1 /*- 2 * Copyright (c) 2002, 2003, 2004, 2005 Jeffrey Roberson <jeff@FreeBSD.org> 3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 4 * Copyright (c) 2004-2006 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /* 30 * uma_core.c Implementation of the Universal Memory allocator 31 * 32 * This allocator is intended to replace the multitude of similar object caches 33 * in the standard FreeBSD kernel. The intent is to be flexible as well as 34 * effecient. A primary design goal is to return unused memory to the rest of 35 * the system. This will make the system as a whole more flexible due to the 36 * ability to move memory to subsystems which most need it instead of leaving 37 * pools of reserved memory unused. 38 * 39 * The basic ideas stem from similar slab/zone based allocators whose algorithms 40 * are well known. 41 * 42 */ 43 44 /* 45 * TODO: 46 * - Improve memory usage for large allocations 47 * - Investigate cache size adjustments 48 */ 49 50 #include <sys/cdefs.h> 51 __FBSDID("$FreeBSD$"); 52 53 /* I should really use ktr.. */ 54 /* 55 #define UMA_DEBUG 1 56 #define UMA_DEBUG_ALLOC 1 57 #define UMA_DEBUG_ALLOC_1 1 58 */ 59 60 #include "opt_ddb.h" 61 #include "opt_param.h" 62 63 #include <sys/param.h> 64 #include <sys/systm.h> 65 #include <sys/kernel.h> 66 #include <sys/types.h> 67 #include <sys/queue.h> 68 #include <sys/malloc.h> 69 #include <sys/ktr.h> 70 #include <sys/lock.h> 71 #include <sys/sysctl.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/sbuf.h> 75 #include <sys/smp.h> 76 #include <sys/vmmeter.h> 77 78 #include <vm/vm.h> 79 #include <vm/vm_object.h> 80 #include <vm/vm_page.h> 81 #include <vm/vm_param.h> 82 #include <vm/vm_map.h> 83 #include <vm/vm_kern.h> 84 #include <vm/vm_extern.h> 85 #include <vm/uma.h> 86 #include <vm/uma_int.h> 87 #include <vm/uma_dbg.h> 88 89 #include <machine/vmparam.h> 90 91 #include <ddb/ddb.h> 92 93 /* 94 * This is the zone and keg from which all zones are spawned. The idea is that 95 * even the zone & keg heads are allocated from the allocator, so we use the 96 * bss section to bootstrap us. 97 */ 98 static struct uma_keg masterkeg; 99 static struct uma_zone masterzone_k; 100 static struct uma_zone masterzone_z; 101 static uma_zone_t kegs = &masterzone_k; 102 static uma_zone_t zones = &masterzone_z; 103 104 /* This is the zone from which all of uma_slab_t's are allocated. */ 105 static uma_zone_t slabzone; 106 static uma_zone_t slabrefzone; /* With refcounters (for UMA_ZONE_REFCNT) */ 107 108 /* 109 * The initial hash tables come out of this zone so they can be allocated 110 * prior to malloc coming up. 111 */ 112 static uma_zone_t hashzone; 113 114 /* The boot-time adjusted value for cache line alignment. */ 115 static int uma_align_cache = 16 - 1; 116 117 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 118 119 /* 120 * Are we allowed to allocate buckets? 121 */ 122 static int bucketdisable = 1; 123 124 /* Linked list of all kegs in the system */ 125 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(&uma_kegs); 126 127 /* This mutex protects the keg list */ 128 static struct mtx uma_mtx; 129 130 /* Linked list of boot time pages */ 131 static LIST_HEAD(,uma_slab) uma_boot_pages = 132 LIST_HEAD_INITIALIZER(&uma_boot_pages); 133 134 /* This mutex protects the boot time pages list */ 135 static struct mtx uma_boot_pages_mtx; 136 137 /* Is the VM done starting up? */ 138 static int booted = 0; 139 140 /* Maximum number of allowed items-per-slab if the slab header is OFFPAGE */ 141 static u_int uma_max_ipers; 142 static u_int uma_max_ipers_ref; 143 144 /* 145 * This is the handle used to schedule events that need to happen 146 * outside of the allocation fast path. 147 */ 148 static struct callout uma_callout; 149 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 150 151 /* 152 * This structure is passed as the zone ctor arg so that I don't have to create 153 * a special allocation function just for zones. 154 */ 155 struct uma_zctor_args { 156 char *name; 157 size_t size; 158 uma_ctor ctor; 159 uma_dtor dtor; 160 uma_init uminit; 161 uma_fini fini; 162 uma_keg_t keg; 163 int align; 164 u_int32_t flags; 165 }; 166 167 struct uma_kctor_args { 168 uma_zone_t zone; 169 size_t size; 170 uma_init uminit; 171 uma_fini fini; 172 int align; 173 u_int32_t flags; 174 }; 175 176 struct uma_bucket_zone { 177 uma_zone_t ubz_zone; 178 char *ubz_name; 179 int ubz_entries; 180 }; 181 182 #define BUCKET_MAX 128 183 184 struct uma_bucket_zone bucket_zones[] = { 185 { NULL, "16 Bucket", 16 }, 186 { NULL, "32 Bucket", 32 }, 187 { NULL, "64 Bucket", 64 }, 188 { NULL, "128 Bucket", 128 }, 189 { NULL, NULL, 0} 190 }; 191 192 #define BUCKET_SHIFT 4 193 #define BUCKET_ZONES ((BUCKET_MAX >> BUCKET_SHIFT) + 1) 194 195 /* 196 * bucket_size[] maps requested bucket sizes to zones that allocate a bucket 197 * of approximately the right size. 198 */ 199 static uint8_t bucket_size[BUCKET_ZONES]; 200 201 /* 202 * Flags and enumerations to be passed to internal functions. 203 */ 204 enum zfreeskip { SKIP_NONE, SKIP_DTOR, SKIP_FINI }; 205 206 #define ZFREE_STATFAIL 0x00000001 /* Update zone failure statistic. */ 207 #define ZFREE_STATFREE 0x00000002 /* Update zone free statistic. */ 208 209 /* Prototypes.. */ 210 211 static void *obj_alloc(uma_zone_t, int, u_int8_t *, int); 212 static void *page_alloc(uma_zone_t, int, u_int8_t *, int); 213 static void *startup_alloc(uma_zone_t, int, u_int8_t *, int); 214 static void page_free(void *, int, u_int8_t); 215 static uma_slab_t slab_zalloc(uma_zone_t, int); 216 static void cache_drain(uma_zone_t); 217 static void bucket_drain(uma_zone_t, uma_bucket_t); 218 static void bucket_cache_drain(uma_zone_t zone); 219 static int keg_ctor(void *, int, void *, int); 220 static void keg_dtor(void *, int, void *); 221 static int zone_ctor(void *, int, void *, int); 222 static void zone_dtor(void *, int, void *); 223 static int zero_init(void *, int, int); 224 static void zone_small_init(uma_zone_t zone); 225 static void zone_large_init(uma_zone_t zone); 226 static void zone_foreach(void (*zfunc)(uma_zone_t)); 227 static void zone_timeout(uma_zone_t zone); 228 static int hash_alloc(struct uma_hash *); 229 static int hash_expand(struct uma_hash *, struct uma_hash *); 230 static void hash_free(struct uma_hash *hash); 231 static void uma_timeout(void *); 232 static void uma_startup3(void); 233 static void *uma_zalloc_internal(uma_zone_t, void *, int); 234 static void uma_zfree_internal(uma_zone_t, void *, void *, enum zfreeskip, 235 int); 236 static void bucket_enable(void); 237 static void bucket_init(void); 238 static uma_bucket_t bucket_alloc(int, int); 239 static void bucket_free(uma_bucket_t); 240 static void bucket_zone_drain(void); 241 static int uma_zalloc_bucket(uma_zone_t zone, int flags); 242 static uma_slab_t uma_zone_slab(uma_zone_t zone, int flags); 243 static void *uma_slab_alloc(uma_zone_t zone, uma_slab_t slab); 244 static uma_zone_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 245 uma_fini fini, int align, u_int32_t flags); 246 247 void uma_print_zone(uma_zone_t); 248 void uma_print_stats(void); 249 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 250 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 251 252 #ifdef WITNESS 253 static int nosleepwithlocks = 1; 254 #else 255 static int nosleepwithlocks = 0; 256 #endif 257 SYSCTL_INT(_debug, OID_AUTO, nosleepwithlocks, CTLFLAG_RW, &nosleepwithlocks, 258 0, "Convert M_WAITOK to M_NOWAIT to avoid lock-held-across-sleep paths"); 259 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 260 261 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 262 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 263 264 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 265 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 266 267 /* 268 * This routine checks to see whether or not it's safe to enable buckets. 269 */ 270 271 static void 272 bucket_enable(void) 273 { 274 if (cnt.v_free_count < cnt.v_free_min) 275 bucketdisable = 1; 276 else 277 bucketdisable = 0; 278 } 279 280 /* 281 * Initialize bucket_zones, the array of zones of buckets of various sizes. 282 * 283 * For each zone, calculate the memory required for each bucket, consisting 284 * of the header and an array of pointers. Initialize bucket_size[] to point 285 * the range of appropriate bucket sizes at the zone. 286 */ 287 static void 288 bucket_init(void) 289 { 290 struct uma_bucket_zone *ubz; 291 int i; 292 int j; 293 294 for (i = 0, j = 0; bucket_zones[j].ubz_entries != 0; j++) { 295 int size; 296 297 ubz = &bucket_zones[j]; 298 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 299 size += sizeof(void *) * ubz->ubz_entries; 300 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 301 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 302 for (; i <= ubz->ubz_entries; i += (1 << BUCKET_SHIFT)) 303 bucket_size[i >> BUCKET_SHIFT] = j; 304 } 305 } 306 307 /* 308 * Given a desired number of entries for a bucket, return the zone from which 309 * to allocate the bucket. 310 */ 311 static struct uma_bucket_zone * 312 bucket_zone_lookup(int entries) 313 { 314 int idx; 315 316 idx = howmany(entries, 1 << BUCKET_SHIFT); 317 return (&bucket_zones[bucket_size[idx]]); 318 } 319 320 static uma_bucket_t 321 bucket_alloc(int entries, int bflags) 322 { 323 struct uma_bucket_zone *ubz; 324 uma_bucket_t bucket; 325 326 /* 327 * This is to stop us from allocating per cpu buckets while we're 328 * running out of vm.boot_pages. Otherwise, we would exhaust the 329 * boot pages. This also prevents us from allocating buckets in 330 * low memory situations. 331 */ 332 if (bucketdisable) 333 return (NULL); 334 335 ubz = bucket_zone_lookup(entries); 336 bucket = uma_zalloc_internal(ubz->ubz_zone, NULL, bflags); 337 if (bucket) { 338 #ifdef INVARIANTS 339 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 340 #endif 341 bucket->ub_cnt = 0; 342 bucket->ub_entries = ubz->ubz_entries; 343 } 344 345 return (bucket); 346 } 347 348 static void 349 bucket_free(uma_bucket_t bucket) 350 { 351 struct uma_bucket_zone *ubz; 352 353 ubz = bucket_zone_lookup(bucket->ub_entries); 354 uma_zfree_internal(ubz->ubz_zone, bucket, NULL, SKIP_NONE, 355 ZFREE_STATFREE); 356 } 357 358 static void 359 bucket_zone_drain(void) 360 { 361 struct uma_bucket_zone *ubz; 362 363 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 364 zone_drain(ubz->ubz_zone); 365 } 366 367 368 /* 369 * Routine called by timeout which is used to fire off some time interval 370 * based calculations. (stats, hash size, etc.) 371 * 372 * Arguments: 373 * arg Unused 374 * 375 * Returns: 376 * Nothing 377 */ 378 static void 379 uma_timeout(void *unused) 380 { 381 bucket_enable(); 382 zone_foreach(zone_timeout); 383 384 /* Reschedule this event */ 385 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 386 } 387 388 /* 389 * Routine to perform timeout driven calculations. This expands the 390 * hashes and does per cpu statistics aggregation. 