1 /*- 2 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org> 3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 4 * Copyright (c) 2004-2006 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /* 30 * uma_core.c Implementation of the Universal Memory allocator 31 * 32 * This allocator is intended to replace the multitude of similar object caches 33 * in the standard FreeBSD kernel. The intent is to be flexible as well as 34 * efficient. A primary design goal is to return unused memory to the rest of 35 * the system. This will make the system as a whole more flexible due to the 36 * ability to move memory to subsystems which most need it instead of leaving 37 * pools of reserved memory unused. 38 * 39 * The basic ideas stem from similar slab/zone based allocators whose algorithms 40 * are well known. 41 * 42 */ 43 44 /* 45 * TODO: 46 * - Improve memory usage for large allocations 47 * - Investigate cache size adjustments 48 */ 49 50 #include <sys/cdefs.h> 51 __FBSDID("$FreeBSD$"); 52 53 #include "opt_ddb.h" 54 #include "opt_param.h" 55 #include "opt_vm.h" 56 57 #include <sys/param.h> 58 #include <sys/systm.h> 59 #include <sys/bitset.h> 60 #include <sys/eventhandler.h> 61 #include <sys/kernel.h> 62 #include <sys/types.h> 63 #include <sys/queue.h> 64 #include <sys/malloc.h> 65 #include <sys/ktr.h> 66 #include <sys/lock.h> 67 #include <sys/sysctl.h> 68 #include <sys/mutex.h> 69 #include <sys/proc.h> 70 #include <sys/random.h> 71 #include <sys/rwlock.h> 72 #include <sys/sbuf.h> 73 #include <sys/sched.h> 74 #include <sys/smp.h> 75 #include <sys/taskqueue.h> 76 #include <sys/vmmeter.h> 77 78 #include <vm/vm.h> 79 #include <vm/vm_object.h> 80 #include <vm/vm_page.h> 81 #include <vm/vm_pageout.h> 82 #include <vm/vm_param.h> 83 #include <vm/vm_map.h> 84 #include <vm/vm_kern.h> 85 #include <vm/vm_extern.h> 86 #include <vm/uma.h> 87 #include <vm/uma_int.h> 88 #include <vm/uma_dbg.h> 89 90 #include <ddb/ddb.h> 91 92 #ifdef DEBUG_MEMGUARD 93 #include <vm/memguard.h> 94 #endif 95 96 /* 97 * This is the zone and keg from which all zones are spawned. The idea is that 98 * even the zone & keg heads are allocated from the allocator, so we use the 99 * bss section to bootstrap us. 100 */ 101 static struct uma_keg masterkeg; 102 static struct uma_zone masterzone_k; 103 static struct uma_zone masterzone_z; 104 static uma_zone_t kegs = &masterzone_k; 105 static uma_zone_t zones = &masterzone_z; 106 107 /* This is the zone from which all of uma_slab_t's are allocated. */ 108 static uma_zone_t slabzone; 109 110 /* 111 * The initial hash tables come out of this zone so they can be allocated 112 * prior to malloc coming up. 113 */ 114 static uma_zone_t hashzone; 115 116 /* The boot-time adjusted value for cache line alignment. */ 117 int uma_align_cache = 64 - 1; 118 119 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 120 121 /* 122 * Are we allowed to allocate buckets? 123 */ 124 static int bucketdisable = 1; 125 126 /* Linked list of all kegs in the system */ 127 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 128 129 /* Linked list of all cache-only zones in the system */ 130 static LIST_HEAD(,uma_zone) uma_cachezones = 131 LIST_HEAD_INITIALIZER(uma_cachezones); 132 133 /* This RW lock protects the keg list */ 134 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 135 136 /* 137 * Pointer and counter to pool of pages, that is preallocated at 138 * startup to bootstrap UMA. Early zones continue to use the pool 139 * until it is depleted, so allocations may happen after boot, thus 140 * we need a mutex to protect it. 141 */ 142 static char *bootmem; 143 static int boot_pages; 144 static struct mtx uma_boot_pages_mtx; 145 146 static struct sx uma_drain_lock; 147 148 /* Is the VM done starting up? */ 149 static int booted = 0; 150 #define UMA_STARTUP 1 151 #define UMA_STARTUP2 2 152 153 /* 154 * This is the handle used to schedule events that need to happen 155 * outside of the allocation fast path. 156 */ 157 static struct callout uma_callout; 158 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 159 160 /* 161 * This structure is passed as the zone ctor arg so that I don't have to create 162 * a special allocation function just for zones. 163 */ 164 struct uma_zctor_args { 165 const char *name; 166 size_t size; 167 uma_ctor ctor; 168 uma_dtor dtor; 169 uma_init uminit; 170 uma_fini fini; 171 uma_import import; 172 uma_release release; 173 void *arg; 174 uma_keg_t keg; 175 int align; 176 uint32_t flags; 177 }; 178 179 struct uma_kctor_args { 180 uma_zone_t zone; 181 size_t size; 182 uma_init uminit; 183 uma_fini fini; 184 int align; 185 uint32_t flags; 186 }; 187 188 struct uma_bucket_zone { 189 uma_zone_t ubz_zone; 190 char *ubz_name; 191 int ubz_entries; /* Number of items it can hold. */ 192 int ubz_maxsize; /* Maximum allocation size per-item. */ 193 }; 194 195 /* 196 * Compute the actual number of bucket entries to pack them in power 197 * of two sizes for more efficient space utilization. 198 */ 199 #define BUCKET_SIZE(n) \ 200 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 201 202 #define BUCKET_MAX BUCKET_SIZE(256) 203 204 struct uma_bucket_zone bucket_zones[] = { 205 { NULL, "4 Bucket", BUCKET_SIZE(4), 4096 }, 206 { NULL, "6 Bucket", BUCKET_SIZE(6), 3072 }, 207 { NULL, "8 Bucket", BUCKET_SIZE(8), 2048 }, 208 { NULL, "12 Bucket", BUCKET_SIZE(12), 1536 }, 209 { NULL, "16 Bucket", BUCKET_SIZE(16), 1024 }, 210 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 211 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 212 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 213 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 214 { NULL, NULL, 0} 215 }; 216 217 /* 218 * Flags and enumerations to be passed to internal functions. 219 */ 220 enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI }; 221 222 /* Prototypes.. */ 223 224 static void *noobj_alloc(uma_zone_t, vm_size_t, uint8_t *, int); 225 static void *page_alloc(uma_zone_t, vm_size_t, uint8_t *, int); 226 static void *startup_alloc(uma_zone_t, vm_size_t, uint8_t *, int); 227 static void page_free(void *, vm_size_t, uint8_t); 228 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int); 229 static void cache_drain(uma_zone_t); 230 static void bucket_drain(uma_zone_t, uma_bucket_t); 231 static void bucket_cache_drain(uma_zone_t zone); 232 static int keg_ctor(void *, int, void *, int); 233 static void keg_dtor(void *, int, void *); 234 static int zone_ctor(void *, int, void *, int); 235 static void zone_dtor(void *, int, void *); 236 static int zero_init(void *, int, int); 237 static void keg_small_init(uma_keg_t keg); 238 static void keg_large_init(uma_keg_t keg); 239 static void zone_foreach(void (*zfunc)(uma_zone_t)); 240 static void zone_timeout(uma_zone_t zone); 241 static int hash_alloc(struct uma_hash *); 242 static int hash_expand(struct uma_hash *, struct uma_hash *); 243 static void hash_free(struct uma_hash *hash); 244 static void uma_timeout(void *); 245 static void uma_startup3(void); 246 static void *zone_alloc_item(uma_zone_t, void *, int); 247 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 248 static void bucket_enable(void); 249 static void bucket_init(void); 250 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 251 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 252 static void bucket_zone_drain(void); 253 static uma_bucket_t zone_alloc_bucket(uma_zone_t zone, void *, int flags); 254 static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags); 255 static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags); 256 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 257 static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item); 258 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 259 uma_fini fini, int align, uint32_t flags); 260 static int zone_import(uma_zone_t zone, void **bucket, int max, int flags); 261 static void zone_release(uma_zone_t zone, void **bucket, int cnt); 262 static void uma_zero_item(void *item, uma_zone_t zone); 263 264 void uma_print_zone(uma_zone_t); 265 void uma_print_stats(void); 266 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 267 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 268 269 #ifdef INVARIANTS 270 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 271 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 272 #endif 273 274 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 275 276 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 277 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 278 279 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 280 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 281 282 static int zone_warnings = 1; 283 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 284 "Warn when UMA zones becomes full"); 285 286 /* 287 * This routine checks to see whether or not it's safe to enable buckets. 288 */ 289 static void 290 bucket_enable(void) 291 { 292 bucketdisable = vm_page_count_min(); 293 } 294 295 /* 296 * Initialize bucket_zones, the array of zones of buckets of various sizes. 297 * 298 * For each zone, calculate the memory required for each bucket, consisting 299 * of the header and an array of pointers. 300 */ 301 static void 302 bucket_init(void) 303 { 304 struct uma_bucket_zone *ubz; 305 int size; 306 307 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 308 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 309 size += sizeof(void *) * ubz->ubz_entries; 310 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 311 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 312 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET); 313 } 314 } 315 316 /* 317 * Given a desired number of entries for a bucket, return the zone from which 318 * to allocate the bucket. 319 */ 320 static struct uma_bucket_zone * 321 bucket_zone_lookup(int entries) 322 { 323 struct uma_bucket_zone *ubz; 324 325 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 326 if (ubz->ubz_entries >= entries) 327 return (ubz); 328 ubz--; 329 return (ubz); 330 } 331 332 static int 333 bucket_select(int size) 334 { 335 struct uma_bucket_zone *ubz; 336 337 ubz = &bucket_zones[0]; 338 if (size > ubz->ubz_maxsize) 339 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 340 341 for (; ubz->ubz_entries != 0; ubz++) 342 if (ubz->ubz_maxsize < size) 343 break; 344 ubz--; 345 return (ubz->ubz_entries); 346 } 347 348 static uma_bucket_t 349 bucket_alloc(uma_zone_t zone, void *udata, int flags) 350 { 351 struct uma_bucket_zone *ubz; 352 uma_bucket_t bucket; 353 354 /* 355 * This is to stop us from allocating per cpu buckets while we're 356 * running out of vm.boot_pages. Otherwise, we would exhaust the 357 * boot pages. This also prevents us from allocating buckets in 358 * low memory situations. 359 */ 360 if (bucketdisable) 361 return (NULL); 362 /* 363 * To limit bucket recursion we store the original zone flags 364 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 365 * NOVM flag to persist even through deep recursions. We also 366 * store ZFLAG_BUCKET once we have recursed attempting to allocate 367 * a bucket for a bucket zone so we do not allow infinite bucket 368 * recursion. This cookie will even persist to frees of unused 369 * buckets via the allocation path or bucket allocations in the 370 * free path. 371 */ 372 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 373 udata = (void *)(uintptr_t)zone->uz_flags; 374 else { 375 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 376 return (NULL); 377 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 378 } 379 if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY) 380 flags |= M_NOVM; 381 ubz = bucket_zone_lookup(zone->uz_count); 382 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 383 ubz++; 384 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 385 if (bucket) { 386 #ifdef INVARIANTS 387 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 388 #endif 389 bucket->ub_cnt = 0; 390 bucket->ub_entries = ubz->ubz_entries; 391 } 392 393 return (bucket); 394 } 395 396 static void 397 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 398 { 399 struct uma_bucket_zone *ubz; 400 401 KASSERT(bucket->ub_cnt == 0, 402 ("bucket_free: Freeing a non free bucket.")); 403 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 404 udata = (void *)(uintptr_t)zone->uz_flags; 405 ubz = bucket_zone_lookup(bucket->ub_entries); 406 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 407 } 408 409 static void 410 bucket_zone_drain(void) 411 { 412 struct uma_bucket_zone *ubz; 413 414 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 415 zone_drain(ubz->ubz_zone); 416 } 417 418 static void 419 zone_log_warning(uma_zone_t zone) 420 { 421 static const struct timeval warninterval = { 300, 0 }; 422 423 if (!zone_warnings || zone->uz_warning == NULL) 424 return; 425 426 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 427 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 428 } 429 430 static inline void 431 zone_maxaction(uma_zone_t zone) 432 { 433 434 if (zone->uz_maxaction.ta_func != NULL) 435 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 436 } 437 438 static void 439 zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t)) 440 { 441 uma_klink_t klink; 442 443 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) 444 kegfn(klink->kl_keg); 445 } 446 447 /* 448 * Routine called by timeout which is used to fire off some time interval 449 * based calculations. (stats, hash size, etc.) 450 * 451 * Arguments: 452 * arg Unused 453 * 454 * Returns: 455 * Nothing 456 */ 457 static void 458 uma_timeout(void *unused) 459 { 460 bucket_enable(); 461 zone_foreach(zone_timeout); 462 463 /* Reschedule this event */ 464 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 465 } 466 467 /* 468 * Routine to perform timeout driven calculations. This expands the 469 * hashes and does per cpu statistics aggregation. 