1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/bitset.h> 62 #include <sys/eventhandler.h> 63 #include <sys/kernel.h> 64 #include <sys/types.h> 65 #include <sys/limits.h> 66 #include <sys/queue.h> 67 #include <sys/malloc.h> 68 #include <sys/ktr.h> 69 #include <sys/lock.h> 70 #include <sys/sysctl.h> 71 #include <sys/mutex.h> 72 #include <sys/proc.h> 73 #include <sys/random.h> 74 #include <sys/rwlock.h> 75 #include <sys/sbuf.h> 76 #include <sys/sched.h> 77 #include <sys/smp.h> 78 #include <sys/taskqueue.h> 79 #include <sys/vmmeter.h> 80 81 #include <vm/vm.h> 82 #include <vm/vm_object.h> 83 #include <vm/vm_page.h> 84 #include <vm/vm_pageout.h> 85 #include <vm/vm_param.h> 86 #include <vm/vm_phys.h> 87 #include <vm/vm_map.h> 88 #include <vm/vm_kern.h> 89 #include <vm/vm_extern.h> 90 #include <vm/uma.h> 91 #include <vm/uma_int.h> 92 #include <vm/uma_dbg.h> 93 94 #include <ddb/ddb.h> 95 96 #ifdef DEBUG_MEMGUARD 97 #include <vm/memguard.h> 98 #endif 99 100 /* 101 * This is the zone and keg from which all zones are spawned. 102 */ 103 static uma_zone_t kegs; 104 static uma_zone_t zones; 105 106 /* This is the zone from which all offpage uma_slab_ts are allocated. */ 107 static uma_zone_t slabzone; 108 109 /* 110 * The initial hash tables come out of this zone so they can be allocated 111 * prior to malloc coming up. 112 */ 113 static uma_zone_t hashzone; 114 115 /* The boot-time adjusted value for cache line alignment. */ 116 int uma_align_cache = 64 - 1; 117 118 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 119 120 /* 121 * Are we allowed to allocate buckets? 122 */ 123 static int bucketdisable = 1; 124 125 /* Linked list of all kegs in the system */ 126 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 127 128 /* Linked list of all cache-only zones in the system */ 129 static LIST_HEAD(,uma_zone) uma_cachezones = 130 LIST_HEAD_INITIALIZER(uma_cachezones); 131 132 /* This RW lock protects the keg list */ 133 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 134 135 /* 136 * Pointer and counter to pool of pages, that is preallocated at 137 * startup to bootstrap UMA. 138 */ 139 static char *bootmem; 140 static int boot_pages; 141 142 static struct sx uma_drain_lock; 143 144 /* kmem soft limit. */ 145 static unsigned long uma_kmem_limit = LONG_MAX; 146 static volatile unsigned long uma_kmem_total; 147 148 /* Is the VM done starting up? */ 149 static enum { BOOT_COLD = 0, BOOT_STRAPPED, BOOT_PAGEALLOC, BOOT_BUCKETS, 150 BOOT_RUNNING } booted = BOOT_COLD; 151 152 /* 153 * This is the handle used to schedule events that need to happen 154 * outside of the allocation fast path. 155 */ 156 static struct callout uma_callout; 157 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 158 159 /* 160 * This structure is passed as the zone ctor arg so that I don't have to create 161 * a special allocation function just for zones. 162 */ 163 struct uma_zctor_args { 164 const char *name; 165 size_t size; 166 uma_ctor ctor; 167 uma_dtor dtor; 168 uma_init uminit; 169 uma_fini fini; 170 uma_import import; 171 uma_release release; 172 void *arg; 173 uma_keg_t keg; 174 int align; 175 uint32_t flags; 176 }; 177 178 struct uma_kctor_args { 179 uma_zone_t zone; 180 size_t size; 181 uma_init uminit; 182 uma_fini fini; 183 int align; 184 uint32_t flags; 185 }; 186 187 struct uma_bucket_zone { 188 uma_zone_t ubz_zone; 189 char *ubz_name; 190 int ubz_entries; /* Number of items it can hold. */ 191 int ubz_maxsize; /* Maximum allocation size per-item. */ 192 }; 193 194 /* 195 * Compute the actual number of bucket entries to pack them in power 196 * of two sizes for more efficient space utilization. 197 */ 198 #define BUCKET_SIZE(n) \ 199 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 200 201 #define BUCKET_MAX BUCKET_SIZE(256) 202 203 struct uma_bucket_zone bucket_zones[] = { 204 { NULL, "4 Bucket", BUCKET_SIZE(4), 4096 }, 205 { NULL, "6 Bucket", BUCKET_SIZE(6), 3072 }, 206 { NULL, "8 Bucket", BUCKET_SIZE(8), 2048 }, 207 { NULL, "12 Bucket", BUCKET_SIZE(12), 1536 }, 208 { NULL, "16 Bucket", BUCKET_SIZE(16), 1024 }, 209 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 210 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 211 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 212 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 213 { NULL, NULL, 0} 214 }; 215 216 /* 217 * Flags and enumerations to be passed to internal functions. 218 */ 219 enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI }; 220 221 #define UMA_ANYDOMAIN -1 /* Special value for domain search. */ 222 223 /* Prototypes.. */ 224 225 int uma_startup_count(int); 226 void uma_startup(void *, int); 227 void uma_startup1(void); 228 void uma_startup2(void); 229 230 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 231 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 232 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 233 static void page_free(void *, vm_size_t, uint8_t); 234 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int); 235 static void cache_drain(uma_zone_t); 236 static void bucket_drain(uma_zone_t, uma_bucket_t); 237 static void bucket_cache_drain(uma_zone_t zone); 238 static int keg_ctor(void *, int, void *, int); 239 static void keg_dtor(void *, int, void *); 240 static int zone_ctor(void *, int, void *, int); 241 static void zone_dtor(void *, int, void *); 242 static int zero_init(void *, int, int); 243 static void keg_small_init(uma_keg_t keg); 244 static void keg_large_init(uma_keg_t keg); 245 static void zone_foreach(void (*zfunc)(uma_zone_t)); 246 static void zone_timeout(uma_zone_t zone); 247 static int hash_alloc(struct uma_hash *); 248 static int hash_expand(struct uma_hash *, struct uma_hash *); 249 static void hash_free(struct uma_hash *hash); 250 static void uma_timeout(void *); 251 static void uma_startup3(void); 252 static void *zone_alloc_item(uma_zone_t, void *, int, int); 253 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 254 static void bucket_enable(void); 255 static void bucket_init(void); 256 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 257 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 258 static void bucket_zone_drain(void); 259 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int); 260 static uma_slab_t zone_fetch_slab(uma_zone_t, uma_keg_t, int, int); 261 static uma_slab_t zone_fetch_slab_multi(uma_zone_t, uma_keg_t, int, int); 262 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 263 static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item); 264 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 265 uma_fini fini, int align, uint32_t flags); 266 static int zone_import(uma_zone_t, void **, int, int, int); 267 static void zone_release(uma_zone_t, void **, int); 268 static void uma_zero_item(void *, uma_zone_t); 269 270 void uma_print_zone(uma_zone_t); 271 void uma_print_stats(void); 272 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 273 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 274 275 #ifdef INVARIANTS 276 static bool uma_dbg_kskip(uma_keg_t keg, void *mem); 277 static bool uma_dbg_zskip(uma_zone_t zone, void *mem); 278 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 279 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 280 281 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD, 0, 282 "Memory allocation debugging"); 283 284 static u_int dbg_divisor = 1; 285 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor, 286 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0, 287 "Debug & thrash every this item in memory allocator"); 288 289 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER; 290 static counter_u64_t uma_skip_cnt = EARLY_COUNTER; 291 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD, 292 &uma_dbg_cnt, "memory items debugged"); 293 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD, 294 &uma_skip_cnt, "memory items skipped, not debugged"); 295 #endif 296 297 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 298 299 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 300 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 301 302 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 303 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 304 305 static int zone_warnings = 1; 306 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 307 "Warn when UMA zones becomes full"); 308 309 /* Adjust bytes under management by UMA. */ 310 static inline void 311 uma_total_dec(unsigned long size) 312 { 313 314 atomic_subtract_long(&uma_kmem_total, size); 315 } 316 317 static inline void 318 uma_total_inc(unsigned long size) 319 { 320 321 if (atomic_fetchadd_long(&uma_kmem_total, size) > uma_kmem_limit) 322 uma_reclaim_wakeup(); 323 } 324 325 /* 326 * This routine checks to see whether or not it's safe to enable buckets. 327 */ 328 static void 329 bucket_enable(void) 330 { 331 bucketdisable = vm_page_count_min(); 332 } 333 334 /* 335 * Initialize bucket_zones, the array of zones of buckets of various sizes. 336 * 337 * For each zone, calculate the memory required for each bucket, consisting 338 * of the header and an array of pointers. 339 */ 340 static void 341 bucket_init(void) 342 { 343 struct uma_bucket_zone *ubz; 344 int size; 345 346 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 347 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 348 size += sizeof(void *) * ubz->ubz_entries; 349 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 350 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 351 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | UMA_ZONE_NUMA); 352 } 353 } 354 355 /* 356 * Given a desired number of entries for a bucket, return the zone from which 357 * to allocate the bucket. 358 */ 359 static struct uma_bucket_zone * 360 bucket_zone_lookup(int entries) 361 { 362 struct uma_bucket_zone *ubz; 363 364 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 365 if (ubz->ubz_entries >= entries) 366 return (ubz); 367 ubz--; 368 return (ubz); 369 } 370 371 static int 372 bucket_select(int size) 373 { 374 struct uma_bucket_zone *ubz; 375 376 ubz = &bucket_zones[0]; 377 if (size > ubz->ubz_maxsize) 378 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 379 380 for (; ubz->ubz_entries != 0; ubz++) 381 if (ubz->ubz_maxsize < size) 382 break; 383 ubz--; 384 return (ubz->ubz_entries); 385 } 386 387 static uma_bucket_t 388 bucket_alloc(uma_zone_t zone, void *udata, int flags) 389 { 390 struct uma_bucket_zone *ubz; 391 uma_bucket_t bucket; 392 393 /* 394 * This is to stop us from allocating per cpu buckets while we're 395 * running out of vm.boot_pages. Otherwise, we would exhaust the 396 * boot pages. This also prevents us from allocating buckets in 397 * low memory situations. 398 */ 399 if (bucketdisable) 400 return (NULL); 401 /* 402 * To limit bucket recursion we store the original zone flags 403 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 404 * NOVM flag to persist even through deep recursions. We also 405 * store ZFLAG_BUCKET once we have recursed attempting to allocate 406 * a bucket for a bucket zone so we do not allow infinite bucket 407 * recursion. This cookie will even persist to frees of unused 408 * buckets via the allocation path or bucket allocations in the 409 * free path. 410 */ 411 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 412 udata = (void *)(uintptr_t)zone->uz_flags; 413 else { 414 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 415 return (NULL); 416 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 417 } 418 if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY) 419 flags |= M_NOVM; 420 ubz = bucket_zone_lookup(zone->uz_count); 421 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 422 ubz++; 423 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 424 if (bucket) { 425 #ifdef INVARIANTS 426 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 427 #endif 428 bucket->ub_cnt = 0; 429 bucket->ub_entries = ubz->ubz_entries; 430 } 431 432 return (bucket); 433 } 434 435 static void 436 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 437 { 438 struct uma_bucket_zone *ubz; 439 440 KASSERT(bucket->ub_cnt == 0, 441 ("bucket_free: Freeing a non free bucket.")); 442 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 443 udata = (void *)(uintptr_t)zone->uz_flags; 444 ubz = bucket_zone_lookup(bucket->ub_entries); 445 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 446 } 447 448 static void 449 bucket_zone_drain(void) 450 { 451 struct uma_bucket_zone *ubz; 452 453 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 454 zone_drain(ubz->ubz_zone); 455 } 456 457 static void 458 zone_log_warning(uma_zone_t zone) 459 { 460 static const struct timeval warninterval = { 300, 0 }; 461 462 if (!zone_warnings || zone->uz_warning == NULL) 463 return; 464 465 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 466 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 467 } 468 469 static inline void 470 zone_maxaction(uma_zone_t zone) 471 { 472 473 if (zone->uz_maxaction.ta_func != NULL) 474 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 475 } 476 477 static void 478 zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t)) 479 { 480 uma_klink_t klink; 481 482 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) 483 kegfn(klink->kl_keg); 484 } 485 486 /* 487 * Routine called by timeout which is used to fire off some time interval 488 * based calculations. (stats, hash size, etc.) 489 * 490 * Arguments: 491 * arg Unused 492 * 493 * Returns: 494 * Nothing 495 */ 496 static void 497 uma_timeout(void *unused) 498 { 499 bucket_enable(); 500 zone_foreach(zone_timeout); 501 502 /* Reschedule this event */ 503 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 504 } 505 506 /* 507 * Routine to perform timeout driven calculations. This expands the 508 * hashes and does per cpu statistics aggregation. 509 * 510 * Returns nothing. 511 */ 512 static void 513 keg_timeout(uma_keg_t keg) 514 { 515 516 KEG_LOCK(keg); 517 /* 518 * Expand the keg hash table. 519 * 520 * This is done if the number of slabs is larger than the hash size. 521 * What I'm trying to do here is completely reduce collisions. This 522 * may be a little aggressive. Should I allow for two collisions max? 523 */ 524 if (keg->uk_flags & UMA_ZONE_HASH && 525 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) { 526 struct uma_hash newhash; 527 struct uma_hash oldhash; 528 int ret; 529 530 /* 531 * This is so involved because allocating and freeing 532 * while the keg lock is held will lead to deadlock. 