1 /*- 2 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org> 3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 4 * Copyright (c) 2004-2006 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /* 30 * uma_core.c Implementation of the Universal Memory allocator 31 * 32 * This allocator is intended to replace the multitude of similar object caches 33 * in the standard FreeBSD kernel. The intent is to be flexible as well as 34 * effecient. A primary design goal is to return unused memory to the rest of 35 * the system. This will make the system as a whole more flexible due to the 36 * ability to move memory to subsystems which most need it instead of leaving 37 * pools of reserved memory unused. 38 * 39 * The basic ideas stem from similar slab/zone based allocators whose algorithms 40 * are well known. 41 * 42 */ 43 44 /* 45 * TODO: 46 * - Improve memory usage for large allocations 47 * - Investigate cache size adjustments 48 */ 49 50 #include <sys/cdefs.h> 51 __FBSDID("$FreeBSD$"); 52 53 /* I should really use ktr.. */ 54 /* 55 #define UMA_DEBUG 1 56 #define UMA_DEBUG_ALLOC 1 57 #define UMA_DEBUG_ALLOC_1 1 58 */ 59 60 #include "opt_ddb.h" 61 #include "opt_param.h" 62 #include "opt_vm.h" 63 64 #include <sys/param.h> 65 #include <sys/systm.h> 66 #include <sys/bitset.h> 67 #include <sys/kernel.h> 68 #include <sys/types.h> 69 #include <sys/queue.h> 70 #include <sys/malloc.h> 71 #include <sys/ktr.h> 72 #include <sys/lock.h> 73 #include <sys/sysctl.h> 74 #include <sys/mutex.h> 75 #include <sys/proc.h> 76 #include <sys/rwlock.h> 77 #include <sys/sbuf.h> 78 #include <sys/sched.h> 79 #include <sys/smp.h> 80 #include <sys/vmmeter.h> 81 82 #include <vm/vm.h> 83 #include <vm/vm_object.h> 84 #include <vm/vm_page.h> 85 #include <vm/vm_pageout.h> 86 #include <vm/vm_param.h> 87 #include <vm/vm_map.h> 88 #include <vm/vm_kern.h> 89 #include <vm/vm_extern.h> 90 #include <vm/uma.h> 91 #include <vm/uma_int.h> 92 #include <vm/uma_dbg.h> 93 94 #include <ddb/ddb.h> 95 96 #ifdef DEBUG_MEMGUARD 97 #include <vm/memguard.h> 98 #endif 99 100 /* 101 * This is the zone and keg from which all zones are spawned. The idea is that 102 * even the zone & keg heads are allocated from the allocator, so we use the 103 * bss section to bootstrap us. 104 */ 105 static struct uma_keg masterkeg; 106 static struct uma_zone masterzone_k; 107 static struct uma_zone masterzone_z; 108 static uma_zone_t kegs = &masterzone_k; 109 static uma_zone_t zones = &masterzone_z; 110 111 /* This is the zone from which all of uma_slab_t's are allocated. */ 112 static uma_zone_t slabzone; 113 static uma_zone_t slabrefzone; /* With refcounters (for UMA_ZONE_REFCNT) */ 114 115 /* 116 * The initial hash tables come out of this zone so they can be allocated 117 * prior to malloc coming up. 118 */ 119 static uma_zone_t hashzone; 120 121 /* The boot-time adjusted value for cache line alignment. */ 122 int uma_align_cache = 64 - 1; 123 124 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 125 126 /* 127 * Are we allowed to allocate buckets? 128 */ 129 static int bucketdisable = 1; 130 131 /* Linked list of all kegs in the system */ 132 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 133 134 /* Linked list of all cache-only zones in the system */ 135 static LIST_HEAD(,uma_zone) uma_cachezones = 136 LIST_HEAD_INITIALIZER(uma_cachezones); 137 138 /* This mutex protects the keg list */ 139 static struct mtx_padalign uma_mtx; 140 141 /* Linked list of boot time pages */ 142 static LIST_HEAD(,uma_slab) uma_boot_pages = 143 LIST_HEAD_INITIALIZER(uma_boot_pages); 144 145 /* This mutex protects the boot time pages list */ 146 static struct mtx_padalign uma_boot_pages_mtx; 147 148 /* Is the VM done starting up? */ 149 static int booted = 0; 150 #define UMA_STARTUP 1 151 #define UMA_STARTUP2 2 152 153 /* 154 * Only mbuf clusters use ref zones. Just provide enough references 155 * to support the one user. New code should not use the ref facility. 156 */ 157 static const u_int uma_max_ipers_ref = PAGE_SIZE / MCLBYTES; 158 159 /* 160 * This is the handle used to schedule events that need to happen 161 * outside of the allocation fast path. 162 */ 163 static struct callout uma_callout; 164 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 165 166 /* 167 * This structure is passed as the zone ctor arg so that I don't have to create 168 * a special allocation function just for zones. 169 */ 170 struct uma_zctor_args { 171 const char *name; 172 size_t size; 173 uma_ctor ctor; 174 uma_dtor dtor; 175 uma_init uminit; 176 uma_fini fini; 177 uma_import import; 178 uma_release release; 179 void *arg; 180 uma_keg_t keg; 181 int align; 182 uint32_t flags; 183 }; 184 185 struct uma_kctor_args { 186 uma_zone_t zone; 187 size_t size; 188 uma_init uminit; 189 uma_fini fini; 190 int align; 191 uint32_t flags; 192 }; 193 194 struct uma_bucket_zone { 195 uma_zone_t ubz_zone; 196 char *ubz_name; 197 int ubz_entries; /* Number of items it can hold. */ 198 int ubz_maxsize; /* Maximum allocation size per-item. */ 199 }; 200 201 /* 202 * Compute the actual number of bucket entries to pack them in power 203 * of two sizes for more efficient space utilization. 204 */ 205 #define BUCKET_SIZE(n) \ 206 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 207 208 #define BUCKET_MAX BUCKET_SIZE(256) 209 210 struct uma_bucket_zone bucket_zones[] = { 211 { NULL, "4 Bucket", BUCKET_SIZE(4), 4096 }, 212 { NULL, "6 Bucket", BUCKET_SIZE(6), 3072 }, 213 { NULL, "8 Bucket", BUCKET_SIZE(8), 2048 }, 214 { NULL, "12 Bucket", BUCKET_SIZE(12), 1536 }, 215 { NULL, "16 Bucket", BUCKET_SIZE(16), 1024 }, 216 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 217 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 218 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 219 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 220 { NULL, NULL, 0} 221 }; 222 223 /* 224 * Flags and enumerations to be passed to internal functions. 225 */ 226 enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI }; 227 228 /* Prototypes.. */ 229 230 static void *noobj_alloc(uma_zone_t, int, uint8_t *, int); 231 static void *page_alloc(uma_zone_t, int, uint8_t *, int); 232 static void *startup_alloc(uma_zone_t, int, uint8_t *, int); 233 static void page_free(void *, int, uint8_t); 234 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int); 235 static void cache_drain(uma_zone_t); 236 static void bucket_drain(uma_zone_t, uma_bucket_t); 237 static void bucket_cache_drain(uma_zone_t zone); 238 static int keg_ctor(void *, int, void *, int); 239 static void keg_dtor(void *, int, void *); 240 static int zone_ctor(void *, int, void *, int); 241 static void zone_dtor(void *, int, void *); 242 static int zero_init(void *, int, int); 243 static void keg_small_init(uma_keg_t keg); 244 static void keg_large_init(uma_keg_t keg); 245 static void zone_foreach(void (*zfunc)(uma_zone_t)); 246 static void zone_timeout(uma_zone_t zone); 247 static int hash_alloc(struct uma_hash *); 248 static int hash_expand(struct uma_hash *, struct uma_hash *); 249 static void hash_free(struct uma_hash *hash); 250 static void uma_timeout(void *); 251 static void uma_startup3(void); 252 static void *zone_alloc_item(uma_zone_t, void *, int); 253 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 254 static void bucket_enable(void); 255 static void bucket_init(void); 256 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 257 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 258 static void bucket_zone_drain(void); 259 static uma_bucket_t zone_alloc_bucket(uma_zone_t zone, void *, int flags); 260 static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags); 261 static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags); 262 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 263 static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item); 264 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 265 uma_fini fini, int align, uint32_t flags); 266 static int zone_import(uma_zone_t zone, void **bucket, int max, int flags); 267 static void zone_release(uma_zone_t zone, void **bucket, int cnt); 268 static void uma_zero_item(void *item, uma_zone_t zone); 269 270 void uma_print_zone(uma_zone_t); 271 void uma_print_stats(void); 272 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 273 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 274 275 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 276 277 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 278 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 279 280 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 281 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 282 283 static int zone_warnings = 1; 284 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 285 "Warn when UMA zones becomes full"); 286 287 /* 288 * This routine checks to see whether or not it's safe to enable buckets. 