1 /*- 2 * Copyright (c) 2002, 2003, 2004, 2005 Jeffrey Roberson <jeff@FreeBSD.org> 3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 4 * Copyright (c) 2004-2006 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /* 30 * uma_core.c Implementation of the Universal Memory allocator 31 * 32 * This allocator is intended to replace the multitude of similar object caches 33 * in the standard FreeBSD kernel. The intent is to be flexible as well as 34 * effecient. A primary design goal is to return unused memory to the rest of 35 * the system. This will make the system as a whole more flexible due to the 36 * ability to move memory to subsystems which most need it instead of leaving 37 * pools of reserved memory unused. 38 * 39 * The basic ideas stem from similar slab/zone based allocators whose algorithms 40 * are well known. 41 * 42 */ 43 44 /* 45 * TODO: 46 * - Improve memory usage for large allocations 47 * - Investigate cache size adjustments 48 */ 49 50 #include <sys/cdefs.h> 51 __FBSDID("$FreeBSD$"); 52 53 /* I should really use ktr.. */ 54 /* 55 #define UMA_DEBUG 1 56 #define UMA_DEBUG_ALLOC 1 57 #define UMA_DEBUG_ALLOC_1 1 58 */ 59 60 #include "opt_ddb.h" 61 #include "opt_param.h" 62 63 #include <sys/param.h> 64 #include <sys/systm.h> 65 #include <sys/kernel.h> 66 #include <sys/types.h> 67 #include <sys/queue.h> 68 #include <sys/malloc.h> 69 #include <sys/ktr.h> 70 #include <sys/lock.h> 71 #include <sys/sysctl.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/sbuf.h> 75 #include <sys/smp.h> 76 #include <sys/vmmeter.h> 77 78 #include <vm/vm.h> 79 #include <vm/vm_object.h> 80 #include <vm/vm_page.h> 81 #include <vm/vm_param.h> 82 #include <vm/vm_map.h> 83 #include <vm/vm_kern.h> 84 #include <vm/vm_extern.h> 85 #include <vm/uma.h> 86 #include <vm/uma_int.h> 87 #include <vm/uma_dbg.h> 88 89 #include <machine/vmparam.h> 90 91 #include <ddb/ddb.h> 92 93 /* 94 * This is the zone and keg from which all zones are spawned. The idea is that 95 * even the zone & keg heads are allocated from the allocator, so we use the 96 * bss section to bootstrap us. 97 */ 98 static struct uma_keg masterkeg; 99 static struct uma_zone masterzone_k; 100 static struct uma_zone masterzone_z; 101 static uma_zone_t kegs = &masterzone_k; 102 static uma_zone_t zones = &masterzone_z; 103 104 /* This is the zone from which all of uma_slab_t's are allocated. */ 105 static uma_zone_t slabzone; 106 static uma_zone_t slabrefzone; /* With refcounters (for UMA_ZONE_REFCNT) */ 107 108 /* 109 * The initial hash tables come out of this zone so they can be allocated 110 * prior to malloc coming up. 111 */ 112 static uma_zone_t hashzone; 113 114 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 115 116 /* 117 * Are we allowed to allocate buckets? 118 */ 119 static int bucketdisable = 1; 120 121 /* Linked list of all kegs in the system */ 122 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(&uma_kegs); 123 124 /* This mutex protects the keg list */ 125 static struct mtx uma_mtx; 126 127 /* Linked list of boot time pages */ 128 static LIST_HEAD(,uma_slab) uma_boot_pages = 129 LIST_HEAD_INITIALIZER(&uma_boot_pages); 130 131 /* This mutex protects the boot time pages list */ 132 static struct mtx uma_boot_pages_mtx; 133 134 /* Is the VM done starting up? */ 135 static int booted = 0; 136 137 /* Maximum number of allowed items-per-slab if the slab header is OFFPAGE */ 138 static u_int uma_max_ipers; 139 static u_int uma_max_ipers_ref; 140 141 /* 142 * This is the handle used to schedule events that need to happen 143 * outside of the allocation fast path. 144 */ 145 static struct callout uma_callout; 146 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 147 148 /* 149 * This structure is passed as the zone ctor arg so that I don't have to create 150 * a special allocation function just for zones. 151 */ 152 struct uma_zctor_args { 153 char *name; 154 size_t size; 155 uma_ctor ctor; 156 uma_dtor dtor; 157 uma_init uminit; 158 uma_fini fini; 159 uma_keg_t keg; 160 int align; 161 u_int32_t flags; 162 }; 163 164 struct uma_kctor_args { 165 uma_zone_t zone; 166 size_t size; 167 uma_init uminit; 168 uma_fini fini; 169 int align; 170 u_int32_t flags; 171 }; 172 173 struct uma_bucket_zone { 174 uma_zone_t ubz_zone; 175 char *ubz_name; 176 int ubz_entries; 177 }; 178 179 #define BUCKET_MAX 128 180 181 struct uma_bucket_zone bucket_zones[] = { 182 { NULL, "16 Bucket", 16 }, 183 { NULL, "32 Bucket", 32 }, 184 { NULL, "64 Bucket", 64 }, 185 { NULL, "128 Bucket", 128 }, 186 { NULL, NULL, 0} 187 }; 188 189 #define BUCKET_SHIFT 4 190 #define BUCKET_ZONES ((BUCKET_MAX >> BUCKET_SHIFT) + 1) 191 192 /* 193 * bucket_size[] maps requested bucket sizes to zones that allocate a bucket 194 * of approximately the right size. 195 */ 196 static uint8_t bucket_size[BUCKET_ZONES]; 197 198 /* 199 * Flags and enumerations to be passed to internal functions. 200 */ 201 enum zfreeskip { SKIP_NONE, SKIP_DTOR, SKIP_FINI }; 202 203 #define ZFREE_STATFAIL 0x00000001 /* Update zone failure statistic. */ 204 #define ZFREE_STATFREE 0x00000002 /* Update zone free statistic. */ 205 206 /* Prototypes.. */ 207 208 static void *obj_alloc(uma_zone_t, int, u_int8_t *, int); 209 static void *page_alloc(uma_zone_t, int, u_int8_t *, int); 210 static void *startup_alloc(uma_zone_t, int, u_int8_t *, int); 211 static void page_free(void *, int, u_int8_t); 212 static uma_slab_t slab_zalloc(uma_zone_t, int); 213 static void cache_drain(uma_zone_t); 214 static void bucket_drain(uma_zone_t, uma_bucket_t); 215 static void bucket_cache_drain(uma_zone_t zone); 216 static int keg_ctor(void *, int, void *, int); 217 static void keg_dtor(void *, int, void *); 218 static int zone_ctor(void *, int, void *, int); 219 static void zone_dtor(void *, int, void *); 220 static int zero_init(void *, int, int); 221 static void zone_small_init(uma_zone_t zone); 222 static void zone_large_init(uma_zone_t zone); 223 static void zone_foreach(void (*zfunc)(uma_zone_t)); 224 static void zone_timeout(uma_zone_t zone); 225 static int hash_alloc(struct uma_hash *); 226 static int hash_expand(struct uma_hash *, struct uma_hash *); 227 static void hash_free(struct uma_hash *hash); 228 static void uma_timeout(void *); 229 static void uma_startup3(void); 230 static void *uma_zalloc_internal(uma_zone_t, void *, int); 231 static void uma_zfree_internal(uma_zone_t, void *, void *, enum zfreeskip, 232 int); 233 static void bucket_enable(void); 234 static void bucket_init(void); 235 static uma_bucket_t bucket_alloc(int, int); 236 static void bucket_free(uma_bucket_t); 237 static void bucket_zone_drain(void); 238 static int uma_zalloc_bucket(uma_zone_t zone, int flags); 239 static uma_slab_t uma_zone_slab(uma_zone_t zone, int flags); 240 static void *uma_slab_alloc(uma_zone_t zone, uma_slab_t slab); 241 static void zone_drain(uma_zone_t); 242 static uma_zone_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 243 uma_fini fini, int align, u_int32_t flags); 244 245 void uma_print_zone(uma_zone_t); 246 void uma_print_stats(void); 247 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 248 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 249 250 #ifdef WITNESS 251 static int nosleepwithlocks = 1; 252 #else 253 static int nosleepwithlocks = 0; 254 #endif 255 SYSCTL_INT(_debug, OID_AUTO, nosleepwithlocks, CTLFLAG_RW, &nosleepwithlocks, 256 0, "Convert M_WAITOK to M_NOWAIT to avoid lock-held-across-sleep paths"); 257 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 258 259 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 260 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 261 262 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 263 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 264 265 /* 266 * This routine checks to see whether or not it's safe to enable buckets. 267 */ 268 269 static void 270 bucket_enable(void) 271 { 272 if (cnt.v_free_count < cnt.v_free_min) 273 bucketdisable = 1; 274 else 275 bucketdisable = 0; 276 } 277 278 /* 279 * Initialize bucket_zones, the array of zones of buckets of various sizes. 280 * 281 * For each zone, calculate the memory required for each bucket, consisting 282 * of the header and an array of pointers. Initialize bucket_size[] to point 283 * the range of appropriate bucket sizes at the zone. 284 */ 285 static void 286 bucket_init(void) 287 { 288 struct uma_bucket_zone *ubz; 289 int i; 290 int j; 291 292 for (i = 0, j = 0; bucket_zones[j].ubz_entries != 0; j++) { 293 int size; 294 295 ubz = &bucket_zones[j]; 296 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 297 size += sizeof(void *) * ubz->ubz_entries; 298 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 299 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 300 for (; i <= ubz->ubz_entries; i += (1 << BUCKET_SHIFT)) 301 bucket_size[i >> BUCKET_SHIFT] = j; 302 } 303 } 304 305 /* 306 * Given a desired number of entries for a bucket, return the zone from which 307 * to allocate the bucket. 308 */ 309 static struct uma_bucket_zone * 310 bucket_zone_lookup(int entries) 311 { 312 int idx; 313 314 idx = howmany(entries, 1 << BUCKET_SHIFT); 315 return (&bucket_zones[bucket_size[idx]]); 316 } 317 318 static uma_bucket_t 319 bucket_alloc(int entries, int bflags) 320 { 321 struct uma_bucket_zone *ubz; 322 uma_bucket_t bucket; 323 324 /* 325 * This is to stop us from allocating per cpu buckets while we're 326 * running out of vm.boot_pages. Otherwise, we would exhaust the 327 * boot pages. This also prevents us from allocating buckets in 328 * low memory situations. 329 */ 330 if (bucketdisable) 331 return (NULL); 332 333 ubz = bucket_zone_lookup(entries); 334 bucket = uma_zalloc_internal(ubz->ubz_zone, NULL, bflags); 335 if (bucket) { 336 #ifdef INVARIANTS 337 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 338 #endif 339 bucket->ub_cnt = 0; 340 bucket->ub_entries = ubz->ubz_entries; 341 } 342 343 return (bucket); 344 } 345 346 static void 347 bucket_free(uma_bucket_t bucket) 348 { 349 struct uma_bucket_zone *ubz; 350 351 ubz = bucket_zone_lookup(bucket->ub_entries); 352 uma_zfree_internal(ubz->ubz_zone, bucket, NULL, SKIP_NONE, 353 ZFREE_STATFREE); 354 } 355 356 static void 357 bucket_zone_drain(void) 358 { 359 struct uma_bucket_zone *ubz; 360 361 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 362 zone_drain(ubz->ubz_zone); 363 } 364 365 366 /* 367 * Routine called by timeout which is used to fire off some time interval 368 * based calculations. (stats, hash size, etc.) 369 * 370 * Arguments: 371 * arg Unused 372 * 373 * Returns: 374 * Nothing 375 */ 376 static void 377 uma_timeout(void *unused) 378 { 379 bucket_enable(); 380 zone_foreach(zone_timeout); 381 382 /* Reschedule this event */ 383 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 384 } 385 386 /* 387 * Routine to perform timeout driven calculations. This expands the 388 * hashes and does per cpu statistics aggregation. 