xref: /freebsd/sys/vm/uma_core.c (revision f2d48b5e2c3b45850585e4d7aee324fe148afbf2)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org>
5  * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
6  * Copyright (c) 2004-2006 Robert N. M. Watson
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice unmodified, this list of conditions, and the following
14  *    disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 /*
32  * uma_core.c  Implementation of the Universal Memory allocator
33  *
34  * This allocator is intended to replace the multitude of similar object caches
35  * in the standard FreeBSD kernel.  The intent is to be flexible as well as
36  * efficient.  A primary design goal is to return unused memory to the rest of
37  * the system.  This will make the system as a whole more flexible due to the
38  * ability to move memory to subsystems which most need it instead of leaving
39  * pools of reserved memory unused.
40  *
41  * The basic ideas stem from similar slab/zone based allocators whose algorithms
42  * are well known.
43  *
44  */
45 
46 /*
47  * TODO:
48  *	- Improve memory usage for large allocations
49  *	- Investigate cache size adjustments
50  */
51 
52 #include <sys/cdefs.h>
53 __FBSDID("$FreeBSD$");
54 
55 #include "opt_ddb.h"
56 #include "opt_param.h"
57 #include "opt_vm.h"
58 
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/bitset.h>
62 #include <sys/domainset.h>
63 #include <sys/eventhandler.h>
64 #include <sys/kernel.h>
65 #include <sys/types.h>
66 #include <sys/limits.h>
67 #include <sys/queue.h>
68 #include <sys/malloc.h>
69 #include <sys/ktr.h>
70 #include <sys/lock.h>
71 #include <sys/sysctl.h>
72 #include <sys/mutex.h>
73 #include <sys/proc.h>
74 #include <sys/random.h>
75 #include <sys/rwlock.h>
76 #include <sys/sbuf.h>
77 #include <sys/sched.h>
78 #include <sys/sleepqueue.h>
79 #include <sys/smp.h>
80 #include <sys/smr.h>
81 #include <sys/taskqueue.h>
82 #include <sys/vmmeter.h>
83 
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/vm_domainset.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_pageout.h>
90 #include <vm/vm_phys.h>
91 #include <vm/vm_pagequeue.h>
92 #include <vm/vm_map.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vm_dumpset.h>
96 #include <vm/uma.h>
97 #include <vm/uma_int.h>
98 #include <vm/uma_dbg.h>
99 
100 #include <ddb/ddb.h>
101 
102 #ifdef DEBUG_MEMGUARD
103 #include <vm/memguard.h>
104 #endif
105 
106 #include <machine/md_var.h>
107 
108 #ifdef INVARIANTS
109 #define	UMA_ALWAYS_CTORDTOR	1
110 #else
111 #define	UMA_ALWAYS_CTORDTOR	0
112 #endif
113 
114 /*
115  * This is the zone and keg from which all zones are spawned.
116  */
117 static uma_zone_t kegs;
118 static uma_zone_t zones;
119 
120 /*
121  * On INVARIANTS builds, the slab contains a second bitset of the same size,
122  * "dbg_bits", which is laid out immediately after us_free.
123  */
124 #ifdef INVARIANTS
125 #define	SLAB_BITSETS	2
126 #else
127 #define	SLAB_BITSETS	1
128 #endif
129 
130 /*
131  * These are the two zones from which all offpage uma_slab_ts are allocated.
132  *
133  * One zone is for slab headers that can represent a larger number of items,
134  * making the slabs themselves more efficient, and the other zone is for
135  * headers that are smaller and represent fewer items, making the headers more
136  * efficient.
137  */
138 #define	SLABZONE_SIZE(setsize)					\
139     (sizeof(struct uma_hash_slab) + BITSET_SIZE(setsize) * SLAB_BITSETS)
140 #define	SLABZONE0_SETSIZE	(PAGE_SIZE / 16)
141 #define	SLABZONE1_SETSIZE	SLAB_MAX_SETSIZE
142 #define	SLABZONE0_SIZE	SLABZONE_SIZE(SLABZONE0_SETSIZE)
143 #define	SLABZONE1_SIZE	SLABZONE_SIZE(SLABZONE1_SETSIZE)
144 static uma_zone_t slabzones[2];
145 
146 /*
147  * The initial hash tables come out of this zone so they can be allocated
148  * prior to malloc coming up.
149  */
150 static uma_zone_t hashzone;
151 
152 /* The boot-time adjusted value for cache line alignment. */
153 int uma_align_cache = 64 - 1;
154 
155 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
156 static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc");
157 
158 /*
159  * Are we allowed to allocate buckets?
160  */
161 static int bucketdisable = 1;
162 
163 /* Linked list of all kegs in the system */
164 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs);
165 
166 /* Linked list of all cache-only zones in the system */
167 static LIST_HEAD(,uma_zone) uma_cachezones =
168     LIST_HEAD_INITIALIZER(uma_cachezones);
169 
170 /* This RW lock protects the keg list */
171 static struct rwlock_padalign __exclusive_cache_line uma_rwlock;
172 
173 /*
174  * First available virual address for boot time allocations.
175  */
176 static vm_offset_t bootstart;
177 static vm_offset_t bootmem;
178 
179 static struct sx uma_reclaim_lock;
180 
181 /*
182  * kmem soft limit, initialized by uma_set_limit().  Ensure that early
183  * allocations don't trigger a wakeup of the reclaim thread.
184  */
185 unsigned long uma_kmem_limit = LONG_MAX;
186 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0,
187     "UMA kernel memory soft limit");
188 unsigned long uma_kmem_total;
189 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0,
190     "UMA kernel memory usage");
191 
192 /* Is the VM done starting up? */
193 static enum {
194 	BOOT_COLD,
195 	BOOT_KVA,
196 	BOOT_PCPU,
197 	BOOT_RUNNING,
198 	BOOT_SHUTDOWN,
199 } booted = BOOT_COLD;
200 
201 /*
202  * This is the handle used to schedule events that need to happen
203  * outside of the allocation fast path.
204  */
205 static struct callout uma_callout;
206 #define	UMA_TIMEOUT	20		/* Seconds for callout interval. */
207 
208 /*
209  * This structure is passed as the zone ctor arg so that I don't have to create
210  * a special allocation function just for zones.
211  */
212 struct uma_zctor_args {
213 	const char *name;
214 	size_t size;
215 	uma_ctor ctor;
216 	uma_dtor dtor;
217 	uma_init uminit;
218 	uma_fini fini;
219 	uma_import import;
220 	uma_release release;
221 	void *arg;
222 	uma_keg_t keg;
223 	int align;
224 	uint32_t flags;
225 };
226 
227 struct uma_kctor_args {
228 	uma_zone_t zone;
229 	size_t size;
230 	uma_init uminit;
231 	uma_fini fini;
232 	int align;
233 	uint32_t flags;
234 };
235 
236 struct uma_bucket_zone {
237 	uma_zone_t	ubz_zone;
238 	const char	*ubz_name;
239 	int		ubz_entries;	/* Number of items it can hold. */
240 	int		ubz_maxsize;	/* Maximum allocation size per-item. */
241 };
242 
243 /*
244  * Compute the actual number of bucket entries to pack them in power
245  * of two sizes for more efficient space utilization.
246  */
247 #define	BUCKET_SIZE(n)						\
248     (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *))
249 
250 #define	BUCKET_MAX	BUCKET_SIZE(256)
251 
252 struct uma_bucket_zone bucket_zones[] = {
253 	/* Literal bucket sizes. */
254 	{ NULL, "2 Bucket", 2, 4096 },
255 	{ NULL, "4 Bucket", 4, 3072 },
256 	{ NULL, "8 Bucket", 8, 2048 },
257 	{ NULL, "16 Bucket", 16, 1024 },
258 	/* Rounded down power of 2 sizes for efficiency. */
259 	{ NULL, "32 Bucket", BUCKET_SIZE(32), 512 },
260 	{ NULL, "64 Bucket", BUCKET_SIZE(64), 256 },
261 	{ NULL, "128 Bucket", BUCKET_SIZE(128), 128 },
262 	{ NULL, "256 Bucket", BUCKET_SIZE(256), 64 },
263 	{ NULL, NULL, 0}
264 };
265 
266 /*
267  * Flags and enumerations to be passed to internal functions.
268  */
269 enum zfreeskip {
270 	SKIP_NONE =	0,
271 	SKIP_CNT =	0x00000001,
272 	SKIP_DTOR =	0x00010000,
273 	SKIP_FINI =	0x00020000,
274 };
275 
276 /* Prototypes.. */
277 
278 void	uma_startup1(vm_offset_t);
279 void	uma_startup2(void);
280 
281 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
282 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
283 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
284 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
285 static void *contig_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
286 static void page_free(void *, vm_size_t, uint8_t);
287 static void pcpu_page_free(void *, vm_size_t, uint8_t);
288 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int);
289 static void cache_drain(uma_zone_t);
290 static void bucket_drain(uma_zone_t, uma_bucket_t);
291 static void bucket_cache_reclaim(uma_zone_t zone, bool);
292 static int keg_ctor(void *, int, void *, int);
293 static void keg_dtor(void *, int, void *);
294 static int zone_ctor(void *, int, void *, int);
295 static void zone_dtor(void *, int, void *);
296 static inline void item_dtor(uma_zone_t zone, void *item, int size,
297     void *udata, enum zfreeskip skip);
298 static int zero_init(void *, int, int);
299 static void zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata,
300     int itemdomain, bool ws);
301 static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *);
302 static void zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *), void *);
303 static void zone_timeout(uma_zone_t zone, void *);
304 static int hash_alloc(struct uma_hash *, u_int);
305 static int hash_expand(struct uma_hash *, struct uma_hash *);
306 static void hash_free(struct uma_hash *hash);
307 static void uma_timeout(void *);
308 static void uma_shutdown(void);
309 static void *zone_alloc_item(uma_zone_t, void *, int, int);
310 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip);
311 static int zone_alloc_limit(uma_zone_t zone, int count, int flags);
312 static void zone_free_limit(uma_zone_t zone, int count);
313 static void bucket_enable(void);
314 static void bucket_init(void);
315 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int);
316 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *);
317 static void bucket_zone_drain(void);
318 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int);
319 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab);
320 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item);
321 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
322     uma_fini fini, int align, uint32_t flags);
323 static int zone_import(void *, void **, int, int, int);
324 static void zone_release(void *, void **, int);
325 static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int);
326 static bool cache_free(uma_zone_t, uma_cache_t, void *, void *, int);
327 
328 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
329 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
330 static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS);
331 static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS);
332 static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS);
333 static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS);
334 static int sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS);
335 
336 static uint64_t uma_zone_get_allocs(uma_zone_t zone);
337 
338 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
339     "Memory allocation debugging");
340 
341 #ifdef INVARIANTS
342 static uint64_t uma_keg_get_allocs(uma_keg_t zone);
343 static inline struct noslabbits *slab_dbg_bits(uma_slab_t slab, uma_keg_t keg);
344 
345 static bool uma_dbg_kskip(uma_keg_t keg, void *mem);
346 static bool uma_dbg_zskip(uma_zone_t zone, void *mem);
347 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item);
348 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item);
349 
350 static u_int dbg_divisor = 1;
351 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor,
352     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0,
353     "Debug & thrash every this item in memory allocator");
354 
355 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER;
356 static counter_u64_t uma_skip_cnt = EARLY_COUNTER;
357 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD,
358     &uma_dbg_cnt, "memory items debugged");
359 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD,
360     &uma_skip_cnt, "memory items skipped, not debugged");
361 #endif
362 
363 SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
364     "Universal Memory Allocator");
365 
366 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_INT,
367     0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
368 
369 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_STRUCT,
370     0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
371 
372 static int zone_warnings = 1;
373 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0,
374     "Warn when UMA zones becomes full");
375 
376 static int multipage_slabs = 1;
377 TUNABLE_INT("vm.debug.uma_multipage_slabs", &multipage_slabs);
378 SYSCTL_INT(_vm_debug, OID_AUTO, uma_multipage_slabs,
379     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &multipage_slabs, 0,
380     "UMA may choose larger slab sizes for better efficiency");
381 
382 /*
383  * Select the slab zone for an offpage slab with the given maximum item count.
384  */
385 static inline uma_zone_t
386 slabzone(int ipers)
387 {
388 
389 	return (slabzones[ipers > SLABZONE0_SETSIZE]);
390 }
391 
392 /*
393  * This routine checks to see whether or not it's safe to enable buckets.
394  */
395 static void
396 bucket_enable(void)
397 {
398 
399 	KASSERT(booted >= BOOT_KVA, ("Bucket enable before init"));
400 	bucketdisable = vm_page_count_min();
401 }
402 
403 /*
404  * Initialize bucket_zones, the array of zones of buckets of various sizes.
405  *
406  * For each zone, calculate the memory required for each bucket, consisting
407  * of the header and an array of pointers.
408  */
409 static void
410 bucket_init(void)
411 {
412 	struct uma_bucket_zone *ubz;
413 	int size;
414 
415 	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) {
416 		size = roundup(sizeof(struct uma_bucket), sizeof(void *));
417 		size += sizeof(void *) * ubz->ubz_entries;
418 		ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
419 		    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
420 		    UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET |
421 		    UMA_ZONE_FIRSTTOUCH);
422 	}
423 }
424 
425 /*
426  * Given a desired number of entries for a bucket, return the zone from which
427  * to allocate the bucket.
428  */
429 static struct uma_bucket_zone *
430 bucket_zone_lookup(int entries)
431 {
432 	struct uma_bucket_zone *ubz;
433 
434 	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
435 		if (ubz->ubz_entries >= entries)
436 			return (ubz);
437 	ubz--;
438 	return (ubz);
439 }
440 
441 static int
442 bucket_select(int size)
443 {
444 	struct uma_bucket_zone *ubz;
445 
446 	ubz = &bucket_zones[0];
447 	if (size > ubz->ubz_maxsize)
448 		return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1);
449 
450 	for (; ubz->ubz_entries != 0; ubz++)
451 		if (ubz->ubz_maxsize < size)
452 			break;
453 	ubz--;
454 	return (ubz->ubz_entries);
455 }
456 
457 static uma_bucket_t
458 bucket_alloc(uma_zone_t zone, void *udata, int flags)
459 {
460 	struct uma_bucket_zone *ubz;
461 	uma_bucket_t bucket;
462 
463 	/*
464 	 * Don't allocate buckets early in boot.
465 	 */
466 	if (__predict_false(booted < BOOT_KVA))
467 		return (NULL);
468 
469 	/*
470 	 * To limit bucket recursion we store the original zone flags
471 	 * in a cookie passed via zalloc_arg/zfree_arg.  This allows the
472 	 * NOVM flag to persist even through deep recursions.  We also
473 	 * store ZFLAG_BUCKET once we have recursed attempting to allocate
474 	 * a bucket for a bucket zone so we do not allow infinite bucket
475 	 * recursion.  This cookie will even persist to frees of unused
476 	 * buckets via the allocation path or bucket allocations in the
477 	 * free path.
478 	 */
479 	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
480 		udata = (void *)(uintptr_t)zone->uz_flags;
481 	else {
482 		if ((uintptr_t)udata & UMA_ZFLAG_BUCKET)
483 			return (NULL);
484 		udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET);
485 	}
486 	if (((uintptr_t)udata & UMA_ZONE_VM) != 0)
487 		flags |= M_NOVM;
488 	ubz = bucket_zone_lookup(atomic_load_16(&zone->uz_bucket_size));
489 	if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0)
490 		ubz++;
491 	bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags);
492 	if (bucket) {
493 #ifdef INVARIANTS
494 		bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
495 #endif
496 		bucket->ub_cnt = 0;
497 		bucket->ub_entries = min(ubz->ubz_entries,
498 		    zone->uz_bucket_size_max);
499 		bucket->ub_seq = SMR_SEQ_INVALID;
500 		CTR3(KTR_UMA, "bucket_alloc: zone %s(%p) allocated bucket %p",
501 		    zone->uz_name, zone, bucket);
502 	}
503 
504 	return (bucket);
505 }
506 
507 static void
508 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata)
509 {
510 	struct uma_bucket_zone *ubz;
511 
512 	if (bucket->ub_cnt != 0)
513 		bucket_drain(zone, bucket);
514 
515 	KASSERT(bucket->ub_cnt == 0,
516 	    ("bucket_free: Freeing a non free bucket."));
517 	KASSERT(bucket->ub_seq == SMR_SEQ_INVALID,
518 	    ("bucket_free: Freeing an SMR bucket."));
519 	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
520 		udata = (void *)(uintptr_t)zone->uz_flags;
521 	ubz = bucket_zone_lookup(bucket->ub_entries);
522 	uma_zfree_arg(ubz->ubz_zone, bucket, udata);
523 }
524 
525 static void
526 bucket_zone_drain(void)
527 {
528 	struct uma_bucket_zone *ubz;
529 
530 	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
531 		uma_zone_reclaim(ubz->ubz_zone, UMA_RECLAIM_DRAIN);
532 }
533 
534 /*
535  * Acquire the domain lock and record contention.
536  */
537 static uma_zone_domain_t
538 zone_domain_lock(uma_zone_t zone, int domain)
539 {
540 	uma_zone_domain_t zdom;
541 	bool lockfail;
542 
543 	zdom = ZDOM_GET(zone, domain);
544 	lockfail = false;
545 	if (ZDOM_OWNED(zdom))
546 		lockfail = true;
547 	ZDOM_LOCK(zdom);
548 	/* This is unsynchronized.  The counter does not need to be precise. */
549 	if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max)
550 		zone->uz_bucket_size++;
551 	return (zdom);
552 }
553 
554 /*
555  * Search for the domain with the least cached items and return it if it
556  * is out of balance with the preferred domain.
557  */
558 static __noinline int
559 zone_domain_lowest(uma_zone_t zone, int pref)
560 {
561 	long least, nitems, prefitems;
562 	int domain;
563 	int i;
564 
565 	prefitems = least = LONG_MAX;
566 	domain = 0;
567 	for (i = 0; i < vm_ndomains; i++) {
568 		nitems = ZDOM_GET(zone, i)->uzd_nitems;
569 		if (nitems < least) {
570 			domain = i;
571 			least = nitems;
572 		}
573 		if (domain == pref)
574 			prefitems = nitems;
575 	}
576 	if (prefitems < least * 2)
577 		return (pref);
578 
579 	return (domain);
580 }
581 
582 /*
583  * Search for the domain with the most cached items and return it or the
584  * preferred domain if it has enough to proceed.
585  */
586 static __noinline int
587 zone_domain_highest(uma_zone_t zone, int pref)
588 {
589 	long most, nitems;
590 	int domain;
591 	int i;
592 
593 	if (ZDOM_GET(zone, pref)->uzd_nitems > BUCKET_MAX)
594 		return (pref);
595 
596 	most = 0;
597 	domain = 0;
598 	for (i = 0; i < vm_ndomains; i++) {
599 		nitems = ZDOM_GET(zone, i)->uzd_nitems;
600 		if (nitems > most) {
601 			domain = i;
602 			most = nitems;
603 		}
604 	}
605 
606 	return (domain);
607 }
608 
609 /*
610  * Safely subtract cnt from imax.
611  */
612 static void
613 zone_domain_imax_sub(uma_zone_domain_t zdom, int cnt)
614 {
615 	long new;
616 	long old;
617 
618 	old = zdom->uzd_imax;
619 	do {
620 		if (old <= cnt)
621 			new = 0;
622 		else
623 			new = old - cnt;
624 	} while (atomic_fcmpset_long(&zdom->uzd_imax, &old, new) == 0);
625 }
626 
627 /*
628  * Set the maximum imax value.
629  */
630 static void
631 zone_domain_imax_set(uma_zone_domain_t zdom, int nitems)
632 {
633 	long old;
634 
635 	old = zdom->uzd_imax;
636 	do {
637 		if (old >= nitems)
638 			break;
639 	} while (atomic_fcmpset_long(&zdom->uzd_imax, &old, nitems) == 0);
640 }
641 
642 /*
643  * Attempt to satisfy an allocation by retrieving a full bucket from one of the
644  * zone's caches.  If a bucket is found the zone is not locked on return.
645  */
646 static uma_bucket_t
647 zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom, bool reclaim)
648 {
649 	uma_bucket_t bucket;
650 	int i;
651 	bool dtor = false;
652 
653 	ZDOM_LOCK_ASSERT(zdom);
654 
655 	if ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) == NULL)
656 		return (NULL);
657 
658 	/* SMR Buckets can not be re-used until readers expire. */
659 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0 &&
660 	    bucket->ub_seq != SMR_SEQ_INVALID) {
661 		if (!smr_poll(zone->uz_smr, bucket->ub_seq, false))
662 			return (NULL);
663 		bucket->ub_seq = SMR_SEQ_INVALID;
664 		dtor = (zone->uz_dtor != NULL) || UMA_ALWAYS_CTORDTOR;
665 		if (STAILQ_NEXT(bucket, ub_link) != NULL)
666 			zdom->uzd_seq = STAILQ_NEXT(bucket, ub_link)->ub_seq;
667 	}
668 	STAILQ_REMOVE_HEAD(&zdom->uzd_buckets, ub_link);
669 
670 	KASSERT(zdom->uzd_nitems >= bucket->ub_cnt,
671 	    ("%s: item count underflow (%ld, %d)",
672 	    __func__, zdom->uzd_nitems, bucket->ub_cnt));
673 	KASSERT(bucket->ub_cnt > 0,
674 	    ("%s: empty bucket in bucket cache", __func__));
675 	zdom->uzd_nitems -= bucket->ub_cnt;
676 
677 	/*
678 	 * Shift the bounds of the current WSS interval to avoid
679 	 * perturbing the estimate.
680 	 */
681 	if (reclaim) {
682 		zdom->uzd_imin -= lmin(zdom->uzd_imin, bucket->ub_cnt);
683 		zone_domain_imax_sub(zdom, bucket->ub_cnt);
684 	} else if (zdom->uzd_imin > zdom->uzd_nitems)
685 		zdom->uzd_imin = zdom->uzd_nitems;
686 
687 	ZDOM_UNLOCK(zdom);
688 	if (dtor)
689 		for (i = 0; i < bucket->ub_cnt; i++)
690 			item_dtor(zone, bucket->ub_bucket[i], zone->uz_size,
691 			    NULL, SKIP_NONE);
692 
693 	return (bucket);
694 }
695 
696 /*
697  * Insert a full bucket into the specified cache.  The "ws" parameter indicates
698  * whether the bucket's contents should be counted as part of the zone's working
699  * set.  The bucket may be freed if it exceeds the bucket limit.
700  */
701 static void
702 zone_put_bucket(uma_zone_t zone, int domain, uma_bucket_t bucket, void *udata,
703     const bool ws)
704 {
705 	uma_zone_domain_t zdom;
706 
707 	/* We don't cache empty buckets.  This can happen after a reclaim. */
708 	if (bucket->ub_cnt == 0)
709 		goto out;
710 	zdom = zone_domain_lock(zone, domain);
711 
712 	/*
713 	 * Conditionally set the maximum number of items.
714 	 */
715 	zdom->uzd_nitems += bucket->ub_cnt;
716 	if (__predict_true(zdom->uzd_nitems < zone->uz_bucket_max)) {
717 		if (ws)
718 			zone_domain_imax_set(zdom, zdom->uzd_nitems);
719 		if (STAILQ_EMPTY(&zdom->uzd_buckets))
720 			zdom->uzd_seq = bucket->ub_seq;
721 
722 		/*
723 		 * Try to promote reuse of recently used items.  For items
724 		 * protected by SMR, try to defer reuse to minimize polling.
725 		 */
726 		if (bucket->ub_seq == SMR_SEQ_INVALID)
727 			STAILQ_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link);
728 		else
729 			STAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link);
730 		ZDOM_UNLOCK(zdom);
731 		return;
732 	}
733 	zdom->uzd_nitems -= bucket->ub_cnt;
734 	ZDOM_UNLOCK(zdom);
735 out:
736 	bucket_free(zone, bucket, udata);
737 }
738 
739 /* Pops an item out of a per-cpu cache bucket. */
740 static inline void *
741 cache_bucket_pop(uma_cache_t cache, uma_cache_bucket_t bucket)
742 {
743 	void *item;
744 
745 	CRITICAL_ASSERT(curthread);
746 
747 	bucket->ucb_cnt--;
748 	item = bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt];
749 #ifdef INVARIANTS
750 	bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = NULL;
751 	KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled."));
752 #endif
753 	cache->uc_allocs++;
754 
755 	return (item);
756 }
757 
758 /* Pushes an item into a per-cpu cache bucket. */
759 static inline void
760 cache_bucket_push(uma_cache_t cache, uma_cache_bucket_t bucket, void *item)
761 {
762 
763 	CRITICAL_ASSERT(curthread);
764 	KASSERT(bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] == NULL,
765 	    ("uma_zfree: Freeing to non free bucket index."));
766 
767 	bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = item;
768 	bucket->ucb_cnt++;
769 	cache->uc_frees++;
770 }
771 
772 /*
773  * Unload a UMA bucket from a per-cpu cache.