289 */ 290 static void 291 bucket_enable(void) 292 { 293 bucketdisable = vm_page_count_min(); 294 } 295 296 /* 297 * Initialize bucket_zones, the array of zones of buckets of various sizes. 298 * 299 * For each zone, calculate the memory required for each bucket, consisting 300 * of the header and an array of pointers. 301 */ 302 static void 303 bucket_init(void) 304 { 305 struct uma_bucket_zone *ubz; 306 int size; 307 int i; 308 309 for (i = 0, ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 310 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 311 size += sizeof(void *) * ubz->ubz_entries; 312 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 313 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 314 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET); 315 } 316 } 317 318 /* 319 * Given a desired number of entries for a bucket, return the zone from which 320 * to allocate the bucket. 321 */ 322 static struct uma_bucket_zone * 323 bucket_zone_lookup(int entries) 324 { 325 struct uma_bucket_zone *ubz; 326 327 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 328 if (ubz->ubz_entries >= entries) 329 return (ubz); 330 ubz--; 331 return (ubz); 332 } 333 334 static int 335 bucket_select(int size) 336 { 337 struct uma_bucket_zone *ubz; 338 339 ubz = &bucket_zones[0]; 340 if (size > ubz->ubz_maxsize) 341 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 342 343 for (; ubz->ubz_entries != 0; ubz++) 344 if (ubz->ubz_maxsize < size) 345 break; 346 ubz--; 347 return (ubz->ubz_entries); 348 } 349 350 static uma_bucket_t 351 bucket_alloc(uma_zone_t zone, void *udata, int flags) 352 { 353 struct uma_bucket_zone *ubz; 354 uma_bucket_t bucket; 355 356 /* 357 * This is to stop us from allocating per cpu buckets while we're 358 * running out of vm.boot_pages. Otherwise, we would exhaust the 359 * boot pages. This also prevents us from allocating buckets in 360 * low memory situations. 361 */ 362 if (bucketdisable) 363 return (NULL); 364 /* 365 * To limit bucket recursion we store the original zone flags 366 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 367 * NOVM flag to persist even through deep recursions. We also 368 * store ZFLAG_BUCKET once we have recursed attempting to allocate 369 * a bucket for a bucket zone so we do not allow infinite bucket 370 * recursion. This cookie will even persist to frees of unused 371 * buckets via the allocation path or bucket allocations in the 372 * free path. 373 */ 374 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 375 udata = (void *)(uintptr_t)zone->uz_flags; 376 else { 377 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 378 return (NULL); 379 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 380 } 381 if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY) 382 flags |= M_NOVM; 383 ubz = bucket_zone_lookup(zone->uz_count); 384 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 385 ubz++; 386 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 387 if (bucket) { 388 #ifdef INVARIANTS 389 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 390 #endif 391 bucket->ub_cnt = 0; 392 bucket->ub_entries = ubz->ubz_entries; 393 } 394 395 return (bucket); 396 } 397 398 static void 399 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 400 { 401 struct uma_bucket_zone *ubz; 402 403 KASSERT(bucket->ub_cnt == 0, 404 ("bucket_free: Freeing a non free bucket.")); 405 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 406 udata = (void *)(uintptr_t)zone->uz_flags; 407 ubz = bucket_zone_lookup(bucket->ub_entries); 408 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 409 } 410 411 static void 412 bucket_zone_drain(void) 413 { 414 struct uma_bucket_zone *ubz; 415 416 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 417 zone_drain(ubz->ubz_zone); 418 } 419 420 static void 421 zone_log_warning(uma_zone_t zone) 422 { 423 static const struct timeval warninterval = { 300, 0 }; 424 425 if (!zone_warnings || zone->uz_warning == NULL) 426 return; 427 428 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 429 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 430 } 431 432 static void 433 zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t)) 434 { 435 uma_klink_t klink; 436 437 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) 438 kegfn(klink->kl_keg); 439 } 440 441 /* 442 * Routine called by timeout which is used to fire off some time interval 443 * based calculations. (stats, hash size, etc.) 444 * 445 * Arguments: 446 * arg Unused 447 * 448 * Returns: 449 * Nothing 450 */ 451 static void 452 uma_timeout(void *unused) 453 { 454 bucket_enable(); 455 zone_foreach(zone_timeout); 456 457 /* Reschedule this event */ 458 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 459 } 460 461 /* 462 * Routine to perform timeout driven calculations. This expands the 463 * hashes and does per cpu statistics aggregation. 464 * 465 * Returns nothing. 466 */ 467 static void 468 keg_timeout(uma_keg_t keg) 469 { 470 471 KEG_LOCK(keg); 472 /* 473 * Expand the keg hash table. 474 * 475 * This is done if the number of slabs is larger than the hash size. 476 * What I'm trying to do here is completely reduce collisions. This 477 * may be a little aggressive. Should I allow for two collisions max? 478 */ 479 if (keg->uk_flags & UMA_ZONE_HASH && 480 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) { 481 struct uma_hash newhash; 482 struct uma_hash oldhash; 483 int ret; 484 485 /* 486 * This is so involved because allocating and freeing 487 * while the keg lock is held will lead to deadlock. 488 * I have to do everything in stages and check for 489 * races. 490 */ 491 newhash = keg->uk_hash; 492 KEG_UNLOCK(keg); 493 ret = hash_alloc(&newhash); 494 KEG_LOCK(keg); 495 if (ret) { 496 if (hash_expand(&keg->uk_hash, &newhash)) { 497 oldhash = keg->uk_hash; 498 keg->uk_hash = newhash; 499 } else 500 oldhash = newhash; 501 502 KEG_UNLOCK(keg); 503 hash_free(&oldhash); 504 return; 505 } 506 } 507 KEG_UNLOCK(keg); 508 } 509 510 static void 511 zone_timeout(uma_zone_t zone) 512 { 513 514 zone_foreach_keg(zone, &keg_timeout); 515 } 516 517 /* 518 * Allocate and zero fill the next sized hash table from the appropriate 519 * backing store. 520 * 521 * Arguments: 522 * hash A new hash structure with the old hash size in uh_hashsize 523 * 524 * Returns: 525 * 1 on sucess and 0 on failure. 526 */ 527 static int 528 hash_alloc(struct uma_hash *hash) 529 { 530 int oldsize; 531 int alloc; 532 533 oldsize = hash->uh_hashsize; 534 535 /* We're just going to go to a power of two greater */ 536 if (oldsize) { 537 hash->uh_hashsize = oldsize * 2; 538 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 539 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 540 M_UMAHASH, M_NOWAIT); 541 } else { 542 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 543 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 544 M_WAITOK); 545 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 546 } 547 if (hash->uh_slab_hash) { 548 bzero(hash->uh_slab_hash, alloc); 549 hash->uh_hashmask = hash->uh_hashsize - 1; 550 return (1); 551 } 552 553 return (0); 554 } 555 556 /* 557 * Expands the hash table for HASH zones. This is done from zone_timeout 558 * to reduce collisions. This must not be done in the regular allocation 559 * path, otherwise, we can recurse on the vm while allocating pages. 560 * 561 * Arguments: 562 * oldhash The hash you want to expand 563 * newhash The hash structure for the new table 564 * 565 * Returns: 566 * Nothing 567 * 568 * Discussion: 569 */ 570 static int 571 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 572 { 573 uma_slab_t slab; 574 int hval; 575 int i; 576 577 if (!newhash->uh_slab_hash) 578 return (0); 579 580 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 581 return (0); 582 583 /* 584 * I need to investigate hash algorithms for resizing without a 585 * full rehash. 586 */ 587 588 for (i = 0; i < oldhash->uh_hashsize; i++) 589 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) { 590 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]); 591 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink); 592 hval = UMA_HASH(newhash, slab->us_data); 593 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 594 slab, us_hlink); 595 } 596 597 return (1); 598 } 599 600 /* 601 * Free the hash bucket to the appropriate backing store. 602 * 603 * Arguments: 604 * slab_hash The hash bucket we're freeing 605 * hashsize The number of entries in that hash bucket 606 * 607 * Returns: 608 * Nothing 609 */ 610 static void 611 hash_free(struct uma_hash *hash) 612 { 613 if (hash->uh_slab_hash == NULL) 614 return; 615 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 616 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 617 else 618 free(hash->uh_slab_hash, M_UMAHASH); 619 } 620 621 /* 622 * Frees all outstanding items in a bucket 623 * 624 * Arguments: 625 * zone The zone to free to, must be unlocked. 626 * bucket The free/alloc bucket with items, cpu queue must be locked. 