389 * 390 * Arguments: 391 * zone The zone to operate on 392 * 393 * Returns: 394 * Nothing 395 */ 396 static void 397 zone_timeout(uma_zone_t zone) 398 { 399 uma_keg_t keg; 400 u_int64_t alloc; 401 402 keg = zone->uz_keg; 403 alloc = 0; 404 405 /* 406 * Expand the zone hash table. 407 * 408 * This is done if the number of slabs is larger than the hash size. 409 * What I'm trying to do here is completely reduce collisions. This 410 * may be a little aggressive. Should I allow for two collisions max? 411 */ 412 ZONE_LOCK(zone); 413 if (keg->uk_flags & UMA_ZONE_HASH && 414 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) { 415 struct uma_hash newhash; 416 struct uma_hash oldhash; 417 int ret; 418 419 /* 420 * This is so involved because allocating and freeing 421 * while the zone lock is held will lead to deadlock. 422 * I have to do everything in stages and check for 423 * races. 424 */ 425 newhash = keg->uk_hash; 426 ZONE_UNLOCK(zone); 427 ret = hash_alloc(&newhash); 428 ZONE_LOCK(zone); 429 if (ret) { 430 if (hash_expand(&keg->uk_hash, &newhash)) { 431 oldhash = keg->uk_hash; 432 keg->uk_hash = newhash; 433 } else 434 oldhash = newhash; 435 436 ZONE_UNLOCK(zone); 437 hash_free(&oldhash); 438 ZONE_LOCK(zone); 439 } 440 } 441 ZONE_UNLOCK(zone); 442 } 443 444 /* 445 * Allocate and zero fill the next sized hash table from the appropriate 446 * backing store. 447 * 448 * Arguments: 449 * hash A new hash structure with the old hash size in uh_hashsize 450 * 451 * Returns: 452 * 1 on sucess and 0 on failure. 453 */ 454 static int 455 hash_alloc(struct uma_hash *hash) 456 { 457 int oldsize; 458 int alloc; 459 460 oldsize = hash->uh_hashsize; 461 462 /* We're just going to go to a power of two greater */ 463 if (oldsize) { 464 hash->uh_hashsize = oldsize * 2; 465 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 466 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 467 M_UMAHASH, M_NOWAIT); 468 } else { 469 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 470 hash->uh_slab_hash = uma_zalloc_internal(hashzone, NULL, 471 M_WAITOK); 472 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 473 } 474 if (hash->uh_slab_hash) { 475 bzero(hash->uh_slab_hash, alloc); 476 hash->uh_hashmask = hash->uh_hashsize - 1; 477 return (1); 478 } 479 480 return (0); 481 } 482 483 /* 484 * Expands the hash table for HASH zones. This is done from zone_timeout 485 * to reduce collisions. This must not be done in the regular allocation 486 * path, otherwise, we can recurse on the vm while allocating pages. 487 * 488 * Arguments: 489 * oldhash The hash you want to expand 490 * newhash The hash structure for the new table 491 * 492 * Returns: 493 * Nothing 494 * 495 * Discussion: 496 */ 497 static int 498 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 499 { 500 uma_slab_t slab; 501 int hval; 502 int i; 503 504 if (!newhash->uh_slab_hash) 505 return (0); 506 507 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 508 return (0); 509 510 /* 511 * I need to investigate hash algorithms for resizing without a 512 * full rehash. 513 */ 514 515 for (i = 0; i < oldhash->uh_hashsize; i++) 516 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) { 517 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]); 518 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink); 519 hval = UMA_HASH(newhash, slab->us_data); 520 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 521 slab, us_hlink); 522 } 523 524 return (1); 525 } 526 527 /* 528 * Free the hash bucket to the appropriate backing store. 529 * 530 * Arguments: 531 * slab_hash The hash bucket we're freeing 532 * hashsize The number of entries in that hash bucket 533 * 534 * Returns: 535 * Nothing 536 */ 537 static void 538 hash_free(struct uma_hash *hash) 539 { 540 if (hash->uh_slab_hash == NULL) 541 return; 542 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 543 uma_zfree_internal(hashzone, 544 hash->uh_slab_hash, NULL, SKIP_NONE, ZFREE_STATFREE); 545 else 546 free(hash->uh_slab_hash, M_UMAHASH); 547 } 548 549 /* 550 * Frees all outstanding items in a bucket 551 * 552 * Arguments: 553 * zone The zone to free to, must be unlocked. 554 * bucket The free/alloc bucket with items, cpu queue must be locked. 555 * 556 * Returns: 557 * Nothing 558 */ 559 560 static void 561 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 562 { 563 uma_slab_t slab; 564 int mzone; 565 void *item; 566 567 if (bucket == NULL) 568 return; 569 570 slab = NULL; 571 mzone = 0; 572 573 /* We have to lookup the slab again for malloc.. */ 574 if (zone->uz_keg->uk_flags & UMA_ZONE_MALLOC) 575 mzone = 1; 576 577 while (bucket->ub_cnt > 0) { 578 bucket->ub_cnt--; 579 item = bucket->ub_bucket[bucket->ub_cnt]; 580 #ifdef INVARIANTS 581 bucket->ub_bucket[bucket->ub_cnt] = NULL; 582 KASSERT(item != NULL, 583 ("bucket_drain: botched ptr, item is NULL")); 584 #endif 585 /* 586 * This is extremely inefficient. The slab pointer was passed 587 * to uma_zfree_arg, but we lost it because the buckets don't 588 * hold them. This will go away when free() gets a size passed 589 * to it. 590 */ 591 if (mzone) 592 slab = vtoslab((vm_offset_t)item & (~UMA_SLAB_MASK)); 593 uma_zfree_internal(zone, item, slab, SKIP_DTOR, 0); 594 } 595 } 596 597 /* 598 * Drains the per cpu caches for a zone. 599 * 600 * NOTE: This may only be called while the zone is being turn down, and not 601 * during normal operation. This is necessary in order that we do not have 602 * to migrate CPUs to drain the per-CPU caches. 603 * 604 * Arguments: 605 * zone The zone to drain, must be unlocked. 606 * 607 * Returns: 608 * Nothing 609 */ 610 static void 611 cache_drain(uma_zone_t zone) 612 { 613 uma_cache_t cache; 614 int cpu; 615 616 /* 617 * XXX: It is safe to not lock the per-CPU caches, because we're 618 * tearing down the zone anyway. I.e., there will be no further use 619 * of the caches at this point. 620 * 621 * XXX: It would good to be able to assert that the zone is being 622 * torn down to prevent improper use of cache_drain(). 623 * 624 * XXX: We lock the zone before passing into bucket_cache_drain() as 625 * it is used elsewhere. Should the tear-down path be made special 626 * there in some form? 627 */ 628 for (cpu = 0; cpu <= mp_maxid; cpu++) { 629 if (CPU_ABSENT(cpu)) 630 continue; 631 cache = &zone->uz_cpu[cpu]; 632 bucket_drain(zone, cache->uc_allocbucket); 633 bucket_drain(zone, cache->uc_freebucket); 634 if (cache->uc_allocbucket != NULL) 635 bucket_free(cache->uc_allocbucket); 636 if (cache->uc_freebucket != NULL) 637 bucket_free(cache->uc_freebucket); 638 cache->uc_allocbucket = cache->uc_freebucket = NULL; 639 } 640 ZONE_LOCK(zone); 641 bucket_cache_drain(zone); 642 ZONE_UNLOCK(zone); 643 } 644 645 /* 646 * Drain the cached buckets from a zone. Expects a locked zone on entry. 647 */ 648 static void 649 bucket_cache_drain(uma_zone_t zone) 650 { 651 uma_bucket_t bucket; 652 653 /* 654 * Drain the bucket queues and free the buckets, we just keep two per 655 * cpu (alloc/free). 656 */ 657 while ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) { 658 LIST_REMOVE(bucket, ub_link); 659 ZONE_UNLOCK(zone); 660 bucket_drain(zone, bucket); 661 bucket_free(bucket); 662 ZONE_LOCK(zone); 663 } 664 665 /* Now we do the free queue.. */ 666 while ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) { 667 LIST_REMOVE(bucket, ub_link); 668 bucket_free(bucket); 669 } 670 } 671 672 /* 673 * Frees pages from a zone back to the system. This is done on demand from 674 * the pageout daemon. 675 * 676 * Arguments: 677 * zone The zone to free pages from 678 * all Should we drain all items? 679 * 680 * Returns: 681 * Nothing. 682 */ 683 static void 684 zone_drain(uma_zone_t zone) 685 { 686 struct slabhead freeslabs = { 0 }; 687 uma_keg_t keg; 688 uma_slab_t slab; 689 uma_slab_t n; 690 u_int8_t flags; 691 u_int8_t *mem; 692 int i; 693 694 keg = zone->uz_keg; 695 696 /* 697 * We don't want to take pages from statically allocated zones at this 698 * time 699 */ 700 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 701 return; 702 703 ZONE_LOCK(zone); 704 705 #ifdef UMA_DEBUG 706 printf("%s free items: %u\n", zone->uz_name, keg->uk_free); 707 #endif 708 bucket_cache_drain(zone); 709 if (keg->uk_free == 0) 710 goto finished; 711 712 slab = LIST_FIRST(&keg->uk_free_slab); 713 while (slab) { 714 n = LIST_NEXT(slab, us_link); 715 716 /* We have no where to free these to */ 717 if (slab->us_flags & UMA_SLAB_BOOT) { 718 slab = n; 719 continue; 720 } 721 722 LIST_REMOVE(slab, us_link); 723 keg->uk_pages -= keg->uk_ppera; 724 keg->uk_free -= keg->uk_ipers; 725 726 if (keg->uk_flags & UMA_ZONE_HASH) 727 UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data); 728 729 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 730 731 slab = n; 732 } 733 finished: 734 ZONE_UNLOCK(zone); 735 736 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 737 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 738 if (keg->uk_fini) 739 for (i = 0; i < keg->uk_ipers; i++) 740 keg->uk_fini( 741 slab->us_data + (keg->uk_rsize * i), 742 keg->uk_size); 743 flags = slab->us_flags; 744 mem = slab->us_data; 745 746 if ((keg->uk_flags & UMA_ZONE_MALLOC) || 747 (keg->uk_flags & UMA_ZONE_REFCNT)) { 748 vm_object_t obj; 749 750 if (flags & UMA_SLAB_KMEM) 751 obj = kmem_object; 752 else 753 obj = NULL; 754 for (i = 0; i < keg->uk_ppera; i++) 755 vsetobj((vm_offset_t)mem + (i * PAGE_SIZE), 756 obj); 757 } 758 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 759 uma_zfree_internal(keg->uk_slabzone, slab, NULL, 760 SKIP_NONE, ZFREE_STATFREE); 761 #ifdef UMA_DEBUG 762 printf("%s: Returning %d bytes.\n", 763 zone->uz_name, UMA_SLAB_SIZE * keg->uk_ppera); 764 #endif 765 keg->uk_freef(mem, UMA_SLAB_SIZE * keg->uk_ppera, flags); 766 } 767 } 768 769 /* 770 * Allocate a new slab for a zone. This does not insert the slab onto a list. 771 * 772 * Arguments: 773 * zone The zone to allocate slabs for 774 * wait Shall we wait? 775 * 776 * Returns: 777 * The slab that was allocated or NULL if there is no memory and the 778 * caller specified M_NOWAIT. 