533 * I have to do everything in stages and check for 534 * races. 535 */ 536 newhash = keg->uk_hash; 537 KEG_UNLOCK(keg); 538 ret = hash_alloc(&newhash); 539 KEG_LOCK(keg); 540 if (ret) { 541 if (hash_expand(&keg->uk_hash, &newhash)) { 542 oldhash = keg->uk_hash; 543 keg->uk_hash = newhash; 544 } else 545 oldhash = newhash; 546 547 KEG_UNLOCK(keg); 548 hash_free(&oldhash); 549 return; 550 } 551 } 552 KEG_UNLOCK(keg); 553 } 554 555 static void 556 zone_timeout(uma_zone_t zone) 557 { 558 559 zone_foreach_keg(zone, &keg_timeout); 560 } 561 562 /* 563 * Allocate and zero fill the next sized hash table from the appropriate 564 * backing store. 565 * 566 * Arguments: 567 * hash A new hash structure with the old hash size in uh_hashsize 568 * 569 * Returns: 570 * 1 on success and 0 on failure. 571 */ 572 static int 573 hash_alloc(struct uma_hash *hash) 574 { 575 int oldsize; 576 int alloc; 577 578 oldsize = hash->uh_hashsize; 579 580 /* We're just going to go to a power of two greater */ 581 if (oldsize) { 582 hash->uh_hashsize = oldsize * 2; 583 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 584 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 585 M_UMAHASH, M_NOWAIT); 586 } else { 587 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 588 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 589 UMA_ANYDOMAIN, M_WAITOK); 590 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 591 } 592 if (hash->uh_slab_hash) { 593 bzero(hash->uh_slab_hash, alloc); 594 hash->uh_hashmask = hash->uh_hashsize - 1; 595 return (1); 596 } 597 598 return (0); 599 } 600 601 /* 602 * Expands the hash table for HASH zones. This is done from zone_timeout 603 * to reduce collisions. This must not be done in the regular allocation 604 * path, otherwise, we can recurse on the vm while allocating pages. 605 * 606 * Arguments: 607 * oldhash The hash you want to expand 608 * newhash The hash structure for the new table 609 * 610 * Returns: 611 * Nothing 612 * 613 * Discussion: 614 */ 615 static int 616 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 617 { 618 uma_slab_t slab; 619 int hval; 620 int i; 621 622 if (!newhash->uh_slab_hash) 623 return (0); 624 625 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 626 return (0); 627 628 /* 629 * I need to investigate hash algorithms for resizing without a 630 * full rehash. 631 */ 632 633 for (i = 0; i < oldhash->uh_hashsize; i++) 634 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) { 635 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]); 636 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink); 637 hval = UMA_HASH(newhash, slab->us_data); 638 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 639 slab, us_hlink); 640 } 641 642 return (1); 643 } 644 645 /* 646 * Free the hash bucket to the appropriate backing store. 647 * 648 * Arguments: 649 * slab_hash The hash bucket we're freeing 650 * hashsize The number of entries in that hash bucket 651 * 652 * Returns: 653 * Nothing 654 */ 655 static void 656 hash_free(struct uma_hash *hash) 657 { 658 if (hash->uh_slab_hash == NULL) 659 return; 660 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 661 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 662 else 663 free(hash->uh_slab_hash, M_UMAHASH); 664 } 665 666 /* 667 * Frees all outstanding items in a bucket 668 * 669 * Arguments: 670 * zone The zone to free to, must be unlocked. 671 * bucket The free/alloc bucket with items, cpu queue must be locked. 672 * 673 * Returns: 674 * Nothing 675 */ 676 677 static void 678 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 679 { 680 int i; 681 682 if (bucket == NULL) 683 return; 684 685 if (zone->uz_fini) 686 for (i = 0; i < bucket->ub_cnt; i++) 687 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 688 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 689 bucket->ub_cnt = 0; 690 } 691 692 /* 693 * Drains the per cpu caches for a zone. 694 * 695 * NOTE: This may only be called while the zone is being turn down, and not 696 * during normal operation. This is necessary in order that we do not have 697 * to migrate CPUs to drain the per-CPU caches. 698 * 699 * Arguments: 700 * zone The zone to drain, must be unlocked. 701 * 702 * Returns: 703 * Nothing 704 */ 705 static void 706 cache_drain(uma_zone_t zone) 707 { 708 uma_cache_t cache; 709 int cpu; 710 711 /* 712 * XXX: It is safe to not lock the per-CPU caches, because we're 713 * tearing down the zone anyway. I.e., there will be no further use 714 * of the caches at this point. 715 * 716 * XXX: It would good to be able to assert that the zone is being 717 * torn down to prevent improper use of cache_drain(). 718 * 719 * XXX: We lock the zone before passing into bucket_cache_drain() as 720 * it is used elsewhere. Should the tear-down path be made special 721 * there in some form? 722 */ 723 CPU_FOREACH(cpu) { 724 cache = &zone->uz_cpu[cpu]; 725 bucket_drain(zone, cache->uc_allocbucket); 726 bucket_drain(zone, cache->uc_freebucket); 727 if (cache->uc_allocbucket != NULL) 728 bucket_free(zone, cache->uc_allocbucket, NULL); 729 if (cache->uc_freebucket != NULL) 730 bucket_free(zone, cache->uc_freebucket, NULL); 731 cache->uc_allocbucket = cache->uc_freebucket = NULL; 732 } 733 ZONE_LOCK(zone); 734 bucket_cache_drain(zone); 735 ZONE_UNLOCK(zone); 736 } 737 738 static void 739 cache_shrink(uma_zone_t zone) 740 { 741 742 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 743 return; 744 745 ZONE_LOCK(zone); 746 zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2; 747 ZONE_UNLOCK(zone); 748 } 749 750 static void 751 cache_drain_safe_cpu(uma_zone_t zone) 752 { 753 uma_cache_t cache; 754 uma_bucket_t b1, b2; 755 int domain; 756 757 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 758 return; 759 760 b1 = b2 = NULL; 761 ZONE_LOCK(zone); 762 critical_enter(); 763 if (zone->uz_flags & UMA_ZONE_NUMA) 764 domain = PCPU_GET(domain); 765 else 766 domain = 0; 767 cache = &zone->uz_cpu[curcpu]; 768 if (cache->uc_allocbucket) { 769 if (cache->uc_allocbucket->ub_cnt != 0) 770 LIST_INSERT_HEAD(&zone->uz_domain[domain].uzd_buckets, 771 cache->uc_allocbucket, ub_link); 772 else 773 b1 = cache->uc_allocbucket; 774 cache->uc_allocbucket = NULL; 775 } 776 if (cache->uc_freebucket) { 777 if (cache->uc_freebucket->ub_cnt != 0) 778 LIST_INSERT_HEAD(&zone->uz_domain[domain].uzd_buckets, 779 cache->uc_freebucket, ub_link); 780 else 781 b2 = cache->uc_freebucket; 782 cache->uc_freebucket = NULL; 783 } 784 critical_exit(); 785 ZONE_UNLOCK(zone); 786 if (b1) 787 bucket_free(zone, b1, NULL); 788 if (b2) 789 bucket_free(zone, b2, NULL); 790 } 791 792 /* 793 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 794 * This is an expensive call because it needs to bind to all CPUs 795 * one by one and enter a critical section on each of them in order 796 * to safely access their cache buckets. 797 * Zone lock must not be held on call this function. 798 */ 799 static void 800 cache_drain_safe(uma_zone_t zone) 801 { 802 int cpu; 803 804 /* 805 * Polite bucket sizes shrinking was not enouth, shrink aggressively. 806 */ 807 if (zone) 808 cache_shrink(zone); 809 else 810 zone_foreach(cache_shrink); 811 812 CPU_FOREACH(cpu) { 813 thread_lock(curthread); 814 sched_bind(curthread, cpu); 815 thread_unlock(curthread); 816 817 if (zone) 818 cache_drain_safe_cpu(zone); 819 else 820 zone_foreach(cache_drain_safe_cpu); 821 } 822 thread_lock(curthread); 823 sched_unbind(curthread); 824 thread_unlock(curthread); 825 } 826 827 /* 828 * Drain the cached buckets from a zone. Expects a locked zone on entry. 829 */ 830 static void 831 bucket_cache_drain(uma_zone_t zone) 832 { 833 uma_zone_domain_t zdom; 834 uma_bucket_t bucket; 835 int i; 836 837 /* 838 * Drain the bucket queues and free the buckets. 839 */ 840 for (i = 0; i < vm_ndomains; i++) { 841 zdom = &zone->uz_domain[i]; 842 while ((bucket = LIST_FIRST(&zdom->uzd_buckets)) != NULL) { 843 LIST_REMOVE(bucket, ub_link); 844 ZONE_UNLOCK(zone); 845 bucket_drain(zone, bucket); 846 bucket_free(zone, bucket, NULL); 847 ZONE_LOCK(zone); 848 } 849 } 850 851 /* 852 * Shrink further bucket sizes. Price of single zone lock collision 853 * is probably lower then price of global cache drain. 854 */ 855 if (zone->uz_count > zone->uz_count_min) 856 zone->uz_count--; 857 } 858 859 static void 860 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 861 { 862 uint8_t *mem; 863 int i; 864 uint8_t flags; 865 866 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 867 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 868 869 mem = slab->us_data; 870 flags = slab->us_flags; 871 i = start; 872 if (keg->uk_fini != NULL) { 873 for (i--; i > -1; i--) 874 #ifdef INVARIANTS 875 /* 876 * trash_fini implies that dtor was trash_dtor. trash_fini 877 * would check that memory hasn't been modified since free, 878 * which executed trash_dtor. 879 * That's why we need to run uma_dbg_kskip() check here, 880 * albeit we don't make skip check for other init/fini 881 * invocations. 882 */ 883 if (!uma_dbg_kskip(keg, slab->us_data + (keg->uk_rsize * i)) || 884 keg->uk_fini != trash_fini) 885 #endif 886 keg->uk_fini(slab->us_data + (keg->uk_rsize * i), 887 keg->uk_size); 888 } 889 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 890 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 891 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 892 uma_total_dec(PAGE_SIZE * keg->uk_ppera); 893 } 894 895 /* 896 * Frees pages from a keg back to the system. This is done on demand from 897 * the pageout daemon. 898 * 899 * Returns nothing. 900 */ 901 static void 902 keg_drain(uma_keg_t keg) 903 { 904 struct slabhead freeslabs = { 0 }; 905 uma_domain_t dom; 906 uma_slab_t slab, tmp; 907 int i; 908 909 /* 910 * We don't want to take pages from statically allocated kegs at this 911 * time 912 */ 913 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 914 return; 915 916 CTR3(KTR_UMA, "keg_drain %s(%p) free items: %u", 917 keg->uk_name, keg, keg->uk_free); 918 KEG_LOCK(keg); 919 if (keg->uk_free == 0) 920 goto finished; 921 922 for (i = 0; i < vm_ndomains; i++) { 923 dom = &keg->uk_domain[i]; 924 LIST_FOREACH_SAFE(slab, &dom->ud_free_slab, us_link, tmp) { 925 /* We have nowhere to free these to. */ 926 if (slab->us_flags & UMA_SLAB_BOOT) 927 continue; 928 929 LIST_REMOVE(slab, us_link); 930 keg->uk_pages -= keg->uk_ppera; 931 keg->uk_free -= keg->uk_ipers; 932 933 if (keg->uk_flags & UMA_ZONE_HASH) 934 UMA_HASH_REMOVE(&keg->uk_hash, slab, 935 slab->us_data); 936 937 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 938 } 939 } 940 941 finished: 942 KEG_UNLOCK(keg); 943 944 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 945 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 946 keg_free_slab(keg, slab, keg->uk_ipers); 947 } 948 } 949 950 static void 951 zone_drain_wait(uma_zone_t zone, int waitok) 952 { 953 954 /* 955 * Set draining to interlock with zone_dtor() so we can release our 956 * locks as we go. Only dtor() should do a WAITOK call since it 957 * is the only call that knows the structure will still be available 958 * when it wakes up. 959 */ 960 ZONE_LOCK(zone); 961 while (zone->uz_flags & UMA_ZFLAG_DRAINING) { 962 if (waitok == M_NOWAIT) 963 goto out; 964 msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1); 965 } 966 zone->uz_flags |= UMA_ZFLAG_DRAINING; 967 bucket_cache_drain(zone); 968 ZONE_UNLOCK(zone); 969 /* 970 * The DRAINING flag protects us from being freed while 971 * we're running. Normally the uma_rwlock would protect us but we 972 * must be able to release and acquire the right lock for each keg. 973 */ 974 zone_foreach_keg(zone, &keg_drain); 975 ZONE_LOCK(zone); 976 zone->uz_flags &= ~UMA_ZFLAG_DRAINING; 977 wakeup(zone); 978 out: 979 ZONE_UNLOCK(zone); 980 } 981 982 void 983 zone_drain(uma_zone_t zone) 984 { 985 986 zone_drain_wait(zone, M_NOWAIT); 987 } 988 989 /* 990 * Allocate a new slab for a keg. This does not insert the slab onto a list. 991 * 992 * Arguments: 993 * wait Shall we wait? 994 * 995 * Returns: 996 * The slab that was allocated or NULL if there is no memory and the 997 * caller specified M_NOWAIT. 998 */ 999 static uma_slab_t 1000 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int wait) 1001 { 1002 uma_alloc allocf; 1003 uma_slab_t slab; 1004 unsigned long size; 1005 uint8_t *mem; 1006 uint8_t flags; 1007 int i; 1008 1009 KASSERT(domain >= 0 && domain < vm_ndomains, 1010 ("keg_alloc_slab: domain %d out of range", domain)); 1011 mtx_assert(&keg->uk_lock, MA_OWNED); 1012 slab = NULL; 1013 mem = NULL; 1014 1015 allocf = keg->uk_allocf; 1016 KEG_UNLOCK(keg); 1017 size = keg->uk_ppera * PAGE_SIZE; 1018 1019 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 1020 slab = zone_alloc_item(keg->uk_slabzone, NULL, domain, wait); 1021 if (slab == NULL) 1022 goto out; 1023 } 1024 1025 /* 1026 * This reproduces the old vm_zone behavior of zero filling pages the 1027 * first time they are added to a zone. 1028 * 1029 * Malloced items are zeroed in uma_zalloc. 1030 */ 1031 1032 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1033 wait |= M_ZERO; 1034 else 1035 wait &= ~M_ZERO; 1036 1037 if (keg->uk_flags & UMA_ZONE_NODUMP) 1038 wait |= M_NODUMP; 1039 1040 /* zone is passed for legacy reasons. */ 1041 mem = allocf(zone, size, domain, &flags, wait); 1042 if (mem == NULL) { 1043 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1044 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 1045 slab = NULL; 1046 goto out; 1047 } 1048 uma_total_inc(size); 1049 1050 /* Point the slab into the allocated memory */ 1051 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 1052 slab = (uma_slab_t )(mem + keg->uk_pgoff); 1053 1054 if (keg->uk_flags & UMA_ZONE_VTOSLAB) 1055 for (i = 0; i < keg->uk_ppera; i++) 1056 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 1057 1058 slab->us_keg = keg; 1059 slab->us_data = mem; 1060 slab->us_freecount = keg->uk_ipers; 1061 slab->us_flags = flags; 1062 slab->us_domain = domain; 1063 BIT_FILL(SLAB_SETSIZE, &slab->us_free); 1064 #ifdef INVARIANTS 1065 BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree); 1066 #endif 1067 1068 if (keg->uk_init != NULL) { 1069 for (i = 0; i < keg->uk_ipers; i++) 1070 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 1071 keg->uk_size, wait) != 0) 1072 break; 1073 if (i != keg->uk_ipers) { 1074 keg_free_slab(keg, slab, i); 1075 slab = NULL; 1076 goto out; 1077 } 1078 } 1079 out: 1080 KEG_LOCK(keg); 1081 1082 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1083 slab, keg->uk_name, keg); 1084 1085 if (slab != NULL) { 1086 if (keg->uk_flags & UMA_ZONE_HASH) 1087 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1088 1089 keg->uk_pages += keg->uk_ppera; 1090 keg->uk_free += keg->uk_ipers; 1091 } 1092 1093 return (slab); 1094 } 1095 1096 /* 1097 * This function is intended to be used early on in place of page_alloc() so 1098 * that we may use the boot time page cache to satisfy allocations before 1099 * the VM is ready. 