627 * 628 * Returns: 629 * Nothing 630 */ 631 632 static void 633 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 634 { 635 int i; 636 637 if (bucket == NULL) 638 return; 639 640 if (zone->uz_fini) 641 for (i = 0; i < bucket->ub_cnt; i++) 642 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 643 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 644 bucket->ub_cnt = 0; 645 } 646 647 /* 648 * Drains the per cpu caches for a zone. 649 * 650 * NOTE: This may only be called while the zone is being turn down, and not 651 * during normal operation. This is necessary in order that we do not have 652 * to migrate CPUs to drain the per-CPU caches. 653 * 654 * Arguments: 655 * zone The zone to drain, must be unlocked. 656 * 657 * Returns: 658 * Nothing 659 */ 660 static void 661 cache_drain(uma_zone_t zone) 662 { 663 uma_cache_t cache; 664 int cpu; 665 666 /* 667 * XXX: It is safe to not lock the per-CPU caches, because we're 668 * tearing down the zone anyway. I.e., there will be no further use 669 * of the caches at this point. 670 * 671 * XXX: It would good to be able to assert that the zone is being 672 * torn down to prevent improper use of cache_drain(). 673 * 674 * XXX: We lock the zone before passing into bucket_cache_drain() as 675 * it is used elsewhere. Should the tear-down path be made special 676 * there in some form? 677 */ 678 CPU_FOREACH(cpu) { 679 cache = &zone->uz_cpu[cpu]; 680 bucket_drain(zone, cache->uc_allocbucket); 681 bucket_drain(zone, cache->uc_freebucket); 682 if (cache->uc_allocbucket != NULL) 683 bucket_free(zone, cache->uc_allocbucket, NULL); 684 if (cache->uc_freebucket != NULL) 685 bucket_free(zone, cache->uc_freebucket, NULL); 686 cache->uc_allocbucket = cache->uc_freebucket = NULL; 687 } 688 ZONE_LOCK(zone); 689 bucket_cache_drain(zone); 690 ZONE_UNLOCK(zone); 691 } 692 693 static void 694 cache_shrink(uma_zone_t zone) 695 { 696 697 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 698 return; 699 700 ZONE_LOCK(zone); 701 zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2; 702 ZONE_UNLOCK(zone); 703 } 704 705 static void 706 cache_drain_safe_cpu(uma_zone_t zone) 707 { 708 uma_cache_t cache; 709 uma_bucket_t b1, b2; 710 711 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 712 return; 713 714 b1 = b2 = NULL; 715 ZONE_LOCK(zone); 716 critical_enter(); 717 cache = &zone->uz_cpu[curcpu]; 718 if (cache->uc_allocbucket) { 719 if (cache->uc_allocbucket->ub_cnt != 0) 720 LIST_INSERT_HEAD(&zone->uz_buckets, 721 cache->uc_allocbucket, ub_link); 722 else 723 b1 = cache->uc_allocbucket; 724 cache->uc_allocbucket = NULL; 725 } 726 if (cache->uc_freebucket) { 727 if (cache->uc_freebucket->ub_cnt != 0) 728 LIST_INSERT_HEAD(&zone->uz_buckets, 729 cache->uc_freebucket, ub_link); 730 else 731 b2 = cache->uc_freebucket; 732 cache->uc_freebucket = NULL; 733 } 734 critical_exit(); 735 ZONE_UNLOCK(zone); 736 if (b1) 737 bucket_free(zone, b1, NULL); 738 if (b2) 739 bucket_free(zone, b2, NULL); 740 } 741 742 /* 743 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 744 * This is an expensive call because it needs to bind to all CPUs 745 * one by one and enter a critical section on each of them in order 746 * to safely access their cache buckets. 747 * Zone lock must not be held on call this function. 748 */ 749 static void 750 cache_drain_safe(uma_zone_t zone) 751 { 752 int cpu; 753 754 /* 755 * Polite bucket sizes shrinking was not enouth, shrink aggressively. 756 */ 757 if (zone) 758 cache_shrink(zone); 759 else 760 zone_foreach(cache_shrink); 761 762 CPU_FOREACH(cpu) { 763 thread_lock(curthread); 764 sched_bind(curthread, cpu); 765 thread_unlock(curthread); 766 767 if (zone) 768 cache_drain_safe_cpu(zone); 769 else 770 zone_foreach(cache_drain_safe_cpu); 771 } 772 thread_lock(curthread); 773 sched_unbind(curthread); 774 thread_unlock(curthread); 775 } 776 777 /* 778 * Drain the cached buckets from a zone. Expects a locked zone on entry. 779 */ 780 static void 781 bucket_cache_drain(uma_zone_t zone) 782 { 783 uma_bucket_t bucket; 784 785 /* 786 * Drain the bucket queues and free the buckets, we just keep two per 787 * cpu (alloc/free). 788 */ 789 while ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) { 790 LIST_REMOVE(bucket, ub_link); 791 ZONE_UNLOCK(zone); 792 bucket_drain(zone, bucket); 793 bucket_free(zone, bucket, NULL); 794 ZONE_LOCK(zone); 795 } 796 797 /* 798 * Shrink further bucket sizes. Price of single zone lock collision 799 * is probably lower then price of global cache drain. 800 */ 801 if (zone->uz_count > zone->uz_count_min) 802 zone->uz_count--; 803 } 804 805 static void 806 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 807 { 808 uint8_t *mem; 809 int i; 810 uint8_t flags; 811 812 mem = slab->us_data; 813 flags = slab->us_flags; 814 i = start; 815 if (keg->uk_fini != NULL) { 816 for (i--; i > -1; i--) 817 keg->uk_fini(slab->us_data + (keg->uk_rsize * i), 818 keg->uk_size); 819 } 820 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 821 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 822 #ifdef UMA_DEBUG 823 printf("%s: Returning %d bytes.\n", keg->uk_name, 824 PAGE_SIZE * keg->uk_ppera); 825 #endif 826 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 827 } 828 829 /* 830 * Frees pages from a keg back to the system. This is done on demand from 831 * the pageout daemon. 832 * 833 * Returns nothing. 834 */ 835 static void 836 keg_drain(uma_keg_t keg) 837 { 838 struct slabhead freeslabs = { 0 }; 839 uma_slab_t slab; 840 uma_slab_t n; 841 842 /* 843 * We don't want to take pages from statically allocated kegs at this 844 * time 845 */ 846 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 847 return; 848 849 #ifdef UMA_DEBUG 850 printf("%s free items: %u\n", keg->uk_name, keg->uk_free); 851 #endif 852 KEG_LOCK(keg); 853 if (keg->uk_free == 0) 854 goto finished; 855 856 slab = LIST_FIRST(&keg->uk_free_slab); 857 while (slab) { 858 n = LIST_NEXT(slab, us_link); 859 860 /* We have no where to free these to */ 861 if (slab->us_flags & UMA_SLAB_BOOT) { 862 slab = n; 863 continue; 864 } 865 866 LIST_REMOVE(slab, us_link); 867 keg->uk_pages -= keg->uk_ppera; 868 keg->uk_free -= keg->uk_ipers; 869 870 if (keg->uk_flags & UMA_ZONE_HASH) 871 UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data); 872 873 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 874 875 slab = n; 876 } 877 finished: 878 KEG_UNLOCK(keg); 879 880 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 881 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 882 keg_free_slab(keg, slab, keg->uk_ipers); 883 } 884 } 885 886 static void 887 zone_drain_wait(uma_zone_t zone, int waitok) 888 { 889 890 /* 891 * Set draining to interlock with zone_dtor() so we can release our 892 * locks as we go. Only dtor() should do a WAITOK call since it 893 * is the only call that knows the structure will still be available 894 * when it wakes up. 895 */ 896 ZONE_LOCK(zone); 897 while (zone->uz_flags & UMA_ZFLAG_DRAINING) { 898 if (waitok == M_NOWAIT) 899 goto out; 900 mtx_unlock(&uma_mtx); 901 msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1); 902 mtx_lock(&uma_mtx); 903 } 904 zone->uz_flags |= UMA_ZFLAG_DRAINING; 905 bucket_cache_drain(zone); 906 ZONE_UNLOCK(zone); 907 /* 908 * The DRAINING flag protects us from being freed while 909 * we're running. Normally the uma_mtx would protect us but we 910 * must be able to release and acquire the right lock for each keg. 911 */ 912 zone_foreach_keg(zone, &keg_drain); 913 ZONE_LOCK(zone); 914 zone->uz_flags &= ~UMA_ZFLAG_DRAINING; 915 wakeup(zone); 916 out: 917 ZONE_UNLOCK(zone); 918 } 919 920 void 921 zone_drain(uma_zone_t zone) 922 { 923 924 zone_drain_wait(zone, M_NOWAIT); 925 } 926 927 /* 928 * Allocate a new slab for a keg. This does not insert the slab onto a list. 929 * 930 * Arguments: 931 * wait Shall we wait? 932 * 933 * Returns: 934 * The slab that was allocated or NULL if there is no memory and the 935 * caller specified M_NOWAIT. 936 */ 937 static uma_slab_t 938 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait) 939 { 940 uma_slabrefcnt_t slabref; 941 uma_alloc allocf; 942 uma_slab_t slab; 943 uint8_t *mem; 944 uint8_t flags; 945 int i; 946 947 mtx_assert(&keg->uk_lock, MA_OWNED); 948 slab = NULL; 949 mem = NULL; 950 951 #ifdef UMA_DEBUG 952 printf("alloc_slab: Allocating a new slab for %s\n", keg->uk_name); 953 #endif 954 allocf = keg->uk_allocf; 955 KEG_UNLOCK(keg); 956 957 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 958 slab = zone_alloc_item(keg->uk_slabzone, NULL, wait); 959 if (slab == NULL) 960 goto out; 961 } 962 963 /* 964 * This reproduces the old vm_zone behavior of zero filling pages the 965 * first time they are added to a zone. 966 * 967 * Malloced items are zeroed in uma_zalloc. 