160727d8bSWarner Losh /*- 2e20a199fSJeff Roberson * Copyright (c) 2002-2005, 2009 Jeffrey Roberson <jeff@FreeBSD.org> 308ecce74SRobert Watson * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 408ecce74SRobert Watson * All rights reserved. 58355f576SJeff Roberson * 68355f576SJeff Roberson * Redistribution and use in source and binary forms, with or without 78355f576SJeff Roberson * modification, are permitted provided that the following conditions 88355f576SJeff Roberson * are met: 98355f576SJeff Roberson * 1. Redistributions of source code must retain the above copyright 108355f576SJeff Roberson * notice unmodified, this list of conditions, and the following 118355f576SJeff Roberson * disclaimer. 128355f576SJeff Roberson * 2. Redistributions in binary form must reproduce the above copyright 138355f576SJeff Roberson * notice, this list of conditions and the following disclaimer in the 148355f576SJeff Roberson * documentation and/or other materials provided with the distribution. 158355f576SJeff Roberson * 168355f576SJeff Roberson * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 178355f576SJeff Roberson * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 188355f576SJeff Roberson * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 198355f576SJeff Roberson * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 208355f576SJeff Roberson * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 218355f576SJeff Roberson * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 228355f576SJeff Roberson * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 238355f576SJeff Roberson * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 248355f576SJeff Roberson * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 258355f576SJeff Roberson * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 268355f576SJeff Roberson * 278355f576SJeff Roberson * $FreeBSD$ 288355f576SJeff Roberson * 298355f576SJeff Roberson */ 308355f576SJeff Roberson 318355f576SJeff Roberson /* 328355f576SJeff Roberson * This file includes definitions, structures, prototypes, and inlines that 338355f576SJeff Roberson * should not be used outside of the actual implementation of UMA. 348355f576SJeff Roberson */ 358355f576SJeff Roberson 368355f576SJeff Roberson /* 378355f576SJeff Roberson * Here's a quick description of the relationship between the objects: 388355f576SJeff Roberson * 39099a0e58SBosko Milekic * Kegs contain lists of slabs which are stored in either the full bin, empty 408355f576SJeff Roberson * bin, or partially allocated bin, to reduce fragmentation. They also contain 418355f576SJeff Roberson * the user supplied value for size, which is adjusted for alignment purposes 42099a0e58SBosko Milekic * and rsize is the result of that. The Keg also stores information for 438355f576SJeff Roberson * managing a hash of page addresses that maps pages to uma_slab_t structures 448355f576SJeff Roberson * for pages that don't have embedded uma_slab_t's. 458355f576SJeff Roberson * 468355f576SJeff Roberson * The uma_slab_t may be embedded in a UMA_SLAB_SIZE chunk of memory or it may 478355f576SJeff Roberson * be allocated off the page from a special slab zone. The free list within a 488355f576SJeff Roberson * slab is managed with a linked list