391 * 392 * Arguments: 393 * zone The zone to operate on 394 * 395 * Returns: 396 * Nothing 397 */ 398 static void 399 zone_timeout(uma_zone_t zone) 400 { 401 uma_keg_t keg; 402 u_int64_t alloc; 403 404 keg = zone->uz_keg; 405 alloc = 0; 406 407 /* 408 * Expand the zone hash table. 409 * 410 * This is done if the number of slabs is larger than the hash size. 411 * What I'm trying to do here is completely reduce collisions. This 412 * may be a little aggressive. Should I allow for two collisions max? 413 */ 414 ZONE_LOCK(zone); 415 if (keg->uk_flags & UMA_ZONE_HASH && 416 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) { 417 struct uma_hash newhash; 418 struct uma_hash oldhash; 419 int ret; 420 421 /* 422 * This is so involved because allocating and freeing 423 * while the zone lock is held will lead to deadlock. 424 * I have to do everything in stages and check for 425 * races. 426 */ 427 newhash = keg->uk_hash; 428 ZONE_UNLOCK(zone); 429 ret = hash_alloc(&newhash); 430 ZONE_LOCK(zone); 431 if (ret) { 432 if (hash_expand(&keg->uk_hash, &newhash)) { 433 oldhash = keg->uk_hash; 434 keg->uk_hash = newhash; 435 } else 436 oldhash = newhash; 437 438 ZONE_UNLOCK(zone); 439 hash_free(&oldhash); 440 ZONE_LOCK(zone); 441 } 442 } 443 ZONE_UNLOCK(zone); 444 } 445 446 /* 447 * Allocate and zero fill the next sized hash table from the appropriate 448 * backing store. 449 * 450 * Arguments: 451 * hash A new hash structure with the old hash size in uh_hashsize 452 * 453 * Returns: 454 * 1 on sucess and 0 on failure. 455 */ 456 static int 457 hash_alloc(struct uma_hash *hash) 458 { 459 int oldsize; 460 int alloc; 461 462 oldsize = hash->uh_hashsize; 463 464 /* We're just going to go to a power of two greater */ 465 if (oldsize) { 466 hash->uh_hashsize = oldsize * 2; 467 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 468 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 469 M_UMAHASH, M_NOWAIT); 470 } else { 471 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 472 hash->uh_slab_hash = uma_zalloc_internal(hashzone, NULL, 473 M_WAITOK); 474 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 475 } 476 if (hash->uh_slab_hash) { 477 bzero(hash->uh_slab_hash, alloc); 478 hash->uh_hashmask = hash->uh_hashsize - 1; 479 return (1); 480 } 481 482 return (0); 483 } 484 485 /* 486 * Expands the hash table for HASH zones. This is done from zone_timeout 487 * to reduce collisions. This must not be done in the regular allocation 488 * path, otherwise, we can recurse on the vm while allocating pages. 489 * 490 * Arguments: 491 * oldhash The hash you want to expand 492 * newhash The hash structure for the new table 493 * 494 * Returns: 495 * Nothing 496 * 497 * Discussion: 498 */ 499 static int 500 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 501 { 502 uma_slab_t slab; 503 int hval; 504 int i; 505 506 if (!newhash->uh_slab_hash) 507 return (0); 508 509 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 510 return (0); 511 512 /* 513 * I need to investigate hash algorithms for resizing without a 514 * full rehash. 515 */ 516 517 for (i = 0; i < oldhash->uh_hashsize; i++) 518 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) { 519 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]); 520 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink); 521 hval = UMA_HASH(newhash, slab->us_data); 522 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 523 slab, us_hlink); 524 } 525 526 return (1); 527 } 528 529 /* 530 * Free the hash bucket to the appropriate backing store. 531 * 532 * Arguments: 533 * slab_hash The hash bucket we're freeing 534 * hashsize The number of entries in that hash bucket 535 * 536 * Returns: 537 * Nothing 538 */ 539 static void 540 hash_free(struct uma_hash *hash) 541 { 542 if (hash->uh_slab_hash == NULL) 543 return; 544 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 545 uma_zfree_internal(hashzone, 546 hash->uh_slab_hash, NULL, SKIP_NONE, ZFREE_STATFREE); 547 else 548 free(hash->uh_slab_hash, M_UMAHASH); 549 } 550 551 /* 552 * Frees all outstanding items in a bucket 553 * 554 * Arguments: 555 * zone The zone to free to, must be unlocked. 556 * bucket The free/alloc bucket with items, cpu queue must be locked. 557 * 558 * Returns: 559 * Nothing 560 */ 561 562 static void 563 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 564 { 565 uma_slab_t slab; 566 int mzone; 567 void *item; 568 569 if (bucket == NULL) 570 return; 571 572 slab = NULL; 573 mzone = 0; 574 575 /* We have to lookup the slab again for malloc.. */ 576 if (zone->uz_keg->uk_flags & UMA_ZONE_MALLOC) 577 mzone = 1; 578 579 while (bucket->ub_cnt > 0) { 580 bucket->ub_cnt--; 581 item = bucket->ub_bucket[bucket->ub_cnt]; 582 #ifdef INVARIANTS 583 bucket->ub_bucket[bucket->ub_cnt] = NULL; 584 KASSERT(item != NULL, 585 ("bucket_drain: botched ptr, item is NULL")); 586 #endif 587 /* 588 * This is extremely inefficient. The slab pointer was passed 589 * to uma_zfree_arg, but we lost it because the buckets don't 590 * hold them. This will go away when free() gets a size passed 591 * to it. 592 */ 593 if (mzone) 594 slab = vtoslab((vm_offset_t)item & (~UMA_SLAB_MASK)); 595 uma_zfree_internal(zone, item, slab, SKIP_DTOR, 0); 596 } 597 } 598 599 /* 600 * Drains the per cpu caches for a zone. 601 * 602 * NOTE: This may only be called while the zone is being turn down, and not 603 * during normal operation. This is necessary in order that we do not have 604 * to migrate CPUs to drain the per-CPU caches. 605 * 606 * Arguments: 607 * zone The zone to drain, must be unlocked. 608 * 609 * Returns: 610 * Nothing 611 */ 612 static void 613 cache_drain(uma_zone_t zone) 614 { 615 uma_cache_t cache; 616 int cpu; 617 618 /* 619 * XXX: It is safe to not lock the per-CPU caches, because we're 620 * tearing down the zone anyway. I.e., there will be no further use 621 * of the caches at this point. 622 * 623 * XXX: It would good to be able to assert that the zone is being 624 * torn down to prevent improper use of cache_drain(). 625 * 626 * XXX: We lock the zone before passing into bucket_cache_drain() as 627 * it is used elsewhere. Should the tear-down path be made special 628 * there in some form? 629 */ 630 for (cpu = 0; cpu <= mp_maxid; cpu++) { 631 if (CPU_ABSENT(cpu)) 632 continue; 633 cache = &zone->uz_cpu[cpu]; 634 bucket_drain(zone, cache->uc_allocbucket); 635 bucket_drain(zone, cache->uc_freebucket); 636 if (cache->uc_allocbucket != NULL) 637 bucket_free(cache->uc_allocbucket); 638 if (cache->uc_freebucket != NULL) 639 bucket_free(cache->uc_freebucket); 640 cache->uc_allocbucket = cache->uc_freebucket = NULL; 641 } 642 ZONE_LOCK(zone); 643 bucket_cache_drain(zone); 644 ZONE_UNLOCK(zone); 645 } 646 647 /* 648 * Drain the cached buckets from a zone. Expects a locked zone on entry. 649 */ 650 static void 651 bucket_cache_drain(uma_zone_t zone) 652 { 653 uma_bucket_t bucket; 654 655 /* 656 * Drain the bucket queues and free the buckets, we just keep two per 657 * cpu (alloc/free). 658 */ 659 while ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) { 660 LIST_REMOVE(bucket, ub_link); 661 ZONE_UNLOCK(zone); 662 bucket_drain(zone, bucket); 663 bucket_free(bucket); 664 ZONE_LOCK(zone); 665 } 666 667 /* Now we do the free queue.. */ 668 while ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) { 669 LIST_REMOVE(bucket, ub_link); 670 bucket_free(bucket); 671 } 672 } 673 674 /* 675 * Frees pages from a zone back to the system. This is done on demand from 676 * the pageout daemon. 677 * 678 * Arguments: 679 * zone The zone to free pages from 680 * all Should we drain all items? 681 * 682 * Returns: 683 * Nothing. 684 */ 685 void 686 zone_drain(uma_zone_t zone) 687 { 688 struct slabhead freeslabs = { 0 }; 689 uma_keg_t keg; 690 uma_slab_t slab; 691 uma_slab_t n; 692 u_int8_t flags; 693 u_int8_t *mem; 694 int i; 695 696 keg = zone->uz_keg; 697 698 /* 699 * We don't want to take pages from statically allocated zones at this 700 * time 701 */ 702 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 703 return; 704 705 ZONE_LOCK(zone); 706 707 #ifdef UMA_DEBUG 708 printf("%s free items: %u\n", zone->uz_name, keg->uk_free); 709 #endif 710 bucket_cache_drain(zone); 711 if (keg->uk_free == 0) 712 goto finished; 713 714 slab = LIST_FIRST(&keg->uk_free_slab); 715 while (slab) { 716 n = LIST_NEXT(slab, us_link); 717 718 /* We have no where to free these to */ 719 if (slab->us_flags & UMA_SLAB_BOOT) { 720 slab = n; 721 continue; 722 } 723 724 LIST_REMOVE(slab, us_link); 725 keg->uk_pages -= keg->uk_ppera; 726 keg->uk_free -= keg->uk_ipers; 727 728 if (keg->uk_flags & UMA_ZONE_HASH) 729 UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data); 730 731 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 732 733 slab = n; 734 } 735 finished: 736 ZONE_UNLOCK(zone); 737 738 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 739 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 740 if (keg->uk_fini) 741 for (i = 0; i < keg->uk_ipers; i++) 742 keg->uk_fini( 743 slab->us_data + (keg->uk_rsize * i), 744 keg->uk_size); 745 flags = slab->us_flags; 746 mem = slab->us_data; 747 748 if ((keg->uk_flags & UMA_ZONE_MALLOC) || 749 (keg->uk_flags & UMA_ZONE_REFCNT)) { 750 vm_object_t obj; 751 752 if (flags & UMA_SLAB_KMEM) 753 obj = kmem_object; 754 else 755 obj = NULL; 756 for (i = 0; i < keg->uk_ppera; i++) 757 vsetobj((vm_offset_t)mem + (i * PAGE_SIZE), 758 obj); 759 } 760 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 761 uma_zfree_internal(keg->uk_slabzone, slab, NULL, 762 SKIP_NONE, ZFREE_STATFREE); 763 #ifdef UMA_DEBUG 764 printf("%s: Returning %d bytes.\n", 765 zone->uz_name, UMA_SLAB_SIZE * keg->uk_ppera); 766 #endif 767 keg->uk_freef(mem, UMA_SLAB_SIZE * keg->uk_ppera, flags); 768 } 769 } 770 771 /* 772 * Allocate a new slab for a zone. This does not insert the slab onto a list. 773 * 774 * Arguments: 775 * zone The zone to allocate slabs for 776 * wait Shall we wait? 777 * 778 * Returns: 779 * The slab that was allocated or NULL if there is no memory and the 780 * caller specified M_NOWAIT. 