779 */ 780 static uma_slab_t 781 slab_zalloc(uma_zone_t zone, int wait) 782 { 783 uma_slabrefcnt_t slabref; 784 uma_slab_t slab; 785 uma_keg_t keg; 786 u_int8_t *mem; 787 u_int8_t flags; 788 int i; 789 790 slab = NULL; 791 keg = zone->uz_keg; 792 793 #ifdef UMA_DEBUG 794 printf("slab_zalloc: Allocating a new slab for %s\n", zone->uz_name); 795 #endif 796 ZONE_UNLOCK(zone); 797 798 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 799 slab = uma_zalloc_internal(keg->uk_slabzone, NULL, wait); 800 if (slab == NULL) { 801 ZONE_LOCK(zone); 802 return NULL; 803 } 804 } 805 806 /* 807 * This reproduces the old vm_zone behavior of zero filling pages the 808 * first time they are added to a zone. 809 * 810 * Malloced items are zeroed in uma_zalloc. 811 */ 812 813 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 814 wait |= M_ZERO; 815 else 816 wait &= ~M_ZERO; 817 818 mem = keg->uk_allocf(zone, keg->uk_ppera * UMA_SLAB_SIZE, 819 &flags, wait); 820 if (mem == NULL) { 821 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 822 uma_zfree_internal(keg->uk_slabzone, slab, NULL, 823 SKIP_NONE, ZFREE_STATFREE); 824 ZONE_LOCK(zone); 825 return (NULL); 826 } 827 828 /* Point the slab into the allocated memory */ 829 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 830 slab = (uma_slab_t )(mem + keg->uk_pgoff); 831 832 if ((keg->uk_flags & UMA_ZONE_MALLOC) || 833 (keg->uk_flags & UMA_ZONE_REFCNT)) 834 for (i = 0; i < keg->uk_ppera; i++) 835 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 836 837 slab->us_keg = keg; 838 slab->us_data = mem; 839 slab->us_freecount = keg->uk_ipers; 840 slab->us_firstfree = 0; 841 slab->us_flags = flags; 842 843 if (keg->uk_flags & UMA_ZONE_REFCNT) { 844 slabref = (uma_slabrefcnt_t)slab; 845 for (i = 0; i < keg->uk_ipers; i++) { 846 slabref->us_freelist[i].us_refcnt = 0; 847 slabref->us_freelist[i].us_item = i+1; 848 } 849 } else { 850 for (i = 0; i < keg->uk_ipers; i++) 851 slab->us_freelist[i].us_item = i+1; 852 } 853 854 if (keg->uk_init != NULL) { 855 for (i = 0; i < keg->uk_ipers; i++) 856 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 857 keg->uk_size, wait) != 0) 858 break; 859 if (i != keg->uk_ipers) { 860 if (keg->uk_fini != NULL) { 861 for (i--; i > -1; i--) 862 keg->uk_fini(slab->us_data + 863 (keg->uk_rsize * i), 864 keg->uk_size); 865 } 866 if ((keg->uk_flags & UMA_ZONE_MALLOC) || 867 (keg->uk_flags & UMA_ZONE_REFCNT)) { 868 vm_object_t obj; 869 870 if (flags & UMA_SLAB_KMEM) 871 obj = kmem_object; 872 else 873 obj = NULL; 874 for (i = 0; i < keg->uk_ppera; i++) 875 vsetobj((vm_offset_t)mem + 876 (i * PAGE_SIZE), obj); 877 } 878 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 879 uma_zfree_internal(keg->uk_slabzone, slab, 880 NULL, SKIP_NONE, ZFREE_STATFREE); 881 keg->uk_freef(mem, UMA_SLAB_SIZE * keg->uk_ppera, 882 flags); 883 ZONE_LOCK(zone); 884 return (NULL); 885 } 886 } 887 ZONE_LOCK(zone); 888 889 if (keg->uk_flags & UMA_ZONE_HASH) 890 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 891 892 keg->uk_pages += keg->uk_ppera; 893 keg->uk_free += keg->uk_ipers; 894 895 return (slab); 896 } 897 898 /* 899 * This function is intended to be used early on in place of page_alloc() so 900 * that we may use the boot time page cache to satisfy allocations before 901 * the VM is ready. 902 */ 903 static void * 904 startup_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait) 905 { 906 uma_keg_t keg; 907 uma_slab_t tmps; 908 909 keg = zone->uz_keg; 910 911 /* 912 * Check our small startup cache to see if it has pages remaining. 913 */ 914 mtx_lock(&uma_boot_pages_mtx); 915 if ((tmps = LIST_FIRST(&uma_boot_pages)) != NULL) { 916 LIST_REMOVE(tmps, us_link); 917 mtx_unlock(&uma_boot_pages_mtx); 918 *pflag = tmps->us_flags; 919 return (tmps->us_data); 920 } 921 mtx_unlock(&uma_boot_pages_mtx); 922 if (booted == 0) 923 panic("UMA: Increase vm.boot_pages"); 924 /* 925 * Now that we've booted reset these users to their real allocator. 926 */ 927 #ifdef UMA_MD_SMALL_ALLOC 928 keg->uk_allocf = uma_small_alloc; 929 #else 930 keg->uk_allocf = page_alloc; 931 #endif 932 return keg->uk_allocf(zone, bytes, pflag, wait); 933 } 934 935 /* 936 * Allocates a number of pages from the system 937 * 938 * Arguments: 939 * zone Unused 940 * bytes The number of bytes requested 941 * wait Shall we wait? 942 * 943 * Returns: 944 * A pointer to the alloced memory or possibly 945 * NULL if M_NOWAIT is set. 946 */ 947 static void * 948 page_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait) 949 { 950 void *p; /* Returned page */ 951 952 *pflag = UMA_SLAB_KMEM; 953 p = (void *) kmem_malloc(kmem_map, bytes, wait); 954 955 return (p); 956 } 957 958 /* 959 * Allocates a number of pages from within an object 960 * 961 * Arguments: 962 * zone Unused 963 * bytes The number of bytes requested 964 * wait Shall we wait? 965 * 966 * Returns: 967 * A pointer to the alloced memory or possibly 968 * NULL if M_NOWAIT is set. 969 */ 970 static void * 971 obj_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait) 972 { 973 vm_object_t object; 974 vm_offset_t retkva, zkva; 975 vm_page_t p; 976 int pages, startpages; 977 978 object = zone->uz_keg->uk_obj; 979 retkva = 0; 980 981 /* 982 * This looks a little weird since we're getting one page at a time. 983 */ 984 VM_OBJECT_LOCK(object); 985 p = TAILQ_LAST(&object->memq, pglist); 986 pages = p != NULL ? p->pindex + 1 : 0; 987 startpages = pages; 988 zkva = zone->uz_keg->uk_kva + pages * PAGE_SIZE; 989 for (; bytes > 0; bytes -= PAGE_SIZE) { 990 p = vm_page_alloc(object, pages, 991 VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED); 992 if (p == NULL) { 993 if (pages != startpages) 994 pmap_qremove(retkva, pages - startpages); 995 while (pages != startpages) { 996 pages--; 997 p = TAILQ_LAST(&object->memq, pglist); 998 vm_page_lock_queues(); 999 vm_page_unwire(p, 0); 1000 vm_page_free(p); 1001 vm_page_unlock_queues(); 1002 } 1003 retkva = 0; 1004 goto done; 1005 } 1006 pmap_qenter(zkva, &p, 1); 1007 if (retkva == 0) 1008 retkva = zkva; 1009 zkva += PAGE_SIZE; 1010 pages += 1; 1011 } 1012 done: 1013 VM_OBJECT_UNLOCK(object); 1014 *flags = UMA_SLAB_PRIV; 1015 1016 return ((void *)retkva); 1017 } 1018 1019 /* 1020 * Frees a number of pages to the system 1021 * 1022 * Arguments: 1023 * mem A pointer to the memory to be freed 1024 * size The size of the memory being freed 1025 * flags The original p->us_flags field 1026 * 1027 * Returns: 1028 * Nothing 1029 */ 1030 static void 1031 page_free(void *mem, int size, u_int8_t flags) 1032 { 1033 vm_map_t map; 1034 1035 if (flags & UMA_SLAB_KMEM) 1036 map = kmem_map; 1037 else 1038 panic("UMA: page_free used with invalid flags %d\n", flags); 1039 1040 kmem_free(map, (vm_offset_t)mem, size); 1041 } 1042 1043 /* 1044 * Zero fill initializer 1045 * 1046 * Arguments/Returns follow uma_init specifications 1047 */ 1048 static int 1049 zero_init(void *mem, int size, int flags) 1050 { 1051 bzero(mem, size); 1052 return (0); 1053 } 1054 1055 /* 1056 * Finish creating a small uma zone. This calculates ipers, and the zone size. 1057 * 1058 * Arguments 1059 * zone The zone we should initialize 1060 * 1061 * Returns 1062 * Nothing 1063 */ 1064 static void 1065 zone_small_init(uma_zone_t zone) 1066 { 1067 uma_keg_t keg; 1068 u_int rsize; 1069 u_int memused; 1070 u_int wastedspace; 1071 u_int shsize; 1072 1073 keg = zone->uz_keg; 1074 KASSERT(keg != NULL, ("Keg is null in zone_small_init")); 1075 rsize = keg->uk_size; 1076 1077 if (rsize < UMA_SMALLEST_UNIT) 1078 rsize = UMA_SMALLEST_UNIT; 1079 if (rsize & keg->uk_align) 1080 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1081 1082 keg->uk_rsize = rsize; 1083 keg->uk_ppera = 1; 1084 1085 if (keg->uk_flags & UMA_ZONE_REFCNT) { 1086 rsize += UMA_FRITMREF_SZ; /* linkage & refcnt */ 1087 shsize = sizeof(struct uma_slab_refcnt); 1088 } else { 1089 rsize += UMA_FRITM_SZ; /* Account for linkage */ 1090 shsize = sizeof(struct uma_slab); 1091 } 1092 1093 keg->uk_ipers = (UMA_SLAB_SIZE - shsize) / rsize; 1094 KASSERT(keg->uk_ipers != 0, ("zone_small_init: ipers is 0")); 1095 memused = keg->uk_ipers * rsize + shsize; 1096 wastedspace = UMA_SLAB_SIZE - memused; 1097 1098 /* 1099 * We can't do OFFPAGE if we're internal or if we've been 1100 * asked to not go to the VM for buckets. If we do this we 1101 * may end up going to the VM (kmem_map) for slabs which we 1102 * do not want to do if we're UMA_ZFLAG_CACHEONLY as a 1103 * result of UMA_ZONE_VM, which clearly forbids it. 1104 */ 1105 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1106 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1107 return; 1108 1109 if ((wastedspace >= UMA_MAX_WASTE) && 1110 (keg->uk_ipers < (UMA_SLAB_SIZE / keg->uk_rsize))) { 1111 keg->uk_ipers = UMA_SLAB_SIZE / keg->uk_rsize; 1112 KASSERT(keg->uk_ipers <= 255, 1113 ("zone_small_init: keg->uk_ipers too high!")); 1114 #ifdef UMA_DEBUG 1115 printf("UMA decided we need offpage slab headers for " 1116 "zone: %s, calculated wastedspace = %d, " 1117 "maximum wasted space allowed = %d, " 1118 "calculated ipers = %d, " 1119 "new wasted space = %d\n", zone->uz_name, wastedspace, 1120 UMA_MAX_WASTE, keg->uk_ipers, 1121 UMA_SLAB_SIZE - keg->uk_ipers * keg->uk_rsize); 1122 #endif 1123 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1124 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1125 keg->uk_flags |= UMA_ZONE_HASH; 1126 } 1127 } 1128 1129 /* 1130 * Finish creating a large (> UMA_SLAB_SIZE) uma zone. Just give in and do 1131 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1132 * more complicated. 