of indexes, which are 8 bit values. If 498355f576SJeff Roberson * UMA_SLAB_SIZE is defined to be too large I will have to switch to 16bit 508355f576SJeff Roberson * values. Currently on alpha you can get 250 or so 32 byte items and on x86 518355f576SJeff Roberson * you can get 250 or so 16byte items. For item sizes that would yield more 52c235bfa5SJeff Roberson * than 10% memory waste we potentially allocate a separate uma_slab_t if this 538355f576SJeff Roberson * will improve the number of items per slab that will fit. 548355f576SJeff Roberson * 558355f576SJeff Roberson * Other potential space optimizations are storing the 8bit of linkage in space 568355f576SJeff Roberson * wasted between items due to alignment problems. This may yield a much better 578355f576SJeff Roberson * memory footprint for certain sizes of objects. Another alternative is to 588355f576SJeff Roberson * increase the UMA_SLAB_SIZE, or allow for dynamic slab sizes. I prefer 598355f576SJeff Roberson * dynamic slab sizes because we could stick with 8 bit indexes and only use 608355f576SJeff Roberson * large slab sizes for zones with a lot of waste per slab. This may create 618355f576SJeff Roberson * ineffeciencies in the vm subsystem due to fragmentation in the address space. 628355f576SJeff Roberson * 638355f576SJeff Roberson * The only really gross cases, with regards to memory waste, are for those 648355f576SJeff Roberson * items that are just over half the page size. You can get nearly 50% waste, 658355f576SJeff Roberson * so you fall back to the memory footprint of the power of two allocator. I 668355f576SJeff Roberson * have looked at memory allocation sizes on many of the machines available to 678355f576SJeff Roberson * me, and there does not seem to be an abundance of allocations at this range 688355f576SJeff Roberson * so at this time it may not make sense to optimize for it. This can, of 698355f576SJeff Roberson * course, be solved with dynamic slab sizes. 708355f576SJeff Roberson * 71099a0e58SBosko Milekic * Kegs may serve multiple Zones but by far most of the time they only serve 72099a0e58SBosko Milekic * one. When a Zone is created, a Keg is allocated and setup for it. While 73099a0e58SBosko Milekic * the backing Keg stores slabs, the Zone caches Buckets of items allocated 74099a0e58SBosko Milekic * from the slabs. Each Zone is equipped with an init/fini and ctor/dtor 75099a0e58SBosko Milekic * pair, as well as with its own set of small per-CPU caches, layered above 76099a0e58SBosko Milekic * the Zone's general Bucket cache. 77099a0e58SBosko Milekic * 786ab3b958SRobert Watson * The PCPU caches are protected by critical sections, and may be accessed 796ab3b958SRobert Watson * safely only from their associated CPU, while the Zones backed by the same 806ab3b958SRobert Watson * Keg all share a common Keg lock (to coalesce contention on the backing 816ab3b958SRobert Watson * slabs). The backing Keg typically only serves one Zone but in the case of 826ab3b958SRobert Watson * multiple Zones, one of the Zones is considered the Master Zone and all 836ab3b958SRobert Watson * Zone-related stats from the Keg are done in the Master Zone. For an 846ab3b958SRobert Watson * example of a Multi-Zone setup, refer to the Mbuf allocation code. 