781 */ 782 static uma_slab_t 783 slab_zalloc(uma_zone_t zone, int wait) 784 { 785 uma_slabrefcnt_t slabref; 786 uma_slab_t slab; 787 uma_keg_t keg; 788 u_int8_t *mem; 789 u_int8_t flags; 790 int i; 791 792 slab = NULL; 793 keg = zone->uz_keg; 794 795 #ifdef UMA_DEBUG 796 printf("slab_zalloc: Allocating a new slab for %s\n", zone->uz_name); 797 #endif 798 ZONE_UNLOCK(zone); 799 800 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 801 slab = uma_zalloc_internal(keg->uk_slabzone, NULL, wait); 802 if (slab == NULL) { 803 ZONE_LOCK(zone); 804 return NULL; 805 } 806 } 807 808 /* 809 * This reproduces the old vm_zone behavior of zero filling pages the 810 * first time they are added to a zone. 811 * 812 * Malloced items are zeroed in uma_zalloc. 813 */ 814 815 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 816 wait |= M_ZERO; 817 else 818 wait &= ~M_ZERO; 819 820 mem = keg->uk_allocf(zone, keg->uk_ppera * UMA_SLAB_SIZE, 821 &flags, wait); 822 if (mem == NULL) { 823 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 824 uma_zfree_internal(keg->uk_slabzone, slab, NULL, 825 SKIP_NONE, ZFREE_STATFREE); 826 ZONE_LOCK(zone); 827 return (NULL); 828 } 829 830 /* Point the slab into the allocated memory */ 831 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 832 slab = (uma_slab_t )(mem + keg->uk_pgoff); 833 834 if ((keg->uk_flags & UMA_ZONE_MALLOC) || 835 (keg->uk_flags & UMA_ZONE_REFCNT)) 836 for (i = 0; i < keg->uk_ppera; i++) 837 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 838 839 slab->us_keg = keg; 840 slab->us_data = mem; 841 slab->us_freecount = keg->uk_ipers; 842 slab->us_firstfree = 0; 843 slab->us_flags = flags; 844 845 if (keg->uk_flags & UMA_ZONE_REFCNT) { 846 slabref = (uma_slabrefcnt_t)slab; 847 for (i = 0; i < keg->uk_ipers; i++) { 848 slabref->us_freelist[i].us_refcnt = 0; 849 slabref->us_freelist[i].us_item = i+1; 850 } 851 } else { 852 for (i = 0; i < keg->uk_ipers; i++) 853 slab->us_freelist[i].us_item = i+1; 854 } 855 856 if (keg->uk_init != NULL) { 857 for (i = 0; i < keg->uk_ipers; i++) 858 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 859 keg->uk_size, wait) != 0) 860 break; 861 if (i != keg->uk_ipers) { 862 if (keg->uk_fini != NULL) { 863 for (i--; i > -1; i--) 864 keg->uk_fini(slab->us_data + 865 (keg->uk_rsize * i), 866 keg->uk_size); 867 } 868 if ((keg->uk_flags & UMA_ZONE_MALLOC) || 869 (keg->uk_flags & UMA_ZONE_REFCNT)) { 870 vm_object_t obj; 871 872 if (flags & UMA_SLAB_KMEM) 873 obj = kmem_object; 874 else 875 obj = NULL; 876 for (i = 0; i < keg->uk_ppera; i++) 877 vsetobj((vm_offset_t)mem + 878 (i * PAGE_SIZE), obj); 879 } 880 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 881 uma_zfree_internal(keg->uk_slabzone, slab, 882 NULL, SKIP_NONE, ZFREE_STATFREE); 883 keg->uk_freef(mem, UMA_SLAB_SIZE * keg->uk_ppera, 884 flags); 885 ZONE_LOCK(zone); 886 return (NULL); 887 } 888 } 889 ZONE_LOCK(zone); 890 891 if (keg->uk_flags & UMA_ZONE_HASH) 892 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 893 894 keg->uk_pages += keg->uk_ppera; 895 keg->uk_free += keg->uk_ipers; 896 897 return (slab); 898 } 899 900 /* 901 * This function is intended to be used early on in place of page_alloc() so 902 * that we may use the boot time page cache to satisfy allocations before 903 * the VM is ready. 904 */ 905 static void * 906 startup_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait) 907 { 908 uma_keg_t keg; 909 uma_slab_t tmps; 910 911 keg = zone->uz_keg; 912 913 /* 914 * Check our small startup cache to see if it has pages remaining. 915 */ 916 mtx_lock(&uma_boot_pages_mtx); 917 if ((tmps = LIST_FIRST(&uma_boot_pages)) != NULL) { 918 LIST_REMOVE(tmps, us_link); 919 mtx_unlock(&uma_boot_pages_mtx); 920 *pflag = tmps->us_flags; 921 return (tmps->us_data); 922 } 923 mtx_unlock(&uma_boot_pages_mtx); 924 if (booted == 0) 925 panic("UMA: Increase vm.boot_pages"); 926 /* 927 * Now that we've booted reset these users to their real allocator. 928 */ 929 #ifdef UMA_MD_SMALL_ALLOC 930 keg->uk_allocf = uma_small_alloc; 931 #else 932 keg->uk_allocf = page_alloc; 933 #endif 934 return keg->uk_allocf(zone, bytes, pflag, wait); 935 } 936 937 /* 938 * Allocates a number of pages from the system 939 * 940 * Arguments: 941 * zone Unused 942 * bytes The number of bytes requested 943 * wait Shall we wait? 944 * 945 * Returns: 946 * A pointer to the alloced memory or possibly 947 * NULL if M_NOWAIT is set. 948 */ 949 static void * 950 page_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait) 951 { 952 void *p; /* Returned page */ 953 954 *pflag = UMA_SLAB_KMEM; 955 p = (void *) kmem_malloc(kmem_map, bytes, wait); 956 957 return (p); 958 } 959 960 /* 961 * Allocates a number of pages from within an object 962 * 963 * Arguments: 964 * zone Unused 965 * bytes The number of bytes requested 966 * wait Shall we wait? 967 * 968 * Returns: 969 * A pointer to the alloced memory or possibly 970 * NULL if M_NOWAIT is set. 971 */ 972 static void * 973 obj_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait) 974 { 975 vm_object_t object; 976 vm_offset_t retkva, zkva; 977 vm_page_t p; 978 int pages, startpages; 979 980 object = zone->uz_keg->uk_obj; 981 retkva = 0; 982 983 /* 984 * This looks a little weird since we're getting one page at a time. 985 */ 986 VM_OBJECT_LOCK(object); 987 p = TAILQ_LAST(&object->memq, pglist); 988 pages = p != NULL ? p->pindex + 1 : 0; 989 startpages = pages; 990 zkva = zone->uz_keg->uk_kva + pages * PAGE_SIZE; 991 for (; bytes > 0; bytes -= PAGE_SIZE) { 992 p = vm_page_alloc(object, pages, 993 VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED); 994 if (p == NULL) { 995 if (pages != startpages) 996 pmap_qremove(retkva, pages - startpages); 997 while (pages != startpages) { 998 pages--; 999 p = TAILQ_LAST(&object->memq, pglist); 1000 vm_page_lock_queues(); 1001 vm_page_unwire(p, 0); 1002 vm_page_free(p); 1003 vm_page_unlock_queues(); 1004 } 1005 retkva = 0; 1006 goto done; 1007 } 1008 pmap_qenter(zkva, &p, 1); 1009 if (retkva == 0) 1010 retkva = zkva; 1011 zkva += PAGE_SIZE; 1012 pages += 1; 1013 } 1014 done: 1015 VM_OBJECT_UNLOCK(object); 1016 *flags = UMA_SLAB_PRIV; 1017 1018 return ((void *)retkva); 1019 } 1020 1021 /* 1022 * Frees a number of pages to the system 1023 * 1024 * Arguments: 1025 * mem A pointer to the memory to be freed 1026 * size The size of the memory being freed 1027 * flags The original p->us_flags field 1028 * 1029 * Returns: 1030 * Nothing 1031 */ 1032 static void 1033 page_free(void *mem, int size, u_int8_t flags) 1034 { 1035 vm_map_t map; 1036 1037 if (flags & UMA_SLAB_KMEM) 1038 map = kmem_map; 1039 else 1040 panic("UMA: page_free used with invalid flags %d\n", flags); 1041 1042 kmem_free(map, (vm_offset_t)mem, size); 1043 } 1044 1045 /* 1046 * Zero fill initializer 1047 * 1048 * Arguments/Returns follow uma_init specifications 1049 */ 1050 static int 1051 zero_init(void *mem, int size, int flags) 1052 { 1053 bzero(mem, size); 1054 return (0); 1055 } 1056 1057 /* 1058 * Finish creating a small uma zone. This calculates ipers, and the zone size. 1059 * 1060 * Arguments 1061 * zone The zone we should initialize 1062 * 1063 * Returns 1064 * Nothing 1065 */ 1066 static void 1067 zone_small_init(uma_zone_t zone) 1068 { 1069 uma_keg_t keg; 1070 u_int rsize; 1071 u_int memused; 1072 u_int wastedspace; 1073 u_int shsize; 1074 1075 keg = zone->uz_keg; 1076 KASSERT(keg != NULL, ("Keg is null in zone_small_init")); 1077 rsize = keg->uk_size; 1078 1079 if (rsize < UMA_SMALLEST_UNIT) 1080 rsize = UMA_SMALLEST_UNIT; 1081 if (rsize & keg->uk_align) 1082 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1083 1084 keg->uk_rsize = rsize; 1085 keg->uk_ppera = 1; 1086 1087 if (keg->uk_flags & UMA_ZONE_REFCNT) { 1088 rsize += UMA_FRITMREF_SZ; /* linkage & refcnt */ 1089 shsize = sizeof(struct uma_slab_refcnt); 1090 } else { 1091 rsize += UMA_FRITM_SZ; /* Account for linkage */ 1092 shsize = sizeof(struct uma_slab); 1093 } 1094 1095 keg->uk_ipers = (UMA_SLAB_SIZE - shsize) / rsize; 1096 KASSERT(keg->uk_ipers != 0, ("zone_small_init: ipers is 0")); 1097 memused = keg->uk_ipers * rsize + shsize; 1098 wastedspace = UMA_SLAB_SIZE - memused; 1099 1100 /* 1101 * We can't do OFFPAGE if we're internal or if we've been 1102 * asked to not go to the VM for buckets. If we do this we 1103 * may end up going to the VM (kmem_map) for slabs which we 1104 * do not want to do if we're UMA_ZFLAG_CACHEONLY as a 1105 * result of UMA_ZONE_VM, which clearly forbids it. 1106 */ 1107 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1108 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1109 return; 1110 1111 if ((wastedspace >= UMA_MAX_WASTE) && 1112 (keg->uk_ipers < (UMA_SLAB_SIZE / keg->uk_rsize))) { 1113 keg->uk_ipers = UMA_SLAB_SIZE / keg->uk_rsize; 1114 KASSERT(keg->uk_ipers <= 255, 1115 ("zone_small_init: keg->uk_ipers too high!")); 1116 #ifdef UMA_DEBUG 1117 printf("UMA decided we need offpage slab headers for " 1118 "zone: %s, calculated wastedspace = %d, " 1119 "maximum wasted space allowed = %d, " 1120 "calculated ipers = %d, " 1121 "new wasted space = %d\n", zone->uz_name, wastedspace, 1122 UMA_MAX_WASTE, keg->uk_ipers, 1123 UMA_SLAB_SIZE - keg->uk_ipers * keg->uk_rsize); 1124 #endif 1125 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1126 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1127 keg->uk_flags |= UMA_ZONE_HASH; 1128 } 1129 } 1130 1131 /* 1132 * Finish creating a large (> UMA_SLAB_SIZE) uma zone. Just give in and do 1133 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1134 * more complicated. 