1133 * 1134 * Arguments 1135 * zone The zone we should initialize 1136 * 1137 * Returns 1138 * Nothing 1139 */ 1140 static void 1141 zone_large_init(uma_zone_t zone) 1142 { 1143 uma_keg_t keg; 1144 int pages; 1145 1146 keg = zone->uz_keg; 1147 1148 KASSERT(keg != NULL, ("Keg is null in zone_large_init")); 1149 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0, 1150 ("zone_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY zone")); 1151 1152 pages = keg->uk_size / UMA_SLAB_SIZE; 1153 1154 /* Account for remainder */ 1155 if ((pages * UMA_SLAB_SIZE) < keg->uk_size) 1156 pages++; 1157 1158 keg->uk_ppera = pages; 1159 keg->uk_ipers = 1; 1160 1161 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1162 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1163 keg->uk_flags |= UMA_ZONE_HASH; 1164 1165 keg->uk_rsize = keg->uk_size; 1166 } 1167 1168 /* 1169 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1170 * the keg onto the global keg list. 1171 * 1172 * Arguments/Returns follow uma_ctor specifications 1173 * udata Actually uma_kctor_args 1174 */ 1175 static int 1176 keg_ctor(void *mem, int size, void *udata, int flags) 1177 { 1178 struct uma_kctor_args *arg = udata; 1179 uma_keg_t keg = mem; 1180 uma_zone_t zone; 1181 1182 bzero(keg, size); 1183 keg->uk_size = arg->size; 1184 keg->uk_init = arg->uminit; 1185 keg->uk_fini = arg->fini; 1186 keg->uk_align = arg->align; 1187 keg->uk_free = 0; 1188 keg->uk_pages = 0; 1189 keg->uk_flags = arg->flags; 1190 keg->uk_allocf = page_alloc; 1191 keg->uk_freef = page_free; 1192 keg->uk_recurse = 0; 1193 keg->uk_slabzone = NULL; 1194 1195 /* 1196 * The master zone is passed to us at keg-creation time. 1197 */ 1198 zone = arg->zone; 1199 zone->uz_keg = keg; 1200 1201 if (arg->flags & UMA_ZONE_VM) 1202 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1203 1204 if (arg->flags & UMA_ZONE_ZINIT) 1205 keg->uk_init = zero_init; 1206 1207 /* 1208 * The +UMA_FRITM_SZ added to uk_size is to account for the 1209 * linkage that is added to the size in zone_small_init(). If 1210 * we don't account for this here then we may end up in 1211 * zone_small_init() with a calculated 'ipers' of 0. 1212 */ 1213 if (keg->uk_flags & UMA_ZONE_REFCNT) { 1214 if ((keg->uk_size+UMA_FRITMREF_SZ) > 1215 (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt))) 1216 zone_large_init(zone); 1217 else 1218 zone_small_init(zone); 1219 } else { 1220 if ((keg->uk_size+UMA_FRITM_SZ) > 1221 (UMA_SLAB_SIZE - sizeof(struct uma_slab))) 1222 zone_large_init(zone); 1223 else 1224 zone_small_init(zone); 1225 } 1226 1227 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 1228 if (keg->uk_flags & UMA_ZONE_REFCNT) 1229 keg->uk_slabzone = slabrefzone; 1230 else 1231 keg->uk_slabzone = slabzone; 1232 } 1233 1234 /* 1235 * If we haven't booted yet we need allocations to go through the 1236 * startup cache until the vm is ready. 1237 */ 1238 if (keg->uk_ppera == 1) { 1239 #ifdef UMA_MD_SMALL_ALLOC 1240 keg->uk_allocf = uma_small_alloc; 1241 keg->uk_freef = uma_small_free; 1242 #endif 1243 if (booted == 0) 1244 keg->uk_allocf = startup_alloc; 1245 } 1246 1247 /* 1248 * Initialize keg's lock (shared among zones) through 1249 * Master zone 1250 */ 1251 zone->uz_lock = &keg->uk_lock; 1252 if (arg->flags & UMA_ZONE_MTXCLASS) 1253 ZONE_LOCK_INIT(zone, 1); 1254 else 1255 ZONE_LOCK_INIT(zone, 0); 1256 1257 /* 1258 * If we're putting the slab header in the actual page we need to 1259 * figure out where in each page it goes. This calculates a right 1260 * justified offset into the memory on an ALIGN_PTR boundary. 1261 */ 1262 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1263 u_int totsize; 1264 1265 /* Size of the slab struct and free list */ 1266 if (keg->uk_flags & UMA_ZONE_REFCNT) 1267 totsize = sizeof(struct uma_slab_refcnt) + 1268 keg->uk_ipers * UMA_FRITMREF_SZ; 1269 else 1270 totsize = sizeof(struct uma_slab) + 1271 keg->uk_ipers * UMA_FRITM_SZ; 1272 1273 if (totsize & UMA_ALIGN_PTR) 1274 totsize = (totsize & ~UMA_ALIGN_PTR) + 1275 (UMA_ALIGN_PTR + 1); 1276 keg->uk_pgoff = UMA_SLAB_SIZE - totsize; 1277 1278 if (keg->uk_flags & UMA_ZONE_REFCNT) 1279 totsize = keg->uk_pgoff + sizeof(struct uma_slab_refcnt) 1280 + keg->uk_ipers * UMA_FRITMREF_SZ; 1281 else 1282 totsize = keg->uk_pgoff + sizeof(struct uma_slab) 1283 + keg->uk_ipers * UMA_FRITM_SZ; 1284 1285 /* 1286 * The only way the following is possible is if with our 1287 * UMA_ALIGN_PTR adjustments we are now bigger than 1288 * UMA_SLAB_SIZE. I haven't checked whether this is 1289 * mathematically possible for all cases, so we make 1290 * sure here anyway. 1291 */ 1292 if (totsize > UMA_SLAB_SIZE) { 1293 printf("zone %s ipers %d rsize %d size %d\n", 1294 zone->uz_name, keg->uk_ipers, keg->uk_rsize, 1295 keg->uk_size); 1296 panic("UMA slab won't fit.\n"); 1297 } 1298 } 1299 1300 if (keg->uk_flags & UMA_ZONE_HASH) 1301 hash_alloc(&keg->uk_hash); 1302 1303 #ifdef UMA_DEBUG 1304 printf("%s(%p) size = %d ipers = %d ppera = %d pgoff = %d\n", 1305 zone->uz_name, zone, 1306 keg->uk_size, keg->uk_ipers, 1307 keg->uk_ppera, keg->uk_pgoff); 1308 #endif 1309 1310 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1311 1312 mtx_lock(&uma_mtx); 1313 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1314 mtx_unlock(&uma_mtx); 1315 return (0); 1316 } 1317 1318 /* 1319 * Zone header ctor. This initializes all fields, locks, etc. 1320 * 1321 * Arguments/Returns follow uma_ctor specifications 1322 * udata Actually uma_zctor_args 1323 */ 1324 1325 static int 1326 zone_ctor(void *mem, int size, void *udata, int flags) 1327 { 1328 struct uma_zctor_args *arg = udata; 1329 uma_zone_t zone = mem; 1330 uma_zone_t z; 1331 uma_keg_t keg; 1332 1333 bzero(zone, size); 1334 zone->uz_name = arg->name; 1335 zone->uz_ctor = arg->ctor; 1336 zone->uz_dtor = arg->dtor; 1337 zone->uz_init = NULL; 1338 zone->uz_fini = NULL; 1339 zone->uz_allocs = 0; 1340 zone->uz_frees = 0; 1341 zone->uz_fails = 0; 1342 zone->uz_fills = zone->uz_count = 0; 1343 1344 if (arg->flags & UMA_ZONE_SECONDARY) { 1345 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 1346 keg = arg->keg; 1347 zone->uz_keg = keg; 1348 zone->uz_init = arg->uminit; 1349 zone->uz_fini = arg->fini; 1350 zone->uz_lock = &keg->uk_lock; 1351 mtx_lock(&uma_mtx); 1352 ZONE_LOCK(zone); 1353 keg->uk_flags |= UMA_ZONE_SECONDARY; 1354 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 1355 if (LIST_NEXT(z, uz_link) == NULL) { 1356 LIST_INSERT_AFTER(z, zone, uz_link); 1357 break; 1358 } 1359 } 1360 ZONE_UNLOCK(zone); 1361 mtx_unlock(&uma_mtx); 1362 } else if (arg->keg == NULL) { 1363 if (uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 1364 arg->align, arg->flags) == NULL) 1365 return (ENOMEM); 1366 } else { 1367 struct uma_kctor_args karg; 1368 int error; 1369 1370 /* We should only be here from uma_startup() */ 1371 karg.size = arg->size; 1372 karg.uminit = arg->uminit; 1373 karg.fini = arg->fini; 1374 karg.align = arg->align; 1375 karg.flags = arg->flags; 1376 karg.zone = zone; 1377 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 1378 flags); 1379 if (error) 1380 return (error); 1381 } 1382 keg = zone->uz_keg; 1383 zone->uz_lock = &keg->uk_lock; 1384 1385 /* 1386 * Some internal zones don't have room allocated for the per cpu 1387 * caches. If we're internal, bail out here. 1388 */ 1389 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { 1390 KASSERT((keg->uk_flags & UMA_ZONE_SECONDARY) == 0, 1391 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 1392 return (0); 1393 } 1394 1395 if (keg->uk_flags & UMA_ZONE_MAXBUCKET) 1396 zone->uz_count = BUCKET_MAX; 1397 else if (keg->uk_ipers <= BUCKET_MAX) 1398 zone->uz_count = keg->uk_ipers; 1399 else 1400 zone->uz_count = BUCKET_MAX; 1401 return (0); 1402 } 1403 1404 /* 1405 * Keg header dtor. This frees all data, destroys locks, frees the hash 1406 * table and removes the keg from the global list. 1407 * 1408 * Arguments/Returns follow uma_dtor specifications 1409 * udata unused 1410 */ 1411 static void 1412 keg_dtor(void *arg, int size, void *udata) 1413 { 1414 uma_keg_t keg; 1415 1416 keg = (uma_keg_t)arg; 1417 mtx_lock(&keg->uk_lock); 1418 if (keg->uk_free != 0) { 1419 printf("Freed UMA keg was not empty (%d items). " 1420 " Lost %d pages of memory.\n", 1421 keg->uk_free, keg->uk_pages); 1422 } 1423 mtx_unlock(&keg->uk_lock); 1424 1425 if (keg->uk_flags & UMA_ZONE_HASH) 1426 hash_free(&keg->uk_hash); 1427 1428 mtx_destroy(&keg->uk_lock); 1429 } 1430 1431 /* 1432 * Zone header dtor. 1433 * 1434 * Arguments/Returns follow uma_dtor specifications 1435 * udata unused 1436 */ 1437 static void 1438 zone_dtor(void *arg, int size, void *udata) 1439 { 1440 uma_zone_t zone; 1441 uma_keg_t keg; 1442 1443 zone = (uma_zone_t)arg; 1444 keg = zone->uz_keg; 1445 1446 if (!(keg->uk_flags & UMA_ZFLAG_INTERNAL)) 1447 cache_drain(zone); 1448 1449 mtx_lock(&uma_mtx); 1450 zone_drain(zone); 1451 if (keg->uk_flags & UMA_ZONE_SECONDARY) { 1452 LIST_REMOVE(zone, uz_link); 1453 /* 1454 * XXX there are some races here where 1455 * the zone can be drained but zone lock 1456 * released and then refilled before we 1457 * remove it... we dont care for now 1458 */ 1459 ZONE_LOCK(zone); 1460 if (LIST_EMPTY(&keg->uk_zones)) 1461 keg->uk_flags &= ~UMA_ZONE_SECONDARY; 1462 ZONE_UNLOCK(zone); 1463 mtx_unlock(&uma_mtx); 1464 } else { 1465 LIST_REMOVE(keg, uk_link); 1466 LIST_REMOVE(zone, uz_link); 1467 mtx_unlock(&uma_mtx); 1468 uma_zfree_internal(kegs, keg, NULL, SKIP_NONE, 1469 ZFREE_STATFREE); 1470 } 1471 zone->uz_keg = NULL; 1472 } 1473 1474 /* 1475 * Traverses every zone in the system and calls a callback 1476 * 1477 * Arguments: 1478 * zfunc A pointer to a function which accepts a zone 1479 * as an argument. 1480 * 1481 * Returns: 1482 * Nothing 1483 */ 1484 static void 1485 zone_foreach(void (*zfunc)(uma_zone_t)) 1486 { 1487 uma_keg_t keg; 1488 uma_zone_t zone; 1489 1490 mtx_lock(&uma_mtx); 1491 LIST_FOREACH(keg, &uma_kegs, uk_link) { 1492 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 1493 zfunc(zone); 1494 } 1495 mtx_unlock(&uma_mtx); 1496 } 1497 1498 /* Public functions */ 1499 /* See uma.h */ 1500 void 1501 uma_startup(void *bootmem, int boot_pages) 1502 { 1503 struct uma_zctor_args args; 1504 uma_slab_t slab; 1505 u_int slabsize; 1506 u_int objsize, totsize, wsize; 1507 int i; 1508 1509 #ifdef UMA_DEBUG 1510 printf("Creating uma keg headers zone and keg.\n"); 1511 #endif 1512 mtx_init(&uma_mtx, "UMA lock", NULL, MTX_DEF); 1513 1514 /* 1515 * Figure out the maximum number of items-per-slab we'll have if 1516 * we're using the OFFPAGE slab header to track free items, given 1517 * all possible object sizes and the maximum desired wastage 1518 * (UMA_MAX_WASTE). 1519 * 1520 * We iterate until we find an object size for 1521 * which the calculated wastage in zone_small_init() will be 1522 * enough to warrant OFFPAGE. Since wastedspace versus objsize 1523 * is an overall increasing see-saw function, we find the smallest 1524 * objsize such that the wastage is always acceptable for objects 1525 * with that objsize or smaller. Since a smaller objsize always 1526 * generates a larger possible uma_max_ipers, we use this computed 1527 * objsize to calculate the largest ipers possible. Since the 1528 * ipers calculated for OFFPAGE slab headers is always larger than 1529 * the ipers initially calculated in zone_small_init(), we use 1530 * the former's equation (UMA_SLAB_SIZE / keg->uk_rsize) to 1531 * obtain the maximum ipers possible for offpage slab headers. 