18355f576SJeff Roberson /* 2f461cf22SJeff Roberson * Copyright (c) 2002, Jeffrey Roberson <jeff@freebsd.org> 38355f576SJeff Roberson * All rights reserved. 48355f576SJeff Roberson * 58355f576SJeff Roberson * Redistribution and use in source and binary forms, with or without 68355f576SJeff Roberson * modification, are permitted provided that the following conditions 78355f576SJeff Roberson * are met: 88355f576SJeff Roberson * 1. Redistributions of source code must retain the above copyright 98355f576SJeff Roberson * notice unmodified, this list of conditions, and the following 108355f576SJeff Roberson * disclaimer. 118355f576SJeff Roberson * 2. Redistributions in binary form must reproduce the above copyright 128355f576SJeff Roberson * notice, this list of conditions and the following disclaimer in the 138355f576SJeff Roberson * documentation and/or other materials provided with the distribution. 148355f576SJeff Roberson * 158355f576SJeff Roberson * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 168355f576SJeff Roberson * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 178355f576SJeff Roberson * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 188355f576SJeff Roberson * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 198355f576SJeff Roberson * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 208355f576SJeff Roberson * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 218355f576SJeff Roberson * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 228355f576SJeff Roberson * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 238355f576SJeff Roberson * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 248355f576SJeff Roberson * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 258355f576SJeff Roberson * 268355f576SJeff Roberson * $FreeBSD$ 278355f576SJeff Roberson * 288355f576SJeff Roberson */ 298355f576SJeff Roberson 308355f576SJeff Roberson /* 318355f576SJeff Roberson * This file includes definitions, structures, prototypes, and inlines that 328355f576SJeff Roberson * should not be used outside of the actual implementation of UMA. 338355f576SJeff Roberson */ 348355f576SJeff Roberson 358355f576SJeff Roberson /* 368355f576SJeff Roberson * Here's a quick description of the relationship between the objects: 378355f576SJeff Roberson * 38099a0e58SBosko Milekic * Kegs contain lists of slabs which are stored in either the full bin, empty 398355f576SJeff Roberson * bin, or partially allocated bin, to reduce fragmentation. They also contain 408355f576SJeff Roberson * the user supplied value for size, which is adjusted for alignment purposes 41099a0e58SBosko Milekic * and rsize is the result of that. The Keg also stores information for 428355f576SJeff Roberson * managing a hash of page addresses that maps pages to uma_slab_t structures 438355f576SJeff Roberson * for pages that don't have embedded uma_slab_t's. 448355f576SJeff Roberson * 458355f576SJeff Roberson * The uma_slab_t may be embedded in a UMA_SLAB_SIZE chunk of memory or it may 468355f576SJeff Roberson * be allocated off the page from a special slab zone. The free list within a 478355f576SJeff Roberson * slab is managed with a linked list of indexes, which are 8 bit values. If 488355f576SJeff Roberson * UMA_SLAB_SIZE is defined to be too large I will have to switch to 16bit 498355f576SJeff Roberson * values. Currently on alpha you can get 250 or so 32 byte items and on x86 508355f576SJeff Roberson * you can get 250 or so 16byte items. For item sizes that would yield more 51c235bfa5SJeff Roberson * than 