1100 */ 1101 static void * 1102 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1103 int wait) 1104 { 1105 uma_keg_t keg; 1106 void *mem; 1107 int pages; 1108 1109 keg = zone_first_keg(zone); 1110 1111 /* 1112 * If we are in BOOT_BUCKETS or higher, than switch to real 1113 * allocator. Zones with page sized slabs switch at BOOT_PAGEALLOC. 1114 */ 1115 switch (booted) { 1116 case BOOT_COLD: 1117 case BOOT_STRAPPED: 1118 break; 1119 case BOOT_PAGEALLOC: 1120 if (keg->uk_ppera > 1) 1121 break; 1122 case BOOT_BUCKETS: 1123 case BOOT_RUNNING: 1124 #ifdef UMA_MD_SMALL_ALLOC 1125 keg->uk_allocf = (keg->uk_ppera > 1) ? 1126 page_alloc : uma_small_alloc; 1127 #else 1128 keg->uk_allocf = page_alloc; 1129 #endif 1130 return keg->uk_allocf(zone, bytes, domain, pflag, wait); 1131 } 1132 1133 /* 1134 * Check our small startup cache to see if it has pages remaining. 1135 */ 1136 pages = howmany(bytes, PAGE_SIZE); 1137 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1138 if (pages > boot_pages) 1139 panic("UMA zone \"%s\": Increase vm.boot_pages", zone->uz_name); 1140 #ifdef DIAGNOSTIC 1141 printf("%s from \"%s\", %d boot pages left\n", __func__, zone->uz_name, 1142 boot_pages); 1143 #endif 1144 mem = bootmem; 1145 boot_pages -= pages; 1146 bootmem += pages * PAGE_SIZE; 1147 *pflag = UMA_SLAB_BOOT; 1148 1149 return (mem); 1150 } 1151 1152 /* 1153 * Allocates a number of pages from the system 1154 * 1155 * Arguments: 1156 * bytes The number of bytes requested 1157 * wait Shall we wait? 1158 * 1159 * Returns: 1160 * A pointer to the alloced memory or possibly 1161 * NULL if M_NOWAIT is set. 1162 */ 1163 static void * 1164 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1165 int wait) 1166 { 1167 void *p; /* Returned page */ 1168 1169 *pflag = UMA_SLAB_KERNEL; 1170 p = (void *) kmem_malloc_domain(kernel_arena, domain, bytes, wait); 1171 1172 return (p); 1173 } 1174 1175 /* 1176 * Allocates a number of pages from within an object 1177 * 1178 * Arguments: 1179 * bytes The number of bytes requested 1180 * wait Shall we wait? 1181 * 1182 * Returns: 1183 * A pointer to the alloced memory or possibly 1184 * NULL if M_NOWAIT is set. 1185 */ 1186 static void * 1187 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 1188 int wait) 1189 { 1190 TAILQ_HEAD(, vm_page) alloctail; 1191 u_long npages; 1192 vm_offset_t retkva, zkva; 1193 vm_page_t p, p_next; 1194 uma_keg_t keg; 1195 1196 TAILQ_INIT(&alloctail); 1197 keg = zone_first_keg(zone); 1198 1199 npages = howmany(bytes, PAGE_SIZE); 1200 while (npages > 0) { 1201 p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT | 1202 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1203 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK : 1204 VM_ALLOC_NOWAIT)); 1205 if (p != NULL) { 1206 /* 1207 * Since the page does not belong to an object, its 1208 * listq is unused. 1209 */ 1210 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1211 npages--; 1212 continue; 1213 } 1214 /* 1215 * Page allocation failed, free intermediate pages and 1216 * exit. 1217 */ 1218 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1219 vm_page_unwire(p, PQ_NONE); 1220 vm_page_free(p); 1221 } 1222 return (NULL); 1223 } 1224 *flags = UMA_SLAB_PRIV; 1225 zkva = keg->uk_kva + 1226 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1227 retkva = zkva; 1228 TAILQ_FOREACH(p, &alloctail, listq) { 1229 pmap_qenter(zkva, &p, 1); 1230 zkva += PAGE_SIZE; 1231 } 1232 1233 return ((void *)retkva); 1234 } 1235 1236 /* 1237 * Frees a number of pages to the system 1238 * 1239 * Arguments: 1240 * mem A pointer to the memory to be freed 1241 * size The size of the memory being freed 1242 * flags The original p->us_flags field 1243 * 1244 * Returns: 1245 * Nothing 1246 */ 1247 static void 1248 page_free(void *mem, vm_size_t size, uint8_t flags) 1249 { 1250 struct vmem *vmem; 1251 1252 if (flags & UMA_SLAB_KERNEL) 1253 vmem = kernel_arena; 1254 else 1255 panic("UMA: page_free used with invalid flags %x", flags); 1256 1257 kmem_free(vmem, (vm_offset_t)mem, size); 1258 } 1259 1260 /* 1261 * Zero fill initializer 1262 * 1263 * Arguments/Returns follow uma_init specifications 1264 */ 1265 static int 1266 zero_init(void *mem, int size, int flags) 1267 { 1268 bzero(mem, size); 1269 return (0); 1270 } 1271 1272 /* 1273 * Finish creating a small uma keg. This calculates ipers, and the keg size. 1274 * 1275 * Arguments 1276 * keg The zone we should initialize 1277 * 1278 * Returns 1279 * Nothing 1280 */ 1281 static void 1282 keg_small_init(uma_keg_t keg) 1283 { 1284 u_int rsize; 1285 u_int memused; 1286 u_int wastedspace; 1287 u_int shsize; 1288 u_int slabsize; 1289 1290 if (keg->uk_flags & UMA_ZONE_PCPU) { 1291 u_int ncpus = (mp_maxid + 1) ? (mp_maxid + 1) : MAXCPU; 1292 1293 slabsize = sizeof(struct pcpu); 1294 keg->uk_ppera = howmany(ncpus * sizeof(struct pcpu), 1295 PAGE_SIZE); 1296 } else { 1297 slabsize = UMA_SLAB_SIZE; 1298 keg->uk_ppera = 1; 1299 } 1300 1301 /* 1302 * Calculate the size of each allocation (rsize) according to 1303 * alignment. If the requested size is smaller than we have 1304 * allocation bits for we round it up. 1305 */ 1306 rsize = keg->uk_size; 1307 if (rsize < slabsize / SLAB_SETSIZE) 1308 rsize = slabsize / SLAB_SETSIZE; 1309 if (rsize & keg->uk_align) 1310 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1311 keg->uk_rsize = rsize; 1312 1313 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 1314 keg->uk_rsize < sizeof(struct pcpu), 1315 ("%s: size %u too large", __func__, keg->uk_rsize)); 1316 1317 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1318 shsize = 0; 1319 else 1320 shsize = sizeof(struct uma_slab); 1321 1322 if (rsize <= slabsize - shsize) 1323 keg->uk_ipers = (slabsize - shsize) / rsize; 1324 else { 1325 /* Handle special case when we have 1 item per slab, so 1326 * alignment requirement can be relaxed. */ 1327 KASSERT(keg->uk_size <= slabsize - shsize, 1328 ("%s: size %u greater than slab", __func__, keg->uk_size)); 1329 keg->uk_ipers = 1; 1330 } 1331 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1332 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1333 1334 memused = keg->uk_ipers * rsize + shsize; 1335 wastedspace = slabsize - memused; 1336 1337 /* 1338 * We can't do OFFPAGE if we're internal or if we've been 1339 * asked to not go to the VM for buckets. If we do this we 1340 * may end up going to the VM for slabs which we do not 1341 * want to do if we're UMA_ZFLAG_CACHEONLY as a result 1342 * of UMA_ZONE_VM, which clearly forbids it. 1343 */ 1344 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1345 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1346 return; 1347 1348 /* 1349 * See if using an OFFPAGE slab will limit our waste. Only do 1350 * this if it permits more items per-slab. 1351 * 1352 * XXX We could try growing slabsize to limit max waste as well. 1353 * Historically this was not done because the VM could not 1354 * efficiently handle contiguous allocations. 1355 */ 1356 if ((wastedspace >= slabsize / UMA_MAX_WASTE) && 1357 (keg->uk_ipers < (slabsize / keg->uk_rsize))) { 1358 keg->uk_ipers = slabsize / keg->uk_rsize; 1359 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1360 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1361 CTR6(KTR_UMA, "UMA decided we need offpage slab headers for " 1362 "keg: %s(%p), calculated wastedspace = %d, " 1363 "maximum wasted space allowed = %d, " 1364 "calculated ipers = %d, " 1365 "new wasted space = %d\n", keg->uk_name, keg, wastedspace, 1366 slabsize / UMA_MAX_WASTE, keg->uk_ipers, 1367 slabsize - keg->uk_ipers * keg->uk_rsize); 1368 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1369 } 1370 1371 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1372 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1373 keg->uk_flags |= UMA_ZONE_HASH; 1374 } 1375 1376 /* 1377 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do 1378 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1379 * more complicated. 1380 * 1381 * Arguments 1382 * keg The keg we should initialize 1383 * 1384 * Returns 1385 * Nothing 1386 */ 1387 static void 1388 keg_large_init(uma_keg_t keg) 1389 { 1390 u_int shsize; 1391 1392 KASSERT(keg != NULL, ("Keg is null in keg_large_init")); 1393 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0, 1394 ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg")); 1395 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1396 ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__)); 1397 1398 keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE); 1399 keg->uk_ipers = 1; 1400 keg->uk_rsize = keg->uk_size; 1401 1402 /* Check whether we have enough space to not do OFFPAGE. */ 1403 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) { 1404 shsize = sizeof(struct uma_slab); 1405 if (shsize & UMA_ALIGN_PTR) 1406 shsize = (shsize & ~UMA_ALIGN_PTR) + 1407 (UMA_ALIGN_PTR + 1); 1408 1409 if (PAGE_SIZE * keg->uk_ppera - keg->uk_rsize < shsize) { 1410 /* 1411 * We can't do OFFPAGE if we're internal, in which case 1412 * we need an extra page per allocation to contain the 1413 * slab header. 1414 */ 1415 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) == 0) 1416 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1417 else 1418 keg->uk_ppera++; 1419 } 1420 } 1421 1422 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1423 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1424 keg->uk_flags |= UMA_ZONE_HASH; 1425 } 1426 1427 static void 1428 keg_cachespread_init(uma_keg_t keg) 1429 { 1430 int alignsize; 1431 int trailer; 1432 int pages; 1433 int rsize; 1434 1435 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1436 ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__)); 1437 1438 alignsize = keg->uk_align + 1; 1439 rsize = keg->uk_size; 1440 /* 1441 * We want one item to start on every align boundary in a page. To 1442 * do this we will span pages. We will also extend the item by the 1443 * size of align if it is an even multiple of align. Otherwise, it 1444 * would fall on the same boundary every time. 1445 */ 1446 if (rsize & keg->uk_align) 1447 rsize = (rsize & ~keg->uk_align) + alignsize; 1448 if ((rsize & alignsize) == 0) 1449 rsize += alignsize; 1450 trailer = rsize - keg->uk_size; 1451 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE; 1452 pages = MIN(pages, (128 * 1024) / PAGE_SIZE); 1453 keg->uk_rsize = rsize; 1454 keg->uk_ppera = pages; 1455 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize; 1456 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1457 KASSERT(keg->uk_ipers <= SLAB_SETSIZE, 1458 ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__, 1459 keg->uk_ipers)); 1460 } 1461 1462 /* 1463 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1464 * the keg onto the global keg list. 1465 * 1466 * Arguments/Returns follow uma_ctor specifications 1467 * udata Actually uma_kctor_args 1468 */ 1469 static int 1470 keg_ctor(void *mem, int size, void *udata, int flags) 1471 { 1472 struct uma_kctor_args *arg = udata; 1473 uma_keg_t keg = mem; 1474 uma_zone_t zone; 1475 1476 bzero(keg, size); 1477 keg->uk_size = arg->size; 1478 keg->uk_init = arg->uminit; 1479 keg->uk_fini = arg->fini; 1480 keg->uk_align = arg->align; 1481 keg->uk_cursor = 0; 1482 keg->uk_free = 0; 1483 keg->uk_reserve = 0; 1484 keg->uk_pages = 0; 1485 keg->uk_flags = arg->flags; 1486 keg->uk_slabzone = NULL; 1487 1488 /* 1489 * The master zone is passed to us at keg-creation time. 1490 */ 1491 zone = arg->zone; 1492 keg->uk_name = zone->uz_name; 1493 1494 if (arg->flags & UMA_ZONE_VM) 1495 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1496 1497 if (arg->flags & UMA_ZONE_ZINIT) 1498 keg->uk_init = zero_init; 1499 1500 if (arg->flags & UMA_ZONE_MALLOC) 1501 keg->uk_flags |= UMA_ZONE_VTOSLAB; 1502 1503 if (arg->flags & UMA_ZONE_PCPU) 1504 #ifdef SMP 1505 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1506 #else 1507 keg->uk_flags &= ~UMA_ZONE_PCPU; 1508 #endif 1509 1510 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) { 1511 keg_cachespread_init(keg); 1512 } else { 1513 if (keg->uk_size > UMA_SLAB_SPACE) 1514 keg_large_init(keg); 1515 else 1516 keg_small_init(keg); 1517 } 1518 1519 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1520 keg->uk_slabzone = slabzone; 1521 1522 /* 1523 * If we haven't booted yet we need allocations to go through the 1524 * startup cache until the vm is ready. 1525 */ 1526 if (booted < BOOT_PAGEALLOC) 1527 keg->uk_allocf = startup_alloc; 1528 #ifdef UMA_MD_SMALL_ALLOC 1529 else if (keg->uk_ppera == 1) 1530 keg->uk_allocf = uma_small_alloc; 1531 #endif 1532 else 1533 keg->uk_allocf = page_alloc; 1534 #ifdef UMA_MD_SMALL_ALLOC 1535 if (keg->uk_ppera == 1) 1536 keg->uk_freef = uma_small_free; 1537 else 1538 #endif 1539 keg->uk_freef = page_free; 1540 1541 /* 1542 * Initialize keg's lock 1543 */ 1544 KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS)); 1545 1546 /* 1547 * If we're putting the slab header in the actual page we need to 1548 * figure out where in each page it goes. This calculates a right 1549 * justified offset into the memory on an ALIGN_PTR boundary. 1550 */ 1551 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1552 u_int totsize; 1553 1554 /* Size of the slab struct and free list */ 1555 totsize = sizeof(struct uma_slab); 1556 1557 if (totsize & UMA_ALIGN_PTR) 1558 totsize = (totsize & ~UMA_ALIGN_PTR) + 1559 (UMA_ALIGN_PTR + 1); 1560 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize; 1561 1562 /* 1563 * The only way the following is possible is if with our 1564 * UMA_ALIGN_PTR adjustments we are now bigger than 1565 * UMA_SLAB_SIZE. I haven't checked whether this is 1566 * mathematically possible for all cases, so we make 1567 * sure here anyway. 