1532 * 1533 * It should be noted that ipers versus objsize is an inversly 1534 * proportional function which drops off rather quickly so as 1535 * long as our UMA_MAX_WASTE is such that the objsize we calculate 1536 * falls into the portion of the inverse relation AFTER the steep 1537 * falloff, then uma_max_ipers shouldn't be too high (~10 on i386). 1538 * 1539 * Note that we have 8-bits (1 byte) to use as a freelist index 1540 * inside the actual slab header itself and this is enough to 1541 * accomodate us. In the worst case, a UMA_SMALLEST_UNIT sized 1542 * object with offpage slab header would have ipers = 1543 * UMA_SLAB_SIZE / UMA_SMALLEST_UNIT (currently = 256), which is 1544 * 1 greater than what our byte-integer freelist index can 1545 * accomodate, but we know that this situation never occurs as 1546 * for UMA_SMALLEST_UNIT-sized objects, we will never calculate 1547 * that we need to go to offpage slab headers. Or, if we do, 1548 * then we trap that condition below and panic in the INVARIANTS case. 1549 */ 1550 wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab) - UMA_MAX_WASTE; 1551 totsize = wsize; 1552 objsize = UMA_SMALLEST_UNIT; 1553 while (totsize >= wsize) { 1554 totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab)) / 1555 (objsize + UMA_FRITM_SZ); 1556 totsize *= (UMA_FRITM_SZ + objsize); 1557 objsize++; 1558 } 1559 if (objsize > UMA_SMALLEST_UNIT) 1560 objsize--; 1561 uma_max_ipers = UMA_SLAB_SIZE / objsize; 1562 1563 wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt) - UMA_MAX_WASTE; 1564 totsize = wsize; 1565 objsize = UMA_SMALLEST_UNIT; 1566 while (totsize >= wsize) { 1567 totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt)) / 1568 (objsize + UMA_FRITMREF_SZ); 1569 totsize *= (UMA_FRITMREF_SZ + objsize); 1570 objsize++; 1571 } 1572 if (objsize > UMA_SMALLEST_UNIT) 1573 objsize--; 1574 uma_max_ipers_ref = UMA_SLAB_SIZE / objsize; 1575 1576 KASSERT((uma_max_ipers_ref <= 255) && (uma_max_ipers <= 255), 1577 ("uma_startup: calculated uma_max_ipers values too large!")); 1578 1579 #ifdef UMA_DEBUG 1580 printf("Calculated uma_max_ipers (for OFFPAGE) is %d\n", uma_max_ipers); 1581 printf("Calculated uma_max_ipers_slab (for OFFPAGE) is %d\n", 1582 uma_max_ipers_ref); 1583 #endif 1584 1585 /* "manually" create the initial zone */ 1586 args.name = "UMA Kegs"; 1587 args.size = sizeof(struct uma_keg); 1588 args.ctor = keg_ctor; 1589 args.dtor = keg_dtor; 1590 args.uminit = zero_init; 1591 args.fini = NULL; 1592 args.keg = &masterkeg; 1593 args.align = 32 - 1; 1594 args.flags = UMA_ZFLAG_INTERNAL; 1595 /* The initial zone has no Per cpu queues so it's smaller */ 1596 zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK); 1597 1598 #ifdef UMA_DEBUG 1599 printf("Filling boot free list.\n"); 1600 #endif 1601 for (i = 0; i < boot_pages; i++) { 1602 slab = (uma_slab_t)((u_int8_t *)bootmem + (i * UMA_SLAB_SIZE)); 1603 slab->us_data = (u_int8_t *)slab; 1604 slab->us_flags = UMA_SLAB_BOOT; 1605 LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link); 1606 } 1607 mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF); 1608 1609 #ifdef UMA_DEBUG 1610 printf("Creating uma zone headers zone and keg.\n"); 1611 #endif 1612 args.name = "UMA Zones"; 1613 args.size = sizeof(struct uma_zone) + 1614 (sizeof(struct uma_cache) * (mp_maxid + 1)); 1615 args.ctor = zone_ctor; 1616 args.dtor = zone_dtor; 1617 args.uminit = zero_init; 1618 args.fini = NULL; 1619 args.keg = NULL; 1620 args.align = 32 - 1; 1621 args.flags = UMA_ZFLAG_INTERNAL; 1622 /* The initial zone has no Per cpu queues so it's smaller */ 1623 zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK); 1624 1625 #ifdef UMA_DEBUG 1626 printf("Initializing pcpu cache locks.\n"); 1627 #endif 1628 #ifdef UMA_DEBUG 1629 printf("Creating slab and hash zones.\n"); 1630 #endif 1631 1632 /* 1633 * This is the max number of free list items we'll have with 1634 * offpage slabs. 1635 */ 1636 slabsize = uma_max_ipers * UMA_FRITM_SZ; 1637 slabsize += sizeof(struct uma_slab); 1638 1639 /* Now make a zone for slab headers */ 1640 slabzone = uma_zcreate("UMA Slabs", 1641 slabsize, 1642 NULL, NULL, NULL, NULL, 1643 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1644 1645 /* 1646 * We also create a zone for the bigger slabs with reference 1647 * counts in them, to accomodate UMA_ZONE_REFCNT zones. 1648 */ 1649 slabsize = uma_max_ipers_ref * UMA_FRITMREF_SZ; 1650 slabsize += sizeof(struct uma_slab_refcnt); 1651 slabrefzone = uma_zcreate("UMA RCntSlabs", 1652 slabsize, 1653 NULL, NULL, NULL, NULL, 1654 UMA_ALIGN_PTR, 1655 UMA_ZFLAG_INTERNAL); 1656 1657 hashzone = uma_zcreate("UMA Hash", 1658 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 1659 NULL, NULL, NULL, NULL, 1660 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1661 1662 bucket_init(); 1663 1664 #ifdef UMA_MD_SMALL_ALLOC 1665 booted = 1; 1666 #endif 1667 1668 #ifdef UMA_DEBUG 1669 printf("UMA startup complete.\n"); 1670 #endif 1671 } 1672 1673 /* see uma.h */ 1674 void 1675 uma_startup2(void) 1676 { 1677 booted = 1; 1678 bucket_enable(); 1679 #ifdef UMA_DEBUG 1680 printf("UMA startup2 complete.\n"); 1681 #endif 1682 } 1683 1684 /* 1685 * Initialize our callout handle 1686 * 1687 */ 1688 1689 static void 1690 uma_startup3(void) 1691 { 1692 #ifdef UMA_DEBUG 1693 printf("Starting callout.\n"); 1694 #endif 1695 callout_init(&uma_callout, CALLOUT_MPSAFE); 1696 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 1697 #ifdef UMA_DEBUG 1698 printf("UMA startup3 complete.\n"); 1699 #endif 1700 } 1701 1702 static uma_zone_t 1703 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 1704 int align, u_int32_t flags) 1705 { 1706 struct uma_kctor_args args; 1707 1708 args.size = size; 1709 args.uminit = uminit; 1710 args.fini = fini; 1711 args.align = align; 1712 args.flags = flags; 1713 args.zone = zone; 1714 return (uma_zalloc_internal(kegs, &args, M_WAITOK)); 1715 } 1716 1717 /* See uma.h */ 1718 uma_zone_t 1719 uma_zcreate(char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 1720 uma_init uminit, uma_fini fini, int align, u_int32_t flags) 1721 1722 { 1723 struct uma_zctor_args args; 1724 1725 /* This stuff is essential for the zone ctor */ 1726 args.name = name; 1727 args.size = size; 1728 args.ctor = ctor; 1729 args.dtor = dtor; 1730 args.uminit = uminit; 1731 args.fini = fini; 1732 args.align = align; 1733 args.flags = flags; 1734 args.keg = NULL; 1735 1736 return (uma_zalloc_internal(zones, &args, M_WAITOK)); 1737 } 1738 1739 /* See uma.h */ 1740 uma_zone_t 1741 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 1742 uma_init zinit, uma_fini zfini, uma_zone_t master) 1743 { 1744 struct uma_zctor_args args; 1745 1746 args.name = name; 1747 args.size = master->uz_keg->uk_size; 1748 args.ctor = ctor; 1749 args.dtor = dtor; 1750 args.uminit = zinit; 1751 args.fini = zfini; 1752 args.align = master->uz_keg->uk_align; 1753 args.flags = master->uz_keg->uk_flags | UMA_ZONE_SECONDARY; 1754 args.keg = master->uz_keg; 1755 1756 return (uma_zalloc_internal(zones, &args, M_WAITOK)); 1757 } 1758 1759 /* See uma.h */ 1760 void 1761 uma_zdestroy(uma_zone_t zone) 1762 { 1763 1764 uma_zfree_internal(zones, zone, NULL, SKIP_NONE, ZFREE_STATFREE); 1765 } 1766 1767 /* See uma.h */ 1768 void * 1769 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 1770 { 1771 void *item; 1772 uma_cache_t cache; 1773 uma_bucket_t bucket; 1774 int cpu; 1775 int badness; 1776 1777 /* This is the fast path allocation */ 1778 #ifdef UMA_DEBUG_ALLOC_1 1779 printf("Allocating one item from %s(%p)\n", zone->uz_name, zone); 1780 #endif 1781 CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread, 1782 zone->uz_name, flags); 1783 1784 if (!(flags & M_NOWAIT)) { 1785 KASSERT(curthread->td_intr_nesting_level == 0, 1786 ("malloc(M_WAITOK) in interrupt context")); 1787 if (nosleepwithlocks) { 1788 #ifdef WITNESS 1789 badness = WITNESS_CHECK(WARN_GIANTOK | WARN_SLEEPOK, 1790 NULL, 1791 "malloc(M_WAITOK) of \"%s\", forcing M_NOWAIT", 1792 zone->uz_name); 1793 #else 1794 badness = 1; 1795 #endif 1796 } else { 1797 badness = 0; 1798 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 1799 "malloc(M_WAITOK) of \"%s\"", zone->uz_name); 1800 } 1801 if (badness) { 1802 flags &= ~M_WAITOK; 1803 flags |= M_NOWAIT; 1804 } 1805 } 1806 1807 /* 1808 * If possible, allocate from the per-CPU cache. There are two 1809 * requirements for safe access to the per-CPU cache: (1) the thread 1810 * accessing the cache must not be preempted or yield during access, 1811 * and (2) the thread must not migrate CPUs without switching which 1812 * cache it accesses. We rely on a critical section to prevent 1813 * preemption and migration. We release the critical section in 1814 * order to acquire the zone mutex if we are unable to allocate from 1815 * the current cache; when we re-acquire the critical section, we 1816 * must detect and handle migration if it has occurred. 1817 */ 1818 zalloc_restart: 1819 critical_enter(); 1820 cpu = curcpu; 1821 cache = &zone->uz_cpu[cpu]; 1822 1823 zalloc_start: 1824 bucket = cache->uc_allocbucket; 1825 1826 if (bucket) { 1827 if (bucket->ub_cnt > 0) { 1828 bucket->ub_cnt--; 1829 item = bucket->ub_bucket[bucket->ub_cnt]; 1830 #ifdef INVARIANTS 1831 bucket->ub_bucket[bucket->ub_cnt] = NULL; 1832 #endif 1833 KASSERT(item != NULL, 1834 ("uma_zalloc: Bucket pointer mangled.")); 1835 cache->uc_allocs++; 1836 critical_exit(); 1837 #ifdef INVARIANTS 1838 ZONE_LOCK(zone); 1839 uma_dbg_alloc(zone, NULL, item); 1840 ZONE_UNLOCK(zone); 1841 #endif 1842 if (zone->uz_ctor != NULL) { 1843 if (zone->uz_ctor(item, zone->uz_keg->uk_size, 1844 udata, flags) != 0) { 1845 uma_zfree_internal(zone, item, udata, 1846 SKIP_DTOR, ZFREE_STATFAIL | 1847 ZFREE_STATFREE); 1848 return (NULL); 1849 } 1850 } 1851 if (flags & M_ZERO) 1852 bzero(item, zone->uz_keg->uk_size); 1853 return (item); 1854 } else if (cache->uc_freebucket) { 1855 /* 1856 * We have run out of items in our allocbucket. 1857 * See if we can switch with our free bucket. 1858 */ 1859 if (cache->uc_freebucket->ub_cnt > 0) { 1860 #ifdef UMA_DEBUG_ALLOC 1861 printf("uma_zalloc: Swapping empty with" 1862 " alloc.\n"); 1863 #endif 1864 bucket = cache->uc_freebucket; 1865 cache->uc_freebucket = cache->uc_allocbucket; 1866 cache->uc_allocbucket = bucket; 1867 1868 goto zalloc_start; 1869 } 1870 } 1871 } 1872 /* 1873 * Attempt to retrieve the item from the per-CPU cache has failed, so 1874 * we must go back to the zone. This requires the zone lock, so we 1875 * must drop the critical section, then re-acquire it when we go back 1876 * to the cache. Since the critical section is released, we may be 1877 * preempted or migrate. As such, make sure not to maintain any 1878 * thread-local state specific to the cache from prior to releasing 1879 * the critical section. 