470 * 471 * Returns nothing. 472 */ 473 static void 474 keg_timeout(uma_keg_t keg) 475 { 476 477 KEG_LOCK(keg); 478 /* 479 * Expand the keg hash table. 480 * 481 * This is done if the number of slabs is larger than the hash size. 482 * What I'm trying to do here is completely reduce collisions. This 483 * may be a little aggressive. Should I allow for two collisions max? 484 */ 485 if (keg->uk_flags & UMA_ZONE_HASH && 486 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) { 487 struct uma_hash newhash; 488 struct uma_hash oldhash; 489 int ret; 490 491 /* 492 * This is so involved because allocating and freeing 493 * while the keg lock is held will lead to deadlock. 494 * I have to do everything in stages and check for 495 * races. 496 */ 497 newhash = keg->uk_hash; 498 KEG_UNLOCK(keg); 499 ret = hash_alloc(&newhash); 500 KEG_LOCK(keg); 501 if (ret) { 502 if (hash_expand(&keg->uk_hash, &newhash)) { 503 oldhash = keg->uk_hash; 504 keg->uk_hash = newhash; 505 } else 506 oldhash = newhash; 507 508 KEG_UNLOCK(keg); 509 hash_free(&oldhash); 510 return; 511 } 512 } 513 KEG_UNLOCK(keg); 514 } 515 516 static void 517 zone_timeout(uma_zone_t zone) 518 { 519 520 zone_foreach_keg(zone, &keg_timeout); 521 } 522 523 /* 524 * Allocate and zero fill the next sized hash table from the appropriate 525 * backing store. 526 * 527 * Arguments: 528 * hash A new hash structure with the old hash size in uh_hashsize 529 * 530 * Returns: 531 * 1 on success and 0 on failure. 532 */ 533 static int 534 hash_alloc(struct uma_hash *hash) 535 { 536 int oldsize; 537 int alloc; 538 539 oldsize = hash->uh_hashsize; 540 541 /* We're just going to go to a power of two greater */ 542 if (oldsize) { 543 hash->uh_hashsize = oldsize * 2; 544 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 545 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 546 M_UMAHASH, M_NOWAIT); 547 } else { 548 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 549 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 550 M_WAITOK); 551 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 552 } 553 if (hash->uh_slab_hash) { 554 bzero(hash->uh_slab_hash, alloc); 555 hash->uh_hashmask = hash->uh_hashsize - 1; 556 return (1); 557 } 558 559 return (0); 560 } 561 562 /* 563 * Expands the hash table for HASH zones. This is done from zone_timeout 564 * to reduce collisions. This must not be done in the regular allocation 565 * path, otherwise, we can recurse on the vm while allocating pages. 566 * 567 * Arguments: 568 * oldhash The hash you want to expand 569 * newhash The hash structure for the new table 570 * 571 * Returns: 572 * Nothing 573 * 574 * Discussion: 575 */ 576 static int 577 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 578 { 579 uma_slab_t slab; 580 int hval; 581 int i; 582 583 if (!newhash->uh_slab_hash) 584 return (0); 585 586 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 587 return (0); 588 589 /* 590 * I need to investigate hash algorithms for resizing without a 591 * full rehash. 592 */ 593 594 for (i = 0; i < oldhash->uh_hashsize; i++) 595 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) { 596 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]); 597 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink); 598 hval = UMA_HASH(newhash, slab->us_data); 599 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 600 slab, us_hlink); 601 } 602 603 return (1); 604 } 605 606 /* 607 * Free the hash bucket to the appropriate backing store. 608 * 609 * Arguments: 610 * slab_hash The hash bucket we're freeing 611 * hashsize The number of entries in that hash bucket 612 * 613 * Returns: 614 * Nothing 615 */ 616 static void 617 hash_free(struct uma_hash *hash) 618 { 619 if (hash->uh_slab_hash == NULL) 620 return; 621 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 622 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 623 else 624 free(hash->uh_slab_hash, M_UMAHASH); 625 } 626 627 /* 628 * Frees all outstanding items in a bucket 629 * 630 * Arguments: 631 * zone The zone to free to, must be unlocked. 632 * bucket The free/alloc bucket with items, cpu queue must be locked. 633 * 634 * Returns: 635 * Nothing 636 */ 637 638 static void 639 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 640 { 641 int i; 642 643 if (bucket == NULL) 644 return; 645 646 if (zone->uz_fini) 647 for (i = 0; i < bucket->ub_cnt; i++) 648 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 649 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 650 bucket->ub_cnt = 0; 651 } 652 653 /* 654 * Drains the per cpu caches for a zone. 655 * 656 * NOTE: This may only be called while the zone is being turn down, and not 657 * during normal operation. This is necessary in order that we do not have 658 * to migrate CPUs to drain the per-CPU caches. 659 * 660 * Arguments: 661 * zone The zone to drain, must be unlocked. 662 * 663 * Returns: 664 * Nothing 665 */ 666 static void 667 cache_drain(uma_zone_t zone) 668 { 669 uma_cache_t cache; 670 int cpu; 671 672 /* 673 * XXX: It is safe to not lock the per-CPU caches, because we're 674 * tearing down the zone anyway. I.e., there will be no further use 675 * of the caches at this point. 676 * 677 * XXX: It would good to be able to assert that the zone is being 678 * torn down to prevent improper use of cache_drain(). 679 * 680 * XXX: We lock the zone before passing into bucket_cache_drain() as 681 * it is used elsewhere. Should the tear-down path be made special 682 * there in some form? 683 */ 684 CPU_FOREACH(cpu) { 685 cache = &zone->uz_cpu[cpu]; 686 bucket_drain(zone, cache->uc_allocbucket); 687 bucket_drain(zone, cache->uc_freebucket); 688 if (cache->uc_allocbucket != NULL) 689 bucket_free(zone, cache->uc_allocbucket, NULL); 690 if (cache->uc_freebucket != NULL) 691 bucket_free(zone, cache->uc_freebucket, NULL); 692 cache->uc_allocbucket = cache->uc_freebucket = NULL; 693 } 694 ZONE_LOCK(zone); 695 bucket_cache_drain(zone); 696 ZONE_UNLOCK(zone); 697 } 698 699 static void 700 cache_shrink(uma_zone_t zone) 701 { 702 703 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 704 return; 705 706 ZONE_LOCK(zone); 707 zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2; 708 ZONE_UNLOCK(zone); 709 } 710 711 static void 712 cache_drain_safe_cpu(uma_zone_t zone) 713 { 714 uma_cache_t cache; 715 uma_bucket_t b1, b2; 716 717 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 718 return; 719 720 b1 = b2 = NULL; 721 ZONE_LOCK(zone); 722 critical_enter(); 723 cache = &zone->uz_cpu[curcpu]; 724 if (cache->uc_allocbucket) { 725 if (cache->uc_allocbucket->ub_cnt != 0) 726 LIST_INSERT_HEAD(&zone->uz_buckets, 727 cache->uc_allocbucket, ub_link); 728 else 729 b1 = cache->uc_allocbucket; 730 cache->uc_allocbucket = NULL; 731 } 732 if (cache->uc_freebucket) { 733 if (cache->uc_freebucket->ub_cnt != 0) 734 LIST_INSERT_HEAD(&zone->uz_buckets, 735 cache->uc_freebucket, ub_link); 736 else 737 b2 = cache->uc_freebucket; 738 cache->uc_freebucket = NULL; 739 } 740 critical_exit(); 741 ZONE_UNLOCK(zone); 742 if (b1) 743 bucket_free(zone, b1, NULL); 744 if (b2) 745 bucket_free(zone, b2, NULL); 746 } 747 748 /* 749 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 750 * This is an expensive call because it needs to bind to all CPUs 751 * one by one and enter a critical section on each of them in order 752 * to safely access their cache buckets. 753 * Zone lock must not be held on call this function. 754 */ 755 static void 756 cache_drain_safe(uma_zone_t zone) 757 { 758 int cpu; 759 760 /* 761 * Polite bucket sizes shrinking was not enouth, shrink aggressively. 762 */ 763 if (zone) 764 cache_shrink(zone); 765 else 766 zone_foreach(cache_shrink); 767 768 CPU_FOREACH(cpu) { 769 thread_lock(curthread); 770 sched_bind(curthread, cpu); 771 thread_unlock(curthread); 772 773 if (zone) 774 cache_drain_safe_cpu(zone); 775 else 776 zone_foreach(cache_drain_safe_cpu); 777 } 778 thread_lock(curthread); 779 sched_unbind(curthread); 780 thread_unlock(curthread); 781 } 782 783 /* 784 * Drain the cached buckets from a zone. Expects a locked zone on entry. 785 */ 786 static void 787 bucket_cache_drain(uma_zone_t zone) 788 { 789 uma_bucket_t bucket; 790 791 /* 792 * Drain the bucket queues and free the buckets, we just keep two per 793 * cpu (alloc/free). 794 */ 795 while ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) { 796 LIST_REMOVE(bucket, ub_link); 797 ZONE_UNLOCK(zone); 798 bucket_drain(zone, bucket); 799 bucket_free(zone, bucket, NULL); 800 ZONE_LOCK(zone); 801 } 802 803 /* 804 * Shrink further bucket sizes. Price of single zone lock collision 805 * is probably lower then price of global cache drain. 806 */ 807 if (zone->uz_count > zone->uz_count_min) 808 zone->uz_count--; 809 } 810 811 static void 812 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 813 { 814 uint8_t *mem; 815 int i; 816 uint8_t flags; 817 818 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 819 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 820 821 mem = slab->us_data; 822 flags = slab->us_flags; 823 i = start; 824 if (keg->uk_fini != NULL) { 825 for (i--; i > -1; i--) 826 keg->uk_fini(slab->us_data + (keg->uk_rsize * i), 827 keg->uk_size); 828 } 829 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 830 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 831 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 832 } 833 834 /* 835 * Frees pages from a keg back to the system. This is done on demand from 836 * the pageout daemon. 837 * 838 * Returns nothing. 839 */ 840 static void 841 keg_drain(uma_keg_t keg) 842 { 843 struct slabhead freeslabs = { 0 }; 844 uma_slab_t slab, tmp; 845 846 /* 847 * We don't want to take pages from statically allocated kegs at this 848 * time 849 */ 850 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 851 return; 852 853 CTR3(KTR_UMA, "keg_drain %s(%p) free items: %u", 854 keg->uk_name, keg, keg->uk_free); 855 KEG_LOCK(keg); 856 if (keg->uk_free == 0) 857 goto finished; 858 859 LIST_FOREACH_SAFE(slab, &keg->uk_free_slab, us_link, tmp) { 860 /* We have nowhere to free these to. */ 861 if (slab->us_flags & UMA_SLAB_BOOT) 862 continue; 863 864 LIST_REMOVE(slab, us_link); 865 keg->uk_pages -= keg->uk_ppera; 866 keg->uk_free -= keg->uk_ipers; 867 868 if (keg->uk_flags & UMA_ZONE_HASH) 869 UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data); 870 871 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 872 } 873 finished: 874 KEG_UNLOCK(keg); 875 876 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 877 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 878 keg_free_slab(keg, slab, keg->uk_ipers); 879 } 880 } 881 882 static void 883 zone_drain_wait(uma_zone_t zone, int waitok) 884 { 885 886 /* 887 * Set draining to interlock with zone_dtor() so we can release our 888 * locks as we go. Only dtor() should do a WAITOK call since it 889 * is the only call that knows the structure will still be available 890 * when it wakes up. 891 */ 892 ZONE_LOCK(zone); 893 while (zone->uz_flags & UMA_ZFLAG_DRAINING) { 894 if (waitok == M_NOWAIT) 895 goto out; 896 msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1); 897 } 898 zone->uz_flags |= UMA_ZFLAG_DRAINING; 899 bucket_cache_drain(zone); 900 ZONE_UNLOCK(zone); 901 /* 902 * The DRAINING flag protects us from being freed while 903 * we're running. Normally the uma_rwlock would protect us but we 904 * must be able to release and acquire the right lock for each keg. 905 */ 906 zone_foreach_keg(zone, &keg_drain); 907 ZONE_LOCK(zone); 908 zone->uz_flags &= ~UMA_ZFLAG_DRAINING; 909 wakeup(zone); 910 out: 911 ZONE_UNLOCK(zone); 912 } 913 914 void 915 zone_drain(uma_zone_t zone) 916 { 917 918 zone_drain_wait(zone, M_NOWAIT); 919 } 920 921 /* 922 * Allocate a new slab for a keg. This does not insert the slab onto a list. 923 * 924 * Arguments: 925 * wait Shall we wait? 926 * 927 * Returns: 928 * The slab that was allocated or NULL if there is no memory and the 929 * caller specified M_NOWAIT. 