774  */
775 static inline uma_bucket_t
776 cache_bucket_unload(uma_cache_bucket_t bucket)
777 {
778 	uma_bucket_t b;
779 
780 	b = bucket->ucb_bucket;
781 	if (b != NULL) {
782 		MPASS(b->ub_entries == bucket->ucb_entries);
783 		b->ub_cnt = bucket->ucb_cnt;
784 		bucket->ucb_bucket = NULL;
785 		bucket->ucb_entries = bucket->ucb_cnt = 0;
786 	}
787 
788 	return (b);
789 }
790 
791 static inline uma_bucket_t
792 cache_bucket_unload_alloc(uma_cache_t cache)
793 {
794 
795 	return (cache_bucket_unload(&cache->uc_allocbucket));
796 }
797 
798 static inline uma_bucket_t
799 cache_bucket_unload_free(uma_cache_t cache)
800 {
801 
802 	return (cache_bucket_unload(&cache->uc_freebucket));
803 }
804 
805 static inline uma_bucket_t
806 cache_bucket_unload_cross(uma_cache_t cache)
807 {
808 
809 	return (cache_bucket_unload(&cache->uc_crossbucket));
810 }
811 
812 /*
813  * Load a bucket into a per-cpu cache bucket.
814  */
815 static inline void
816 cache_bucket_load(uma_cache_bucket_t bucket, uma_bucket_t b)
817 {
818 
819 	CRITICAL_ASSERT(curthread);
820 	MPASS(bucket->ucb_bucket == NULL);
821 	MPASS(b->ub_seq == SMR_SEQ_INVALID);
822 
823 	bucket->ucb_bucket = b;
824 	bucket->ucb_cnt = b->ub_cnt;
825 	bucket->ucb_entries = b->ub_entries;
826 }
827 
828 static inline void
829 cache_bucket_load_alloc(uma_cache_t cache, uma_bucket_t b)
830 {
831 
832 	cache_bucket_load(&cache->uc_allocbucket, b);
833 }
834 
835 static inline void
836 cache_bucket_load_free(uma_cache_t cache, uma_bucket_t b)
837 {
838 
839 	cache_bucket_load(&cache->uc_freebucket, b);
840 }
841 
842 #ifdef NUMA
843 static inline void
844 cache_bucket_load_cross(uma_cache_t cache, uma_bucket_t b)
845 {
846 
847 	cache_bucket_load(&cache->uc_crossbucket, b);
848 }
849 #endif
850 
851 /*
852  * Copy and preserve ucb_spare.
853  */
854 static inline void
855 cache_bucket_copy(uma_cache_bucket_t b1, uma_cache_bucket_t b2)
856 {
857 
858 	b1->ucb_bucket = b2->ucb_bucket;
859 	b1->ucb_entries = b2->ucb_entries;
860 	b1->ucb_cnt = b2->ucb_cnt;
861 }
862 
863 /*
864  * Swap two cache buckets.
865  */
866 static inline void
867 cache_bucket_swap(uma_cache_bucket_t b1, uma_cache_bucket_t b2)
868 {
869 	struct uma_cache_bucket b3;
870 
871 	CRITICAL_ASSERT(curthread);
872 
873 	cache_bucket_copy(&b3, b1);
874 	cache_bucket_copy(b1, b2);
875 	cache_bucket_copy(b2, &b3);
876 }
877 
878 /*
879  * Attempt to fetch a bucket from a zone on behalf of the current cpu cache.
880  */
881 static uma_bucket_t
882 cache_fetch_bucket(uma_zone_t zone, uma_cache_t cache, int domain)
883 {
884 	uma_zone_domain_t zdom;
885 	uma_bucket_t bucket;
886 
887 	/*
888 	 * Avoid the lock if possible.
889 	 */
890 	zdom = ZDOM_GET(zone, domain);
891 	if (zdom->uzd_nitems == 0)
892 		return (NULL);
893 
894 	if ((cache_uz_flags(cache) & UMA_ZONE_SMR) != 0 &&
895 	    !smr_poll(zone->uz_smr, zdom->uzd_seq, false))
896 		return (NULL);
897 
898 	/*
899 	 * Check the zone's cache of buckets.
900 	 */
901 	zdom = zone_domain_lock(zone, domain);
902 	if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL)
903 		return (bucket);
904 	ZDOM_UNLOCK(zdom);
905 
906 	return (NULL);
907 }
908 
909 static void
910 zone_log_warning(uma_zone_t zone)
911 {
912 	static const struct timeval warninterval = { 300, 0 };
913 
914 	if (!zone_warnings || zone->uz_warning == NULL)
915 		return;
916 
917 	if (ratecheck(&zone->uz_ratecheck, &warninterval))
918 		printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning);
919 }
920 
921 static inline void
922 zone_maxaction(uma_zone_t zone)
923 {
924 
925 	if (zone->uz_maxaction.ta_func != NULL)
926 		taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction);
927 }
928 
929 /*
930  * Routine called by timeout which is used to fire off some time interval
931  * based calculations.  (stats, hash size, etc.)
932  *
933  * Arguments:
934  *	arg   Unused
935  *
936  * Returns:
937  *	Nothing
938  */
939 static void
940 uma_timeout(void *unused)
941 {
942 	bucket_enable();
943 	zone_foreach(zone_timeout, NULL);
944 
945 	/* Reschedule this event */
946 	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
947 }
948 
949 /*
950  * Update the working set size estimate for the zone's bucket cache.
951  * The constants chosen here are somewhat arbitrary.  With an update period of
952  * 20s (UMA_TIMEOUT), this estimate is dominated by zone activity over the
953  * last 100s.
954  */
955 static void
956 zone_domain_update_wss(uma_zone_domain_t zdom)
957 {
958 	long wss;
959 
960 	ZDOM_LOCK(zdom);
961 	MPASS(zdom->uzd_imax >= zdom->uzd_imin);
962 	wss = zdom->uzd_imax - zdom->uzd_imin;
963 	zdom->uzd_imax = zdom->uzd_imin = zdom->uzd_nitems;
964 	zdom->uzd_wss = (4 * wss + zdom->uzd_wss) / 5;
965 	ZDOM_UNLOCK(zdom);
966 }
967 
968 /*
969  * Routine to perform timeout driven calculations.  This expands the
970  * hashes and does per cpu statistics aggregation.
971  *
972  *  Returns nothing.
973  */
974 static void
975 zone_timeout(uma_zone_t zone, void *unused)
976 {
977 	uma_keg_t keg;
978 	u_int slabs, pages;
979 
980 	if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0)
981 		goto update_wss;
982 
983 	keg = zone->uz_keg;
984 
985 	/*
986 	 * Hash zones are non-numa by definition so the first domain
987 	 * is the only one present.
988 	 */
989 	KEG_LOCK(keg, 0);
990 	pages = keg->uk_domain[0].ud_pages;
991 
992 	/*
993 	 * Expand the keg hash table.
994 	 *
995 	 * This is done if the number of slabs is larger than the hash size.
996 	 * What I'm trying to do here is completely reduce collisions.  This
997 	 * may be a little aggressive.  Should I allow for two collisions max?
998 	 */
999 	if ((slabs = pages / keg->uk_ppera) > keg->uk_hash.uh_hashsize) {
1000 		struct uma_hash newhash;
1001 		struct uma_hash oldhash;
1002 		int ret;
1003 
1004 		/*
1005 		 * This is so involved because allocating and freeing
1006 		 * while the keg lock is held will lead to deadlock.
1007 		 * I have to do everything in stages and check for
1008 		 * races.
1009 		 */
1010 		KEG_UNLOCK(keg, 0);
1011 		ret = hash_alloc(&newhash, 1 << fls(slabs));
1012 		KEG_LOCK(keg, 0);
1013 		if (ret) {
1014 			if (hash_expand(&keg->uk_hash, &newhash)) {
1015 				oldhash = keg->uk_hash;
1016 				keg->uk_hash = newhash;
1017 			} else
1018 				oldhash = newhash;
1019 
1020 			KEG_UNLOCK(keg, 0);
1021 			hash_free(&oldhash);
1022 			goto update_wss;
1023 		}
1024 	}
1025 	KEG_UNLOCK(keg, 0);
1026 
1027 update_wss:
1028 	for (int i = 0; i < vm_ndomains; i++)
1029 		zone_domain_update_wss(ZDOM_GET(zone, i));
1030 }
1031 
1032 /*
1033  * Allocate and zero fill the next sized hash table from the appropriate
1034  * backing store.
1035  *
1036  * Arguments:
1037  *	hash  A new hash structure with the old hash size in uh_hashsize
1038  *
1039  * Returns:
1040  *	1 on success and 0 on failure.
1041  */
1042 static int
1043 hash_alloc(struct uma_hash *hash, u_int size)
1044 {
1045 	size_t alloc;
1046 
1047 	KASSERT(powerof2(size), ("hash size must be power of 2"));
1048 	if (size > UMA_HASH_SIZE_INIT)  {
1049 		hash->uh_hashsize = size;
1050 		alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
1051 		hash->uh_slab_hash = malloc(alloc, M_UMAHASH, M_NOWAIT);
1052 	} else {
1053 		alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
1054 		hash->uh_slab_hash = zone_alloc_item(hashzone, NULL,
1055 		    UMA_ANYDOMAIN, M_WAITOK);
1056 		hash->uh_hashsize = UMA_HASH_SIZE_INIT;
1057 	}
1058 	if (hash->uh_slab_hash) {
1059 		bzero(hash->uh_slab_hash, alloc);
1060 		hash->uh_hashmask = hash->uh_hashsize - 1;
1061 		return (1);
1062 	}
1063 
1064 	return (0);
1065 }
1066 
1067 /*
1068  * Expands the hash table for HASH zones.  This is done from zone_timeout
1069  * to reduce collisions.  This must not be done in the regular allocation
1070  * path, otherwise, we can recurse on the vm while allocating pages.
1071  *
1072  * Arguments:
1073  *	oldhash  The hash you want to expand
1074  *	newhash  The hash structure for the new table
1075  *
1076  * Returns:
1077  *	Nothing
1078  *
1079  * Discussion:
1080  */
1081 static int
1082 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
1083 {
1084 	uma_hash_slab_t slab;
1085 	u_int hval;
1086 	u_int idx;
1087 
1088 	if (!newhash->uh_slab_hash)
1089 		return (0);
1090 
1091 	if (oldhash->uh_hashsize >= newhash->uh_hashsize)
1092 		return (0);
1093 
1094 	/*
1095 	 * I need to investigate hash algorithms for resizing without a
1096 	 * full rehash.
1097 	 */
1098 
1099 	for (idx = 0; idx < oldhash->uh_hashsize; idx++)
1100 		while (!LIST_EMPTY(&oldhash->uh_slab_hash[idx])) {
1101 			slab = LIST_FIRST(&oldhash->uh_slab_hash[idx]);
1102 			LIST_REMOVE(slab, uhs_hlink);
1103 			hval = UMA_HASH(newhash, slab->uhs_data);
1104 			LIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
1105 			    slab, uhs_hlink);
1106 		}
1107 
1108 	return (1);
1109 }
1110 
1111 /*
1112  * Free the hash bucket to the appropriate backing store.
1113  *
1114  * Arguments:
1115  *	slab_hash  The hash bucket we're freeing
1116  *	hashsize   The number of entries in that hash bucket
1117  *
1118  * Returns:
1119  *	Nothing
1120  */
1121 static void
1122 hash_free(struct uma_hash *hash)
1123 {
1124 	if (hash->uh_slab_hash == NULL)
1125 		return;
1126 	if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
1127 		zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE);
1128 	else
1129 		free(hash->uh_slab_hash, M_UMAHASH);
1130 }
1131 
1132 /*
1133  * Frees all outstanding items in a bucket
1134  *
1135  * Arguments:
1136  *	zone   The zone to free to, must be unlocked.
1137  *	bucket The free/alloc bucket with items.
1138  *
1139  * Returns:
1140  *	Nothing
1141  */
1142 static void
1143 bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
1144 {
1145 	int i;
1146 
1147 	if (bucket->ub_cnt == 0)
1148 		return;
1149 
1150 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0 &&
1151 	    bucket->ub_seq != SMR_SEQ_INVALID) {
1152 		smr_wait(zone->uz_smr, bucket->ub_seq);
1153 		bucket->ub_seq = SMR_SEQ_INVALID;
1154 		for (i = 0; i < bucket->ub_cnt; i++)
1155 			item_dtor(zone, bucket->ub_bucket[i],
1156 			    zone->uz_size, NULL, SKIP_NONE);
1157 	}
1158 	if (zone->uz_fini)
1159 		for (i = 0; i < bucket->ub_cnt; i++)
1160 			zone->uz_fini(bucket->ub_bucket[i], zone->uz_size);
1161 	zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt);
1162 	if (zone->uz_max_items > 0)
1163 		zone_free_limit(zone, bucket->ub_cnt);
1164 #ifdef INVARIANTS
1165 	bzero(bucket->ub_bucket, sizeof(void *) * bucket->ub_cnt);
1166 #endif
1167 	bucket->ub_cnt = 0;
1168 }
1169 
1170 /*
1171  * Drains the per cpu caches for a zone.
1172  *
1173  * NOTE: This may only be called while the zone is being torn down, and not
1174  * during normal operation.  This is necessary in order that we do not have
1175  * to migrate CPUs to drain the per-CPU caches.
1176  *
1177  * Arguments:
1178  *	zone     The zone to drain, must be unlocked.
1179  *
1180  * Returns:
1181  *	Nothing
1182  */
1183 static void
1184 cache_drain(uma_zone_t zone)
1185 {
1186 	uma_cache_t cache;
1187 	uma_bucket_t bucket;
1188 	smr_seq_t seq;
1189 	int cpu;
1190 
1191 	/*
1192 	 * XXX: It is safe to not lock the per-CPU caches, because we're
1193 	 * tearing down the zone anyway.  I.e., there will be no further use
1194 	 * of the caches at this point.
1195 	 *
1196 	 * XXX: It would good to be able to assert that the zone is being
1197 	 * torn down to prevent improper use of cache_drain().
1198 	 */
1199 	seq = SMR_SEQ_INVALID;
1200 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
1201 		seq = smr_advance(zone->uz_smr);
1202 	CPU_FOREACH(cpu) {
1203 		cache = &zone->uz_cpu[cpu];
1204 		bucket = cache_bucket_unload_alloc(cache);
1205 		if (bucket != NULL)
1206 			bucket_free(zone, bucket, NULL);
1207 		bucket = cache_bucket_unload_free(cache);
1208 		if (bucket != NULL) {
1209 			bucket->ub_seq = seq;
1210 			bucket_free(zone, bucket, NULL);
1211 		}
1212 		bucket = cache_bucket_unload_cross(cache);
1213 		if (bucket != NULL) {
1214 			bucket->ub_seq = seq;
1215 			bucket_free(zone, bucket, NULL);
1216 		}
1217 	}
1218 	bucket_cache_reclaim(zone, true);
1219 }
1220 
1221 static void
1222 cache_shrink(uma_zone_t zone, void *unused)
1223 {
1224 
1225 	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
1226 		return;
1227 
1228 	zone->uz_bucket_size =
1229 	    (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2;
1230 }
1231 
1232 static void
1233 cache_drain_safe_cpu(uma_zone_t zone, void *unused)
1234 {
1235 	uma_cache_t cache;
1236 	uma_bucket_t b1, b2, b3;
1237 	int domain;
1238 
1239 	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
1240 		return;
1241 
1242 	b1 = b2 = b3 = NULL;
1243 	critical_enter();
1244 	cache = &zone->uz_cpu[curcpu];
1245 	domain = PCPU_GET(domain);
1246 	b1 = cache_bucket_unload_alloc(cache);
1247 
1248 	/*
1249 	 * Don't flush SMR zone buckets.  This leaves the zone without a
1250 	 * bucket and forces every free to synchronize().
1251 	 */
1252 	if ((zone->uz_flags & UMA_ZONE_SMR) == 0) {
1253 		b2 = cache_bucket_unload_free(cache);
1254 		b3 = cache_bucket_unload_cross(cache);
1255 	}
1256 	critical_exit();
1257 
1258 	if (b1 != NULL)
1259 		zone_free_bucket(zone, b1, NULL, domain, false);
1260 	if (b2 != NULL)
1261 		zone_free_bucket(zone, b2, NULL, domain, false);
1262 	if (b3 != NULL) {
1263 		/* Adjust the domain so it goes to zone_free_cross. */
1264 		domain = (domain + 1) % vm_ndomains;
1265 		zone_free_bucket(zone, b3, NULL, domain, false);
1266 	}
1267 }
1268 
1269 /*
1270  * Safely drain per-CPU caches of a zone(s) to alloc bucket.
1271  * This is an expensive call because it needs to bind to all CPUs
1272  * one by one and enter a critical section on each of them in order
1273  * to safely access their cache buckets.
1274  * Zone lock must not be held on call this function.
1275  */
1276 static void
1277 pcpu_cache_drain_safe(uma_zone_t zone)
1278 {
1279 	int cpu;
1280 
1281 	/*
1282 	 * Polite bucket sizes shrinking was not enough, shrink aggressively.
1283 	 */
1284 	if (zone)
1285 		cache_shrink(zone, NULL);
1286 	else
1287 		zone_foreach(cache_shrink, NULL);
1288 
1289 	CPU_FOREACH(cpu) {
1290 		thread_lock(curthread);
1291 		sched_bind(curthread, cpu);
1292 		thread_unlock(curthread);
1293 
1294 		if (zone)
1295 			cache_drain_safe_cpu(zone, NULL);
1296 		else
1297 			zone_foreach(cache_drain_safe_cpu, NULL);
1298 	}
1299 	thread_lock(curthread);
1300 	sched_unbind(curthread);
1301 	thread_unlock(curthread);
1302 }
1303 
1304 /*
1305  * Reclaim cached buckets from a zone.  All buckets are reclaimed if the caller
1306  * requested a drain, otherwise the per-domain caches are trimmed to either
1307  * estimated working set size.
1308  */
1309 static void
1310 bucket_cache_reclaim(uma_zone_t zone, bool drain)
1311 {
1312 	uma_zone_domain_t zdom;
1313 	uma_bucket_t bucket;
1314 	long target;
1315 	int i;
1316 
1317 	/*
1318 	 * Shrink the zone bucket size to ensure that the per-CPU caches
1319 	 * don't grow too large.
1320 	 */
1321 	if (zone->uz_bucket_size > zone->uz_bucket_size_min)
1322 		zone->uz_bucket_size--;
1323 
1324 	for (i = 0; i < vm_ndomains; i++) {
1325 		/*
1326 		 * The cross bucket is partially filled and not part of
1327 		 * the item count.  Reclaim it individually here.
1328 		 */
1329 		zdom = ZDOM_GET(zone, i);
1330 		if ((zone->uz_flags & UMA_ZONE_SMR) == 0 || drain) {
1331 			ZONE_CROSS_LOCK(zone);
1332 			bucket = zdom->uzd_cross;
1333 			zdom->uzd_cross = NULL;
1334 			ZONE_CROSS_UNLOCK(zone);
1335 			if (bucket != NULL)
1336 				bucket_free(zone, bucket, NULL);
1337 		}
1338 
1339 		/*
1340 		 * If we were asked to drain the zone, we are done only once
1341 		 * this bucket cache is empty.  Otherwise, we reclaim items in
1342 		 * excess of the zone's estimated working set size.  If the
1343 		 * difference nitems - imin is larger than the WSS estimate,
1344 		 * then the estimate will grow at the end of this interval and
1345 		 * we ignore the historical average.
1346 		 */
1347 		ZDOM_LOCK(zdom);
1348 		target = drain ? 0 : lmax(zdom->uzd_wss, zdom->uzd_nitems -
1349 		    zdom->uzd_imin);
1350 		while (zdom->uzd_nitems > target) {
1351 			bucket = zone_fetch_bucket(zone, zdom, true);
1352 			if (bucket == NULL)
1353 				break;
1354 			bucket_free(zone, bucket, NULL);
1355 			ZDOM_LOCK(zdom);
1356 		}
1357 		ZDOM_UNLOCK(zdom);
1358 	}
1359 }
1360 
1361 static void
1362 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start)
1363 {
1364 	uint8_t *mem;
1365 	int i;
1366 	uint8_t flags;
1367 
1368 	CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes",
1369 	    keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera);
1370 
1371 	mem = slab_data(slab, keg);
1372 	flags = slab->us_flags;
1373 	i = start;
1374 	if (keg->uk_fini != NULL) {
1375 		for (i--; i > -1; i--)
1376 #ifdef INVARIANTS
1377 		/*
1378 		 * trash_fini implies that dtor was trash_dtor. trash_fini
1379 		 * would check that memory hasn't been modified since free,
1380 		 * which executed trash_dtor.
1381 		 * That's why we need to run uma_dbg_kskip() check here,
1382 		 * albeit we don't make skip check for other init/fini
1383 		 * invocations.
1384 		 */
1385 		if (!uma_dbg_kskip(keg, slab_item(slab, keg, i)) ||
1386 		    keg->uk_fini != trash_fini)
1387 #endif
1388 			keg->uk_fini(slab_item(slab, keg, i), keg->uk_size);
1389 	}
1390 	if (keg->uk_flags & UMA_ZFLAG_OFFPAGE)
1391 		zone_free_item(slabzone(keg->uk_ipers), slab_tohashslab(slab),
1392 		    NULL, SKIP_NONE);
1393 	keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags);
1394 	uma_total_dec(PAGE_SIZE * keg->uk_ppera);
1395 }
1396 
1397 static void
1398 keg_drain_domain(uma_keg_t keg, int domain)
1399 {
1400 	struct slabhead freeslabs;
1401 	uma_domain_t dom;
1402 	uma_slab_t slab, tmp;
1403 	uint32_t i, stofree, stokeep, partial;
1404 
1405 	dom = &keg->uk_domain[domain];
1406 	LIST_INIT(&freeslabs);
1407 
1408 	CTR4(KTR_UMA, "keg_drain %s(%p) domain %d free items: %u",
1409 	    keg->uk_name, keg, domain, dom->ud_free_items);
1410 
1411 	KEG_LOCK(keg, domain);
1412 
1413 	/*
1414 	 * Are the free items in partially allocated slabs sufficient to meet
1415 	 * the reserve? If not, compute the number of fully free slabs that must
1416 	 * be kept.
1417 	 */
1418 	partial = dom->ud_free_items - dom->ud_free_slabs * keg->uk_ipers;
1419 	if (partial < keg->uk_reserve) {
1420 		stokeep = min(dom->ud_free_slabs,
1421 		    howmany(keg->uk_reserve - partial, keg->uk_ipers));
1422 	} else {
1423 		stokeep = 0;
1424 	}
1425 	stofree = dom->ud_free_slabs - stokeep;
1426 
1427 	/*
1428 	 * Partition the free slabs into two sets: those that must be kept in
1429 	 * order to maintain the reserve, and those that may be released back to
1430 	 * the system.  Since one set may be much larger than the other,
1431 	 * populate the smaller of the two sets and swap them if necessary.
1432 	 */
1433 	for (i = min(stofree, stokeep); i > 0; i--) {
1434 		slab = LIST_FIRST(&dom->ud_free_slab);
1435 		LIST_REMOVE(slab, us_link);
1436 		LIST_INSERT_HEAD(&freeslabs, slab, us_link);
1437 	}
1438 	if (stofree > stokeep)
1439 		LIST_SWAP(&freeslabs, &dom->ud_free_slab, uma_slab, us_link);
1440 
1441 	if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) {
1442 		LIST_FOREACH(slab, &freeslabs, us_link)
1443 			UMA_HASH_REMOVE(&keg->uk_hash, slab);
1444 	}
1445 	dom->ud_free_items -= stofree * keg->uk_ipers;
1446 	dom->ud_free_slabs -= stofree;
1447 	dom->ud_pages -= stofree * keg->uk_ppera;
1448 	KEG_UNLOCK(keg, domain);
1449 
1450 	LIST_FOREACH_SAFE(slab, &freeslabs, us_link, tmp)
1451 		keg_free_slab(keg, slab, keg->uk_ipers);
1452 }
1453 
1454 /*
1455  * Frees pages from a keg back to the system.  This is done on demand from
1456  * the pageout daemon.
1457  *
1458  * Returns nothing.
1459  */
1460 static void
1461 keg_drain(uma_keg_t keg)
1462 {
1463 	int i;
1464 
1465 	if ((keg->uk_flags & UMA_ZONE_NOFREE) != 0)
1466 		return;
1467 	for (i = 0; i < vm_ndomains; i++)
1468 		keg_drain_domain(keg, i);
1469 }
1470 
1471 static void
1472 zone_reclaim(uma_zone_t zone, int waitok, bool drain)
1473 {
1474 
1475 	/*
1476 	 * Set draining to interlock with zone_dtor() so we can release our
1477 	 * locks as we go.  Only dtor() should do a WAITOK call since it
1478 	 * is the only call that knows the structure will still be available
1479 	 * when it wakes up.