1135 * 1136 * Arguments 1137 * zone The zone we should initialize 1138 * 1139 * Returns 1140 * Nothing 1141 */ 1142 static void 1143 zone_large_init(uma_zone_t zone) 1144 { 1145 uma_keg_t keg; 1146 int pages; 1147 1148 keg = zone->uz_keg; 1149 1150 KASSERT(keg != NULL, ("Keg is null in zone_large_init")); 1151 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0, 1152 ("zone_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY zone")); 1153 1154 pages = keg->uk_size / UMA_SLAB_SIZE; 1155 1156 /* Account for remainder */ 1157 if ((pages * UMA_SLAB_SIZE) < keg->uk_size) 1158 pages++; 1159 1160 keg->uk_ppera = pages; 1161 keg->uk_ipers = 1; 1162 1163 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1164 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1165 keg->uk_flags |= UMA_ZONE_HASH; 1166 1167 keg->uk_rsize = keg->uk_size; 1168 } 1169 1170 /* 1171 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1172 * the keg onto the global keg list. 1173 * 1174 * Arguments/Returns follow uma_ctor specifications 1175 * udata Actually uma_kctor_args 1176 */ 1177 static int 1178 keg_ctor(void *mem, int size, void *udata, int flags) 1179 { 1180 struct uma_kctor_args *arg = udata; 1181 uma_keg_t keg = mem; 1182 uma_zone_t zone; 1183 1184 bzero(keg, size); 1185 keg->uk_size = arg->size; 1186 keg->uk_init = arg->uminit; 1187 keg->uk_fini = arg->fini; 1188 keg->uk_align = arg->align; 1189 keg->uk_free = 0; 1190 keg->uk_pages = 0; 1191 keg->uk_flags = arg->flags; 1192 keg->uk_allocf = page_alloc; 1193 keg->uk_freef = page_free; 1194 keg->uk_recurse = 0; 1195 keg->uk_slabzone = NULL; 1196 1197 /* 1198 * The master zone is passed to us at keg-creation time. 1199 */ 1200 zone = arg->zone; 1201 zone->uz_keg = keg; 1202 1203 if (arg->flags & UMA_ZONE_VM) 1204 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1205 1206 if (arg->flags & UMA_ZONE_ZINIT) 1207 keg->uk_init = zero_init; 1208 1209 /* 1210 * The +UMA_FRITM_SZ added to uk_size is to account for the 1211 * linkage that is added to the size in zone_small_init(). If 1212 * we don't account for this here then we may end up in 1213 * zone_small_init() with a calculated 'ipers' of 0. 1214 */ 1215 if (keg->uk_flags & UMA_ZONE_REFCNT) { 1216 if ((keg->uk_size+UMA_FRITMREF_SZ) > 1217 (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt))) 1218 zone_large_init(zone); 1219 else 1220 zone_small_init(zone); 1221 } else { 1222 if ((keg->uk_size+UMA_FRITM_SZ) > 1223 (UMA_SLAB_SIZE - sizeof(struct uma_slab))) 1224 zone_large_init(zone); 1225 else 1226 zone_small_init(zone); 1227 } 1228 1229 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 1230 if (keg->uk_flags & UMA_ZONE_REFCNT) 1231 keg->uk_slabzone = slabrefzone; 1232 else 1233 keg->uk_slabzone = slabzone; 1234 } 1235 1236 /* 1237 * If we haven't booted yet we need allocations to go through the 1238 * startup cache until the vm is ready. 1239 */ 1240 if (keg->uk_ppera == 1) { 1241 #ifdef UMA_MD_SMALL_ALLOC 1242 keg->uk_allocf = uma_small_alloc; 1243 keg->uk_freef = uma_small_free; 1244 #endif 1245 if (booted == 0) 1246 keg->uk_allocf = startup_alloc; 1247 } 1248 1249 /* 1250 * Initialize keg's lock (shared among zones) through 1251 * Master zone 1252 */ 1253 zone->uz_lock = &keg->uk_lock; 1254 if (arg->flags & UMA_ZONE_MTXCLASS) 1255 ZONE_LOCK_INIT(zone, 1); 1256 else 1257 ZONE_LOCK_INIT(zone, 0); 1258 1259 /* 1260 * If we're putting the slab header in the actual page we need to 1261 * figure out where in each page it goes. This calculates a right 1262 * justified offset into the memory on an ALIGN_PTR boundary. 1263 */ 1264 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1265 u_int totsize; 1266 1267 /* Size of the slab struct and free list */ 1268 if (keg->uk_flags & UMA_ZONE_REFCNT) 1269 totsize = sizeof(struct uma_slab_refcnt) + 1270 keg->uk_ipers * UMA_FRITMREF_SZ; 1271 else 1272 totsize = sizeof(struct uma_slab) + 1273 keg->uk_ipers * UMA_FRITM_SZ; 1274 1275 if (totsize & UMA_ALIGN_PTR) 1276 totsize = (totsize & ~UMA_ALIGN_PTR) + 1277 (UMA_ALIGN_PTR + 1); 1278 keg->uk_pgoff = UMA_SLAB_SIZE - totsize; 1279 1280 if (keg->uk_flags & UMA_ZONE_REFCNT) 1281 totsize = keg->uk_pgoff + sizeof(struct uma_slab_refcnt) 1282 + keg->uk_ipers * UMA_FRITMREF_SZ; 1283 else 1284 totsize = keg->uk_pgoff + sizeof(struct uma_slab) 1285 + keg->uk_ipers * UMA_FRITM_SZ; 1286 1287 /* 1288 * The only way the following is possible is if with our 1289 * UMA_ALIGN_PTR adjustments we are now bigger than 1290 * UMA_SLAB_SIZE. I haven't checked whether this is 1291 * mathematically possible for all cases, so we make 1292 * sure here anyway. 1293 */ 1294 if (totsize > UMA_SLAB_SIZE) { 1295 printf("zone %s ipers %d rsize %d size %d\n", 1296 zone->uz_name, keg->uk_ipers, keg->uk_rsize, 1297 keg->uk_size); 1298 panic("UMA slab won't fit.\n"); 1299 } 1300 } 1301 1302 if (keg->uk_flags & UMA_ZONE_HASH) 1303 hash_alloc(&keg->uk_hash); 1304 1305 #ifdef UMA_DEBUG 1306 printf("%s(%p) size = %d ipers = %d ppera = %d pgoff = %d\n", 1307 zone->uz_name, zone, 1308 keg->uk_size, keg->uk_ipers, 1309 keg->uk_ppera, keg->uk_pgoff); 1310 #endif 1311 1312 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1313 1314 mtx_lock(&uma_mtx); 1315 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1316 mtx_unlock(&uma_mtx); 1317 return (0); 1318 } 1319 1320 /* 1321 * Zone header ctor. This initializes all fields, locks, etc. 1322 * 1323 * Arguments/Returns follow uma_ctor specifications 1324 * udata Actually uma_zctor_args 1325 */ 1326 1327 static int 1328 zone_ctor(void *mem, int size, void *udata, int flags) 1329 { 1330 struct uma_zctor_args *arg = udata; 1331 uma_zone_t zone = mem; 1332 uma_zone_t z; 1333 uma_keg_t keg; 1334 1335 bzero(zone, size); 1336 zone->uz_name = arg->name; 1337 zone->uz_ctor = arg->ctor; 1338 zone->uz_dtor = arg->dtor; 1339 zone->uz_init = NULL; 1340 zone->uz_fini = NULL; 1341 zone->uz_allocs = 0; 1342 zone->uz_frees = 0; 1343 zone->uz_fails = 0; 1344 zone->uz_fills = zone->uz_count = 0; 1345 1346 if (arg->flags & UMA_ZONE_SECONDARY) { 1347 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 1348 keg = arg->keg; 1349 zone->uz_keg = keg; 1350 zone->uz_init = arg->uminit; 1351 zone->uz_fini = arg->fini; 1352 zone->uz_lock = &keg->uk_lock; 1353 mtx_lock(&uma_mtx); 1354 ZONE_LOCK(zone); 1355 keg->uk_flags |= UMA_ZONE_SECONDARY; 1356 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 1357 if (LIST_NEXT(z, uz_link) == NULL) { 1358 LIST_INSERT_AFTER(z, zone, uz_link); 1359 break; 1360 } 1361 } 1362 ZONE_UNLOCK(zone); 1363 mtx_unlock(&uma_mtx); 1364 } else if (arg->keg == NULL) { 1365 if (uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 1366 arg->align, arg->flags) == NULL) 1367 return (ENOMEM); 1368 } else { 1369 struct uma_kctor_args karg; 1370 int error; 1371 1372 /* We should only be here from uma_startup() */ 1373 karg.size = arg->size; 1374 karg.uminit = arg->uminit; 1375 karg.fini = arg->fini; 1376 karg.align = arg->align; 1377 karg.flags = arg->flags; 1378 karg.zone = zone; 1379 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 1380 flags); 1381 if (error) 1382 return (error); 1383 } 1384 keg = zone->uz_keg; 1385 zone->uz_lock = &keg->uk_lock; 1386 1387 /* 1388 * Some internal zones don't have room allocated for the per cpu 1389 * caches. If we're internal, bail out here. 1390 */ 1391 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { 1392 KASSERT((keg->uk_flags & UMA_ZONE_SECONDARY) == 0, 1393 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 1394 return (0); 1395 } 1396 1397 if (keg->uk_flags & UMA_ZONE_MAXBUCKET) 1398 zone->uz_count = BUCKET_MAX; 1399 else if (keg->uk_ipers <= BUCKET_MAX) 1400 zone->uz_count = keg->uk_ipers; 1401 else 1402 zone->uz_count = BUCKET_MAX; 1403 return (0); 1404 } 1405 1406 /* 1407 * Keg header dtor. This frees all data, destroys locks, frees the hash 1408 * table and removes the keg from the global list. 1409 * 1410 * Arguments/Returns follow uma_dtor specifications 1411 * udata unused 1412 */ 1413 static void 1414 keg_dtor(void *arg, int size, void *udata) 1415 { 1416 uma_keg_t keg; 1417 1418 keg = (uma_keg_t)arg; 1419 mtx_lock(&keg->uk_lock); 1420 if (keg->uk_free != 0) { 1421 printf("Freed UMA keg was not empty (%d items). " 1422 " Lost %d pages of memory.\n", 1423 keg->uk_free, keg->uk_pages); 1424 } 1425 mtx_unlock(&keg->uk_lock); 1426 1427 if (keg->uk_flags & UMA_ZONE_HASH) 1428 hash_free(&keg->uk_hash); 1429 1430 mtx_destroy(&keg->uk_lock); 1431 } 1432 1433 /* 1434 * Zone header dtor. 1435 * 1436 * Arguments/Returns follow uma_dtor specifications 1437 * udata unused 1438 */ 1439 static void 1440 zone_dtor(void *arg, int size, void *udata) 1441 { 1442 uma_zone_t zone; 1443 uma_keg_t keg; 1444 1445 zone = (uma_zone_t)arg; 1446 keg = zone->uz_keg; 1447 1448 if (!(keg->uk_flags & UMA_ZFLAG_INTERNAL)) 1449 cache_drain(zone); 1450 1451 mtx_lock(&uma_mtx); 1452 zone_drain(zone); 1453 if (keg->uk_flags & UMA_ZONE_SECONDARY) { 1454 LIST_REMOVE(zone, uz_link); 1455 /* 1456 * XXX there are some races here where 1457 * the zone can be drained but zone lock 1458 * released and then refilled before we 1459 * remove it... we dont care for now 1460 */ 1461 ZONE_LOCK(zone); 1462 if (LIST_EMPTY(&keg->uk_zones)) 1463 keg->uk_flags &= ~UMA_ZONE_SECONDARY; 1464 ZONE_UNLOCK(zone); 1465 mtx_unlock(&uma_mtx); 1466 } else { 1467 LIST_REMOVE(keg, uk_link); 1468 LIST_REMOVE(zone, uz_link); 1469 mtx_unlock(&uma_mtx); 1470 uma_zfree_internal(kegs, keg, NULL, SKIP_NONE, 1471 ZFREE_STATFREE); 1472 } 1473 zone->uz_keg = NULL; 1474 } 1475 1476 /* 1477 * Traverses every zone in the system and calls a callback 1478 * 1479 * Arguments: 1480 * zfunc A pointer to a function which accepts a zone 1481 * as an argument. 1482 * 1483 * Returns: 1484 * Nothing 1485 */ 1486 static void 1487 zone_foreach(void (*zfunc)(uma_zone_t)) 1488 { 1489 uma_keg_t keg; 1490 uma_zone_t zone; 1491 1492 mtx_lock(&uma_mtx); 1493 LIST_FOREACH(keg, &uma_kegs, uk_link) { 1494 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 1495 zfunc(zone); 1496 } 1497 mtx_unlock(&uma_mtx); 1498 } 1499 1500 /* Public functions */ 1501 /* See uma.h */ 1502 void 1503 uma_startup(void *bootmem, int boot_pages) 1504 { 1505 struct uma_zctor_args args; 1506 uma_slab_t slab; 1507 u_int slabsize; 1508 u_int objsize, totsize, wsize; 1509 int i; 1510 1511 #ifdef UMA_DEBUG 1512 printf("Creating uma keg headers zone and keg.\n"); 1513 #endif 1514 mtx_init(&uma_mtx, "UMA lock", NULL, MTX_DEF); 1515 1516 /* 1517 * Figure out the maximum number of items-per-slab we'll have if 1518 * we're using the OFFPAGE slab header to track free items, given 1519 * all possible object sizes and the maximum desired wastage 1520 * (UMA_MAX_WASTE). 1521 * 1522 * We iterate until we find an object size for 1523 * which the calculated wastage in zone_small_init() will be 1524 * enough to warrant OFFPAGE. Since wastedspace versus objsize 1525 * is an overall increasing see-saw function, we find the smallest 1526 * objsize such that the wastage is always acceptable for objects 1527 * with that objsize or smaller. Since a smaller objsize always 1528 * generates a larger possible uma_max_ipers, we use this computed 1529 * objsize to calculate the largest ipers possible. Since the 1530 * ipers calculated for OFFPAGE slab headers is always larger than 1531 * the ipers initially calculated in zone_small_init(), we use 1532 * the former's equation (UMA_SLAB_SIZE / keg->uk_rsize) to 1533 * obtain the maximum ipers possible for offpage slab headers. 