1880 */ 1881 critical_exit(); 1882 ZONE_LOCK(zone); 1883 critical_enter(); 1884 cpu = curcpu; 1885 cache = &zone->uz_cpu[cpu]; 1886 bucket = cache->uc_allocbucket; 1887 if (bucket != NULL) { 1888 if (bucket->ub_cnt > 0) { 1889 ZONE_UNLOCK(zone); 1890 goto zalloc_start; 1891 } 1892 bucket = cache->uc_freebucket; 1893 if (bucket != NULL && bucket->ub_cnt > 0) { 1894 ZONE_UNLOCK(zone); 1895 goto zalloc_start; 1896 } 1897 } 1898 1899 /* Since we have locked the zone we may as well send back our stats */ 1900 zone->uz_allocs += cache->uc_allocs; 1901 cache->uc_allocs = 0; 1902 zone->uz_frees += cache->uc_frees; 1903 cache->uc_frees = 0; 1904 1905 /* Our old one is now a free bucket */ 1906 if (cache->uc_allocbucket) { 1907 KASSERT(cache->uc_allocbucket->ub_cnt == 0, 1908 ("uma_zalloc_arg: Freeing a non free bucket.")); 1909 LIST_INSERT_HEAD(&zone->uz_free_bucket, 1910 cache->uc_allocbucket, ub_link); 1911 cache->uc_allocbucket = NULL; 1912 } 1913 1914 /* Check the free list for a new alloc bucket */ 1915 if ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) { 1916 KASSERT(bucket->ub_cnt != 0, 1917 ("uma_zalloc_arg: Returning an empty bucket.")); 1918 1919 LIST_REMOVE(bucket, ub_link); 1920 cache->uc_allocbucket = bucket; 1921 ZONE_UNLOCK(zone); 1922 goto zalloc_start; 1923 } 1924 /* We are no longer associated with this CPU. */ 1925 critical_exit(); 1926 1927 /* Bump up our uz_count so we get here less */ 1928 if (zone->uz_count < BUCKET_MAX) 1929 zone->uz_count++; 1930 1931 /* 1932 * Now lets just fill a bucket and put it on the free list. If that 1933 * works we'll restart the allocation from the begining. 1934 */ 1935 if (uma_zalloc_bucket(zone, flags)) { 1936 ZONE_UNLOCK(zone); 1937 goto zalloc_restart; 1938 } 1939 ZONE_UNLOCK(zone); 1940 /* 1941 * We may not be able to get a bucket so return an actual item. 1942 */ 1943 #ifdef UMA_DEBUG 1944 printf("uma_zalloc_arg: Bucketzone returned NULL\n"); 1945 #endif 1946 1947 return (uma_zalloc_internal(zone, udata, flags)); 1948 } 1949 1950 static uma_slab_t 1951 uma_zone_slab(uma_zone_t zone, int flags) 1952 { 1953 uma_slab_t slab; 1954 uma_keg_t keg; 1955 1956 keg = zone->uz_keg; 1957 1958 /* 1959 * This is to prevent us from recursively trying to allocate 1960 * buckets. The problem is that if an allocation forces us to 1961 * grab a new bucket we will call page_alloc, which will go off 1962 * and cause the vm to allocate vm_map_entries. If we need new 1963 * buckets there too we will recurse in kmem_alloc and bad 1964 * things happen. So instead we return a NULL bucket, and make 1965 * the code that allocates buckets smart enough to deal with it 1966 * 1967 * XXX: While we want this protection for the bucket zones so that 1968 * recursion from the VM is handled (and the calling code that 1969 * allocates buckets knows how to deal with it), we do not want 1970 * to prevent allocation from the slab header zones (slabzone 1971 * and slabrefzone) if uk_recurse is not zero for them. The 1972 * reason is that it could lead to NULL being returned for 1973 * slab header allocations even in the M_WAITOK case, and the 1974 * caller can't handle that. 1975 */ 1976 if (keg->uk_flags & UMA_ZFLAG_INTERNAL && keg->uk_recurse != 0) 1977 if ((zone != slabzone) && (zone != slabrefzone)) 1978 return (NULL); 1979 1980 slab = NULL; 1981 1982 for (;;) { 1983 /* 1984 * Find a slab with some space. Prefer slabs that are partially 1985 * used over those that are totally full. This helps to reduce 1986 * fragmentation. 1987 */ 1988 if (keg->uk_free != 0) { 1989 if (!LIST_EMPTY(&keg->uk_part_slab)) { 1990 slab = LIST_FIRST(&keg->uk_part_slab); 1991 } else { 1992 slab = LIST_FIRST(&keg->uk_free_slab); 1993 LIST_REMOVE(slab, us_link); 1994 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, 1995 us_link); 1996 } 1997 return (slab); 1998 } 1999 2000 /* 2001 * M_NOVM means don't ask at all! 2002 */ 2003 if (flags & M_NOVM) 2004 break; 2005 2006 if (keg->uk_maxpages && 2007 keg->uk_pages >= keg->uk_maxpages) { 2008 keg->uk_flags |= UMA_ZFLAG_FULL; 2009 2010 if (flags & M_NOWAIT) 2011 break; 2012 else 2013 msleep(keg, &keg->uk_lock, PVM, 2014 "zonelimit", 0); 2015 continue; 2016 } 2017 keg->uk_recurse++; 2018 slab = slab_zalloc(zone, flags); 2019 keg->uk_recurse--; 2020 2021 /* 2022 * If we got a slab here it's safe to mark it partially used 2023 * and return. We assume that the caller is going to remove 2024 * at least one item. 2025 */ 2026 if (slab) { 2027 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2028 return (slab); 2029 } 2030 /* 2031 * We might not have been able to get a slab but another cpu 2032 * could have while we were unlocked. Check again before we 2033 * fail. 2034 */ 2035 if (flags & M_NOWAIT) 2036 flags |= M_NOVM; 2037 } 2038 return (slab); 2039 } 2040 2041 static void * 2042 uma_slab_alloc(uma_zone_t zone, uma_slab_t slab) 2043 { 2044 uma_keg_t keg; 2045 uma_slabrefcnt_t slabref; 2046 void *item; 2047 u_int8_t freei; 2048 2049 keg = zone->uz_keg; 2050 2051 freei = slab->us_firstfree; 2052 if (keg->uk_flags & UMA_ZONE_REFCNT) { 2053 slabref = (uma_slabrefcnt_t)slab; 2054 slab->us_firstfree = slabref->us_freelist[freei].us_item; 2055 } else { 2056 slab->us_firstfree = slab->us_freelist[freei].us_item; 2057 } 2058 item = slab->us_data + (keg->uk_rsize * freei); 2059 2060 slab->us_freecount--; 2061 keg->uk_free--; 2062 #ifdef INVARIANTS 2063 uma_dbg_alloc(zone, slab, item); 2064 #endif 2065 /* Move this slab to the full list */ 2066 if (slab->us_freecount == 0) { 2067 LIST_REMOVE(slab, us_link); 2068 LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link); 2069 } 2070 2071 return (item); 2072 } 2073 2074 static int 2075 uma_zalloc_bucket(uma_zone_t zone, int flags) 2076 { 2077 uma_bucket_t bucket; 2078 uma_slab_t slab; 2079 int16_t saved; 2080 int max, origflags = flags; 2081 2082 /* 2083 * Try this zone's free list first so we don't allocate extra buckets. 2084 */ 2085 if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) { 2086 KASSERT(bucket->ub_cnt == 0, 2087 ("uma_zalloc_bucket: Bucket on free list is not empty.")); 2088 LIST_REMOVE(bucket, ub_link); 2089 } else { 2090 int bflags; 2091 2092 bflags = (flags & ~M_ZERO); 2093 if (zone->uz_keg->uk_flags & UMA_ZFLAG_CACHEONLY) 2094 bflags |= M_NOVM; 2095 2096 ZONE_UNLOCK(zone); 2097 bucket = bucket_alloc(zone->uz_count, bflags); 2098 ZONE_LOCK(zone); 2099 } 2100 2101 if (bucket == NULL) 2102 return (0); 2103 2104 #ifdef SMP 2105 /* 2106 * This code is here to limit the number of simultaneous bucket fills 2107 * for any given zone to the number of per cpu caches in this zone. This 2108 * is done so that we don't allocate more memory than we really need. 2109 */ 2110 if (zone->uz_fills >= mp_ncpus) 2111 goto done; 2112 2113 #endif 2114 zone->uz_fills++; 2115 2116 max = MIN(bucket->ub_entries, zone->uz_count); 2117 /* Try to keep the buckets totally full */ 2118 saved = bucket->ub_cnt; 2119 while (bucket->ub_cnt < max && 2120 (slab = uma_zone_slab(zone, flags)) != NULL) { 2121 while (slab->us_freecount && bucket->ub_cnt < max) { 2122 bucket->ub_bucket[bucket->ub_cnt++] = 2123 uma_slab_alloc(zone, slab); 2124 } 2125 2126 /* Don't block on the next fill */ 2127 flags |= M_NOWAIT; 2128 } 2129 2130 /* 2131 * We unlock here because we need to call the zone's init. 2132 * It should be safe to unlock because the slab dealt with 2133 * above is already on the appropriate list within the keg 2134 * and the bucket we filled is not yet on any list, so we 2135 * own it. 2136 */ 2137 if (zone->uz_init != NULL) { 2138 int i; 2139 2140 ZONE_UNLOCK(zone); 2141 for (i = saved; i < bucket->ub_cnt; i++) 2142 if (zone->uz_init(bucket->ub_bucket[i], 2143 zone->uz_keg->uk_size, origflags) != 0) 2144 break; 2145 /* 2146 * If we couldn't initialize the whole bucket, put the 2147 * rest back onto the freelist. 2148 */ 2149 if (i != bucket->ub_cnt) { 2150 int j; 2151 2152 for (j = i; j < bucket->ub_cnt; j++) { 2153 uma_zfree_internal(zone, bucket->ub_bucket[j], 2154 NULL, SKIP_FINI, 0); 2155 #ifdef INVARIANTS 2156 bucket->ub_bucket[j] = NULL; 2157 #endif 2158 } 2159 bucket->ub_cnt = i; 2160 } 2161 ZONE_LOCK(zone); 2162 } 2163 2164 zone->uz_fills--; 2165 if (bucket->ub_cnt != 0) { 2166 LIST_INSERT_HEAD(&zone->uz_full_bucket, 2167 bucket, ub_link); 2168 return (1); 2169 } 2170 #ifdef SMP 2171 done: 2172 #endif 2173 bucket_free(bucket); 2174 2175 return (0); 2176 } 2177 /* 2178 * Allocates an item for an internal zone 2179 * 2180 * Arguments 2181 * zone The zone to alloc for. 2182 * udata The data to be passed to the constructor. 2183 * flags M_WAITOK, M_NOWAIT, M_ZERO. 2184 * 2185 * Returns 2186 * NULL if there is no memory and M_NOWAIT is set 2187 * An item if successful 2188 */ 2189 2190 static void * 2191 uma_zalloc_internal(uma_zone_t zone, void *udata, int flags) 2192 { 2193 uma_keg_t keg; 2194 uma_slab_t slab; 2195 void *item; 2196 2197 item = NULL; 2198 keg = zone->uz_keg; 2199 2200 #ifdef UMA_DEBUG_ALLOC 2201 printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone); 2202 #endif 2203 ZONE_LOCK(zone); 2204 2205 slab = uma_zone_slab(zone, flags); 2206 if (slab == NULL) { 2207 zone->uz_fails++; 2208 ZONE_UNLOCK(zone); 2209 return (NULL); 2210 } 2211 2212 item = uma_slab_alloc(zone, slab); 2213 2214 zone->uz_allocs++; 2215 2216 ZONE_UNLOCK(zone); 2217 2218 /* 2219 * We have to call both the zone's init (not the keg's init) 2220 * and the zone's ctor. This is because the item is going from 2221 * a keg slab directly to the user, and the user is expecting it 2222 * to be both zone-init'd as well as zone-ctor'd. 2223 */ 2224 if (zone->uz_init != NULL) { 2225 if (zone->uz_init(item, keg->uk_size, flags) != 0) { 2226 uma_zfree_internal(zone, item, udata, SKIP_FINI, 2227 ZFREE_STATFAIL | ZFREE_STATFREE); 2228 return (NULL); 2229 } 2230 } 2231 if (zone->uz_ctor != NULL) { 2232 if (zone->uz_ctor(item, keg->uk_size, udata, flags) != 0) { 2233 uma_zfree_internal(zone, item, udata, SKIP_DTOR, 2234 ZFREE_STATFAIL | ZFREE_STATFREE); 2235 return (NULL); 2236 } 2237 } 2238 if (flags & M_ZERO) 2239 bzero(item, keg->uk_size); 2240 2241 return (item); 2242 } 2243 2244 /* See uma.h */ 2245 void 2246 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 2247 { 2248 uma_keg_t keg; 2249 uma_cache_t cache; 2250 uma_bucket_t bucket; 2251 int bflags; 2252 int cpu; 2253 2254 keg = zone->uz_keg; 2255 2256 #ifdef UMA_DEBUG_ALLOC_1 2257 printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone); 2258 #endif 2259 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 2260 zone->uz_name); 2261 2262 if (zone->uz_dtor) 2263 zone->uz_dtor(item, keg->uk_size, udata); 2264 #ifdef INVARIANTS 2265 ZONE_LOCK(zone); 2266 if (keg->uk_flags & UMA_ZONE_MALLOC) 2267 uma_dbg_free(zone, udata, item); 2268 else 2269 uma_dbg_free(zone, NULL, item); 2270 ZONE_UNLOCK(zone); 2271 #endif 2272 /* 2273 * The race here is acceptable. If we miss it we'll just have to wait 2274 * a little longer for the limits to be reset. 