1480 	 */
1481 	ZONE_LOCK(zone);
1482 	while (zone->uz_flags & UMA_ZFLAG_RECLAIMING) {
1483 		if (waitok == M_NOWAIT)
1484 			goto out;
1485 		msleep(zone, &ZDOM_GET(zone, 0)->uzd_lock, PVM, "zonedrain",
1486 		    1);
1487 	}
1488 	zone->uz_flags |= UMA_ZFLAG_RECLAIMING;
1489 	ZONE_UNLOCK(zone);
1490 	bucket_cache_reclaim(zone, drain);
1491 
1492 	/*
1493 	 * The DRAINING flag protects us from being freed while
1494 	 * we're running.  Normally the uma_rwlock would protect us but we
1495 	 * must be able to release and acquire the right lock for each keg.
1496 	 */
1497 	if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0)
1498 		keg_drain(zone->uz_keg);
1499 	ZONE_LOCK(zone);
1500 	zone->uz_flags &= ~UMA_ZFLAG_RECLAIMING;
1501 	wakeup(zone);
1502 out:
1503 	ZONE_UNLOCK(zone);
1504 }
1505 
1506 static void
1507 zone_drain(uma_zone_t zone, void *unused)
1508 {
1509 
1510 	zone_reclaim(zone, M_NOWAIT, true);
1511 }
1512 
1513 static void
1514 zone_trim(uma_zone_t zone, void *unused)
1515 {
1516 
1517 	zone_reclaim(zone, M_NOWAIT, false);
1518 }
1519 
1520 /*
1521  * Allocate a new slab for a keg and inserts it into the partial slab list.
1522  * The keg should be unlocked on entry.  If the allocation succeeds it will
1523  * be locked on return.
1524  *
1525  * Arguments:
1526  *	flags   Wait flags for the item initialization routine
1527  *	aflags  Wait flags for the slab allocation
1528  *
1529  * Returns:
1530  *	The slab that was allocated or NULL if there is no memory and the
1531  *	caller specified M_NOWAIT.
1532  */
1533 static uma_slab_t
1534 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags,
1535     int aflags)
1536 {
1537 	uma_domain_t dom;
1538 	uma_alloc allocf;
1539 	uma_slab_t slab;
1540 	unsigned long size;
1541 	uint8_t *mem;
1542 	uint8_t sflags;
1543 	int i;
1544 
1545 	KASSERT(domain >= 0 && domain < vm_ndomains,
1546 	    ("keg_alloc_slab: domain %d out of range", domain));
1547 
1548 	allocf = keg->uk_allocf;
1549 	slab = NULL;
1550 	mem = NULL;
1551 	if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) {
1552 		uma_hash_slab_t hslab;
1553 		hslab = zone_alloc_item(slabzone(keg->uk_ipers), NULL,
1554 		    domain, aflags);
1555 		if (hslab == NULL)
1556 			goto fail;
1557 		slab = &hslab->uhs_slab;
1558 	}
1559 
1560 	/*
1561 	 * This reproduces the old vm_zone behavior of zero filling pages the
1562 	 * first time they are added to a zone.
1563 	 *
1564 	 * Malloced items are zeroed in uma_zalloc.
1565 	 */
1566 
1567 	if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
1568 		aflags |= M_ZERO;
1569 	else
1570 		aflags &= ~M_ZERO;
1571 
1572 	if (keg->uk_flags & UMA_ZONE_NODUMP)
1573 		aflags |= M_NODUMP;
1574 
1575 	/* zone is passed for legacy reasons. */
1576 	size = keg->uk_ppera * PAGE_SIZE;
1577 	mem = allocf(zone, size, domain, &sflags, aflags);
1578 	if (mem == NULL) {
1579 		if (keg->uk_flags & UMA_ZFLAG_OFFPAGE)
1580 			zone_free_item(slabzone(keg->uk_ipers),
1581 			    slab_tohashslab(slab), NULL, SKIP_NONE);
1582 		goto fail;
1583 	}
1584 	uma_total_inc(size);
1585 
1586 	/* For HASH zones all pages go to the same uma_domain. */
1587 	if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0)
1588 		domain = 0;
1589 
1590 	/* Point the slab into the allocated memory */
1591 	if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE))
1592 		slab = (uma_slab_t )(mem + keg->uk_pgoff);
1593 	else
1594 		slab_tohashslab(slab)->uhs_data = mem;
1595 
1596 	if (keg->uk_flags & UMA_ZFLAG_VTOSLAB)
1597 		for (i = 0; i < keg->uk_ppera; i++)
1598 			vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE),
1599 			    zone, slab);
1600 
1601 	slab->us_freecount = keg->uk_ipers;
1602 	slab->us_flags = sflags;
1603 	slab->us_domain = domain;
1604 
1605 	BIT_FILL(keg->uk_ipers, &slab->us_free);
1606 #ifdef INVARIANTS
1607 	BIT_ZERO(keg->uk_ipers, slab_dbg_bits(slab, keg));
1608 #endif
1609 
1610 	if (keg->uk_init != NULL) {
1611 		for (i = 0; i < keg->uk_ipers; i++)
1612 			if (keg->uk_init(slab_item(slab, keg, i),
1613 			    keg->uk_size, flags) != 0)
1614 				break;
1615 		if (i != keg->uk_ipers) {
1616 			keg_free_slab(keg, slab, i);
1617 			goto fail;
1618 		}
1619 	}
1620 	KEG_LOCK(keg, domain);
1621 
1622 	CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)",
1623 	    slab, keg->uk_name, keg);
1624 
1625 	if (keg->uk_flags & UMA_ZFLAG_HASH)
1626 		UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
1627 
1628 	/*
1629 	 * If we got a slab here it's safe to mark it partially used
1630 	 * and return.  We assume that the caller is going to remove
1631 	 * at least one item.
1632 	 */
1633 	dom = &keg->uk_domain[domain];
1634 	LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
1635 	dom->ud_pages += keg->uk_ppera;
1636 	dom->ud_free_items += keg->uk_ipers;
1637 
1638 	return (slab);
1639 
1640 fail:
1641 	return (NULL);
1642 }
1643 
1644 /*
1645  * This function is intended to be used early on in place of page_alloc() so
1646  * that we may use the boot time page cache to satisfy allocations before
1647  * the VM is ready.
1648  */
1649 static void *
1650 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1651     int wait)
1652 {
1653 	vm_paddr_t pa;
1654 	vm_page_t m;
1655 	void *mem;
1656 	int pages;
1657 	int i;
1658 
1659 	pages = howmany(bytes, PAGE_SIZE);
1660 	KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__));
1661 
1662 	*pflag = UMA_SLAB_BOOT;
1663 	m = vm_page_alloc_contig_domain(NULL, 0, domain,
1664 	    malloc2vm_flags(wait) | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED, pages,
1665 	    (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT);
1666 	if (m == NULL)
1667 		return (NULL);
1668 
1669 	pa = VM_PAGE_TO_PHYS(m);
1670 	for (i = 0; i < pages; i++, pa += PAGE_SIZE) {
1671 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
1672     defined(__riscv) || defined(__powerpc64__)
1673 		if ((wait & M_NODUMP) == 0)
1674 			dump_add_page(pa);
1675 #endif
1676 	}
1677 	/* Allocate KVA and indirectly advance bootmem. */
1678 	mem = (void *)pmap_map(&bootmem, m->phys_addr,
1679 	    m->phys_addr + (pages * PAGE_SIZE), VM_PROT_READ | VM_PROT_WRITE);
1680         if ((wait & M_ZERO) != 0)
1681                 bzero(mem, pages * PAGE_SIZE);
1682 
1683         return (mem);
1684 }
1685 
1686 static void
1687 startup_free(void *mem, vm_size_t bytes)
1688 {
1689 	vm_offset_t va;
1690 	vm_page_t m;
1691 
1692 	va = (vm_offset_t)mem;
1693 	m = PHYS_TO_VM_PAGE(pmap_kextract(va));
1694 	pmap_remove(kernel_pmap, va, va + bytes);
1695 	for (; bytes != 0; bytes -= PAGE_SIZE, m++) {
1696 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
1697     defined(__riscv) || defined(__powerpc64__)
1698 		dump_drop_page(VM_PAGE_TO_PHYS(m));
1699 #endif
1700 		vm_page_unwire_noq(m);
1701 		vm_page_free(m);
1702 	}
1703 }
1704 
1705 /*
1706  * Allocates a number of pages from the system
1707  *
1708  * Arguments:
1709  *	bytes  The number of bytes requested
1710  *	wait  Shall we wait?
1711  *
1712  * Returns:
1713  *	A pointer to the alloced memory or possibly
1714  *	NULL if M_NOWAIT is set.
1715  */
1716 static void *
1717 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1718     int wait)
1719 {
1720 	void *p;	/* Returned page */
1721 
1722 	*pflag = UMA_SLAB_KERNEL;
1723 	p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait);
1724 
1725 	return (p);
1726 }
1727 
1728 static void *
1729 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1730     int wait)
1731 {
1732 	struct pglist alloctail;
1733 	vm_offset_t addr, zkva;
1734 	int cpu, flags;
1735 	vm_page_t p, p_next;
1736 #ifdef NUMA
1737 	struct pcpu *pc;
1738 #endif
1739 
1740 	MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE);
1741 
1742 	TAILQ_INIT(&alloctail);
1743 	flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ |
1744 	    malloc2vm_flags(wait);
1745 	*pflag = UMA_SLAB_KERNEL;
1746 	for (cpu = 0; cpu <= mp_maxid; cpu++) {
1747 		if (CPU_ABSENT(cpu)) {
1748 			p = vm_page_alloc(NULL, 0, flags);
1749 		} else {
1750 #ifndef NUMA
1751 			p = vm_page_alloc(NULL, 0, flags);
1752 #else
1753 			pc = pcpu_find(cpu);
1754 			if (__predict_false(VM_DOMAIN_EMPTY(pc->pc_domain)))
1755 				p = NULL;
1756 			else
1757 				p = vm_page_alloc_domain(NULL, 0,
1758 				    pc->pc_domain, flags);
1759 			if (__predict_false(p == NULL))
1760 				p = vm_page_alloc(NULL, 0, flags);
1761 #endif
1762 		}
1763 		if (__predict_false(p == NULL))
1764 			goto fail;
1765 		TAILQ_INSERT_TAIL(&alloctail, p, listq);
1766 	}
1767 	if ((addr = kva_alloc(bytes)) == 0)
1768 		goto fail;
1769 	zkva = addr;
1770 	TAILQ_FOREACH(p, &alloctail, listq) {
1771 		pmap_qenter(zkva, &p, 1);
1772 		zkva += PAGE_SIZE;
1773 	}
1774 	return ((void*)addr);
1775 fail:
1776 	TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
1777 		vm_page_unwire_noq(p);
1778 		vm_page_free(p);
1779 	}
1780 	return (NULL);
1781 }
1782 
1783 /*
1784  * Allocates a number of pages from within an object
1785  *
1786  * Arguments:
1787  *	bytes  The number of bytes requested
1788  *	wait   Shall we wait?
1789  *
1790  * Returns:
1791  *	A pointer to the alloced memory or possibly
1792  *	NULL if M_NOWAIT is set.
1793  */
1794 static void *
1795 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags,
1796     int wait)
1797 {
1798 	TAILQ_HEAD(, vm_page) alloctail;
1799 	u_long npages;
1800 	vm_offset_t retkva, zkva;
1801 	vm_page_t p, p_next;
1802 	uma_keg_t keg;
1803 
1804 	TAILQ_INIT(&alloctail);
1805 	keg = zone->uz_keg;
1806 
1807 	npages = howmany(bytes, PAGE_SIZE);
1808 	while (npages > 0) {
1809 		p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT |
1810 		    VM_ALLOC_WIRED | VM_ALLOC_NOOBJ |
1811 		    ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK :
1812 		    VM_ALLOC_NOWAIT));
1813 		if (p != NULL) {
1814 			/*
1815 			 * Since the page does not belong to an object, its
1816 			 * listq is unused.
1817 			 */
1818 			TAILQ_INSERT_TAIL(&alloctail, p, listq);
1819 			npages--;
1820 			continue;
1821 		}
1822 		/*
1823 		 * Page allocation failed, free intermediate pages and
1824 		 * exit.
1825 		 */
1826 		TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
1827 			vm_page_unwire_noq(p);
1828 			vm_page_free(p);
1829 		}
1830 		return (NULL);
1831 	}
1832 	*flags = UMA_SLAB_PRIV;
1833 	zkva = keg->uk_kva +
1834 	    atomic_fetchadd_long(&keg->uk_offset, round_page(bytes));
1835 	retkva = zkva;
1836 	TAILQ_FOREACH(p, &alloctail, listq) {
1837 		pmap_qenter(zkva, &p, 1);
1838 		zkva += PAGE_SIZE;
1839 	}
1840 
1841 	return ((void *)retkva);
1842 }
1843 
1844 /*
1845  * Allocate physically contiguous pages.
1846  */
1847 static void *
1848 contig_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1849     int wait)
1850 {
1851 
1852 	*pflag = UMA_SLAB_KERNEL;
1853 	return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain),
1854 	    bytes, wait, 0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT));
1855 }
1856 
1857 /*
1858  * Frees a number of pages to the system
1859  *
1860  * Arguments:
1861  *	mem   A pointer to the memory to be freed
1862  *	size  The size of the memory being freed
1863  *	flags The original p->us_flags field
1864  *
1865  * Returns:
1866  *	Nothing
1867  */
1868 static void
1869 page_free(void *mem, vm_size_t size, uint8_t flags)
1870 {
1871 
1872 	if ((flags & UMA_SLAB_BOOT) != 0) {
1873 		startup_free(mem, size);
1874 		return;
1875 	}
1876 
1877 	KASSERT((flags & UMA_SLAB_KERNEL) != 0,
1878 	    ("UMA: page_free used with invalid flags %x", flags));
1879 
1880 	kmem_free((vm_offset_t)mem, size);
1881 }
1882 
1883 /*
1884  * Frees pcpu zone allocations
1885  *
1886  * Arguments:
1887  *	mem   A pointer to the memory to be freed
1888  *	size  The size of the memory being freed
1889  *	flags The original p->us_flags field
1890  *
1891  * Returns:
1892  *	Nothing
1893  */
1894 static void
1895 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags)
1896 {
1897 	vm_offset_t sva, curva;
1898 	vm_paddr_t paddr;
1899 	vm_page_t m;
1900 
1901 	MPASS(size == (mp_maxid+1)*PAGE_SIZE);
1902 
1903 	if ((flags & UMA_SLAB_BOOT) != 0) {
1904 		startup_free(mem, size);
1905 		return;
1906 	}
1907 
1908 	sva = (vm_offset_t)mem;
1909 	for (curva = sva; curva < sva + size; curva += PAGE_SIZE) {
1910 		paddr = pmap_kextract(curva);
1911 		m = PHYS_TO_VM_PAGE(paddr);
1912 		vm_page_unwire_noq(m);
1913 		vm_page_free(m);
1914 	}
1915 	pmap_qremove(sva, size >> PAGE_SHIFT);
1916 	kva_free(sva, size);
1917 }
1918 
1919 /*
1920  * Zero fill initializer
1921  *
1922  * Arguments/Returns follow uma_init specifications
1923  */
1924 static int
1925 zero_init(void *mem, int size, int flags)
1926 {
1927 	bzero(mem, size);
1928 	return (0);
1929 }
1930 
1931 #ifdef INVARIANTS
1932 static struct noslabbits *
1933 slab_dbg_bits(uma_slab_t slab, uma_keg_t keg)
1934 {
1935 
1936 	return ((void *)((char *)&slab->us_free + BITSET_SIZE(keg->uk_ipers)));
1937 }
1938 #endif
1939 
1940 /*
1941  * Actual size of embedded struct slab (!OFFPAGE).
1942  */
1943 static size_t
1944 slab_sizeof(int nitems)
1945 {
1946 	size_t s;
1947 
1948 	s = sizeof(struct uma_slab) + BITSET_SIZE(nitems) * SLAB_BITSETS;
1949 	return (roundup(s, UMA_ALIGN_PTR + 1));
1950 }
1951 
1952 #define	UMA_FIXPT_SHIFT	31
1953 #define	UMA_FRAC_FIXPT(n, d)						\
1954 	((uint32_t)(((uint64_t)(n) << UMA_FIXPT_SHIFT) / (d)))
1955 #define	UMA_FIXPT_PCT(f)						\
1956 	((u_int)(((uint64_t)100 * (f)) >> UMA_FIXPT_SHIFT))
1957 #define	UMA_PCT_FIXPT(pct)	UMA_FRAC_FIXPT((pct), 100)
1958 #define	UMA_MIN_EFF	UMA_PCT_FIXPT(100 - UMA_MAX_WASTE)
1959 
1960 /*
1961  * Compute the number of items that will fit in a slab.  If hdr is true, the
1962  * item count may be limited to provide space in the slab for an inline slab
1963  * header.  Otherwise, all slab space will be provided for item storage.
1964  */
1965 static u_int
1966 slab_ipers_hdr(u_int size, u_int rsize, u_int slabsize, bool hdr)
1967 {
1968 	u_int ipers;
1969 	u_int padpi;
1970 
1971 	/* The padding between items is not needed after the last item. */
1972 	padpi = rsize - size;
1973 
1974 	if (hdr) {
1975 		/*
1976 		 * Start with the maximum item count and remove items until
1977 		 * the slab header first alongside the allocatable memory.
1978 		 */
1979 		for (ipers = MIN(SLAB_MAX_SETSIZE,
1980 		    (slabsize + padpi - slab_sizeof(1)) / rsize);
1981 		    ipers > 0 &&
1982 		    ipers * rsize - padpi + slab_sizeof(ipers) > slabsize;
1983 		    ipers--)
1984 			continue;
1985 	} else {
1986 		ipers = MIN((slabsize + padpi) / rsize, SLAB_MAX_SETSIZE);
1987 	}
1988 
1989 	return (ipers);
1990 }
1991 
1992 struct keg_layout_result {
1993 	u_int format;
1994 	u_int slabsize;
1995 	u_int ipers;
1996 	u_int eff;
1997 };
1998 
1999 static void
2000 keg_layout_one(uma_keg_t keg, u_int rsize, u_int slabsize, u_int fmt,
2001     struct keg_layout_result *kl)
2002 {
2003 	u_int total;
2004 
2005 	kl->format = fmt;
2006 	kl->slabsize = slabsize;
2007 
2008 	/* Handle INTERNAL as inline with an extra page. */
2009 	if ((fmt & UMA_ZFLAG_INTERNAL) != 0) {
2010 		kl->format &= ~UMA_ZFLAG_INTERNAL;
2011 		kl->slabsize += PAGE_SIZE;
2012 	}
2013 
2014 	kl->ipers = slab_ipers_hdr(keg->uk_size, rsize, kl->slabsize,
2015 	    (fmt & UMA_ZFLAG_OFFPAGE) == 0);
2016 
2017 	/* Account for memory used by an offpage slab header. */
2018 	total = kl->slabsize;
2019 	if ((fmt & UMA_ZFLAG_OFFPAGE) != 0)
2020 		total += slabzone(kl->ipers)->uz_keg->uk_rsize;
2021 
2022 	kl->eff = UMA_FRAC_FIXPT(kl->ipers * rsize, total);
2023 }
2024 
2025 /*
2026  * Determine the format of a uma keg.  This determines where the slab header
2027  * will be placed (inline or offpage) and calculates ipers, rsize, and ppera.
2028  *
2029  * Arguments
2030  *	keg  The zone we should initialize
2031  *
2032  * Returns
2033  *	Nothing
2034  */
2035 static void
2036 keg_layout(uma_keg_t keg)
2037 {
2038 	struct keg_layout_result kl = {}, kl_tmp;
2039 	u_int fmts[2];
2040 	u_int alignsize;
2041 	u_int nfmt;
2042 	u_int pages;
2043 	u_int rsize;
2044 	u_int slabsize;
2045 	u_int i, j;
2046 
2047 	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 ||
2048 	    (keg->uk_size <= UMA_PCPU_ALLOC_SIZE &&
2049 	     (keg->uk_flags & UMA_ZONE_CACHESPREAD) == 0),
2050 	    ("%s: cannot configure for PCPU: keg=%s, size=%u, flags=0x%b",
2051 	     __func__, keg->uk_name, keg->uk_size, keg->uk_flags,
2052 	     PRINT_UMA_ZFLAGS));
2053 	KASSERT((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) == 0 ||
2054 	    (keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0,
2055 	    ("%s: incompatible flags 0x%b", __func__, keg->uk_flags,
2056 	     PRINT_UMA_ZFLAGS));
2057 
2058 	alignsize = keg->uk_align + 1;
2059 
2060 	/*
2061 	 * Calculate the size of each allocation (rsize) according to
2062 	 * alignment.  If the requested size is smaller than we have
2063 	 * allocation bits for we round it up.
2064 	 */
2065 	rsize = MAX(keg->uk_size, UMA_SMALLEST_UNIT);
2066 	rsize = roundup2(rsize, alignsize);
2067 
2068 	if ((keg->uk_flags & UMA_ZONE_CACHESPREAD) != 0) {
2069 		/*
2070 		 * We want one item to start on every align boundary in a page.
2071 		 * To do this we will span pages.  We will also extend the item
2072 		 * by the size of align if it is an even multiple of align.
2073 		 * Otherwise, it would fall on the same boundary every time.
2074 		 */
2075 		if ((rsize & alignsize) == 0)
2076 			rsize += alignsize;
2077 		slabsize = rsize * (PAGE_SIZE / alignsize);
2078 		slabsize = MIN(slabsize, rsize * SLAB_MAX_SETSIZE);
2079 		slabsize = MIN(slabsize, UMA_CACHESPREAD_MAX_SIZE);
2080 		slabsize = round_page(slabsize);
2081 	} else {
2082 		/*
2083 		 * Start with a slab size of as many pages as it takes to
2084 		 * represent a single item.  We will try to fit as many
2085 		 * additional items into the slab as possible.
2086 		 */
2087 		slabsize = round_page(keg->uk_size);
2088 	}
2089 
2090 	/* Build a list of all of the available formats for this keg. */
2091 	nfmt = 0;
2092 
2093 	/* Evaluate an inline slab layout. */
2094 	if ((keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0)
2095 		fmts[nfmt++] = 0;
2096 
2097 	/* TODO: vm_page-embedded slab. */
2098 
2099 	/*
2100 	 * We can't do OFFPAGE if we're internal or if we've been
2101 	 * asked to not go to the VM for buckets.  If we do this we
2102 	 * may end up going to the VM for slabs which we do not want
2103 	 * to do if we're UMA_ZONE_VM, which clearly forbids it.
2104 	 * In those cases, evaluate a pseudo-format called INTERNAL
2105 	 * which has an inline slab header and one extra page to
2106 	 * guarantee that it fits.
2107 	 *
2108 	 * Otherwise, see if using an OFFPAGE slab will improve our
2109 	 * efficiency.
2110 	 */
2111 	if ((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) != 0)
2112 		fmts[nfmt++] = UMA_ZFLAG_INTERNAL;
2113 	else
2114 		fmts[nfmt++] = UMA_ZFLAG_OFFPAGE;
2115 
2116 	/*
2117 	 * Choose a slab size and format which satisfy the minimum efficiency.
2118 	 * Prefer the smallest slab size that meets the constraints.
2119 	 *
2120 	 * Start with a minimum slab size, to accommodate CACHESPREAD.  Then,
2121 	 * for small items (up to PAGE_SIZE), the iteration increment is one
2122 	 * page; and for large items, the increment is one item.
2123 	 */
2124 	i = (slabsize + rsize - keg->uk_size) / MAX(PAGE_SIZE, rsize);
2125 	KASSERT(i >= 1, ("keg %s(%p) flags=0x%b slabsize=%u, rsize=%u, i=%u",
2126 	    keg->uk_name, keg, keg->uk_flags, PRINT_UMA_ZFLAGS, slabsize,
2127 	    rsize, i));
2128 	for ( ; ; i++) {
2129 		slabsize = (rsize <= PAGE_SIZE) ? ptoa(i) :
2130 		    round_page(rsize * (i - 1) + keg->uk_size);
2131 
2132 		for (j = 0; j < nfmt; j++) {
2133 			/* Only if we have no viable format yet. */
2134 			if ((fmts[j] & UMA_ZFLAG_INTERNAL) != 0 &&
2135 			    kl.ipers > 0)
2136 				continue;
2137 
2138 			keg_layout_one(keg, rsize, slabsize, fmts[j], &kl_tmp);
2139 			if (kl_tmp.eff <= kl.eff)
2140 				continue;
2141 
2142 			kl = kl_tmp;
2143 
2144 			CTR6(KTR_UMA, "keg %s layout: format %#x "
2145 			    "(ipers %u * rsize %u) / slabsize %#x = %u%% eff",
2146 			    keg->uk_name, kl.format, kl.ipers, rsize,
2147 			    kl.slabsize, UMA_FIXPT_PCT(kl.eff));
2148 
2149 			/* Stop when we reach the minimum efficiency. */
2150 			if (kl.eff >= UMA_MIN_EFF)
2151 				break;
2152 		}
2153 
2154 		if (kl.eff >= UMA_MIN_EFF || !multipage_slabs ||
2155 		    slabsize >= SLAB_MAX_SETSIZE * rsize ||
2156 		    (keg->uk_flags & (UMA_ZONE_PCPU | UMA_ZONE_CONTIG)) != 0)
2157 			break;
2158 	}
2159 
2160 	pages = atop(kl.slabsize);
2161 	if ((keg->uk_flags & UMA_ZONE_PCPU) != 0)
2162 		pages *= mp_maxid + 1;
2163 
2164 	keg->uk_rsize = rsize;
2165 	keg->uk_ipers = kl.ipers;
2166 	keg->uk_ppera = pages;
2167 	keg->uk_flags |= kl.format;
2168 
2169 	/*
2170 	 * How do we find the slab header if it is offpage or if not all item
2171 	 * start addresses are in the same page?  We could solve the latter
2172 	 * case with vaddr alignment, but we don't.