1534 * 1535 * It should be noted that ipers versus objsize is an inversly 1536 * proportional function which drops off rather quickly so as 1537 * long as our UMA_MAX_WASTE is such that the objsize we calculate 1538 * falls into the portion of the inverse relation AFTER the steep 1539 * falloff, then uma_max_ipers shouldn't be too high (~10 on i386). 1540 * 1541 * Note that we have 8-bits (1 byte) to use as a freelist index 1542 * inside the actual slab header itself and this is enough to 1543 * accomodate us. In the worst case, a UMA_SMALLEST_UNIT sized 1544 * object with offpage slab header would have ipers = 1545 * UMA_SLAB_SIZE / UMA_SMALLEST_UNIT (currently = 256), which is 1546 * 1 greater than what our byte-integer freelist index can 1547 * accomodate, but we know that this situation never occurs as 1548 * for UMA_SMALLEST_UNIT-sized objects, we will never calculate 1549 * that we need to go to offpage slab headers. Or, if we do, 1550 * then we trap that condition below and panic in the INVARIANTS case. 1551 */ 1552 wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab) - UMA_MAX_WASTE; 1553 totsize = wsize; 1554 objsize = UMA_SMALLEST_UNIT; 1555 while (totsize >= wsize) { 1556 totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab)) / 1557 (objsize + UMA_FRITM_SZ); 1558 totsize *= (UMA_FRITM_SZ + objsize); 1559 objsize++; 1560 } 1561 if (objsize > UMA_SMALLEST_UNIT) 1562 objsize--; 1563 uma_max_ipers = UMA_SLAB_SIZE / objsize; 1564 1565 wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt) - UMA_MAX_WASTE; 1566 totsize = wsize; 1567 objsize = UMA_SMALLEST_UNIT; 1568 while (totsize >= wsize) { 1569 totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt)) / 1570 (objsize + UMA_FRITMREF_SZ); 1571 totsize *= (UMA_FRITMREF_SZ + objsize); 1572 objsize++; 1573 } 1574 if (objsize > UMA_SMALLEST_UNIT) 1575 objsize--; 1576 uma_max_ipers_ref = UMA_SLAB_SIZE / objsize; 1577 1578 KASSERT((uma_max_ipers_ref <= 255) && (uma_max_ipers <= 255), 1579 ("uma_startup: calculated uma_max_ipers values too large!")); 1580 1581 #ifdef UMA_DEBUG 1582 printf("Calculated uma_max_ipers (for OFFPAGE) is %d\n", uma_max_ipers); 1583 printf("Calculated uma_max_ipers_slab (for OFFPAGE) is %d\n", 1584 uma_max_ipers_ref); 1585 #endif 1586 1587 /* "manually" create the initial zone */ 1588 args.name = "UMA Kegs"; 1589 args.size = sizeof(struct uma_keg); 1590 args.ctor = keg_ctor; 1591 args.dtor = keg_dtor; 1592 args.uminit = zero_init; 1593 args.fini = NULL; 1594 args.keg = &masterkeg; 1595 args.align = 32 - 1; 1596 args.flags = UMA_ZFLAG_INTERNAL; 1597 /* The initial zone has no Per cpu queues so it's smaller */ 1598 zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK); 1599 1600 #ifdef UMA_DEBUG 1601 printf("Filling boot free list.\n"); 1602 #endif 1603 for (i = 0; i < boot_pages; i++) { 1604 slab = (uma_slab_t)((u_int8_t *)bootmem + (i * UMA_SLAB_SIZE)); 1605 slab->us_data = (u_int8_t *)slab; 1606 slab->us_flags = UMA_SLAB_BOOT; 1607 LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link); 1608 } 1609 mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF); 1610 1611 #ifdef UMA_DEBUG 1612 printf("Creating uma zone headers zone and keg.\n"); 1613 #endif 1614 args.name = "UMA Zones"; 1615 args.size = sizeof(struct uma_zone) + 1616 (sizeof(struct uma_cache) * (mp_maxid + 1)); 1617 args.ctor = zone_ctor; 1618 args.dtor = zone_dtor; 1619 args.uminit = zero_init; 1620 args.fini = NULL; 1621 args.keg = NULL; 1622 args.align = 32 - 1; 1623 args.flags = UMA_ZFLAG_INTERNAL; 1624 /* The initial zone has no Per cpu queues so it's smaller */ 1625 zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK); 1626 1627 #ifdef UMA_DEBUG 1628 printf("Initializing pcpu cache locks.\n"); 1629 #endif 1630 #ifdef UMA_DEBUG 1631 printf("Creating slab and hash zones.\n"); 1632 #endif 1633 1634 /* 1635 * This is the max number of free list items we'll have with 1636 * offpage slabs. 1637 */ 1638 slabsize = uma_max_ipers * UMA_FRITM_SZ; 1639 slabsize += sizeof(struct uma_slab); 1640 1641 /* Now make a zone for slab headers */ 1642 slabzone = uma_zcreate("UMA Slabs", 1643 slabsize, 1644 NULL, NULL, NULL, NULL, 1645 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1646 1647 /* 1648 * We also create a zone for the bigger slabs with reference 1649 * counts in them, to accomodate UMA_ZONE_REFCNT zones. 1650 */ 1651 slabsize = uma_max_ipers_ref * UMA_FRITMREF_SZ; 1652 slabsize += sizeof(struct uma_slab_refcnt); 1653 slabrefzone = uma_zcreate("UMA RCntSlabs", 1654 slabsize, 1655 NULL, NULL, NULL, NULL, 1656 UMA_ALIGN_PTR, 1657 UMA_ZFLAG_INTERNAL); 1658 1659 hashzone = uma_zcreate("UMA Hash", 1660 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 1661 NULL, NULL, NULL, NULL, 1662 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1663 1664 bucket_init(); 1665 1666 #ifdef UMA_MD_SMALL_ALLOC 1667 booted = 1; 1668 #endif 1669 1670 #ifdef UMA_DEBUG 1671 printf("UMA startup complete.\n"); 1672 #endif 1673 } 1674 1675 /* see uma.h */ 1676 void 1677 uma_startup2(void) 1678 { 1679 booted = 1; 1680 bucket_enable(); 1681 #ifdef UMA_DEBUG 1682 printf("UMA startup2 complete.\n"); 1683 #endif 1684 } 1685 1686 /* 1687 * Initialize our callout handle 1688 * 1689 */ 1690 1691 static void 1692 uma_startup3(void) 1693 { 1694 #ifdef UMA_DEBUG 1695 printf("Starting callout.\n"); 1696 #endif 1697 callout_init(&uma_callout, CALLOUT_MPSAFE); 1698 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 1699 #ifdef UMA_DEBUG 1700 printf("UMA startup3 complete.\n"); 1701 #endif 1702 } 1703 1704 static uma_zone_t 1705 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 1706 int align, u_int32_t flags) 1707 { 1708 struct uma_kctor_args args; 1709 1710 args.size = size; 1711 args.uminit = uminit; 1712 args.fini = fini; 1713 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 1714 args.flags = flags; 1715 args.zone = zone; 1716 return (uma_zalloc_internal(kegs, &args, M_WAITOK)); 1717 } 1718 1719 /* See uma.h */ 1720 void 1721 uma_set_align(int align) 1722 { 1723 1724 if (align != UMA_ALIGN_CACHE) 1725 uma_align_cache = align; 1726 } 1727 1728 /* See uma.h */ 1729 uma_zone_t 1730 uma_zcreate(char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 1731 uma_init uminit, uma_fini fini, int align, u_int32_t flags) 1732 1733 { 1734 struct uma_zctor_args args; 1735 1736 /* This stuff is essential for the zone ctor */ 1737 args.name = name; 1738 args.size = size; 1739 args.ctor = ctor; 1740 args.dtor = dtor; 1741 args.uminit = uminit; 1742 args.fini = fini; 1743 args.align = align; 1744 args.flags = flags; 1745 args.keg = NULL; 1746 1747 return (uma_zalloc_internal(zones, &args, M_WAITOK)); 1748 } 1749 1750 /* See uma.h */ 1751 uma_zone_t 1752 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 1753 uma_init zinit, uma_fini zfini, uma_zone_t master) 1754 { 1755 struct uma_zctor_args args; 1756 1757 args.name = name; 1758 args.size = master->uz_keg->uk_size; 1759 args.ctor = ctor; 1760 args.dtor = dtor; 1761 args.uminit = zinit; 1762 args.fini = zfini; 1763 args.align = master->uz_keg->uk_align; 1764 args.flags = master->uz_keg->uk_flags | UMA_ZONE_SECONDARY; 1765 args.keg = master->uz_keg; 1766 1767 return (uma_zalloc_internal(zones, &args, M_WAITOK)); 1768 } 1769 1770 /* See uma.h */ 1771 void 1772 uma_zdestroy(uma_zone_t zone) 1773 { 1774 1775 uma_zfree_internal(zones, zone, NULL, SKIP_NONE, ZFREE_STATFREE); 1776 } 1777 1778 /* See uma.h */ 1779 void * 1780 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 1781 { 1782 void *item; 1783 uma_cache_t cache; 1784 uma_bucket_t bucket; 1785 int cpu; 1786 1787 /* This is the fast path allocation */ 1788 #ifdef UMA_DEBUG_ALLOC_1 1789 printf("Allocating one item from %s(%p)\n", zone->uz_name, zone); 1790 #endif 1791 CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread, 1792 zone->uz_name, flags); 1793 1794 if (flags & M_WAITOK) { 1795 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 1796 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 1797 } 1798 1799 /* 1800 * If possible, allocate from the per-CPU cache. There are two 1801 * requirements for safe access to the per-CPU cache: (1) the thread 1802 * accessing the cache must not be preempted or yield during access, 1803 * and (2) the thread must not migrate CPUs without switching which 1804 * cache it accesses. We rely on a critical section to prevent 1805 * preemption and migration. We release the critical section in 1806 * order to acquire the zone mutex if we are unable to allocate from 1807 * the current cache; when we re-acquire the critical section, we 1808 * must detect and handle migration if it has occurred. 1809 */ 1810 zalloc_restart: 1811 critical_enter(); 1812 cpu = curcpu; 1813 cache = &zone->uz_cpu[cpu]; 1814 1815 zalloc_start: 1816 bucket = cache->uc_allocbucket; 1817 1818 if (bucket) { 1819 if (bucket->ub_cnt > 0) { 1820 bucket->ub_cnt--; 1821 item = bucket->ub_bucket[bucket->ub_cnt]; 1822 #ifdef INVARIANTS 1823 bucket->ub_bucket[bucket->ub_cnt] = NULL; 1824 #endif 1825 KASSERT(item != NULL, 1826 ("uma_zalloc: Bucket pointer mangled.")); 1827 cache->uc_allocs++; 1828 critical_exit(); 1829 #ifdef INVARIANTS 1830 ZONE_LOCK(zone); 1831 uma_dbg_alloc(zone, NULL, item); 1832 ZONE_UNLOCK(zone); 1833 #endif 1834 if (zone->uz_ctor != NULL) { 1835 if (zone->uz_ctor(item, zone->uz_keg->uk_size, 1836 udata, flags) != 0) { 1837 uma_zfree_internal(zone, item, udata, 1838 SKIP_DTOR, ZFREE_STATFAIL | 1839 ZFREE_STATFREE); 1840 return (NULL); 1841 } 1842 } 1843 if (flags & M_ZERO) 1844 bzero(item, zone->uz_keg->uk_size); 1845 return (item); 1846 } else if (cache->uc_freebucket) { 1847 /* 1848 * We have run out of items in our allocbucket. 1849 * See if we can switch with our free bucket. 1850 */ 1851 if (cache->uc_freebucket->ub_cnt > 0) { 1852 #ifdef UMA_DEBUG_ALLOC 1853 printf("uma_zalloc: Swapping empty with" 1854 " alloc.\n"); 1855 #endif 1856 bucket = cache->uc_freebucket; 1857 cache->uc_freebucket = cache->uc_allocbucket; 1858 cache->uc_allocbucket = bucket; 1859 1860 goto zalloc_start; 1861 } 1862 } 1863 } 1864 /* 1865 * Attempt to retrieve the item from the per-CPU cache has failed, so 1866 * we must go back to the zone. This requires the zone lock, so we 1867 * must drop the critical section, then re-acquire it when we go back 1868 * to the cache. Since the critical section is released, we may be 1869 * preempted or migrate. As such, make sure not to maintain any 1870 * thread-local state specific to the cache from prior to releasing 1871 * the critical section. 