858355f576SJeff Roberson */ 868355f576SJeff Roberson 878355f576SJeff Roberson /* 888355f576SJeff Roberson * This is the representation for normal (Non OFFPAGE slab) 898355f576SJeff Roberson * 908355f576SJeff Roberson * i == item 918355f576SJeff Roberson * s == slab pointer 928355f576SJeff Roberson * 938355f576SJeff Roberson * <---------------- Page (UMA_SLAB_SIZE) ------------------> 948355f576SJeff Roberson * ___________________________________________________________ 958355f576SJeff Roberson * | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___________ | 968355f576SJeff Roberson * ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |slab header|| 978355f576SJeff Roberson * ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |___________|| 988355f576SJeff Roberson * |___________________________________________________________| 998355f576SJeff Roberson * 1008355f576SJeff Roberson * 1018355f576SJeff Roberson * This is an OFFPAGE slab. These can be larger than UMA_SLAB_SIZE. 1028355f576SJeff Roberson * 1038355f576SJeff Roberson * ___________________________________________________________ 1048355f576SJeff Roberson * | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | 1058355f576SJeff Roberson * ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| | 1068355f576SJeff Roberson * ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| | 1078355f576SJeff Roberson * |___________________________________________________________| 1088355f576SJeff Roberson * ___________ ^ 1098355f576SJeff Roberson * |slab header| | 1108355f576SJeff Roberson * |___________|---* 1118355f576SJeff Roberson * 1128355f576SJeff Roberson */ 1138355f576SJeff Roberson 1148355f576SJeff Roberson #ifndef VM_UMA_INT_H 1158355f576SJeff Roberson #define VM_UMA_INT_H 1168355f576SJeff Roberson 1178355f576SJeff Roberson #define UMA_SLAB_SIZE PAGE_SIZE /* How big are our slabs? */ 1188355f576SJeff Roberson #define UMA_SLAB_MASK (PAGE_SIZE - 1) /* Mask to get back to the page */ 1198355f576SJeff Roberson #define UMA_SLAB_SHIFT PAGE_SHIFT /* Number of bits PAGE_MASK */ 1208355f576SJeff Roberson 121eafc7b54SAlan Cox #define UMA_BOOT_PAGES 48 /* Pages allocated for startup */ 1228355f576SJeff Roberson 1238355f576SJeff Roberson /* Max waste before going to off page slab management */ 1248355f576SJeff Roberson #define UMA_MAX_WASTE (UMA_SLAB_SIZE / 10) 1258355f576SJeff Roberson 1268355f576SJeff Roberson /* 1278355f576SJeff Roberson * I doubt there will be many cases where this is exceeded. This is the initial 1288355f576SJeff Roberson * size of the hash table for uma_slabs that are managed off page. This hash 1298355f576SJeff Roberson * does expand by powers of two. Currently it doesn't get smaller. 1308355f576SJeff Roberson */ 1318355f576SJeff Roberson #define UMA_HASH_SIZE_INIT 32 1328355f576SJeff Roberson 1338355f576SJeff Roberson /* 1348355f576SJeff Roberson * I should investigate other hashing algorithms. This should yield a low 1358355f576SJeff Roberson * number of collisions if the pages are relatively contiguous. 1368355f576SJeff Roberson * 1378355f576SJeff Roberson * This is the same algorithm that most processor caches use. 1388355f576SJeff Roberson * 1398355f576SJeff Roberson * I'm shifting and masking instead of % because it should be faster. 