2173 	 */
2174 	if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0 ||
2175 	    (keg->uk_ipers - 1) * rsize >= PAGE_SIZE) {
2176 		if ((keg->uk_flags & UMA_ZONE_NOTPAGE) != 0)
2177 			keg->uk_flags |= UMA_ZFLAG_HASH;
2178 		else
2179 			keg->uk_flags |= UMA_ZFLAG_VTOSLAB;
2180 	}
2181 
2182 	CTR6(KTR_UMA, "%s: keg=%s, flags=%#x, rsize=%u, ipers=%u, ppera=%u",
2183 	    __func__, keg->uk_name, keg->uk_flags, rsize, keg->uk_ipers,
2184 	    pages);
2185 	KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE,
2186 	    ("%s: keg=%s, flags=0x%b, rsize=%u, ipers=%u, ppera=%u", __func__,
2187 	     keg->uk_name, keg->uk_flags, PRINT_UMA_ZFLAGS, rsize,
2188 	     keg->uk_ipers, pages));
2189 }
2190 
2191 /*
2192  * Keg header ctor.  This initializes all fields, locks, etc.  And inserts
2193  * the keg onto the global keg list.
2194  *
2195  * Arguments/Returns follow uma_ctor specifications
2196  *	udata  Actually uma_kctor_args
2197  */
2198 static int
2199 keg_ctor(void *mem, int size, void *udata, int flags)
2200 {
2201 	struct uma_kctor_args *arg = udata;
2202 	uma_keg_t keg = mem;
2203 	uma_zone_t zone;
2204 	int i;
2205 
2206 	bzero(keg, size);
2207 	keg->uk_size = arg->size;
2208 	keg->uk_init = arg->uminit;
2209 	keg->uk_fini = arg->fini;
2210 	keg->uk_align = arg->align;
2211 	keg->uk_reserve = 0;
2212 	keg->uk_flags = arg->flags;
2213 
2214 	/*
2215 	 * We use a global round-robin policy by default.  Zones with
2216 	 * UMA_ZONE_FIRSTTOUCH set will use first-touch instead, in which
2217 	 * case the iterator is never run.
2218 	 */
2219 	keg->uk_dr.dr_policy = DOMAINSET_RR();
2220 	keg->uk_dr.dr_iter = 0;
2221 
2222 	/*
2223 	 * The primary zone is passed to us at keg-creation time.
2224 	 */
2225 	zone = arg->zone;
2226 	keg->uk_name = zone->uz_name;
2227 
2228 	if (arg->flags & UMA_ZONE_ZINIT)
2229 		keg->uk_init = zero_init;
2230 
2231 	if (arg->flags & UMA_ZONE_MALLOC)
2232 		keg->uk_flags |= UMA_ZFLAG_VTOSLAB;
2233 
2234 #ifndef SMP
2235 	keg->uk_flags &= ~UMA_ZONE_PCPU;
2236 #endif
2237 
2238 	keg_layout(keg);
2239 
2240 	/*
2241 	 * Use a first-touch NUMA policy for kegs that pmap_extract() will
2242 	 * work on.  Use round-robin for everything else.
2243 	 *
2244 	 * Zones may override the default by specifying either.
2245 	 */
2246 #ifdef NUMA
2247 	if ((keg->uk_flags &
2248 	    (UMA_ZONE_ROUNDROBIN | UMA_ZFLAG_CACHE | UMA_ZONE_NOTPAGE)) == 0)
2249 		keg->uk_flags |= UMA_ZONE_FIRSTTOUCH;
2250 	else if ((keg->uk_flags & UMA_ZONE_FIRSTTOUCH) == 0)
2251 		keg->uk_flags |= UMA_ZONE_ROUNDROBIN;
2252 #endif
2253 
2254 	/*
2255 	 * If we haven't booted yet we need allocations to go through the
2256 	 * startup cache until the vm is ready.
2257 	 */
2258 #ifdef UMA_MD_SMALL_ALLOC
2259 	if (keg->uk_ppera == 1)
2260 		keg->uk_allocf = uma_small_alloc;
2261 	else
2262 #endif
2263 	if (booted < BOOT_KVA)
2264 		keg->uk_allocf = startup_alloc;
2265 	else if (keg->uk_flags & UMA_ZONE_PCPU)
2266 		keg->uk_allocf = pcpu_page_alloc;
2267 	else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && keg->uk_ppera > 1)
2268 		keg->uk_allocf = contig_alloc;
2269 	else
2270 		keg->uk_allocf = page_alloc;
2271 #ifdef UMA_MD_SMALL_ALLOC
2272 	if (keg->uk_ppera == 1)
2273 		keg->uk_freef = uma_small_free;
2274 	else
2275 #endif
2276 	if (keg->uk_flags & UMA_ZONE_PCPU)
2277 		keg->uk_freef = pcpu_page_free;
2278 	else
2279 		keg->uk_freef = page_free;
2280 
2281 	/*
2282 	 * Initialize keg's locks.
2283 	 */
2284 	for (i = 0; i < vm_ndomains; i++)
2285 		KEG_LOCK_INIT(keg, i, (arg->flags & UMA_ZONE_MTXCLASS));
2286 
2287 	/*
2288 	 * If we're putting the slab header in the actual page we need to
2289 	 * figure out where in each page it goes.  See slab_sizeof
2290 	 * definition.
2291 	 */
2292 	if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) {
2293 		size_t shsize;
2294 
2295 		shsize = slab_sizeof(keg->uk_ipers);
2296 		keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize;
2297 		/*
2298 		 * The only way the following is possible is if with our
2299 		 * UMA_ALIGN_PTR adjustments we are now bigger than
2300 		 * UMA_SLAB_SIZE.  I haven't checked whether this is
2301 		 * mathematically possible for all cases, so we make
2302 		 * sure here anyway.
2303 		 */
2304 		KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera,
2305 		    ("zone %s ipers %d rsize %d size %d slab won't fit",
2306 		    zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size));
2307 	}
2308 
2309 	if (keg->uk_flags & UMA_ZFLAG_HASH)
2310 		hash_alloc(&keg->uk_hash, 0);
2311 
2312 	CTR3(KTR_UMA, "keg_ctor %p zone %s(%p)", keg, zone->uz_name, zone);
2313 
2314 	LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
2315 
2316 	rw_wlock(&uma_rwlock);
2317 	LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
2318 	rw_wunlock(&uma_rwlock);
2319 	return (0);
2320 }
2321 
2322 static void
2323 zone_kva_available(uma_zone_t zone, void *unused)
2324 {
2325 	uma_keg_t keg;
2326 
2327 	if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0)
2328 		return;
2329 	KEG_GET(zone, keg);
2330 
2331 	if (keg->uk_allocf == startup_alloc) {
2332 		/* Switch to the real allocator. */
2333 		if (keg->uk_flags & UMA_ZONE_PCPU)
2334 			keg->uk_allocf = pcpu_page_alloc;
2335 		else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 &&
2336 		    keg->uk_ppera > 1)
2337 			keg->uk_allocf = contig_alloc;
2338 		else
2339 			keg->uk_allocf = page_alloc;
2340 	}
2341 }
2342 
2343 static void
2344 zone_alloc_counters(uma_zone_t zone, void *unused)
2345 {
2346 
2347 	zone->uz_allocs = counter_u64_alloc(M_WAITOK);
2348 	zone->uz_frees = counter_u64_alloc(M_WAITOK);
2349 	zone->uz_fails = counter_u64_alloc(M_WAITOK);
2350 	zone->uz_xdomain = counter_u64_alloc(M_WAITOK);
2351 }
2352 
2353 static void
2354 zone_alloc_sysctl(uma_zone_t zone, void *unused)
2355 {
2356 	uma_zone_domain_t zdom;
2357 	uma_domain_t dom;
2358 	uma_keg_t keg;
2359 	struct sysctl_oid *oid, *domainoid;
2360 	int domains, i, cnt;
2361 	static const char *nokeg = "cache zone";
2362 	char *c;
2363 
2364 	/*
2365 	 * Make a sysctl safe copy of the zone name by removing
2366 	 * any special characters and handling dups by appending
2367 	 * an index.
2368 	 */
2369 	if (zone->uz_namecnt != 0) {
2370 		/* Count the number of decimal digits and '_' separator. */
2371 		for (i = 1, cnt = zone->uz_namecnt; cnt != 0; i++)
2372 			cnt /= 10;
2373 		zone->uz_ctlname = malloc(strlen(zone->uz_name) + i + 1,
2374 		    M_UMA, M_WAITOK);
2375 		sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name,
2376 		    zone->uz_namecnt);
2377 	} else
2378 		zone->uz_ctlname = strdup(zone->uz_name, M_UMA);
2379 	for (c = zone->uz_ctlname; *c != '\0'; c++)
2380 		if (strchr("./\\ -", *c) != NULL)
2381 			*c = '_';
2382 
2383 	/*
2384 	 * Basic parameters at the root.
2385 	 */
2386 	zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma),
2387 	    OID_AUTO, zone->uz_ctlname, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2388 	oid = zone->uz_oid;
2389 	SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2390 	    "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size");
2391 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2392 	    "flags", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE,
2393 	    zone, 0, sysctl_handle_uma_zone_flags, "A",
2394 	    "Allocator configuration flags");
2395 	SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2396 	    "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0,
2397 	    "Desired per-cpu cache size");
2398 	SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2399 	    "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0,
2400 	    "Maximum allowed per-cpu cache size");
2401 
2402 	/*
2403 	 * keg if present.
2404 	 */
2405 	if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0)
2406 		domains = vm_ndomains;
2407 	else
2408 		domains = 1;
2409 	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO,
2410 	    "keg", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2411 	keg = zone->uz_keg;
2412 	if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) {
2413 		SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2414 		    "name", CTLFLAG_RD, keg->uk_name, "Keg name");
2415 		SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2416 		    "rsize", CTLFLAG_RD, &keg->uk_rsize, 0,
2417 		    "Real object size with alignment");
2418 		SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2419 		    "ppera", CTLFLAG_RD, &keg->uk_ppera, 0,
2420 		    "pages per-slab allocation");
2421 		SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2422 		    "ipers", CTLFLAG_RD, &keg->uk_ipers, 0,
2423 		    "items available per-slab");
2424 		SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2425 		    "align", CTLFLAG_RD, &keg->uk_align, 0,
2426 		    "item alignment mask");
2427 		SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2428 		    "reserve", CTLFLAG_RD, &keg->uk_reserve, 0,
2429 		    "number of reserved items");
2430 		SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2431 		    "efficiency", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE,
2432 		    keg, 0, sysctl_handle_uma_slab_efficiency, "I",
2433 		    "Slab utilization (100 - internal fragmentation %)");
2434 		domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(oid),
2435 		    OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2436 		for (i = 0; i < domains; i++) {
2437 			dom = &keg->uk_domain[i];
2438 			oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid),
2439 			    OID_AUTO, VM_DOMAIN(i)->vmd_name,
2440 			    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2441 			SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2442 			    "pages", CTLFLAG_RD, &dom->ud_pages, 0,
2443 			    "Total pages currently allocated from VM");
2444 			SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2445 			    "free_items", CTLFLAG_RD, &dom->ud_free_items, 0,
2446 			    "items free in the slab layer");
2447 		}
2448 	} else
2449 		SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2450 		    "name", CTLFLAG_RD, nokeg, "Keg name");
2451 
2452 	/*
2453 	 * Information about zone limits.
2454 	 */
2455 	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO,
2456 	    "limit", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2457 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2458 	    "items", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE,
2459 	    zone, 0, sysctl_handle_uma_zone_items, "QU",
2460 	    "Current number of allocated items if limit is set");
2461 	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2462 	    "max_items", CTLFLAG_RD, &zone->uz_max_items, 0,
2463 	    "Maximum number of allocated and cached items");
2464 	SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2465 	    "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0,
2466 	    "Number of threads sleeping at limit");
2467 	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2468 	    "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0,
2469 	    "Total zone limit sleeps");
2470 	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2471 	    "bucket_max", CTLFLAG_RD, &zone->uz_bucket_max, 0,
2472 	    "Maximum number of items in each domain's bucket cache");
2473 
2474 	/*
2475 	 * Per-domain zone information.
2476 	 */
2477 	domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid),
2478 	    OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2479 	for (i = 0; i < domains; i++) {
2480 		zdom = ZDOM_GET(zone, i);
2481 		oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid),
2482 		    OID_AUTO, VM_DOMAIN(i)->vmd_name,
2483 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2484 		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2485 		    "nitems", CTLFLAG_RD, &zdom->uzd_nitems,
2486 		    "number of items in this domain");
2487 		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2488 		    "imax", CTLFLAG_RD, &zdom->uzd_imax,
2489 		    "maximum item count in this period");
2490 		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2491 		    "imin", CTLFLAG_RD, &zdom->uzd_imin,
2492 		    "minimum item count in this period");
2493 		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2494 		    "wss", CTLFLAG_RD, &zdom->uzd_wss,
2495 		    "Working set size");
2496 	}
2497 
2498 	/*
2499 	 * General statistics.
2500 	 */
2501 	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO,
2502 	    "stats", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2503 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2504 	    "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE,
2505 	    zone, 1, sysctl_handle_uma_zone_cur, "I",
2506 	    "Current number of allocated items");
2507 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2508 	    "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE,
2509 	    zone, 0, sysctl_handle_uma_zone_allocs, "QU",
2510 	    "Total allocation calls");
2511 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2512 	    "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE,
2513 	    zone, 0, sysctl_handle_uma_zone_frees, "QU",
2514 	    "Total free calls");
2515 	SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2516 	    "fails", CTLFLAG_RD, &zone->uz_fails,
2517 	    "Number of allocation failures");
2518 	SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2519 	    "xdomain", CTLFLAG_RD, &zone->uz_xdomain,
2520 	    "Free calls from the wrong domain");
2521 }
2522 
2523 struct uma_zone_count {
2524 	const char	*name;
2525 	int		count;
2526 };
2527 
2528 static void
2529 zone_count(uma_zone_t zone, void *arg)
2530 {
2531 	struct uma_zone_count *cnt;
2532 
2533 	cnt = arg;
2534 	/*
2535 	 * Some zones are rapidly created with identical names and
2536 	 * destroyed out of order.  This can lead to gaps in the count.
2537 	 * Use one greater than the maximum observed for this name.
2538 	 */
2539 	if (strcmp(zone->uz_name, cnt->name) == 0)
2540 		cnt->count = MAX(cnt->count,
2541 		    zone->uz_namecnt + 1);
2542 }
2543 
2544 static void
2545 zone_update_caches(uma_zone_t zone)
2546 {
2547 	int i;
2548 
2549 	for (i = 0; i <= mp_maxid; i++) {
2550 		cache_set_uz_size(&zone->uz_cpu[i], zone->uz_size);
2551 		cache_set_uz_flags(&zone->uz_cpu[i], zone->uz_flags);
2552 	}
2553 }
2554 
2555 /*
2556  * Zone header ctor.  This initializes all fields, locks, etc.
2557  *
2558  * Arguments/Returns follow uma_ctor specifications
2559  *	udata  Actually uma_zctor_args
2560  */
2561 static int
2562 zone_ctor(void *mem, int size, void *udata, int flags)
2563 {
2564 	struct uma_zone_count cnt;
2565 	struct uma_zctor_args *arg = udata;
2566 	uma_zone_domain_t zdom;
2567 	uma_zone_t zone = mem;
2568 	uma_zone_t z;
2569 	uma_keg_t keg;
2570 	int i;
2571 
2572 	bzero(zone, size);
2573 	zone->uz_name = arg->name;
2574 	zone->uz_ctor = arg->ctor;
2575 	zone->uz_dtor = arg->dtor;
2576 	zone->uz_init = NULL;
2577 	zone->uz_fini = NULL;
2578 	zone->uz_sleeps = 0;
2579 	zone->uz_bucket_size = 0;
2580 	zone->uz_bucket_size_min = 0;
2581 	zone->uz_bucket_size_max = BUCKET_MAX;
2582 	zone->uz_flags = (arg->flags & UMA_ZONE_SMR);
2583 	zone->uz_warning = NULL;
2584 	/* The domain structures follow the cpu structures. */
2585 	zone->uz_bucket_max = ULONG_MAX;
2586 	timevalclear(&zone->uz_ratecheck);
2587 
2588 	/* Count the number of duplicate names. */
2589 	cnt.name = arg->name;
2590 	cnt.count = 0;
2591 	zone_foreach(zone_count, &cnt);
2592 	zone->uz_namecnt = cnt.count;
2593 	ZONE_CROSS_LOCK_INIT(zone);
2594 
2595 	for (i = 0; i < vm_ndomains; i++) {
2596 		zdom = ZDOM_GET(zone, i);
2597 		ZDOM_LOCK_INIT(zone, zdom, (arg->flags & UMA_ZONE_MTXCLASS));
2598 		STAILQ_INIT(&zdom->uzd_buckets);
2599 	}
2600 
2601 #ifdef INVARIANTS
2602 	if (arg->uminit == trash_init && arg->fini == trash_fini)
2603 		zone->uz_flags |= UMA_ZFLAG_TRASH | UMA_ZFLAG_CTORDTOR;
2604 #endif
2605 
2606 	/*
2607 	 * This is a pure cache zone, no kegs.
2608 	 */
2609 	if (arg->import) {
2610 		KASSERT((arg->flags & UMA_ZFLAG_CACHE) != 0,
2611 		    ("zone_ctor: Import specified for non-cache zone."));
2612 		zone->uz_flags = arg->flags;
2613 		zone->uz_size = arg->size;
2614 		zone->uz_import = arg->import;
2615 		zone->uz_release = arg->release;
2616 		zone->uz_arg = arg->arg;
2617 #ifdef NUMA
2618 		/*
2619 		 * Cache zones are round-robin unless a policy is
2620 		 * specified because they may have incompatible
2621 		 * constraints.
2622 		 */
2623 		if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0)
2624 			zone->uz_flags |= UMA_ZONE_ROUNDROBIN;
2625 #endif
2626 		rw_wlock(&uma_rwlock);
2627 		LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link);
2628 		rw_wunlock(&uma_rwlock);
2629 		goto out;
2630 	}
2631 
2632 	/*
2633 	 * Use the regular zone/keg/slab allocator.
2634 	 */
2635 	zone->uz_import = zone_import;
2636 	zone->uz_release = zone_release;
2637 	zone->uz_arg = zone;
2638 	keg = arg->keg;
2639 
2640 	if (arg->flags & UMA_ZONE_SECONDARY) {
2641 		KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0,
2642 		    ("Secondary zone requested UMA_ZFLAG_INTERNAL"));
2643 		KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
2644 		zone->uz_init = arg->uminit;
2645 		zone->uz_fini = arg->fini;
2646 		zone->uz_flags |= UMA_ZONE_SECONDARY;
2647 		rw_wlock(&uma_rwlock);
2648 		ZONE_LOCK(zone);
2649 		LIST_FOREACH(z, &keg->uk_zones, uz_link) {
2650 			if (LIST_NEXT(z, uz_link) == NULL) {
2651 				LIST_INSERT_AFTER(z, zone, uz_link);
2652 				break;
2653 			}
2654 		}
2655 		ZONE_UNLOCK(zone);
2656 		rw_wunlock(&uma_rwlock);
2657 	} else if (keg == NULL) {
2658 		if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
2659 		    arg->align, arg->flags)) == NULL)
2660 			return (ENOMEM);
2661 	} else {
2662 		struct uma_kctor_args karg;
2663 		int error;
2664 
2665 		/* We should only be here from uma_startup() */
2666 		karg.size = arg->size;
2667 		karg.uminit = arg->uminit;
2668 		karg.fini = arg->fini;
2669 		karg.align = arg->align;
2670 		karg.flags = (arg->flags & ~UMA_ZONE_SMR);
2671 		karg.zone = zone;
2672 		error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
2673 		    flags);
2674 		if (error)
2675 			return (error);
2676 	}
2677 
2678 	/* Inherit properties from the keg. */
2679 	zone->uz_keg = keg;
2680 	zone->uz_size = keg->uk_size;
2681 	zone->uz_flags |= (keg->uk_flags &
2682 	    (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT));
2683 
2684 out:
2685 	if (booted >= BOOT_PCPU) {
2686 		zone_alloc_counters(zone, NULL);
2687 		if (booted >= BOOT_RUNNING)
2688 			zone_alloc_sysctl(zone, NULL);
2689 	} else {
2690 		zone->uz_allocs = EARLY_COUNTER;
2691 		zone->uz_frees = EARLY_COUNTER;
2692 		zone->uz_fails = EARLY_COUNTER;
2693 	}
2694 
2695 	/* Caller requests a private SMR context. */
2696 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
2697 		zone->uz_smr = smr_create(zone->uz_name, 0, 0);
2698 
2699 	KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) !=
2700 	    (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET),
2701 	    ("Invalid zone flag combination"));
2702 	if (arg->flags & UMA_ZFLAG_INTERNAL)
2703 		zone->uz_bucket_size_max = zone->uz_bucket_size = 0;
2704 	if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0)
2705 		zone->uz_bucket_size = BUCKET_MAX;
2706 	else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0)
2707 		zone->uz_bucket_size = 0;
2708 	else
2709 		zone->uz_bucket_size = bucket_select(zone->uz_size);
2710 	zone->uz_bucket_size_min = zone->uz_bucket_size;
2711 	if (zone->uz_dtor != NULL || zone->uz_ctor != NULL)
2712 		zone->uz_flags |= UMA_ZFLAG_CTORDTOR;
2713 	zone_update_caches(zone);
2714 
2715 	return (0);
2716 }
2717 
2718 /*
2719  * Keg header dtor.  This frees all data, destroys locks, frees the hash
2720  * table and removes the keg from the global list.
2721  *
2722  * Arguments/Returns follow uma_dtor specifications
2723  *	udata  unused
2724  */
2725 static void
2726 keg_dtor(void *arg, int size, void *udata)
2727 {
2728 	uma_keg_t keg;
2729 	uint32_t free, pages;
2730 	int i;
2731 
2732 	keg = (uma_keg_t)arg;
2733 	free = pages = 0;
2734 	for (i = 0; i < vm_ndomains; i++) {
2735 		free += keg->uk_domain[i].ud_free_items;
2736 		pages += keg->uk_domain[i].ud_pages;
2737 		KEG_LOCK_FINI(keg, i);
2738 	}
2739 	if (pages != 0)
2740 		printf("Freed UMA keg (%s) was not empty (%u items). "
2741 		    " Lost %u pages of memory.\n",
2742 		    keg->uk_name ? keg->uk_name : "",
2743 		    pages / keg->uk_ppera * keg->uk_ipers - free, pages);
2744 
2745 	hash_free(&keg->uk_hash);
2746 }
2747 
2748 /*
2749  * Zone header dtor.
2750  *
2751  * Arguments/Returns follow uma_dtor specifications
2752  *	udata  unused
2753  */
2754 static void
2755 zone_dtor(void *arg, int size, void *udata)
2756 {
2757 	uma_zone_t zone;
2758 	uma_keg_t keg;
2759 	int i;
2760 
2761 	zone = (uma_zone_t)arg;
2762 
2763 	sysctl_remove_oid(zone->uz_oid, 1, 1);
2764 
2765 	if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
2766 		cache_drain(zone);
2767 
2768 	rw_wlock(&uma_rwlock);
2769 	LIST_REMOVE(zone, uz_link);
2770 	rw_wunlock(&uma_rwlock);
2771 	if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) {
2772 		keg = zone->uz_keg;
2773 		keg->uk_reserve = 0;
2774 	}
2775 	zone_reclaim(zone, M_WAITOK, true);
2776 
2777 	/*
2778 	 * We only destroy kegs from non secondary/non cache zones.