930 */ 931 static uma_slab_t 932 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait) 933 { 934 uma_alloc allocf; 935 uma_slab_t slab; 936 uint8_t *mem; 937 uint8_t flags; 938 int i; 939 940 mtx_assert(&keg->uk_lock, MA_OWNED); 941 slab = NULL; 942 mem = NULL; 943 944 allocf = keg->uk_allocf; 945 KEG_UNLOCK(keg); 946 947 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 948 slab = zone_alloc_item(keg->uk_slabzone, NULL, wait); 949 if (slab == NULL) 950 goto out; 951 } 952 953 /* 954 * This reproduces the old vm_zone behavior of zero filling pages the 955 * first time they are added to a zone. 956 * 957 * Malloced items are zeroed in uma_zalloc. 958 */ 959 960 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 961 wait |= M_ZERO; 962 else 963 wait &= ~M_ZERO; 964 965 if (keg->uk_flags & UMA_ZONE_NODUMP) 966 wait |= M_NODUMP; 967 968 /* zone is passed for legacy reasons. */ 969 mem = allocf(zone, keg->uk_ppera * PAGE_SIZE, &flags, wait); 970 if (mem == NULL) { 971 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 972 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 973 slab = NULL; 974 goto out; 975 } 976 977 /* Point the slab into the allocated memory */ 978 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 979 slab = (uma_slab_t )(mem + keg->uk_pgoff); 980 981 if (keg->uk_flags & UMA_ZONE_VTOSLAB) 982 for (i = 0; i < keg->uk_ppera; i++) 983 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 984 985 slab->us_keg = keg; 986 slab->us_data = mem; 987 slab->us_freecount = keg->uk_ipers; 988 slab->us_flags = flags; 989 BIT_FILL(SLAB_SETSIZE, &slab->us_free); 990 #ifdef INVARIANTS 991 BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree); 992 #endif 993 994 if (keg->uk_init != NULL) { 995 for (i = 0; i < keg->uk_ipers; i++) 996 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 997 keg->uk_size, wait) != 0) 998 break; 999 if (i != keg->uk_ipers) { 1000 keg_free_slab(keg, slab, i); 1001 slab = NULL; 1002 goto out; 1003 } 1004 } 1005 out: 1006 KEG_LOCK(keg); 1007 1008 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1009 slab, keg->uk_name, keg); 1010 1011 if (slab != NULL) { 1012 if (keg->uk_flags & UMA_ZONE_HASH) 1013 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1014 1015 keg->uk_pages += keg->uk_ppera; 1016 keg->uk_free += keg->uk_ipers; 1017 } 1018 1019 return (slab); 1020 } 1021 1022 /* 1023 * This function is intended to be used early on in place of page_alloc() so 1024 * that we may use the boot time page cache to satisfy allocations before 1025 * the VM is ready. 1026 */ 1027 static void * 1028 startup_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait) 1029 { 1030 uma_keg_t keg; 1031 void *mem; 1032 int pages; 1033 1034 keg = zone_first_keg(zone); 1035 pages = howmany(bytes, PAGE_SIZE); 1036 KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n")); 1037 1038 /* 1039 * Check our small startup cache to see if it has pages remaining. 1040 */ 1041 mtx_lock(&uma_boot_pages_mtx); 1042 if (pages <= boot_pages) { 1043 mem = bootmem; 1044 boot_pages -= pages; 1045 bootmem += pages * PAGE_SIZE; 1046 mtx_unlock(&uma_boot_pages_mtx); 1047 *pflag = UMA_SLAB_BOOT; 1048 return (mem); 1049 } 1050 mtx_unlock(&uma_boot_pages_mtx); 1051 if (booted < UMA_STARTUP2) 1052 panic("UMA: Increase vm.boot_pages"); 1053 /* 1054 * Now that we've booted reset these users to their real allocator. 1055 */ 1056 #ifdef UMA_MD_SMALL_ALLOC 1057 keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc; 1058 #else 1059 keg->uk_allocf = page_alloc; 1060 #endif 1061 return keg->uk_allocf(zone, bytes, pflag, wait); 1062 } 1063 1064 /* 1065 * Allocates a number of pages from the system 1066 * 1067 * Arguments: 1068 * bytes The number of bytes requested 1069 * wait Shall we wait? 1070 * 1071 * Returns: 1072 * A pointer to the alloced memory or possibly 1073 * NULL if M_NOWAIT is set. 1074 */ 1075 static void * 1076 page_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait) 1077 { 1078 void *p; /* Returned page */ 1079 1080 *pflag = UMA_SLAB_KMEM; 1081 p = (void *) kmem_malloc(kmem_arena, bytes, wait); 1082 1083 return (p); 1084 } 1085 1086 /* 1087 * Allocates a number of pages from within an object 1088 * 1089 * Arguments: 1090 * bytes The number of bytes requested 1091 * wait Shall we wait? 1092 * 1093 * Returns: 1094 * A pointer to the alloced memory or possibly 1095 * NULL if M_NOWAIT is set. 1096 */ 1097 static void * 1098 noobj_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *flags, int wait) 1099 { 1100 TAILQ_HEAD(, vm_page) alloctail; 1101 u_long npages; 1102 vm_offset_t retkva, zkva; 1103 vm_page_t p, p_next; 1104 uma_keg_t keg; 1105 1106 TAILQ_INIT(&alloctail); 1107 keg = zone_first_keg(zone); 1108 1109 npages = howmany(bytes, PAGE_SIZE); 1110 while (npages > 0) { 1111 p = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT | 1112 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1113 (wait & M_WAITOK) ? VM_ALLOC_WAITOK : VM_ALLOC_NOWAIT); 1114 if (p != NULL) { 1115 /* 1116 * Since the page does not belong to an object, its 1117 * listq is unused. 1118 */ 1119 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1120 npages--; 1121 continue; 1122 } 1123 /* 1124 * Page allocation failed, free intermediate pages and 1125 * exit. 1126 */ 1127 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1128 vm_page_unwire(p, PQ_NONE); 1129 vm_page_free(p); 1130 } 1131 return (NULL); 1132 } 1133 *flags = UMA_SLAB_PRIV; 1134 zkva = keg->uk_kva + 1135 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1136 retkva = zkva; 1137 TAILQ_FOREACH(p, &alloctail, listq) { 1138 pmap_qenter(zkva, &p, 1); 1139 zkva += PAGE_SIZE; 1140 } 1141 1142 return ((void *)retkva); 1143 } 1144 1145 /* 1146 * Frees a number of pages to the system 1147 * 1148 * Arguments: 1149 * mem A pointer to the memory to be freed 1150 * size The size of the memory being freed 1151 * flags The original p->us_flags field 1152 * 1153 * Returns: 1154 * Nothing 1155 */ 1156 static void 1157 page_free(void *mem, vm_size_t size, uint8_t flags) 1158 { 1159 struct vmem *vmem; 1160 1161 if (flags & UMA_SLAB_KMEM) 1162 vmem = kmem_arena; 1163 else if (flags & UMA_SLAB_KERNEL) 1164 vmem = kernel_arena; 1165 else 1166 panic("UMA: page_free used with invalid flags %x", flags); 1167 1168 kmem_free(vmem, (vm_offset_t)mem, size); 1169 } 1170 1171 /* 1172 * Zero fill initializer 1173 * 1174 * Arguments/Returns follow uma_init specifications 1175 */ 1176 static int 1177 zero_init(void *mem, int size, int flags) 1178 { 1179 bzero(mem, size); 1180 return (0); 1181 } 1182 1183 /* 1184 * Finish creating a small uma keg. This calculates ipers, and the keg size. 1185 * 1186 * Arguments 1187 * keg The zone we should initialize 1188 * 1189 * Returns 1190 * Nothing 1191 */ 1192 static void 1193 keg_small_init(uma_keg_t keg) 1194 { 1195 u_int rsize; 1196 u_int memused; 1197 u_int wastedspace; 1198 u_int shsize; 1199 u_int slabsize; 1200 1201 if (keg->uk_flags & UMA_ZONE_PCPU) { 1202 u_int ncpus = (mp_maxid + 1) ? (mp_maxid + 1) : MAXCPU; 1203 1204 slabsize = sizeof(struct pcpu); 1205 keg->uk_ppera = howmany(ncpus * sizeof(struct pcpu), 1206 PAGE_SIZE); 1207 } else { 1208 slabsize = UMA_SLAB_SIZE; 1209 keg->uk_ppera = 1; 1210 } 1211 1212 /* 1213 * Calculate the size of each allocation (rsize) according to 1214 * alignment. If the requested size is smaller than we have 1215 * allocation bits for we round it up. 1216 */ 1217 rsize = keg->uk_size; 1218 if (rsize < slabsize / SLAB_SETSIZE) 1219 rsize = slabsize / SLAB_SETSIZE; 1220 if (rsize & keg->uk_align) 1221 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1222 keg->uk_rsize = rsize; 1223 1224 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 1225 keg->uk_rsize < sizeof(struct pcpu), 1226 ("%s: size %u too large", __func__, keg->uk_rsize)); 1227 1228 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1229 shsize = 0; 1230 else 1231 shsize = sizeof(struct uma_slab); 1232 1233 keg->uk_ipers = (slabsize - shsize) / rsize; 1234 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1235 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1236 1237 memused = keg->uk_ipers * rsize + shsize; 1238 wastedspace = slabsize - memused; 1239 1240 /* 1241 * We can't do OFFPAGE if we're internal or if we've been 1242 * asked to not go to the VM for buckets. If we do this we 1243 * may end up going to the VM for slabs which we do not 1244 * want to do if we're UMA_ZFLAG_CACHEONLY as a result 1245 * of UMA_ZONE_VM, which clearly forbids it. 1246 */ 1247 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1248 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1249 return; 1250 1251 /* 1252 * See if using an OFFPAGE slab will limit our waste. Only do 1253 * this if it permits more items per-slab. 1254 * 1255 * XXX We could try growing slabsize to limit max waste as well. 1256 * Historically this was not done because the VM could not 1257 * efficiently handle contiguous allocations. 1258 */ 1259 if ((wastedspace >= slabsize / UMA_MAX_WASTE) && 1260 (keg->uk_ipers < (slabsize / keg->uk_rsize))) { 1261 keg->uk_ipers = slabsize / keg->uk_rsize; 1262 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1263 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1264 CTR6(KTR_UMA, "UMA decided we need offpage slab headers for " 1265 "keg: %s(%p), calculated wastedspace = %d, " 1266 "maximum wasted space allowed = %d, " 1267 "calculated ipers = %d, " 1268 "new wasted space = %d\n", keg->uk_name, keg, wastedspace, 1269 slabsize / UMA_MAX_WASTE, keg->uk_ipers, 1270 slabsize - keg->uk_ipers * keg->uk_rsize); 1271 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1272 } 1273 1274 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1275 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1276 keg->uk_flags |= UMA_ZONE_HASH; 1277 } 1278 1279 /* 1280 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do 1281 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1282 * more complicated. 1283 * 1284 * Arguments 1285 * keg The keg we should initialize 1286 * 1287 * Returns 1288 * Nothing 1289 */ 1290 static void 1291 keg_large_init(uma_keg_t keg) 1292 { 1293 u_int shsize; 1294 1295 KASSERT(keg != NULL, ("Keg is null in keg_large_init")); 1296 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0, 1297 ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg")); 1298 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1299 ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__)); 1300 1301 keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE); 1302 keg->uk_ipers = 1; 1303 keg->uk_rsize = keg->uk_size; 1304 1305 /* Check whether we have enough space to not do OFFPAGE. */ 1306 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) { 1307 shsize = sizeof(struct uma_slab); 1308 if (shsize & UMA_ALIGN_PTR) 1309 shsize = (shsize & ~UMA_ALIGN_PTR) + 1310 (UMA_ALIGN_PTR + 1); 1311 1312 if (PAGE_SIZE * keg->uk_ppera - keg->uk_rsize < shsize) { 1313 /* 1314 * We can't do OFFPAGE if we're internal, in which case 1315 * we need an extra page per allocation to contain the 1316 * slab header. 