10% memory waste we potentially allocate a separate uma_slab_t if this 528355f576SJeff Roberson * will improve the number of items per slab that will fit. 538355f576SJeff Roberson * 548355f576SJeff Roberson * Other potential space optimizations are storing the 8bit of linkage in space 558355f576SJeff Roberson * wasted between items due to alignment problems. This may yield a much better 568355f576SJeff Roberson * memory footprint for certain sizes of objects. Another alternative is to 578355f576SJeff Roberson * increase the UMA_SLAB_SIZE, or allow for dynamic slab sizes. I prefer 588355f576SJeff Roberson * dynamic slab sizes because we could stick with 8 bit indexes and only use 598355f576SJeff Roberson * large slab sizes for zones with a lot of waste per slab. This may create 608355f576SJeff Roberson * ineffeciencies in the vm subsystem due to fragmentation in the address space. 618355f576SJeff Roberson * 628355f576SJeff Roberson * The only really gross cases, with regards to memory waste, are for those 638355f576SJeff Roberson * items that are just over half the page size. You can get nearly 50% waste, 648355f576SJeff Roberson * so you fall back to the memory footprint of the power of two allocator. I 658355f576SJeff Roberson * have looked at memory allocation sizes on many of the machines available to 668355f576SJeff Roberson * me, and there does not seem to be an abundance of allocations at this range 678355f576SJeff Roberson * so at this time it may not make sense to optimize for it. This can, of 688355f576SJeff Roberson * course, be solved with dynamic slab sizes. 698355f576SJeff Roberson * 70099a0e58SBosko Milekic * Kegs may serve multiple Zones but by far most of the time they only serve 71099a0e58SBosko Milekic * one. When a Zone is created, a Keg is allocated and setup for it. While 72099a0e58SBosko Milekic * the backing Keg stores slabs, the Zone caches Buckets of items allocated 73099a0e58SBosko Milekic * from the slabs. Each Zone is equipped with an init/fini and ctor/dtor 74099a0e58SBosko Milekic * pair, as well as with its own set of small per-CPU caches, layered above 75099a0e58SBosko Milekic * the Zone's general Bucket cache. 76099a0e58SBosko Milekic * 77099a0e58SBosko Milekic * The PCPU caches are protected by their own locks, while the Zones backed 78099a0e58SBosko Milekic * by the same Keg all share a common Keg lock (to coalesce contention on 79099a0e58SBosko Milekic * the backing slabs). The backing Keg typically only serves one Zone but 80099a0e58SBosko Milekic * in the case of multiple Zones, one of the Zones is considered the 81099a0e58SBosko Milekic * Master Zone and all Zone-related stats from the Keg are done in the 82099a0e58SBosko Milekic * Master Zone. For an example of a Multi-Zone setup, refer to the 83099a0e58SBosko Milekic * Mbuf allocation code. 848355f576SJeff Roberson */ 858355f576SJeff Roberson 868355f576SJeff Roberson /* 878355f576SJeff Roberson * This is the representation for normal (Non OFFPAGE slab) 888355f576SJeff Roberson * 898355f576SJeff Roberson * i == item 908355f576SJeff Roberson * s == slab pointer 918355f576SJeff Roberson * 928355f576SJeff Roberson * <---------------- Page (UMA_SLAB_SIZE) ------------------> 938355f576SJeff Roberson * ___________________________________________________________ 948355f576SJeff Roberson * | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___________ | 958355f576SJeff Roberson * ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |slab header|| 968355f576SJeff Roberson * ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |___________|| 978355f576SJeff Roberson * |___________________________________________________________| 988355f576SJeff Roberson * 998355f576SJeff Roberson * 1008355f576SJeff Roberson * This is an OFFPAGE slab. These can be larger than UMA_SLAB_SIZE. 1018355f576SJeff Roberson * 1028355f576SJeff Roberson * ___________________________________________________________ 1038355f576SJeff Roberson * | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | 1048355f576SJeff Roberson * ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| | 1058355f576SJeff Roberson * ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| | 1068355f576SJeff Roberson * |___________________________________________________________| 1078355f576SJeff Roberson * ___________ ^ 1088355f576SJeff Roberson * |slab header| | 1098355f576SJeff Roberson * |___________|---* 1108355f576SJeff Roberson * 1118355f576SJeff Roberson */ 1128355f576SJeff Roberson 1138355f576SJeff Roberson #ifndef VM_UMA_INT_H 1148355f576SJeff Roberson #define VM_UMA_INT_H 1158355f576SJeff Roberson 1168355f576SJeff Roberson #define UMA_SLAB_SIZE PAGE_SIZE /* How big are our slabs? */ 1178355f576SJeff Roberson #define UMA_SLAB_MASK (PAGE_SIZE - 1) /* Mask to get back to the page */ 1188355f576SJeff Roberson #define UMA_SLAB_SHIFT PAGE_SHIFT /* Number of bits PAGE_MASK */ 1198355f576SJeff Roberson 120c19aa340SAlan Cox #define UMA_BOOT_PAGES 40 /* Pages allocated for startup */ 1218355f576SJeff Roberson 1228355f576SJeff Roberson /* Max waste before going to off page slab management */ 1238355f576SJeff Roberson #define UMA_MAX_WASTE (UMA_SLAB_SIZE / 10) 1248355f576SJeff Roberson 1258355f576SJeff Roberson /* 1268355f576SJeff Roberson * I doubt there will be many cases where this is exceeded. This is the initial 1278355f576SJeff Roberson * size of the hash table for uma_slabs that are managed off page. This hash 1288355f576SJeff Roberson * does expand by powers of two. Currently it doesn't get smaller. 1298355f576SJeff Roberson */ 1308355f576SJeff Roberson #define UMA_HASH_SIZE_INIT 32 1318355f576SJeff Roberson 1328355f576SJeff Roberson /* 1338355f576SJeff Roberson * I should investigate other hashing algorithms. This should yield a low 1348355f576SJeff Roberson * number of collisions if the pages are relatively contiguous. 1358355f576SJeff Roberson * 1368355f576SJeff Roberson * This is the same algorithm that most processor caches use. 1378355f576SJeff Roberson * 1388355f576SJeff Roberson * I'm shifting and masking instead of % because it should be faster. 1398355f576SJeff Roberson */ 1408355f576SJeff Roberson 1418355f576SJeff Roberson #define UMA_HASH(h, s) ((((unsigned long)s) >> UMA_SLAB_SHIFT) & \ 1428355f576SJeff Roberson (h)->uh_hashmask) 1438355f576SJeff Roberson 1448355f576SJeff Roberson #define UMA_HASH_INSERT(h, s, mem) \ 1458355f576SJeff Roberson SLIST_INSERT_HEAD(&(h)->uh_slab_hash[UMA_HASH((h), \ 1468355f576SJeff Roberson (mem))], (s), us_hlink); 1478355f576SJeff Roberson #define UMA_HASH_REMOVE(h, s, mem) \ 1488355f576SJeff Roberson SLIST_REMOVE(&(h)->uh_slab_hash[UMA_HASH((h), \ 1498355f576SJeff Roberson (mem))], (s), uma_slab, us_hlink); 1508355f576SJeff Roberson 1518355f576SJeff Roberson /* Hash table for freed address -> slab translation */ 1528355f576SJeff Roberson 1538355f576SJeff Roberson SLIST_HEAD(slabhead, uma_slab); 1548355f576SJeff Roberson 1558355f576SJeff Roberson struct uma_hash { 1568355f576SJeff Roberson struct slabhead *uh_slab_hash; /* Hash table for slabs */ 1578355f576SJeff Roberson int uh_hashsize; /* Current size of the hash table */ 1588355f576SJeff Roberson int uh_hashmask; /* Mask used during hashing */ 1598355f576SJeff Roberson }; 1608355f576SJeff Roberson 1618355f576SJeff Roberson /* 1628355f576SJeff Roberson * Structures for per cpu queues. 