968 */ 969 970 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 971 wait |= M_ZERO; 972 else 973 wait &= ~M_ZERO; 974 975 if (keg->uk_flags & UMA_ZONE_NODUMP) 976 wait |= M_NODUMP; 977 978 /* zone is passed for legacy reasons. */ 979 mem = allocf(zone, keg->uk_ppera * PAGE_SIZE, &flags, wait); 980 if (mem == NULL) { 981 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 982 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 983 slab = NULL; 984 goto out; 985 } 986 987 /* Point the slab into the allocated memory */ 988 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 989 slab = (uma_slab_t )(mem + keg->uk_pgoff); 990 991 if (keg->uk_flags & UMA_ZONE_VTOSLAB) 992 for (i = 0; i < keg->uk_ppera; i++) 993 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 994 995 slab->us_keg = keg; 996 slab->us_data = mem; 997 slab->us_freecount = keg->uk_ipers; 998 slab->us_flags = flags; 999 BIT_FILL(SLAB_SETSIZE, &slab->us_free); 1000 #ifdef INVARIANTS 1001 BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree); 1002 #endif 1003 if (keg->uk_flags & UMA_ZONE_REFCNT) { 1004 slabref = (uma_slabrefcnt_t)slab; 1005 for (i = 0; i < keg->uk_ipers; i++) 1006 slabref->us_refcnt[i] = 0; 1007 } 1008 1009 if (keg->uk_init != NULL) { 1010 for (i = 0; i < keg->uk_ipers; i++) 1011 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 1012 keg->uk_size, wait) != 0) 1013 break; 1014 if (i != keg->uk_ipers) { 1015 keg_free_slab(keg, slab, i); 1016 slab = NULL; 1017 goto out; 1018 } 1019 } 1020 out: 1021 KEG_LOCK(keg); 1022 1023 if (slab != NULL) { 1024 if (keg->uk_flags & UMA_ZONE_HASH) 1025 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1026 1027 keg->uk_pages += keg->uk_ppera; 1028 keg->uk_free += keg->uk_ipers; 1029 } 1030 1031 return (slab); 1032 } 1033 1034 /* 1035 * This function is intended to be used early on in place of page_alloc() so 1036 * that we may use the boot time page cache to satisfy allocations before 1037 * the VM is ready. 1038 */ 1039 static void * 1040 startup_alloc(uma_zone_t zone, int bytes, uint8_t *pflag, int wait) 1041 { 1042 uma_keg_t keg; 1043 uma_slab_t tmps; 1044 int pages, check_pages; 1045 1046 keg = zone_first_keg(zone); 1047 pages = howmany(bytes, PAGE_SIZE); 1048 check_pages = pages - 1; 1049 KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n")); 1050 1051 /* 1052 * Check our small startup cache to see if it has pages remaining. 1053 */ 1054 mtx_lock(&uma_boot_pages_mtx); 1055 1056 /* First check if we have enough room. */ 1057 tmps = LIST_FIRST(&uma_boot_pages); 1058 while (tmps != NULL && check_pages-- > 0) 1059 tmps = LIST_NEXT(tmps, us_link); 1060 if (tmps != NULL) { 1061 /* 1062 * It's ok to lose tmps references. The last one will 1063 * have tmps->us_data pointing to the start address of 1064 * "pages" contiguous pages of memory. 1065 */ 1066 while (pages-- > 0) { 1067 tmps = LIST_FIRST(&uma_boot_pages); 1068 LIST_REMOVE(tmps, us_link); 1069 } 1070 mtx_unlock(&uma_boot_pages_mtx); 1071 *pflag = tmps->us_flags; 1072 return (tmps->us_data); 1073 } 1074 mtx_unlock(&uma_boot_pages_mtx); 1075 if (booted < UMA_STARTUP2) 1076 panic("UMA: Increase vm.boot_pages"); 1077 /* 1078 * Now that we've booted reset these users to their real allocator. 1079 */ 1080 #ifdef UMA_MD_SMALL_ALLOC 1081 keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc; 1082 #else 1083 keg->uk_allocf = page_alloc; 1084 #endif 1085 return keg->uk_allocf(zone, bytes, pflag, wait); 1086 } 1087 1088 /* 1089 * Allocates a number of pages from the system 1090 * 1091 * Arguments: 1092 * bytes The number of bytes requested 1093 * wait Shall we wait? 1094 * 1095 * Returns: 1096 * A pointer to the alloced memory or possibly 1097 * NULL if M_NOWAIT is set. 1098 */ 1099 static void * 1100 page_alloc(uma_zone_t zone, int bytes, uint8_t *pflag, int wait) 1101 { 1102 void *p; /* Returned page */ 1103 1104 *pflag = UMA_SLAB_KMEM; 1105 p = (void *) kmem_malloc(kmem_arena, bytes, wait); 1106 1107 return (p); 1108 } 1109 1110 /* 1111 * Allocates a number of pages from within an object 1112 * 1113 * Arguments: 1114 * bytes The number of bytes requested 1115 * wait Shall we wait? 1116 * 1117 * Returns: 1118 * A pointer to the alloced memory or possibly 1119 * NULL if M_NOWAIT is set. 1120 */ 1121 static void * 1122 noobj_alloc(uma_zone_t zone, int bytes, uint8_t *flags, int wait) 1123 { 1124 TAILQ_HEAD(, vm_page) alloctail; 1125 u_long npages; 1126 vm_offset_t retkva, zkva; 1127 vm_page_t p, p_next; 1128 uma_keg_t keg; 1129 1130 TAILQ_INIT(&alloctail); 1131 keg = zone_first_keg(zone); 1132 1133 npages = howmany(bytes, PAGE_SIZE); 1134 while (npages > 0) { 1135 p = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT | 1136 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ); 1137 if (p != NULL) { 1138 /* 1139 * Since the page does not belong to an object, its 1140 * listq is unused. 1141 */ 1142 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1143 npages--; 1144 continue; 1145 } 1146 if (wait & M_WAITOK) { 1147 VM_WAIT; 1148 continue; 1149 } 1150 1151 /* 1152 * Page allocation failed, free intermediate pages and 1153 * exit. 1154 */ 1155 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1156 vm_page_unwire(p, PQ_INACTIVE); 1157 vm_page_free(p); 1158 } 1159 return (NULL); 1160 } 1161 *flags = UMA_SLAB_PRIV; 1162 zkva = keg->uk_kva + 1163 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1164 retkva = zkva; 1165 TAILQ_FOREACH(p, &alloctail, listq) { 1166 pmap_qenter(zkva, &p, 1); 1167 zkva += PAGE_SIZE; 1168 } 1169 1170 return ((void *)retkva); 1171 } 1172 1173 /* 1174 * Frees a number of pages to the system 1175 * 1176 * Arguments: 1177 * mem A pointer to the memory to be freed 1178 * size The size of the memory being freed 1179 * flags The original p->us_flags field 1180 * 1181 * Returns: 1182 * Nothing 1183 */ 1184 static void 1185 page_free(void *mem, int size, uint8_t flags) 1186 { 1187 struct vmem *vmem; 1188 1189 if (flags & UMA_SLAB_KMEM) 1190 vmem = kmem_arena; 1191 else if (flags & UMA_SLAB_KERNEL) 1192 vmem = kernel_arena; 1193 else 1194 panic("UMA: page_free used with invalid flags %d", flags); 1195 1196 kmem_free(vmem, (vm_offset_t)mem, size); 1197 } 1198 1199 /* 1200 * Zero fill initializer 1201 * 1202 * Arguments/Returns follow uma_init specifications 1203 */ 1204 static int 1205 zero_init(void *mem, int size, int flags) 1206 { 1207 bzero(mem, size); 1208 return (0); 1209 } 1210 1211 /* 1212 * Finish creating a small uma keg. This calculates ipers, and the keg size. 1213 * 1214 * Arguments 1215 * keg The zone we should initialize 1216 * 1217 * Returns 1218 * Nothing 1219 */ 1220 static void 1221 keg_small_init(uma_keg_t keg) 1222 { 1223 u_int rsize; 1224 u_int memused; 1225 u_int wastedspace; 1226 u_int shsize; 1227 1228 if (keg->uk_flags & UMA_ZONE_PCPU) { 1229 u_int ncpus = mp_ncpus ? mp_ncpus : MAXCPU; 1230 1231 keg->uk_slabsize = sizeof(struct pcpu); 1232 keg->uk_ppera = howmany(ncpus * sizeof(struct pcpu), 1233 PAGE_SIZE); 1234 } else { 1235 keg->uk_slabsize = UMA_SLAB_SIZE; 1236 keg->uk_ppera = 1; 1237 } 1238 1239 /* 1240 * Calculate the size of each allocation (rsize) according to 1241 * alignment. If the requested size is smaller than we have 1242 * allocation bits for we round it up. 1243 */ 1244 rsize = keg->uk_size; 1245 if (rsize < keg->uk_slabsize / SLAB_SETSIZE) 1246 rsize = keg->uk_slabsize / SLAB_SETSIZE; 1247 if (rsize & keg->uk_align) 1248 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1249 keg->uk_rsize = rsize; 1250 1251 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 1252 keg->uk_rsize < sizeof(struct pcpu), 1253 ("%s: size %u too large", __func__, keg->uk_rsize)); 1254 1255 if (keg->uk_flags & UMA_ZONE_REFCNT) 1256 rsize += sizeof(uint32_t); 1257 1258 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1259 shsize = 0; 1260 else 1261 shsize = sizeof(struct uma_slab); 1262 1263 keg->uk_ipers = (keg->uk_slabsize - shsize) / rsize; 1264 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1265 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1266 1267 memused = keg->uk_ipers * rsize + shsize; 1268 wastedspace = keg->uk_slabsize - memused; 1269 1270 /* 1271 * We can't do OFFPAGE if we're internal or if we've been 1272 * asked to not go to the VM for buckets. If we do this we 1273 * may end up going to the VM for slabs which we do not 1274 * want to do if we're UMA_ZFLAG_CACHEONLY as a result 1275 * of UMA_ZONE_VM, which clearly forbids it. 1276 */ 1277 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1278 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1279 return; 1280 1281 /* 1282 * See if using an OFFPAGE slab will limit our waste. Only do 1283 * this if it permits more items per-slab. 1284 * 1285 * XXX We could try growing slabsize to limit max waste as well. 1286 * Historically this was not done because the VM could not 1287 * efficiently handle contiguous allocations. 