/* Total number of alloc failures */
409 	uint64_t	uz_sleeps;	/* Total number of alloc sleeps */
410 	uint64_t	uz_xdomain;	/* Total number of cross-domain frees */
411 	char		*uz_ctlname;	/* sysctl safe name string. */
412 	struct sysctl_oid *uz_oid;	/* sysctl oid pointer. */
413 	int		uz_namecnt;	/* duplicate name count. */
414 
415 	/*
416 	 * This HAS to be the last item because we adjust the zone size
417 	 * based on NCPU and then allocate the space for the zones.
418 	 */
419 	struct uma_cache	uz_cpu[]; /* Per cpu caches */
420 
421 	/* uz_domain follows here. */
422 };
423 
424 /*
425  * These flags must not overlap with the UMA_ZONE flags specified in uma.h.
426  */
427 #define	UMA_ZFLAG_CACHE		0x04000000	/* uma_zcache_create()d it */
428 #define	UMA_ZFLAG_RECLAIMING	0x08000000	/* Running zone_reclaim(). */
429 #define	UMA_ZFLAG_BUCKET	0x10000000	/* Bucket zone. */
430 #define UMA_ZFLAG_INTERNAL	0x20000000	/* No offpage no PCPU. */
431 #define UMA_ZFLAG_TRASH		0x40000000	/* Add trash ctor/dtor. */
432 #define UMA_ZFLAG_CACHEONLY	0x80000000	/* Don't ask VM for buckets. */
433 
434 #define	UMA_ZFLAG_INHERIT						\
435     (UMA_ZFLAG_INTERNAL | UMA_ZFLAG_CACHEONLY | UMA_ZFLAG_BUCKET)
436 
437 #define	PRINT_UMA_ZFLAGS	"\20"	\
438     "\40CACHEONLY"			\
439     "\37TRASH"				\
440     "\36INTERNAL"			\
441     "\35BUCKET"				\
442     "\34RECLAIMING"			\
443     "\33CACHE"				\
444     "\22MINBUCKET"			\
445     "\21NUMA"				\
446     "\20PCPU"				\
447     "\17NODUMP"				\
448     "\16VTOSLAB"			\
449     "\15CACHESPREAD"			\
450     "\14MAXBUCKET"			\
451     "\13NOBUCKET"			\
452     "\12SECONDARY"			\
453     "\11HASH"				\
454     "\10VM"				\
455     "\7MTXCLASS"			\
456     "\6NOFREE"				\
457     "\5MALLOC"				\
458     "\4OFFPAGE"				\
459     "\3STATIC"				\
460     "\2ZINIT"				\
461     "\1PAGEABLE"
462 
463 #undef UMA_ALIGN
464 
465 #ifdef _KERNEL
466 /* Internal prototypes */
467 static __inline uma_slab_t hash_sfind(struct uma_hash *hash, uint8_t *data);
468 
469 /* Lock Macros */
470 
471 #define	KEG_LOCK_INIT(k, lc)					\
472 	do {							\
473 		if ((lc))					\
474 			mtx_init(&(k)->uk_lock, (k)->uk_name,	\
475 			    (k)->uk_name, MTX_DEF | MTX_DUPOK);	\
476 		else						\
477 			mtx_init(&(k)->uk_lock, (k)->uk_name,	\
478 			    "UMA zone", MTX_DEF | MTX_DUPOK);	\
479 	} while (0)
480 
481 #define	KEG_LOCK_FINI(k)	mtx_destroy(&(k)->uk_lock)
482 #define	KEG_LOCK(k)	mtx_lock(&(k)->uk_lock)
483 #define	KEG_UNLOCK(k)	mtx_unlock(&(k)->uk_lock)
484 #define	KEG_LOCK_ASSERT(k)	mtx_assert(&(k)->uk_lock, MA_OWNED)
485 
486 #define	KEG_GET(zone, keg) do {					\
487 	(keg) = (zone)->uz_keg;					\
488 	KASSERT((void *)(keg) != (void *)&(zone)->uz_lock,	\
489 	    ("%s: Invalid zone %p type", __func__, (zone)));	\
490 	} while (0)
491 
492 #define	ZONE_LOCK_INIT(z, lc)					\
493 	do {							\
494 		if ((lc))					\
495 			mtx_init(&(z)->uz_lock, (z)->uz_name,	\
496 			    (z)->uz_name, MTX_DEF | MTX_DUPOK);	\
497 		else						\
498 			mtx_init(&(z)->uz_lock, (z)->uz_name,	\
499 			    "UMA zone", MTX_DEF | MTX_DUPOK);	\
500 	} while (0)
501 
502 #define	ZONE_LOCK(z)	mtx_lock((z)->uz_lockptr)
503 #define	ZONE_TRYLOCK(z)	mtx_trylock((z)->uz_lockptr)
504 #define	ZONE_UNLOCK(z)	mtx_unlock((z)->uz_lockptr)
505 #define	ZONE_LOCK_FINI(z)	mtx_destroy(&(z)->uz_lock)
506 #define	ZONE_LOCK_ASSERT(z)	mtx_assert((z)->uz_lockptr, MA_OWNED)
507 
508 /*
509  * Find a slab within a hash table.  This is used for OFFPAGE zones to lookup
510  * the slab structure.