1408355f576SJeff Roberson */ 1418355f576SJeff Roberson 1428355f576SJeff Roberson #define UMA_HASH(h, s) ((((unsigned long)s) >> UMA_SLAB_SHIFT) & \ 1438355f576SJeff Roberson (h)->uh_hashmask) 1448355f576SJeff Roberson 1458355f576SJeff Roberson #define UMA_HASH_INSERT(h, s, mem) \ 1468355f576SJeff Roberson SLIST_INSERT_HEAD(&(h)->uh_slab_hash[UMA_HASH((h), \ 1478355f576SJeff Roberson (mem))], (s), us_hlink); 1488355f576SJeff Roberson #define UMA_HASH_REMOVE(h, s, mem) \ 1498355f576SJeff Roberson SLIST_REMOVE(&(h)->uh_slab_hash[UMA_HASH((h), \ 1508355f576SJeff Roberson (mem))], (s), uma_slab, us_hlink); 1518355f576SJeff Roberson 1528355f576SJeff Roberson /* Hash table for freed address -> slab translation */ 1538355f576SJeff Roberson 1548355f576SJeff Roberson SLIST_HEAD(slabhead, uma_slab); 1558355f576SJeff Roberson 1568355f576SJeff Roberson struct uma_hash { 1578355f576SJeff Roberson struct slabhead *uh_slab_hash; /* Hash table for slabs */ 1588355f576SJeff Roberson int uh_hashsize; /* Current size of the hash table */ 1598355f576SJeff Roberson int uh_hashmask; /* Mask used during hashing */ 1608355f576SJeff Roberson }; 1618355f576SJeff Roberson 1628355f576SJeff Roberson /* 1638355f576SJeff Roberson * Structures for per cpu queues. 1648355f576SJeff Roberson */ 1658355f576SJeff Roberson 1668355f576SJeff Roberson struct uma_bucket { 1678355f576SJeff Roberson LIST_ENTRY(uma_bucket) ub_link; /* Link into the zone */ 168cae33c14SJeff Roberson int16_t ub_cnt; /* Count of free items. */ 169cae33c14SJeff Roberson int16_t ub_entries; /* Max items. */ 170cae33c14SJeff Roberson void *ub_bucket[]; /* actual allocation storage */ 1718355f576SJeff Roberson }; 1728355f576SJeff Roberson 1738355f576SJeff Roberson typedef struct uma_bucket * uma_bucket_t; 1748355f576SJeff Roberson 1758355f576SJeff Roberson struct uma_cache { 1768355f576SJeff Roberson uma_bucket_t uc_freebucket; /* Bucket we're freeing to */ 1778355f576SJeff Roberson uma_bucket_t uc_allocbucket; /* Bucket to allocate from */ 1788355f576SJeff Roberson u_int64_t uc_allocs; /* Count of allocations */ 179773df9abSRobert Watson u_int64_t uc_frees; /* Count of frees */ 1808355f576SJeff Roberson }; 1818355f576SJeff Roberson 1828355f576SJeff Roberson typedef struct uma_cache * uma_cache_t; 1838355f576SJeff Roberson 1848355f576SJeff Roberson /* 185099a0e58SBosko Milekic * Keg management structure 186099a0e58SBosko Milekic * 187099a0e58SBosko Milekic * TODO: Optimize for cache line size 188099a0e58SBosko Milekic * 189099a0e58SBosko Milekic */ 190099a0e58SBosko Milekic struct uma_keg { 191099a0e58SBosko Milekic LIST_ENTRY(uma_keg) uk_link; /* List of all kegs */ 192099a0e58SBosko Milekic 193099a0e58SBosko Milekic struct mtx uk_lock; /* Lock for the keg */ 194099a0e58SBosko Milekic struct uma_hash uk_hash; 195099a0e58SBosko Milekic 196e20a199fSJeff Roberson char *uk_name; /* Name of creating zone. */ 197099a0e58SBosko Milekic LIST_HEAD(,uma_zone) uk_zones; /* Keg's zones */ 198099a0e58SBosko Milekic LIST_HEAD(,uma_slab) uk_part_slab; /* partially allocated slabs */ 199099a0e58SBosko Milekic LIST_HEAD(,uma_slab) uk_free_slab; /* empty slab list */ 200099a0e58SBosko Milekic LIST_HEAD(,uma_slab) uk_full_slab; /* full slabs */ 201099a0e58SBosko Milekic 202099a0e58SBosko