1568 */ 1569 totsize = keg->uk_pgoff + sizeof(struct uma_slab); 1570 if (totsize > PAGE_SIZE * keg->uk_ppera) { 1571 printf("zone %s ipers %d rsize %d size %d\n", 1572 zone->uz_name, keg->uk_ipers, keg->uk_rsize, 1573 keg->uk_size); 1574 panic("UMA slab won't fit."); 1575 } 1576 } 1577 1578 if (keg->uk_flags & UMA_ZONE_HASH) 1579 hash_alloc(&keg->uk_hash); 1580 1581 CTR5(KTR_UMA, "keg_ctor %p zone %s(%p) out %d free %d\n", 1582 keg, zone->uz_name, zone, 1583 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 1584 keg->uk_free); 1585 1586 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1587 1588 rw_wlock(&uma_rwlock); 1589 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1590 rw_wunlock(&uma_rwlock); 1591 return (0); 1592 } 1593 1594 /* 1595 * Zone header ctor. This initializes all fields, locks, etc. 1596 * 1597 * Arguments/Returns follow uma_ctor specifications 1598 * udata Actually uma_zctor_args 1599 */ 1600 static int 1601 zone_ctor(void *mem, int size, void *udata, int flags) 1602 { 1603 struct uma_zctor_args *arg = udata; 1604 uma_zone_t zone = mem; 1605 uma_zone_t z; 1606 uma_keg_t keg; 1607 1608 bzero(zone, size); 1609 zone->uz_name = arg->name; 1610 zone->uz_ctor = arg->ctor; 1611 zone->uz_dtor = arg->dtor; 1612 zone->uz_slab = zone_fetch_slab; 1613 zone->uz_init = NULL; 1614 zone->uz_fini = NULL; 1615 zone->uz_allocs = 0; 1616 zone->uz_frees = 0; 1617 zone->uz_fails = 0; 1618 zone->uz_sleeps = 0; 1619 zone->uz_count = 0; 1620 zone->uz_count_min = 0; 1621 zone->uz_flags = 0; 1622 zone->uz_warning = NULL; 1623 /* The domain structures follow the cpu structures. */ 1624 zone->uz_domain = (struct uma_zone_domain *)&zone->uz_cpu[mp_ncpus]; 1625 timevalclear(&zone->uz_ratecheck); 1626 keg = arg->keg; 1627 1628 ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS)); 1629 1630 /* 1631 * This is a pure cache zone, no kegs. 1632 */ 1633 if (arg->import) { 1634 if (arg->flags & UMA_ZONE_VM) 1635 arg->flags |= UMA_ZFLAG_CACHEONLY; 1636 zone->uz_flags = arg->flags; 1637 zone->uz_size = arg->size; 1638 zone->uz_import = arg->import; 1639 zone->uz_release = arg->release; 1640 zone->uz_arg = arg->arg; 1641 zone->uz_lockptr = &zone->uz_lock; 1642 rw_wlock(&uma_rwlock); 1643 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 1644 rw_wunlock(&uma_rwlock); 1645 goto out; 1646 } 1647 1648 /* 1649 * Use the regular zone/keg/slab allocator. 1650 */ 1651 zone->uz_import = (uma_import)zone_import; 1652 zone->uz_release = (uma_release)zone_release; 1653 zone->uz_arg = zone; 1654 1655 if (arg->flags & UMA_ZONE_SECONDARY) { 1656 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 1657 zone->uz_init = arg->uminit; 1658 zone->uz_fini = arg->fini; 1659 zone->uz_lockptr = &keg->uk_lock; 1660 zone->uz_flags |= UMA_ZONE_SECONDARY; 1661 rw_wlock(&uma_rwlock); 1662 ZONE_LOCK(zone); 1663 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 1664 if (LIST_NEXT(z, uz_link) == NULL) { 1665 LIST_INSERT_AFTER(z, zone, uz_link); 1666 break; 1667 } 1668 } 1669 ZONE_UNLOCK(zone); 1670 rw_wunlock(&uma_rwlock); 1671 } else if (keg == NULL) { 1672 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 1673 arg->align, arg->flags)) == NULL) 1674 return (ENOMEM); 1675 } else { 1676 struct uma_kctor_args karg; 1677 int error; 1678 1679 /* We should only be here from uma_startup() */ 1680 karg.size = arg->size; 1681 karg.uminit = arg->uminit; 1682 karg.fini = arg->fini; 1683 karg.align = arg->align; 1684 karg.flags = arg->flags; 1685 karg.zone = zone; 1686 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 1687 flags); 1688 if (error) 1689 return (error); 1690 } 1691 1692 /* 1693 * Link in the first keg. 1694 */ 1695 zone->uz_klink.kl_keg = keg; 1696 LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link); 1697 zone->uz_lockptr = &keg->uk_lock; 1698 zone->uz_size = keg->uk_size; 1699 zone->uz_flags |= (keg->uk_flags & 1700 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 1701 1702 /* 1703 * Some internal zones don't have room allocated for the per cpu 1704 * caches. If we're internal, bail out here. 1705 */ 1706 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { 1707 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 1708 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 1709 return (0); 1710 } 1711 1712 out: 1713 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != 1714 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), 1715 ("Invalid zone flag combination")); 1716 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) 1717 zone->uz_count = BUCKET_MAX; 1718 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) 1719 zone->uz_count = 0; 1720 else 1721 zone->uz_count = bucket_select(zone->uz_size); 1722 zone->uz_count_min = zone->uz_count; 1723 1724 return (0); 1725 } 1726 1727 /* 1728 * Keg header dtor. This frees all data, destroys locks, frees the hash 1729 * table and removes the keg from the global list. 1730 * 1731 * Arguments/Returns follow uma_dtor specifications 1732 * udata unused 1733 */ 1734 static void 1735 keg_dtor(void *arg, int size, void *udata) 1736 { 1737 uma_keg_t keg; 1738 1739 keg = (uma_keg_t)arg; 1740 KEG_LOCK(keg); 1741 if (keg->uk_free != 0) { 1742 printf("Freed UMA keg (%s) was not empty (%d items). " 1743 " Lost %d pages of memory.\n", 1744 keg->uk_name ? keg->uk_name : "", 1745 keg->uk_free, keg->uk_pages); 1746 } 1747 KEG_UNLOCK(keg); 1748 1749 hash_free(&keg->uk_hash); 1750 1751 KEG_LOCK_FINI(keg); 1752 } 1753 1754 /* 1755 * Zone header dtor. 1756 * 1757 * Arguments/Returns follow uma_dtor specifications 1758 * udata unused 1759 */ 1760 static void 1761 zone_dtor(void *arg, int size, void *udata) 1762 { 1763 uma_klink_t klink; 1764 uma_zone_t zone; 1765 uma_keg_t keg; 1766 1767 zone = (uma_zone_t)arg; 1768 keg = zone_first_keg(zone); 1769 1770 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 1771 cache_drain(zone); 1772 1773 rw_wlock(&uma_rwlock); 1774 LIST_REMOVE(zone, uz_link); 1775 rw_wunlock(&uma_rwlock); 1776 /* 1777 * XXX there are some races here where 1778 * the zone can be drained but zone lock 1779 * released and then refilled before we 1780 * remove it... we dont care for now 1781 */ 1782 zone_drain_wait(zone, M_WAITOK); 1783 /* 1784 * Unlink all of our kegs. 1785 */ 1786 while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) { 1787 klink->kl_keg = NULL; 1788 LIST_REMOVE(klink, kl_link); 1789 if (klink == &zone->uz_klink) 1790 continue; 1791 free(klink, M_TEMP); 1792 } 1793 /* 1794 * We only destroy kegs from non secondary zones. 1795 */ 1796 if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0) { 1797 rw_wlock(&uma_rwlock); 1798 LIST_REMOVE(keg, uk_link); 1799 rw_wunlock(&uma_rwlock); 1800 zone_free_item(kegs, keg, NULL, SKIP_NONE); 1801 } 1802 ZONE_LOCK_FINI(zone); 1803 } 1804 1805 /* 1806 * Traverses every zone in the system and calls a callback 1807 * 1808 * Arguments: 1809 * zfunc A pointer to a function which accepts a zone 1810 * as an argument. 1811 * 1812 * Returns: 1813 * Nothing 1814 */ 1815 static void 1816 zone_foreach(void (*zfunc)(uma_zone_t)) 1817 { 1818 uma_keg_t keg; 1819 uma_zone_t zone; 1820 1821 rw_rlock(&uma_rwlock); 1822 LIST_FOREACH(keg, &uma_kegs, uk_link) { 1823 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 1824 zfunc(zone); 1825 } 1826 rw_runlock(&uma_rwlock); 1827 } 1828 1829 /* 1830 * Count how many pages do we need to bootstrap. VM supplies 1831 * its need in early zones in the argument, we add up our zones, 1832 * which consist of: UMA Slabs, UMA Hash and 9 Bucket zones. The 1833 * zone of zones and zone of kegs are accounted separately. 1834 */ 1835 #define UMA_BOOT_ZONES 11 1836 /* Zone of zones and zone of kegs have arbitrary alignment. */ 1837 #define UMA_BOOT_ALIGN 32 1838 static int zsize, ksize; 1839 int 1840 uma_startup_count(int vm_zones) 1841 { 1842 int zones, pages; 1843 1844 ksize = sizeof(struct uma_keg) + 1845 (sizeof(struct uma_domain) * vm_ndomains); 1846 zsize = sizeof(struct uma_zone) + 1847 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 1848 (sizeof(struct uma_zone_domain) * vm_ndomains); 1849 1850 /* 1851 * Memory for the zone of kegs and its keg, 1852 * and for zone of zones. 1853 */ 1854 pages = howmany(roundup(zsize, CACHE_LINE_SIZE) * 2 + 1855 roundup(ksize, CACHE_LINE_SIZE), PAGE_SIZE); 1856 1857 #ifdef UMA_MD_SMALL_ALLOC 1858 zones = UMA_BOOT_ZONES; 1859 #else 1860 zones = UMA_BOOT_ZONES + vm_zones; 1861 vm_zones = 0; 1862 #endif 1863 1864 /* Memory for the rest of startup zones, UMA and VM, ... */ 1865 if (zsize > UMA_SLAB_SPACE) 1866 pages += (zones + vm_zones) * 1867 howmany(roundup2(zsize, UMA_BOOT_ALIGN), UMA_SLAB_SIZE); 1868 else if (roundup2(zsize, UMA_BOOT_ALIGN) > UMA_SLAB_SPACE) 1869 pages += zones; 1870 else 1871 pages += howmany(zones, 1872 UMA_SLAB_SPACE / roundup2(zsize, UMA_BOOT_ALIGN)); 1873 1874 /* ... and their kegs. Note that zone of zones allocates a keg! */ 1875 pages += howmany(zones + 1, 1876 UMA_SLAB_SPACE / roundup2(ksize, UMA_BOOT_ALIGN)); 1877 1878 /* 1879 * Most of startup zones are not going to be offpages, that's 1880 * why we use UMA_SLAB_SPACE instead of UMA_SLAB_SIZE in all 1881 * calculations. Some large bucket zones will be offpage, and 1882 * thus will allocate hashes. We take conservative approach 1883 * and assume that all zones may allocate hash. This may give 1884 * us some positive inaccuracy, usually an extra single page. 1885 */ 1886 pages += howmany(zones, UMA_SLAB_SPACE / 1887 (sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT)); 1888 1889 return (pages); 1890 } 1891 1892 void 1893 uma_startup(void *mem, int npages) 1894 { 1895 struct uma_zctor_args args; 1896 uma_keg_t masterkeg; 1897 uintptr_t m; 1898 1899 #ifdef DIAGNOSTIC 1900 printf("Entering %s with %d boot pages configured\n", __func__, npages); 1901 #endif 1902 1903 rw_init(&uma_rwlock, "UMA lock"); 1904 1905 /* Use bootpages memory for the zone of zones and zone of kegs. */ 1906 m = (uintptr_t)mem; 1907 zones = (uma_zone_t)m; 1908 m += roundup(zsize, CACHE_LINE_SIZE); 1909 kegs = (uma_zone_t)m; 1910 m += roundup(zsize, CACHE_LINE_SIZE); 1911 masterkeg = (uma_keg_t)m; 1912 m += roundup(ksize, CACHE_LINE_SIZE); 1913 m = roundup(m, PAGE_SIZE); 1914 npages -= (m - (uintptr_t)mem) / PAGE_SIZE; 1915 mem = (void *)m; 1916 1917 /* "manually" create the initial zone */ 1918 memset(&args, 0, sizeof(args)); 1919 args.name = "UMA Kegs"; 1920 args.size = ksize; 1921 args.ctor = keg_ctor; 1922 args.dtor = keg_dtor; 1923 args.uminit = zero_init; 1924 args.fini = NULL; 1925 args.keg = masterkeg; 1926 args.align = UMA_BOOT_ALIGN - 1; 1927 args.flags = UMA_ZFLAG_INTERNAL; 1928 zone_ctor(kegs, zsize, &args, M_WAITOK); 1929 1930 bootmem = mem; 1931 boot_pages = npages; 1932 1933 args.name = "UMA Zones"; 1934 args.size = zsize; 1935 args.ctor = zone_ctor; 1936 args.dtor = zone_dtor; 1937 args.uminit = zero_init; 1938 args.fini = NULL; 1939 args.keg = NULL; 1940 args.align = UMA_BOOT_ALIGN - 1; 1941 args.flags = UMA_ZFLAG_INTERNAL; 1942 zone_ctor(zones, zsize, &args, M_WAITOK); 1943 1944 /* Now make a zone for slab headers */ 1945 slabzone = uma_zcreate("UMA Slabs", 1946 sizeof(struct uma_slab), 1947 NULL, NULL, NULL, NULL, 1948 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1949 1950 hashzone = uma_zcreate("UMA Hash", 1951 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 1952 NULL, NULL, NULL, NULL, 1953 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1954 1955 bucket_init(); 1956 1957 booted = BOOT_STRAPPED; 1958 } 1959 1960 void 1961 uma_startup1(void) 1962 { 1963 1964 #ifdef DIAGNOSTIC 1965 printf("Entering %s with %d boot pages left\n", __func__, boot_pages); 1966 #endif 1967 booted = BOOT_PAGEALLOC; 1968 } 1969 1970 void 1971 uma_startup2(void) 1972 { 1973 1974 #ifdef DIAGNOSTIC 1975 printf("Entering %s with %d boot pages left\n", __func__, boot_pages); 1976 #endif 1977 booted = BOOT_BUCKETS; 1978 sx_init(&uma_drain_lock, "umadrain"); 1979 bucket_enable(); 1980 } 1981 1982 /* 1983 * Initialize our callout handle 1984 * 1985 */ 1986 static void 1987 uma_startup3(void) 1988 { 1989 1990 #ifdef INVARIANTS 1991 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor); 1992 uma_dbg_cnt = counter_u64_alloc(M_WAITOK); 1993 uma_skip_cnt = counter_u64_alloc(M_WAITOK); 1994 #endif 1995 callout_init(&uma_callout, 1); 1996 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 1997 booted = BOOT_RUNNING; 1998 } 1999 2000 static uma_keg_t 2001 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 2002 int align, uint32_t flags) 2003 { 2004 struct uma_kctor_args args; 2005 2006 args.size = size; 2007 args.uminit = uminit; 2008 args.fini = fini; 2009 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 2010 args.flags = flags; 2011 args.zone = zone; 2012 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 2013 } 2014 2015 /* Public functions */ 2016 /* See uma.h */ 2017 void 2018 uma_set_align(int align) 2019 { 2020 2021 if (align != UMA_ALIGN_CACHE) 2022 uma_align_cache = align; 2023 } 2024 2025 /* See uma.h */ 2026 uma_zone_t 2027 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 2028 uma_init uminit, uma_fini fini, int align, uint32_t flags) 2029 2030 { 2031 struct uma_zctor_args args; 2032 uma_zone_t res; 2033 bool locked; 2034 2035 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 2036 align, name)); 2037 2038 /* This stuff is essential for the zone ctor */ 2039 memset(&args, 0, sizeof(args)); 2040 args.name = name; 2041 args.size = size; 2042 args.ctor = ctor; 2043 args.dtor = dtor; 2044 args.uminit = uminit; 2045 args.fini = fini; 2046 #ifdef INVARIANTS 2047 /* 2048 * If a zone is being created with an empty constructor and 2049 * destructor, pass UMA constructor/destructor which checks for 2050 * memory use after free. 2051 */ 2052 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOFREE))) && 2053 ctor == NULL && dtor == NULL && uminit == NULL && fini == NULL) { 2054 args.ctor = trash_ctor; 2055 args.dtor = trash_dtor; 2056 args.uminit = trash_init; 2057 args.fini = trash_fini; 2058 } 2059 #endif 2060 args.align = align; 2061 args.flags = flags; 2062 args.keg = NULL; 