1872 */ 1873 critical_exit(); 1874 ZONE_LOCK(zone); 1875 critical_enter(); 1876 cpu = curcpu; 1877 cache = &zone->uz_cpu[cpu]; 1878 bucket = cache->uc_allocbucket; 1879 if (bucket != NULL) { 1880 if (bucket->ub_cnt > 0) { 1881 ZONE_UNLOCK(zone); 1882 goto zalloc_start; 1883 } 1884 bucket = cache->uc_freebucket; 1885 if (bucket != NULL && bucket->ub_cnt > 0) { 1886 ZONE_UNLOCK(zone); 1887 goto zalloc_start; 1888 } 1889 } 1890 1891 /* Since we have locked the zone we may as well send back our stats */ 1892 zone->uz_allocs += cache->uc_allocs; 1893 cache->uc_allocs = 0; 1894 zone->uz_frees += cache->uc_frees; 1895 cache->uc_frees = 0; 1896 1897 /* Our old one is now a free bucket */ 1898 if (cache->uc_allocbucket) { 1899 KASSERT(cache->uc_allocbucket->ub_cnt == 0, 1900 ("uma_zalloc_arg: Freeing a non free bucket.")); 1901 LIST_INSERT_HEAD(&zone->uz_free_bucket, 1902 cache->uc_allocbucket, ub_link); 1903 cache->uc_allocbucket = NULL; 1904 } 1905 1906 /* Check the free list for a new alloc bucket */ 1907 if ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) { 1908 KASSERT(bucket->ub_cnt != 0, 1909 ("uma_zalloc_arg: Returning an empty bucket.")); 1910 1911 LIST_REMOVE(bucket, ub_link); 1912 cache->uc_allocbucket = bucket; 1913 ZONE_UNLOCK(zone); 1914 goto zalloc_start; 1915 } 1916 /* We are no longer associated with this CPU. */ 1917 critical_exit(); 1918 1919 /* Bump up our uz_count so we get here less */ 1920 if (zone->uz_count < BUCKET_MAX) 1921 zone->uz_count++; 1922 1923 /* 1924 * Now lets just fill a bucket and put it on the free list. If that 1925 * works we'll restart the allocation from the begining. 1926 */ 1927 if (uma_zalloc_bucket(zone, flags)) { 1928 ZONE_UNLOCK(zone); 1929 goto zalloc_restart; 1930 } 1931 ZONE_UNLOCK(zone); 1932 /* 1933 * We may not be able to get a bucket so return an actual item. 1934 */ 1935 #ifdef UMA_DEBUG 1936 printf("uma_zalloc_arg: Bucketzone returned NULL\n"); 1937 #endif 1938 1939 return (uma_zalloc_internal(zone, udata, flags)); 1940 } 1941 1942 static uma_slab_t 1943 uma_zone_slab(uma_zone_t zone, int flags) 1944 { 1945 uma_slab_t slab; 1946 uma_keg_t keg; 1947 1948 keg = zone->uz_keg; 1949 1950 /* 1951 * This is to prevent us from recursively trying to allocate 1952 * buckets. The problem is that if an allocation forces us to 1953 * grab a new bucket we will call page_alloc, which will go off 1954 * and cause the vm to allocate vm_map_entries. If we need new 1955 * buckets there too we will recurse in kmem_alloc and bad 1956 * things happen. So instead we return a NULL bucket, and make 1957 * the code that allocates buckets smart enough to deal with it 1958 * 1959 * XXX: While we want this protection for the bucket zones so that 1960 * recursion from the VM is handled (and the calling code that 1961 * allocates buckets knows how to deal with it), we do not want 1962 * to prevent allocation from the slab header zones (slabzone 1963 * and slabrefzone) if uk_recurse is not zero for them. The 1964 * reason is that it could lead to NULL being returned for 1965 * slab header allocations even in the M_WAITOK case, and the 1966 * caller can't handle that. 1967 */ 1968 if (keg->uk_flags & UMA_ZFLAG_INTERNAL && keg->uk_recurse != 0) 1969 if ((zone != slabzone) && (zone != slabrefzone)) 1970 return (NULL); 1971 1972 slab = NULL; 1973 1974 for (;;) { 1975 /* 1976 * Find a slab with some space. Prefer slabs that are partially 1977 * used over those that are totally full. This helps to reduce 1978 * fragmentation. 1979 */ 1980 if (keg->uk_free != 0) { 1981 if (!LIST_EMPTY(&keg->uk_part_slab)) { 1982 slab = LIST_FIRST(&keg->uk_part_slab); 1983 } else { 1984 slab = LIST_FIRST(&keg->uk_free_slab); 1985 LIST_REMOVE(slab, us_link); 1986 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, 1987 us_link); 1988 } 1989 return (slab); 1990 } 1991 1992 /* 1993 * M_NOVM means don't ask at all! 1994 */ 1995 if (flags & M_NOVM) 1996 break; 1997 1998 if (keg->uk_maxpages && 1999 keg->uk_pages >= keg->uk_maxpages) { 2000 keg->uk_flags |= UMA_ZFLAG_FULL; 2001 2002 if (flags & M_NOWAIT) 2003 break; 2004 else 2005 msleep(keg, &keg->uk_lock, PVM, 2006 "zonelimit", 0); 2007 continue; 2008 } 2009 keg->uk_recurse++; 2010 slab = slab_zalloc(zone, flags); 2011 keg->uk_recurse--; 2012 2013 /* 2014 * If we got a slab here it's safe to mark it partially used 2015 * and return. We assume that the caller is going to remove 2016 * at least one item. 2017 */ 2018 if (slab) { 2019 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2020 return (slab); 2021 } 2022 /* 2023 * We might not have been able to get a slab but another cpu 2024 * could have while we were unlocked. Check again before we 2025 * fail. 2026 */ 2027 if (flags & M_NOWAIT) 2028 flags |= M_NOVM; 2029 } 2030 return (slab); 2031 } 2032 2033 static void * 2034 uma_slab_alloc(uma_zone_t zone, uma_slab_t slab) 2035 { 2036 uma_keg_t keg; 2037 uma_slabrefcnt_t slabref; 2038 void *item; 2039 u_int8_t freei; 2040 2041 keg = zone->uz_keg; 2042 2043 freei = slab->us_firstfree; 2044 if (keg->uk_flags & UMA_ZONE_REFCNT) { 2045 slabref = (uma_slabrefcnt_t)slab; 2046 slab->us_firstfree = slabref->us_freelist[freei].us_item; 2047 } else { 2048 slab->us_firstfree = slab->us_freelist[freei].us_item; 2049 } 2050 item = slab->us_data + (keg->uk_rsize * freei); 2051 2052 slab->us_freecount--; 2053 keg->uk_free--; 2054 #ifdef INVARIANTS 2055 uma_dbg_alloc(zone, slab, item); 2056 #endif 2057 /* Move this slab to the full list */ 2058 if (slab->us_freecount == 0) { 2059 LIST_REMOVE(slab, us_link); 2060 LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link); 2061 } 2062 2063 return (item); 2064 } 2065 2066 static int 2067 uma_zalloc_bucket(uma_zone_t zone, int flags) 2068 { 2069 uma_bucket_t bucket; 2070 uma_slab_t slab; 2071 int16_t saved; 2072 int max, origflags = flags; 2073 2074 /* 2075 * Try this zone's free list first so we don't allocate extra buckets. 2076 */ 2077 if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) { 2078 KASSERT(bucket->ub_cnt == 0, 2079 ("uma_zalloc_bucket: Bucket on free list is not empty.")); 2080 LIST_REMOVE(bucket, ub_link); 2081 } else { 2082 int bflags; 2083 2084 bflags = (flags & ~M_ZERO); 2085 if (zone->uz_keg->uk_flags & UMA_ZFLAG_CACHEONLY) 2086 bflags |= M_NOVM; 2087 2088 ZONE_UNLOCK(zone); 2089 bucket = bucket_alloc(zone->uz_count, bflags); 2090 ZONE_LOCK(zone); 2091 } 2092 2093 if (bucket == NULL) 2094 return (0); 2095 2096 #ifdef SMP 2097 /* 2098 * This code is here to limit the number of simultaneous bucket fills 2099 * for any given zone to the number of per cpu caches in this zone. This 2100 * is done so that we don't allocate more memory than we really need. 2101 */ 2102 if (zone->uz_fills >= mp_ncpus) 2103 goto done; 2104 2105 #endif 2106 zone->uz_fills++; 2107 2108 max = MIN(bucket->ub_entries, zone->uz_count); 2109 /* Try to keep the buckets totally full */ 2110 saved = bucket->ub_cnt; 2111 while (bucket->ub_cnt < max && 2112 (slab = uma_zone_slab(zone, flags)) != NULL) { 2113 while (slab->us_freecount && bucket->ub_cnt < max) { 2114 bucket->ub_bucket[bucket->ub_cnt++] = 2115 uma_slab_alloc(zone, slab); 2116 } 2117 2118 /* Don't block on the next fill */ 2119 flags |= M_NOWAIT; 2120 } 2121 2122 /* 2123 * We unlock here because we need to call the zone's init. 2124 * It should be safe to unlock because the slab dealt with 2125 * above is already on the appropriate list within the keg 2126 * and the bucket we filled is not yet on any list, so we 2127 * own it. 2128 */ 2129 if (zone->uz_init != NULL) { 2130 int i; 2131 2132 ZONE_UNLOCK(zone); 2133 for (i = saved; i < bucket->ub_cnt; i++) 2134 if (zone->uz_init(bucket->ub_bucket[i], 2135 zone->uz_keg->uk_size, origflags) != 0) 2136 break; 2137 /* 2138 * If we couldn't initialize the whole bucket, put the 2139 * rest back onto the freelist. 2140 */ 2141 if (i != bucket->ub_cnt) { 2142 int j; 2143 2144 for (j = i; j < bucket->ub_cnt; j++) { 2145 uma_zfree_internal(zone, bucket->ub_bucket[j], 2146 NULL, SKIP_FINI, 0); 2147 #ifdef INVARIANTS 2148 bucket->ub_bucket[j] = NULL; 2149 #endif 2150 } 2151 bucket->ub_cnt = i; 2152 } 2153 ZONE_LOCK(zone); 2154 } 2155 2156 zone->uz_fills--; 2157 if (bucket->ub_cnt != 0) { 2158 LIST_INSERT_HEAD(&zone->uz_full_bucket, 2159 bucket, ub_link); 2160 return (1); 2161 } 2162 #ifdef SMP 2163 done: 2164 #endif 2165 bucket_free(bucket); 2166 2167 return (0); 2168 } 2169 /* 2170 * Allocates an item for an internal zone 2171 * 2172 * Arguments 2173 * zone The zone to alloc for. 2174 * udata The data to be passed to the constructor. 2175 * flags M_WAITOK, M_NOWAIT, M_ZERO. 2176 * 2177 * Returns 2178 * NULL if there is no memory and M_NOWAIT is set 2179 * An item if successful 2180 */ 2181 2182 static void * 2183 uma_zalloc_internal(uma_zone_t zone, void *udata, int flags) 2184 { 2185 uma_keg_t keg; 2186 uma_slab_t slab; 2187 void *item; 2188 2189 item = NULL; 2190 keg = zone->uz_keg; 2191 2192 #ifdef UMA_DEBUG_ALLOC 2193 printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone); 2194 #endif 2195 ZONE_LOCK(zone); 2196 2197 slab = uma_zone_slab(zone, flags); 2198 if (slab == NULL) { 2199 zone->uz_fails++; 2200 ZONE_UNLOCK(zone); 2201 return (NULL); 2202 } 2203 2204 item = uma_slab_alloc(zone, slab); 2205 2206 zone->uz_allocs++; 2207 2208 ZONE_UNLOCK(zone); 2209 2210 /* 2211 * We have to call both the zone's init (not the keg's init) 2212 * and the zone's ctor. This is because the item is going from 2213 * a keg slab directly to the user, and the user is expecting it 2214 * to be both zone-init'd as well as zone-ctor'd. 2215 */ 2216 if (zone->uz_init != NULL) { 2217 if (zone->uz_init(item, keg->uk_size, flags) != 0) { 2218 uma_zfree_internal(zone, item, udata, SKIP_FINI, 2219 ZFREE_STATFAIL | ZFREE_STATFREE); 2220 return (NULL); 2221 } 2222 } 2223 if (zone->uz_ctor != NULL) { 2224 if (zone->uz_ctor(item, keg->uk_size, udata, flags) != 0) { 2225 uma_zfree_internal(zone, item, udata, SKIP_DTOR, 2226 ZFREE_STATFAIL | ZFREE_STATFREE); 2227 return (NULL); 2228 } 2229 } 2230 if (flags & M_ZERO) 2231 bzero(item, keg->uk_size); 2232 2233 return (item); 2234 } 2235 2236 /* See uma.h */ 2237 void 2238 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 2239 { 2240 uma_keg_t keg; 2241 uma_cache_t cache; 2242 uma_bucket_t bucket; 2243 int bflags; 2244 int cpu; 2245 2246 keg = zone->uz_keg; 2247 2248 #ifdef UMA_DEBUG_ALLOC_1 2249 printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone); 2250 #endif 2251 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 2252 zone->uz_name); 2253 2254 if (zone->uz_dtor) 2255 zone->uz_dtor(item, keg->uk_size, udata); 2256 #ifdef INVARIANTS 2257 ZONE_LOCK(zone); 2258 if (keg->uk_flags & UMA_ZONE_MALLOC) 2259 uma_dbg_free(zone, udata, item); 2260 else 2261 uma_dbg_free(zone, NULL, item); 2262 ZONE_UNLOCK(zone); 2263 #endif 2264 /* 2265 * The race here is acceptable. If we miss it we'll just have to wait 2266 * a little longer for the limits to be reset. 