Milekic u_int32_t uk_recurse; /* Allocation recursion count */ 203099a0e58SBosko Milekic u_int32_t uk_align; /* Alignment mask */ 204099a0e58SBosko Milekic u_int32_t uk_pages; /* Total page count */ 205099a0e58SBosko Milekic u_int32_t uk_free; /* Count of items free in slabs */ 206099a0e58SBosko Milekic u_int32_t uk_size; /* Requested size of each item */ 207099a0e58SBosko Milekic u_int32_t uk_rsize; /* Real size of each item */ 208099a0e58SBosko Milekic u_int32_t uk_maxpages; /* Maximum number of pages to alloc */ 209099a0e58SBosko Milekic 210099a0e58SBosko Milekic uma_init uk_init; /* Keg's init routine */ 211099a0e58SBosko Milekic uma_fini uk_fini; /* Keg's fini routine */ 212099a0e58SBosko Milekic uma_alloc uk_allocf; /* Allocation function */ 213099a0e58SBosko Milekic uma_free uk_freef; /* Free routine */ 214099a0e58SBosko Milekic 215099a0e58SBosko Milekic struct vm_object *uk_obj; /* Zone specific object */ 216099a0e58SBosko Milekic vm_offset_t uk_kva; /* Base kva for zones with objs */ 217099a0e58SBosko Milekic uma_zone_t uk_slabzone; /* Slab zone backing us, if OFFPAGE */ 218099a0e58SBosko Milekic 219099a0e58SBosko Milekic u_int16_t uk_pgoff; /* Offset to uma_slab struct */ 220099a0e58SBosko Milekic u_int16_t uk_ppera; /* pages per allocation from backend */ 221099a0e58SBosko Milekic u_int16_t uk_ipers; /* Items per slab */ 2222018f30cSMike Silbersack u_int32_t uk_flags; /* Internal flags */ 223099a0e58SBosko Milekic }; 224099a0e58SBosko Milekic typedef struct uma_keg * uma_keg_t; 225099a0e58SBosko Milekic 226099a0e58SBosko Milekic /* Page management structure */ 227099a0e58SBosko Milekic 228099a0e58SBosko Milekic /* Sorry for the union, but space efficiency is important */ 229099a0e58SBosko Milekic struct uma_slab_head { 230099a0e58SBosko Milekic uma_keg_t us_keg; /* Keg we live in */ 231099a0e58SBosko Milekic union { 232099a0e58SBosko Milekic LIST_ENTRY(uma_slab) _us_link; /* slabs in zone */ 233099a0e58SBosko Milekic unsigned long _us_size; /* Size of allocation */ 234099a0e58SBosko Milekic } us_type; 235099a0e58SBosko Milekic SLIST_ENTRY(uma_slab) us_hlink; /* Link for hash table */ 236099a0e58SBosko Milekic u_int8_t *us_data; /* First item */ 237099a0e58SBosko Milekic u_int8_t us_flags; /* Page flags see uma.h */ 238099a0e58SBosko Milekic u_int8_t us_freecount; /* How many are free? */ 239099a0e58SBosko Milekic u_int8_t us_firstfree; /* First free item index */ 240099a0e58SBosko Milekic }; 241099a0e58SBosko Milekic 242099a0e58SBosko Milekic /* The standard slab structure */ 243099a0e58SBosko Milekic struct uma_slab { 244099a0e58SBosko Milekic struct uma_slab_head us_head; /* slab header data */ 245099a0e58SBosko Milekic struct { 246099a0e58SBosko Milekic u_int8_t us_item; 247099a0e58SBosko Milekic } us_freelist[1]; /* actual number bigger */ 248099a0e58SBosko Milekic }; 249099a0e58SBosko Milekic 250099a0e58SBosko Milekic /* 251099a0e58SBosko Milekic * The slab structure for UMA_ZONE_REFCNT zones for whose items we 252099a0e58SBosko Milekic * maintain reference counters in the slab for. 253099a0e58SBosko Milekic */ 254099a0e58SBosko Milekic struct uma_slab_refcnt { 255099a0e58SBosko Milekic struct uma_slab_head us_head; /* slab header data */ 256099a0e58SBosko Milekic struct { 257099a0e58SBosko