2063 2064 if (booted < BOOT_BUCKETS) { 2065 locked = false; 2066 } else { 2067 sx_slock(&uma_drain_lock); 2068 locked = true; 2069 } 2070 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2071 if (locked) 2072 sx_sunlock(&uma_drain_lock); 2073 return (res); 2074 } 2075 2076 /* See uma.h */ 2077 uma_zone_t 2078 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 2079 uma_init zinit, uma_fini zfini, uma_zone_t master) 2080 { 2081 struct uma_zctor_args args; 2082 uma_keg_t keg; 2083 uma_zone_t res; 2084 bool locked; 2085 2086 keg = zone_first_keg(master); 2087 memset(&args, 0, sizeof(args)); 2088 args.name = name; 2089 args.size = keg->uk_size; 2090 args.ctor = ctor; 2091 args.dtor = dtor; 2092 args.uminit = zinit; 2093 args.fini = zfini; 2094 args.align = keg->uk_align; 2095 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 2096 args.keg = keg; 2097 2098 if (booted < BOOT_BUCKETS) { 2099 locked = false; 2100 } else { 2101 sx_slock(&uma_drain_lock); 2102 locked = true; 2103 } 2104 /* XXX Attaches only one keg of potentially many. */ 2105 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2106 if (locked) 2107 sx_sunlock(&uma_drain_lock); 2108 return (res); 2109 } 2110 2111 /* See uma.h */ 2112 uma_zone_t 2113 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor, 2114 uma_init zinit, uma_fini zfini, uma_import zimport, 2115 uma_release zrelease, void *arg, int flags) 2116 { 2117 struct uma_zctor_args args; 2118 2119 memset(&args, 0, sizeof(args)); 2120 args.name = name; 2121 args.size = size; 2122 args.ctor = ctor; 2123 args.dtor = dtor; 2124 args.uminit = zinit; 2125 args.fini = zfini; 2126 args.import = zimport; 2127 args.release = zrelease; 2128 args.arg = arg; 2129 args.align = 0; 2130 args.flags = flags; 2131 2132 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 2133 } 2134 2135 static void 2136 zone_lock_pair(uma_zone_t a, uma_zone_t b) 2137 { 2138 if (a < b) { 2139 ZONE_LOCK(a); 2140 mtx_lock_flags(b->uz_lockptr, MTX_DUPOK); 2141 } else { 2142 ZONE_LOCK(b); 2143 mtx_lock_flags(a->uz_lockptr, MTX_DUPOK); 2144 } 2145 } 2146 2147 static void 2148 zone_unlock_pair(uma_zone_t a, uma_zone_t b) 2149 { 2150 2151 ZONE_UNLOCK(a); 2152 ZONE_UNLOCK(b); 2153 } 2154 2155 int 2156 uma_zsecond_add(uma_zone_t zone, uma_zone_t master) 2157 { 2158 uma_klink_t klink; 2159 uma_klink_t kl; 2160 int error; 2161 2162 error = 0; 2163 klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO); 2164 2165 zone_lock_pair(zone, master); 2166 /* 2167 * zone must use vtoslab() to resolve objects and must already be 2168 * a secondary. 2169 */ 2170 if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) 2171 != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) { 2172 error = EINVAL; 2173 goto out; 2174 } 2175 /* 2176 * The new master must also use vtoslab(). 2177 */ 2178 if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) { 2179 error = EINVAL; 2180 goto out; 2181 } 2182 2183 /* 2184 * The underlying object must be the same size. rsize 2185 * may be different. 2186 */ 2187 if (master->uz_size != zone->uz_size) { 2188 error = E2BIG; 2189 goto out; 2190 } 2191 /* 2192 * Put it at the end of the list. 2193 */ 2194 klink->kl_keg = zone_first_keg(master); 2195 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) { 2196 if (LIST_NEXT(kl, kl_link) == NULL) { 2197 LIST_INSERT_AFTER(kl, klink, kl_link); 2198 break; 2199 } 2200 } 2201 klink = NULL; 2202 zone->uz_flags |= UMA_ZFLAG_MULTI; 2203 zone->uz_slab = zone_fetch_slab_multi; 2204 2205 out: 2206 zone_unlock_pair(zone, master); 2207 if (klink != NULL) 2208 free(klink, M_TEMP); 2209 2210 return (error); 2211 } 2212 2213 2214 /* See uma.h */ 2215 void 2216 uma_zdestroy(uma_zone_t zone) 2217 { 2218 2219 sx_slock(&uma_drain_lock); 2220 zone_free_item(zones, zone, NULL, SKIP_NONE); 2221 sx_sunlock(&uma_drain_lock); 2222 } 2223 2224 void 2225 uma_zwait(uma_zone_t zone) 2226 { 2227 void *item; 2228 2229 item = uma_zalloc_arg(zone, NULL, M_WAITOK); 2230 uma_zfree(zone, item); 2231 } 2232 2233 void * 2234 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags) 2235 { 2236 void *item; 2237 int i; 2238 2239 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 2240 item = uma_zalloc_arg(zone, udata, flags &~ M_ZERO); 2241 if (item != NULL && (flags & M_ZERO)) { 2242 CPU_FOREACH(i) 2243 bzero(zpcpu_get_cpu(item, i), zone->uz_size); 2244 } 2245 return (item); 2246 } 2247 2248 /* 2249 * A stub while both regular and pcpu cases are identical. 2250 */ 2251 void 2252 uma_zfree_pcpu_arg(uma_zone_t zone, void *item, void *udata) 2253 { 2254 2255 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 2256 uma_zfree_arg(zone, item, udata); 2257 } 2258 2259 /* See uma.h */ 2260 void * 2261 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 2262 { 2263 uma_zone_domain_t zdom; 2264 uma_bucket_t bucket; 2265 uma_cache_t cache; 2266 void *item; 2267 int cpu, domain, lockfail; 2268 #ifdef INVARIANTS 2269 bool skipdbg; 2270 #endif 2271 2272 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2273 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 2274 2275 /* This is the fast path allocation */ 2276 CTR4(KTR_UMA, "uma_zalloc_arg thread %x zone %s(%p) flags %d", 2277 curthread, zone->uz_name, zone, flags); 2278 2279 if (flags & M_WAITOK) { 2280 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2281 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 2282 } 2283 KASSERT((flags & M_EXEC) == 0, ("uma_zalloc_arg: called with M_EXEC")); 2284 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2285 ("uma_zalloc_arg: called with spinlock or critical section held")); 2286 if (zone->uz_flags & UMA_ZONE_PCPU) 2287 KASSERT((flags & M_ZERO) == 0, ("allocating from a pcpu zone " 2288 "with M_ZERO passed")); 2289 2290 #ifdef DEBUG_MEMGUARD 2291 if (memguard_cmp_zone(zone)) { 2292 item = memguard_alloc(zone->uz_size, flags); 2293 if (item != NULL) { 2294 if (zone->uz_init != NULL && 2295 zone->uz_init(item, zone->uz_size, flags) != 0) 2296 return (NULL); 2297 if (zone->uz_ctor != NULL && 2298 zone->uz_ctor(item, zone->uz_size, udata, 2299 flags) != 0) { 2300 zone->uz_fini(item, zone->uz_size); 2301 return (NULL); 2302 } 2303 return (item); 2304 } 2305 /* This is unfortunate but should not be fatal. */ 2306 } 2307 #endif 2308 /* 2309 * If possible, allocate from the per-CPU cache. There are two 2310 * requirements for safe access to the per-CPU cache: (1) the thread 2311 * accessing the cache must not be preempted or yield during access, 2312 * and (2) the thread must not migrate CPUs without switching which 2313 * cache it accesses. We rely on a critical section to prevent 2314 * preemption and migration. We release the critical section in 2315 * order to acquire the zone mutex if we are unable to allocate from 2316 * the current cache; when we re-acquire the critical section, we 2317 * must detect and handle migration if it has occurred. 2318 */ 2319 critical_enter(); 2320 cpu = curcpu; 2321 cache = &zone->uz_cpu[cpu]; 2322 2323 zalloc_start: 2324 bucket = cache->uc_allocbucket; 2325 if (bucket != NULL && bucket->ub_cnt > 0) { 2326 bucket->ub_cnt--; 2327 item = bucket->ub_bucket[bucket->ub_cnt]; 2328 #ifdef INVARIANTS 2329 bucket->ub_bucket[bucket->ub_cnt] = NULL; 2330 #endif 2331 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 2332 cache->uc_allocs++; 2333 critical_exit(); 2334 #ifdef INVARIANTS 2335 skipdbg = uma_dbg_zskip(zone, item); 2336 #endif 2337 if (zone->uz_ctor != NULL && 2338 #ifdef INVARIANTS 2339 (!skipdbg || zone->uz_ctor != trash_ctor || 2340 zone->uz_dtor != trash_dtor) && 2341 #endif 2342 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2343 atomic_add_long(&zone->uz_fails, 1); 2344 zone_free_item(zone, item, udata, SKIP_DTOR); 2345 return (NULL); 2346 } 2347 #ifdef INVARIANTS 2348 if (!skipdbg) 2349 uma_dbg_alloc(zone, NULL, item); 2350 #endif 2351 if (flags & M_ZERO) 2352 uma_zero_item(item, zone); 2353 return (item); 2354 } 2355 2356 /* 2357 * We have run out of items in our alloc bucket. 2358 * See if we can switch with our free bucket. 2359 */ 2360 bucket = cache->uc_freebucket; 2361 if (bucket != NULL && bucket->ub_cnt > 0) { 2362 CTR2(KTR_UMA, 2363 "uma_zalloc: zone %s(%p) swapping empty with alloc", 2364 zone->uz_name, zone); 2365 cache->uc_freebucket = cache->uc_allocbucket; 2366 cache->uc_allocbucket = bucket; 2367 goto zalloc_start; 2368 } 2369 2370 /* 2371 * Discard any empty allocation bucket while we hold no locks. 2372 */ 2373 bucket = cache->uc_allocbucket; 2374 cache->uc_allocbucket = NULL; 2375 critical_exit(); 2376 if (bucket != NULL) 2377 bucket_free(zone, bucket, udata); 2378 2379 if (zone->uz_flags & UMA_ZONE_NUMA) 2380 domain = PCPU_GET(domain); 2381 else 2382 domain = UMA_ANYDOMAIN; 2383 2384 /* Short-circuit for zones without buckets and low memory. */ 2385 if (zone->uz_count == 0 || bucketdisable) 2386 goto zalloc_item; 2387 2388 /* 2389 * Attempt to retrieve the item from the per-CPU cache has failed, so 2390 * we must go back to the zone. This requires the zone lock, so we 2391 * must drop the critical section, then re-acquire it when we go back 2392 * to the cache. Since the critical section is released, we may be 2393 * preempted or migrate. As such, make sure not to maintain any 2394 * thread-local state specific to the cache from prior to releasing 2395 * the critical section. 2396 */ 2397 lockfail = 0; 2398 if (ZONE_TRYLOCK(zone) == 0) { 2399 /* Record contention to size the buckets. */ 2400 ZONE_LOCK(zone); 2401 lockfail = 1; 2402 } 2403 critical_enter(); 2404 cpu = curcpu; 2405 cache = &zone->uz_cpu[cpu]; 2406 2407 /* See if we lost the race to fill the cache. */ 2408 if (cache->uc_allocbucket != NULL) { 2409 ZONE_UNLOCK(zone); 2410 goto zalloc_start; 2411 } 2412 2413 /* 2414 * Check the zone's cache of buckets. 2415 */ 2416 if (domain == UMA_ANYDOMAIN) 2417 zdom = &zone->uz_domain[0]; 2418 else 2419 zdom = &zone->uz_domain[domain]; 2420 if ((bucket = LIST_FIRST(&zdom->uzd_buckets)) != NULL) { 2421 KASSERT(bucket->ub_cnt != 0, 2422 ("uma_zalloc_arg: Returning an empty bucket.")); 2423 2424 LIST_REMOVE(bucket, ub_link); 2425 cache->uc_allocbucket = bucket; 2426 ZONE_UNLOCK(zone); 2427 goto zalloc_start; 2428 } 2429 /* We are no longer associated with this CPU. */ 2430 critical_exit(); 2431 2432 /* 2433 * We bump the uz count when the cache size is insufficient to 2434 * handle the working set. 2435 */ 2436 if (lockfail && zone->uz_count < BUCKET_MAX) 2437 zone->uz_count++; 2438 ZONE_UNLOCK(zone); 2439 2440 /* 2441 * Now lets just fill a bucket and put it on the free list. If that 2442 * works we'll restart the allocation from the beginning and it 2443 * will use the just filled bucket. 2444 */ 2445 bucket = zone_alloc_bucket(zone, udata, domain, flags); 2446 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 2447 zone->uz_name, zone, bucket); 2448 if (bucket != NULL) { 2449 ZONE_LOCK(zone); 2450 critical_enter(); 2451 cpu = curcpu; 2452 cache = &zone->uz_cpu[cpu]; 2453 /* 2454 * See if we lost the race or were migrated. Cache the 2455 * initialized bucket to make this less likely or claim 2456 * the memory directly. 2457 */ 2458 if (cache->uc_allocbucket != NULL || 2459 (zone->uz_flags & UMA_ZONE_NUMA && 2460 domain != PCPU_GET(domain))) 2461 LIST_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); 2462 else 2463 cache->uc_allocbucket = bucket; 2464 ZONE_UNLOCK(zone); 2465 goto zalloc_start; 2466 } 2467 2468 /* 2469 * We may not be able to get a bucket so return an actual item. 2470 */ 2471 zalloc_item: 2472 item = zone_alloc_item(zone, udata, domain, flags); 2473 2474 return (item); 2475 } 2476 2477 void * 2478 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 2479 { 2480 2481 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2482 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 2483 2484 /* This is the fast path allocation */ 2485 CTR5(KTR_UMA, 2486 "uma_zalloc_domain thread %x zone %s(%p) domain %d flags %d", 2487 curthread, zone->uz_name, zone, domain, flags); 2488 2489 if (flags & M_WAITOK) { 2490 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2491 "uma_zalloc_domain: zone \"%s\"", zone->uz_name); 2492 } 2493 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2494 ("uma_zalloc_domain: called with spinlock or critical section held")); 2495 2496 return (zone_alloc_item(zone, udata, domain, flags)); 2497 } 2498 2499 /* 2500 * Find a slab with some space. Prefer slabs that are partially used over those 2501 * that are totally full. This helps to reduce fragmentation. 2502 * 2503 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 2504 * only 'domain'. 2505 */ 2506 static uma_slab_t 2507 keg_first_slab(uma_keg_t keg, int domain, int rr) 2508 { 2509 uma_domain_t dom; 2510 uma_slab_t slab; 2511 int start; 2512 2513 KASSERT(domain >= 0 && domain < vm_ndomains, 2514 ("keg_first_slab: domain %d out of range", domain)); 2515 2516 slab = NULL; 2517 start = domain; 2518 do { 2519 dom = &keg->uk_domain[domain]; 2520 if (!LIST_EMPTY(&dom->ud_part_slab)) 2521 return (LIST_FIRST(&dom->ud_part_slab)); 2522 if (!LIST_EMPTY(&dom->ud_free_slab)) { 2523 slab = LIST_FIRST(&dom->ud_free_slab); 2524 LIST_REMOVE(slab, us_link); 2525 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 2526 return (slab); 2527 } 2528 if (rr) 2529 domain = (domain + 1) % vm_ndomains; 2530 } while (domain != start); 2531 2532 return (NULL); 2533 } 2534 2535 static uma_slab_t 2536 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, int flags) 2537 { 2538 uma_domain_t dom; 2539 uma_slab_t slab; 2540 int allocflags, domain, reserve, rr, start; 2541 2542 mtx_assert(&keg->uk_lock, MA_OWNED); 2543 slab = NULL; 2544 reserve = 0; 2545 allocflags = flags; 2546 if ((flags & M_USE_RESERVE) == 0) 2547 reserve = keg->uk_reserve; 2548 2549 /* 2550 * Round-robin for non first-touch zones when there is more than one 2551 * domain. 