1638355f576SJeff Roberson */ 1648355f576SJeff Roberson 1658355f576SJeff Roberson struct uma_bucket { 1668355f576SJeff Roberson LIST_ENTRY(uma_bucket) ub_link; /* Link into the zone */ 167cae33c14SJeff Roberson int16_t ub_cnt; /* Count of free items. */ 168cae33c14SJeff Roberson int16_t ub_entries; /* Max items. */ 169cae33c14SJeff Roberson void *ub_bucket[]; /* actual allocation storage */ 1708355f576SJeff Roberson }; 1718355f576SJeff Roberson 1728355f576SJeff Roberson typedef struct uma_bucket * uma_bucket_t; 1738355f576SJeff Roberson 1748355f576SJeff Roberson struct uma_cache { 1758355f576SJeff Roberson uma_bucket_t uc_freebucket; /* Bucket we're freeing to */ 1768355f576SJeff Roberson uma_bucket_t uc_allocbucket; /* Bucket to allocate from */ 1778355f576SJeff Roberson u_int64_t uc_allocs; /* Count of allocations */ 1788355f576SJeff Roberson }; 1798355f576SJeff Roberson 1808355f576SJeff Roberson typedef struct uma_cache * uma_cache_t; 1818355f576SJeff Roberson 1828355f576SJeff Roberson /* 183099a0e58SBosko Milekic * Keg management structure 184099a0e58SBosko Milekic * 185099a0e58SBosko Milekic * TODO: Optimize for cache line size 186099a0e58SBosko Milekic * 187099a0e58SBosko Milekic */ 188099a0e58SBosko Milekic struct uma_keg { 189099a0e58SBosko Milekic LIST_ENTRY(uma_keg) uk_link; /* List of all kegs */ 190099a0e58SBosko Milekic 191099a0e58SBosko Milekic struct mtx uk_lock; /* Lock for the keg */ 192099a0e58SBosko Milekic struct uma_hash uk_hash; 193099a0e58SBosko Milekic 194099a0e58SBosko Milekic LIST_HEAD(,uma_zone) uk_zones; /* Keg's zones */ 195099a0e58SBosko Milekic LIST_HEAD(,uma_slab) uk_part_slab; /* partially allocated slabs */ 196099a0e58SBosko Milekic LIST_HEAD(,uma_slab) uk_free_slab; /* empty slab list */ 197099a0e58SBosko Milekic LIST_HEAD(,uma_slab) uk_full_slab; /* full slabs */ 198099a0e58SBosko Milekic 199099a0e58SBosko Milekic u_int32_t uk_recurse; /* Allocation recursion count */ 200099a0e58SBosko Milekic u_int32_t uk_align; /* Alignment mask */ 201099a0e58SBosko Milekic u_int32_t uk_pages; /* Total page count */ 202099a0e58SBosko Milekic u_int32_t uk_free; /* Count of items free in slabs */ 203099a0e58SBosko Milekic u_int32_t uk_size; /* Requested size of each item */ 204099a0e58SBosko Milekic u_int32_t uk_rsize; /* Real size of each item */ 205099a0e58SBosko Milekic u_int32_t uk_maxpages; /* Maximum number of pages to alloc */ 206099a0e58SBosko Milekic 207099a0e58SBosko Milekic uma_init uk_init; /* Keg's init routine */ 208099a0e58SBosko Milekic uma_fini uk_fini; /* Keg's fini routine */ 209099a0e58SBosko Milekic uma_alloc uk_allocf; /* Allocation function */ 210099a0e58SBosko Milekic uma_free uk_freef; /* Free routine */ 211099a0e58SBosko Milekic 212099a0e58SBosko Milekic struct vm_object *uk_obj; /* Zone specific object */ 213099a0e58SBosko Milekic vm_offset_t uk_kva; /* Base kva for zones with objs */ 214099a0e58SBosko Milekic uma_zone_t uk_slabzone; /* Slab zone backing us, if OFFPAGE */ 215099a0e58SBosko Milekic 216099a0e58SBosko Milekic u_int16_t uk_pgoff; /* Offset to uma_slab struct */ 217099a0e58SBosko Milekic u_int16_t uk_ppera; /* pages per allocation from backend */ 218099a0e58SBosko Milekic u_int16_t uk_ipers; /* Items per slab */ 219099a0e58SBosko Milekic u_int16_t uk_flags; /* Internal flags */ 220099a0e58SBosko Milekic }; 221099a0e58SBosko Milekic 222099a0e58SBosko Milekic /* Simpler reference to uma_keg for internal use. */ 223099a0e58SBosko Milekic typedef struct uma_keg * uma_keg_t; 224099a0e58SBosko Milekic 225099a0e58SBosko Milekic /* Page management structure */ 226099a0e58SBosko Milekic 227099a0e58SBosko Milekic /* Sorry for the union, but space efficiency is important */ 228099a0e58SBosko Milekic struct uma_slab_head { 229099a0e58SBosko Milekic uma_keg_t us_keg; /* Keg we live in */ 230099a0e58SBosko Milekic union { 231099a0e58SBosko Milekic LIST_ENTRY(uma_slab) _us_link; /* slabs in zone */ 232099a0e58SBosko Milekic unsigned long _us_size; /* Size of allocation */ 233099a0e58SBosko Milekic } us_type; 234099a0e58SBosko Milekic SLIST_ENTRY(uma_slab) us_hlink; /* Link for hash table */ 235099a0e58SBosko Milekic u_int8_t *us_data; /* First item */ 236099a0e58SBosko Milekic u_int8_t us_flags; /* Page flags see uma.h */ 237099a0e58SBosko Milekic u_int8_t us_freecount; /* How many are free? */ 238099a0e58SBosko Milekic u_int8_t us_firstfree; /* First free item index */ 239099a0e58SBosko Milekic }; 240099a0e58SBosko Milekic 241099a0e58SBosko Milekic /* The standard slab structure */ 242099a0e58SBosko Milekic struct uma_slab { 243099a0e58SBosko Milekic struct uma_slab_head us_head; /* slab header data */ 244099a0e58SBosko Milekic struct { 245099a0e58SBosko Milekic u_int8_t us_item; 246099a0e58SBosko Milekic } us_freelist[1]; /* actual number bigger */ 247099a0e58SBosko Milekic }; 248099a0e58SBosko Milekic 249099a0e58SBosko Milekic /* 250099a0e58SBosko Milekic * The slab structure for UMA_ZONE_REFCNT zones for whose items we 251099a0e58SBosko Milekic * maintain reference counters in the slab for. 252099a0e58SBosko Milekic */ 253099a0e58SBosko Milekic struct uma_slab_refcnt { 254099a0e58SBosko Milekic struct uma_slab_head us_head; /* slab header data */ 255099a0e58SBosko Milekic struct { 256099a0e58SBosko Milekic u_int8_t us_item; 257099a0e58SBosko Milekic u_int32_t us_refcnt; 258099a0e58SBosko Milekic } us_freelist[1]; /* actual number bigger */ 259099a0e58SBosko Milekic }; 260099a0e58SBosko Milekic 261099a0e58SBosko Milekic #define us_keg us_head.us_keg 262099a0e58SBosko Milekic #define us_link us_head.us_type._us_link 263099a0e58SBosko Milekic #define us_size us_head.us_type._us_size 264099a0e58SBosko Milekic #define us_hlink us_head.us_hlink 265099a0e58SBosko Milekic #define us_data us_head.us_data 266099a0e58SBosko Milekic #define us_flags us_head.us_flags 267099a0e58SBosko Milekic #define us_freecount us_head.us_freecount 268099a0e58SBosko Milekic #define us_firstfree us_head.us_firstfree 269099a0e58SBosko Milekic 270099a0e58SBosko Milekic typedef struct uma_slab * uma_slab_t; 271099a0e58SBosko Milekic typedef struct uma_slab_refcnt * uma_slabrefcnt_t; 272099a0e58SBosko Milekic 273099a0e58SBosko Milekic /* 274244f4554SBosko Milekic * These give us the size of one free item reference within our corresponding 275244f4554SBosko Milekic * uma_slab structures, so that our calculations during zone setup are correct 276244f4554SBosko Milekic * regardless of what the compiler decides to do with padding the structure 277244f4554SBosko Milekic * arrays within uma_slab. 278244f4554SBosko Milekic */ 279244f4554SBosko Milekic #define UMA_FRITM_SZ (sizeof(struct uma_slab) - sizeof(struct uma_slab_head)) 280244f4554SBosko Milekic #define UMA_FRITMREF_SZ (sizeof(struct uma_slab_refcnt) - \ 281244f4554SBosko Milekic sizeof(struct uma_slab_head)) 282244f4554SBosko Milekic 283244f4554SBosko