2267 */ 2268 if (keg->uk_flags & UMA_ZFLAG_FULL) 2269 goto zfree_internal; 2270 2271 /* 2272 * If possible, free to the per-CPU cache. There are two 2273 * requirements for safe access to the per-CPU cache: (1) the thread 2274 * accessing the cache must not be preempted or yield during access, 2275 * and (2) the thread must not migrate CPUs without switching which 2276 * cache it accesses. We rely on a critical section to prevent 2277 * preemption and migration. We release the critical section in 2278 * order to acquire the zone mutex if we are unable to free to the 2279 * current cache; when we re-acquire the critical section, we must 2280 * detect and handle migration if it has occurred. 2281 */ 2282 zfree_restart: 2283 critical_enter(); 2284 cpu = curcpu; 2285 cache = &zone->uz_cpu[cpu]; 2286 2287 zfree_start: 2288 bucket = cache->uc_freebucket; 2289 2290 if (bucket) { 2291 /* 2292 * Do we have room in our bucket? It is OK for this uz count 2293 * check to be slightly out of sync. 2294 */ 2295 2296 if (bucket->ub_cnt < bucket->ub_entries) { 2297 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 2298 ("uma_zfree: Freeing to non free bucket index.")); 2299 bucket->ub_bucket[bucket->ub_cnt] = item; 2300 bucket->ub_cnt++; 2301 cache->uc_frees++; 2302 critical_exit(); 2303 return; 2304 } else if (cache->uc_allocbucket) { 2305 #ifdef UMA_DEBUG_ALLOC 2306 printf("uma_zfree: Swapping buckets.\n"); 2307 #endif 2308 /* 2309 * We have run out of space in our freebucket. 2310 * See if we can switch with our alloc bucket. 2311 */ 2312 if (cache->uc_allocbucket->ub_cnt < 2313 cache->uc_freebucket->ub_cnt) { 2314 bucket = cache->uc_freebucket; 2315 cache->uc_freebucket = cache->uc_allocbucket; 2316 cache->uc_allocbucket = bucket; 2317 goto zfree_start; 2318 } 2319 } 2320 } 2321 /* 2322 * We can get here for two reasons: 2323 * 2324 * 1) The buckets are NULL 2325 * 2) The alloc and free buckets are both somewhat full. 2326 * 2327 * We must go back the zone, which requires acquiring the zone lock, 2328 * which in turn means we must release and re-acquire the critical 2329 * section. Since the critical section is released, we may be 2330 * preempted or migrate. As such, make sure not to maintain any 2331 * thread-local state specific to the cache from prior to releasing 2332 * the critical section. 2333 */ 2334 critical_exit(); 2335 ZONE_LOCK(zone); 2336 critical_enter(); 2337 cpu = curcpu; 2338 cache = &zone->uz_cpu[cpu]; 2339 if (cache->uc_freebucket != NULL) { 2340 if (cache->uc_freebucket->ub_cnt < 2341 cache->uc_freebucket->ub_entries) { 2342 ZONE_UNLOCK(zone); 2343 goto zfree_start; 2344 } 2345 if (cache->uc_allocbucket != NULL && 2346 (cache->uc_allocbucket->ub_cnt < 2347 cache->uc_freebucket->ub_cnt)) { 2348 ZONE_UNLOCK(zone); 2349 goto zfree_start; 2350 } 2351 } 2352 2353 /* Since we have locked the zone we may as well send back our stats */ 2354 zone->uz_allocs += cache->uc_allocs; 2355 cache->uc_allocs = 0; 2356 zone->uz_frees += cache->uc_frees; 2357 cache->uc_frees = 0; 2358 2359 bucket = cache->uc_freebucket; 2360 cache->uc_freebucket = NULL; 2361 2362 /* Can we throw this on the zone full list? */ 2363 if (bucket != NULL) { 2364 #ifdef UMA_DEBUG_ALLOC 2365 printf("uma_zfree: Putting old bucket on the free list.\n"); 2366 #endif 2367 /* ub_cnt is pointing to the last free item */ 2368 KASSERT(bucket->ub_cnt != 0, 2369 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n")); 2370 LIST_INSERT_HEAD(&zone->uz_full_bucket, 2371 bucket, ub_link); 2372 } 2373 if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) { 2374 LIST_REMOVE(bucket, ub_link); 2375 ZONE_UNLOCK(zone); 2376 cache->uc_freebucket = bucket; 2377 goto zfree_start; 2378 } 2379 /* We are no longer associated with this CPU. */ 2380 critical_exit(); 2381 2382 /* And the zone.. */ 2383 ZONE_UNLOCK(zone); 2384 2385 #ifdef UMA_DEBUG_ALLOC 2386 printf("uma_zfree: Allocating new free bucket.\n"); 2387 #endif 2388 bflags = M_NOWAIT; 2389 2390 if (keg->uk_flags & UMA_ZFLAG_CACHEONLY) 2391 bflags |= M_NOVM; 2392 bucket = bucket_alloc(zone->uz_count, bflags); 2393 if (bucket) { 2394 ZONE_LOCK(zone); 2395 LIST_INSERT_HEAD(&zone->uz_free_bucket, 2396 bucket, ub_link); 2397 ZONE_UNLOCK(zone); 2398 goto zfree_restart; 2399 } 2400 2401 /* 2402 * If nothing else caught this, we'll just do an internal free. 2403 */ 2404 zfree_internal: 2405 uma_zfree_internal(zone, item, udata, SKIP_DTOR, ZFREE_STATFREE); 2406 2407 return; 2408 } 2409 2410 /* 2411 * Frees an item to an INTERNAL zone or allocates a free bucket 2412 * 2413 * Arguments: 2414 * zone The zone to free to 2415 * item The item we're freeing 2416 * udata User supplied data for the dtor 2417 * skip Skip dtors and finis 2418 */ 2419 static void 2420 uma_zfree_internal(uma_zone_t zone, void *item, void *udata, 2421 enum zfreeskip skip, int flags) 2422 { 2423 uma_slab_t slab; 2424 uma_slabrefcnt_t slabref; 2425 uma_keg_t keg; 2426 u_int8_t *mem; 2427 u_int8_t freei; 2428 2429 keg = zone->uz_keg; 2430 2431 if (skip < SKIP_DTOR && zone->uz_dtor) 2432 zone->uz_dtor(item, keg->uk_size, udata); 2433 if (skip < SKIP_FINI && zone->uz_fini) 2434 zone->uz_fini(item, keg->uk_size); 2435 2436 ZONE_LOCK(zone); 2437 2438 if (flags & ZFREE_STATFAIL) 2439 zone->uz_fails++; 2440 if (flags & ZFREE_STATFREE) 2441 zone->uz_frees++; 2442 2443 if (!(keg->uk_flags & UMA_ZONE_MALLOC)) { 2444 mem = (u_int8_t *)((unsigned long)item & (~UMA_SLAB_MASK)); 2445 if (keg->uk_flags & UMA_ZONE_HASH) 2446 slab = hash_sfind(&keg->uk_hash, mem); 2447 else { 2448 mem += keg->uk_pgoff; 2449 slab = (uma_slab_t)mem; 2450 } 2451 } else { 2452 slab = (uma_slab_t)udata; 2453 } 2454 2455 /* Do we need to remove from any lists? */ 2456 if (slab->us_freecount+1 == keg->uk_ipers) { 2457 LIST_REMOVE(slab, us_link); 2458 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 2459 } else if (slab->us_freecount == 0) { 2460 LIST_REMOVE(slab, us_link); 2461 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2462 } 2463 2464 /* Slab management stuff */ 2465 freei = ((unsigned long)item - (unsigned long)slab->us_data) 2466 / keg->uk_rsize; 2467 2468 #ifdef INVARIANTS 2469 if (!skip) 2470 uma_dbg_free(zone, slab, item); 2471 #endif 2472 2473 if (keg->uk_flags & UMA_ZONE_REFCNT) { 2474 slabref = (uma_slabrefcnt_t)slab; 2475 slabref->us_freelist[freei].us_item = slab->us_firstfree; 2476 } else { 2477 slab->us_freelist[freei].us_item = slab->us_firstfree; 2478 } 2479 slab->us_firstfree = freei; 2480 slab->us_freecount++; 2481 2482 /* Zone statistics */ 2483 keg->uk_free++; 2484 2485 if (keg->uk_flags & UMA_ZFLAG_FULL) { 2486 if (keg->uk_pages < keg->uk_maxpages) 2487 keg->uk_flags &= ~UMA_ZFLAG_FULL; 2488 2489 /* 2490 * We can handle one more allocation. Since we're clearing ZFLAG_FULL, 2491 * wake up all procs blocked on pages. This should be uncommon, so 2492 * keeping this simple for now (rather than adding count of blocked 2493 * threads etc). 2494 */ 2495 wakeup(keg); 2496 } 2497 2498 ZONE_UNLOCK(zone); 2499 } 2500 2501 /* See uma.h */ 2502 void 2503 uma_zone_set_max(uma_zone_t zone, int nitems) 2504 { 2505 uma_keg_t keg; 2506 2507 keg = zone->uz_keg; 2508 ZONE_LOCK(zone); 2509 if (keg->uk_ppera > 1) 2510 keg->uk_maxpages = nitems * keg->uk_ppera; 2511 else 2512 keg->uk_maxpages = nitems / keg->uk_ipers; 2513 2514 if (keg->uk_maxpages * keg->uk_ipers < nitems) 2515 keg->uk_maxpages++; 2516 2517 ZONE_UNLOCK(zone); 2518 } 2519 2520 /* See uma.h */ 2521 void 2522 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 2523 { 2524 ZONE_LOCK(zone); 2525 KASSERT(zone->uz_keg->uk_pages == 0, 2526 ("uma_zone_set_init on non-empty keg")); 2527 zone->uz_keg->uk_init = uminit; 2528 ZONE_UNLOCK(zone); 2529 } 2530 2531 /* See uma.h */ 2532 void 2533 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 2534 { 2535 ZONE_LOCK(zone); 2536 KASSERT(zone->uz_keg->uk_pages == 0, 2537 ("uma_zone_set_fini on non-empty keg")); 2538 zone->uz_keg->uk_fini = fini; 2539 ZONE_UNLOCK(zone); 2540 } 2541 2542 /* See uma.h */ 2543 void 2544 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 2545 { 2546 ZONE_LOCK(zone); 2547 KASSERT(zone->uz_keg->uk_pages == 0, 2548 ("uma_zone_set_zinit on non-empty keg")); 2549 zone->uz_init = zinit; 2550 ZONE_UNLOCK(zone); 2551 } 2552 2553 /* See uma.h */ 2554 void 2555 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 2556 { 2557 ZONE_LOCK(zone); 2558 KASSERT(zone->uz_keg->uk_pages == 0, 2559 ("uma_zone_set_zfini on non-empty keg")); 2560 zone->uz_fini = zfini; 2561 ZONE_UNLOCK(zone); 2562 } 2563 2564 /* See uma.h */ 2565 /* XXX uk_freef is not actually used with the zone locked */ 2566 void 2567 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 2568 { 2569 ZONE_LOCK(zone); 2570 zone->uz_keg->uk_freef = freef; 2571 ZONE_UNLOCK(zone); 2572 } 2573 2574 /* See uma.h */ 2575 /* XXX uk_allocf is not actually used with the zone locked */ 2576 void 2577 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 2578 { 2579 ZONE_LOCK(zone); 2580 zone->uz_keg->uk_flags |= UMA_ZFLAG_PRIVALLOC; 2581 zone->uz_keg->uk_allocf = allocf; 2582 ZONE_UNLOCK(zone); 2583 } 2584 2585 /* See uma.h */ 2586 int 2587 uma_zone_set_obj(uma_zone_t zone, struct vm_object *obj, int count) 2588 { 2589 uma_keg_t keg; 2590 vm_offset_t kva; 2591 int pages; 2592 2593 keg = zone->uz_keg; 2594 pages = count / keg->uk_ipers; 2595 2596 if (pages * keg->uk_ipers < count) 2597 pages++; 2598 2599 kva = kmem_alloc_nofault(kernel_map, pages * UMA_SLAB_SIZE); 2600 2601 if (kva == 0) 2602 return (0); 2603 if (obj == NULL) { 2604 obj = vm_object_allocate(OBJT_DEFAULT, 2605 pages); 2606 } else { 2607 VM_OBJECT_LOCK_INIT(obj, "uma object"); 2608 _vm_object_allocate(OBJT_DEFAULT, 2609 pages, obj); 2610 } 2611 ZONE_LOCK(zone); 2612 keg->uk_kva = kva; 2613 keg->uk_obj = obj; 2614 keg->uk_maxpages = pages; 2615 keg->uk_allocf = obj_alloc; 2616 keg->uk_flags |= UMA_ZONE_NOFREE | UMA_ZFLAG_PRIVALLOC; 2617 ZONE_UNLOCK(zone); 2618 return (1); 2619 } 2620 2621 /* See uma.h */ 2622 void 2623 uma_prealloc(uma_zone_t zone, int items) 2624 { 2625 int slabs; 2626 uma_slab_t slab; 2627 uma_keg_t keg; 2628 2629 keg = zone->uz_keg; 2630 ZONE_LOCK(zone); 2631 slabs = items / keg->uk_ipers; 2632 if (slabs * keg->uk_ipers < items) 2633 slabs++; 2634 while (slabs > 0) { 2635 slab = slab_zalloc(zone, M_WAITOK); 2636 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 2637 slabs--; 2638 } 2639 ZONE_UNLOCK(zone); 2640 } 2641 2642 /* See uma.h */ 2643 u_int32_t * 2644 uma_find_refcnt(uma_zone_t zone, void *item) 2645 { 2646 uma_slabrefcnt_t slabref; 2647 uma_keg_t keg; 2648 u_int32_t *refcnt; 2649 int idx; 2650 2651 keg = zone->uz_keg; 2652 slabref = (uma_slabrefcnt_t)vtoslab((vm_offset_t)item & 2653 (~UMA_SLAB_MASK)); 2654 KASSERT(slabref != NULL && slabref->us_keg->uk_flags & UMA_ZONE_REFCNT, 2655 ("uma_find_refcnt(): zone possibly not UMA_ZONE_REFCNT")); 2656 idx = ((unsigned long)item - (unsigned long)slabref->us_data) 2657 / keg->uk_rsize; 2658 refcnt = &slabref->us_freelist[idx].us_refcnt; 2659 return refcnt; 2660 } 2661 2662 /* See uma.h */ 2663 void 2664 uma_reclaim(void) 2665 { 2666 #ifdef UMA_DEBUG 2667 printf("UMA: vm asked us to release pages!