2552 */ 2553 if (vm_ndomains == 1) 2554 rdomain = 0; 2555 rr = rdomain == UMA_ANYDOMAIN; 2556 if (rr) { 2557 keg->uk_cursor = (keg->uk_cursor + 1) % vm_ndomains; 2558 domain = start = keg->uk_cursor; 2559 /* Only block on the second pass. */ 2560 if ((flags & (M_WAITOK | M_NOVM)) == M_WAITOK) 2561 allocflags = (allocflags & ~M_WAITOK) | M_NOWAIT; 2562 } else 2563 domain = start = rdomain; 2564 2565 again: 2566 do { 2567 if (keg->uk_free > reserve && 2568 (slab = keg_first_slab(keg, domain, rr)) != NULL) { 2569 MPASS(slab->us_keg == keg); 2570 return (slab); 2571 } 2572 2573 /* 2574 * M_NOVM means don't ask at all! 2575 */ 2576 if (flags & M_NOVM) 2577 break; 2578 2579 if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) { 2580 keg->uk_flags |= UMA_ZFLAG_FULL; 2581 /* 2582 * If this is not a multi-zone, set the FULL bit. 2583 * Otherwise slab_multi() takes care of it. 2584 */ 2585 if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) { 2586 zone->uz_flags |= UMA_ZFLAG_FULL; 2587 zone_log_warning(zone); 2588 zone_maxaction(zone); 2589 } 2590 if (flags & M_NOWAIT) 2591 return (NULL); 2592 zone->uz_sleeps++; 2593 msleep(keg, &keg->uk_lock, PVM, "keglimit", 0); 2594 continue; 2595 } 2596 slab = keg_alloc_slab(keg, zone, domain, allocflags); 2597 /* 2598 * If we got a slab here it's safe to mark it partially used 2599 * and return. We assume that the caller is going to remove 2600 * at least one item. 2601 */ 2602 if (slab) { 2603 MPASS(slab->us_keg == keg); 2604 dom = &keg->uk_domain[slab->us_domain]; 2605 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 2606 return (slab); 2607 } 2608 if (rr) { 2609 keg->uk_cursor = (keg->uk_cursor + 1) % vm_ndomains; 2610 domain = keg->uk_cursor; 2611 } 2612 } while (domain != start); 2613 2614 /* Retry domain scan with blocking. */ 2615 if (allocflags != flags) { 2616 allocflags = flags; 2617 goto again; 2618 } 2619 2620 /* 2621 * We might not have been able to get a slab but another cpu 2622 * could have while we were unlocked. Check again before we 2623 * fail. 2624 */ 2625 if (keg->uk_free > reserve && 2626 (slab = keg_first_slab(keg, domain, rr)) != NULL) { 2627 MPASS(slab->us_keg == keg); 2628 return (slab); 2629 } 2630 return (NULL); 2631 } 2632 2633 static uma_slab_t 2634 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int domain, int flags) 2635 { 2636 uma_slab_t slab; 2637 2638 if (keg == NULL) { 2639 keg = zone_first_keg(zone); 2640 KEG_LOCK(keg); 2641 } 2642 2643 for (;;) { 2644 slab = keg_fetch_slab(keg, zone, domain, flags); 2645 if (slab) 2646 return (slab); 2647 if (flags & (M_NOWAIT | M_NOVM)) 2648 break; 2649 } 2650 KEG_UNLOCK(keg); 2651 return (NULL); 2652 } 2653 2654 /* 2655 * uma_zone_fetch_slab_multi: Fetches a slab from one available keg. Returns 2656 * with the keg locked. On NULL no lock is held. 2657 * 2658 * The last pointer is used to seed the search. It is not required. 2659 */ 2660 static uma_slab_t 2661 zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int domain, int rflags) 2662 { 2663 uma_klink_t klink; 2664 uma_slab_t slab; 2665 uma_keg_t keg; 2666 int flags; 2667 int empty; 2668 int full; 2669 2670 /* 2671 * Don't wait on the first pass. This will skip limit tests 2672 * as well. We don't want to block if we can find a provider 2673 * without blocking. 2674 */ 2675 flags = (rflags & ~M_WAITOK) | M_NOWAIT; 2676 /* 2677 * Use the last slab allocated as a hint for where to start 2678 * the search. 2679 */ 2680 if (last != NULL) { 2681 slab = keg_fetch_slab(last, zone, domain, flags); 2682 if (slab) 2683 return (slab); 2684 KEG_UNLOCK(last); 2685 } 2686 /* 2687 * Loop until we have a slab incase of transient failures 2688 * while M_WAITOK is specified. I'm not sure this is 100% 2689 * required but we've done it for so long now. 2690 */ 2691 for (;;) { 2692 empty = 0; 2693 full = 0; 2694 /* 2695 * Search the available kegs for slabs. Be careful to hold the 2696 * correct lock while calling into the keg layer. 2697 */ 2698 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) { 2699 keg = klink->kl_keg; 2700 KEG_LOCK(keg); 2701 if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) { 2702 slab = keg_fetch_slab(keg, zone, domain, flags); 2703 if (slab) 2704 return (slab); 2705 } 2706 if (keg->uk_flags & UMA_ZFLAG_FULL) 2707 full++; 2708 else 2709 empty++; 2710 KEG_UNLOCK(keg); 2711 } 2712 if (rflags & (M_NOWAIT | M_NOVM)) 2713 break; 2714 flags = rflags; 2715 /* 2716 * All kegs are full. XXX We can't atomically check all kegs 2717 * and sleep so just sleep for a short period and retry. 2718 */ 2719 if (full && !empty) { 2720 ZONE_LOCK(zone); 2721 zone->uz_flags |= UMA_ZFLAG_FULL; 2722 zone->uz_sleeps++; 2723 zone_log_warning(zone); 2724 zone_maxaction(zone); 2725 msleep(zone, zone->uz_lockptr, PVM, 2726 "zonelimit", hz/100); 2727 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2728 ZONE_UNLOCK(zone); 2729 continue; 2730 } 2731 } 2732 return (NULL); 2733 } 2734 2735 static void * 2736 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 2737 { 2738 uma_domain_t dom; 2739 void *item; 2740 uint8_t freei; 2741 2742 MPASS(keg == slab->us_keg); 2743 mtx_assert(&keg->uk_lock, MA_OWNED); 2744 2745 freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1; 2746 BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free); 2747 item = slab->us_data + (keg->uk_rsize * freei); 2748 slab->us_freecount--; 2749 keg->uk_free--; 2750 2751 /* Move this slab to the full list */ 2752 if (slab->us_freecount == 0) { 2753 LIST_REMOVE(slab, us_link); 2754 dom = &keg->uk_domain[slab->us_domain]; 2755 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 2756 } 2757 2758 return (item); 2759 } 2760 2761 static int 2762 zone_import(uma_zone_t zone, void **bucket, int max, int domain, int flags) 2763 { 2764 uma_slab_t slab; 2765 uma_keg_t keg; 2766 int stripe; 2767 int i; 2768 2769 slab = NULL; 2770 keg = NULL; 2771 /* Try to keep the buckets totally full */ 2772 for (i = 0; i < max; ) { 2773 if ((slab = zone->uz_slab(zone, keg, domain, flags)) == NULL) 2774 break; 2775 keg = slab->us_keg; 2776 stripe = howmany(max, vm_ndomains); 2777 while (slab->us_freecount && i < max) { 2778 bucket[i++] = slab_alloc_item(keg, slab); 2779 if (keg->uk_free <= keg->uk_reserve) 2780 break; 2781 #ifdef NUMA 2782 /* 2783 * If the zone is striped we pick a new slab for every 2784 * N allocations. Eliminating this conditional will 2785 * instead pick a new domain for each bucket rather 2786 * than stripe within each bucket. The current option 2787 * produces more fragmentation and requires more cpu 2788 * time but yields better distribution. 2789 */ 2790 if ((zone->uz_flags & UMA_ZONE_NUMA) == 0 && 2791 vm_ndomains > 1 && --stripe == 0) 2792 break; 2793 #endif 2794 } 2795 /* Don't block if we allocated any successfully. */ 2796 flags &= ~M_WAITOK; 2797 flags |= M_NOWAIT; 2798 } 2799 if (slab != NULL) 2800 KEG_UNLOCK(keg); 2801 2802 return i; 2803 } 2804 2805 static uma_bucket_t 2806 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags) 2807 { 2808 uma_bucket_t bucket; 2809 int max; 2810 2811 /* Don't wait for buckets, preserve caller's NOVM setting. */ 2812 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 2813 if (bucket == NULL) 2814 return (NULL); 2815 2816 max = MIN(bucket->ub_entries, zone->uz_count); 2817 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 2818 max, domain, flags); 2819 2820 /* 2821 * Initialize the memory if necessary. 2822 */ 2823 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 2824 int i; 2825 2826 for (i = 0; i < bucket->ub_cnt; i++) 2827 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 2828 flags) != 0) 2829 break; 2830 /* 2831 * If we couldn't initialize the whole bucket, put the 2832 * rest back onto the freelist. 2833 */ 2834 if (i != bucket->ub_cnt) { 2835 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 2836 bucket->ub_cnt - i); 2837 #ifdef INVARIANTS 2838 bzero(&bucket->ub_bucket[i], 2839 sizeof(void *) * (bucket->ub_cnt - i)); 2840 #endif 2841 bucket->ub_cnt = i; 2842 } 2843 } 2844 2845 if (bucket->ub_cnt == 0) { 2846 bucket_free(zone, bucket, udata); 2847 atomic_add_long(&zone->uz_fails, 1); 2848 return (NULL); 2849 } 2850 2851 return (bucket); 2852 } 2853 2854 /* 2855 * Allocates a single item from a zone. 2856 * 2857 * Arguments 2858 * zone The zone to alloc for. 2859 * udata The data to be passed to the constructor. 2860 * domain The domain to allocate from or UMA_ANYDOMAIN. 2861 * flags M_WAITOK, M_NOWAIT, M_ZERO. 2862 * 2863 * Returns 2864 * NULL if there is no memory and M_NOWAIT is set 2865 * An item if successful 2866 */ 2867 2868 static void * 2869 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 2870 { 2871 void *item; 2872 #ifdef INVARIANTS 2873 bool skipdbg; 2874 #endif 2875 2876 item = NULL; 2877 2878 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 2879 goto fail; 2880 atomic_add_long(&zone->uz_allocs, 1); 2881 2882 #ifdef INVARIANTS 2883 skipdbg = uma_dbg_zskip(zone, item); 2884 #endif 2885 /* 2886 * We have to call both the zone's init (not the keg's init) 2887 * and the zone's ctor. This is because the item is going from 2888 * a keg slab directly to the user, and the user is expecting it 2889 * to be both zone-init'd as well as zone-ctor'd. 2890 */ 2891 if (zone->uz_init != NULL) { 2892 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 2893 zone_free_item(zone, item, udata, SKIP_FINI); 2894 goto fail; 2895 } 2896 } 2897 if (zone->uz_ctor != NULL && 2898 #ifdef INVARIANTS 2899 (!skipdbg || zone->uz_ctor != trash_ctor || 2900 zone->uz_dtor != trash_dtor) && 2901 #endif 2902 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2903 zone_free_item(zone, item, udata, SKIP_DTOR); 2904 goto fail; 2905 } 2906 #ifdef INVARIANTS 2907 if (!skipdbg) 2908 uma_dbg_alloc(zone, NULL, item); 2909 #endif 2910 if (flags & M_ZERO) 2911 uma_zero_item(item, zone); 2912 2913 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 2914 zone->uz_name, zone); 2915 2916 return (item); 2917 2918 fail: 2919 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 2920 zone->uz_name, zone); 2921 atomic_add_long(&zone->uz_fails, 1); 2922 return (NULL); 2923 } 2924 2925 /* See uma.h */ 2926 void 2927 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 2928 { 2929 uma_cache_t cache; 2930 uma_bucket_t bucket; 2931 uma_zone_domain_t zdom; 2932 int cpu, domain, lockfail; 2933 #ifdef INVARIANTS 2934 bool skipdbg; 2935 #endif 2936 2937 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2938 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 2939 2940 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 2941 zone->uz_name); 2942 2943 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2944 ("uma_zfree_arg: called with spinlock or critical section held")); 2945 2946 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 2947 if (item == NULL) 2948 return; 2949 #ifdef DEBUG_MEMGUARD 2950 if (is_memguard_addr(item)) { 2951 if (zone->uz_dtor != NULL) 2952 zone->uz_dtor(item, zone->uz_size, udata); 2953 if (zone->uz_fini != NULL) 2954 zone->uz_fini(item, zone->uz_size); 2955 memguard_free(item); 2956 return; 2957 } 2958 #endif 2959 #ifdef INVARIANTS 2960 skipdbg = uma_dbg_zskip(zone, item); 2961 if (skipdbg == false) { 2962 if (zone->uz_flags & UMA_ZONE_MALLOC) 2963 uma_dbg_free(zone, udata, item); 2964 else 2965 uma_dbg_free(zone, NULL, item); 2966 } 2967 if (zone->uz_dtor != NULL && (!skipdbg || 2968 zone->uz_dtor != trash_dtor || zone->uz_ctor != trash_ctor)) 2969 #else 2970 if (zone->uz_dtor != NULL) 2971 #endif 2972 zone->uz_dtor(item, zone->uz_size, udata); 2973 2974 /* 2975 * The race here is acceptable. If we miss it we'll just have to wait 2976 * a little longer for the limits to be reset. 2977 */ 2978 if (zone->uz_flags & UMA_ZFLAG_FULL) 2979 goto zfree_item; 2980 2981 /* 2982 * If possible, free to the per-CPU cache. There are two 2983 * requirements for safe access to the per-CPU cache: (1) the thread 2984 * accessing the cache must not be preempted or yield during access, 2985 * and (2) the thread must not migrate CPUs without switching which 2986 * cache it accesses. We rely on a critical section to prevent 2987 * preemption and migration. We release the critical section in 2988 * order to acquire the zone mutex if we are unable to free to the 2989 * current cache; when we re-acquire the critical section, we must 2990 * detect and handle migration if it has occurred. 2991 */ 2992 zfree_restart: 2993 critical_enter(); 2994 cpu = curcpu; 2995 cache = &zone->uz_cpu[cpu]; 2996 2997 zfree_start: 2998 /* 2999 * Try to free into the allocbucket first to give LIFO ordering 3000 * for cache-hot datastructures. Spill over into the freebucket 3001 * if necessary. Alloc will swap them if one runs dry. 3002 */ 3003 bucket = cache->uc_allocbucket; 3004 if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries) 3005 bucket = cache->uc_freebucket; 3006 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 3007 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 3008 ("uma_zfree: Freeing to non free bucket index.")); 3009 bucket->ub_bucket[bucket->ub_cnt] = item; 3010 bucket->ub_cnt++; 3011 cache->uc_frees++; 3012 critical_exit(); 3013 return; 3014 } 3015 3016 /* 3017 * We must go back the zone, which requires acquiring the zone lock, 3018 * which in turn means we must release and re-acquire the critical 3019 * section. Since the critical section is released, we may be 3020 * preempted or migrate. As such, make sure not to maintain any 3021 * thread-local state specific to the cache from prior to releasing 3022 * the critical section. 3023 */ 3024 critical_exit(); 3025 if (zone->uz_count == 0 || bucketdisable) 3026 goto zfree_item; 3027 3028 lockfail = 0; 3029 if (ZONE_TRYLOCK(zone) == 0) { 3030 /* Record contention to size the buckets. */ 3031 ZONE_LOCK(zone); 3032 lockfail = 1; 3033 } 3034 critical_enter(); 3035 cpu = curcpu; 3036 cache = &zone->uz_cpu[cpu]; 3037 3038 /* 3039 * Since we have locked the zone we may as well send back our stats. 