1288 */ 1289 if ((wastedspace >= keg->uk_slabsize / UMA_MAX_WASTE) && 1290 (keg->uk_ipers < (keg->uk_slabsize / keg->uk_rsize))) { 1291 keg->uk_ipers = keg->uk_slabsize / keg->uk_rsize; 1292 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1293 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1294 #ifdef UMA_DEBUG 1295 printf("UMA decided we need offpage slab headers for " 1296 "keg: %s, calculated wastedspace = %d, " 1297 "maximum wasted space allowed = %d, " 1298 "calculated ipers = %d, " 1299 "new wasted space = %d\n", keg->uk_name, wastedspace, 1300 keg->uk_slabsize / UMA_MAX_WASTE, keg->uk_ipers, 1301 keg->uk_slabsize - keg->uk_ipers * keg->uk_rsize); 1302 #endif 1303 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1304 } 1305 1306 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1307 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1308 keg->uk_flags |= UMA_ZONE_HASH; 1309 } 1310 1311 /* 1312 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do 1313 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1314 * more complicated. 1315 * 1316 * Arguments 1317 * keg The keg we should initialize 1318 * 1319 * Returns 1320 * Nothing 1321 */ 1322 static void 1323 keg_large_init(uma_keg_t keg) 1324 { 1325 u_int shsize; 1326 1327 KASSERT(keg != NULL, ("Keg is null in keg_large_init")); 1328 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0, 1329 ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg")); 1330 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1331 ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__)); 1332 1333 keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE); 1334 keg->uk_slabsize = keg->uk_ppera * PAGE_SIZE; 1335 keg->uk_ipers = 1; 1336 keg->uk_rsize = keg->uk_size; 1337 1338 /* We can't do OFFPAGE if we're internal, bail out here. */ 1339 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) 1340 return; 1341 1342 /* Check whether we have enough space to not do OFFPAGE. */ 1343 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) { 1344 shsize = sizeof(struct uma_slab); 1345 if (keg->uk_flags & UMA_ZONE_REFCNT) 1346 shsize += keg->uk_ipers * sizeof(uint32_t); 1347 if (shsize & UMA_ALIGN_PTR) 1348 shsize = (shsize & ~UMA_ALIGN_PTR) + 1349 (UMA_ALIGN_PTR + 1); 1350 1351 if ((PAGE_SIZE * keg->uk_ppera) - keg->uk_rsize < shsize) 1352 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1353 } 1354 1355 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1356 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1357 keg->uk_flags |= UMA_ZONE_HASH; 1358 } 1359 1360 static void 1361 keg_cachespread_init(uma_keg_t keg) 1362 { 1363 int alignsize; 1364 int trailer; 1365 int pages; 1366 int rsize; 1367 1368 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1369 ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__)); 1370 1371 alignsize = keg->uk_align + 1; 1372 rsize = keg->uk_size; 1373 /* 1374 * We want one item to start on every align boundary in a page. To 1375 * do this we will span pages. We will also extend the item by the 1376 * size of align if it is an even multiple of align. Otherwise, it 1377 * would fall on the same boundary every time. 1378 */ 1379 if (rsize & keg->uk_align) 1380 rsize = (rsize & ~keg->uk_align) + alignsize; 1381 if ((rsize & alignsize) == 0) 1382 rsize += alignsize; 1383 trailer = rsize - keg->uk_size; 1384 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE; 1385 pages = MIN(pages, (128 * 1024) / PAGE_SIZE); 1386 keg->uk_rsize = rsize; 1387 keg->uk_ppera = pages; 1388 keg->uk_slabsize = UMA_SLAB_SIZE; 1389 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize; 1390 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1391 KASSERT(keg->uk_ipers <= SLAB_SETSIZE, 1392 ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__, 1393 keg->uk_ipers)); 1394 } 1395 1396 /* 1397 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1398 * the keg onto the global keg list. 1399 * 1400 * Arguments/Returns follow uma_ctor specifications 1401 * udata Actually uma_kctor_args 1402 */ 1403 static int 1404 keg_ctor(void *mem, int size, void *udata, int flags) 1405 { 1406 struct uma_kctor_args *arg = udata; 1407 uma_keg_t keg = mem; 1408 uma_zone_t zone; 1409 1410 bzero(keg, size); 1411 keg->uk_size = arg->size; 1412 keg->uk_init = arg->uminit; 1413 keg->uk_fini = arg->fini; 1414 keg->uk_align = arg->align; 1415 keg->uk_free = 0; 1416 keg->uk_reserve = 0; 1417 keg->uk_pages = 0; 1418 keg->uk_flags = arg->flags; 1419 keg->uk_allocf = page_alloc; 1420 keg->uk_freef = page_free; 1421 keg->uk_slabzone = NULL; 1422 1423 /* 1424 * The master zone is passed to us at keg-creation time. 1425 */ 1426 zone = arg->zone; 1427 keg->uk_name = zone->uz_name; 1428 1429 if (arg->flags & UMA_ZONE_VM) 1430 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1431 1432 if (arg->flags & UMA_ZONE_ZINIT) 1433 keg->uk_init = zero_init; 1434 1435 if (arg->flags & UMA_ZONE_REFCNT || arg->flags & UMA_ZONE_MALLOC) 1436 keg->uk_flags |= UMA_ZONE_VTOSLAB; 1437 1438 if (arg->flags & UMA_ZONE_PCPU) 1439 #ifdef SMP 1440 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1441 #else 1442 keg->uk_flags &= ~UMA_ZONE_PCPU; 1443 #endif 1444 1445 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) { 1446 keg_cachespread_init(keg); 1447 } else if (keg->uk_flags & UMA_ZONE_REFCNT) { 1448 if (keg->uk_size > 1449 (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt) - 1450 sizeof(uint32_t))) 1451 keg_large_init(keg); 1452 else 1453 keg_small_init(keg); 1454 } else { 1455 if (keg->uk_size > (UMA_SLAB_SIZE - sizeof(struct uma_slab))) 1456 keg_large_init(keg); 1457 else 1458 keg_small_init(keg); 1459 } 1460 1461 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 1462 if (keg->uk_flags & UMA_ZONE_REFCNT) { 1463 if (keg->uk_ipers > uma_max_ipers_ref) 1464 panic("Too many ref items per zone: %d > %d\n", 1465 keg->uk_ipers, uma_max_ipers_ref); 1466 keg->uk_slabzone = slabrefzone; 1467 } else 1468 keg->uk_slabzone = slabzone; 1469 } 1470 1471 /* 1472 * If we haven't booted yet we need allocations to go through the 1473 * startup cache until the vm is ready. 1474 */ 1475 if (keg->uk_ppera == 1) { 1476 #ifdef UMA_MD_SMALL_ALLOC 1477 keg->uk_allocf = uma_small_alloc; 1478 keg->uk_freef = uma_small_free; 1479 1480 if (booted < UMA_STARTUP) 1481 keg->uk_allocf = startup_alloc; 1482 #else 1483 if (booted < UMA_STARTUP2) 1484 keg->uk_allocf = startup_alloc; 1485 #endif 1486 } else if (booted < UMA_STARTUP2 && 1487 (keg->uk_flags & UMA_ZFLAG_INTERNAL)) 1488 keg->uk_allocf = startup_alloc; 1489 1490 /* 1491 * Initialize keg's lock 1492 */ 1493 KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS)); 1494 1495 /* 1496 * If we're putting the slab header in the actual page we need to 1497 * figure out where in each page it goes. This calculates a right 1498 * justified offset into the memory on an ALIGN_PTR boundary. 1499 */ 1500 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1501 u_int totsize; 1502 1503 /* Size of the slab struct and free list */ 1504 totsize = sizeof(struct uma_slab); 1505 1506 /* Size of the reference counts. */ 1507 if (keg->uk_flags & UMA_ZONE_REFCNT) 1508 totsize += keg->uk_ipers * sizeof(uint32_t); 1509 1510 if (totsize & UMA_ALIGN_PTR) 1511 totsize = (totsize & ~UMA_ALIGN_PTR) + 1512 (UMA_ALIGN_PTR + 1); 1513 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize; 1514 1515 /* 1516 * The only way the following is possible is if with our 1517 * UMA_ALIGN_PTR adjustments we are now bigger than 1518 * UMA_SLAB_SIZE. I haven't checked whether this is 1519 * mathematically possible for all cases, so we make 1520 * sure here anyway. 1521 */ 1522 totsize = keg->uk_pgoff + sizeof(struct uma_slab); 1523 if (keg->uk_flags & UMA_ZONE_REFCNT) 1524 totsize += keg->uk_ipers * sizeof(uint32_t); 1525 if (totsize > PAGE_SIZE * keg->uk_ppera) { 1526 printf("zone %s ipers %d rsize %d size %d\n", 1527 zone->uz_name, keg->uk_ipers, keg->uk_rsize, 1528 keg->uk_size); 1529 panic("UMA slab won't fit."); 1530 } 1531 } 1532 1533 if (keg->uk_flags & UMA_ZONE_HASH) 1534 hash_alloc(&keg->uk_hash); 1535 1536 #ifdef UMA_DEBUG 1537 printf("UMA: %s(%p) size %d(%d) flags %#x ipers %d ppera %d out %d free %d\n", 1538 zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags, 1539 keg->uk_ipers, keg->uk_ppera, 1540 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free); 1541 #endif 1542 1543 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1544 1545 mtx_lock(&uma_mtx); 1546 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1547 mtx_unlock(&uma_mtx); 1548 return (0); 1549 } 1550 1551 /* 1552 * Zone header ctor. This initializes all fields, locks, etc. 1553 * 1554 * Arguments/Returns follow uma_ctor specifications 1555 * udata Actually uma_zctor_args 1556 */ 1557 static int 1558 zone_ctor(void *mem, int size, void *udata, int flags) 1559 { 1560 struct uma_zctor_args *arg = udata; 1561 uma_zone_t zone = mem; 1562 uma_zone_t z; 1563 uma_keg_t keg; 1564 1565 bzero(zone, size); 1566 zone->uz_name = arg->name; 1567 zone->uz_ctor = arg->ctor; 1568 zone->uz_dtor = arg->dtor; 1569 zone->uz_slab = zone_fetch_slab; 1570 zone->uz_init = NULL; 1571 zone->uz_fini = NULL; 1572 zone->uz_allocs = 0; 1573 zone->uz_frees = 0; 1574 zone->uz_fails = 0; 1575 zone->uz_sleeps = 0; 1576 zone->uz_count = 0; 1577 zone->uz_count_min = 0; 1578 zone->uz_flags = 0; 1579 zone->uz_warning = NULL; 1580 timevalclear(&zone->uz_ratecheck); 1581 keg = arg->keg; 1582 1583 ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS)); 1584 1585 /* 1586 * This is a pure cache zone, no kegs. 1587 */ 1588 if (arg->import) { 1589 if (arg->flags & UMA_ZONE_VM) 1590 arg->flags |= UMA_ZFLAG_CACHEONLY; 1591 zone->uz_flags = arg->flags; 1592 zone->uz_size = arg->size; 1593 zone->uz_import = arg->import; 1594 zone->uz_release = arg->release; 1595 zone->uz_arg = arg->arg; 1596 zone->uz_lockptr = &zone->uz_lock; 1597 mtx_lock(&uma_mtx); 1598 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 1599 mtx_unlock(&uma_mtx); 1600 goto out; 1601 } 1602 1603 /* 1604 * Use the regular zone/keg/slab allocator. 