1317 */ 1318 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) == 0) 1319 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1320 else 1321 keg->uk_ppera++; 1322 } 1323 } 1324 1325 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1326 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1327 keg->uk_flags |= UMA_ZONE_HASH; 1328 } 1329 1330 static void 1331 keg_cachespread_init(uma_keg_t keg) 1332 { 1333 int alignsize; 1334 int trailer; 1335 int pages; 1336 int rsize; 1337 1338 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1339 ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__)); 1340 1341 alignsize = keg->uk_align + 1; 1342 rsize = keg->uk_size; 1343 /* 1344 * We want one item to start on every align boundary in a page. To 1345 * do this we will span pages. We will also extend the item by the 1346 * size of align if it is an even multiple of align. Otherwise, it 1347 * would fall on the same boundary every time. 1348 */ 1349 if (rsize & keg->uk_align) 1350 rsize = (rsize & ~keg->uk_align) + alignsize; 1351 if ((rsize & alignsize) == 0) 1352 rsize += alignsize; 1353 trailer = rsize - keg->uk_size; 1354 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE; 1355 pages = MIN(pages, (128 * 1024) / PAGE_SIZE); 1356 keg->uk_rsize = rsize; 1357 keg->uk_ppera = pages; 1358 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize; 1359 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1360 KASSERT(keg->uk_ipers <= SLAB_SETSIZE, 1361 ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__, 1362 keg->uk_ipers)); 1363 } 1364 1365 /* 1366 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1367 * the keg onto the global keg list. 1368 * 1369 * Arguments/Returns follow uma_ctor specifications 1370 * udata Actually uma_kctor_args 1371 */ 1372 static int 1373 keg_ctor(void *mem, int size, void *udata, int flags) 1374 { 1375 struct uma_kctor_args *arg = udata; 1376 uma_keg_t keg = mem; 1377 uma_zone_t zone; 1378 1379 bzero(keg, size); 1380 keg->uk_size = arg->size; 1381 keg->uk_init = arg->uminit; 1382 keg->uk_fini = arg->fini; 1383 keg->uk_align = arg->align; 1384 keg->uk_free = 0; 1385 keg->uk_reserve = 0; 1386 keg->uk_pages = 0; 1387 keg->uk_flags = arg->flags; 1388 keg->uk_slabzone = NULL; 1389 1390 /* 1391 * The master zone is passed to us at keg-creation time. 1392 */ 1393 zone = arg->zone; 1394 keg->uk_name = zone->uz_name; 1395 1396 if (arg->flags & UMA_ZONE_VM) 1397 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1398 1399 if (arg->flags & UMA_ZONE_ZINIT) 1400 keg->uk_init = zero_init; 1401 1402 if (arg->flags & UMA_ZONE_MALLOC) 1403 keg->uk_flags |= UMA_ZONE_VTOSLAB; 1404 1405 if (arg->flags & UMA_ZONE_PCPU) 1406 #ifdef SMP 1407 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1408 #else 1409 keg->uk_flags &= ~UMA_ZONE_PCPU; 1410 #endif 1411 1412 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) { 1413 keg_cachespread_init(keg); 1414 } else { 1415 if (keg->uk_size > (UMA_SLAB_SIZE - sizeof(struct uma_slab))) 1416 keg_large_init(keg); 1417 else 1418 keg_small_init(keg); 1419 } 1420 1421 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1422 keg->uk_slabzone = slabzone; 1423 1424 /* 1425 * If we haven't booted yet we need allocations to go through the 1426 * startup cache until the vm is ready. 1427 */ 1428 if (booted < UMA_STARTUP2) 1429 keg->uk_allocf = startup_alloc; 1430 #ifdef UMA_MD_SMALL_ALLOC 1431 else if (keg->uk_ppera == 1) 1432 keg->uk_allocf = uma_small_alloc; 1433 #endif 1434 else 1435 keg->uk_allocf = page_alloc; 1436 #ifdef UMA_MD_SMALL_ALLOC 1437 if (keg->uk_ppera == 1) 1438 keg->uk_freef = uma_small_free; 1439 else 1440 #endif 1441 keg->uk_freef = page_free; 1442 1443 /* 1444 * Initialize keg's lock 1445 */ 1446 KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS)); 1447 1448 /* 1449 * If we're putting the slab header in the actual page we need to 1450 * figure out where in each page it goes. This calculates a right 1451 * justified offset into the memory on an ALIGN_PTR boundary. 1452 */ 1453 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1454 u_int totsize; 1455 1456 /* Size of the slab struct and free list */ 1457 totsize = sizeof(struct uma_slab); 1458 1459 if (totsize & UMA_ALIGN_PTR) 1460 totsize = (totsize & ~UMA_ALIGN_PTR) + 1461 (UMA_ALIGN_PTR + 1); 1462 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize; 1463 1464 /* 1465 * The only way the following is possible is if with our 1466 * UMA_ALIGN_PTR adjustments we are now bigger than 1467 * UMA_SLAB_SIZE. I haven't checked whether this is 1468 * mathematically possible for all cases, so we make 1469 * sure here anyway. 1470 */ 1471 totsize = keg->uk_pgoff + sizeof(struct uma_slab); 1472 if (totsize > PAGE_SIZE * keg->uk_ppera) { 1473 printf("zone %s ipers %d rsize %d size %d\n", 1474 zone->uz_name, keg->uk_ipers, keg->uk_rsize, 1475 keg->uk_size); 1476 panic("UMA slab won't fit."); 1477 } 1478 } 1479 1480 if (keg->uk_flags & UMA_ZONE_HASH) 1481 hash_alloc(&keg->uk_hash); 1482 1483 CTR5(KTR_UMA, "keg_ctor %p zone %s(%p) out %d free %d\n", 1484 keg, zone->uz_name, zone, 1485 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 1486 keg->uk_free); 1487 1488 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1489 1490 rw_wlock(&uma_rwlock); 1491 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1492 rw_wunlock(&uma_rwlock); 1493 return (0); 1494 } 1495 1496 /* 1497 * Zone header ctor. This initializes all fields, locks, etc. 1498 * 1499 * Arguments/Returns follow uma_ctor specifications 1500 * udata Actually uma_zctor_args 1501 */ 1502 static int 1503 zone_ctor(void *mem, int size, void *udata, int flags) 1504 { 1505 struct uma_zctor_args *arg = udata; 1506 uma_zone_t zone = mem; 1507 uma_zone_t z; 1508 uma_keg_t keg; 1509 1510 bzero(zone, size); 1511 zone->uz_name = arg->name; 1512 zone->uz_ctor = arg->ctor; 1513 zone->uz_dtor = arg->dtor; 1514 zone->uz_slab = zone_fetch_slab; 1515 zone->uz_init = NULL; 1516 zone->uz_fini = NULL; 1517 zone->uz_allocs = 0; 1518 zone->uz_frees = 0; 1519 zone->uz_fails = 0; 1520 zone->uz_sleeps = 0; 1521 zone->uz_count = 0; 1522 zone->uz_count_min = 0; 1523 zone->uz_flags = 0; 1524 zone->uz_warning = NULL; 1525 timevalclear(&zone->uz_ratecheck); 1526 keg = arg->keg; 1527 1528 ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS)); 1529 1530 /* 1531 * This is a pure cache zone, no kegs. 1532 */ 1533 if (arg->import) { 1534 if (arg->flags & UMA_ZONE_VM) 1535 arg->flags |= UMA_ZFLAG_CACHEONLY; 1536 zone->uz_flags = arg->flags; 1537 zone->uz_size = arg->size; 1538 zone->uz_import = arg->import; 1539 zone->uz_release = arg->release; 1540 zone->uz_arg = arg->arg; 1541 zone->uz_lockptr = &zone->uz_lock; 1542 rw_wlock(&uma_rwlock); 1543 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 1544 rw_wunlock(&uma_rwlock); 1545 goto out; 1546 } 1547 1548 /* 1549 * Use the regular zone/keg/slab allocator. 1550 */ 1551 zone->uz_import = (uma_import)zone_import; 1552 zone->uz_release = (uma_release)zone_release; 1553 zone->uz_arg = zone; 1554 1555 if (arg->flags & UMA_ZONE_SECONDARY) { 1556 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 1557 zone->uz_init = arg->uminit; 1558 zone->uz_fini = arg->fini; 1559 zone->uz_lockptr = &keg->uk_lock; 1560 zone->uz_flags |= UMA_ZONE_SECONDARY; 1561 rw_wlock(&uma_rwlock); 1562 ZONE_LOCK(zone); 1563 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 1564 if (LIST_NEXT(z, uz_link) == NULL) { 1565 LIST_INSERT_AFTER(z, zone, uz_link); 1566 break; 1567 } 1568 } 1569 ZONE_UNLOCK(zone); 1570 rw_wunlock(&uma_rwlock); 1571 } else if (keg == NULL) { 1572 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 1573 arg->align, arg->flags)) == NULL) 1574 return (ENOMEM); 1575 } else { 1576 struct uma_kctor_args karg; 1577 int error; 1578 1579 /* We should only be here from uma_startup() */ 1580 karg.size = arg->size; 1581 karg.uminit = arg->uminit; 1582 karg.fini = arg->fini; 1583 karg.align = arg->align; 1584 karg.flags = arg->flags; 1585 karg.zone = zone; 1586 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 1587 flags); 1588 if (error) 1589 return (error); 1590 } 1591 1592 /* 1593 * Link in the first keg. 1594 */ 1595 zone->uz_klink.kl_keg = keg; 1596 LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link); 1597 zone->uz_lockptr = &keg->uk_lock; 1598 zone->uz_size = keg->uk_size; 1599 zone->uz_flags |= (keg->uk_flags & 1600 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 1601 1602 /* 1603 * Some internal zones don't have room allocated for the per cpu 1604 * caches. If we're internal, bail out here. 1605 */ 1606 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { 1607 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 1608 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 1609 return (0); 1610 } 1611 1612 out: 1613 if ((arg->flags & UMA_ZONE_MAXBUCKET) == 0) 1614 zone->uz_count = bucket_select(zone->uz_size); 1615 else 1616 zone->uz_count = BUCKET_MAX; 1617 zone->uz_count_min = zone->uz_count; 1618 1619 return (0); 1620 } 1621 1622 /* 1623 * Keg header dtor. This frees all data, destroys locks, frees the hash 1624 * table and removes the keg from the global list. 1625 * 1626 * Arguments/Returns follow uma_dtor specifications 1627 * udata unused 1628 */ 1629 static void 1630 keg_dtor(void *arg, int size, void *udata) 1631 { 1632 uma_keg_t keg; 1633 1634 keg = (uma_keg_t)arg; 1635 KEG_LOCK(keg); 1636 if (keg->uk_free != 0) { 1637 printf("Freed UMA keg (%s) was not empty (%d items). " 1638 " Lost %d pages of memory.\n", 1639 keg->uk_name ? keg->uk_name : "", 1640 keg->uk_free, keg->uk_pages); 1641 } 1642 KEG_UNLOCK(keg); 1643 1644 hash_free(&keg->uk_hash); 1645 1646 KEG_LOCK_FINI(keg); 1647 } 1648 1649 /* 1650 * Zone header dtor. 1651 * 1652 * Arguments/Returns follow uma_dtor specifications 1653 * udata unused 1654 */ 1655 static void 1656 zone_dtor(void *arg, int size, void *udata) 1657 { 1658 uma_klink_t klink; 1659 uma_zone_t zone; 1660 uma_keg_t keg; 1661 1662 zone = (uma_zone_t)arg; 1663 keg = zone_first_keg(zone); 1664 1665 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 1666 cache_drain(zone); 1667 1668 rw_wlock(&uma_rwlock); 1669 LIST_REMOVE(zone, uz_link); 1670 rw_wunlock(&uma_rwlock); 1671 /* 1672 * XXX there are some races here where 1673 * the zone can be drained but zone lock 1674 * released and then refilled before we 1675 * remove it... we dont care for now 1676 */ 1677 zone_drain_wait(zone, M_WAITOK); 1678 /* 1679 * Unlink all of our kegs. 1680 */ 1681 while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) { 1682 klink->kl_keg = NULL; 1683 LIST_REMOVE(klink, kl_link); 1684 if (klink == &zone->uz_klink) 1685 continue; 1686 free(klink, M_TEMP); 1687 } 1688 /* 1689 * We only destroy kegs from non secondary zones. 1690 */ 1691 if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0) { 1692 rw_wlock(&uma_rwlock); 1693 LIST_REMOVE(keg, uk_link); 1694 rw_wunlock(&uma_rwlock); 1695 zone_free_item(kegs, keg, NULL, SKIP_NONE); 1696 } 1697 ZONE_LOCK_FINI(zone); 1698 } 1699 1700 /* 1701 * Traverses every zone in the system and calls a callback 1702 * 1703 * Arguments: 1704 * zfunc A pointer to a function which accepts a zone 1705 * as an argument. 1706 * 1707 * Returns: 1708 * Nothing 1709 */ 1710 static void 1711 zone_foreach(void (*zfunc)(uma_zone_t)) 1712 { 1713 uma_keg_t keg; 1714 uma_zone_t zone; 1715 1716 rw_rlock(&uma_rwlock); 1717 LIST_FOREACH(keg, &uma_kegs, uk_link) { 1718 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 1719 zfunc(zone); 1720 } 1721 rw_runlock(&uma_rwlock); 1722 } 1723 1724 /* Public functions */ 1725 /* See uma.h */ 1726 void 1727 uma_startup(void *mem, int npages) 1728 { 1729 struct uma_zctor_args args; 1730 1731 rw_init(&uma_rwlock, "UMA lock"); 1732 1733 /* "manually" create the initial zone */ 1734 memset(&args, 0, sizeof(args)); 1735 args.name = "UMA Kegs"; 1736 args.size = sizeof(struct uma_keg); 1737 args.ctor = keg_ctor; 1738 args.dtor = keg_dtor; 1739 args.uminit = zero_init; 1740 args.fini = NULL; 1741 args.keg = &masterkeg; 1742 args.align = 32 - 1; 1743 args.flags = UMA_ZFLAG_INTERNAL; 1744 /* The initial zone has no Per cpu queues so it's smaller */ 1745 zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK); 1746 1747 mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF); 1748 bootmem = mem; 1749 boot_pages = npages; 1750 1751 args.name = "UMA Zones"; 1752 args.size = sizeof(struct uma_zone) + 1753 (sizeof(struct uma_cache) * (mp_maxid + 1)); 1754 args.ctor = zone_ctor; 1755 args.dtor = zone_dtor; 1756 args.uminit = zero_init; 1757 args.fini = NULL; 1758 args.keg = NULL; 1759 args.align = 32 - 1; 1760 args.flags = UMA_ZFLAG_INTERNAL; 1761 /* The initial zone has no Per cpu queues so it's smaller */ 1762 zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK); 1763 1764 /* Now make a zone for slab headers */ 1765 slabzone = uma_zcreate("UMA Slabs", 1766 sizeof(struct uma_slab), 1767 NULL, NULL, NULL, NULL, 1768 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1769 1770 hashzone = uma_zcreate("UMA Hash", 1771 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 1772 NULL, NULL, NULL, NULL, 1773 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1774 1775 bucket_init(); 