Milekic /* 2848355f576SJeff Roberson * Zone management structure 2858355f576SJeff Roberson * 2868355f576SJeff Roberson * TODO: Optimize for cache line size 2878355f576SJeff Roberson * 2888355f576SJeff Roberson */ 2898355f576SJeff Roberson struct uma_zone { 2908355f576SJeff Roberson char *uz_name; /* Text name of the zone */ 291099a0e58SBosko Milekic struct mtx *uz_lock; /* Lock for the zone (keg's lock) */ 292099a0e58SBosko Milekic uma_keg_t uz_keg; /* Our underlying Keg */ 2938355f576SJeff Roberson 294099a0e58SBosko Milekic LIST_ENTRY(uma_zone) uz_link; /* List of all zones in keg */ 2958355f576SJeff Roberson LIST_HEAD(,uma_bucket) uz_full_bucket; /* full buckets */ 2968355f576SJeff Roberson LIST_HEAD(,uma_bucket) uz_free_bucket; /* Buckets for frees */ 2978355f576SJeff Roberson 2988355f576SJeff Roberson uma_ctor uz_ctor; /* Constructor for each allocation */ 2998355f576SJeff Roberson uma_dtor uz_dtor; /* Destructor */ 3008355f576SJeff Roberson uma_init uz_init; /* Initializer for each item */ 3018355f576SJeff Roberson uma_fini uz_fini; /* Discards memory */ 302099a0e58SBosko Milekic 303099a0e58SBosko Milekic u_int64_t uz_allocs; /* Total number of allocations */ 304a553d4b8SJeff Roberson uint16_t uz_fills; /* Outstanding bucket fills */ 305a553d4b8SJeff Roberson uint16_t uz_count; /* Highest value ub_ptr can have */ 306099a0e58SBosko Milekic 3078355f576SJeff Roberson /* 3088355f576SJeff Roberson * This HAS to be the last item because we adjust the zone size 3098355f576SJeff Roberson * based on NCPU and then allocate the space for the zones. 3108355f576SJeff Roberson */ 3118355f576SJeff Roberson struct uma_cache uz_cpu[1]; /* Per cpu caches */ 3128355f576SJeff Roberson }; 3138355f576SJeff Roberson 314b60f5b79SJeff Roberson /* 315b60f5b79SJeff Roberson * These flags must not overlap with the UMA_ZONE flags specified in uma.h. 316b60f5b79SJeff Roberson */ 317b60f5b79SJeff Roberson #define UMA_ZFLAG_PRIVALLOC 0x1000 /* Use uz_allocf. */ 318b60f5b79SJeff Roberson #define UMA_ZFLAG_INTERNAL 0x2000 /* No offpage no PCPU. */ 319b60f5b79SJeff Roberson #define UMA_ZFLAG_FULL 0x4000 /* Reached uz_maxpages */ 320b60f5b79SJeff Roberson #define UMA_ZFLAG_CACHEONLY 0x8000 /* Don't ask VM for buckets. */ 3218355f576SJeff Roberson 3228355f576SJeff Roberson /* Internal prototypes */ 3238355f576SJeff Roberson static __inline uma_slab_t hash_sfind(struct uma_hash *hash, u_int8_t *data); 3248355f576SJeff Roberson void *uma_large_malloc(int size, int wait); 3258355f576SJeff Roberson void uma_large_free(uma_slab_t slab); 3268355f576SJeff Roberson 3278355f576SJeff Roberson /* Lock Macros */ 3288355f576SJeff Roberson 32928bc4419SJeff Roberson #define ZONE_LOCK_INIT(z, lc) \ 33028bc4419SJeff Roberson do { \ 33128bc4419SJeff Roberson if ((lc)) \ 332099a0e58SBosko Milekic mtx_init((z)->uz_lock, (z)->uz_name, \ 33328bc4419SJeff Roberson (z)->uz_name, MTX_DEF | MTX_DUPOK); \ 33428bc4419SJeff Roberson else \ 335099a0e58SBosko Milekic mtx_init((z)->uz_lock, (z)->uz_name, \ 33628bc4419SJeff Roberson "UMA zone", MTX_DEF | MTX_DUPOK); \ 33728bc4419SJeff Roberson } while (0) 33828bc4419SJeff Roberson 339099a0e58SBosko Milekic #define ZONE_LOCK_FINI(z) mtx_destroy((z)->uz_lock) 340099a0e58SBosko Milekic #define ZONE_LOCK(z) mtx_lock((z)->uz_lock) 341099a0e58SBosko Milekic #define ZONE_UNLOCK(z) mtx_unlock((z)->uz_lock) 3428355f576SJeff Roberson 343d88797c2SBosko Milekic #define CPU_LOCK_INIT(cpu) \ 344d88797c2SBosko Milekic mtx_init(&uma_pcpu_mtx[(cpu)], "UMA pcpu", "UMA pcpu", \ 345d88797c2SBosko Milekic MTX_DEF | MTX_DUPOK) 3468355f576SJeff Roberson 347d88797c2SBosko Milekic #define CPU_LOCK(cpu) \ 348d88797c2SBosko Milekic mtx_lock(&uma_pcpu_mtx[(cpu)]) 3498355f576SJeff Roberson 350d88797c2SBosko Milekic #define CPU_UNLOCK(cpu) \ 351d88797c2SBosko Milekic mtx_unlock(&uma_pcpu_mtx[(cpu)]) 3528355f576SJeff Roberson 3538355f576SJeff Roberson /* 3548355f576SJeff Roberson * Find a slab within a hash table. This is used for OFFPAGE zones to lookup 3558355f576SJeff Roberson * the slab structure. 