2779 	 */
2780 	if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) {
2781 		keg = zone->uz_keg;
2782 		rw_wlock(&uma_rwlock);
2783 		LIST_REMOVE(keg, uk_link);
2784 		rw_wunlock(&uma_rwlock);
2785 		zone_free_item(kegs, keg, NULL, SKIP_NONE);
2786 	}
2787 	counter_u64_free(zone->uz_allocs);
2788 	counter_u64_free(zone->uz_frees);
2789 	counter_u64_free(zone->uz_fails);
2790 	counter_u64_free(zone->uz_xdomain);
2791 	free(zone->uz_ctlname, M_UMA);
2792 	for (i = 0; i < vm_ndomains; i++)
2793 		ZDOM_LOCK_FINI(ZDOM_GET(zone, i));
2794 	ZONE_CROSS_LOCK_FINI(zone);
2795 }
2796 
2797 static void
2798 zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *arg), void *arg)
2799 {
2800 	uma_keg_t keg;
2801 	uma_zone_t zone;
2802 
2803 	LIST_FOREACH(keg, &uma_kegs, uk_link) {
2804 		LIST_FOREACH(zone, &keg->uk_zones, uz_link)
2805 			zfunc(zone, arg);
2806 	}
2807 	LIST_FOREACH(zone, &uma_cachezones, uz_link)
2808 		zfunc(zone, arg);
2809 }
2810 
2811 /*
2812  * Traverses every zone in the system and calls a callback
2813  *
2814  * Arguments:
2815  *	zfunc  A pointer to a function which accepts a zone
2816  *		as an argument.
2817  *
2818  * Returns:
2819  *	Nothing
2820  */
2821 static void
2822 zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg)
2823 {
2824 
2825 	rw_rlock(&uma_rwlock);
2826 	zone_foreach_unlocked(zfunc, arg);
2827 	rw_runlock(&uma_rwlock);
2828 }
2829 
2830 /*
2831  * Initialize the kernel memory allocator.  This is done after pages can be
2832  * allocated but before general KVA is available.
2833  */
2834 void
2835 uma_startup1(vm_offset_t virtual_avail)
2836 {
2837 	struct uma_zctor_args args;
2838 	size_t ksize, zsize, size;
2839 	uma_keg_t primarykeg;
2840 	uintptr_t m;
2841 	int domain;
2842 	uint8_t pflag;
2843 
2844 	bootstart = bootmem = virtual_avail;
2845 
2846 	rw_init(&uma_rwlock, "UMA lock");
2847 	sx_init(&uma_reclaim_lock, "umareclaim");
2848 
2849 	ksize = sizeof(struct uma_keg) +
2850 	    (sizeof(struct uma_domain) * vm_ndomains);
2851 	ksize = roundup(ksize, UMA_SUPER_ALIGN);
2852 	zsize = sizeof(struct uma_zone) +
2853 	    (sizeof(struct uma_cache) * (mp_maxid + 1)) +
2854 	    (sizeof(struct uma_zone_domain) * vm_ndomains);
2855 	zsize = roundup(zsize, UMA_SUPER_ALIGN);
2856 
2857 	/* Allocate the zone of zones, zone of kegs, and zone of zones keg. */
2858 	size = (zsize * 2) + ksize;
2859 	for (domain = 0; domain < vm_ndomains; domain++) {
2860 		m = (uintptr_t)startup_alloc(NULL, size, domain, &pflag,
2861 		    M_NOWAIT | M_ZERO);
2862 		if (m != 0)
2863 			break;
2864 	}
2865 	zones = (uma_zone_t)m;
2866 	m += zsize;
2867 	kegs = (uma_zone_t)m;
2868 	m += zsize;
2869 	primarykeg = (uma_keg_t)m;
2870 
2871 	/* "manually" create the initial zone */
2872 	memset(&args, 0, sizeof(args));
2873 	args.name = "UMA Kegs";
2874 	args.size = ksize;
2875 	args.ctor = keg_ctor;
2876 	args.dtor = keg_dtor;
2877 	args.uminit = zero_init;
2878 	args.fini = NULL;
2879 	args.keg = primarykeg;
2880 	args.align = UMA_SUPER_ALIGN - 1;
2881 	args.flags = UMA_ZFLAG_INTERNAL;
2882 	zone_ctor(kegs, zsize, &args, M_WAITOK);
2883 
2884 	args.name = "UMA Zones";
2885 	args.size = zsize;
2886 	args.ctor = zone_ctor;
2887 	args.dtor = zone_dtor;
2888 	args.uminit = zero_init;
2889 	args.fini = NULL;
2890 	args.keg = NULL;
2891 	args.align = UMA_SUPER_ALIGN - 1;
2892 	args.flags = UMA_ZFLAG_INTERNAL;
2893 	zone_ctor(zones, zsize, &args, M_WAITOK);
2894 
2895 	/* Now make zones for slab headers */
2896 	slabzones[0] = uma_zcreate("UMA Slabs 0", SLABZONE0_SIZE,
2897 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
2898 	slabzones[1] = uma_zcreate("UMA Slabs 1", SLABZONE1_SIZE,
2899 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
2900 
2901 	hashzone = uma_zcreate("UMA Hash",
2902 	    sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
2903 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
2904 
2905 	bucket_init();
2906 	smr_init();
2907 }
2908 
2909 #ifndef UMA_MD_SMALL_ALLOC
2910 extern void vm_radix_reserve_kva(void);
2911 #endif
2912 
2913 /*
2914  * Advertise the availability of normal kva allocations and switch to
2915  * the default back-end allocator.  Marks the KVA we consumed on startup
2916  * as used in the map.
2917  */
2918 void
2919 uma_startup2(void)
2920 {
2921 
2922 	if (bootstart != bootmem) {
2923 		vm_map_lock(kernel_map);
2924 		(void)vm_map_insert(kernel_map, NULL, 0, bootstart, bootmem,
2925 		    VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
2926 		vm_map_unlock(kernel_map);
2927 	}
2928 
2929 #ifndef UMA_MD_SMALL_ALLOC
2930 	/* Set up radix zone to use noobj_alloc. */
2931 	vm_radix_reserve_kva();
2932 #endif
2933 
2934 	booted = BOOT_KVA;
2935 	zone_foreach_unlocked(zone_kva_available, NULL);
2936 	bucket_enable();
2937 }
2938 
2939 /*
2940  * Allocate counters as early as possible so that boot-time allocations are
2941  * accounted more precisely.
2942  */
2943 static void
2944 uma_startup_pcpu(void *arg __unused)
2945 {
2946 
2947 	zone_foreach_unlocked(zone_alloc_counters, NULL);
2948 	booted = BOOT_PCPU;
2949 }
2950 SYSINIT(uma_startup_pcpu, SI_SUB_COUNTER, SI_ORDER_ANY, uma_startup_pcpu, NULL);
2951 
2952 /*
2953  * Finish our initialization steps.
2954  */
2955 static void
2956 uma_startup3(void *arg __unused)
2957 {
2958 
2959 #ifdef INVARIANTS
2960 	TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor);
2961 	uma_dbg_cnt = counter_u64_alloc(M_WAITOK);
2962 	uma_skip_cnt = counter_u64_alloc(M_WAITOK);
2963 #endif
2964 	zone_foreach_unlocked(zone_alloc_sysctl, NULL);
2965 	callout_init(&uma_callout, 1);
2966 	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
2967 	booted = BOOT_RUNNING;
2968 
2969 	EVENTHANDLER_REGISTER(shutdown_post_sync, uma_shutdown, NULL,
2970 	    EVENTHANDLER_PRI_FIRST);
2971 }
2972 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
2973 
2974 static void
2975 uma_shutdown(void)
2976 {
2977 
2978 	booted = BOOT_SHUTDOWN;
2979 }
2980 
2981 static uma_keg_t
2982 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
2983 		int align, uint32_t flags)
2984 {
2985 	struct uma_kctor_args args;
2986 
2987 	args.size = size;
2988 	args.uminit = uminit;
2989 	args.fini = fini;
2990 	args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align;
2991 	args.flags = flags;
2992 	args.zone = zone;
2993 	return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK));
2994 }
2995 
2996 /* Public functions */
2997 /* See uma.h */
2998 void
2999 uma_set_align(int align)
3000 {
3001 
3002 	if (align != UMA_ALIGN_CACHE)
3003 		uma_align_cache = align;
3004 }
3005 
3006 /* See uma.h */
3007 uma_zone_t
3008 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
3009 		uma_init uminit, uma_fini fini, int align, uint32_t flags)
3010 
3011 {
3012 	struct uma_zctor_args args;
3013 	uma_zone_t res;
3014 
3015 	KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"",
3016 	    align, name));
3017 
3018 	/* This stuff is essential for the zone ctor */
3019 	memset(&args, 0, sizeof(args));
3020 	args.name = name;
3021 	args.size = size;
3022 	args.ctor = ctor;
3023 	args.dtor = dtor;
3024 	args.uminit = uminit;
3025 	args.fini = fini;
3026 #ifdef  INVARIANTS
3027 	/*
3028 	 * Inject procedures which check for memory use after free if we are
3029 	 * allowed to scramble the memory while it is not allocated.  This
3030 	 * requires that: UMA is actually able to access the memory, no init
3031 	 * or fini procedures, no dependency on the initial value of the
3032 	 * memory, and no (legitimate) use of the memory after free.  Note,
3033 	 * the ctor and dtor do not need to be empty.
3034 	 */
3035 	if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOTOUCH |
3036 	    UMA_ZONE_NOFREE))) && uminit == NULL && fini == NULL) {
3037 		args.uminit = trash_init;
3038 		args.fini = trash_fini;
3039 	}
3040 #endif
3041 	args.align = align;
3042 	args.flags = flags;
3043 	args.keg = NULL;
3044 
3045 	sx_slock(&uma_reclaim_lock);
3046 	res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK);
3047 	sx_sunlock(&uma_reclaim_lock);
3048 
3049 	return (res);
3050 }
3051 
3052 /* See uma.h */
3053 uma_zone_t
3054 uma_zsecond_create(const char *name, uma_ctor ctor, uma_dtor dtor,
3055     uma_init zinit, uma_fini zfini, uma_zone_t primary)
3056 {
3057 	struct uma_zctor_args args;
3058 	uma_keg_t keg;
3059 	uma_zone_t res;
3060 
3061 	keg = primary->uz_keg;
3062 	memset(&args, 0, sizeof(args));
3063 	args.name = name;
3064 	args.size = keg->uk_size;
3065 	args.ctor = ctor;
3066 	args.dtor = dtor;
3067 	args.uminit = zinit;
3068 	args.fini = zfini;
3069 	args.align = keg->uk_align;
3070 	args.flags = keg->uk_flags | UMA_ZONE_SECONDARY;
3071 	args.keg = keg;
3072 
3073 	sx_slock(&uma_reclaim_lock);
3074 	res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK);
3075 	sx_sunlock(&uma_reclaim_lock);
3076 
3077 	return (res);
3078 }
3079 
3080 /* See uma.h */
3081 uma_zone_t
3082 uma_zcache_create(const char *name, int size, uma_ctor ctor, uma_dtor dtor,
3083     uma_init zinit, uma_fini zfini, uma_import zimport, uma_release zrelease,
3084     void *arg, int flags)
3085 {
3086 	struct uma_zctor_args args;
3087 
3088 	memset(&args, 0, sizeof(args));
3089 	args.name = name;
3090 	args.size = size;
3091 	args.ctor = ctor;
3092 	args.dtor = dtor;
3093 	args.uminit = zinit;
3094 	args.fini = zfini;
3095 	args.import = zimport;
3096 	args.release = zrelease;
3097 	args.arg = arg;
3098 	args.align = 0;
3099 	args.flags = flags | UMA_ZFLAG_CACHE;
3100 
3101 	return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK));
3102 }
3103 
3104 /* See uma.h */
3105 void
3106 uma_zdestroy(uma_zone_t zone)
3107 {
3108 
3109 	/*
3110 	 * Large slabs are expensive to reclaim, so don't bother doing
3111 	 * unnecessary work if we're shutting down.
3112 	 */
3113 	if (booted == BOOT_SHUTDOWN &&
3114 	    zone->uz_fini == NULL && zone->uz_release == zone_release)
3115 		return;
3116 	sx_slock(&uma_reclaim_lock);
3117 	zone_free_item(zones, zone, NULL, SKIP_NONE);
3118 	sx_sunlock(&uma_reclaim_lock);
3119 }
3120 
3121 void
3122 uma_zwait(uma_zone_t zone)
3123 {
3124 
3125 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
3126 		uma_zfree_smr(zone, uma_zalloc_smr(zone, M_WAITOK));
3127 	else if ((zone->uz_flags & UMA_ZONE_PCPU) != 0)
3128 		uma_zfree_pcpu(zone, uma_zalloc_pcpu(zone, M_WAITOK));
3129 	else
3130 		uma_zfree(zone, uma_zalloc(zone, M_WAITOK));
3131 }
3132 
3133 void *
3134 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags)
3135 {
3136 	void *item, *pcpu_item;
3137 #ifdef SMP
3138 	int i;
3139 
3140 	MPASS(zone->uz_flags & UMA_ZONE_PCPU);
3141 #endif
3142 	item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO);
3143 	if (item == NULL)
3144 		return (NULL);
3145 	pcpu_item = zpcpu_base_to_offset(item);
3146 	if (flags & M_ZERO) {
3147 #ifdef SMP
3148 		for (i = 0; i <= mp_maxid; i++)
3149 			bzero(zpcpu_get_cpu(pcpu_item, i), zone->uz_size);
3150 #else
3151 		bzero(item, zone->uz_size);
3152 #endif
3153 	}
3154 	return (pcpu_item);
3155 }
3156 
3157 /*
3158  * A stub while both regular and pcpu cases are identical.
3159  */
3160 void
3161 uma_zfree_pcpu_arg(uma_zone_t zone, void *pcpu_item, void *udata)
3162 {
3163 	void *item;
3164 
3165 #ifdef SMP
3166 	MPASS(zone->uz_flags & UMA_ZONE_PCPU);
3167 #endif
3168 	item = zpcpu_offset_to_base(pcpu_item);
3169 	uma_zfree_arg(zone, item, udata);
3170 }
3171 
3172 static inline void *
3173 item_ctor(uma_zone_t zone, int uz_flags, int size, void *udata, int flags,
3174     void *item)
3175 {
3176 #ifdef INVARIANTS
3177 	bool skipdbg;
3178 
3179 	skipdbg = uma_dbg_zskip(zone, item);
3180 	if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 &&
3181 	    zone->uz_ctor != trash_ctor)
3182 		trash_ctor(item, size, udata, flags);
3183 #endif
3184 	/* Check flags before loading ctor pointer. */
3185 	if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0) &&
3186 	    __predict_false(zone->uz_ctor != NULL) &&
3187 	    zone->uz_ctor(item, size, udata, flags) != 0) {
3188 		counter_u64_add(zone->uz_fails, 1);
3189 		zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT);
3190 		return (NULL);
3191 	}
3192 #ifdef INVARIANTS
3193 	if (!skipdbg)
3194 		uma_dbg_alloc(zone, NULL, item);
3195 #endif
3196 	if (__predict_false(flags & M_ZERO))
3197 		return (memset(item, 0, size));
3198 
3199 	return (item);
3200 }
3201 
3202 static inline void
3203 item_dtor(uma_zone_t zone, void *item, int size, void *udata,
3204     enum zfreeskip skip)
3205 {
3206 #ifdef INVARIANTS
3207 	bool skipdbg;
3208 
3209 	skipdbg = uma_dbg_zskip(zone, item);
3210 	if (skip == SKIP_NONE && !skipdbg) {
3211 		if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0)
3212 			uma_dbg_free(zone, udata, item);
3213 		else
3214 			uma_dbg_free(zone, NULL, item);
3215 	}
3216 #endif
3217 	if (__predict_true(skip < SKIP_DTOR)) {
3218 		if (zone->uz_dtor != NULL)
3219 			zone->uz_dtor(item, size, udata);
3220 #ifdef INVARIANTS
3221 		if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 &&
3222 		    zone->uz_dtor != trash_dtor)
3223 			trash_dtor(item, size, udata);
3224 #endif
3225 	}
3226 }
3227 
3228 #ifdef NUMA
3229 static int
3230 item_domain(void *item)
3231 {
3232 	int domain;
3233 
3234 	domain = vm_phys_domain(vtophys(item));
3235 	KASSERT(domain >= 0 && domain < vm_ndomains,
3236 	    ("%s: unknown domain for item %p", __func__, item));
3237 	return (domain);
3238 }
3239 #endif
3240 
3241 #if defined(INVARIANTS) || defined(DEBUG_MEMGUARD) || defined(WITNESS)
3242 #define	UMA_ZALLOC_DEBUG
3243 static int
3244 uma_zalloc_debug(uma_zone_t zone, void **itemp, void *udata, int flags)
3245 {
3246 	int error;
3247 
3248 	error = 0;
3249 #ifdef WITNESS
3250 	if (flags & M_WAITOK) {
3251 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
3252 		    "uma_zalloc_debug: zone \"%s\"", zone->uz_name);
3253 	}
3254 #endif
3255 
3256 #ifdef INVARIANTS
3257 	KASSERT((flags & M_EXEC) == 0,
3258 	    ("uma_zalloc_debug: called with M_EXEC"));
3259 	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
3260 	    ("uma_zalloc_debug: called within spinlock or critical section"));
3261 	KASSERT((zone->uz_flags & UMA_ZONE_PCPU) == 0 || (flags & M_ZERO) == 0,
3262 	    ("uma_zalloc_debug: allocating from a pcpu zone with M_ZERO"));
3263 #endif
3264 
3265 #ifdef DEBUG_MEMGUARD
3266 	if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && memguard_cmp_zone(zone)) {
3267 		void *item;
3268 		item = memguard_alloc(zone->uz_size, flags);
3269 		if (item != NULL) {
3270 			error = EJUSTRETURN;
3271 			if (zone->uz_init != NULL &&
3272 			    zone->uz_init(item, zone->uz_size, flags) != 0) {
3273 				*itemp = NULL;
3274 				return (error);
3275 			}
3276 			if (zone->uz_ctor != NULL &&
3277 			    zone->uz_ctor(item, zone->uz_size, udata,
3278 			    flags) != 0) {
3279 				counter_u64_add(zone->uz_fails, 1);
3280 			    	zone->uz_fini(item, zone->uz_size);
3281 				*itemp = NULL;
3282 				return (error);
3283 			}
3284 			*itemp = item;
3285 			return (error);
3286 		}
3287 		/* This is unfortunate but should not be fatal. */
3288 	}
3289 #endif
3290 	return (error);
3291 }
3292 
3293 static int
3294 uma_zfree_debug(uma_zone_t zone, void *item, void *udata)
3295 {
3296 	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
3297 	    ("uma_zfree_debug: called with spinlock or critical section held"));
3298 
3299 #ifdef DEBUG_MEMGUARD
3300 	if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && is_memguard_addr(item)) {
3301 		if (zone->uz_dtor != NULL)
3302 			zone->uz_dtor(item, zone->uz_size, udata);
3303 		if (zone->uz_fini != NULL)
3304 			zone->uz_fini(item, zone->uz_size);
3305 		memguard_free(item);
3306 		return (EJUSTRETURN);
3307 	}
3308 #endif
3309 	return (0);
3310 }
3311 #endif
3312 
3313 static inline void *
3314 cache_alloc_item(uma_zone_t zone, uma_cache_t cache, uma_cache_bucket_t bucket,
3315     void *udata, int flags)
3316 {
3317 	void *item;
3318 	int size, uz_flags;
3319 
3320 	item = cache_bucket_pop(cache, bucket);
3321 	size = cache_uz_size(cache);
3322 	uz_flags = cache_uz_flags(cache);
3323 	critical_exit();
3324 	return (item_ctor(zone, uz_flags, size, udata, flags, item));
3325 }
3326 
3327 static __noinline void *
3328 cache_alloc_retry(uma_zone_t zone, uma_cache_t cache, void *udata, int flags)
3329 {
3330 	uma_cache_bucket_t bucket;
3331 	int domain;
3332 
3333 	while (cache_alloc(zone, cache, udata, flags)) {
3334 		cache = &zone->uz_cpu[curcpu];
3335 		bucket = &cache->uc_allocbucket;
3336 		if (__predict_false(bucket->ucb_cnt == 0))
3337 			continue;
3338 		return (cache_alloc_item(zone, cache, bucket, udata, flags));
3339 	}
3340 	critical_exit();
3341 
3342 	/*
3343 	 * We can not get a bucket so try to return a single item.
3344 	 */
3345 	if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH)
3346 		domain = PCPU_GET(domain);
3347 	else
3348 		domain = UMA_ANYDOMAIN;
3349 	return (zone_alloc_item(zone, udata, domain, flags));
3350 }
3351 
3352 /* See uma.h */
3353 void *
3354 uma_zalloc_smr(uma_zone_t zone, int flags)
3355 {
3356 	uma_cache_bucket_t bucket;
3357 	uma_cache_t cache;
3358 
3359 #ifdef UMA_ZALLOC_DEBUG
3360 	void *item;
3361 
3362 	KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0,
3363 	    ("uma_zalloc_arg: called with non-SMR zone."));
3364 	if (uma_zalloc_debug(zone, &item, NULL, flags) == EJUSTRETURN)
3365 		return (item);
3366 #endif
3367 
3368 	critical_enter();
3369 	cache = &zone->uz_cpu[curcpu];
3370 	bucket = &cache->uc_allocbucket;
3371 	if (__predict_false(bucket->ucb_cnt == 0))
3372 		return (cache_alloc_retry(zone, cache, NULL, flags));
3373 	return (cache_alloc_item(zone, cache, bucket, NULL, flags));
3374 }
3375 
3376 /* See uma.h */
3377 void *
3378 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
3379 {
3380 	uma_cache_bucket_t bucket;
3381 	uma_cache_t cache;
3382 
3383 	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
3384 	random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
3385 
3386 	/* This is the fast path allocation */
3387 	CTR3(KTR_UMA, "uma_zalloc_arg zone %s(%p) flags %d", zone->uz_name,
3388 	    zone, flags);
3389 
3390 #ifdef UMA_ZALLOC_DEBUG
3391 	void *item;
3392 
3393 	KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
3394 	    ("uma_zalloc_arg: called with SMR zone."));
3395 	if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN)
3396 		return (item);
3397 #endif
3398 
3399 	/*
3400 	 * If possible, allocate from the per-CPU cache.  There are two
3401 	 * requirements for safe access to the per-CPU cache: (1) the thread
3402 	 * accessing the cache must not be preempted or yield during access,
3403 	 * and (2) the thread must not migrate CPUs without switching which
3404 	 * cache it accesses.  We rely on a critical section to prevent
3405 	 * preemption and migration.  We release the critical section in
3406 	 * order to acquire the zone mutex if we are unable to allocate from
3407 	 * the current cache; when we re-acquire the critical section, we
3408 	 * must detect and handle migration if it has occurred.
3409 	 */
3410 	critical_enter();
3411 	cache = &zone->uz_cpu[curcpu];
3412 	bucket = &cache->uc_allocbucket;
3413 	if (__predict_false(bucket->ucb_cnt == 0))
3414 		return (cache_alloc_retry(zone, cache, udata, flags));
3415 	return (cache_alloc_item(zone, cache, bucket, udata, flags));
3416 }
3417 
3418 /*
3419  * Replenish an alloc bucket and possibly restore an old one.  Called in
3420  * a critical section.  Returns in a critical section.
3421  *
3422  * A false return value indicates an allocation failure.
3423  * A true return value indicates success and the caller should retry.
3424  */
3425 static __noinline bool
3426 cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags)
3427 {
3428 	uma_bucket_t bucket;
3429 	int curdomain, domain;
3430 	bool new;
3431 
3432 	CRITICAL_ASSERT(curthread);
3433 
3434 	/*
3435 	 * If we have run out of items in our alloc bucket see
3436 	 * if we can switch with the free bucket.
3437 	 *
3438 	 * SMR Zones can't re-use the free bucket until the sequence has
3439 	 * expired.
3440 	 */
3441 	if ((cache_uz_flags(cache) & UMA_ZONE_SMR) == 0 &&
3442 	    cache->uc_freebucket.ucb_cnt != 0) {
3443 		cache_bucket_swap(&cache->uc_freebucket,
3444 		    &cache->uc_allocbucket);
3445 		return (true);
3446 	}
3447 
3448 	/*
3449 	 * Discard any empty allocation bucket while we hold no locks.
3450 	 */
3451 	bucket = cache_bucket_unload_alloc(cache);
3452 	critical_exit();
3453 
3454 	if (bucket != NULL) {
3455 		KASSERT(bucket->ub_cnt == 0,
3456 		    ("cache_alloc: Entered with non-empty alloc bucket."));
3457 		bucket_free(zone, bucket, udata);
3458 	}
3459 
3460 	/*
3461 	 * Attempt to retrieve the item from the per-CPU cache has failed, so
3462 	 * we must go back to the zone.  This requires the zdom lock, so we
3463 	 * must drop the critical section, then re-acquire it when we go back
3464 	 * to the cache.  Since the critical section is released, we may be
3465 	 * preempted or migrate.  As such, make sure not to maintain any
3466 	 * thread-local state specific to the cache from prior to releasing
3467 	 * the critical section.