Milekic u_int8_t us_item; 258099a0e58SBosko Milekic u_int32_t us_refcnt; 259099a0e58SBosko Milekic } us_freelist[1]; /* actual number bigger */ 260099a0e58SBosko Milekic }; 261099a0e58SBosko Milekic 262099a0e58SBosko Milekic #define us_keg us_head.us_keg 263099a0e58SBosko Milekic #define us_link us_head.us_type._us_link 264099a0e58SBosko Milekic #define us_size us_head.us_type._us_size 265099a0e58SBosko Milekic #define us_hlink us_head.us_hlink 266099a0e58SBosko Milekic #define us_data us_head.us_data 267099a0e58SBosko Milekic #define us_flags us_head.us_flags 268099a0e58SBosko Milekic #define us_freecount us_head.us_freecount 269099a0e58SBosko Milekic #define us_firstfree us_head.us_firstfree 270099a0e58SBosko Milekic 271099a0e58SBosko Milekic typedef struct uma_slab * uma_slab_t; 272099a0e58SBosko Milekic typedef struct uma_slab_refcnt * uma_slabrefcnt_t; 273e20a199fSJeff Roberson typedef uma_slab_t (*uma_slaballoc)(uma_zone_t, uma_keg_t, int); 274e20a199fSJeff Roberson 275099a0e58SBosko Milekic 276099a0e58SBosko Milekic /* 277244f4554SBosko Milekic * These give us the size of one free item reference within our corresponding 278244f4554SBosko Milekic * uma_slab structures, so that our calculations during zone setup are correct 279244f4554SBosko Milekic * regardless of what the compiler decides to do with padding the structure 280244f4554SBosko Milekic * arrays within uma_slab. 281244f4554SBosko Milekic */ 282244f4554SBosko Milekic #define UMA_FRITM_SZ (sizeof(struct uma_slab) - sizeof(struct uma_slab_head)) 283244f4554SBosko Milekic #define UMA_FRITMREF_SZ (sizeof(struct uma_slab_refcnt) - \ 284244f4554SBosko Milekic sizeof(struct uma_slab_head)) 285244f4554SBosko Milekic 286e20a199fSJeff Roberson struct uma_klink { 287e20a199fSJeff Roberson LIST_ENTRY(uma_klink) kl_link; 288e20a199fSJeff Roberson uma_keg_t kl_keg; 289e20a199fSJeff Roberson }; 290e20a199fSJeff Roberson typedef struct uma_klink *uma_klink_t; 291e20a199fSJeff Roberson 292244f4554SBosko Milekic /* 2938355f576SJeff Roberson * Zone management structure 2948355f576SJeff Roberson * 2958355f576SJeff Roberson * TODO: Optimize for cache line size 2968355f576SJeff Roberson * 2978355f576SJeff Roberson */ 2988355f576SJeff Roberson struct uma_zone { 2998355f576SJeff Roberson char *uz_name; /* Text name of the zone */ 300099a0e58SBosko Milekic struct mtx *uz_lock; /* Lock for the zone (keg's lock) */ 3018355f576SJeff Roberson 302099a0e58SBosko Milekic LIST_ENTRY(uma_zone) uz_link; /* List of all zones in keg */ 3038355f576SJeff Roberson LIST_HEAD(,uma_bucket) uz_full_bucket; /* full buckets */ 3048355f576SJeff Roberson LIST_HEAD(,uma_bucket) uz_free_bucket; /* Buckets for frees */ 3058355f576SJeff Roberson 306e20a199fSJeff Roberson LIST_HEAD(,uma_klink) uz_kegs; /* List of kegs. */ 307e20a199fSJeff Roberson struct uma_klink uz_klink; /* klink for first keg. */ 308e20a199fSJeff Roberson 309e20a199fSJeff Roberson uma_slaballoc uz_slab; /* Allocate a slab from the backend. */ 3108355f576SJeff Roberson uma_ctor uz_ctor; /* Constructor for each allocation */ 3118355f576SJeff Roberson uma_dtor uz_dtor; /* Destructor */ 3128355f576SJeff Roberson uma_init uz_init; /* Initializer for each item */ 3138355f576SJeff Roberson uma_fini uz_fini; /* Discards memory */ 