1605 */ 1606 zone->uz_import = (uma_import)zone_import; 1607 zone->uz_release = (uma_release)zone_release; 1608 zone->uz_arg = zone; 1609 1610 if (arg->flags & UMA_ZONE_SECONDARY) { 1611 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 1612 zone->uz_init = arg->uminit; 1613 zone->uz_fini = arg->fini; 1614 zone->uz_lockptr = &keg->uk_lock; 1615 zone->uz_flags |= UMA_ZONE_SECONDARY; 1616 mtx_lock(&uma_mtx); 1617 ZONE_LOCK(zone); 1618 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 1619 if (LIST_NEXT(z, uz_link) == NULL) { 1620 LIST_INSERT_AFTER(z, zone, uz_link); 1621 break; 1622 } 1623 } 1624 ZONE_UNLOCK(zone); 1625 mtx_unlock(&uma_mtx); 1626 } else if (keg == NULL) { 1627 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 1628 arg->align, arg->flags)) == NULL) 1629 return (ENOMEM); 1630 } else { 1631 struct uma_kctor_args karg; 1632 int error; 1633 1634 /* We should only be here from uma_startup() */ 1635 karg.size = arg->size; 1636 karg.uminit = arg->uminit; 1637 karg.fini = arg->fini; 1638 karg.align = arg->align; 1639 karg.flags = arg->flags; 1640 karg.zone = zone; 1641 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 1642 flags); 1643 if (error) 1644 return (error); 1645 } 1646 1647 /* 1648 * Link in the first keg. 1649 */ 1650 zone->uz_klink.kl_keg = keg; 1651 LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link); 1652 zone->uz_lockptr = &keg->uk_lock; 1653 zone->uz_size = keg->uk_size; 1654 zone->uz_flags |= (keg->uk_flags & 1655 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 1656 1657 /* 1658 * Some internal zones don't have room allocated for the per cpu 1659 * caches. If we're internal, bail out here. 1660 */ 1661 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { 1662 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 1663 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 1664 return (0); 1665 } 1666 1667 out: 1668 if ((arg->flags & UMA_ZONE_MAXBUCKET) == 0) 1669 zone->uz_count = bucket_select(zone->uz_size); 1670 else 1671 zone->uz_count = BUCKET_MAX; 1672 zone->uz_count_min = zone->uz_count; 1673 1674 return (0); 1675 } 1676 1677 /* 1678 * Keg header dtor. This frees all data, destroys locks, frees the hash 1679 * table and removes the keg from the global list. 1680 * 1681 * Arguments/Returns follow uma_dtor specifications 1682 * udata unused 1683 */ 1684 static void 1685 keg_dtor(void *arg, int size, void *udata) 1686 { 1687 uma_keg_t keg; 1688 1689 keg = (uma_keg_t)arg; 1690 KEG_LOCK(keg); 1691 if (keg->uk_free != 0) { 1692 printf("Freed UMA keg (%s) was not empty (%d items). " 1693 " Lost %d pages of memory.\n", 1694 keg->uk_name ? keg->uk_name : "", 1695 keg->uk_free, keg->uk_pages); 1696 } 1697 KEG_UNLOCK(keg); 1698 1699 hash_free(&keg->uk_hash); 1700 1701 KEG_LOCK_FINI(keg); 1702 } 1703 1704 /* 1705 * Zone header dtor. 1706 * 1707 * Arguments/Returns follow uma_dtor specifications 1708 * udata unused 1709 */ 1710 static void 1711 zone_dtor(void *arg, int size, void *udata) 1712 { 1713 uma_klink_t klink; 1714 uma_zone_t zone; 1715 uma_keg_t keg; 1716 1717 zone = (uma_zone_t)arg; 1718 keg = zone_first_keg(zone); 1719 1720 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 1721 cache_drain(zone); 1722 1723 mtx_lock(&uma_mtx); 1724 LIST_REMOVE(zone, uz_link); 1725 mtx_unlock(&uma_mtx); 1726 /* 1727 * XXX there are some races here where 1728 * the zone can be drained but zone lock 1729 * released and then refilled before we 1730 * remove it... we dont care for now 1731 */ 1732 zone_drain_wait(zone, M_WAITOK); 1733 /* 1734 * Unlink all of our kegs. 1735 */ 1736 while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) { 1737 klink->kl_keg = NULL; 1738 LIST_REMOVE(klink, kl_link); 1739 if (klink == &zone->uz_klink) 1740 continue; 1741 free(klink, M_TEMP); 1742 } 1743 /* 1744 * We only destroy kegs from non secondary zones. 1745 */ 1746 if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0) { 1747 mtx_lock(&uma_mtx); 1748 LIST_REMOVE(keg, uk_link); 1749 mtx_unlock(&uma_mtx); 1750 zone_free_item(kegs, keg, NULL, SKIP_NONE); 1751 } 1752 ZONE_LOCK_FINI(zone); 1753 } 1754 1755 /* 1756 * Traverses every zone in the system and calls a callback 1757 * 1758 * Arguments: 1759 * zfunc A pointer to a function which accepts a zone 1760 * as an argument. 1761 * 1762 * Returns: 1763 * Nothing 1764 */ 1765 static void 1766 zone_foreach(void (*zfunc)(uma_zone_t)) 1767 { 1768 uma_keg_t keg; 1769 uma_zone_t zone; 1770 1771 mtx_lock(&uma_mtx); 1772 LIST_FOREACH(keg, &uma_kegs, uk_link) { 1773 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 1774 zfunc(zone); 1775 } 1776 mtx_unlock(&uma_mtx); 1777 } 1778 1779 /* Public functions */ 1780 /* See uma.h */ 1781 void 1782 uma_startup(void *bootmem, int boot_pages) 1783 { 1784 struct uma_zctor_args args; 1785 uma_slab_t slab; 1786 u_int slabsize; 1787 int i; 1788 1789 #ifdef UMA_DEBUG 1790 printf("Creating uma keg headers zone and keg.\n"); 1791 #endif 1792 mtx_init(&uma_mtx, "UMA lock", NULL, MTX_DEF); 1793 1794 /* "manually" create the initial zone */ 1795 memset(&args, 0, sizeof(args)); 1796 args.name = "UMA Kegs"; 1797 args.size = sizeof(struct uma_keg); 1798 args.ctor = keg_ctor; 1799 args.dtor = keg_dtor; 1800 args.uminit = zero_init; 1801 args.fini = NULL; 1802 args.keg = &masterkeg; 1803 args.align = 32 - 1; 1804 args.flags = UMA_ZFLAG_INTERNAL; 1805 /* The initial zone has no Per cpu queues so it's smaller */ 1806 zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK); 1807 1808 #ifdef UMA_DEBUG 1809 printf("Filling boot free list.\n"); 1810 #endif 1811 for (i = 0; i < boot_pages; i++) { 1812 slab = (uma_slab_t)((uint8_t *)bootmem + (i * UMA_SLAB_SIZE)); 1813 slab->us_data = (uint8_t *)slab; 1814 slab->us_flags = UMA_SLAB_BOOT; 1815 LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link); 1816 } 1817 mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF); 1818 1819 #ifdef UMA_DEBUG 1820 printf("Creating uma zone headers zone and keg.\n"); 1821 #endif 1822 args.name = "UMA Zones"; 1823 args.size = sizeof(struct uma_zone) + 1824 (sizeof(struct uma_cache) * (mp_maxid + 1)); 1825 args.ctor = zone_ctor; 1826 args.dtor = zone_dtor; 1827 args.uminit = zero_init; 1828 args.fini = NULL; 1829 args.keg = NULL; 1830 args.align = 32 - 1; 1831 args.flags = UMA_ZFLAG_INTERNAL; 1832 /* The initial zone has no Per cpu queues so it's smaller */ 1833 zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK); 1834 1835 #ifdef UMA_DEBUG 1836 printf("Initializing pcpu cache locks.\n"); 1837 #endif 1838 #ifdef UMA_DEBUG 1839 printf("Creating slab and hash zones.\n"); 1840 #endif 1841 1842 /* Now make a zone for slab headers */ 1843 slabzone = uma_zcreate("UMA Slabs", 1844 sizeof(struct uma_slab), 1845 NULL, NULL, NULL, NULL, 1846 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1847 1848 /* 1849 * We also create a zone for the bigger slabs with reference 1850 * counts in them, to accomodate UMA_ZONE_REFCNT zones. 1851 */ 1852 slabsize = sizeof(struct uma_slab_refcnt); 1853 slabsize += uma_max_ipers_ref * sizeof(uint32_t); 1854 slabrefzone = uma_zcreate("UMA RCntSlabs", 1855 slabsize, 1856 NULL, NULL, NULL, NULL, 1857 UMA_ALIGN_PTR, 1858 UMA_ZFLAG_INTERNAL); 1859 1860 hashzone = uma_zcreate("UMA Hash", 1861 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 1862 NULL, NULL, NULL, NULL, 1863 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1864 1865 bucket_init(); 1866 1867 booted = UMA_STARTUP; 1868 1869 #ifdef UMA_DEBUG 1870 printf("UMA startup complete.\n"); 1871 #endif 1872 } 1873 1874 /* see uma.h */ 1875 void 1876 uma_startup2(void) 1877 { 1878 booted = UMA_STARTUP2; 1879 bucket_enable(); 1880 #ifdef UMA_DEBUG 1881 printf("UMA startup2 complete.\n"); 1882 #endif 1883 } 1884 1885 /* 1886 * Initialize our callout handle 1887 * 1888 */ 1889 1890 static void 1891 uma_startup3(void) 1892 { 1893 #ifdef UMA_DEBUG 1894 printf("Starting callout.\n"); 1895 #endif 1896 callout_init(&uma_callout, CALLOUT_MPSAFE); 1897 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 1898 #ifdef UMA_DEBUG 1899 printf("UMA startup3 complete.