3468 	 */
3469 	domain = PCPU_GET(domain);
3470 	if ((cache_uz_flags(cache) & UMA_ZONE_ROUNDROBIN) != 0 ||
3471 	    VM_DOMAIN_EMPTY(domain))
3472 		domain = zone_domain_highest(zone, domain);
3473 	bucket = cache_fetch_bucket(zone, cache, domain);
3474 	if (bucket == NULL && zone->uz_bucket_size != 0 && !bucketdisable) {
3475 		bucket = zone_alloc_bucket(zone, udata, domain, flags);
3476 		new = true;
3477 	} else {
3478 		new = false;
3479 	}
3480 
3481 	CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p",
3482 	    zone->uz_name, zone, bucket);
3483 	if (bucket == NULL) {
3484 		critical_enter();
3485 		return (false);
3486 	}
3487 
3488 	/*
3489 	 * See if we lost the race or were migrated.  Cache the
3490 	 * initialized bucket to make this less likely or claim
3491 	 * the memory directly.
3492 	 */
3493 	critical_enter();
3494 	cache = &zone->uz_cpu[curcpu];
3495 	if (cache->uc_allocbucket.ucb_bucket == NULL &&
3496 	    ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) == 0 ||
3497 	    (curdomain = PCPU_GET(domain)) == domain ||
3498 	    VM_DOMAIN_EMPTY(curdomain))) {
3499 		if (new)
3500 			atomic_add_long(&ZDOM_GET(zone, domain)->uzd_imax,
3501 			    bucket->ub_cnt);
3502 		cache_bucket_load_alloc(cache, bucket);
3503 		return (true);
3504 	}
3505 
3506 	/*
3507 	 * We lost the race, release this bucket and start over.
3508 	 */
3509 	critical_exit();
3510 	zone_put_bucket(zone, domain, bucket, udata, false);
3511 	critical_enter();
3512 
3513 	return (true);
3514 }
3515 
3516 void *
3517 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags)
3518 {
3519 #ifdef NUMA
3520 	uma_bucket_t bucket;
3521 	uma_zone_domain_t zdom;
3522 	void *item;
3523 #endif
3524 
3525 	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
3526 	random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
3527 
3528 	/* This is the fast path allocation */
3529 	CTR4(KTR_UMA, "uma_zalloc_domain zone %s(%p) domain %d flags %d",
3530 	    zone->uz_name, zone, domain, flags);
3531 
3532 	if (flags & M_WAITOK) {
3533 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
3534 		    "uma_zalloc_domain: zone \"%s\"", zone->uz_name);
3535 	}
3536 	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
3537 	    ("uma_zalloc_domain: called with spinlock or critical section held"));
3538 	KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
3539 	    ("uma_zalloc_domain: called with SMR zone."));
3540 #ifdef NUMA
3541 	KASSERT((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0,
3542 	    ("uma_zalloc_domain: called with non-FIRSTTOUCH zone."));
3543 
3544 	if (vm_ndomains == 1)
3545 		return (uma_zalloc_arg(zone, udata, flags));
3546 
3547 	/*
3548 	 * Try to allocate from the bucket cache before falling back to the keg.
3549 	 * We could try harder and attempt to allocate from per-CPU caches or
3550 	 * the per-domain cross-domain buckets, but the complexity is probably
3551 	 * not worth it.  It is more important that frees of previous
3552 	 * cross-domain allocations do not blow up the cache.
3553 	 */
3554 	zdom = zone_domain_lock(zone, domain);
3555 	if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) {
3556 		item = bucket->ub_bucket[bucket->ub_cnt - 1];
3557 #ifdef INVARIANTS
3558 		bucket->ub_bucket[bucket->ub_cnt - 1] = NULL;
3559 #endif
3560 		bucket->ub_cnt--;
3561 		zone_put_bucket(zone, domain, bucket, udata, true);
3562 		item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata,
3563 		    flags, item);
3564 		if (item != NULL) {
3565 			KASSERT(item_domain(item) == domain,
3566 			    ("%s: bucket cache item %p from wrong domain",
3567 			    __func__, item));
3568 			counter_u64_add(zone->uz_allocs, 1);
3569 		}
3570 		return (item);
3571 	}
3572 	ZDOM_UNLOCK(zdom);
3573 	return (zone_alloc_item(zone, udata, domain, flags));
3574 #else
3575 	return (uma_zalloc_arg(zone, udata, flags));
3576 #endif
3577 }
3578 
3579 /*
3580  * Find a slab with some space.  Prefer slabs that are partially used over those
3581  * that are totally full.  This helps to reduce fragmentation.
3582  *
3583  * If 'rr' is 1, search all domains starting from 'domain'.  Otherwise check
3584  * only 'domain'.
3585  */
3586 static uma_slab_t
3587 keg_first_slab(uma_keg_t keg, int domain, bool rr)
3588 {
3589 	uma_domain_t dom;
3590 	uma_slab_t slab;
3591 	int start;
3592 
3593 	KASSERT(domain >= 0 && domain < vm_ndomains,
3594 	    ("keg_first_slab: domain %d out of range", domain));
3595 	KEG_LOCK_ASSERT(keg, domain);
3596 
3597 	slab = NULL;
3598 	start = domain;
3599 	do {
3600 		dom = &keg->uk_domain[domain];
3601 		if ((slab = LIST_FIRST(&dom->ud_part_slab)) != NULL)
3602 			return (slab);
3603 		if ((slab = LIST_FIRST(&dom->ud_free_slab)) != NULL) {
3604 			LIST_REMOVE(slab, us_link);
3605 			dom->ud_free_slabs--;
3606 			LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
3607 			return (slab);
3608 		}
3609 		if (rr)
3610 			domain = (domain + 1) % vm_ndomains;
3611 	} while (domain != start);
3612 
3613 	return (NULL);
3614 }
3615 
3616 /*
3617  * Fetch an existing slab from a free or partial list.  Returns with the
3618  * keg domain lock held if a slab was found or unlocked if not.
3619  */
3620 static uma_slab_t
3621 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags)
3622 {
3623 	uma_slab_t slab;
3624 	uint32_t reserve;
3625 
3626 	/* HASH has a single free list. */
3627 	if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0)
3628 		domain = 0;
3629 
3630 	KEG_LOCK(keg, domain);
3631 	reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve;
3632 	if (keg->uk_domain[domain].ud_free_items <= reserve ||
3633 	    (slab = keg_first_slab(keg, domain, rr)) == NULL) {
3634 		KEG_UNLOCK(keg, domain);
3635 		return (NULL);
3636 	}
3637 	return (slab);
3638 }
3639 
3640 static uma_slab_t
3641 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags)
3642 {
3643 	struct vm_domainset_iter di;
3644 	uma_slab_t slab;
3645 	int aflags, domain;
3646 	bool rr;
3647 
3648 restart:
3649 	/*
3650 	 * Use the keg's policy if upper layers haven't already specified a
3651 	 * domain (as happens with first-touch zones).
3652 	 *
3653 	 * To avoid races we run the iterator with the keg lock held, but that
3654 	 * means that we cannot allow the vm_domainset layer to sleep.  Thus,
3655 	 * clear M_WAITOK and handle low memory conditions locally.
3656 	 */
3657 	rr = rdomain == UMA_ANYDOMAIN;
3658 	if (rr) {
3659 		aflags = (flags & ~M_WAITOK) | M_NOWAIT;
3660 		vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain,
3661 		    &aflags);
3662 	} else {
3663 		aflags = flags;
3664 		domain = rdomain;
3665 	}
3666 
3667 	for (;;) {
3668 		slab = keg_fetch_free_slab(keg, domain, rr, flags);
3669 		if (slab != NULL)
3670 			return (slab);
3671 
3672 		/*
3673 		 * M_NOVM means don't ask at all!
3674 		 */
3675 		if (flags & M_NOVM)
3676 			break;
3677 
3678 		slab = keg_alloc_slab(keg, zone, domain, flags, aflags);
3679 		if (slab != NULL)
3680 			return (slab);
3681 		if (!rr && (flags & M_WAITOK) == 0)
3682 			break;
3683 		if (rr && vm_domainset_iter_policy(&di, &domain) != 0) {
3684 			if ((flags & M_WAITOK) != 0) {
3685 				vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0);
3686 				goto restart;
3687 			}
3688 			break;
3689 		}
3690 	}
3691 
3692 	/*
3693 	 * We might not have been able to get a slab but another cpu
3694 	 * could have while we were unlocked.  Check again before we
3695 	 * fail.
3696 	 */
3697 	if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL)
3698 		return (slab);
3699 
3700 	return (NULL);
3701 }
3702 
3703 static void *
3704 slab_alloc_item(uma_keg_t keg, uma_slab_t slab)
3705 {
3706 	uma_domain_t dom;
3707 	void *item;
3708 	int freei;
3709 
3710 	KEG_LOCK_ASSERT(keg, slab->us_domain);
3711 
3712 	dom = &keg->uk_domain[slab->us_domain];
3713 	freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1;
3714 	BIT_CLR(keg->uk_ipers, freei, &slab->us_free);
3715 	item = slab_item(slab, keg, freei);
3716 	slab->us_freecount--;
3717 	dom->ud_free_items--;
3718 
3719 	/*
3720 	 * Move this slab to the full list.  It must be on the partial list, so
3721 	 * we do not need to update the free slab count.  In particular,
3722 	 * keg_fetch_slab() always returns slabs on the partial list.
3723 	 */
3724 	if (slab->us_freecount == 0) {
3725 		LIST_REMOVE(slab, us_link);
3726 		LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link);
3727 	}
3728 
3729 	return (item);
3730 }
3731 
3732 static int
3733 zone_import(void *arg, void **bucket, int max, int domain, int flags)
3734 {
3735 	uma_domain_t dom;
3736 	uma_zone_t zone;
3737 	uma_slab_t slab;
3738 	uma_keg_t keg;
3739 #ifdef NUMA
3740 	int stripe;
3741 #endif
3742 	int i;
3743 
3744 	zone = arg;
3745 	slab = NULL;
3746 	keg = zone->uz_keg;
3747 	/* Try to keep the buckets totally full */
3748 	for (i = 0; i < max; ) {
3749 		if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL)
3750 			break;
3751 #ifdef NUMA
3752 		stripe = howmany(max, vm_ndomains);
3753 #endif
3754 		dom = &keg->uk_domain[slab->us_domain];
3755 		do {
3756 			bucket[i++] = slab_alloc_item(keg, slab);
3757 			if (dom->ud_free_items <= keg->uk_reserve) {
3758 				/*
3759 				 * Avoid depleting the reserve after a
3760 				 * successful item allocation, even if
3761 				 * M_USE_RESERVE is specified.
3762 				 */
3763 				KEG_UNLOCK(keg, slab->us_domain);
3764 				goto out;
3765 			}
3766 #ifdef NUMA
3767 			/*
3768 			 * If the zone is striped we pick a new slab for every
3769 			 * N allocations.  Eliminating this conditional will
3770 			 * instead pick a new domain for each bucket rather
3771 			 * than stripe within each bucket.  The current option
3772 			 * produces more fragmentation and requires more cpu
3773 			 * time but yields better distribution.
3774 			 */
3775 			if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0 &&
3776 			    vm_ndomains > 1 && --stripe == 0)
3777 				break;
3778 #endif
3779 		} while (slab->us_freecount != 0 && i < max);
3780 		KEG_UNLOCK(keg, slab->us_domain);
3781 
3782 		/* Don't block if we allocated any successfully. */
3783 		flags &= ~M_WAITOK;
3784 		flags |= M_NOWAIT;
3785 	}
3786 out:
3787 	return i;
3788 }
3789 
3790 static int
3791 zone_alloc_limit_hard(uma_zone_t zone, int count, int flags)
3792 {
3793 	uint64_t old, new, total, max;
3794 
3795 	/*
3796 	 * The hard case.  We're going to sleep because there were existing
3797 	 * sleepers or because we ran out of items.  This routine enforces
3798 	 * fairness by keeping fifo order.
3799 	 *
3800 	 * First release our ill gotten gains and make some noise.
3801 	 */
3802 	for (;;) {
3803 		zone_free_limit(zone, count);
3804 		zone_log_warning(zone);
3805 		zone_maxaction(zone);
3806 		if (flags & M_NOWAIT)
3807 			return (0);
3808 
3809 		/*
3810 		 * We need to allocate an item or set ourself as a sleeper
3811 		 * while the sleepq lock is held to avoid wakeup races.  This
3812 		 * is essentially a home rolled semaphore.
3813 		 */
3814 		sleepq_lock(&zone->uz_max_items);
3815 		old = zone->uz_items;
3816 		do {
3817 			MPASS(UZ_ITEMS_SLEEPERS(old) < UZ_ITEMS_SLEEPERS_MAX);
3818 			/* Cache the max since we will evaluate twice. */
3819 			max = zone->uz_max_items;
3820 			if (UZ_ITEMS_SLEEPERS(old) != 0 ||
3821 			    UZ_ITEMS_COUNT(old) >= max)
3822 				new = old + UZ_ITEMS_SLEEPER;
3823 			else
3824 				new = old + MIN(count, max - old);
3825 		} while (atomic_fcmpset_64(&zone->uz_items, &old, new) == 0);
3826 
3827 		/* We may have successfully allocated under the sleepq lock. */
3828 		if (UZ_ITEMS_SLEEPERS(new) == 0) {
3829 			sleepq_release(&zone->uz_max_items);
3830 			return (new - old);
3831 		}
3832 
3833 		/*
3834 		 * This is in a different cacheline from uz_items so that we
3835 		 * don't constantly invalidate the fastpath cacheline when we
3836 		 * adjust item counts.  This could be limited to toggling on
3837 		 * transitions.
3838 		 */
3839 		atomic_add_32(&zone->uz_sleepers, 1);
3840 		atomic_add_64(&zone->uz_sleeps, 1);
3841 
3842 		/*
3843 		 * We have added ourselves as a sleeper.  The sleepq lock
3844 		 * protects us from wakeup races.  Sleep now and then retry.
3845 		 */
3846 		sleepq_add(&zone->uz_max_items, NULL, "zonelimit", 0, 0);
3847 		sleepq_wait(&zone->uz_max_items, PVM);
3848 
3849 		/*
3850 		 * After wakeup, remove ourselves as a sleeper and try
3851 		 * again.  We no longer have the sleepq lock for protection.
3852 		 *
3853 		 * Subract ourselves as a sleeper while attempting to add
3854 		 * our count.
3855 		 */
3856 		atomic_subtract_32(&zone->uz_sleepers, 1);
3857 		old = atomic_fetchadd_64(&zone->uz_items,
3858 		    -(UZ_ITEMS_SLEEPER - count));
3859 		/* We're no longer a sleeper. */
3860 		old -= UZ_ITEMS_SLEEPER;
3861 
3862 		/*
3863 		 * If we're still at the limit, restart.  Notably do not
3864 		 * block on other sleepers.  Cache the max value to protect
3865 		 * against changes via sysctl.
3866 		 */
3867 		total = UZ_ITEMS_COUNT(old);
3868 		max = zone->uz_max_items;
3869 		if (total >= max)
3870 			continue;
3871 		/* Truncate if necessary, otherwise wake other sleepers. */
3872 		if (total + count > max) {
3873 			zone_free_limit(zone, total + count - max);
3874 			count = max - total;
3875 		} else if (total + count < max && UZ_ITEMS_SLEEPERS(old) != 0)
3876 			wakeup_one(&zone->uz_max_items);
3877 
3878 		return (count);
3879 	}
3880 }
3881 
3882 /*
3883  * Allocate 'count' items from our max_items limit.  Returns the number
3884  * available.  If M_NOWAIT is not specified it will sleep until at least
3885  * one item can be allocated.
3886  */
3887 static int
3888 zone_alloc_limit(uma_zone_t zone, int count, int flags)
3889 {
3890 	uint64_t old;
3891 	uint64_t max;
3892 
3893 	max = zone->uz_max_items;
3894 	MPASS(max > 0);
3895 
3896 	/*
3897 	 * We expect normal allocations to succeed with a simple
3898 	 * fetchadd.
3899 	 */
3900 	old = atomic_fetchadd_64(&zone->uz_items, count);
3901 	if (__predict_true(old + count <= max))
3902 		return (count);
3903 
3904 	/*
3905 	 * If we had some items and no sleepers just return the
3906 	 * truncated value.  We have to release the excess space
3907 	 * though because that may wake sleepers who weren't woken
3908 	 * because we were temporarily over the limit.
3909 	 */
3910 	if (old < max) {
3911 		zone_free_limit(zone, (old + count) - max);
3912 		return (max - old);
3913 	}
3914 	return (zone_alloc_limit_hard(zone, count, flags));
3915 }
3916 
3917 /*
3918  * Free a number of items back to the limit.
3919  */
3920 static void
3921 zone_free_limit(uma_zone_t zone, int count)
3922 {
3923 	uint64_t old;
3924 
3925 	MPASS(count > 0);
3926 
3927 	/*
3928 	 * In the common case we either have no sleepers or
3929 	 * are still over the limit and can just return.
3930 	 */
3931 	old = atomic_fetchadd_64(&zone->uz_items, -count);
3932 	if (__predict_true(UZ_ITEMS_SLEEPERS(old) == 0 ||
3933 	   UZ_ITEMS_COUNT(old) - count >= zone->uz_max_items))
3934 		return;
3935 
3936 	/*
3937 	 * Moderate the rate of wakeups.  Sleepers will continue
3938 	 * to generate wakeups if necessary.
3939 	 */
3940 	wakeup_one(&zone->uz_max_items);
3941 }
3942 
3943 static uma_bucket_t
3944 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags)
3945 {
3946 	uma_bucket_t bucket;
3947 	int maxbucket, cnt;
3948 
3949 	CTR3(KTR_UMA, "zone_alloc_bucket zone %s(%p) domain %d", zone->uz_name,
3950 	    zone, domain);
3951 
3952 	/* Avoid allocs targeting empty domains. */
3953 	if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain))
3954 		domain = UMA_ANYDOMAIN;
3955 	else if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0)
3956 		domain = UMA_ANYDOMAIN;
3957 
3958 	if (zone->uz_max_items > 0)
3959 		maxbucket = zone_alloc_limit(zone, zone->uz_bucket_size,
3960 		    M_NOWAIT);
3961 	else
3962 		maxbucket = zone->uz_bucket_size;
3963 	if (maxbucket == 0)
3964 		return (false);
3965 
3966 	/* Don't wait for buckets, preserve caller's NOVM setting. */
3967 	bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM));
3968 	if (bucket == NULL) {
3969 		cnt = 0;
3970 		goto out;
3971 	}
3972 
3973 	bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket,
3974 	    MIN(maxbucket, bucket->ub_entries), domain, flags);
3975 
3976 	/*
3977 	 * Initialize the memory if necessary.
3978 	 */
3979 	if (bucket->ub_cnt != 0 && zone->uz_init != NULL) {
3980 		int i;
3981 
3982 		for (i = 0; i < bucket->ub_cnt; i++)
3983 			if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size,
3984 			    flags) != 0)
3985 				break;
3986 		/*
3987 		 * If we couldn't initialize the whole bucket, put the
3988 		 * rest back onto the freelist.
3989 		 */
3990 		if (i != bucket->ub_cnt) {
3991 			zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i],
3992 			    bucket->ub_cnt - i);
3993 #ifdef INVARIANTS
3994 			bzero(&bucket->ub_bucket[i],
3995 			    sizeof(void *) * (bucket->ub_cnt - i));
3996 #endif
3997 			bucket->ub_cnt = i;
3998 		}
3999 	}
4000 
4001 	cnt = bucket->ub_cnt;
4002 	if (bucket->ub_cnt == 0) {
4003 		bucket_free(zone, bucket, udata);
4004 		counter_u64_add(zone->uz_fails, 1);
4005 		bucket = NULL;
4006 	}
4007 out:
4008 	if (zone->uz_max_items > 0 && cnt < maxbucket)
4009 		zone_free_limit(zone, maxbucket - cnt);
4010 
4011 	return (bucket);
4012 }
4013 
4014 /*
4015  * Allocates a single item from a zone.
4016  *
4017  * Arguments
4018  *	zone   The zone to alloc for.
4019  *	udata  The data to be passed to the constructor.
4020  *	domain The domain to allocate from or UMA_ANYDOMAIN.
4021  *	flags  M_WAITOK, M_NOWAIT, M_ZERO.
4022  *
4023  * Returns
4024  *	NULL if there is no memory and M_NOWAIT is set
4025  *	An item if successful
4026  */
4027 
4028 static void *
4029 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags)
4030 {
4031 	void *item;
4032 
4033 	if (zone->uz_max_items > 0 && zone_alloc_limit(zone, 1, flags) == 0) {
4034 		counter_u64_add(zone->uz_fails, 1);
4035 		return (NULL);
4036 	}
4037 
4038 	/* Avoid allocs targeting empty domains. */
4039 	if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain))
4040 		domain = UMA_ANYDOMAIN;
4041 
4042 	if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1)
4043 		goto fail_cnt;
4044 
4045 	/*
4046 	 * We have to call both the zone's init (not the keg's init)
4047 	 * and the zone's ctor.  This is because the item is going from
4048 	 * a keg slab directly to the user, and the user is expecting it
4049 	 * to be both zone-init'd as well as zone-ctor'd.
4050 	 */
4051 	if (zone->uz_init != NULL) {
4052 		if (zone->uz_init(item, zone->uz_size, flags) != 0) {
4053 			zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT);
4054 			goto fail_cnt;
4055 		}
4056 	}
4057 	item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, flags,
4058 	    item);
4059 	if (item == NULL)
4060 		goto fail;
4061 
4062 	counter_u64_add(zone->uz_allocs, 1);
4063 	CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item,
4064 	    zone->uz_name, zone);
4065 
4066 	return (item);
4067 
4068 fail_cnt:
4069 	counter_u64_add(zone->uz_fails, 1);
4070 fail:
4071 	if (zone->uz_max_items > 0)
4072 		zone_free_limit(zone, 1);
4073 	CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)",
4074 	    zone->uz_name, zone);
4075 
4076 	return (NULL);
4077 }
4078 
4079 /* See uma.h */
4080 void
4081 uma_zfree_smr(uma_zone_t zone, void *item)
4082 {
4083 	uma_cache_t cache;
4084 	uma_cache_bucket_t bucket;
4085 	int itemdomain, uz_flags;
4086 
4087 #ifdef UMA_ZALLOC_DEBUG
4088 	KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0,
4089 	    ("uma_zfree_smr: called with non-SMR zone."));
4090 	KASSERT(item != NULL, ("uma_zfree_smr: Called with NULL pointer."));
4091 	SMR_ASSERT_NOT_ENTERED(zone->uz_smr);
4092 	if (uma_zfree_debug(zone, item, NULL) == EJUSTRETURN)
4093 		return;
4094 #endif
4095 	cache = &zone->uz_cpu[curcpu];
4096 	uz_flags = cache_uz_flags(cache);
4097 	itemdomain = 0;
4098 #ifdef NUMA
4099 	if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0)
4100 		itemdomain = item_domain(item);
4101 #endif
4102 	critical_enter();
4103 	do {
4104 		cache = &zone->uz_cpu[curcpu];
4105 		/* SMR Zones must free to the free bucket. */
4106 		bucket = &cache->uc_freebucket;
4107 #ifdef NUMA
4108 		if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 &&
4109 		    PCPU_GET(domain) != itemdomain) {
4110 			bucket = &cache->uc_crossbucket;
4111 		}
4112 #endif
4113 		if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) {
4114 			cache_bucket_push(cache, bucket, item);
4115 			critical_exit();
4116 			return;
4117 		}
4118 	} while (cache_free(zone, cache, NULL, item, itemdomain));
4119 	critical_exit();
4120 
4121 	/*
4122 	 * If nothing else caught this, we'll just do an internal free.
4123 	 */
4124 	zone_free_item(zone, item, NULL, SKIP_NONE);
4125 }
4126 
4127 /* See uma.h */
4128 void
4129 uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
4130 {
4131 	uma_cache_t cache;
4132 	uma_cache_bucket_t bucket;
4133 	int itemdomain, uz_flags;
4134 
4135 	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
4136 	random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
4137 
4138 	CTR2(KTR_UMA, "uma_zfree_arg zone %s(%p)", zone->uz_name, zone);
4139 
4140 #ifdef UMA_ZALLOC_DEBUG
4141 	KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
4142 	    ("uma_zfree_arg: called with SMR zone."));
4143 	if (uma_zfree_debug(zone, item, udata) == EJUSTRETURN)
4144 		return;
4145 #endif
4146         /* uma_zfree(..., NULL) does nothing, to match free(9). */
4147         if (item == NULL)
4148                 return;
4149 
4150 	/*
4151 	 * We are accessing the per-cpu cache without a critical section to
4152 	 * fetch size and flags.  This is acceptable, if we are preempted we
4153 	 * will simply read another cpu's line.
4154 	 */
4155 	cache = &zone->uz_cpu[curcpu];
4156 	uz_flags = cache_uz_flags(cache);
4157 	if (UMA_ALWAYS_CTORDTOR ||
4158 	    __predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0))
4159 		item_dtor(zone, item, cache_uz_size(cache), udata, SKIP_NONE);
4160 
4161 	/*
4162 	 * The race here is acceptable.  If we miss it we'll just have to wait
4163 	 * a little longer for the limits to be reset.