3040 */ 3041 atomic_add_long(&zone->uz_allocs, cache->uc_allocs); 3042 atomic_add_long(&zone->uz_frees, cache->uc_frees); 3043 cache->uc_allocs = 0; 3044 cache->uc_frees = 0; 3045 3046 bucket = cache->uc_freebucket; 3047 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 3048 ZONE_UNLOCK(zone); 3049 goto zfree_start; 3050 } 3051 cache->uc_freebucket = NULL; 3052 /* We are no longer associated with this CPU. */ 3053 critical_exit(); 3054 3055 if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) 3056 domain = PCPU_GET(domain); 3057 else 3058 domain = 0; 3059 zdom = &zone->uz_domain[0]; 3060 3061 /* Can we throw this on the zone full list? */ 3062 if (bucket != NULL) { 3063 CTR3(KTR_UMA, 3064 "uma_zfree: zone %s(%p) putting bucket %p on free list", 3065 zone->uz_name, zone, bucket); 3066 /* ub_cnt is pointing to the last free item */ 3067 KASSERT(bucket->ub_cnt != 0, 3068 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n")); 3069 if ((zone->uz_flags & UMA_ZONE_NOBUCKETCACHE) != 0) { 3070 ZONE_UNLOCK(zone); 3071 bucket_drain(zone, bucket); 3072 bucket_free(zone, bucket, udata); 3073 goto zfree_restart; 3074 } else 3075 LIST_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); 3076 } 3077 3078 /* 3079 * We bump the uz count when the cache size is insufficient to 3080 * handle the working set. 3081 */ 3082 if (lockfail && zone->uz_count < BUCKET_MAX) 3083 zone->uz_count++; 3084 ZONE_UNLOCK(zone); 3085 3086 bucket = bucket_alloc(zone, udata, M_NOWAIT); 3087 CTR3(KTR_UMA, "uma_zfree: zone %s(%p) allocated bucket %p", 3088 zone->uz_name, zone, bucket); 3089 if (bucket) { 3090 critical_enter(); 3091 cpu = curcpu; 3092 cache = &zone->uz_cpu[cpu]; 3093 if (cache->uc_freebucket == NULL && 3094 ((zone->uz_flags & UMA_ZONE_NUMA) == 0 || 3095 domain == PCPU_GET(domain))) { 3096 cache->uc_freebucket = bucket; 3097 goto zfree_start; 3098 } 3099 /* 3100 * We lost the race, start over. We have to drop our 3101 * critical section to free the bucket. 3102 */ 3103 critical_exit(); 3104 bucket_free(zone, bucket, udata); 3105 goto zfree_restart; 3106 } 3107 3108 /* 3109 * If nothing else caught this, we'll just do an internal free. 3110 */ 3111 zfree_item: 3112 zone_free_item(zone, item, udata, SKIP_DTOR); 3113 3114 return; 3115 } 3116 3117 void 3118 uma_zfree_domain(uma_zone_t zone, void *item, void *udata) 3119 { 3120 3121 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3122 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 3123 3124 CTR2(KTR_UMA, "uma_zfree_domain thread %x zone %s", curthread, 3125 zone->uz_name); 3126 3127 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3128 ("uma_zfree_domain: called with spinlock or critical section held")); 3129 3130 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 3131 if (item == NULL) 3132 return; 3133 zone_free_item(zone, item, udata, SKIP_NONE); 3134 } 3135 3136 static void 3137 slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item) 3138 { 3139 uma_domain_t dom; 3140 uint8_t freei; 3141 3142 mtx_assert(&keg->uk_lock, MA_OWNED); 3143 MPASS(keg == slab->us_keg); 3144 3145 dom = &keg->uk_domain[slab->us_domain]; 3146 3147 /* Do we need to remove from any lists? */ 3148 if (slab->us_freecount+1 == keg->uk_ipers) { 3149 LIST_REMOVE(slab, us_link); 3150 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 3151 } else if (slab->us_freecount == 0) { 3152 LIST_REMOVE(slab, us_link); 3153 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3154 } 3155 3156 /* Slab management. */ 3157 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3158 BIT_SET(SLAB_SETSIZE, freei, &slab->us_free); 3159 slab->us_freecount++; 3160 3161 /* Keg statistics. */ 3162 keg->uk_free++; 3163 } 3164 3165 static void 3166 zone_release(uma_zone_t zone, void **bucket, int cnt) 3167 { 3168 void *item; 3169 uma_slab_t slab; 3170 uma_keg_t keg; 3171 uint8_t *mem; 3172 int clearfull; 3173 int i; 3174 3175 clearfull = 0; 3176 keg = zone_first_keg(zone); 3177 KEG_LOCK(keg); 3178 for (i = 0; i < cnt; i++) { 3179 item = bucket[i]; 3180 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) { 3181 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 3182 if (zone->uz_flags & UMA_ZONE_HASH) { 3183 slab = hash_sfind(&keg->uk_hash, mem); 3184 } else { 3185 mem += keg->uk_pgoff; 3186 slab = (uma_slab_t)mem; 3187 } 3188 } else { 3189 slab = vtoslab((vm_offset_t)item); 3190 if (slab->us_keg != keg) { 3191 KEG_UNLOCK(keg); 3192 keg = slab->us_keg; 3193 KEG_LOCK(keg); 3194 } 3195 } 3196 slab_free_item(keg, slab, item); 3197 if (keg->uk_flags & UMA_ZFLAG_FULL) { 3198 if (keg->uk_pages < keg->uk_maxpages) { 3199 keg->uk_flags &= ~UMA_ZFLAG_FULL; 3200 clearfull = 1; 3201 } 3202 3203 /* 3204 * We can handle one more allocation. Since we're 3205 * clearing ZFLAG_FULL, wake up all procs blocked 3206 * on pages. This should be uncommon, so keeping this 3207 * simple for now (rather than adding count of blocked 3208 * threads etc). 3209 */ 3210 wakeup(keg); 3211 } 3212 } 3213 KEG_UNLOCK(keg); 3214 if (clearfull) { 3215 ZONE_LOCK(zone); 3216 zone->uz_flags &= ~UMA_ZFLAG_FULL; 3217 wakeup(zone); 3218 ZONE_UNLOCK(zone); 3219 } 3220 3221 } 3222 3223 /* 3224 * Frees a single item to any zone. 3225 * 3226 * Arguments: 3227 * zone The zone to free to 3228 * item The item we're freeing 3229 * udata User supplied data for the dtor 3230 * skip Skip dtors and finis 3231 */ 3232 static void 3233 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 3234 { 3235 #ifdef INVARIANTS 3236 bool skipdbg; 3237 3238 skipdbg = uma_dbg_zskip(zone, item); 3239 if (skip == SKIP_NONE && !skipdbg) { 3240 if (zone->uz_flags & UMA_ZONE_MALLOC) 3241 uma_dbg_free(zone, udata, item); 3242 else 3243 uma_dbg_free(zone, NULL, item); 3244 } 3245 3246 if (skip < SKIP_DTOR && zone->uz_dtor != NULL && 3247 (!skipdbg || zone->uz_dtor != trash_dtor || 3248 zone->uz_ctor != trash_ctor)) 3249 #else 3250 if (skip < SKIP_DTOR && zone->uz_dtor != NULL) 3251 #endif 3252 zone->uz_dtor(item, zone->uz_size, udata); 3253 3254 if (skip < SKIP_FINI && zone->uz_fini) 3255 zone->uz_fini(item, zone->uz_size); 3256 3257 atomic_add_long(&zone->uz_frees, 1); 3258 zone->uz_release(zone->uz_arg, &item, 1); 3259 } 3260 3261 /* See uma.h */ 3262 int 3263 uma_zone_set_max(uma_zone_t zone, int nitems) 3264 { 3265 uma_keg_t keg; 3266 3267 keg = zone_first_keg(zone); 3268 if (keg == NULL) 3269 return (0); 3270 KEG_LOCK(keg); 3271 keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera; 3272 if (keg->uk_maxpages * keg->uk_ipers < nitems) 3273 keg->uk_maxpages += keg->uk_ppera; 3274 nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers; 3275 KEG_UNLOCK(keg); 3276 3277 return (nitems); 3278 } 3279 3280 /* See uma.h */ 3281 int 3282 uma_zone_get_max(uma_zone_t zone) 3283 { 3284 int nitems; 3285 uma_keg_t keg; 3286 3287 keg = zone_first_keg(zone); 3288 if (keg == NULL) 3289 return (0); 3290 KEG_LOCK(keg); 3291 nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers; 3292 KEG_UNLOCK(keg); 3293 3294 return (nitems); 3295 } 3296 3297 /* See uma.h */ 3298 void 3299 uma_zone_set_warning(uma_zone_t zone, const char *warning) 3300 { 3301 3302 ZONE_LOCK(zone); 3303 zone->uz_warning = warning; 3304 ZONE_UNLOCK(zone); 3305 } 3306 3307 /* See uma.h */ 3308 void 3309 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 3310 { 3311 3312 ZONE_LOCK(zone); 3313 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 3314 ZONE_UNLOCK(zone); 3315 } 3316 3317 /* See uma.h */ 3318 int 3319 uma_zone_get_cur(uma_zone_t zone) 3320 { 3321 int64_t nitems; 3322 u_int i; 3323 3324 ZONE_LOCK(zone); 3325 nitems = zone->uz_allocs - zone->uz_frees; 3326 CPU_FOREACH(i) { 3327 /* 3328 * See the comment in sysctl_vm_zone_stats() regarding the 3329 * safety of accessing the per-cpu caches. With the zone lock 3330 * held, it is safe, but can potentially result in stale data. 3331 */ 3332 nitems += zone->uz_cpu[i].uc_allocs - 3333 zone->uz_cpu[i].uc_frees; 3334 } 3335 ZONE_UNLOCK(zone); 3336 3337 return (nitems < 0 ? 0 : nitems); 3338 } 3339 3340 /* See uma.h */ 3341 void 3342 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 3343 { 3344 uma_keg_t keg; 3345 3346 keg = zone_first_keg(zone); 3347 KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type")); 3348 KEG_LOCK(keg); 3349 KASSERT(keg->uk_pages == 0, 3350 ("uma_zone_set_init on non-empty keg")); 3351 keg->uk_init = uminit; 3352 KEG_UNLOCK(keg); 3353 } 3354 3355 /* See uma.h */ 3356 void 3357 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 3358 { 3359 uma_keg_t keg; 3360 3361 keg = zone_first_keg(zone); 3362 KASSERT(keg != NULL, ("uma_zone_set_fini: Invalid zone type")); 3363 KEG_LOCK(keg); 3364 KASSERT(keg->uk_pages == 0, 3365 ("uma_zone_set_fini on non-empty keg")); 3366 keg->uk_fini = fini; 3367 KEG_UNLOCK(keg); 3368 } 3369 3370 /* See uma.h */ 3371 void 3372 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 3373 { 3374 3375 ZONE_LOCK(zone); 3376 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3377 ("uma_zone_set_zinit on non-empty keg")); 3378 zone->uz_init = zinit; 3379 ZONE_UNLOCK(zone); 3380 } 3381 3382 /* See uma.h */ 3383 void 3384 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 3385 { 3386 3387 ZONE_LOCK(zone); 3388 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3389 ("uma_zone_set_zfini on non-empty keg")); 3390 zone->uz_fini = zfini; 3391 ZONE_UNLOCK(zone); 3392 } 3393 3394 /* See uma.h */ 3395 /* XXX uk_freef is not actually used with the zone locked */ 3396 void 3397 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 3398 { 3399 uma_keg_t keg; 3400 3401 keg = zone_first_keg(zone); 3402 KASSERT(keg != NULL, ("uma_zone_set_freef: Invalid zone type")); 3403 KEG_LOCK(keg); 3404 keg->uk_freef = freef; 3405 KEG_UNLOCK(keg); 3406 } 3407 3408 /* See uma.h */ 3409 /* XXX uk_allocf is not actually used with the zone locked */ 3410 void 3411 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 3412 { 3413 uma_keg_t keg; 3414 3415 keg = zone_first_keg(zone); 3416 KEG_LOCK(keg); 3417 keg->uk_allocf = allocf; 3418 KEG_UNLOCK(keg); 3419 } 3420 3421 /* See uma.h */ 3422 void 3423 uma_zone_reserve(uma_zone_t zone, int items) 3424 { 3425 uma_keg_t keg; 3426 3427 keg = zone_first_keg(zone); 3428 if (keg == NULL) 3429 return; 3430 KEG_LOCK(keg); 3431 keg->uk_reserve = items; 3432 KEG_UNLOCK(keg); 3433 3434 return; 3435 } 3436 3437 /* See uma.h */ 3438 int 3439 uma_zone_reserve_kva(uma_zone_t zone, int count) 3440 { 3441 uma_keg_t keg; 3442 vm_offset_t kva; 3443 u_int pages; 3444 3445 keg = zone_first_keg(zone); 3446 if (keg == NULL) 3447 return (0); 3448 pages = count / keg->uk_ipers; 3449 3450 if (pages * keg->uk_ipers < count) 3451 pages++; 3452 pages *= keg->uk_ppera; 3453 3454 #ifdef UMA_MD_SMALL_ALLOC 3455 if (keg->uk_ppera > 1) { 3456 #else 3457 if (1) { 3458 #endif 3459 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 3460 if (kva == 0) 3461 return (0); 3462 } else 3463 kva = 0; 3464 KEG_LOCK(keg); 3465 keg->uk_kva = kva; 3466 keg->uk_offset = 0; 3467 keg->uk_maxpages = pages; 3468 #ifdef UMA_MD_SMALL_ALLOC 3469 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 3470 #else 3471 keg->uk_allocf = noobj_alloc; 3472 #endif 3473 keg->uk_flags |= UMA_ZONE_NOFREE; 3474 KEG_UNLOCK(keg); 3475 3476 return (1); 3477 } 3478 3479 /* See uma.h */ 3480 void 3481 uma_prealloc(uma_zone_t zone, int items) 3482 { 3483 uma_domain_t dom; 3484 uma_slab_t slab; 3485 uma_keg_t keg; 3486 int domain, slabs; 3487 3488 keg = zone_first_keg(zone); 3489 if (keg == NULL) 3490 return; 3491 KEG_LOCK(keg); 3492 slabs = items / keg->uk_ipers; 3493 domain = 0; 3494 if (slabs * keg->uk_ipers < items) 3495 slabs++; 3496 while (slabs > 0) { 3497 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK); 3498 if (slab == NULL) 3499 break; 3500 MPASS(slab->us_keg == keg); 3501 dom = &keg->uk_domain[slab->us_domain]; 3502 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 3503 slabs--; 3504 domain = (domain + 1) % vm_ndomains; 3505 } 3506 KEG_UNLOCK(keg); 3507 } 3508 3509 /* See uma.h */ 3510 static void 3511 uma_reclaim_locked(bool kmem_danger) 3512 { 3513 3514 CTR0(KTR_UMA, "UMA: vm asked us to release pages!"); 3515 sx_assert(&uma_drain_lock, SA_XLOCKED); 3516 bucket_enable(); 3517 zone_foreach(zone_drain); 3518 if (vm_page_count_min() || kmem_danger) { 3519 cache_drain_safe(NULL); 3520 zone_foreach(zone_drain); 3521 } 3522 /* 3523 * Some slabs may have been freed but this zone will be visited early 3524 * we visit again so that we can free pages that are empty once other 3525 * zones are drained. We have to do the same for buckets. 3526 */ 3527 zone_drain(slabzone); 3528 bucket_zone_drain(); 3529 } 3530 3531 void 3532 uma_reclaim(void) 3533 { 3534 3535 sx_xlock(&uma_drain_lock); 3536 uma_reclaim_locked(false); 3537 sx_xunlock(&uma_drain_lock); 3538 } 3539 3540 static volatile int uma_reclaim_needed; 3541 3542 void 3543 uma_reclaim_wakeup(void) 3544 { 3545 3546 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 3547 wakeup(uma_reclaim); 3548 } 3549 3550 void 3551 uma_reclaim_worker(void *arg __unused) 3552 { 3553 3554 for (;;) { 3555 sx_xlock(&uma_drain_lock); 3556 while (atomic_load_int(&uma_reclaim_needed) == 0) 3557 sx_sleep(uma_reclaim, &uma_drain_lock, PVM, "umarcl", 3558 hz); 3559 sx_xunlock(&uma_drain_lock); 3560 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 3561 sx_xlock(&uma_drain_lock); 3562 uma_reclaim_locked(true); 3563 atomic_store_int(&uma_reclaim_needed, 0); 3564 sx_xunlock(&uma_drain_lock); 3565 /* Don't fire more than once per-second. */ 3566 pause("umarclslp", hz); 3567 } 3568 } 3569 3570 /* See uma.h */ 3571 int 3572 uma_zone_exhausted(uma_zone_t zone) 3573 { 3574 int full; 3575 3576 ZONE_LOCK(zone); 3577 full = (zone->uz_flags & UMA_ZFLAG_FULL); 3578 ZONE_UNLOCK(zone); 3579 return (full); 3580 } 3581 3582 int 3583 uma_zone_exhausted_nolock(uma_zone_t zone) 3584 { 3585 return (zone->uz_flags & UMA_ZFLAG_FULL); 3586 } 3587 3588 void * 3589 uma_large_malloc_domain(vm_size_t size, int domain, int wait) 3590 { 3591 struct vmem *arena; 3592 vm_offset_t addr; 3593 uma_slab_t slab; 3594 3595 #if VM_NRESERVLEVEL > 0 3596 if (__predict_true((wait & M_EXEC) == 0)) 3597 arena = kernel_arena; 3598 else 3599 arena = kernel_rwx_arena; 3600 #else 3601 arena = kernel_arena; 3602 #endif 3603 3604 slab = zone_alloc_item(slabzone, NULL, domain, wait); 3605 if (slab == NULL) 3606 return (NULL); 3607 if (domain == UMA_ANYDOMAIN) 3608 addr = kmem_malloc(arena, size, wait); 3609 else 3610 addr = kmem_malloc_domain(arena, domain, size, wait); 3611 if (addr != 0) { 3612 vsetslab(addr, slab); 3613 slab->us_data = (void *)addr; 3614 slab->us_flags = UMA_SLAB_KERNEL | UMA_SLAB_MALLOC; 3615 #if VM_NRESERVLEVEL > 0 3616 if (__predict_false(arena == kernel_rwx_arena)) 3617 slab->us_flags |= UMA_SLAB_KRWX; 3618 #endif 3619 slab->us_size = size; 3620 slab->us_domain = vm_phys_domain(PHYS_TO_VM_PAGE( 3621 pmap_kextract(addr))); 3622 uma_total_inc(size); 3623 } else { 3624 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3625 } 3626 3627 return ((void *)addr); 3628 } 3629 3630 void * 3631 uma_large_malloc(vm_size_t size, int wait) 3632 { 3633 3634 return uma_large_malloc_domain(size, UMA_ANYDOMAIN, wait); 