2275 */ 2276 if (keg->uk_flags & UMA_ZFLAG_FULL) 2277 goto zfree_internal; 2278 2279 /* 2280 * If possible, free to the per-CPU cache. There are two 2281 * requirements for safe access to the per-CPU cache: (1) the thread 2282 * accessing the cache must not be preempted or yield during access, 2283 * and (2) the thread must not migrate CPUs without switching which 2284 * cache it accesses. We rely on a critical section to prevent 2285 * preemption and migration. We release the critical section in 2286 * order to acquire the zone mutex if we are unable to free to the 2287 * current cache; when we re-acquire the critical section, we must 2288 * detect and handle migration if it has occurred. 2289 */ 2290 zfree_restart: 2291 critical_enter(); 2292 cpu = curcpu; 2293 cache = &zone->uz_cpu[cpu]; 2294 2295 zfree_start: 2296 bucket = cache->uc_freebucket; 2297 2298 if (bucket) { 2299 /* 2300 * Do we have room in our bucket? It is OK for this uz count 2301 * check to be slightly out of sync. 2302 */ 2303 2304 if (bucket->ub_cnt < bucket->ub_entries) { 2305 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 2306 ("uma_zfree: Freeing to non free bucket index.")); 2307 bucket->ub_bucket[bucket->ub_cnt] = item; 2308 bucket->ub_cnt++; 2309 cache->uc_frees++; 2310 critical_exit(); 2311 return; 2312 } else if (cache->uc_allocbucket) { 2313 #ifdef UMA_DEBUG_ALLOC 2314 printf("uma_zfree: Swapping buckets.\n"); 2315 #endif 2316 /* 2317 * We have run out of space in our freebucket. 2318 * See if we can switch with our alloc bucket. 2319 */ 2320 if (cache->uc_allocbucket->ub_cnt < 2321 cache->uc_freebucket->ub_cnt) { 2322 bucket = cache->uc_freebucket; 2323 cache->uc_freebucket = cache->uc_allocbucket; 2324 cache->uc_allocbucket = bucket; 2325 goto zfree_start; 2326 } 2327 } 2328 } 2329 /* 2330 * We can get here for two reasons: 2331 * 2332 * 1) The buckets are NULL 2333 * 2) The alloc and free buckets are both somewhat full. 2334 * 2335 * We must go back the zone, which requires acquiring the zone lock, 2336 * which in turn means we must release and re-acquire the critical 2337 * section. Since the critical section is released, we may be 2338 * preempted or migrate. As such, make sure not to maintain any 2339 * thread-local state specific to the cache from prior to releasing 2340 * the critical section. 2341 */ 2342 critical_exit(); 2343 ZONE_LOCK(zone); 2344 critical_enter(); 2345 cpu = curcpu; 2346 cache = &zone->uz_cpu[cpu]; 2347 if (cache->uc_freebucket != NULL) { 2348 if (cache->uc_freebucket->ub_cnt < 2349 cache->uc_freebucket->ub_entries) { 2350 ZONE_UNLOCK(zone); 2351 goto zfree_start; 2352 } 2353 if (cache->uc_allocbucket != NULL && 2354 (cache->uc_allocbucket->ub_cnt < 2355 cache->uc_freebucket->ub_cnt)) { 2356 ZONE_UNLOCK(zone); 2357 goto zfree_start; 2358 } 2359 } 2360 2361 /* Since we have locked the zone we may as well send back our stats */ 2362 zone->uz_allocs += cache->uc_allocs; 2363 cache->uc_allocs = 0; 2364 zone->uz_frees += cache->uc_frees; 2365 cache->uc_frees = 0; 2366 2367 bucket = cache->uc_freebucket; 2368 cache->uc_freebucket = NULL; 2369 2370 /* Can we throw this on the zone full list? */ 2371 if (bucket != NULL) { 2372 #ifdef UMA_DEBUG_ALLOC 2373 printf("uma_zfree: Putting old bucket on the free list.\n"); 2374 #endif 2375 /* ub_cnt is pointing to the last free item */ 2376 KASSERT(bucket->ub_cnt != 0, 2377 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n")); 2378 LIST_INSERT_HEAD(&zone->uz_full_bucket, 2379 bucket, ub_link); 2380 } 2381 if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) { 2382 LIST_REMOVE(bucket, ub_link); 2383 ZONE_UNLOCK(zone); 2384 cache->uc_freebucket = bucket; 2385 goto zfree_start; 2386 } 2387 /* We are no longer associated with this CPU. */ 2388 critical_exit(); 2389 2390 /* And the zone.. */ 2391 ZONE_UNLOCK(zone); 2392 2393 #ifdef UMA_DEBUG_ALLOC 2394 printf("uma_zfree: Allocating new free bucket.\n"); 2395 #endif 2396 bflags = M_NOWAIT; 2397 2398 if (keg->uk_flags & UMA_ZFLAG_CACHEONLY) 2399 bflags |= M_NOVM; 2400 bucket = bucket_alloc(zone->uz_count, bflags); 2401 if (bucket) { 2402 ZONE_LOCK(zone); 2403 LIST_INSERT_HEAD(&zone->uz_free_bucket, 2404 bucket, ub_link); 2405 ZONE_UNLOCK(zone); 2406 goto zfree_restart; 2407 } 2408 2409 /* 2410 * If nothing else caught this, we'll just do an internal free. 2411 */ 2412 zfree_internal: 2413 uma_zfree_internal(zone, item, udata, SKIP_DTOR, ZFREE_STATFREE); 2414 2415 return; 2416 } 2417 2418 /* 2419 * Frees an item to an INTERNAL zone or allocates a free bucket 2420 * 2421 * Arguments: 2422 * zone The zone to free to 2423 * item The item we're freeing 2424 * udata User supplied data for the dtor 2425 * skip Skip dtors and finis 2426 */ 2427 static void 2428 uma_zfree_internal(uma_zone_t zone, void *item, void *udata, 2429 enum zfreeskip skip, int flags) 2430 { 2431 uma_slab_t slab; 2432 uma_slabrefcnt_t slabref; 2433 uma_keg_t keg; 2434 u_int8_t *mem; 2435 u_int8_t freei; 2436 2437 keg = zone->uz_keg; 2438 2439 if (skip < SKIP_DTOR && zone->uz_dtor) 2440 zone->uz_dtor(item, keg->uk_size, udata); 2441 if (skip < SKIP_FINI && zone->uz_fini) 2442 zone->uz_fini(item, keg->uk_size); 2443 2444 ZONE_LOCK(zone); 2445 2446 if (flags & ZFREE_STATFAIL) 2447 zone->uz_fails++; 2448 if (flags & ZFREE_STATFREE) 2449 zone->uz_frees++; 2450 2451 if (!(keg->uk_flags & UMA_ZONE_MALLOC)) { 2452 mem = (u_int8_t *)((unsigned long)item & (~UMA_SLAB_MASK)); 2453 if (keg->uk_flags & UMA_ZONE_HASH) 2454 slab = hash_sfind(&keg->uk_hash, mem); 2455 else { 2456 mem += keg->uk_pgoff; 2457 slab = (uma_slab_t)mem; 2458 } 2459 } else { 2460 slab = (uma_slab_t)udata; 2461 } 2462 2463 /* Do we need to remove from any lists? */ 2464 if (slab->us_freecount+1 == keg->uk_ipers) { 2465 LIST_REMOVE(slab, us_link); 2466 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 2467 } else if (slab->us_freecount == 0) { 2468 LIST_REMOVE(slab, us_link); 2469 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2470 } 2471 2472 /* Slab management stuff */ 2473 freei = ((unsigned long)item - (unsigned long)slab->us_data) 2474 / keg->uk_rsize; 2475 2476 #ifdef INVARIANTS 2477 if (!skip) 2478 uma_dbg_free(zone, slab, item); 2479 #endif 2480 2481 if (keg->uk_flags & UMA_ZONE_REFCNT) { 2482 slabref = (uma_slabrefcnt_t)slab; 2483 slabref->us_freelist[freei].us_item = slab->us_firstfree; 2484 } else { 2485 slab->us_freelist[freei].us_item = slab->us_firstfree; 2486 } 2487 slab->us_firstfree = freei; 2488 slab->us_freecount++; 2489 2490 /* Zone statistics */ 2491 keg->uk_free++; 2492 2493 if (keg->uk_flags & UMA_ZFLAG_FULL) { 2494 if (keg->uk_pages < keg->uk_maxpages) 2495 keg->uk_flags &= ~UMA_ZFLAG_FULL; 2496 2497 /* We can handle one more allocation */ 2498 wakeup_one(keg); 2499 } 2500 2501 ZONE_UNLOCK(zone); 2502 } 2503 2504 /* See uma.h */ 2505 void 2506 uma_zone_set_max(uma_zone_t zone, int nitems) 2507 { 2508 uma_keg_t keg; 2509 2510 keg = zone->uz_keg; 2511 ZONE_LOCK(zone); 2512 if (keg->uk_ppera > 1) 2513 keg->uk_maxpages = nitems * keg->uk_ppera; 2514 else 2515 keg->uk_maxpages = nitems / keg->uk_ipers; 2516 2517 if (keg->uk_maxpages * keg->uk_ipers < nitems) 2518 keg->uk_maxpages++; 2519 2520 ZONE_UNLOCK(zone); 2521 } 2522 2523 /* See uma.h */ 2524 void 2525 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 2526 { 2527 ZONE_LOCK(zone); 2528 KASSERT(zone->uz_keg->uk_pages == 0, 2529 ("uma_zone_set_init on non-empty keg")); 2530 zone->uz_keg->uk_init = uminit; 2531 ZONE_UNLOCK(zone); 2532 } 2533 2534 /* See uma.h */ 2535 void 2536 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 2537 { 2538 ZONE_LOCK(zone); 2539 KASSERT(zone->uz_keg->uk_pages == 0, 2540 ("uma_zone_set_fini on non-empty keg")); 2541 zone->uz_keg->uk_fini = fini; 2542 ZONE_UNLOCK(zone); 2543 } 2544 2545 /* See uma.h */ 2546 void 2547 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 2548 { 2549 ZONE_LOCK(zone); 2550 KASSERT(zone->uz_keg->uk_pages == 0, 2551 ("uma_zone_set_zinit on non-empty keg")); 2552 zone->uz_init = zinit; 2553 ZONE_UNLOCK(zone); 2554 } 2555 2556 /* See uma.h */ 2557 void 2558 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 2559 { 2560 ZONE_LOCK(zone); 2561 KASSERT(zone->uz_keg->uk_pages == 0, 2562 ("uma_zone_set_zfini on non-empty keg")); 2563 zone->uz_fini = zfini; 2564 ZONE_UNLOCK(zone); 2565 } 2566 2567 /* See uma.h */ 2568 /* XXX uk_freef is not actually used with the zone locked */ 2569 void 2570 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 2571 { 2572 ZONE_LOCK(zone); 2573 zone->uz_keg->uk_freef = freef; 2574 ZONE_UNLOCK(zone); 2575 } 2576 2577 /* See uma.h */ 2578 /* XXX uk_allocf is not actually used with the zone locked */ 2579 void 2580 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 2581 { 2582 ZONE_LOCK(zone); 2583 zone->uz_keg->uk_flags |= UMA_ZFLAG_PRIVALLOC; 2584 zone->uz_keg->uk_allocf = allocf; 2585 ZONE_UNLOCK(zone); 2586 } 2587 2588 /* See uma.h */ 2589 int 2590 uma_zone_set_obj(uma_zone_t zone, struct vm_object *obj, int count) 2591 { 2592 uma_keg_t keg; 2593 vm_offset_t kva; 2594 int pages; 2595 2596 keg = zone->uz_keg; 2597 pages = count / keg->uk_ipers; 2598 2599 if (pages * keg->uk_ipers < count) 2600 pages++; 2601 2602 kva = kmem_alloc_nofault(kernel_map, pages * UMA_SLAB_SIZE); 2603 2604 if (kva == 0) 2605 return (0); 2606 if (obj == NULL) { 2607 obj = vm_object_allocate(OBJT_DEFAULT, 2608 pages); 2609 } else { 2610 VM_OBJECT_LOCK_INIT(obj, "uma object"); 2611 _vm_object_allocate(OBJT_DEFAULT, 2612 pages, obj); 2613 } 2614 ZONE_LOCK(zone); 2615 keg->uk_kva = kva; 2616 keg->uk_obj = obj; 2617 keg->uk_maxpages = pages; 2618 keg->uk_allocf = obj_alloc; 2619 keg->uk_flags |= UMA_ZONE_NOFREE | UMA_ZFLAG_PRIVALLOC; 2620 ZONE_UNLOCK(zone); 2621 return (1); 2622 } 2623 2624 /* See uma.h */ 2625 void 2626 uma_prealloc(uma_zone_t zone, int items) 2627 { 2628 int slabs; 2629 uma_slab_t slab; 2630 uma_keg_t keg; 2631 2632 keg = zone->uz_keg; 2633 ZONE_LOCK(zone); 2634 slabs = items / keg->uk_ipers; 2635 if (slabs * keg->uk_ipers < items) 2636 slabs++; 2637 while (slabs > 0) { 2638 slab = slab_zalloc(zone, M_WAITOK); 2639 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 2640 slabs--; 2641 } 2642 ZONE_UNLOCK(zone); 2643 } 2644 2645 /* See uma.h */ 2646 u_int32_t * 2647 uma_find_refcnt(uma_zone_t zone, void *item) 2648 { 2649 uma_slabrefcnt_t slabref; 2650 uma_keg_t keg; 2651 u_int32_t *refcnt; 2652 int idx; 2653 2654 keg = zone->uz_keg; 2655 slabref = (uma_slabrefcnt_t)vtoslab((vm_offset_t)item & 2656 (~UMA_SLAB_MASK)); 2657 KASSERT(slabref != NULL && slabref->us_keg->uk_flags & UMA_ZONE_REFCNT, 2658 ("uma_find_refcnt(): zone possibly not UMA_ZONE_REFCNT")); 2659 idx = ((unsigned long)item - (unsigned long)slabref->us_data) 2660 / keg->uk_rsize; 2661 refcnt = &slabref->us_freelist[idx].us_refcnt; 2662 return refcnt; 2663 } 2664 2665 /* See uma.h */ 2666 void 2667 uma_reclaim(void) 2668 { 2669 #ifdef UMA_DEBUG 2670 printf("UMA: vm asked us to release pages!