4164 	 */
4165 	if (__predict_false(uz_flags & UMA_ZFLAG_LIMIT)) {
4166 		if (atomic_load_32(&zone->uz_sleepers) > 0)
4167 			goto zfree_item;
4168 	}
4169 
4170 	/*
4171 	 * If possible, free to the per-CPU cache.  There are two
4172 	 * requirements for safe access to the per-CPU cache: (1) the thread
4173 	 * accessing the cache must not be preempted or yield during access,
4174 	 * and (2) the thread must not migrate CPUs without switching which
4175 	 * cache it accesses.  We rely on a critical section to prevent
4176 	 * preemption and migration.  We release the critical section in
4177 	 * order to acquire the zone mutex if we are unable to free to the
4178 	 * current cache; when we re-acquire the critical section, we must
4179 	 * detect and handle migration if it has occurred.
4180 	 */
4181 	itemdomain = 0;
4182 #ifdef NUMA
4183 	if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0)
4184 		itemdomain = item_domain(item);
4185 #endif
4186 	critical_enter();
4187 	do {
4188 		cache = &zone->uz_cpu[curcpu];
4189 		/*
4190 		 * Try to free into the allocbucket first to give LIFO
4191 		 * ordering for cache-hot datastructures.  Spill over
4192 		 * into the freebucket if necessary.  Alloc will swap
4193 		 * them if one runs dry.
4194 		 */
4195 		bucket = &cache->uc_allocbucket;
4196 #ifdef NUMA
4197 		if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 &&
4198 		    PCPU_GET(domain) != itemdomain) {
4199 			bucket = &cache->uc_crossbucket;
4200 		} else
4201 #endif
4202 		if (bucket->ucb_cnt == bucket->ucb_entries &&
4203 		   cache->uc_freebucket.ucb_cnt <
4204 		   cache->uc_freebucket.ucb_entries)
4205 			cache_bucket_swap(&cache->uc_freebucket,
4206 			    &cache->uc_allocbucket);
4207 		if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) {
4208 			cache_bucket_push(cache, bucket, item);
4209 			critical_exit();
4210 			return;
4211 		}
4212 	} while (cache_free(zone, cache, udata, item, itemdomain));
4213 	critical_exit();
4214 
4215 	/*
4216 	 * If nothing else caught this, we'll just do an internal free.
4217 	 */
4218 zfree_item:
4219 	zone_free_item(zone, item, udata, SKIP_DTOR);
4220 }
4221 
4222 #ifdef NUMA
4223 /*
4224  * sort crossdomain free buckets to domain correct buckets and cache
4225  * them.
4226  */
4227 static void
4228 zone_free_cross(uma_zone_t zone, uma_bucket_t bucket, void *udata)
4229 {
4230 	struct uma_bucketlist emptybuckets, fullbuckets;
4231 	uma_zone_domain_t zdom;
4232 	uma_bucket_t b;
4233 	smr_seq_t seq;
4234 	void *item;
4235 	int domain;
4236 
4237 	CTR3(KTR_UMA,
4238 	    "uma_zfree: zone %s(%p) draining cross bucket %p",
4239 	    zone->uz_name, zone, bucket);
4240 
4241 	/*
4242 	 * It is possible for buckets to arrive here out of order so we fetch
4243 	 * the current smr seq rather than accepting the bucket's.
4244 	 */
4245 	seq = SMR_SEQ_INVALID;
4246 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
4247 		seq = smr_advance(zone->uz_smr);
4248 
4249 	/*
4250 	 * To avoid having ndomain * ndomain buckets for sorting we have a
4251 	 * lock on the current crossfree bucket.  A full matrix with
4252 	 * per-domain locking could be used if necessary.
4253 	 */
4254 	STAILQ_INIT(&emptybuckets);
4255 	STAILQ_INIT(&fullbuckets);
4256 	ZONE_CROSS_LOCK(zone);
4257 	for (; bucket->ub_cnt > 0; bucket->ub_cnt--) {
4258 		item = bucket->ub_bucket[bucket->ub_cnt - 1];
4259 		domain = item_domain(item);
4260 		zdom = ZDOM_GET(zone, domain);
4261 		if (zdom->uzd_cross == NULL) {
4262 			if ((b = STAILQ_FIRST(&emptybuckets)) != NULL) {
4263 				STAILQ_REMOVE_HEAD(&emptybuckets, ub_link);
4264 				zdom->uzd_cross = b;
4265 			} else {
4266 				/*
4267 				 * Avoid allocating a bucket with the cross lock
4268 				 * held, since allocation can trigger a
4269 				 * cross-domain free and bucket zones may
4270 				 * allocate from each other.
4271 				 */
4272 				ZONE_CROSS_UNLOCK(zone);
4273 				b = bucket_alloc(zone, udata, M_NOWAIT);
4274 				if (b == NULL)
4275 					goto out;
4276 				ZONE_CROSS_LOCK(zone);
4277 				if (zdom->uzd_cross != NULL) {
4278 					STAILQ_INSERT_HEAD(&emptybuckets, b,
4279 					    ub_link);
4280 				} else {
4281 					zdom->uzd_cross = b;
4282 				}
4283 			}
4284 		}
4285 		b = zdom->uzd_cross;
4286 		b->ub_bucket[b->ub_cnt++] = item;
4287 		b->ub_seq = seq;
4288 		if (b->ub_cnt == b->ub_entries) {
4289 			STAILQ_INSERT_HEAD(&fullbuckets, b, ub_link);
4290 			if ((b = STAILQ_FIRST(&emptybuckets)) != NULL)
4291 				STAILQ_REMOVE_HEAD(&emptybuckets, ub_link);
4292 			zdom->uzd_cross = b;
4293 		}
4294 	}
4295 	ZONE_CROSS_UNLOCK(zone);
4296 out:
4297 	if (bucket->ub_cnt == 0)
4298 		bucket->ub_seq = SMR_SEQ_INVALID;
4299 	bucket_free(zone, bucket, udata);
4300 
4301 	while ((b = STAILQ_FIRST(&emptybuckets)) != NULL) {
4302 		STAILQ_REMOVE_HEAD(&emptybuckets, ub_link);
4303 		bucket_free(zone, b, udata);
4304 	}
4305 	while ((b = STAILQ_FIRST(&fullbuckets)) != NULL) {
4306 		STAILQ_REMOVE_HEAD(&fullbuckets, ub_link);
4307 		domain = item_domain(b->ub_bucket[0]);
4308 		zone_put_bucket(zone, domain, b, udata, true);
4309 	}
4310 }
4311 #endif
4312 
4313 static void
4314 zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata,
4315     int itemdomain, bool ws)
4316 {
4317 
4318 #ifdef NUMA
4319 	/*
4320 	 * Buckets coming from the wrong domain will be entirely for the
4321 	 * only other domain on two domain systems.  In this case we can
4322 	 * simply cache them.  Otherwise we need to sort them back to
4323 	 * correct domains.
4324 	 */
4325 	if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 &&
4326 	    vm_ndomains > 2 && PCPU_GET(domain) != itemdomain) {
4327 		zone_free_cross(zone, bucket, udata);
4328 		return;
4329 	}
4330 #endif
4331 
4332 	/*
4333 	 * Attempt to save the bucket in the zone's domain bucket cache.
4334 	 */
4335 	CTR3(KTR_UMA,
4336 	    "uma_zfree: zone %s(%p) putting bucket %p on free list",
4337 	    zone->uz_name, zone, bucket);
4338 	/* ub_cnt is pointing to the last free item */
4339 	if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0)
4340 		itemdomain = zone_domain_lowest(zone, itemdomain);
4341 	zone_put_bucket(zone, itemdomain, bucket, udata, ws);
4342 }
4343 
4344 /*
4345  * Populate a free or cross bucket for the current cpu cache.  Free any
4346  * existing full bucket either to the zone cache or back to the slab layer.
4347  *
4348  * Enters and returns in a critical section.  false return indicates that
4349  * we can not satisfy this free in the cache layer.  true indicates that
4350  * the caller should retry.
4351  */
4352 static __noinline bool
4353 cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, void *item,
4354     int itemdomain)
4355 {
4356 	uma_cache_bucket_t cbucket;
4357 	uma_bucket_t newbucket, bucket;
4358 
4359 	CRITICAL_ASSERT(curthread);
4360 
4361 	if (zone->uz_bucket_size == 0)
4362 		return false;
4363 
4364 	cache = &zone->uz_cpu[curcpu];
4365 	newbucket = NULL;
4366 
4367 	/*
4368 	 * FIRSTTOUCH domains need to free to the correct zdom.  When
4369 	 * enabled this is the zdom of the item.   The bucket is the
4370 	 * cross bucket if the current domain and itemdomain do not match.
4371 	 */
4372 	cbucket = &cache->uc_freebucket;
4373 #ifdef NUMA
4374 	if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) {
4375 		if (PCPU_GET(domain) != itemdomain) {
4376 			cbucket = &cache->uc_crossbucket;
4377 			if (cbucket->ucb_cnt != 0)
4378 				counter_u64_add(zone->uz_xdomain,
4379 				    cbucket->ucb_cnt);
4380 		}
4381 	}
4382 #endif
4383 	bucket = cache_bucket_unload(cbucket);
4384 	KASSERT(bucket == NULL || bucket->ub_cnt == bucket->ub_entries,
4385 	    ("cache_free: Entered with non-full free bucket."));
4386 
4387 	/* We are no longer associated with this CPU. */
4388 	critical_exit();
4389 
4390 	/*
4391 	 * Don't let SMR zones operate without a free bucket.  Force
4392 	 * a synchronize and re-use this one.  We will only degrade
4393 	 * to a synchronize every bucket_size items rather than every
4394 	 * item if we fail to allocate a bucket.
4395 	 */
4396 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0) {
4397 		if (bucket != NULL)
4398 			bucket->ub_seq = smr_advance(zone->uz_smr);
4399 		newbucket = bucket_alloc(zone, udata, M_NOWAIT);
4400 		if (newbucket == NULL && bucket != NULL) {
4401 			bucket_drain(zone, bucket);
4402 			newbucket = bucket;
4403 			bucket = NULL;
4404 		}
4405 	} else if (!bucketdisable)
4406 		newbucket = bucket_alloc(zone, udata, M_NOWAIT);
4407 
4408 	if (bucket != NULL)
4409 		zone_free_bucket(zone, bucket, udata, itemdomain, true);
4410 
4411 	critical_enter();
4412 	if ((bucket = newbucket) == NULL)
4413 		return (false);
4414 	cache = &zone->uz_cpu[curcpu];
4415 #ifdef NUMA
4416 	/*
4417 	 * Check to see if we should be populating the cross bucket.  If it
4418 	 * is already populated we will fall through and attempt to populate
4419 	 * the free bucket.
4420 	 */
4421 	if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) {
4422 		if (PCPU_GET(domain) != itemdomain &&
4423 		    cache->uc_crossbucket.ucb_bucket == NULL) {
4424 			cache_bucket_load_cross(cache, bucket);
4425 			return (true);
4426 		}
4427 	}
4428 #endif
4429 	/*
4430 	 * We may have lost the race to fill the bucket or switched CPUs.
4431 	 */
4432 	if (cache->uc_freebucket.ucb_bucket != NULL) {
4433 		critical_exit();
4434 		bucket_free(zone, bucket, udata);
4435 		critical_enter();
4436 	} else
4437 		cache_bucket_load_free(cache, bucket);
4438 
4439 	return (true);
4440 }
4441 
4442 static void
4443 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item)
4444 {
4445 	uma_keg_t keg;
4446 	uma_domain_t dom;
4447 	int freei;
4448 
4449 	keg = zone->uz_keg;
4450 	KEG_LOCK_ASSERT(keg, slab->us_domain);
4451 
4452 	/* Do we need to remove from any lists? */
4453 	dom = &keg->uk_domain[slab->us_domain];
4454 	if (slab->us_freecount + 1 == keg->uk_ipers) {
4455 		LIST_REMOVE(slab, us_link);
4456 		LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link);
4457 		dom->ud_free_slabs++;
4458 	} else if (slab->us_freecount == 0) {
4459 		LIST_REMOVE(slab, us_link);
4460 		LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
4461 	}
4462 
4463 	/* Slab management. */
4464 	freei = slab_item_index(slab, keg, item);
4465 	BIT_SET(keg->uk_ipers, freei, &slab->us_free);
4466 	slab->us_freecount++;
4467 
4468 	/* Keg statistics. */
4469 	dom->ud_free_items++;
4470 }
4471 
4472 static void
4473 zone_release(void *arg, void **bucket, int cnt)
4474 {
4475 	struct mtx *lock;
4476 	uma_zone_t zone;
4477 	uma_slab_t slab;
4478 	uma_keg_t keg;
4479 	uint8_t *mem;
4480 	void *item;
4481 	int i;
4482 
4483 	zone = arg;
4484 	keg = zone->uz_keg;
4485 	lock = NULL;
4486 	if (__predict_false((zone->uz_flags & UMA_ZFLAG_HASH) != 0))
4487 		lock = KEG_LOCK(keg, 0);
4488 	for (i = 0; i < cnt; i++) {
4489 		item = bucket[i];
4490 		if (__predict_true((zone->uz_flags & UMA_ZFLAG_VTOSLAB) != 0)) {
4491 			slab = vtoslab((vm_offset_t)item);
4492 		} else {
4493 			mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
4494 			if ((zone->uz_flags & UMA_ZFLAG_HASH) != 0)
4495 				slab = hash_sfind(&keg->uk_hash, mem);
4496 			else
4497 				slab = (uma_slab_t)(mem + keg->uk_pgoff);
4498 		}
4499 		if (lock != KEG_LOCKPTR(keg, slab->us_domain)) {
4500 			if (lock != NULL)
4501 				mtx_unlock(lock);
4502 			lock = KEG_LOCK(keg, slab->us_domain);
4503 		}
4504 		slab_free_item(zone, slab, item);
4505 	}
4506 	if (lock != NULL)
4507 		mtx_unlock(lock);
4508 }
4509 
4510 /*
4511  * Frees a single item to any zone.
4512  *
4513  * Arguments:
4514  *	zone   The zone to free to
4515  *	item   The item we're freeing
4516  *	udata  User supplied data for the dtor
4517  *	skip   Skip dtors and finis
4518  */
4519 static __noinline void
4520 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip)
4521 {
4522 
4523 	/*
4524 	 * If a free is sent directly to an SMR zone we have to
4525 	 * synchronize immediately because the item can instantly
4526 	 * be reallocated. This should only happen in degenerate
4527 	 * cases when no memory is available for per-cpu caches.
4528 	 */
4529 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && skip == SKIP_NONE)
4530 		smr_synchronize(zone->uz_smr);
4531 
4532 	item_dtor(zone, item, zone->uz_size, udata, skip);
4533 
4534 	if (skip < SKIP_FINI && zone->uz_fini)
4535 		zone->uz_fini(item, zone->uz_size);
4536 
4537 	zone->uz_release(zone->uz_arg, &item, 1);
4538 
4539 	if (skip & SKIP_CNT)
4540 		return;
4541 
4542 	counter_u64_add(zone->uz_frees, 1);
4543 
4544 	if (zone->uz_max_items > 0)
4545 		zone_free_limit(zone, 1);
4546 }
4547 
4548 /* See uma.h */
4549 int
4550 uma_zone_set_max(uma_zone_t zone, int nitems)
4551 {
4552 
4553 	/*
4554 	 * If the limit is small, we may need to constrain the maximum per-CPU
4555 	 * cache size, or disable caching entirely.
4556 	 */
4557 	uma_zone_set_maxcache(zone, nitems);
4558 
4559 	/*
4560 	 * XXX This can misbehave if the zone has any allocations with
4561 	 * no limit and a limit is imposed.  There is currently no
4562 	 * way to clear a limit.
4563 	 */
4564 	ZONE_LOCK(zone);
4565 	zone->uz_max_items = nitems;
4566 	zone->uz_flags |= UMA_ZFLAG_LIMIT;
4567 	zone_update_caches(zone);
4568 	/* We may need to wake waiters. */
4569 	wakeup(&zone->uz_max_items);
4570 	ZONE_UNLOCK(zone);
4571 
4572 	return (nitems);
4573 }
4574 
4575 /* See uma.h */
4576 void
4577 uma_zone_set_maxcache(uma_zone_t zone, int nitems)
4578 {
4579 	int bpcpu, bpdom, bsize, nb;
4580 
4581 	ZONE_LOCK(zone);
4582 
4583 	/*
4584 	 * Compute a lower bound on the number of items that may be cached in
4585 	 * the zone.  Each CPU gets at least two buckets, and for cross-domain
4586 	 * frees we use an additional bucket per CPU and per domain.  Select the
4587 	 * largest bucket size that does not exceed half of the requested limit,
4588 	 * with the left over space given to the full bucket cache.
4589 	 */
4590 	bpdom = 0;
4591 	bpcpu = 2;
4592 #ifdef NUMA
4593 	if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && vm_ndomains > 1) {
4594 		bpcpu++;
4595 		bpdom++;
4596 	}
4597 #endif
4598 	nb = bpcpu * mp_ncpus + bpdom * vm_ndomains;
4599 	bsize = nitems / nb / 2;
4600 	if (bsize > BUCKET_MAX)
4601 		bsize = BUCKET_MAX;
4602 	else if (bsize == 0 && nitems / nb > 0)
4603 		bsize = 1;
4604 	zone->uz_bucket_size_max = zone->uz_bucket_size = bsize;
4605 	if (zone->uz_bucket_size_min > zone->uz_bucket_size_max)
4606 		zone->uz_bucket_size_min = zone->uz_bucket_size_max;
4607 	zone->uz_bucket_max = nitems - nb * bsize;
4608 	ZONE_UNLOCK(zone);
4609 }
4610 
4611 /* See uma.h */
4612 int
4613 uma_zone_get_max(uma_zone_t zone)
4614 {
4615 	int nitems;
4616 
4617 	nitems = atomic_load_64(&zone->uz_max_items);
4618 
4619 	return (nitems);
4620 }
4621 
4622 /* See uma.h */
4623 void
4624 uma_zone_set_warning(uma_zone_t zone, const char *warning)
4625 {
4626 
4627 	ZONE_ASSERT_COLD(zone);
4628 	zone->uz_warning = warning;
4629 }
4630 
4631 /* See uma.h */
4632 void
4633 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction)
4634 {
4635 
4636 	ZONE_ASSERT_COLD(zone);
4637 	TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone);
4638 }
4639 
4640 /* See uma.h */
4641 int
4642 uma_zone_get_cur(uma_zone_t zone)
4643 {
4644 	int64_t nitems;
4645 	u_int i;
4646 
4647 	nitems = 0;
4648 	if (zone->uz_allocs != EARLY_COUNTER && zone->uz_frees != EARLY_COUNTER)
4649 		nitems = counter_u64_fetch(zone->uz_allocs) -
4650 		    counter_u64_fetch(zone->uz_frees);
4651 	CPU_FOREACH(i)
4652 		nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs) -
4653 		    atomic_load_64(&zone->uz_cpu[i].uc_frees);
4654 
4655 	return (nitems < 0 ? 0 : nitems);
4656 }
4657 
4658 static uint64_t
4659 uma_zone_get_allocs(uma_zone_t zone)
4660 {
4661 	uint64_t nitems;
4662 	u_int i;
4663 
4664 	nitems = 0;
4665 	if (zone->uz_allocs != EARLY_COUNTER)
4666 		nitems = counter_u64_fetch(zone->uz_allocs);
4667 	CPU_FOREACH(i)
4668 		nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs);
4669 
4670 	return (nitems);
4671 }
4672 
4673 static uint64_t
4674 uma_zone_get_frees(uma_zone_t zone)
4675 {
4676 	uint64_t nitems;
4677 	u_int i;
4678 
4679 	nitems = 0;
4680 	if (zone->uz_frees != EARLY_COUNTER)
4681 		nitems = counter_u64_fetch(zone->uz_frees);
4682 	CPU_FOREACH(i)
4683 		nitems += atomic_load_64(&zone->uz_cpu[i].uc_frees);
4684 
4685 	return (nitems);
4686 }
4687 
4688 #ifdef INVARIANTS
4689 /* Used only for KEG_ASSERT_COLD(). */
4690 static uint64_t
4691 uma_keg_get_allocs(uma_keg_t keg)
4692 {
4693 	uma_zone_t z;
4694 	uint64_t nitems;
4695 
4696 	nitems = 0;
4697 	LIST_FOREACH(z, &keg->uk_zones, uz_link)
4698 		nitems += uma_zone_get_allocs(z);
4699 
4700 	return (nitems);
4701 }
4702 #endif
4703 
4704 /* See uma.h */
4705 void
4706 uma_zone_set_init(uma_zone_t zone, uma_init uminit)
4707 {
4708 	uma_keg_t keg;
4709 
4710 	KEG_GET(zone, keg);
4711 	KEG_ASSERT_COLD(keg);
4712 	keg->uk_init = uminit;
4713 }
4714 
4715 /* See uma.h */
4716 void
4717 uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
4718 {
4719 	uma_keg_t keg;
4720 
4721 	KEG_GET(zone, keg);
4722 	KEG_ASSERT_COLD(keg);
4723 	keg->uk_fini = fini;
4724 }
4725 
4726 /* See uma.h */
4727 void
4728 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
4729 {
4730 
4731 	ZONE_ASSERT_COLD(zone);
4732 	zone->uz_init = zinit;
4733 }
4734 
4735 /* See uma.h */
4736 void
4737 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
4738 {
4739 
4740 	ZONE_ASSERT_COLD(zone);
4741 	zone->uz_fini = zfini;
4742 }
4743 
4744 /* See uma.h */
4745 void
4746 uma_zone_set_freef(uma_zone_t zone, uma_free freef)
4747 {
4748 	uma_keg_t keg;
4749 
4750 	KEG_GET(zone, keg);
4751 	KEG_ASSERT_COLD(keg);
4752 	keg->uk_freef = freef;
4753 }
4754 
4755 /* See uma.h */
4756 void
4757 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
4758 {
4759 	uma_keg_t keg;
4760 
4761 	KEG_GET(zone, keg);
4762 	KEG_ASSERT_COLD(keg);
4763 	keg->uk_allocf = allocf;
4764 }
4765 
4766 /* See uma.h */
4767 void
4768 uma_zone_set_smr(uma_zone_t zone, smr_t smr)
4769 {
4770 
4771 	ZONE_ASSERT_COLD(zone);
4772 
4773 	KASSERT(smr != NULL, ("Got NULL smr"));
4774 	KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
4775 	    ("zone %p (%s) already uses SMR", zone, zone->uz_name));
4776 	zone->uz_flags |= UMA_ZONE_SMR;
4777 	zone->uz_smr = smr;
4778 	zone_update_caches(zone);
4779 }
4780 
4781 smr_t
4782 uma_zone_get_smr(uma_zone_t zone)
4783 {
4784 
4785 	return (zone->uz_smr);
4786 }
4787 
4788 /* See uma.h */
4789 void
4790 uma_zone_reserve(uma_zone_t zone, int items)
4791 {
4792 	uma_keg_t keg;
4793 
4794 	KEG_GET(zone, keg);
4795 	KEG_ASSERT_COLD(keg);
4796 	keg->uk_reserve = items;
4797 }
4798 
4799 /* See uma.h */
4800 int
4801 uma_zone_reserve_kva(uma_zone_t zone, int count)
4802 {
4803 	uma_keg_t keg;
4804 	vm_offset_t kva;
4805 	u_int pages;
4806 
4807 	KEG_GET(zone, keg);
4808 	KEG_ASSERT_COLD(keg);
4809 	ZONE_ASSERT_COLD(zone);
4810 
4811 	pages = howmany(count, keg->uk_ipers) * keg->uk_ppera;
4812 
4813 #ifdef UMA_MD_SMALL_ALLOC
4814 	if (keg->uk_ppera > 1) {
4815 #else
4816 	if (1) {
4817 #endif
4818 		kva = kva_alloc((vm_size_t)pages * PAGE_SIZE);
4819 		if (kva == 0)
4820 			return (0);
4821 	} else
4822 		kva = 0;
4823 
4824 	MPASS(keg->uk_kva == 0);
4825 	keg->uk_kva = kva;
4826 	keg->uk_offset = 0;
4827 	zone->uz_max_items = pages * keg->uk_ipers;
4828 #ifdef UMA_MD_SMALL_ALLOC
4829 	keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc;
4830 #else
4831 	keg->uk_allocf = noobj_alloc;
4832 #endif
4833 	keg->uk_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE;
4834 	zone->uz_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE;
4835 	zone_update_caches(zone);
4836 
4837 	return (1);
4838 }
4839 
4840 /* See uma.h */
4841 void
4842 uma_prealloc(uma_zone_t zone, int items)
4843 {
4844 	struct vm_domainset_iter di;
4845 	uma_domain_t dom;
4846 	uma_slab_t slab;
4847 	uma_keg_t keg;
4848 	int aflags, domain, slabs;
4849 
4850 	KEG_GET(zone, keg);
4851 	slabs = howmany(items, keg->uk_ipers);
4852 	while (slabs-- > 0) {
4853 		aflags = M_NOWAIT;
4854 		vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain,
4855 		    &aflags);
4856 		for (;;) {
4857 			slab = keg_alloc_slab(keg, zone, domain, M_WAITOK,
4858 			    aflags);
4859 			if (slab != NULL) {
4860 				dom = &keg->uk_domain[slab->us_domain];
4861 				/*
4862 				 * keg_alloc_slab() always returns a slab on the
4863 				 * partial list.