314099a0e58SBosko Milekic 315099a0e58SBosko Milekic u_int64_t uz_allocs; /* Total number of allocations */ 3167a52a97eSRobert Watson u_int64_t uz_frees; /* Total number of frees */ 3172019094aSRobert Watson u_int64_t uz_fails; /* Total number of alloc failures */ 318e20a199fSJeff Roberson u_int32_t uz_flags; /* Flags inherited from kegs */ 319e20a199fSJeff Roberson u_int32_t uz_size; /* Size inherited from kegs */ 320a553d4b8SJeff Roberson uint16_t uz_fills; /* Outstanding bucket fills */ 321a553d4b8SJeff Roberson uint16_t uz_count; /* Highest value ub_ptr can have */ 322099a0e58SBosko Milekic 3238355f576SJeff Roberson /* 3248355f576SJeff Roberson * This HAS to be the last item because we adjust the zone size 3258355f576SJeff Roberson * based on NCPU and then allocate the space for the zones. 3268355f576SJeff Roberson */ 3278355f576SJeff Roberson struct uma_cache uz_cpu[1]; /* Per cpu caches */ 3288355f576SJeff Roberson }; 3298355f576SJeff Roberson 330b60f5b79SJeff Roberson /* 331b60f5b79SJeff Roberson * These flags must not overlap with the UMA_ZONE flags specified in uma.h. 332b60f5b79SJeff Roberson */ 333e20a199fSJeff Roberson #define UMA_ZFLAG_BUCKET 0x02000000 /* Bucket zone. */ 334e20a199fSJeff Roberson #define UMA_ZFLAG_MULTI 0x04000000 /* Multiple kegs in the zone. */ 335e20a199fSJeff Roberson #define UMA_ZFLAG_DRAINING 0x08000000 /* Running zone_drain. */ 3362018f30cSMike Silbersack #define UMA_ZFLAG_PRIVALLOC 0x10000000 /* Use uz_allocf. */ 3372018f30cSMike Silbersack #define UMA_ZFLAG_INTERNAL 0x20000000 /* No offpage no PCPU. */ 3382018f30cSMike Silbersack #define UMA_ZFLAG_FULL 0x40000000 /* Reached uz_maxpages */ 3392018f30cSMike Silbersack #define UMA_ZFLAG_CACHEONLY 0x80000000 /* Don't ask VM for buckets. */ 3408355f576SJeff Roberson 341e20a199fSJeff Roberson #define UMA_ZFLAG_INHERIT (UMA_ZFLAG_INTERNAL | UMA_ZFLAG_CACHEONLY | \ 342e20a199fSJeff Roberson UMA_ZFLAG_BUCKET) 343e20a199fSJeff Roberson 344af17e9a9SRobert Watson #ifdef _KERNEL 3458355f576SJeff Roberson /* Internal prototypes */ 3468355f576SJeff Roberson static __inline uma_slab_t hash_sfind(struct uma_hash *hash, u_int8_t *data); 3478355f576SJeff Roberson void *uma_large_malloc(int size, int wait); 3488355f576SJeff Roberson void uma_large_free(uma_slab_t slab); 3498355f576SJeff Roberson 3508355f576SJeff Roberson /* Lock Macros */ 3518355f576SJeff Roberson 352e20a199fSJeff Roberson #define KEG_LOCK_INIT(k, lc) \ 35328bc4419SJeff Roberson do { \ 35428bc4419SJeff Roberson if ((lc)) \ 355e20a199fSJeff Roberson mtx_init(&(k)->uk_lock, (k)->uk_name, \ 356e20a199fSJeff Roberson (k)->uk_name, MTX_DEF | MTX_DUPOK); \ 35728bc4419SJeff Roberson else \ 358e20a199fSJeff Roberson mtx_init(&(k)->uk_lock, (k)->uk_name, \ 35928bc4419SJeff Roberson "UMA zone", MTX_DEF | MTX_DUPOK); \ 36028bc4419SJeff Roberson } while (0) 36128bc4419SJeff Roberson 362e20a199fSJeff Roberson #define KEG_LOCK_FINI(k) mtx_destroy(&(k)->uk_lock) 363e20a199fSJeff Roberson #define KEG_LOCK(k) mtx_lock(&(k)->uk_lock) 364e20a199fSJeff Roberson #define KEG_UNLOCK(k) mtx_unlock(&(k)->uk_lock) 365099a0e58SBosko Milekic #define ZONE_LOCK(z) mtx_lock((z)->uz_lock) 366099a0e58SBosko Milekic #define ZONE_UNLOCK(z) mtx_unlock((z)->uz_lock) 3678355f576SJeff Roberson 3688355f576SJeff Roberson /* 3698355f576SJeff Roberson * Find a slab within a hash table. This is used for OFFPAGE zones to lookup 3708355f576SJeff Roberson * the slab structure. 