\n"); 2668 #endif 2669 bucket_enable(); 2670 zone_foreach(zone_drain); 2671 /* 2672 * Some slabs may have been freed but this zone will be visited early 2673 * we visit again so that we can free pages that are empty once other 2674 * zones are drained. We have to do the same for buckets. 2675 */ 2676 zone_drain(slabzone); 2677 zone_drain(slabrefzone); 2678 bucket_zone_drain(); 2679 } 2680 2681 /* See uma.h */ 2682 int 2683 uma_zone_exhausted(uma_zone_t zone) 2684 { 2685 int full; 2686 2687 ZONE_LOCK(zone); 2688 full = (zone->uz_keg->uk_flags & UMA_ZFLAG_FULL); 2689 ZONE_UNLOCK(zone); 2690 return (full); 2691 } 2692 2693 int 2694 uma_zone_exhausted_nolock(uma_zone_t zone) 2695 { 2696 return (zone->uz_keg->uk_flags & UMA_ZFLAG_FULL); 2697 } 2698 2699 void * 2700 uma_large_malloc(int size, int wait) 2701 { 2702 void *mem; 2703 uma_slab_t slab; 2704 u_int8_t flags; 2705 2706 slab = uma_zalloc_internal(slabzone, NULL, wait); 2707 if (slab == NULL) 2708 return (NULL); 2709 mem = page_alloc(NULL, size, &flags, wait); 2710 if (mem) { 2711 vsetslab((vm_offset_t)mem, slab); 2712 slab->us_data = mem; 2713 slab->us_flags = flags | UMA_SLAB_MALLOC; 2714 slab->us_size = size; 2715 } else { 2716 uma_zfree_internal(slabzone, slab, NULL, SKIP_NONE, 2717 ZFREE_STATFAIL | ZFREE_STATFREE); 2718 } 2719 2720 return (mem); 2721 } 2722 2723 void 2724 uma_large_free(uma_slab_t slab) 2725 { 2726 vsetobj((vm_offset_t)slab->us_data, kmem_object); 2727 page_free(slab->us_data, slab->us_size, slab->us_flags); 2728 uma_zfree_internal(slabzone, slab, NULL, SKIP_NONE, ZFREE_STATFREE); 2729 } 2730 2731 void 2732 uma_print_stats(void) 2733 { 2734 zone_foreach(uma_print_zone); 2735 } 2736 2737 static void 2738 slab_print(uma_slab_t slab) 2739 { 2740 printf("slab: keg %p, data %p, freecount %d, firstfree %d\n", 2741 slab->us_keg, slab->us_data, slab->us_freecount, 2742 slab->us_firstfree); 2743 } 2744 2745 static void 2746 cache_print(uma_cache_t cache) 2747 { 2748 printf("alloc: %p(%d), free: %p(%d)\n", 2749 cache->uc_allocbucket, 2750 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, 2751 cache->uc_freebucket, 2752 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0); 2753 } 2754 2755 void 2756 uma_print_zone(uma_zone_t zone) 2757 { 2758 uma_cache_t cache; 2759 uma_keg_t keg; 2760 uma_slab_t slab; 2761 int i; 2762 2763 keg = zone->uz_keg; 2764 printf("%s(%p) size %d(%d) flags %d ipers %d ppera %d out %d free %d\n", 2765 zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags, 2766 keg->uk_ipers, keg->uk_ppera, 2767 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free); 2768 printf("Part slabs:\n"); 2769 LIST_FOREACH(slab, &keg->uk_part_slab, us_link) 2770 slab_print(slab); 2771 printf("Free slabs:\n"); 2772 LIST_FOREACH(slab, &keg->uk_free_slab, us_link) 2773 slab_print(slab); 2774 printf("Full slabs:\n"); 2775 LIST_FOREACH(slab, &keg->uk_full_slab, us_link) 2776 slab_print(slab); 2777 for (i = 0; i <= mp_maxid; i++) { 2778 if (CPU_ABSENT(i)) 2779 continue; 2780 cache = &zone->uz_cpu[i]; 2781 printf("CPU %d Cache:\n", i); 2782 cache_print(cache); 2783 } 2784 } 2785 2786 #ifdef DDB 2787 /* 2788 * Generate statistics across both the zone and its per-cpu cache's. Return 2789 * desired statistics if the pointer is non-NULL for that statistic. 2790 * 2791 * Note: does not update the zone statistics, as it can't safely clear the 2792 * per-CPU cache statistic. 2793 * 2794 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't 2795 * safe from off-CPU; we should modify the caches to track this information 2796 * directly so that we don't have to. 2797 */ 2798 static void 2799 uma_zone_sumstat(uma_zone_t z, int *cachefreep, u_int64_t *allocsp, 2800 u_int64_t *freesp) 2801 { 2802 uma_cache_t cache; 2803 u_int64_t allocs, frees; 2804 int cachefree, cpu; 2805 2806 allocs = frees = 0; 2807 cachefree = 0; 2808 for (cpu = 0; cpu <= mp_maxid; cpu++) { 2809 if (CPU_ABSENT(cpu)) 2810 continue; 2811 cache = &z->uz_cpu[cpu]; 2812 if (cache->uc_allocbucket != NULL) 2813 cachefree += cache->uc_allocbucket->ub_cnt; 2814 if (cache->uc_freebucket != NULL) 2815 cachefree += cache->uc_freebucket->ub_cnt; 2816 allocs += cache->uc_allocs; 2817 frees += cache->uc_frees; 2818 } 2819 allocs += z->uz_allocs; 2820 frees += z->uz_frees; 2821 if (cachefreep != NULL) 2822 *cachefreep = cachefree; 2823 if (allocsp != NULL) 2824 *allocsp = allocs; 2825 if (freesp != NULL) 2826 *freesp = frees; 2827 } 2828 #endif /* DDB */ 2829 2830 static int 2831 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 2832 { 2833 uma_keg_t kz; 2834 uma_zone_t z; 2835 int count; 2836 2837 count = 0; 2838 mtx_lock(&uma_mtx); 2839 LIST_FOREACH(kz, &uma_kegs, uk_link) { 2840 LIST_FOREACH(z, &kz->uk_zones, uz_link) 2841 count++; 2842 } 2843 mtx_unlock(&uma_mtx); 2844 return (sysctl_handle_int(oidp, &count, 0, req)); 2845 } 2846 2847 static int 2848 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 2849 { 2850 struct uma_stream_header ush; 2851 struct uma_type_header uth; 2852 struct uma_percpu_stat ups; 2853 uma_bucket_t bucket; 2854 struct sbuf sbuf; 2855 uma_cache_t cache; 2856 uma_keg_t kz; 2857 uma_zone_t z; 2858 char *buffer; 2859 int buflen, count, error, i; 2860 2861 mtx_lock(&uma_mtx); 2862 restart: 2863 mtx_assert(&uma_mtx, MA_OWNED); 2864 count = 0; 2865 LIST_FOREACH(kz, &uma_kegs, uk_link) { 2866 LIST_FOREACH(z, &kz->uk_zones, uz_link) 2867 count++; 2868 } 2869 mtx_unlock(&uma_mtx); 2870 2871 buflen = sizeof(ush) + count * (sizeof(uth) + sizeof(ups) * 2872 (mp_maxid + 1)) + 1; 2873 buffer = malloc(buflen, M_TEMP, M_WAITOK | M_ZERO); 2874 2875 mtx_lock(&uma_mtx); 2876 i = 0; 2877 LIST_FOREACH(kz, &uma_kegs, uk_link) { 2878 LIST_FOREACH(z, &kz->uk_zones, uz_link) 2879 i++; 2880 } 2881 if (i > count) { 2882 free(buffer, M_TEMP); 2883 goto restart; 2884 } 2885 count = i; 2886 2887 sbuf_new(&sbuf, buffer, buflen, SBUF_FIXEDLEN); 2888 2889 /* 2890 * Insert stream header. 2891 */ 2892 bzero(&ush, sizeof(ush)); 2893 ush.ush_version = UMA_STREAM_VERSION; 2894 ush.ush_maxcpus = (mp_maxid + 1); 2895 ush.ush_count = count; 2896 if (sbuf_bcat(&sbuf, &ush, sizeof(ush)) < 0) { 2897 mtx_unlock(&uma_mtx); 2898 error = ENOMEM; 2899 goto out; 2900 } 2901 2902 LIST_FOREACH(kz, &uma_kegs, uk_link) { 2903 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 2904 bzero(&uth, sizeof(uth)); 2905 ZONE_LOCK(z); 2906 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 2907 uth.uth_align = kz->uk_align; 2908 uth.uth_pages = kz->uk_pages; 2909 uth.uth_keg_free = kz->uk_free; 2910 uth.uth_size = kz->uk_size; 2911 uth.uth_rsize = kz->uk_rsize; 2912 uth.uth_maxpages = kz->uk_maxpages; 2913 if (kz->uk_ppera > 1) 2914 uth.uth_limit = kz->uk_maxpages / 2915 kz->uk_ppera; 2916 else 2917 uth.uth_limit = kz->uk_maxpages * 2918 kz->uk_ipers; 2919 2920 /* 2921 * A zone is secondary is it is not the first entry 2922 * on the keg's zone list. 2923 */ 2924 if ((kz->uk_flags & UMA_ZONE_SECONDARY) && 2925 (LIST_FIRST(&kz->uk_zones) != z)) 2926 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 2927 2928 LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link) 2929 uth.uth_zone_free += bucket->ub_cnt; 2930 uth.uth_allocs = z->uz_allocs; 2931 uth.uth_frees = z->uz_frees; 2932 uth.uth_fails = z->uz_fails; 2933 if (sbuf_bcat(&sbuf, &uth, sizeof(uth)) < 0) { 2934 ZONE_UNLOCK(z); 2935 mtx_unlock(&uma_mtx); 2936 error = ENOMEM; 2937 goto out; 2938 } 2939 /* 2940 * While it is not normally safe to access the cache 2941 * bucket pointers while not on the CPU that owns the 2942 * cache, we only allow the pointers to be exchanged 2943 * without the zone lock held, not invalidated, so 2944 * accept the possible race associated with bucket 2945 * exchange during monitoring. 2946 */ 2947 for (i = 0; i < (mp_maxid + 1); i++) { 2948 bzero(&ups, sizeof(ups)); 2949 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) 2950 goto skip; 2951 if (CPU_ABSENT(i)) 2952 goto skip; 2953 cache = &z->uz_cpu[i]; 2954 if (cache->uc_allocbucket != NULL) 2955 ups.ups_cache_free += 2956 cache->uc_allocbucket->ub_cnt; 2957 if (cache->uc_freebucket != NULL) 2958 ups.ups_cache_free += 2959 cache->uc_freebucket->ub_cnt; 2960 ups.ups_allocs = cache->uc_allocs; 2961 ups.ups_frees = cache->uc_frees; 2962 skip: 2963 if (sbuf_bcat(&sbuf, &ups, sizeof(ups)) < 0) { 2964 ZONE_UNLOCK(z); 2965 mtx_unlock(&uma_mtx); 2966 error = ENOMEM; 2967 goto out; 2968 } 2969 } 2970 ZONE_UNLOCK(z); 2971 } 2972 } 2973 mtx_unlock(&uma_mtx); 2974 sbuf_finish(&sbuf); 2975 error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf)); 2976 out: 2977 free(buffer, M_TEMP); 2978 return (error); 2979 } 2980 2981 #ifdef DDB 2982 DB_SHOW_COMMAND(uma, db_show_uma) 2983 { 2984 u_int64_t allocs, frees; 2985 uma_bucket_t bucket; 2986 uma_keg_t kz; 2987 uma_zone_t z; 2988 int cachefree; 2989 2990 db_printf("%18s %8s %8s %8s %12s\n", "Zone", "Size", "Used", "Free", 2991 "Requests"); 2992 LIST_FOREACH(kz, &uma_kegs, uk_link) { 2993 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 2994 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 2995 allocs = z->uz_allocs; 2996 frees = z->uz_frees; 2997 cachefree = 0; 2998 } else 2999 uma_zone_sumstat(z, &cachefree, &allocs, 3000 &frees); 3001 if (!((kz->uk_flags & UMA_ZONE_SECONDARY) && 3002 (LIST_FIRST(&kz->uk_zones) != z))) 3003 cachefree += kz->uk_free; 3004 LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link) 3005 cachefree += bucket->ub_cnt; 3006 db_printf("%18s %8ju %8jd %8d %12ju\n", z->uz_name, 3007 (uintmax_t)kz->uk_size, 3008 (intmax_t)(allocs - frees), cachefree, 3009 (uintmax_t)allocs); 3010 } 3011 } 3012 } 3013 #endif 3014