1776 1777 booted = UMA_STARTUP; 1778 } 1779 1780 /* see uma.h */ 1781 void 1782 uma_startup2(void) 1783 { 1784 booted = UMA_STARTUP2; 1785 bucket_enable(); 1786 sx_init(&uma_drain_lock, "umadrain"); 1787 } 1788 1789 /* 1790 * Initialize our callout handle 1791 * 1792 */ 1793 1794 static void 1795 uma_startup3(void) 1796 { 1797 1798 callout_init(&uma_callout, 1); 1799 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 1800 } 1801 1802 static uma_keg_t 1803 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 1804 int align, uint32_t flags) 1805 { 1806 struct uma_kctor_args args; 1807 1808 args.size = size; 1809 args.uminit = uminit; 1810 args.fini = fini; 1811 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 1812 args.flags = flags; 1813 args.zone = zone; 1814 return (zone_alloc_item(kegs, &args, M_WAITOK)); 1815 } 1816 1817 /* See uma.h */ 1818 void 1819 uma_set_align(int align) 1820 { 1821 1822 if (align != UMA_ALIGN_CACHE) 1823 uma_align_cache = align; 1824 } 1825 1826 /* See uma.h */ 1827 uma_zone_t 1828 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 1829 uma_init uminit, uma_fini fini, int align, uint32_t flags) 1830 1831 { 1832 struct uma_zctor_args args; 1833 uma_zone_t res; 1834 bool locked; 1835 1836 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 1837 align, name)); 1838 1839 /* This stuff is essential for the zone ctor */ 1840 memset(&args, 0, sizeof(args)); 1841 args.name = name; 1842 args.size = size; 1843 args.ctor = ctor; 1844 args.dtor = dtor; 1845 args.uminit = uminit; 1846 args.fini = fini; 1847 #ifdef INVARIANTS 1848 /* 1849 * If a zone is being created with an empty constructor and 1850 * destructor, pass UMA constructor/destructor which checks for 1851 * memory use after free. 1852 */ 1853 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOFREE))) && 1854 ctor == NULL && dtor == NULL && uminit == NULL && fini == NULL) { 1855 args.ctor = trash_ctor; 1856 args.dtor = trash_dtor; 1857 args.uminit = trash_init; 1858 args.fini = trash_fini; 1859 } 1860 #endif 1861 args.align = align; 1862 args.flags = flags; 1863 args.keg = NULL; 1864 1865 if (booted < UMA_STARTUP2) { 1866 locked = false; 1867 } else { 1868 sx_slock(&uma_drain_lock); 1869 locked = true; 1870 } 1871 res = zone_alloc_item(zones, &args, M_WAITOK); 1872 if (locked) 1873 sx_sunlock(&uma_drain_lock); 1874 return (res); 1875 } 1876 1877 /* See uma.h */ 1878 uma_zone_t 1879 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 1880 uma_init zinit, uma_fini zfini, uma_zone_t master) 1881 { 1882 struct uma_zctor_args args; 1883 uma_keg_t keg; 1884 uma_zone_t res; 1885 bool locked; 1886 1887 keg = zone_first_keg(master); 1888 memset(&args, 0, sizeof(args)); 1889 args.name = name; 1890 args.size = keg->uk_size; 1891 args.ctor = ctor; 1892 args.dtor = dtor; 1893 args.uminit = zinit; 1894 args.fini = zfini; 1895 args.align = keg->uk_align; 1896 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 1897 args.keg = keg; 1898 1899 if (booted < UMA_STARTUP2) { 1900 locked = false; 1901 } else { 1902 sx_slock(&uma_drain_lock); 1903 locked = true; 1904 } 1905 /* XXX Attaches only one keg of potentially many. */ 1906 res = zone_alloc_item(zones, &args, M_WAITOK); 1907 if (locked) 1908 sx_sunlock(&uma_drain_lock); 1909 return (res); 1910 } 1911 1912 /* See uma.h */ 1913 uma_zone_t 1914 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor, 1915 uma_init zinit, uma_fini zfini, uma_import zimport, 1916 uma_release zrelease, void *arg, int flags) 1917 { 1918 struct uma_zctor_args args; 1919 1920 memset(&args, 0, sizeof(args)); 1921 args.name = name; 1922 args.size = size; 1923 args.ctor = ctor; 1924 args.dtor = dtor; 1925 args.uminit = zinit; 1926 args.fini = zfini; 1927 args.import = zimport; 1928 args.release = zrelease; 1929 args.arg = arg; 1930 args.align = 0; 1931 args.flags = flags; 1932 1933 return (zone_alloc_item(zones, &args, M_WAITOK)); 1934 } 1935 1936 static void 1937 zone_lock_pair(uma_zone_t a, uma_zone_t b) 1938 { 1939 if (a < b) { 1940 ZONE_LOCK(a); 1941 mtx_lock_flags(b->uz_lockptr, MTX_DUPOK); 1942 } else { 1943 ZONE_LOCK(b); 1944 mtx_lock_flags(a->uz_lockptr, MTX_DUPOK); 1945 } 1946 } 1947 1948 static void 1949 zone_unlock_pair(uma_zone_t a, uma_zone_t b) 1950 { 1951 1952 ZONE_UNLOCK(a); 1953 ZONE_UNLOCK(b); 1954 } 1955 1956 int 1957 uma_zsecond_add(uma_zone_t zone, uma_zone_t master) 1958 { 1959 uma_klink_t klink; 1960 uma_klink_t kl; 1961 int error; 1962 1963 error = 0; 1964 klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO); 1965 1966 zone_lock_pair(zone, master); 1967 /* 1968 * zone must use vtoslab() to resolve objects and must already be 1969 * a secondary. 1970 */ 1971 if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) 1972 != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) { 1973 error = EINVAL; 1974 goto out; 1975 } 1976 /* 1977 * The new master must also use vtoslab(). 1978 */ 1979 if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) { 1980 error = EINVAL; 1981 goto out; 1982 } 1983 1984 /* 1985 * The underlying object must be the same size. rsize 1986 * may be different. 1987 */ 1988 if (master->uz_size != zone->uz_size) { 1989 error = E2BIG; 1990 goto out; 1991 } 1992 /* 1993 * Put it at the end of the list. 1994 */ 1995 klink->kl_keg = zone_first_keg(master); 1996 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) { 1997 if (LIST_NEXT(kl, kl_link) == NULL) { 1998 LIST_INSERT_AFTER(kl, klink, kl_link); 1999 break; 2000 } 2001 } 2002 klink = NULL; 2003 zone->uz_flags |= UMA_ZFLAG_MULTI; 2004 zone->uz_slab = zone_fetch_slab_multi; 2005 2006 out: 2007 zone_unlock_pair(zone, master); 2008 if (klink != NULL) 2009 free(klink, M_TEMP); 2010 2011 return (error); 2012 } 2013 2014 2015 /* See uma.h */ 2016 void 2017 uma_zdestroy(uma_zone_t zone) 2018 { 2019 2020 sx_slock(&uma_drain_lock); 2021 zone_free_item(zones, zone, NULL, SKIP_NONE); 2022 sx_sunlock(&uma_drain_lock); 2023 } 2024 2025 void 2026 uma_zwait(uma_zone_t zone) 2027 { 2028 void *item; 2029 2030 item = uma_zalloc_arg(zone, NULL, M_WAITOK); 2031 uma_zfree(zone, item); 2032 } 2033 2034 /* See uma.h */ 2035 void * 2036 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 2037 { 2038 void *item; 2039 uma_cache_t cache; 2040 uma_bucket_t bucket; 2041 int lockfail; 2042 int cpu; 2043 2044 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2045 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 2046 2047 /* This is the fast path allocation */ 2048 CTR4(KTR_UMA, "uma_zalloc_arg thread %x zone %s(%p) flags %d", 2049 curthread, zone->uz_name, zone, flags); 2050 2051 if (flags & M_WAITOK) { 2052 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2053 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 2054 } 2055 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2056 ("uma_zalloc_arg: called with spinlock or critical section held")); 2057 2058 #ifdef DEBUG_MEMGUARD 2059 if (memguard_cmp_zone(zone)) { 2060 item = memguard_alloc(zone->uz_size, flags); 2061 if (item != NULL) { 2062 if (zone->uz_init != NULL && 2063 zone->uz_init(item, zone->uz_size, flags) != 0) 2064 return (NULL); 2065 if (zone->uz_ctor != NULL && 2066 zone->uz_ctor(item, zone->uz_size, udata, 2067 flags) != 0) { 2068 zone->uz_fini(item, zone->uz_size); 2069 return (NULL); 2070 } 2071 return (item); 2072 } 2073 /* This is unfortunate but should not be fatal. */ 2074 } 2075 #endif 2076 /* 2077 * If possible, allocate from the per-CPU cache. There are two 2078 * requirements for safe access to the per-CPU cache: (1) the thread 2079 * accessing the cache must not be preempted or yield during access, 2080 * and (2) the thread must not migrate CPUs without switching which 2081 * cache it accesses. We rely on a critical section to prevent 2082 * preemption and migration. We release the critical section in 2083 * order to acquire the zone mutex if we are unable to allocate from 2084 * the current cache; when we re-acquire the critical section, we 2085 * must detect and handle migration if it has occurred. 2086 */ 2087 critical_enter(); 2088 cpu = curcpu; 2089 cache = &zone->uz_cpu[cpu]; 2090 2091 zalloc_start: 2092 bucket = cache->uc_allocbucket; 2093 if (bucket != NULL && bucket->ub_cnt > 0) { 2094 bucket->ub_cnt--; 2095 item = bucket->ub_bucket[bucket->ub_cnt]; 2096 #ifdef INVARIANTS 2097 bucket->ub_bucket[bucket->ub_cnt] = NULL; 2098 #endif 2099 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 2100 cache->uc_allocs++; 2101 critical_exit(); 2102 if (zone->uz_ctor != NULL && 2103 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2104 atomic_add_long(&zone->uz_fails, 1); 2105 zone_free_item(zone, item, udata, SKIP_DTOR); 2106 return (NULL); 2107 } 2108 #ifdef INVARIANTS 2109 uma_dbg_alloc(zone, NULL, item); 2110 #endif 2111 if (flags & M_ZERO) 2112 uma_zero_item(item, zone); 2113 return (item); 2114 } 2115 2116 /* 2117 * We have run out of items in our alloc bucket. 2118 * See if we can switch with our free bucket. 2119 */ 2120 bucket = cache->uc_freebucket; 2121 if (bucket != NULL && bucket->ub_cnt > 0) { 2122 CTR2(KTR_UMA, 2123 "uma_zalloc: zone %s(%p) swapping empty with alloc", 2124 zone->uz_name, zone); 2125 cache->uc_freebucket = cache->uc_allocbucket; 2126 cache->uc_allocbucket = bucket; 2127 goto zalloc_start; 2128 } 2129 2130 /* 2131 * Discard any empty allocation bucket while we hold no locks. 2132 */ 2133 bucket = cache->uc_allocbucket; 2134 cache->uc_allocbucket = NULL; 2135 critical_exit(); 2136 if (bucket != NULL) 2137 bucket_free(zone, bucket, udata); 2138 2139 /* Short-circuit for zones without buckets and low memory. */ 2140 if (zone->uz_count == 0 || bucketdisable) 2141 goto zalloc_item; 2142 2143 /* 2144 * Attempt to retrieve the item from the per-CPU cache has failed, so 2145 * we must go back to the zone. This requires the zone lock, so we 2146 * must drop the critical section, then re-acquire it when we go back 2147 * to the cache. Since the critical section is released, we may be 2148 * preempted or migrate. As such, make sure not to maintain any 2149 * thread-local state specific to the cache from prior to releasing 2150 * the critical section. 2151 */ 2152 lockfail = 0; 2153 if (ZONE_TRYLOCK(zone) == 0) { 2154 /* Record contention to size the buckets. */ 2155 ZONE_LOCK(zone); 2156 lockfail = 1; 2157 } 2158 critical_enter(); 2159 cpu = curcpu; 2160 cache = &zone->uz_cpu[cpu]; 2161 2162 /* 2163 * Since we have locked the zone we may as well send back our stats. 2164 */ 2165 atomic_add_long(&zone->uz_allocs, cache->uc_allocs); 2166 atomic_add_long(&zone->uz_frees, cache->uc_frees); 2167 cache->uc_allocs = 0; 2168 cache->uc_frees = 0; 2169 2170 /* See if we lost the race to fill the cache. */ 2171 if (cache->uc_allocbucket != NULL) { 2172 ZONE_UNLOCK(zone); 2173 goto zalloc_start; 2174 } 2175 2176 /* 2177 * Check the zone's cache of buckets. 2178 */ 2179 if ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) { 2180 KASSERT(bucket->ub_cnt != 0, 2181 ("uma_zalloc_arg: Returning an empty bucket.")); 2182 2183 LIST_REMOVE(bucket, ub_link); 2184 cache->uc_allocbucket = bucket; 2185 ZONE_UNLOCK(zone); 2186 goto zalloc_start; 2187 } 2188 /* We are no longer associated with this CPU. */ 2189 critical_exit(); 2190 2191 /* 2192 * We bump the uz count when the cache size is insufficient to 2193 * handle the working set. 2194 */ 2195 if (lockfail && zone->uz_count < BUCKET_MAX) 2196 zone->uz_count++; 2197 ZONE_UNLOCK(zone); 2198 2199 /* 2200 * Now lets just fill a bucket and put it on the free list. If that 2201 * works we'll restart the allocation from the beginning and it 2202 * will use the just filled bucket. 2203 */ 2204 bucket = zone_alloc_bucket(zone, udata, flags); 2205 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 2206 zone->uz_name, zone, bucket); 2207 if (bucket != NULL) { 2208 ZONE_LOCK(zone); 2209 critical_enter(); 2210 cpu = curcpu; 2211 cache = &zone->uz_cpu[cpu]; 2212 /* 2213 * See if we lost the race or were migrated. Cache the 2214 * initialized bucket to make this less likely or claim 2215 * the memory directly. 2216 */ 2217 if (cache->uc_allocbucket == NULL) 2218 cache->uc_allocbucket = bucket; 2219 else 2220 LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link); 2221 ZONE_UNLOCK(zone); 2222 goto zalloc_start; 2223 } 2224 2225 /* 2226 * We may not be able to get a bucket so return an actual item. 2227 */ 2228 zalloc_item: 2229 item = zone_alloc_item(zone, udata, flags); 2230 2231 return (item); 2232 } 2233 2234 static uma_slab_t 2235 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags) 2236 { 2237 uma_slab_t slab; 2238 int reserve; 2239 2240 mtx_assert(&keg->uk_lock, MA_OWNED); 2241 slab = NULL; 2242 reserve = 0; 2243 if ((flags & M_USE_RESERVE) == 0) 2244 reserve = keg->uk_reserve; 2245 2246 for (;;) { 2247 /* 2248 * Find a slab with some space. Prefer slabs that are partially 2249 * used over those that are totally full. This helps to reduce 2250 * fragmentation. 