3635 } 3636 3637 void 3638 uma_large_free(uma_slab_t slab) 3639 { 3640 struct vmem *arena; 3641 3642 KASSERT((slab->us_flags & UMA_SLAB_KERNEL) != 0, 3643 ("uma_large_free: Memory not allocated with uma_large_malloc.")); 3644 #if VM_NRESERVLEVEL > 0 3645 if (__predict_true((slab->us_flags & UMA_SLAB_KRWX) == 0)) 3646 arena = kernel_arena; 3647 else 3648 arena = kernel_rwx_arena; 3649 #else 3650 arena = kernel_arena; 3651 #endif 3652 kmem_free(arena, (vm_offset_t)slab->us_data, slab->us_size); 3653 uma_total_dec(slab->us_size); 3654 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3655 } 3656 3657 static void 3658 uma_zero_item(void *item, uma_zone_t zone) 3659 { 3660 3661 bzero(item, zone->uz_size); 3662 } 3663 3664 unsigned long 3665 uma_limit(void) 3666 { 3667 3668 return (uma_kmem_limit); 3669 } 3670 3671 void 3672 uma_set_limit(unsigned long limit) 3673 { 3674 3675 uma_kmem_limit = limit; 3676 } 3677 3678 unsigned long 3679 uma_size(void) 3680 { 3681 3682 return (uma_kmem_total); 3683 } 3684 3685 long 3686 uma_avail(void) 3687 { 3688 3689 return (uma_kmem_limit - uma_kmem_total); 3690 } 3691 3692 void 3693 uma_print_stats(void) 3694 { 3695 zone_foreach(uma_print_zone); 3696 } 3697 3698 static void 3699 slab_print(uma_slab_t slab) 3700 { 3701 printf("slab: keg %p, data %p, freecount %d\n", 3702 slab->us_keg, slab->us_data, slab->us_freecount); 3703 } 3704 3705 static void 3706 cache_print(uma_cache_t cache) 3707 { 3708 printf("alloc: %p(%d), free: %p(%d)\n", 3709 cache->uc_allocbucket, 3710 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, 3711 cache->uc_freebucket, 3712 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0); 3713 } 3714 3715 static void 3716 uma_print_keg(uma_keg_t keg) 3717 { 3718 uma_domain_t dom; 3719 uma_slab_t slab; 3720 int i; 3721 3722 printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d " 3723 "out %d free %d limit %d\n", 3724 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags, 3725 keg->uk_ipers, keg->uk_ppera, 3726 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 3727 keg->uk_free, (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers); 3728 for (i = 0; i < vm_ndomains; i++) { 3729 dom = &keg->uk_domain[i]; 3730 printf("Part slabs:\n"); 3731 LIST_FOREACH(slab, &dom->ud_part_slab, us_link) 3732 slab_print(slab); 3733 printf("Free slabs:\n"); 3734 LIST_FOREACH(slab, &dom->ud_free_slab, us_link) 3735 slab_print(slab); 3736 printf("Full slabs:\n"); 3737 LIST_FOREACH(slab, &dom->ud_full_slab, us_link) 3738 slab_print(slab); 3739 } 3740 } 3741 3742 void 3743 uma_print_zone(uma_zone_t zone) 3744 { 3745 uma_cache_t cache; 3746 uma_klink_t kl; 3747 int i; 3748 3749 printf("zone: %s(%p) size %d flags %#x\n", 3750 zone->uz_name, zone, zone->uz_size, zone->uz_flags); 3751 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) 3752 uma_print_keg(kl->kl_keg); 3753 CPU_FOREACH(i) { 3754 cache = &zone->uz_cpu[i]; 3755 printf("CPU %d Cache:\n", i); 3756 cache_print(cache); 3757 } 3758 } 3759 3760 #ifdef DDB 3761 /* 3762 * Generate statistics across both the zone and its per-cpu cache's. Return 3763 * desired statistics if the pointer is non-NULL for that statistic. 3764 * 3765 * Note: does not update the zone statistics, as it can't safely clear the 3766 * per-CPU cache statistic. 3767 * 3768 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't 3769 * safe from off-CPU; we should modify the caches to track this information 3770 * directly so that we don't have to. 3771 */ 3772 static void 3773 uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp, 3774 uint64_t *freesp, uint64_t *sleepsp) 3775 { 3776 uma_cache_t cache; 3777 uint64_t allocs, frees, sleeps; 3778 int cachefree, cpu; 3779 3780 allocs = frees = sleeps = 0; 3781 cachefree = 0; 3782 CPU_FOREACH(cpu) { 3783 cache = &z->uz_cpu[cpu]; 3784 if (cache->uc_allocbucket != NULL) 3785 cachefree += cache->uc_allocbucket->ub_cnt; 3786 if (cache->uc_freebucket != NULL) 3787 cachefree += cache->uc_freebucket->ub_cnt; 3788 allocs += cache->uc_allocs; 3789 frees += cache->uc_frees; 3790 } 3791 allocs += z->uz_allocs; 3792 frees += z->uz_frees; 3793 sleeps += z->uz_sleeps; 3794 if (cachefreep != NULL) 3795 *cachefreep = cachefree; 3796 if (allocsp != NULL) 3797 *allocsp = allocs; 3798 if (freesp != NULL) 3799 *freesp = frees; 3800 if (sleepsp != NULL) 3801 *sleepsp = sleeps; 3802 } 3803 #endif /* DDB */ 3804 3805 static int 3806 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 3807 { 3808 uma_keg_t kz; 3809 uma_zone_t z; 3810 int count; 3811 3812 count = 0; 3813 rw_rlock(&uma_rwlock); 3814 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3815 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3816 count++; 3817 } 3818 rw_runlock(&uma_rwlock); 3819 return (sysctl_handle_int(oidp, &count, 0, req)); 3820 } 3821 3822 static int 3823 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 3824 { 3825 struct uma_stream_header ush; 3826 struct uma_type_header uth; 3827 struct uma_percpu_stat *ups; 3828 uma_bucket_t bucket; 3829 uma_zone_domain_t zdom; 3830 struct sbuf sbuf; 3831 uma_cache_t cache; 3832 uma_klink_t kl; 3833 uma_keg_t kz; 3834 uma_zone_t z; 3835 uma_keg_t k; 3836 int count, error, i; 3837 3838 error = sysctl_wire_old_buffer(req, 0); 3839 if (error != 0) 3840 return (error); 3841 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 3842 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 3843 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 3844 3845 count = 0; 3846 rw_rlock(&uma_rwlock); 3847 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3848 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3849 count++; 3850 } 3851 3852 /* 3853 * Insert stream header. 3854 */ 3855 bzero(&ush, sizeof(ush)); 3856 ush.ush_version = UMA_STREAM_VERSION; 3857 ush.ush_maxcpus = (mp_maxid + 1); 3858 ush.ush_count = count; 3859 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 3860 3861 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3862 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3863 bzero(&uth, sizeof(uth)); 3864 ZONE_LOCK(z); 3865 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 3866 uth.uth_align = kz->uk_align; 3867 uth.uth_size = kz->uk_size; 3868 uth.uth_rsize = kz->uk_rsize; 3869 LIST_FOREACH(kl, &z->uz_kegs, kl_link) { 3870 k = kl->kl_keg; 3871 uth.uth_maxpages += k->uk_maxpages; 3872 uth.uth_pages += k->uk_pages; 3873 uth.uth_keg_free += k->uk_free; 3874 uth.uth_limit = (k->uk_maxpages / k->uk_ppera) 3875 * k->uk_ipers; 3876 } 3877 3878 /* 3879 * A zone is secondary is it is not the first entry 3880 * on the keg's zone list. 3881 */ 3882 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 3883 (LIST_FIRST(&kz->uk_zones) != z)) 3884 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 3885 3886 for (i = 0; i < vm_ndomains; i++) { 3887 zdom = &z->uz_domain[i]; 3888 LIST_FOREACH(bucket, &zdom->uzd_buckets, 3889 ub_link) 3890 uth.uth_zone_free += bucket->ub_cnt; 3891 } 3892 uth.uth_allocs = z->uz_allocs; 3893 uth.uth_frees = z->uz_frees; 3894 uth.uth_fails = z->uz_fails; 3895 uth.uth_sleeps = z->uz_sleeps; 3896 /* 3897 * While it is not normally safe to access the cache 3898 * bucket pointers while not on the CPU that owns the 3899 * cache, we only allow the pointers to be exchanged 3900 * without the zone lock held, not invalidated, so 3901 * accept the possible race associated with bucket 3902 * exchange during monitoring. 3903 */ 3904 for (i = 0; i < mp_maxid + 1; i++) { 3905 bzero(&ups[i], sizeof(*ups)); 3906 if (kz->uk_flags & UMA_ZFLAG_INTERNAL || 3907 CPU_ABSENT(i)) 3908 continue; 3909 cache = &z->uz_cpu[i]; 3910 if (cache->uc_allocbucket != NULL) 3911 ups[i].ups_cache_free += 3912 cache->uc_allocbucket->ub_cnt; 3913 if (cache->uc_freebucket != NULL) 3914 ups[i].ups_cache_free += 3915 cache->uc_freebucket->ub_cnt; 3916 ups[i].ups_allocs = cache->uc_allocs; 3917 ups[i].ups_frees = cache->uc_frees; 3918 } 3919 ZONE_UNLOCK(z); 3920 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 3921 for (i = 0; i < mp_maxid + 1; i++) 3922 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 3923 } 3924 } 3925 rw_runlock(&uma_rwlock); 3926 error = sbuf_finish(&sbuf); 3927 sbuf_delete(&sbuf); 3928 free(ups, M_TEMP); 3929 return (error); 3930 } 3931 3932 int 3933 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 3934 { 3935 uma_zone_t zone = *(uma_zone_t *)arg1; 3936 int error, max; 3937 3938 max = uma_zone_get_max(zone); 3939 error = sysctl_handle_int(oidp, &max, 0, req); 3940 if (error || !req->newptr) 3941 return (error); 3942 3943 uma_zone_set_max(zone, max); 3944 3945 return (0); 3946 } 3947 3948 int 3949 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 3950 { 3951 uma_zone_t zone = *(uma_zone_t *)arg1; 3952 int cur; 3953 3954 cur = uma_zone_get_cur(zone); 3955 return (sysctl_handle_int(oidp, &cur, 0, req)); 3956 } 3957 3958 #ifdef INVARIANTS 3959 static uma_slab_t 3960 uma_dbg_getslab(uma_zone_t zone, void *item) 3961 { 3962 uma_slab_t slab; 3963 uma_keg_t keg; 3964 uint8_t *mem; 3965 3966 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 3967 if (zone->uz_flags & UMA_ZONE_VTOSLAB) { 3968 slab = vtoslab((vm_offset_t)mem); 3969 } else { 3970 /* 3971 * It is safe to return the slab here even though the 3972 * zone is unlocked because the item's allocation state 3973 * essentially holds a reference. 3974 */ 3975 ZONE_LOCK(zone); 3976 keg = LIST_FIRST(&zone->uz_kegs)->kl_keg; 3977 if (keg->uk_flags & UMA_ZONE_HASH) 3978 slab = hash_sfind(&keg->uk_hash, mem); 3979 else 3980 slab = (uma_slab_t)(mem + keg->uk_pgoff); 3981 ZONE_UNLOCK(zone); 3982 } 3983 3984 return (slab); 3985 } 3986 3987 static bool 3988 uma_dbg_zskip(uma_zone_t zone, void *mem) 3989 { 3990 uma_keg_t keg; 3991 3992 if ((keg = zone_first_keg(zone)) == NULL) 3993 return (true); 3994 3995 return (uma_dbg_kskip(keg, mem)); 3996 } 3997 3998 static bool 3999 uma_dbg_kskip(uma_keg_t keg, void *mem) 4000 { 4001 uintptr_t idx; 4002 4003 if (dbg_divisor == 0) 4004 return (true); 4005 4006 if (dbg_divisor == 1) 4007 return (false); 4008 4009 idx = (uintptr_t)mem >> PAGE_SHIFT; 4010 if (keg->uk_ipers > 1) { 4011 idx *= keg->uk_ipers; 4012 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize; 4013 } 4014 4015 if ((idx / dbg_divisor) * dbg_divisor != idx) { 4016 counter_u64_add(uma_skip_cnt, 1); 4017 return (true); 4018 } 4019 counter_u64_add(uma_dbg_cnt, 1); 4020 4021 return (false); 4022 } 4023 4024 /* 4025 * Set up the slab's freei data such that uma_dbg_free can function. 4026 * 4027 */ 4028 static void 4029 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 4030 { 4031 uma_keg_t keg; 4032 int freei; 4033 4034 if (slab == NULL) { 4035 slab = uma_dbg_getslab(zone, item); 4036 if (slab == NULL) 4037 panic("uma: item %p did not belong to zone %s\n", 4038 item, zone->uz_name); 4039 } 4040 keg = slab->us_keg; 4041 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 4042 4043 if (BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 4044 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n", 4045 item, zone, zone->uz_name, slab, freei); 4046 BIT_SET_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 4047 4048 return; 4049 } 4050 4051 /* 4052 * Verifies freed addresses. Checks for alignment, valid slab membership 4053 * and duplicate frees. 4054 * 4055 */ 4056 static void 4057 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 4058 { 4059 uma_keg_t keg; 4060 int freei; 4061 4062 if (slab == NULL) { 4063 slab = uma_dbg_getslab(zone, item); 4064 if (slab == NULL) 4065 panic("uma: Freed item %p did not belong to zone %s\n", 4066 item, zone->uz_name); 4067 } 4068 keg = slab->us_keg; 4069 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 4070 4071 if (freei >= keg->uk_ipers) 4072 panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n", 4073 item, zone, zone->uz_name, slab, freei); 4074 4075 if (((freei * keg->uk_rsize) + slab->us_data) != item) 4076 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n", 4077 item, zone, zone->uz_name, slab, freei); 4078 4079 if (!BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 4080 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n", 4081 item, zone, zone->uz_name, slab, freei); 4082 4083 BIT_CLR_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 4084 } 4085 #endif /* INVARIANTS */ 4086 4087 #ifdef DDB 4088 DB_SHOW_COMMAND(uma, db_show_uma) 4089 { 4090 uma_bucket_t bucket; 4091 uma_keg_t kz; 4092 uma_zone_t z; 4093 uma_zone_domain_t zdom; 4094 uint64_t allocs, frees, sleeps; 4095 int cachefree, i; 4096 4097 db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used", 4098 "Free", "Requests", "Sleeps", "Bucket"); 4099 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4100 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 4101 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 4102 allocs = z->uz_allocs; 4103 frees = z->uz_frees; 4104 sleeps = z->uz_sleeps; 4105 cachefree = 0; 4106 } else 4107 uma_zone_sumstat(z, &cachefree, &allocs, 4108 &frees, &sleeps); 4109 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 4110 (LIST_FIRST(&kz->uk_zones) != z))) 4111 cachefree += kz->uk_free; 4112 for (i = 0; i < vm_ndomains; i++) { 4113 zdom = &z->uz_domain[i]; 4114 LIST_FOREACH(bucket, &zdom->uzd_buckets, 4115 ub_link) 4116 cachefree += bucket->ub_cnt; 4117 } 4118 db_printf("%18s %8ju %8jd %8d %12ju %8ju %8u\n", 4119 z->uz_name, (uintmax_t)kz->uk_size, 4120 (intmax_t)(allocs - frees), cachefree, 4121 (uintmax_t)allocs, sleeps, z->uz_count); 4122 if (db_pager_quit) 4123 return; 4124 } 4125 } 4126 } 4127 4128 DB_SHOW_COMMAND(umacache, db_show_umacache) 4129 { 4130 uma_bucket_t bucket; 4131 uma_zone_t z; 4132 uma_zone_domain_t zdom; 4133 uint64_t allocs, frees; 4134 int cachefree, i; 4135 4136 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 4137 "Requests", "Bucket"); 4138 LIST_FOREACH(z, &uma_cachezones, uz_link) { 4139 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL); 4140 for (i = 0; i < vm_ndomains; i++) { 4141 zdom = &z->uz_domain[i]; 4142 LIST_FOREACH(bucket, &zdom->uzd_buckets, ub_link) 4143 cachefree += bucket->ub_cnt; 4144 } 4145 db_printf("%18s %8ju %8jd %8d %12ju %8u\n", 4146 z->uz_name, (uintmax_t)z->uz_size, 4147 (intmax_t)(allocs - frees), cachefree, 4148 (uintmax_t)allocs, z->uz_count); 4149 if (db_pager_quit) 4150 return; 4151 } 4152 } 4153 #endif /* DDB */ 4154