\n"); 2671 #endif 2672 bucket_enable(); 2673 zone_foreach(zone_drain); 2674 /* 2675 * Some slabs may have been freed but this zone will be visited early 2676 * we visit again so that we can free pages that are empty once other 2677 * zones are drained. We have to do the same for buckets. 2678 */ 2679 zone_drain(slabzone); 2680 zone_drain(slabrefzone); 2681 bucket_zone_drain(); 2682 } 2683 2684 /* See uma.h */ 2685 int 2686 uma_zone_exhausted(uma_zone_t zone) 2687 { 2688 int full; 2689 2690 ZONE_LOCK(zone); 2691 full = (zone->uz_keg->uk_flags & UMA_ZFLAG_FULL); 2692 ZONE_UNLOCK(zone); 2693 return (full); 2694 } 2695 2696 void * 2697 uma_large_malloc(int size, int wait) 2698 { 2699 void *mem; 2700 uma_slab_t slab; 2701 u_int8_t flags; 2702 2703 slab = uma_zalloc_internal(slabzone, NULL, wait); 2704 if (slab == NULL) 2705 return (NULL); 2706 mem = page_alloc(NULL, size, &flags, wait); 2707 if (mem) { 2708 vsetslab((vm_offset_t)mem, slab); 2709 slab->us_data = mem; 2710 slab->us_flags = flags | UMA_SLAB_MALLOC; 2711 slab->us_size = size; 2712 } else { 2713 uma_zfree_internal(slabzone, slab, NULL, SKIP_NONE, 2714 ZFREE_STATFAIL | ZFREE_STATFREE); 2715 } 2716 2717 return (mem); 2718 } 2719 2720 void 2721 uma_large_free(uma_slab_t slab) 2722 { 2723 vsetobj((vm_offset_t)slab->us_data, kmem_object); 2724 page_free(slab->us_data, slab->us_size, slab->us_flags); 2725 uma_zfree_internal(slabzone, slab, NULL, SKIP_NONE, ZFREE_STATFREE); 2726 } 2727 2728 void 2729 uma_print_stats(void) 2730 { 2731 zone_foreach(uma_print_zone); 2732 } 2733 2734 static void 2735 slab_print(uma_slab_t slab) 2736 { 2737 printf("slab: keg %p, data %p, freecount %d, firstfree %d\n", 2738 slab->us_keg, slab->us_data, slab->us_freecount, 2739 slab->us_firstfree); 2740 } 2741 2742 static void 2743 cache_print(uma_cache_t cache) 2744 { 2745 printf("alloc: %p(%d), free: %p(%d)\n", 2746 cache->uc_allocbucket, 2747 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, 2748 cache->uc_freebucket, 2749 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0); 2750 } 2751 2752 void 2753 uma_print_zone(uma_zone_t zone) 2754 { 2755 uma_cache_t cache; 2756 uma_keg_t keg; 2757 uma_slab_t slab; 2758 int i; 2759 2760 keg = zone->uz_keg; 2761 printf("%s(%p) size %d(%d) flags %d ipers %d ppera %d out %d free %d\n", 2762 zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags, 2763 keg->uk_ipers, keg->uk_ppera, 2764 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free); 2765 printf("Part slabs:\n"); 2766 LIST_FOREACH(slab, &keg->uk_part_slab, us_link) 2767 slab_print(slab); 2768 printf("Free slabs:\n"); 2769 LIST_FOREACH(slab, &keg->uk_free_slab, us_link) 2770 slab_print(slab); 2771 printf("Full slabs:\n"); 2772 LIST_FOREACH(slab, &keg->uk_full_slab, us_link) 2773 slab_print(slab); 2774 for (i = 0; i <= mp_maxid; i++) { 2775 if (CPU_ABSENT(i)) 2776 continue; 2777 cache = &zone->uz_cpu[i]; 2778 printf("CPU %d Cache:\n", i); 2779 cache_print(cache); 2780 } 2781 } 2782 2783 #ifdef DDB 2784 /* 2785 * Generate statistics across both the zone and its per-cpu cache's. Return 2786 * desired statistics if the pointer is non-NULL for that statistic. 2787 * 2788 * Note: does not update the zone statistics, as it can't safely clear the 2789 * per-CPU cache statistic. 2790 * 2791 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't 2792 * safe from off-CPU; we should modify the caches to track this information 2793 * directly so that we don't have to. 2794 */ 2795 static void 2796 uma_zone_sumstat(uma_zone_t z, int *cachefreep, u_int64_t *allocsp, 2797 u_int64_t *freesp) 2798 { 2799 uma_cache_t cache; 2800 u_int64_t allocs, frees; 2801 int cachefree, cpu; 2802 2803 allocs = frees = 0; 2804 cachefree = 0; 2805 for (cpu = 0; cpu <= mp_maxid; cpu++) { 2806 if (CPU_ABSENT(cpu)) 2807 continue; 2808 cache = &z->uz_cpu[cpu]; 2809 if (cache->uc_allocbucket != NULL) 2810 cachefree += cache->uc_allocbucket->ub_cnt; 2811 if (cache->uc_freebucket != NULL) 2812 cachefree += cache->uc_freebucket->ub_cnt; 2813 allocs += cache->uc_allocs; 2814 frees += cache->uc_frees; 2815 } 2816 allocs += z->uz_allocs; 2817 frees += z->uz_frees; 2818 if (cachefreep != NULL) 2819 *cachefreep = cachefree; 2820 if (allocsp != NULL) 2821 *allocsp = allocs; 2822 if (freesp != NULL) 2823 *freesp = frees; 2824 } 2825 #endif /* DDB */ 2826 2827 static int 2828 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 2829 { 2830 uma_keg_t kz; 2831 uma_zone_t z; 2832 int count; 2833 2834 count = 0; 2835 mtx_lock(&uma_mtx); 2836 LIST_FOREACH(kz, &uma_kegs, uk_link) { 2837 LIST_FOREACH(z, &kz->uk_zones, uz_link) 2838 count++; 2839 } 2840 mtx_unlock(&uma_mtx); 2841 return (sysctl_handle_int(oidp, &count, 0, req)); 2842 } 2843 2844 static int 2845 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 2846 { 2847 struct uma_stream_header ush; 2848 struct uma_type_header uth; 2849 struct uma_percpu_stat ups; 2850 uma_bucket_t bucket; 2851 struct sbuf sbuf; 2852 uma_cache_t cache; 2853 uma_keg_t kz; 2854 uma_zone_t z; 2855 char *buffer; 2856 int buflen, count, error, i; 2857 2858 mtx_lock(&uma_mtx); 2859 restart: 2860 mtx_assert(&uma_mtx, MA_OWNED); 2861 count = 0; 2862 LIST_FOREACH(kz, &uma_kegs, uk_link) { 2863 LIST_FOREACH(z, &kz->uk_zones, uz_link) 2864 count++; 2865 } 2866 mtx_unlock(&uma_mtx); 2867 2868 buflen = sizeof(ush) + count * (sizeof(uth) + sizeof(ups) * 2869 (mp_maxid + 1)) + 1; 2870 buffer = malloc(buflen, M_TEMP, M_WAITOK | M_ZERO); 2871 2872 mtx_lock(&uma_mtx); 2873 i = 0; 2874 LIST_FOREACH(kz, &uma_kegs, uk_link) { 2875 LIST_FOREACH(z, &kz->uk_zones, uz_link) 2876 i++; 2877 } 2878 if (i > count) { 2879 free(buffer, M_TEMP); 2880 goto restart; 2881 } 2882 count = i; 2883 2884 sbuf_new(&sbuf, buffer, buflen, SBUF_FIXEDLEN); 2885 2886 /* 2887 * Insert stream header. 2888 */ 2889 bzero(&ush, sizeof(ush)); 2890 ush.ush_version = UMA_STREAM_VERSION; 2891 ush.ush_maxcpus = (mp_maxid + 1); 2892 ush.ush_count = count; 2893 if (sbuf_bcat(&sbuf, &ush, sizeof(ush)) < 0) { 2894 mtx_unlock(&uma_mtx); 2895 error = ENOMEM; 2896 goto out; 2897 } 2898 2899 LIST_FOREACH(kz, &uma_kegs, uk_link) { 2900 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 2901 bzero(&uth, sizeof(uth)); 2902 ZONE_LOCK(z); 2903 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 2904 uth.uth_align = kz->uk_align; 2905 uth.uth_pages = kz->uk_pages; 2906 uth.uth_keg_free = kz->uk_free; 2907 uth.uth_size = kz->uk_size; 2908 uth.uth_rsize = kz->uk_rsize; 2909 uth.uth_maxpages = kz->uk_maxpages; 2910 if (kz->uk_ppera > 1) 2911 uth.uth_limit = kz->uk_maxpages / 2912 kz->uk_ppera; 2913 else 2914 uth.uth_limit = kz->uk_maxpages * 2915 kz->uk_ipers; 2916 2917 /* 2918 * A zone is secondary is it is not the first entry 2919 * on the keg's zone list. 2920 */ 2921 if ((kz->uk_flags & UMA_ZONE_SECONDARY) && 2922 (LIST_FIRST(&kz->uk_zones) != z)) 2923 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 2924 2925 LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link) 2926 uth.uth_zone_free += bucket->ub_cnt; 2927 uth.uth_allocs = z->uz_allocs; 2928 uth.uth_frees = z->uz_frees; 2929 uth.uth_fails = z->uz_fails; 2930 if (sbuf_bcat(&sbuf, &uth, sizeof(uth)) < 0) { 2931 ZONE_UNLOCK(z); 2932 mtx_unlock(&uma_mtx); 2933 error = ENOMEM; 2934 goto out; 2935 } 2936 /* 2937 * While it is not normally safe to access the cache 2938 * bucket pointers while not on the CPU that owns the 2939 * cache, we only allow the pointers to be exchanged 2940 * without the zone lock held, not invalidated, so 2941 * accept the possible race associated with bucket 2942 * exchange during monitoring. 2943 */ 2944 for (i = 0; i < (mp_maxid + 1); i++) { 2945 bzero(&ups, sizeof(ups)); 2946 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) 2947 goto skip; 2948 if (CPU_ABSENT(i)) 2949 goto skip; 2950 cache = &z->uz_cpu[i]; 2951 if (cache->uc_allocbucket != NULL) 2952 ups.ups_cache_free += 2953 cache->uc_allocbucket->ub_cnt; 2954 if (cache->uc_freebucket != NULL) 2955 ups.ups_cache_free += 2956 cache->uc_freebucket->ub_cnt; 2957 ups.ups_allocs = cache->uc_allocs; 2958 ups.ups_frees = cache->uc_frees; 2959 skip: 2960 if (sbuf_bcat(&sbuf, &ups, sizeof(ups)) < 0) { 2961 ZONE_UNLOCK(z); 2962 mtx_unlock(&uma_mtx); 2963 error = ENOMEM; 2964 goto out; 2965 } 2966 } 2967 ZONE_UNLOCK(z); 2968 } 2969 } 2970 mtx_unlock(&uma_mtx); 2971 sbuf_finish(&sbuf); 2972 error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf)); 2973 out: 2974 free(buffer, M_TEMP); 2975 return (error); 2976 } 2977 2978 #ifdef DDB 2979 DB_SHOW_COMMAND(uma, db_show_uma) 2980 { 2981 u_int64_t allocs, frees; 2982 uma_bucket_t bucket; 2983 uma_keg_t kz; 2984 uma_zone_t z; 2985 int cachefree; 2986 2987 db_printf("%18s %8s %8s %8s %12s\n", "Zone", "Size", "Used", "Free", 2988 "Requests"); 2989 LIST_FOREACH(kz, &uma_kegs, uk_link) { 2990 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 2991 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 2992 allocs = z->uz_allocs; 2993 frees = z->uz_frees; 2994 cachefree = 0; 2995 } else 2996 uma_zone_sumstat(z, &cachefree, &allocs, 2997 &frees); 2998 if (!((kz->uk_flags & UMA_ZONE_SECONDARY) && 2999 (LIST_FIRST(&kz->uk_zones) != z))) 3000 cachefree += kz->uk_free; 3001 LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link) 3002 cachefree += bucket->ub_cnt; 3003 db_printf("%18s %8ju %8jd %8d %12ju\n", z->uz_name, 3004 (uintmax_t)kz->uk_size, 3005 (intmax_t)(allocs - frees), cachefree, 3006 (uintmax_t)allocs); 3007 } 3008 } 3009 } 3010 #endif 3011