4864 				 */
4865 				LIST_REMOVE(slab, us_link);
4866 				LIST_INSERT_HEAD(&dom->ud_free_slab, slab,
4867 				    us_link);
4868 				dom->ud_free_slabs++;
4869 				KEG_UNLOCK(keg, slab->us_domain);
4870 				break;
4871 			}
4872 			if (vm_domainset_iter_policy(&di, &domain) != 0)
4873 				vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0);
4874 		}
4875 	}
4876 }
4877 
4878 /*
4879  * Returns a snapshot of memory consumption in bytes.
4880  */
4881 size_t
4882 uma_zone_memory(uma_zone_t zone)
4883 {
4884 	size_t sz;
4885 	int i;
4886 
4887 	sz = 0;
4888 	if (zone->uz_flags & UMA_ZFLAG_CACHE) {
4889 		for (i = 0; i < vm_ndomains; i++)
4890 			sz += ZDOM_GET(zone, i)->uzd_nitems;
4891 		return (sz * zone->uz_size);
4892 	}
4893 	for (i = 0; i < vm_ndomains; i++)
4894 		sz += zone->uz_keg->uk_domain[i].ud_pages;
4895 
4896 	return (sz * PAGE_SIZE);
4897 }
4898 
4899 /* See uma.h */
4900 void
4901 uma_reclaim(int req)
4902 {
4903 
4904 	CTR0(KTR_UMA, "UMA: vm asked us to release pages!");
4905 	sx_xlock(&uma_reclaim_lock);
4906 	bucket_enable();
4907 
4908 	switch (req) {
4909 	case UMA_RECLAIM_TRIM:
4910 		zone_foreach(zone_trim, NULL);
4911 		break;
4912 	case UMA_RECLAIM_DRAIN:
4913 	case UMA_RECLAIM_DRAIN_CPU:
4914 		zone_foreach(zone_drain, NULL);
4915 		if (req == UMA_RECLAIM_DRAIN_CPU) {
4916 			pcpu_cache_drain_safe(NULL);
4917 			zone_foreach(zone_drain, NULL);
4918 		}
4919 		break;
4920 	default:
4921 		panic("unhandled reclamation request %d", req);
4922 	}
4923 
4924 	/*
4925 	 * Some slabs may have been freed but this zone will be visited early
4926 	 * we visit again so that we can free pages that are empty once other
4927 	 * zones are drained.  We have to do the same for buckets.
4928 	 */
4929 	zone_drain(slabzones[0], NULL);
4930 	zone_drain(slabzones[1], NULL);
4931 	bucket_zone_drain();
4932 	sx_xunlock(&uma_reclaim_lock);
4933 }
4934 
4935 static volatile int uma_reclaim_needed;
4936 
4937 void
4938 uma_reclaim_wakeup(void)
4939 {
4940 
4941 	if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0)
4942 		wakeup(uma_reclaim);
4943 }
4944 
4945 void
4946 uma_reclaim_worker(void *arg __unused)
4947 {
4948 
4949 	for (;;) {
4950 		sx_xlock(&uma_reclaim_lock);
4951 		while (atomic_load_int(&uma_reclaim_needed) == 0)
4952 			sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl",
4953 			    hz);
4954 		sx_xunlock(&uma_reclaim_lock);
4955 		EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM);
4956 		uma_reclaim(UMA_RECLAIM_DRAIN_CPU);
4957 		atomic_store_int(&uma_reclaim_needed, 0);
4958 		/* Don't fire more than once per-second. */
4959 		pause("umarclslp", hz);
4960 	}
4961 }
4962 
4963 /* See uma.h */
4964 void
4965 uma_zone_reclaim(uma_zone_t zone, int req)
4966 {
4967 
4968 	switch (req) {
4969 	case UMA_RECLAIM_TRIM:
4970 		zone_trim(zone, NULL);
4971 		break;
4972 	case UMA_RECLAIM_DRAIN:
4973 		zone_drain(zone, NULL);
4974 		break;
4975 	case UMA_RECLAIM_DRAIN_CPU:
4976 		pcpu_cache_drain_safe(zone);
4977 		zone_drain(zone, NULL);
4978 		break;
4979 	default:
4980 		panic("unhandled reclamation request %d", req);
4981 	}
4982 }
4983 
4984 /* See uma.h */
4985 int
4986 uma_zone_exhausted(uma_zone_t zone)
4987 {
4988 
4989 	return (atomic_load_32(&zone->uz_sleepers) > 0);
4990 }
4991 
4992 unsigned long
4993 uma_limit(void)
4994 {
4995 
4996 	return (uma_kmem_limit);
4997 }
4998 
4999 void
5000 uma_set_limit(unsigned long limit)
5001 {
5002 
5003 	uma_kmem_limit = limit;
5004 }
5005 
5006 unsigned long
5007 uma_size(void)
5008 {
5009 
5010 	return (atomic_load_long(&uma_kmem_total));
5011 }
5012 
5013 long
5014 uma_avail(void)
5015 {
5016 
5017 	return (uma_kmem_limit - uma_size());
5018 }
5019 
5020 #ifdef DDB
5021 /*
5022  * Generate statistics across both the zone and its per-cpu cache's.  Return
5023  * desired statistics if the pointer is non-NULL for that statistic.
5024  *
5025  * Note: does not update the zone statistics, as it can't safely clear the
5026  * per-CPU cache statistic.
5027  *
5028  */
5029 static void
5030 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp,
5031     uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp)
5032 {
5033 	uma_cache_t cache;
5034 	uint64_t allocs, frees, sleeps, xdomain;
5035 	int cachefree, cpu;
5036 
5037 	allocs = frees = sleeps = xdomain = 0;
5038 	cachefree = 0;
5039 	CPU_FOREACH(cpu) {
5040 		cache = &z->uz_cpu[cpu];
5041 		cachefree += cache->uc_allocbucket.ucb_cnt;
5042 		cachefree += cache->uc_freebucket.ucb_cnt;
5043 		xdomain += cache->uc_crossbucket.ucb_cnt;
5044 		cachefree += cache->uc_crossbucket.ucb_cnt;
5045 		allocs += cache->uc_allocs;
5046 		frees += cache->uc_frees;
5047 	}
5048 	allocs += counter_u64_fetch(z->uz_allocs);
5049 	frees += counter_u64_fetch(z->uz_frees);
5050 	xdomain += counter_u64_fetch(z->uz_xdomain);
5051 	sleeps += z->uz_sleeps;
5052 	if (cachefreep != NULL)
5053 		*cachefreep = cachefree;
5054 	if (allocsp != NULL)
5055 		*allocsp = allocs;
5056 	if (freesp != NULL)
5057 		*freesp = frees;
5058 	if (sleepsp != NULL)
5059 		*sleepsp = sleeps;
5060 	if (xdomainp != NULL)
5061 		*xdomainp = xdomain;
5062 }
5063 #endif /* DDB */
5064 
5065 static int
5066 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
5067 {
5068 	uma_keg_t kz;
5069 	uma_zone_t z;
5070 	int count;
5071 
5072 	count = 0;
5073 	rw_rlock(&uma_rwlock);
5074 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
5075 		LIST_FOREACH(z, &kz->uk_zones, uz_link)
5076 			count++;
5077 	}
5078 	LIST_FOREACH(z, &uma_cachezones, uz_link)
5079 		count++;
5080 
5081 	rw_runlock(&uma_rwlock);
5082 	return (sysctl_handle_int(oidp, &count, 0, req));
5083 }
5084 
5085 static void
5086 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf,
5087     struct uma_percpu_stat *ups, bool internal)
5088 {
5089 	uma_zone_domain_t zdom;
5090 	uma_cache_t cache;
5091 	int i;
5092 
5093 	for (i = 0; i < vm_ndomains; i++) {
5094 		zdom = ZDOM_GET(z, i);
5095 		uth->uth_zone_free += zdom->uzd_nitems;
5096 	}
5097 	uth->uth_allocs = counter_u64_fetch(z->uz_allocs);
5098 	uth->uth_frees = counter_u64_fetch(z->uz_frees);
5099 	uth->uth_fails = counter_u64_fetch(z->uz_fails);
5100 	uth->uth_xdomain = counter_u64_fetch(z->uz_xdomain);
5101 	uth->uth_sleeps = z->uz_sleeps;
5102 
5103 	for (i = 0; i < mp_maxid + 1; i++) {
5104 		bzero(&ups[i], sizeof(*ups));
5105 		if (internal || CPU_ABSENT(i))
5106 			continue;
5107 		cache = &z->uz_cpu[i];
5108 		ups[i].ups_cache_free += cache->uc_allocbucket.ucb_cnt;
5109 		ups[i].ups_cache_free += cache->uc_freebucket.ucb_cnt;
5110 		ups[i].ups_cache_free += cache->uc_crossbucket.ucb_cnt;
5111 		ups[i].ups_allocs = cache->uc_allocs;
5112 		ups[i].ups_frees = cache->uc_frees;
5113 	}
5114 }
5115 
5116 static int
5117 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
5118 {
5119 	struct uma_stream_header ush;
5120 	struct uma_type_header uth;
5121 	struct uma_percpu_stat *ups;
5122 	struct sbuf sbuf;
5123 	uma_keg_t kz;
5124 	uma_zone_t z;
5125 	uint64_t items;
5126 	uint32_t kfree, pages;
5127 	int count, error, i;
5128 
5129 	error = sysctl_wire_old_buffer(req, 0);
5130 	if (error != 0)
5131 		return (error);
5132 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
5133 	sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL);
5134 	ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK);
5135 
5136 	count = 0;
5137 	rw_rlock(&uma_rwlock);
5138 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
5139 		LIST_FOREACH(z, &kz->uk_zones, uz_link)
5140 			count++;
5141 	}
5142 
5143 	LIST_FOREACH(z, &uma_cachezones, uz_link)
5144 		count++;
5145 
5146 	/*
5147 	 * Insert stream header.
5148 	 */
5149 	bzero(&ush, sizeof(ush));
5150 	ush.ush_version = UMA_STREAM_VERSION;
5151 	ush.ush_maxcpus = (mp_maxid + 1);
5152 	ush.ush_count = count;
5153 	(void)sbuf_bcat(&sbuf, &ush, sizeof(ush));
5154 
5155 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
5156 		kfree = pages = 0;
5157 		for (i = 0; i < vm_ndomains; i++) {
5158 			kfree += kz->uk_domain[i].ud_free_items;
5159 			pages += kz->uk_domain[i].ud_pages;
5160 		}
5161 		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
5162 			bzero(&uth, sizeof(uth));
5163 			strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
5164 			uth.uth_align = kz->uk_align;
5165 			uth.uth_size = kz->uk_size;
5166 			uth.uth_rsize = kz->uk_rsize;
5167 			if (z->uz_max_items > 0) {
5168 				items = UZ_ITEMS_COUNT(z->uz_items);
5169 				uth.uth_pages = (items / kz->uk_ipers) *
5170 					kz->uk_ppera;
5171 			} else
5172 				uth.uth_pages = pages;
5173 			uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) *
5174 			    kz->uk_ppera;
5175 			uth.uth_limit = z->uz_max_items;
5176 			uth.uth_keg_free = kfree;
5177 
5178 			/*
5179 			 * A zone is secondary is it is not the first entry
5180 			 * on the keg's zone list.
5181 			 */
5182 			if ((z->uz_flags & UMA_ZONE_SECONDARY) &&
5183 			    (LIST_FIRST(&kz->uk_zones) != z))
5184 				uth.uth_zone_flags = UTH_ZONE_SECONDARY;
5185 			uma_vm_zone_stats(&uth, z, &sbuf, ups,
5186 			    kz->uk_flags & UMA_ZFLAG_INTERNAL);
5187 			(void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
5188 			for (i = 0; i < mp_maxid + 1; i++)
5189 				(void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i]));
5190 		}
5191 	}
5192 	LIST_FOREACH(z, &uma_cachezones, uz_link) {
5193 		bzero(&uth, sizeof(uth));
5194 		strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
5195 		uth.uth_size = z->uz_size;
5196 		uma_vm_zone_stats(&uth, z, &sbuf, ups, false);
5197 		(void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
5198 		for (i = 0; i < mp_maxid + 1; i++)
5199 			(void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i]));
5200 	}
5201 
5202 	rw_runlock(&uma_rwlock);
5203 	error = sbuf_finish(&sbuf);
5204 	sbuf_delete(&sbuf);
5205 	free(ups, M_TEMP);
5206 	return (error);
5207 }
5208 
5209 int
5210 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS)
5211 {
5212 	uma_zone_t zone = *(uma_zone_t *)arg1;
5213 	int error, max;
5214 
5215 	max = uma_zone_get_max(zone);
5216 	error = sysctl_handle_int(oidp, &max, 0, req);
5217 	if (error || !req->newptr)
5218 		return (error);
5219 
5220 	uma_zone_set_max(zone, max);
5221 
5222 	return (0);
5223 }
5224 
5225 int
5226 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS)
5227 {
5228 	uma_zone_t zone;
5229 	int cur;
5230 
5231 	/*
5232 	 * Some callers want to add sysctls for global zones that
5233 	 * may not yet exist so they pass a pointer to a pointer.
5234 	 */
5235 	if (arg2 == 0)
5236 		zone = *(uma_zone_t *)arg1;
5237 	else
5238 		zone = arg1;
5239 	cur = uma_zone_get_cur(zone);
5240 	return (sysctl_handle_int(oidp, &cur, 0, req));
5241 }
5242 
5243 static int
5244 sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS)
5245 {
5246 	uma_zone_t zone = arg1;
5247 	uint64_t cur;
5248 
5249 	cur = uma_zone_get_allocs(zone);
5250 	return (sysctl_handle_64(oidp, &cur, 0, req));
5251 }
5252 
5253 static int
5254 sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS)
5255 {
5256 	uma_zone_t zone = arg1;
5257 	uint64_t cur;
5258 
5259 	cur = uma_zone_get_frees(zone);
5260 	return (sysctl_handle_64(oidp, &cur, 0, req));
5261 }
5262 
5263 static int
5264 sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS)
5265 {
5266 	struct sbuf sbuf;
5267 	uma_zone_t zone = arg1;
5268 	int error;
5269 
5270 	sbuf_new_for_sysctl(&sbuf, NULL, 0, req);
5271 	if (zone->uz_flags != 0)
5272 		sbuf_printf(&sbuf, "0x%b", zone->uz_flags, PRINT_UMA_ZFLAGS);
5273 	else
5274 		sbuf_printf(&sbuf, "0");
5275 	error = sbuf_finish(&sbuf);
5276 	sbuf_delete(&sbuf);
5277 
5278 	return (error);
5279 }
5280 
5281 static int
5282 sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS)
5283 {
5284 	uma_keg_t keg = arg1;
5285 	int avail, effpct, total;
5286 
5287 	total = keg->uk_ppera * PAGE_SIZE;
5288 	if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0)
5289 		total += slabzone(keg->uk_ipers)->uz_keg->uk_rsize;
5290 	/*
5291 	 * We consider the client's requested size and alignment here, not the
5292 	 * real size determination uk_rsize, because we also adjust the real
5293 	 * size for internal implementation reasons (max bitset size).
5294 	 */
5295 	avail = keg->uk_ipers * roundup2(keg->uk_size, keg->uk_align + 1);
5296 	if ((keg->uk_flags & UMA_ZONE_PCPU) != 0)
5297 		avail *= mp_maxid + 1;
5298 	effpct = 100 * avail / total;
5299 	return (sysctl_handle_int(oidp, &effpct, 0, req));
5300 }
5301 
5302 static int
5303 sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS)
5304 {
5305 	uma_zone_t zone = arg1;
5306 	uint64_t cur;
5307 
5308 	cur = UZ_ITEMS_COUNT(atomic_load_64(&zone->uz_items));
5309 	return (sysctl_handle_64(oidp, &cur, 0, req));
5310 }
5311 
5312 #ifdef INVARIANTS
5313 static uma_slab_t
5314 uma_dbg_getslab(uma_zone_t zone, void *item)
5315 {
5316 	uma_slab_t slab;
5317 	uma_keg_t keg;
5318 	uint8_t *mem;
5319 
5320 	/*
5321 	 * It is safe to return the slab here even though the
5322 	 * zone is unlocked because the item's allocation state
5323 	 * essentially holds a reference.
5324 	 */
5325 	mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
5326 	if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0)
5327 		return (NULL);
5328 	if (zone->uz_flags & UMA_ZFLAG_VTOSLAB)
5329 		return (vtoslab((vm_offset_t)mem));
5330 	keg = zone->uz_keg;
5331 	if ((keg->uk_flags & UMA_ZFLAG_HASH) == 0)
5332 		return ((uma_slab_t)(mem + keg->uk_pgoff));
5333 	KEG_LOCK(keg, 0);
5334 	slab = hash_sfind(&keg->uk_hash, mem);
5335 	KEG_UNLOCK(keg, 0);
5336 
5337 	return (slab);
5338 }
5339 
5340 static bool
5341 uma_dbg_zskip(uma_zone_t zone, void *mem)
5342 {
5343 
5344 	if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0)
5345 		return (true);
5346 
5347 	return (uma_dbg_kskip(zone->uz_keg, mem));
5348 }
5349 
5350 static bool
5351 uma_dbg_kskip(uma_keg_t keg, void *mem)
5352 {
5353 	uintptr_t idx;
5354 
5355 	if (dbg_divisor == 0)
5356 		return (true);
5357 
5358 	if (dbg_divisor == 1)
5359 		return (false);
5360 
5361 	idx = (uintptr_t)mem >> PAGE_SHIFT;
5362 	if (keg->uk_ipers > 1) {
5363 		idx *= keg->uk_ipers;
5364 		idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize;
5365 	}
5366 
5367 	if ((idx / dbg_divisor) * dbg_divisor != idx) {
5368 		counter_u64_add(uma_skip_cnt, 1);
5369 		return (true);
5370 	}
5371 	counter_u64_add(uma_dbg_cnt, 1);
5372 
5373 	return (false);
5374 }
5375 
5376 /*
5377  * Set up the slab's freei data such that uma_dbg_free can function.
5378  *
5379  */
5380 static void
5381 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item)
5382 {
5383 	uma_keg_t keg;
5384 	int freei;
5385 
5386 	if (slab == NULL) {
5387 		slab = uma_dbg_getslab(zone, item);
5388 		if (slab == NULL)
5389 			panic("uma: item %p did not belong to zone %s",
5390 			    item, zone->uz_name);
5391 	}
5392 	keg = zone->uz_keg;
5393 	freei = slab_item_index(slab, keg, item);
5394 
5395 	if (BIT_ISSET(keg->uk_ipers, freei, slab_dbg_bits(slab, keg)))
5396 		panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)",
5397 		    item, zone, zone->uz_name, slab, freei);
5398 	BIT_SET_ATOMIC(keg->uk_ipers, freei, slab_dbg_bits(slab, keg));
5399 }
5400 
5401 /*
5402  * Verifies freed addresses.  Checks for alignment, valid slab membership
5403  * and duplicate frees.
5404  *
5405  */
5406 static void
5407 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item)
5408 {
5409 	uma_keg_t keg;
5410 	int freei;
5411 
5412 	if (slab == NULL) {
5413 		slab = uma_dbg_getslab(zone, item);
5414 		if (slab == NULL)
5415 			panic("uma: Freed item %p did not belong to zone %s",
5416 			    item, zone->uz_name);
5417 	}
5418 	keg = zone->uz_keg;
5419 	freei = slab_item_index(slab, keg, item);
5420 
5421 	if (freei >= keg->uk_ipers)
5422 		panic("Invalid free of %p from zone %p(%s) slab %p(%d)",
5423 		    item, zone, zone->uz_name, slab, freei);
5424 
5425 	if (slab_item(slab, keg, freei) != item)
5426 		panic("Unaligned free of %p from zone %p(%s) slab %p(%d)",
5427 		    item, zone, zone->uz_name, slab, freei);
5428 
5429 	if (!BIT_ISSET(keg->uk_ipers, freei, slab_dbg_bits(slab, keg)))
5430 		panic("Duplicate free of %p from zone %p(%s) slab %p(%d)",
5431 		    item, zone, zone->uz_name, slab, freei);
5432 
5433 	BIT_CLR_ATOMIC(keg->uk_ipers, freei, slab_dbg_bits(slab, keg));
5434 }
5435 #endif /* INVARIANTS */
5436 
5437 #ifdef DDB
5438 static int64_t
5439 get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used,
5440     uint64_t *sleeps, long *cachefree, uint64_t *xdomain)
5441 {
5442 	uint64_t frees;
5443 	int i;
5444 
5445 	if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
5446 		*allocs = counter_u64_fetch(z->uz_allocs);
5447 		frees = counter_u64_fetch(z->uz_frees);
5448 		*sleeps = z->uz_sleeps;
5449 		*cachefree = 0;
5450 		*xdomain = 0;
5451 	} else
5452 		uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps,
5453 		    xdomain);
5454 	for (i = 0; i < vm_ndomains; i++) {
5455 		*cachefree += ZDOM_GET(z, i)->uzd_nitems;
5456 		if (!((z->uz_flags & UMA_ZONE_SECONDARY) &&
5457 		    (LIST_FIRST(&kz->uk_zones) != z)))
5458 			*cachefree += kz->uk_domain[i].ud_free_items;
5459 	}
5460 	*used = *allocs - frees;
5461 	return (((int64_t)*used + *cachefree) * kz->uk_size);
5462 }
5463 
5464 DB_SHOW_COMMAND(uma, db_show_uma)
5465 {
5466 	const char *fmt_hdr, *fmt_entry;
5467 	uma_keg_t kz;
5468 	uma_zone_t z;
5469 	uint64_t allocs, used, sleeps, xdomain;
5470 	long cachefree;
5471 	/* variables for sorting */
5472 	uma_keg_t cur_keg;
5473 	uma_zone_t cur_zone, last_zone;
5474 	int64_t cur_size, last_size, size;
5475 	int ties;
5476 
5477 	/* /i option produces machine-parseable CSV output */
5478 	if (modif[0] == 'i') {
5479 		fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n";
5480 		fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n";
5481 	} else {
5482 		fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n";
5483 		fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n";
5484 	}
5485 
5486 	db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests",
5487 	    "Sleeps", "Bucket", "Total Mem", "XFree");
5488 
5489 	/* Sort the zones with largest size first. */
5490 	last_zone = NULL;
5491 	last_size = INT64_MAX;
5492 	for (;;) {
5493 		cur_zone = NULL;
5494 		cur_size = -1;
5495 		ties = 0;
5496 		LIST_FOREACH(kz, &uma_kegs, uk_link) {
5497 			LIST_FOREACH(z, &kz->uk_zones, uz_link) {
5498 				/*
5499 				 * In the case of size ties, print out zones
5500 				 * in the order they are encountered.  That is,
5501 				 * when we encounter the most recently output
5502 				 * zone, we have already printed all preceding
5503 				 * ties, and we must print all following ties.
5504 				 */
5505 				if (z == last_zone) {
5506 					ties = 1;
5507 					continue;
5508 				}
5509 				size = get_uma_stats(kz, z, &allocs, &used,
5510 				    &sleeps, &cachefree, &xdomain);
5511 				if (size > cur_size && size < last_size + ties)
5512 				{
5513 					cur_size = size;
5514 					cur_zone = z;
5515 					cur_keg = kz;
5516 				}
5517 			}
5518 		}
5519 		if (cur_zone == NULL)
5520 			break;
5521 
5522 		size = get_uma_stats(cur_keg, cur_zone, &allocs, &used,
5523 		    &sleeps, &cachefree, &xdomain);
5524 		db_printf(fmt_entry, cur_zone->uz_name,
5525 		    (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree,
5526 		    (uintmax_t)allocs, (uintmax_t)sleeps,
5527 		    (unsigned)cur_zone->uz_bucket_size, (intmax_t)size,
5528 		    xdomain);
5529 
5530 		if (db_pager_quit)
5531 			return;
5532 		last_zone = cur_zone;
5533 		last_size = cur_size;
5534 	}
5535 }
5536 
5537 DB_SHOW_COMMAND(umacache, db_show_umacache)
5538 {
5539 	uma_zone_t z;
5540 	uint64_t allocs, frees;
5541 	long cachefree;
5542 	int i;
5543 
5544 	db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free",
5545 	    "Requests", "Bucket");
5546 	LIST_FOREACH(z, &uma_cachezones, uz_link) {
5547 		uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL);
5548 		for (i = 0; i < vm_ndomains; i++)
5549 			cachefree += ZDOM_GET(z, i)->uzd_nitems;
5550 		db_printf("%18s %8ju %8jd %8ld %12ju %8u\n",
5551 		    z->uz_name, (uintmax_t)z->uz_size,
5552 		    (intmax_t)(allocs - frees), cachefree,
5553 		    (uintmax_t)allocs, z->uz_bucket_size);
5554 		if (db_pager_quit)
5555 			return;
5556 	}
5557 }
5558 #endif	/* DDB */
5559