3568355f576SJeff Roberson * 3578355f576SJeff Roberson * Arguments: 3588355f576SJeff Roberson * hash The hash table to search. 3598355f576SJeff Roberson * data The base page of the item. 3608355f576SJeff Roberson * 3618355f576SJeff Roberson * Returns: 3628355f576SJeff Roberson * A pointer to a slab if successful, else NULL. 3638355f576SJeff Roberson */ 3648355f576SJeff Roberson static __inline uma_slab_t 3658355f576SJeff Roberson hash_sfind(struct uma_hash *hash, u_int8_t *data) 3668355f576SJeff Roberson { 3678355f576SJeff Roberson uma_slab_t slab; 3688355f576SJeff Roberson int hval; 3698355f576SJeff Roberson 3708355f576SJeff Roberson hval = UMA_HASH(hash, data); 3718355f576SJeff Roberson 3728355f576SJeff Roberson SLIST_FOREACH(slab, &hash->uh_slab_hash[hval], us_hlink) { 3738355f576SJeff Roberson if ((u_int8_t *)slab->us_data == data) 3748355f576SJeff Roberson return (slab); 3758355f576SJeff Roberson } 3768355f576SJeff Roberson return (NULL); 3778355f576SJeff Roberson } 3788355f576SJeff Roberson 37999571dc3SJeff Roberson static __inline uma_slab_t 38099571dc3SJeff Roberson vtoslab(vm_offset_t va) 38199571dc3SJeff Roberson { 38299571dc3SJeff Roberson vm_page_t p; 38399571dc3SJeff Roberson uma_slab_t slab; 38499571dc3SJeff Roberson 38599571dc3SJeff Roberson p = PHYS_TO_VM_PAGE(pmap_kextract(va)); 38699571dc3SJeff Roberson slab = (uma_slab_t )p->object; 38799571dc3SJeff Roberson 38899571dc3SJeff Roberson if (p->flags & PG_SLAB) 38999571dc3SJeff Roberson return (slab); 39099571dc3SJeff Roberson else 39199571dc3SJeff Roberson return (NULL); 39299571dc3SJeff Roberson } 39399571dc3SJeff Roberson 39499571dc3SJeff Roberson static __inline void 39599571dc3SJeff Roberson vsetslab(vm_offset_t va, uma_slab_t slab) 39699571dc3SJeff Roberson { 39799571dc3SJeff Roberson vm_page_t p; 39899571dc3SJeff Roberson 3996fc96493SOlivier Houchard p = PHYS_TO_VM_PAGE(pmap_kextract(va)); 40099571dc3SJeff Roberson p->object = (vm_object_t)slab; 40199571dc3SJeff Roberson p->flags |= PG_SLAB; 40299571dc3SJeff Roberson } 40399571dc3SJeff Roberson 40499571dc3SJeff Roberson static __inline void 40599571dc3SJeff Roberson vsetobj(vm_offset_t va, vm_object_t obj) 40699571dc3SJeff Roberson { 40799571dc3SJeff Roberson vm_page_t p; 40899571dc3SJeff Roberson 4096fc96493SOlivier Houchard p = PHYS_TO_VM_PAGE(pmap_kextract(va)); 41099571dc3SJeff Roberson p->object = obj; 41199571dc3SJeff Roberson p->flags &= ~PG_SLAB; 41299571dc3SJeff Roberson } 4138355f576SJeff Roberson 41448eea375SJeff Roberson /* 41548eea375SJeff Roberson * The following two functions may be defined by architecture specific code 41648eea375SJeff Roberson * if they can provide more effecient allocation functions. This is useful 41748eea375SJeff Roberson * for using direct mapped addresses. 41848eea375SJeff Roberson */ 41948eea375SJeff Roberson void *uma_small_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait); 42048eea375SJeff Roberson void uma_small_free(void *mem, int size, u_int8_t flags); 42148eea375SJeff Roberson 4228355f576SJeff Roberson #endif /* VM_UMA_INT_H */ 423