2251 */ 2252 if (keg->uk_free > reserve) { 2253 if (!LIST_EMPTY(&keg->uk_part_slab)) { 2254 slab = LIST_FIRST(&keg->uk_part_slab); 2255 } else { 2256 slab = LIST_FIRST(&keg->uk_free_slab); 2257 LIST_REMOVE(slab, us_link); 2258 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, 2259 us_link); 2260 } 2261 MPASS(slab->us_keg == keg); 2262 return (slab); 2263 } 2264 2265 /* 2266 * M_NOVM means don't ask at all! 2267 */ 2268 if (flags & M_NOVM) 2269 break; 2270 2271 if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) { 2272 keg->uk_flags |= UMA_ZFLAG_FULL; 2273 /* 2274 * If this is not a multi-zone, set the FULL bit. 2275 * Otherwise slab_multi() takes care of it. 2276 */ 2277 if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) { 2278 zone->uz_flags |= UMA_ZFLAG_FULL; 2279 zone_log_warning(zone); 2280 zone_maxaction(zone); 2281 } 2282 if (flags & M_NOWAIT) 2283 break; 2284 zone->uz_sleeps++; 2285 msleep(keg, &keg->uk_lock, PVM, "keglimit", 0); 2286 continue; 2287 } 2288 slab = keg_alloc_slab(keg, zone, flags); 2289 /* 2290 * If we got a slab here it's safe to mark it partially used 2291 * and return. We assume that the caller is going to remove 2292 * at least one item. 2293 */ 2294 if (slab) { 2295 MPASS(slab->us_keg == keg); 2296 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2297 return (slab); 2298 } 2299 /* 2300 * We might not have been able to get a slab but another cpu 2301 * could have while we were unlocked. Check again before we 2302 * fail. 2303 */ 2304 flags |= M_NOVM; 2305 } 2306 return (slab); 2307 } 2308 2309 static uma_slab_t 2310 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags) 2311 { 2312 uma_slab_t slab; 2313 2314 if (keg == NULL) { 2315 keg = zone_first_keg(zone); 2316 KEG_LOCK(keg); 2317 } 2318 2319 for (;;) { 2320 slab = keg_fetch_slab(keg, zone, flags); 2321 if (slab) 2322 return (slab); 2323 if (flags & (M_NOWAIT | M_NOVM)) 2324 break; 2325 } 2326 KEG_UNLOCK(keg); 2327 return (NULL); 2328 } 2329 2330 /* 2331 * uma_zone_fetch_slab_multi: Fetches a slab from one available keg. Returns 2332 * with the keg locked. On NULL no lock is held. 2333 * 2334 * The last pointer is used to seed the search. It is not required. 2335 */ 2336 static uma_slab_t 2337 zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags) 2338 { 2339 uma_klink_t klink; 2340 uma_slab_t slab; 2341 uma_keg_t keg; 2342 int flags; 2343 int empty; 2344 int full; 2345 2346 /* 2347 * Don't wait on the first pass. This will skip limit tests 2348 * as well. We don't want to block if we can find a provider 2349 * without blocking. 2350 */ 2351 flags = (rflags & ~M_WAITOK) | M_NOWAIT; 2352 /* 2353 * Use the last slab allocated as a hint for where to start 2354 * the search. 2355 */ 2356 if (last != NULL) { 2357 slab = keg_fetch_slab(last, zone, flags); 2358 if (slab) 2359 return (slab); 2360 KEG_UNLOCK(last); 2361 } 2362 /* 2363 * Loop until we have a slab incase of transient failures 2364 * while M_WAITOK is specified. I'm not sure this is 100% 2365 * required but we've done it for so long now. 2366 */ 2367 for (;;) { 2368 empty = 0; 2369 full = 0; 2370 /* 2371 * Search the available kegs for slabs. Be careful to hold the 2372 * correct lock while calling into the keg layer. 2373 */ 2374 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) { 2375 keg = klink->kl_keg; 2376 KEG_LOCK(keg); 2377 if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) { 2378 slab = keg_fetch_slab(keg, zone, flags); 2379 if (slab) 2380 return (slab); 2381 } 2382 if (keg->uk_flags & UMA_ZFLAG_FULL) 2383 full++; 2384 else 2385 empty++; 2386 KEG_UNLOCK(keg); 2387 } 2388 if (rflags & (M_NOWAIT | M_NOVM)) 2389 break; 2390 flags = rflags; 2391 /* 2392 * All kegs are full. XXX We can't atomically check all kegs 2393 * and sleep so just sleep for a short period and retry. 2394 */ 2395 if (full && !empty) { 2396 ZONE_LOCK(zone); 2397 zone->uz_flags |= UMA_ZFLAG_FULL; 2398 zone->uz_sleeps++; 2399 zone_log_warning(zone); 2400 zone_maxaction(zone); 2401 msleep(zone, zone->uz_lockptr, PVM, 2402 "zonelimit", hz/100); 2403 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2404 ZONE_UNLOCK(zone); 2405 continue; 2406 } 2407 } 2408 return (NULL); 2409 } 2410 2411 static void * 2412 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 2413 { 2414 void *item; 2415 uint8_t freei; 2416 2417 MPASS(keg == slab->us_keg); 2418 mtx_assert(&keg->uk_lock, MA_OWNED); 2419 2420 freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1; 2421 BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free); 2422 item = slab->us_data + (keg->uk_rsize * freei); 2423 slab->us_freecount--; 2424 keg->uk_free--; 2425 2426 /* Move this slab to the full list */ 2427 if (slab->us_freecount == 0) { 2428 LIST_REMOVE(slab, us_link); 2429 LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link); 2430 } 2431 2432 return (item); 2433 } 2434 2435 static int 2436 zone_import(uma_zone_t zone, void **bucket, int max, int flags) 2437 { 2438 uma_slab_t slab; 2439 uma_keg_t keg; 2440 int i; 2441 2442 slab = NULL; 2443 keg = NULL; 2444 /* Try to keep the buckets totally full */ 2445 for (i = 0; i < max; ) { 2446 if ((slab = zone->uz_slab(zone, keg, flags)) == NULL) 2447 break; 2448 keg = slab->us_keg; 2449 while (slab->us_freecount && i < max) { 2450 bucket[i++] = slab_alloc_item(keg, slab); 2451 if (keg->uk_free <= keg->uk_reserve) 2452 break; 2453 } 2454 /* Don't grab more than one slab at a time. */ 2455 flags &= ~M_WAITOK; 2456 flags |= M_NOWAIT; 2457 } 2458 if (slab != NULL) 2459 KEG_UNLOCK(keg); 2460 2461 return i; 2462 } 2463 2464 static uma_bucket_t 2465 zone_alloc_bucket(uma_zone_t zone, void *udata, int flags) 2466 { 2467 uma_bucket_t bucket; 2468 int max; 2469 2470 /* Don't wait for buckets, preserve caller's NOVM setting. */ 2471 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 2472 if (bucket == NULL) 2473 return (NULL); 2474 2475 max = MIN(bucket->ub_entries, zone->uz_count); 2476 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 2477 max, flags); 2478 2479 /* 2480 * Initialize the memory if necessary. 2481 */ 2482 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 2483 int i; 2484 2485 for (i = 0; i < bucket->ub_cnt; i++) 2486 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 2487 flags) != 0) 2488 break; 2489 /* 2490 * If we couldn't initialize the whole bucket, put the 2491 * rest back onto the freelist. 2492 */ 2493 if (i != bucket->ub_cnt) { 2494 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 2495 bucket->ub_cnt - i); 2496 #ifdef INVARIANTS 2497 bzero(&bucket->ub_bucket[i], 2498 sizeof(void *) * (bucket->ub_cnt - i)); 2499 #endif 2500 bucket->ub_cnt = i; 2501 } 2502 } 2503 2504 if (bucket->ub_cnt == 0) { 2505 bucket_free(zone, bucket, udata); 2506 atomic_add_long(&zone->uz_fails, 1); 2507 return (NULL); 2508 } 2509 2510 return (bucket); 2511 } 2512 2513 /* 2514 * Allocates a single item from a zone. 2515 * 2516 * Arguments 2517 * zone The zone to alloc for. 2518 * udata The data to be passed to the constructor. 2519 * flags M_WAITOK, M_NOWAIT, M_ZERO. 2520 * 2521 * Returns 2522 * NULL if there is no memory and M_NOWAIT is set 2523 * An item if successful 2524 */ 2525 2526 static void * 2527 zone_alloc_item(uma_zone_t zone, void *udata, int flags) 2528 { 2529 void *item; 2530 2531 item = NULL; 2532 2533 if (zone->uz_import(zone->uz_arg, &item, 1, flags) != 1) 2534 goto fail; 2535 atomic_add_long(&zone->uz_allocs, 1); 2536 2537 /* 2538 * We have to call both the zone's init (not the keg's init) 2539 * and the zone's ctor. This is because the item is going from 2540 * a keg slab directly to the user, and the user is expecting it 2541 * to be both zone-init'd as well as zone-ctor'd. 2542 */ 2543 if (zone->uz_init != NULL) { 2544 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 2545 zone_free_item(zone, item, udata, SKIP_FINI); 2546 goto fail; 2547 } 2548 } 2549 if (zone->uz_ctor != NULL) { 2550 if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2551 zone_free_item(zone, item, udata, SKIP_DTOR); 2552 goto fail; 2553 } 2554 } 2555 #ifdef INVARIANTS 2556 uma_dbg_alloc(zone, NULL, item); 2557 #endif 2558 if (flags & M_ZERO) 2559 uma_zero_item(item, zone); 2560 2561 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 2562 zone->uz_name, zone); 2563 2564 return (item); 2565 2566 fail: 2567 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 2568 zone->uz_name, zone); 2569 atomic_add_long(&zone->uz_fails, 1); 2570 return (NULL); 2571 } 2572 2573 /* See uma.h */ 2574 void 2575 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 2576 { 2577 uma_cache_t cache; 2578 uma_bucket_t bucket; 2579 int lockfail; 2580 int cpu; 2581 2582 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2583 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 2584 2585 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 2586 zone->uz_name); 2587 2588 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2589 ("uma_zfree_arg: called with spinlock or critical section held")); 2590 2591 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 2592 if (item == NULL) 2593 return; 2594 #ifdef DEBUG_MEMGUARD 2595 if (is_memguard_addr(item)) { 2596 if (zone->uz_dtor != NULL) 2597 zone->uz_dtor(item, zone->uz_size, udata); 2598 if (zone->uz_fini != NULL) 2599 zone->uz_fini(item, zone->uz_size); 2600 memguard_free(item); 2601 return; 2602 } 2603 #endif 2604 #ifdef INVARIANTS 2605 if (zone->uz_flags & UMA_ZONE_MALLOC) 2606 uma_dbg_free(zone, udata, item); 2607 else 2608 uma_dbg_free(zone, NULL, item); 2609 #endif 2610 if (zone->uz_dtor != NULL) 2611 zone->uz_dtor(item, zone->uz_size, udata); 2612 2613 /* 2614 * The race here is acceptable. If we miss it we'll just have to wait 2615 * a little longer for the limits to be reset. 2616 */ 2617 if (zone->uz_flags & UMA_ZFLAG_FULL) 2618 goto zfree_item; 2619 2620 /* 2621 * If possible, free to the per-CPU cache. There are two 2622 * requirements for safe access to the per-CPU cache: (1) the thread 2623 * accessing the cache must not be preempted or yield during access, 2624 * and (2) the thread must not migrate CPUs without switching which 2625 * cache it accesses. We rely on a critical section to prevent 2626 * preemption and migration. We release the critical section in 2627 * order to acquire the zone mutex if we are unable to free to the 2628 * current cache; when we re-acquire the critical section, we must 2629 * detect and handle migration if it has occurred. 2630 */ 2631 zfree_restart: 2632 critical_enter(); 2633 cpu = curcpu; 2634 cache = &zone->uz_cpu[cpu]; 2635 2636 zfree_start: 2637 /* 2638 * Try to free into the allocbucket first to give LIFO ordering 2639 * for cache-hot datastructures. Spill over into the freebucket 2640 * if necessary. Alloc will swap them if one runs dry. 2641 */ 2642 bucket = cache->uc_allocbucket; 2643 if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries) 2644 bucket = cache->uc_freebucket; 2645 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 2646 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 2647 ("uma_zfree: Freeing to non free bucket index.")); 2648 bucket->ub_bucket[bucket->ub_cnt] = item; 2649 bucket->ub_cnt++; 2650 cache->uc_frees++; 2651 critical_exit(); 2652 return; 2653 } 2654 2655 /* 2656 * We must go back the zone, which requires acquiring the zone lock, 2657 * which in turn means we must release and re-acquire the critical 2658 * section. Since the critical section is released, we may be 2659 * preempted or migrate. As such, make sure not to maintain any 2660 * thread-local state specific to the cache from prior to releasing 2661 * the critical section. 2662 */ 2663 critical_exit(); 2664 if (zone->uz_count == 0 || bucketdisable) 2665 goto zfree_item; 2666 2667 lockfail = 0; 2668 if (ZONE_TRYLOCK(zone) == 0) { 2669 /* Record contention to size the buckets. */ 2670 ZONE_LOCK(zone); 2671 lockfail = 1; 2672 } 2673 critical_enter(); 2674 cpu = curcpu; 2675 cache = &zone->uz_cpu[cpu]; 2676 2677 /* 2678 * Since we have locked the zone we may as well send back our stats. 