\n"); 1900 #endif 1901 } 1902 1903 static uma_keg_t 1904 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 1905 int align, uint32_t flags) 1906 { 1907 struct uma_kctor_args args; 1908 1909 args.size = size; 1910 args.uminit = uminit; 1911 args.fini = fini; 1912 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 1913 args.flags = flags; 1914 args.zone = zone; 1915 return (zone_alloc_item(kegs, &args, M_WAITOK)); 1916 } 1917 1918 /* See uma.h */ 1919 void 1920 uma_set_align(int align) 1921 { 1922 1923 if (align != UMA_ALIGN_CACHE) 1924 uma_align_cache = align; 1925 } 1926 1927 /* See uma.h */ 1928 uma_zone_t 1929 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 1930 uma_init uminit, uma_fini fini, int align, uint32_t flags) 1931 1932 { 1933 struct uma_zctor_args args; 1934 1935 /* This stuff is essential for the zone ctor */ 1936 memset(&args, 0, sizeof(args)); 1937 args.name = name; 1938 args.size = size; 1939 args.ctor = ctor; 1940 args.dtor = dtor; 1941 args.uminit = uminit; 1942 args.fini = fini; 1943 args.align = align; 1944 args.flags = flags; 1945 args.keg = NULL; 1946 1947 return (zone_alloc_item(zones, &args, M_WAITOK)); 1948 } 1949 1950 /* See uma.h */ 1951 uma_zone_t 1952 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 1953 uma_init zinit, uma_fini zfini, uma_zone_t master) 1954 { 1955 struct uma_zctor_args args; 1956 uma_keg_t keg; 1957 1958 keg = zone_first_keg(master); 1959 memset(&args, 0, sizeof(args)); 1960 args.name = name; 1961 args.size = keg->uk_size; 1962 args.ctor = ctor; 1963 args.dtor = dtor; 1964 args.uminit = zinit; 1965 args.fini = zfini; 1966 args.align = keg->uk_align; 1967 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 1968 args.keg = keg; 1969 1970 /* XXX Attaches only one keg of potentially many. */ 1971 return (zone_alloc_item(zones, &args, M_WAITOK)); 1972 } 1973 1974 /* See uma.h */ 1975 uma_zone_t 1976 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor, 1977 uma_init zinit, uma_fini zfini, uma_import zimport, 1978 uma_release zrelease, void *arg, int flags) 1979 { 1980 struct uma_zctor_args args; 1981 1982 memset(&args, 0, sizeof(args)); 1983 args.name = name; 1984 args.size = size; 1985 args.ctor = ctor; 1986 args.dtor = dtor; 1987 args.uminit = zinit; 1988 args.fini = zfini; 1989 args.import = zimport; 1990 args.release = zrelease; 1991 args.arg = arg; 1992 args.align = 0; 1993 args.flags = flags; 1994 1995 return (zone_alloc_item(zones, &args, M_WAITOK)); 1996 } 1997 1998 static void 1999 zone_lock_pair(uma_zone_t a, uma_zone_t b) 2000 { 2001 if (a < b) { 2002 ZONE_LOCK(a); 2003 mtx_lock_flags(b->uz_lockptr, MTX_DUPOK); 2004 } else { 2005 ZONE_LOCK(b); 2006 mtx_lock_flags(a->uz_lockptr, MTX_DUPOK); 2007 } 2008 } 2009 2010 static void 2011 zone_unlock_pair(uma_zone_t a, uma_zone_t b) 2012 { 2013 2014 ZONE_UNLOCK(a); 2015 ZONE_UNLOCK(b); 2016 } 2017 2018 int 2019 uma_zsecond_add(uma_zone_t zone, uma_zone_t master) 2020 { 2021 uma_klink_t klink; 2022 uma_klink_t kl; 2023 int error; 2024 2025 error = 0; 2026 klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO); 2027 2028 zone_lock_pair(zone, master); 2029 /* 2030 * zone must use vtoslab() to resolve objects and must already be 2031 * a secondary. 2032 */ 2033 if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) 2034 != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) { 2035 error = EINVAL; 2036 goto out; 2037 } 2038 /* 2039 * The new master must also use vtoslab(). 2040 */ 2041 if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) { 2042 error = EINVAL; 2043 goto out; 2044 } 2045 /* 2046 * Both must either be refcnt, or not be refcnt. 2047 */ 2048 if ((zone->uz_flags & UMA_ZONE_REFCNT) != 2049 (master->uz_flags & UMA_ZONE_REFCNT)) { 2050 error = EINVAL; 2051 goto out; 2052 } 2053 /* 2054 * The underlying object must be the same size. rsize 2055 * may be different. 2056 */ 2057 if (master->uz_size != zone->uz_size) { 2058 error = E2BIG; 2059 goto out; 2060 } 2061 /* 2062 * Put it at the end of the list. 2063 */ 2064 klink->kl_keg = zone_first_keg(master); 2065 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) { 2066 if (LIST_NEXT(kl, kl_link) == NULL) { 2067 LIST_INSERT_AFTER(kl, klink, kl_link); 2068 break; 2069 } 2070 } 2071 klink = NULL; 2072 zone->uz_flags |= UMA_ZFLAG_MULTI; 2073 zone->uz_slab = zone_fetch_slab_multi; 2074 2075 out: 2076 zone_unlock_pair(zone, master); 2077 if (klink != NULL) 2078 free(klink, M_TEMP); 2079 2080 return (error); 2081 } 2082 2083 2084 /* See uma.h */ 2085 void 2086 uma_zdestroy(uma_zone_t zone) 2087 { 2088 2089 zone_free_item(zones, zone, NULL, SKIP_NONE); 2090 } 2091 2092 /* See uma.h */ 2093 void * 2094 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 2095 { 2096 void *item; 2097 uma_cache_t cache; 2098 uma_bucket_t bucket; 2099 int lockfail; 2100 int cpu; 2101 2102 /* This is the fast path allocation */ 2103 #ifdef UMA_DEBUG_ALLOC_1 2104 printf("Allocating one item from %s(%p)\n", zone->uz_name, zone); 2105 #endif 2106 CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread, 2107 zone->uz_name, flags); 2108 2109 if (flags & M_WAITOK) { 2110 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2111 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 2112 } 2113 #ifdef DEBUG_MEMGUARD 2114 if (memguard_cmp_zone(zone)) { 2115 item = memguard_alloc(zone->uz_size, flags); 2116 if (item != NULL) { 2117 /* 2118 * Avoid conflict with the use-after-free 2119 * protecting infrastructure from INVARIANTS. 2120 */ 2121 if (zone->uz_init != NULL && 2122 zone->uz_init != mtrash_init && 2123 zone->uz_init(item, zone->uz_size, flags) != 0) 2124 return (NULL); 2125 if (zone->uz_ctor != NULL && 2126 zone->uz_ctor != mtrash_ctor && 2127 zone->uz_ctor(item, zone->uz_size, udata, 2128 flags) != 0) { 2129 zone->uz_fini(item, zone->uz_size); 2130 return (NULL); 2131 } 2132 return (item); 2133 } 2134 /* This is unfortunate but should not be fatal. */ 2135 } 2136 #endif 2137 /* 2138 * If possible, allocate from the per-CPU cache. There are two 2139 * requirements for safe access to the per-CPU cache: (1) the thread 2140 * accessing the cache must not be preempted or yield during access, 2141 * and (2) the thread must not migrate CPUs without switching which 2142 * cache it accesses. We rely on a critical section to prevent 2143 * preemption and migration. We release the critical section in 2144 * order to acquire the zone mutex if we are unable to allocate from 2145 * the current cache; when we re-acquire the critical section, we 2146 * must detect and handle migration if it has occurred. 2147 */ 2148 critical_enter(); 2149 cpu = curcpu; 2150 cache = &zone->uz_cpu[cpu]; 2151 2152 zalloc_start: 2153 bucket = cache->uc_allocbucket; 2154 if (bucket != NULL && bucket->ub_cnt > 0) { 2155 bucket->ub_cnt--; 2156 item = bucket->ub_bucket[bucket->ub_cnt]; 2157 #ifdef INVARIANTS 2158 bucket->ub_bucket[bucket->ub_cnt] = NULL; 2159 #endif 2160 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 2161 cache->uc_allocs++; 2162 critical_exit(); 2163 if (zone->uz_ctor != NULL && 2164 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2165 atomic_add_long(&zone->uz_fails, 1); 2166 zone_free_item(zone, item, udata, SKIP_DTOR); 2167 return (NULL); 2168 } 2169 #ifdef INVARIANTS 2170 uma_dbg_alloc(zone, NULL, item); 2171 #endif 2172 if (flags & M_ZERO) 2173 uma_zero_item(item, zone); 2174 return (item); 2175 } 2176 2177 /* 2178 * We have run out of items in our alloc bucket. 2179 * See if we can switch with our free bucket. 2180 */ 2181 bucket = cache->uc_freebucket; 2182 if (bucket != NULL && bucket->ub_cnt > 0) { 2183 #ifdef UMA_DEBUG_ALLOC 2184 printf("uma_zalloc: Swapping empty with alloc.\n"); 2185 #endif 2186 cache->uc_freebucket = cache->uc_allocbucket; 2187 cache->uc_allocbucket = bucket; 2188 goto zalloc_start; 2189 } 2190 2191 /* 2192 * Discard any empty allocation bucket while we hold no locks. 2193 */ 2194 bucket = cache->uc_allocbucket; 2195 cache->uc_allocbucket = NULL; 2196 critical_exit(); 2197 if (bucket != NULL) 2198 bucket_free(zone, bucket, udata); 2199 2200 /* Short-circuit for zones without buckets and low memory. */ 2201 if (zone->uz_count == 0 || bucketdisable) 2202 goto zalloc_item; 2203 2204 /* 2205 * Attempt to retrieve the item from the per-CPU cache has failed, so 2206 * we must go back to the zone. This requires the zone lock, so we 2207 * must drop the critical section, then re-acquire it when we go back 2208 * to the cache. Since the critical section is released, we may be 2209 * preempted or migrate. As such, make sure not to maintain any 2210 * thread-local state specific to the cache from prior to releasing 2211 * the critical section. 2212 */ 2213 lockfail = 0; 2214 if (ZONE_TRYLOCK(zone) == 0) { 2215 /* Record contention to size the buckets. */ 2216 ZONE_LOCK(zone); 2217 lockfail = 1; 2218 } 2219 critical_enter(); 2220 cpu = curcpu; 2221 cache = &zone->uz_cpu[cpu]; 2222 2223 /* 2224 * Since we have locked the zone we may as well send back our stats. 