511  *
512  * Arguments:
513  *	hash  The hash table to search.
514  *	data  The base page of the item.
515  *
516  * Returns:
517  *	A pointer to a slab if successful, else NULL.
518  */
519 static __inline uma_slab_t
520 hash_sfind(struct uma_hash *hash, uint8_t *data)
521 {
522         uma_hash_slab_t slab;
523         u_int hval;
524 
525         hval = UMA_HASH(hash, data);
526 
527         LIST_FOREACH(slab, &hash->uh_slab_hash[hval], uhs_hlink) {
528                 if ((uint8_t *)slab->uhs_data == data)
529                         return (&slab->uhs_slab);
530         }
531         return (NULL);
532 }
533 
534 static __inline uma_slab_t
535 vtoslab(vm_offset_t va)
536 {
537 	vm_page_t p;
538 
539 	p = PHYS_TO_VM_PAGE(pmap_kextract(va));
540 	return (p->plinks.uma.slab);
541 }
542 
543 static __inline void
544 vtozoneslab(vm_offset_t va, uma_zone_t *zone, uma_slab_t *slab)
545 {
546 	vm_page_t p;
547 
548 	p = PHYS_TO_VM_PAGE(pmap_kextract(va));
549 	*slab = p->plinks.uma.slab;
550 	*zone = p->plinks.uma.zone;
551 }
552 
553 static __inline void
554 vsetzoneslab(vm_offset_t va, uma_zone_t zone, uma_slab_t slab)
555 {
556 	vm_page_t p;
557 
558 	p = PHYS_TO_VM_PAGE(pmap_kextract(va));
559 	p->plinks.uma.slab = slab;
560 	p->plinks.uma.zone = zone;
561 }
562 
563 extern unsigned long uma_kmem_limit;
564 extern unsigned long uma_kmem_total;
565 
566 /* Adjust bytes under management by UMA. */
567 static inline void
568 uma_total_dec(unsigned long size)
569 {
570 
571 	atomic_subtract_long(&uma_kmem_total, size);
572 }
573 
574 static inline void
575 uma_total_inc(unsigned long size)
576 {
577 
578 	if (atomic_fetchadd_long(&uma_kmem_total, size) > uma_kmem_limit)
579 		uma_reclaim_wakeup();
580 }
581 
582 /*
583  * The following two functions may be defined by architecture specific code
584  * if they can provide more efficient allocation functions.  This is useful
585  * for using direct mapped addresses.
586  */
587 void *uma_small_alloc(uma_zone_t zone, vm_size_t bytes, int domain,
588     uint8_t *pflag, int wait);
589 void uma_small_free(void *mem, vm_size_t size, uint8_t flags);
590 
591 /* Set a global soft limit on UMA managed memory. */
592 void uma_set_limit(unsigned long limit);
593 #endif /* _KERNEL */
594 
595 #endif /* VM_UMA_INT_H */
596