3718355f576SJeff Roberson * 3728355f576SJeff Roberson * Arguments: 3738355f576SJeff Roberson * hash The hash table to search. 3748355f576SJeff Roberson * data The base page of the item. 3758355f576SJeff Roberson * 3768355f576SJeff Roberson * Returns: 3778355f576SJeff Roberson * A pointer to a slab if successful, else NULL. 3788355f576SJeff Roberson */ 3798355f576SJeff Roberson static __inline uma_slab_t 3808355f576SJeff Roberson hash_sfind(struct uma_hash *hash, u_int8_t *data) 3818355f576SJeff Roberson { 3828355f576SJeff Roberson uma_slab_t slab; 3838355f576SJeff Roberson int hval; 3848355f576SJeff Roberson 3858355f576SJeff Roberson hval = UMA_HASH(hash, data); 3868355f576SJeff Roberson 3878355f576SJeff Roberson SLIST_FOREACH(slab, &hash->uh_slab_hash[hval], us_hlink) { 3888355f576SJeff Roberson if ((u_int8_t *)slab->us_data == data) 3898355f576SJeff Roberson return (slab); 3908355f576SJeff Roberson } 3918355f576SJeff Roberson return (NULL); 3928355f576SJeff Roberson } 3938355f576SJeff Roberson 39499571dc3SJeff Roberson static __inline uma_slab_t 39599571dc3SJeff Roberson vtoslab(vm_offset_t va) 39699571dc3SJeff Roberson { 39799571dc3SJeff Roberson vm_page_t p; 39899571dc3SJeff Roberson uma_slab_t slab; 39999571dc3SJeff Roberson 40099571dc3SJeff Roberson p = PHYS_TO_VM_PAGE(pmap_kextract(va)); 40199571dc3SJeff Roberson slab = (uma_slab_t )p->object; 40299571dc3SJeff Roberson 40399571dc3SJeff Roberson if (p->flags & PG_SLAB) 40499571dc3SJeff Roberson return (slab); 40599571dc3SJeff Roberson else 40699571dc3SJeff Roberson return (NULL); 40799571dc3SJeff Roberson } 40899571dc3SJeff Roberson 40999571dc3SJeff Roberson static __inline void 41099571dc3SJeff Roberson vsetslab(vm_offset_t va, uma_slab_t slab) 41199571dc3SJeff Roberson { 41299571dc3SJeff Roberson vm_page_t p; 41399571dc3SJeff Roberson 4146fc96493SOlivier Houchard p = PHYS_TO_VM_PAGE(pmap_kextract(va)); 41599571dc3SJeff Roberson p->object = (vm_object_t)slab; 41699571dc3SJeff Roberson p->flags |= PG_SLAB; 41799571dc3SJeff Roberson } 41899571dc3SJeff Roberson 41999571dc3SJeff Roberson static __inline void 42099571dc3SJeff Roberson vsetobj(vm_offset_t va, vm_object_t obj) 42199571dc3SJeff Roberson { 42299571dc3SJeff Roberson vm_page_t p; 42399571dc3SJeff Roberson 4246fc96493SOlivier Houchard p = PHYS_TO_VM_PAGE(pmap_kextract(va)); 42599571dc3SJeff Roberson p->object = obj; 42699571dc3SJeff Roberson p->flags &= ~PG_SLAB; 42799571dc3SJeff Roberson } 4288355f576SJeff Roberson 42948eea375SJeff Roberson /* 43048eea375SJeff Roberson * The following two functions may be defined by architecture specific code 43148eea375SJeff Roberson * if they can provide more effecient allocation functions. This is useful 43248eea375SJeff Roberson * for using direct mapped addresses. 43348eea375SJeff Roberson */ 43448eea375SJeff Roberson void *uma_small_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait); 43548eea375SJeff Roberson void uma_small_free(void *mem, int size, u_int8_t flags); 436af17e9a9SRobert Watson #endif /* _KERNEL */ 43748eea375SJeff Roberson 4388355f576SJeff Roberson #endif /* VM_UMA_INT_H */ 439