2679 */ 2680 atomic_add_long(&zone->uz_allocs, cache->uc_allocs); 2681 atomic_add_long(&zone->uz_frees, cache->uc_frees); 2682 cache->uc_allocs = 0; 2683 cache->uc_frees = 0; 2684 2685 bucket = cache->uc_freebucket; 2686 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 2687 ZONE_UNLOCK(zone); 2688 goto zfree_start; 2689 } 2690 cache->uc_freebucket = NULL; 2691 /* We are no longer associated with this CPU. */ 2692 critical_exit(); 2693 2694 /* Can we throw this on the zone full list? */ 2695 if (bucket != NULL) { 2696 CTR3(KTR_UMA, 2697 "uma_zfree: zone %s(%p) putting bucket %p on free list", 2698 zone->uz_name, zone, bucket); 2699 /* ub_cnt is pointing to the last free item */ 2700 KASSERT(bucket->ub_cnt != 0, 2701 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n")); 2702 LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link); 2703 } 2704 2705 /* 2706 * We bump the uz count when the cache size is insufficient to 2707 * handle the working set. 2708 */ 2709 if (lockfail && zone->uz_count < BUCKET_MAX) 2710 zone->uz_count++; 2711 ZONE_UNLOCK(zone); 2712 2713 bucket = bucket_alloc(zone, udata, M_NOWAIT); 2714 CTR3(KTR_UMA, "uma_zfree: zone %s(%p) allocated bucket %p", 2715 zone->uz_name, zone, bucket); 2716 if (bucket) { 2717 critical_enter(); 2718 cpu = curcpu; 2719 cache = &zone->uz_cpu[cpu]; 2720 if (cache->uc_freebucket == NULL) { 2721 cache->uc_freebucket = bucket; 2722 goto zfree_start; 2723 } 2724 /* 2725 * We lost the race, start over. We have to drop our 2726 * critical section to free the bucket. 2727 */ 2728 critical_exit(); 2729 bucket_free(zone, bucket, udata); 2730 goto zfree_restart; 2731 } 2732 2733 /* 2734 * If nothing else caught this, we'll just do an internal free. 2735 */ 2736 zfree_item: 2737 zone_free_item(zone, item, udata, SKIP_DTOR); 2738 2739 return; 2740 } 2741 2742 static void 2743 slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item) 2744 { 2745 uint8_t freei; 2746 2747 mtx_assert(&keg->uk_lock, MA_OWNED); 2748 MPASS(keg == slab->us_keg); 2749 2750 /* Do we need to remove from any lists? */ 2751 if (slab->us_freecount+1 == keg->uk_ipers) { 2752 LIST_REMOVE(slab, us_link); 2753 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 2754 } else if (slab->us_freecount == 0) { 2755 LIST_REMOVE(slab, us_link); 2756 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2757 } 2758 2759 /* Slab management. */ 2760 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 2761 BIT_SET(SLAB_SETSIZE, freei, &slab->us_free); 2762 slab->us_freecount++; 2763 2764 /* Keg statistics. */ 2765 keg->uk_free++; 2766 } 2767 2768 static void 2769 zone_release(uma_zone_t zone, void **bucket, int cnt) 2770 { 2771 void *item; 2772 uma_slab_t slab; 2773 uma_keg_t keg; 2774 uint8_t *mem; 2775 int clearfull; 2776 int i; 2777 2778 clearfull = 0; 2779 keg = zone_first_keg(zone); 2780 KEG_LOCK(keg); 2781 for (i = 0; i < cnt; i++) { 2782 item = bucket[i]; 2783 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) { 2784 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 2785 if (zone->uz_flags & UMA_ZONE_HASH) { 2786 slab = hash_sfind(&keg->uk_hash, mem); 2787 } else { 2788 mem += keg->uk_pgoff; 2789 slab = (uma_slab_t)mem; 2790 } 2791 } else { 2792 slab = vtoslab((vm_offset_t)item); 2793 if (slab->us_keg != keg) { 2794 KEG_UNLOCK(keg); 2795 keg = slab->us_keg; 2796 KEG_LOCK(keg); 2797 } 2798 } 2799 slab_free_item(keg, slab, item); 2800 if (keg->uk_flags & UMA_ZFLAG_FULL) { 2801 if (keg->uk_pages < keg->uk_maxpages) { 2802 keg->uk_flags &= ~UMA_ZFLAG_FULL; 2803 clearfull = 1; 2804 } 2805 2806 /* 2807 * We can handle one more allocation. Since we're 2808 * clearing ZFLAG_FULL, wake up all procs blocked 2809 * on pages. This should be uncommon, so keeping this 2810 * simple for now (rather than adding count of blocked 2811 * threads etc). 2812 */ 2813 wakeup(keg); 2814 } 2815 } 2816 KEG_UNLOCK(keg); 2817 if (clearfull) { 2818 ZONE_LOCK(zone); 2819 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2820 wakeup(zone); 2821 ZONE_UNLOCK(zone); 2822 } 2823 2824 } 2825 2826 /* 2827 * Frees a single item to any zone. 2828 * 2829 * Arguments: 2830 * zone The zone to free to 2831 * item The item we're freeing 2832 * udata User supplied data for the dtor 2833 * skip Skip dtors and finis 2834 */ 2835 static void 2836 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 2837 { 2838 2839 #ifdef INVARIANTS 2840 if (skip == SKIP_NONE) { 2841 if (zone->uz_flags & UMA_ZONE_MALLOC) 2842 uma_dbg_free(zone, udata, item); 2843 else 2844 uma_dbg_free(zone, NULL, item); 2845 } 2846 #endif 2847 if (skip < SKIP_DTOR && zone->uz_dtor) 2848 zone->uz_dtor(item, zone->uz_size, udata); 2849 2850 if (skip < SKIP_FINI && zone->uz_fini) 2851 zone->uz_fini(item, zone->uz_size); 2852 2853 atomic_add_long(&zone->uz_frees, 1); 2854 zone->uz_release(zone->uz_arg, &item, 1); 2855 } 2856 2857 /* See uma.h */ 2858 int 2859 uma_zone_set_max(uma_zone_t zone, int nitems) 2860 { 2861 uma_keg_t keg; 2862 2863 keg = zone_first_keg(zone); 2864 if (keg == NULL) 2865 return (0); 2866 KEG_LOCK(keg); 2867 keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera; 2868 if (keg->uk_maxpages * keg->uk_ipers < nitems) 2869 keg->uk_maxpages += keg->uk_ppera; 2870 nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers; 2871 KEG_UNLOCK(keg); 2872 2873 return (nitems); 2874 } 2875 2876 /* See uma.h */ 2877 int 2878 uma_zone_get_max(uma_zone_t zone) 2879 { 2880 int nitems; 2881 uma_keg_t keg; 2882 2883 keg = zone_first_keg(zone); 2884 if (keg == NULL) 2885 return (0); 2886 KEG_LOCK(keg); 2887 nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers; 2888 KEG_UNLOCK(keg); 2889 2890 return (nitems); 2891 } 2892 2893 /* See uma.h */ 2894 void 2895 uma_zone_set_warning(uma_zone_t zone, const char *warning) 2896 { 2897 2898 ZONE_LOCK(zone); 2899 zone->uz_warning = warning; 2900 ZONE_UNLOCK(zone); 2901 } 2902 2903 /* See uma.h */ 2904 void 2905 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 2906 { 2907 2908 ZONE_LOCK(zone); 2909 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 2910 ZONE_UNLOCK(zone); 2911 } 2912 2913 /* See uma.h */ 2914 int 2915 uma_zone_get_cur(uma_zone_t zone) 2916 { 2917 int64_t nitems; 2918 u_int i; 2919 2920 ZONE_LOCK(zone); 2921 nitems = zone->uz_allocs - zone->uz_frees; 2922 CPU_FOREACH(i) { 2923 /* 2924 * See the comment in sysctl_vm_zone_stats() regarding the 2925 * safety of accessing the per-cpu caches. With the zone lock 2926 * held, it is safe, but can potentially result in stale data. 2927 */ 2928 nitems += zone->uz_cpu[i].uc_allocs - 2929 zone->uz_cpu[i].uc_frees; 2930 } 2931 ZONE_UNLOCK(zone); 2932 2933 return (nitems < 0 ? 0 : nitems); 2934 } 2935 2936 /* See uma.h */ 2937 void 2938 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 2939 { 2940 uma_keg_t keg; 2941 2942 keg = zone_first_keg(zone); 2943 KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type")); 2944 KEG_LOCK(keg); 2945 KASSERT(keg->uk_pages == 0, 2946 ("uma_zone_set_init on non-empty keg")); 2947 keg->uk_init = uminit; 2948 KEG_UNLOCK(keg); 2949 } 2950 2951 /* See uma.h */ 2952 void 2953 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 2954 { 2955 uma_keg_t keg; 2956 2957 keg = zone_first_keg(zone); 2958 KASSERT(keg != NULL, ("uma_zone_set_fini: Invalid zone type")); 2959 KEG_LOCK(keg); 2960 KASSERT(keg->uk_pages == 0, 2961 ("uma_zone_set_fini on non-empty keg")); 2962 keg->uk_fini = fini; 2963 KEG_UNLOCK(keg); 2964 } 2965 2966 /* See uma.h */ 2967 void 2968 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 2969 { 2970 2971 ZONE_LOCK(zone); 2972 KASSERT(zone_first_keg(zone)->uk_pages == 0, 2973 ("uma_zone_set_zinit on non-empty keg")); 2974 zone->uz_init = zinit; 2975 ZONE_UNLOCK(zone); 2976 } 2977 2978 /* See uma.h */ 2979 void 2980 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 2981 { 2982 2983 ZONE_LOCK(zone); 2984 KASSERT(zone_first_keg(zone)->uk_pages == 0, 2985 ("uma_zone_set_zfini on non-empty keg")); 2986 zone->uz_fini = zfini; 2987 ZONE_UNLOCK(zone); 2988 } 2989 2990 /* See uma.h */ 2991 /* XXX uk_freef is not actually used with the zone locked */ 2992 void 2993 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 2994 { 2995 uma_keg_t keg; 2996 2997 keg = zone_first_keg(zone); 2998 KASSERT(keg != NULL, ("uma_zone_set_freef: Invalid zone type")); 2999 KEG_LOCK(keg); 3000 keg->uk_freef = freef; 3001 KEG_UNLOCK(keg); 3002 } 3003 3004 /* See uma.h */ 3005 /* XXX uk_allocf is not actually used with the zone locked */ 3006 void 3007 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 3008 { 3009 uma_keg_t keg; 3010 3011 keg = zone_first_keg(zone); 3012 KEG_LOCK(keg); 3013 keg->uk_allocf = allocf; 3014 KEG_UNLOCK(keg); 3015 } 3016 3017 /* See uma.h */ 3018 void 3019 uma_zone_reserve(uma_zone_t zone, int items) 3020 { 3021 uma_keg_t keg; 3022 3023 keg = zone_first_keg(zone); 3024 if (keg == NULL) 3025 return; 3026 KEG_LOCK(keg); 3027 keg->uk_reserve = items; 3028 KEG_UNLOCK(keg); 3029 3030 return; 3031 } 3032 3033 /* See uma.h */ 3034 int 3035 uma_zone_reserve_kva(uma_zone_t zone, int count) 3036 { 3037 uma_keg_t keg; 3038 vm_offset_t kva; 3039 u_int pages; 3040 3041 keg = zone_first_keg(zone); 3042 if (keg == NULL) 3043 return (0); 3044 pages = count / keg->uk_ipers; 3045 3046 if (pages * keg->uk_ipers < count) 3047 pages++; 3048 pages *= keg->uk_ppera; 3049 3050 #ifdef UMA_MD_SMALL_ALLOC 3051 if (keg->uk_ppera > 1) { 3052 #else 3053 if (1) { 3054 #endif 3055 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 3056 if (kva == 0) 3057 return (0); 3058 } else 3059 kva = 0; 3060 KEG_LOCK(keg); 3061 keg->uk_kva = kva; 3062 keg->uk_offset = 0; 3063 keg->uk_maxpages = pages; 3064 #ifdef UMA_MD_SMALL_ALLOC 3065 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 3066 #else 3067 keg->uk_allocf = noobj_alloc; 3068 #endif 3069 keg->uk_flags |= UMA_ZONE_NOFREE; 3070 KEG_UNLOCK(keg); 3071 3072 return (1); 3073 } 3074 3075 /* See uma.h */ 3076 void 3077 uma_prealloc(uma_zone_t zone, int items) 3078 { 3079 int slabs; 3080 uma_slab_t slab; 3081 uma_keg_t keg; 3082 3083 keg = zone_first_keg(zone); 3084 if (keg == NULL) 3085 return; 3086 KEG_LOCK(keg); 3087 slabs = items / keg->uk_ipers; 3088 if (slabs * keg->uk_ipers < items) 3089 slabs++; 3090 while (slabs > 0) { 3091 slab = keg_alloc_slab(keg, zone, M_WAITOK); 3092 if (slab == NULL) 3093 break; 3094 MPASS(slab->us_keg == keg); 3095 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 3096 slabs--; 3097 } 3098 KEG_UNLOCK(keg); 3099 } 3100 3101 /* See uma.h */ 3102 static void 3103 uma_reclaim_locked(bool kmem_danger) 3104 { 3105 3106 CTR0(KTR_UMA, "UMA: vm asked us to release pages!"); 3107 sx_assert(&uma_drain_lock, SA_XLOCKED); 3108 bucket_enable(); 3109 zone_foreach(zone_drain); 3110 if (vm_page_count_min() || kmem_danger) { 3111 cache_drain_safe(NULL); 3112 zone_foreach(zone_drain); 3113 } 3114 /* 3115 * Some slabs may have been freed but this zone will be visited early 3116 * we visit again so that we can free pages that are empty once other 3117 * zones are drained. We have to do the same for buckets. 3118 */ 3119 zone_drain(slabzone); 3120 bucket_zone_drain(); 3121 } 3122 3123 void 3124 uma_reclaim(void) 3125 { 3126 3127 sx_xlock(&uma_drain_lock); 3128 uma_reclaim_locked(false); 3129 sx_xunlock(&uma_drain_lock); 3130 } 3131 3132 static int uma_reclaim_needed; 3133 3134 void 3135 uma_reclaim_wakeup(void) 3136 { 3137 3138 uma_reclaim_needed = 1; 3139 wakeup(&uma_reclaim_needed); 3140 } 3141 3142 void 3143 uma_reclaim_worker(void *arg __unused) 3144 { 3145 3146 sx_xlock(&uma_drain_lock); 3147 for (;;) { 3148 sx_sleep(&uma_reclaim_needed, &uma_drain_lock, PVM, 3149 "umarcl", 0); 3150 if (uma_reclaim_needed) { 3151 uma_reclaim_needed = 0; 3152 sx_xunlock(&uma_drain_lock); 3153 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 3154 sx_xlock(&uma_drain_lock); 3155 uma_reclaim_locked(true); 3156 } 3157 } 3158 } 3159 3160 /* See uma.h */ 3161 int 3162 uma_zone_exhausted(uma_zone_t zone) 3163 { 3164 int full; 3165 3166 ZONE_LOCK(zone); 3167 full = (zone->uz_flags & UMA_ZFLAG_FULL); 3168 ZONE_UNLOCK(zone); 3169 return (full); 3170 } 3171 3172 int 3173 uma_zone_exhausted_nolock(uma_zone_t zone) 3174 { 3175 return (zone->uz_flags & UMA_ZFLAG_FULL); 3176 } 3177 3178 void * 3179 uma_large_malloc(vm_size_t size, int wait) 3180 { 3181 void *mem; 3182 uma_slab_t slab; 3183 uint8_t flags; 3184 3185 slab = zone_alloc_item(slabzone, NULL, wait); 3186 if (slab == NULL) 3187 return (NULL); 3188 mem = page_alloc(NULL, size, &flags, wait); 3189 if (mem) { 3190 vsetslab((vm_offset_t)mem, slab); 3191 slab->us_data = mem; 3192 slab->us_flags = flags | UMA_SLAB_MALLOC; 3193 slab->us_size = size; 3194 } else { 3195 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3196 } 3197 3198 return (mem); 3199 } 3200 3201 void 3202 uma_large_free(uma_slab_t slab) 3203 { 3204 3205 page_free(slab->us_data, slab->us_size, slab->us_flags); 3206 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3207 } 3208 3209 static void 3210 uma_zero_item(void *item, uma_zone_t zone) 3211 { 3212 int i; 3213 3214 if (zone->uz_flags & UMA_ZONE_PCPU) { 3215 CPU_FOREACH(i) 3216 bzero(zpcpu_get_cpu(item, i), zone->uz_size); 3217 } else 3218 bzero(item, zone->uz_size); 3219 } 3220 3221 void 3222 uma_print_stats(void) 3223 { 3224 zone_foreach(uma_print_zone); 3225 } 3226 3227 static void 3228 slab_print(uma_slab_t slab) 3229 { 3230 printf("slab: keg %p, data %p, freecount %d\n", 3231 slab->us_keg, slab->us_data, slab->us_freecount); 3232 } 3233 3234 static void 3235 cache_print(uma_cache_t cache) 3236 { 3237 printf("alloc: %p(%d), free: %p(%d)\n", 3238 cache->uc_allocbucket, 3239 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, 3240 cache->uc_freebucket, 3241 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0); 3242 } 3243 3244 static void 3245 uma_print_keg(uma_keg_t keg) 3246 { 3247 uma_slab_t slab; 3248 3249 printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d " 3250 "out %d free %d limit %d\n", 3251 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags, 3252 keg->uk_ipers, keg->uk_ppera, 3253 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 3254 keg->uk_free, (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers); 3255 printf("Part slabs:\n"); 3256 LIST_FOREACH(slab, &keg->uk_part_slab, us_link) 3257 slab_print(slab); 3258 printf("Free slabs:\n"); 3259 LIST_FOREACH(slab, &keg->uk_free_slab, us_link) 3260 slab_print(slab); 3261 printf("Full slabs:\n"); 3262 LIST_FOREACH(slab, &keg->uk_full_slab, us_link) 3263 slab_print(slab); 3264 } 3265 3266 void 3267 uma_print_zone(uma_zone_t zone) 3268 { 3269 uma_cache_t cache; 3270 uma_klink_t kl; 3271 int i; 3272 3273 printf("zone: %s(%p) size %d flags %#x\n", 3274 zone->uz_name, zone, zone->uz_size, zone->uz_flags); 3275 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) 3276 uma_print_keg(kl->kl_keg); 3277 CPU_FOREACH(i) { 3278 cache = &zone->uz_cpu[i]; 3279 printf("CPU %d Cache:\n", i); 3280 cache_print(cache); 3281 } 3282 } 3283 3284 #ifdef DDB 3285 /* 3286 * Generate statistics across both the zone and its per-cpu cache's. Return 3287 * desired statistics if the pointer is non-NULL for that statistic. 3288 * 3289 * Note: does not update the zone statistics, as it can't safely clear the 3290 * per-CPU cache statistic. 3291 * 3292 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't 3293 * safe from off-CPU; we should modify the caches to track this information 3294 * directly so that we don't have to. 3295 */ 3296 static void 3297 uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp, 3298 uint64_t *freesp, uint64_t *sleepsp) 3299 { 3300 uma_cache_t cache; 3301 uint64_t allocs, frees, sleeps; 3302 int cachefree, cpu; 3303 3304 allocs = frees = sleeps = 0; 3305 cachefree = 0; 3306 CPU_FOREACH(cpu) { 3307 cache = &z->uz_cpu[cpu]; 3308 if (cache->uc_allocbucket != NULL) 3309 cachefree += cache->uc_allocbucket->ub_cnt; 3310 if (cache->uc_freebucket != NULL) 3311 cachefree += cache->uc_freebucket->ub_cnt; 3312 allocs += cache->uc_allocs; 3313 frees += cache->uc_frees; 3314 } 3315 allocs += z->uz_allocs; 3316 frees += z->uz_frees; 3317 sleeps += z->uz_sleeps; 3318 if (cachefreep != NULL) 3319 *cachefreep = cachefree; 3320 if (allocsp != NULL) 3321 *allocsp = allocs; 3322 if (freesp != NULL) 3323 *freesp = frees; 3324 if (sleepsp != NULL) 3325 *sleepsp = sleeps; 3326 } 3327 #endif /* DDB */ 3328 3329 static int 3330 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 3331 { 3332 uma_keg_t kz; 3333 uma_zone_t z; 3334 int count; 3335 3336 count = 0; 3337 rw_rlock(&uma_rwlock); 3338 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3339 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3340 count++; 3341 } 3342 rw_runlock(&uma_rwlock); 3343 return (sysctl_handle_int(oidp, &count, 0, req)); 3344 } 3345 3346 static int 3347 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 3348 { 3349 struct uma_stream_header ush; 3350 struct uma_type_header uth; 3351 struct uma_percpu_stat ups; 3352 uma_bucket_t bucket; 3353 struct sbuf sbuf; 3354 uma_cache_t cache; 3355 uma_klink_t kl; 3356 uma_keg_t kz; 3357 uma_zone_t z; 3358 uma_keg_t k; 3359 int count, error, i; 3360 3361 error = sysctl_wire_old_buffer(req, 0); 3362 if (error != 0) 3363 return (error); 3364 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 3365 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 3366 3367 count = 0; 3368 rw_rlock(&uma_rwlock); 3369 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3370 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3371 count++; 3372 } 3373 3374 /* 3375 * Insert stream header. 3376 */ 3377 bzero(&ush, sizeof(ush)); 3378 ush.ush_version = UMA_STREAM_VERSION; 3379 ush.ush_maxcpus = (mp_maxid + 1); 3380 ush.ush_count = count; 3381 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 3382 3383 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3384 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3385 bzero(&uth, sizeof(uth)); 3386 ZONE_LOCK(z); 3387 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 3388 uth.uth_align = kz->uk_align; 3389 uth.uth_size = kz->uk_size; 3390 uth.uth_rsize = kz->uk_rsize; 3391 LIST_FOREACH(kl, &z->uz_kegs, kl_link) { 3392 k = kl->kl_keg; 3393 uth.uth_maxpages += k->uk_maxpages; 3394 uth.uth_pages += k->uk_pages; 3395 uth.uth_keg_free += k->uk_free; 3396 uth.uth_limit = (k->uk_maxpages / k->uk_ppera) 3397 * k->uk_ipers; 3398 } 3399 3400 /* 3401 * A zone is secondary is it is not the first entry 3402 * on the keg's zone list. 3403 */ 3404 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 3405 (LIST_FIRST(&kz->uk_zones) != z)) 3406 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 3407 3408 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3409 uth.uth_zone_free += bucket->ub_cnt; 3410 uth.uth_allocs = z->uz_allocs; 3411 uth.uth_frees = z->uz_frees; 3412 uth.uth_fails = z->uz_fails; 3413 uth.uth_sleeps = z->uz_sleeps; 3414 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 3415 /* 3416 * While it is not normally safe to access the cache 3417 * bucket pointers while not on the CPU that owns the 3418 * cache, we only allow the pointers to be exchanged 3419 * without the zone lock held, not invalidated, so 3420 * accept the possible race associated with bucket 3421 * exchange during monitoring. 3422 */ 3423 for (i = 0; i < (mp_maxid + 1); i++) { 3424 bzero(&ups, sizeof(ups)); 3425 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) 3426 goto skip; 3427 if (CPU_ABSENT(i)) 3428 goto skip; 3429 cache = &z->uz_cpu[i]; 3430 if (cache->uc_allocbucket != NULL) 3431 ups.ups_cache_free += 3432 cache->uc_allocbucket->ub_cnt; 3433 if (cache->uc_freebucket != NULL) 3434 ups.ups_cache_free += 3435 cache->uc_freebucket->ub_cnt; 3436 ups.ups_allocs = cache->uc_allocs; 3437 ups.ups_frees = cache->uc_frees; 3438 skip: 3439 (void)sbuf_bcat(&sbuf, &ups, sizeof(ups)); 3440 } 3441 ZONE_UNLOCK(z); 3442 } 3443 } 3444 rw_runlock(&uma_rwlock); 3445 error = sbuf_finish(&sbuf); 3446 sbuf_delete(&sbuf); 3447 return (error); 3448 } 3449 3450 int 3451 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 3452 { 3453 uma_zone_t zone = *(uma_zone_t *)arg1; 3454 int error, max; 3455 3456 max = uma_zone_get_max(zone); 3457 error = sysctl_handle_int(oidp, &max, 0, req); 3458 if (error || !req->newptr) 3459 return (error); 3460 3461 uma_zone_set_max(zone, max); 3462 3463 return (0); 3464 } 3465 3466 int 3467 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 3468 { 3469 uma_zone_t zone = *(uma_zone_t *)arg1; 3470 int cur; 3471 3472 cur = uma_zone_get_cur(zone); 3473 return (sysctl_handle_int(oidp, &cur, 0, req)); 3474 } 3475 3476 #ifdef INVARIANTS 3477 static uma_slab_t 3478 uma_dbg_getslab(uma_zone_t zone, void *item) 3479 { 3480 uma_slab_t slab; 3481 uma_keg_t keg; 3482 uint8_t *mem; 3483 3484 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 3485 if (zone->uz_flags & UMA_ZONE_VTOSLAB) { 3486 slab = vtoslab((vm_offset_t)mem); 3487 } else { 3488 /* 3489 * It is safe to return the slab here even though the 3490 * zone is unlocked because the item's allocation state 3491 * essentially holds a reference. 3492 */ 3493 ZONE_LOCK(zone); 3494 keg = LIST_FIRST(&zone->uz_kegs)->kl_keg; 3495 if (keg->uk_flags & UMA_ZONE_HASH) 3496 slab = hash_sfind(&keg->uk_hash, mem); 3497 else 3498 slab = (uma_slab_t)(mem + keg->uk_pgoff); 3499 ZONE_UNLOCK(zone); 3500 } 3501 3502 return (slab); 3503 } 3504 3505 /* 3506 * Set up the slab's freei data such that uma_dbg_free can function. 3507 * 3508 */ 3509 static void 3510 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 3511 { 3512 uma_keg_t keg; 3513 int freei; 3514 3515 if (zone_first_keg(zone) == NULL) 3516 return; 3517 if (slab == NULL) { 3518 slab = uma_dbg_getslab(zone, item); 3519 if (slab == NULL) 3520 panic("uma: item %p did not belong to zone %s\n", 3521 item, zone->uz_name); 3522 } 3523 keg = slab->us_keg; 3524 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3525 3526 if (BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 3527 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n", 3528 item, zone, zone->uz_name, slab, freei); 3529 BIT_SET_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 3530 3531 return; 3532 } 3533 3534 /* 3535 * Verifies freed addresses. Checks for alignment, valid slab membership 3536 * and duplicate frees. 3537 * 3538 */ 3539 static void 3540 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 3541 { 3542 uma_keg_t keg; 3543 int freei; 3544 3545 if (zone_first_keg(zone) == NULL) 3546 return; 3547 if (slab == NULL) { 3548 slab = uma_dbg_getslab(zone, item); 3549 if (slab == NULL) 3550 panic("uma: Freed item %p did not belong to zone %s\n", 3551 item, zone->uz_name); 3552 } 3553 keg = slab->us_keg; 3554 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3555 3556 if (freei >= keg->uk_ipers) 3557 panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n", 3558 item, zone, zone->uz_name, slab, freei); 3559 3560 if (((freei * keg->uk_rsize) + slab->us_data) != item) 3561 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n", 3562 item, zone, zone->uz_name, slab, freei); 3563 3564 if (!BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 3565 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n", 3566 item, zone, zone->uz_name, slab, freei); 3567 3568 BIT_CLR_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 3569 } 3570 #endif /* INVARIANTS */ 3571 3572 #ifdef DDB 3573 DB_SHOW_COMMAND(uma, db_show_uma) 3574 { 3575 uint64_t allocs, frees, sleeps; 3576 uma_bucket_t bucket; 3577 uma_keg_t kz; 3578 uma_zone_t z; 3579 int cachefree; 3580 3581 db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used", 3582 "Free", "Requests", "Sleeps", "Bucket"); 3583 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3584 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3585 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 3586 allocs = z->uz_allocs; 3587 frees = z->uz_frees; 3588 sleeps = z->uz_sleeps; 3589 cachefree = 0; 3590 } else 3591 uma_zone_sumstat(z, &cachefree, &allocs, 3592 &frees, &sleeps); 3593 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 3594 (LIST_FIRST(&kz->uk_zones) != z))) 3595 cachefree += kz->uk_free; 3596 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3597 cachefree += bucket->ub_cnt; 3598 db_printf("%18s %8ju %8jd %8d %12ju %8ju %8u\n", 3599 z->uz_name, (uintmax_t)kz->uk_size, 3600 (intmax_t)(allocs - frees), cachefree, 3601 (uintmax_t)allocs, sleeps, z->uz_count); 3602 if (db_pager_quit) 3603 return; 3604 } 3605 } 3606 } 3607 3608 DB_SHOW_COMMAND(umacache, db_show_umacache) 3609 { 3610 uint64_t allocs, frees; 3611 uma_bucket_t bucket; 3612 uma_zone_t z; 3613 int cachefree; 3614 3615 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 3616 "Requests", "Bucket"); 3617 LIST_FOREACH(z, &uma_cachezones, uz_link) { 3618 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL); 3619 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3620 cachefree += bucket->ub_cnt; 3621 db_printf("%18s %8ju %8jd %8d %12ju %8u\n", 3622 z->uz_name, (uintmax_t)z->uz_size, 3623 (intmax_t)(allocs - frees), cachefree, 3624 (uintmax_t)allocs, z->uz_count); 3625 if (db_pager_quit) 3626 return; 3627 } 3628 } 3629 #endif /* DDB */ 3630