2225 */ 2226 atomic_add_long(&zone->uz_allocs, cache->uc_allocs); 2227 atomic_add_long(&zone->uz_frees, cache->uc_frees); 2228 cache->uc_allocs = 0; 2229 cache->uc_frees = 0; 2230 2231 /* See if we lost the race to fill the cache. */ 2232 if (cache->uc_allocbucket != NULL) { 2233 ZONE_UNLOCK(zone); 2234 goto zalloc_start; 2235 } 2236 2237 /* 2238 * Check the zone's cache of buckets. 2239 */ 2240 if ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) { 2241 KASSERT(bucket->ub_cnt != 0, 2242 ("uma_zalloc_arg: Returning an empty bucket.")); 2243 2244 LIST_REMOVE(bucket, ub_link); 2245 cache->uc_allocbucket = bucket; 2246 ZONE_UNLOCK(zone); 2247 goto zalloc_start; 2248 } 2249 /* We are no longer associated with this CPU. */ 2250 critical_exit(); 2251 2252 /* 2253 * We bump the uz count when the cache size is insufficient to 2254 * handle the working set. 2255 */ 2256 if (lockfail && zone->uz_count < BUCKET_MAX) 2257 zone->uz_count++; 2258 ZONE_UNLOCK(zone); 2259 2260 /* 2261 * Now lets just fill a bucket and put it on the free list. If that 2262 * works we'll restart the allocation from the begining and it 2263 * will use the just filled bucket. 2264 */ 2265 bucket = zone_alloc_bucket(zone, udata, flags); 2266 if (bucket != NULL) { 2267 ZONE_LOCK(zone); 2268 critical_enter(); 2269 cpu = curcpu; 2270 cache = &zone->uz_cpu[cpu]; 2271 /* 2272 * See if we lost the race or were migrated. Cache the 2273 * initialized bucket to make this less likely or claim 2274 * the memory directly. 2275 */ 2276 if (cache->uc_allocbucket == NULL) 2277 cache->uc_allocbucket = bucket; 2278 else 2279 LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link); 2280 ZONE_UNLOCK(zone); 2281 goto zalloc_start; 2282 } 2283 2284 /* 2285 * We may not be able to get a bucket so return an actual item. 2286 */ 2287 #ifdef UMA_DEBUG 2288 printf("uma_zalloc_arg: Bucketzone returned NULL\n"); 2289 #endif 2290 2291 zalloc_item: 2292 item = zone_alloc_item(zone, udata, flags); 2293 2294 return (item); 2295 } 2296 2297 static uma_slab_t 2298 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags) 2299 { 2300 uma_slab_t slab; 2301 int reserve; 2302 2303 mtx_assert(&keg->uk_lock, MA_OWNED); 2304 slab = NULL; 2305 reserve = 0; 2306 if ((flags & M_USE_RESERVE) == 0) 2307 reserve = keg->uk_reserve; 2308 2309 for (;;) { 2310 /* 2311 * Find a slab with some space. Prefer slabs that are partially 2312 * used over those that are totally full. This helps to reduce 2313 * fragmentation. 2314 */ 2315 if (keg->uk_free > reserve) { 2316 if (!LIST_EMPTY(&keg->uk_part_slab)) { 2317 slab = LIST_FIRST(&keg->uk_part_slab); 2318 } else { 2319 slab = LIST_FIRST(&keg->uk_free_slab); 2320 LIST_REMOVE(slab, us_link); 2321 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, 2322 us_link); 2323 } 2324 MPASS(slab->us_keg == keg); 2325 return (slab); 2326 } 2327 2328 /* 2329 * M_NOVM means don't ask at all! 2330 */ 2331 if (flags & M_NOVM) 2332 break; 2333 2334 if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) { 2335 keg->uk_flags |= UMA_ZFLAG_FULL; 2336 /* 2337 * If this is not a multi-zone, set the FULL bit. 2338 * Otherwise slab_multi() takes care of it. 2339 */ 2340 if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) { 2341 zone->uz_flags |= UMA_ZFLAG_FULL; 2342 zone_log_warning(zone); 2343 } 2344 if (flags & M_NOWAIT) 2345 break; 2346 zone->uz_sleeps++; 2347 msleep(keg, &keg->uk_lock, PVM, "keglimit", 0); 2348 continue; 2349 } 2350 slab = keg_alloc_slab(keg, zone, flags); 2351 /* 2352 * If we got a slab here it's safe to mark it partially used 2353 * and return. We assume that the caller is going to remove 2354 * at least one item. 2355 */ 2356 if (slab) { 2357 MPASS(slab->us_keg == keg); 2358 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2359 return (slab); 2360 } 2361 /* 2362 * We might not have been able to get a slab but another cpu 2363 * could have while we were unlocked. Check again before we 2364 * fail. 2365 */ 2366 flags |= M_NOVM; 2367 } 2368 return (slab); 2369 } 2370 2371 static uma_slab_t 2372 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags) 2373 { 2374 uma_slab_t slab; 2375 2376 if (keg == NULL) { 2377 keg = zone_first_keg(zone); 2378 KEG_LOCK(keg); 2379 } 2380 2381 for (;;) { 2382 slab = keg_fetch_slab(keg, zone, flags); 2383 if (slab) 2384 return (slab); 2385 if (flags & (M_NOWAIT | M_NOVM)) 2386 break; 2387 } 2388 KEG_UNLOCK(keg); 2389 return (NULL); 2390 } 2391 2392 /* 2393 * uma_zone_fetch_slab_multi: Fetches a slab from one available keg. Returns 2394 * with the keg locked. On NULL no lock is held. 2395 * 2396 * The last pointer is used to seed the search. It is not required. 2397 */ 2398 static uma_slab_t 2399 zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags) 2400 { 2401 uma_klink_t klink; 2402 uma_slab_t slab; 2403 uma_keg_t keg; 2404 int flags; 2405 int empty; 2406 int full; 2407 2408 /* 2409 * Don't wait on the first pass. This will skip limit tests 2410 * as well. We don't want to block if we can find a provider 2411 * without blocking. 2412 */ 2413 flags = (rflags & ~M_WAITOK) | M_NOWAIT; 2414 /* 2415 * Use the last slab allocated as a hint for where to start 2416 * the search. 2417 */ 2418 if (last != NULL) { 2419 slab = keg_fetch_slab(last, zone, flags); 2420 if (slab) 2421 return (slab); 2422 KEG_UNLOCK(last); 2423 } 2424 /* 2425 * Loop until we have a slab incase of transient failures 2426 * while M_WAITOK is specified. I'm not sure this is 100% 2427 * required but we've done it for so long now. 2428 */ 2429 for (;;) { 2430 empty = 0; 2431 full = 0; 2432 /* 2433 * Search the available kegs for slabs. Be careful to hold the 2434 * correct lock while calling into the keg layer. 2435 */ 2436 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) { 2437 keg = klink->kl_keg; 2438 KEG_LOCK(keg); 2439 if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) { 2440 slab = keg_fetch_slab(keg, zone, flags); 2441 if (slab) 2442 return (slab); 2443 } 2444 if (keg->uk_flags & UMA_ZFLAG_FULL) 2445 full++; 2446 else 2447 empty++; 2448 KEG_UNLOCK(keg); 2449 } 2450 if (rflags & (M_NOWAIT | M_NOVM)) 2451 break; 2452 flags = rflags; 2453 /* 2454 * All kegs are full. XXX We can't atomically check all kegs 2455 * and sleep so just sleep for a short period and retry. 2456 */ 2457 if (full && !empty) { 2458 ZONE_LOCK(zone); 2459 zone->uz_flags |= UMA_ZFLAG_FULL; 2460 zone->uz_sleeps++; 2461 zone_log_warning(zone); 2462 msleep(zone, zone->uz_lockptr, PVM, 2463 "zonelimit", hz/100); 2464 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2465 ZONE_UNLOCK(zone); 2466 continue; 2467 } 2468 } 2469 return (NULL); 2470 } 2471 2472 static void * 2473 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 2474 { 2475 void *item; 2476 uint8_t freei; 2477 2478 MPASS(keg == slab->us_keg); 2479 mtx_assert(&keg->uk_lock, MA_OWNED); 2480 2481 freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1; 2482 BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free); 2483 item = slab->us_data + (keg->uk_rsize * freei); 2484 slab->us_freecount--; 2485 keg->uk_free--; 2486 2487 /* Move this slab to the full list */ 2488 if (slab->us_freecount == 0) { 2489 LIST_REMOVE(slab, us_link); 2490 LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link); 2491 } 2492 2493 return (item); 2494 } 2495 2496 static int 2497 zone_import(uma_zone_t zone, void **bucket, int max, int flags) 2498 { 2499 uma_slab_t slab; 2500 uma_keg_t keg; 2501 int i; 2502 2503 slab = NULL; 2504 keg = NULL; 2505 /* Try to keep the buckets totally full */ 2506 for (i = 0; i < max; ) { 2507 if ((slab = zone->uz_slab(zone, keg, flags)) == NULL) 2508 break; 2509 keg = slab->us_keg; 2510 while (slab->us_freecount && i < max) { 2511 bucket[i++] = slab_alloc_item(keg, slab); 2512 if (keg->uk_free <= keg->uk_reserve) 2513 break; 2514 } 2515 /* Don't grab more than one slab at a time. */ 2516 flags &= ~M_WAITOK; 2517 flags |= M_NOWAIT; 2518 } 2519 if (slab != NULL) 2520 KEG_UNLOCK(keg); 2521 2522 return i; 2523 } 2524 2525 static uma_bucket_t 2526 zone_alloc_bucket(uma_zone_t zone, void *udata, int flags) 2527 { 2528 uma_bucket_t bucket; 2529 int max; 2530 2531 /* Don't wait for buckets, preserve caller's NOVM setting. */ 2532 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 2533 if (bucket == NULL) 2534 return (NULL); 2535 2536 max = MIN(bucket->ub_entries, zone->uz_count); 2537 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 2538 max, flags); 2539 2540 /* 2541 * Initialize the memory if necessary. 2542 */ 2543 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 2544 int i; 2545 2546 for (i = 0; i < bucket->ub_cnt; i++) 2547 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 2548 flags) != 0) 2549 break; 2550 /* 2551 * If we couldn't initialize the whole bucket, put the 2552 * rest back onto the freelist. 2553 */ 2554 if (i != bucket->ub_cnt) { 2555 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 2556 bucket->ub_cnt - i); 2557 #ifdef INVARIANTS 2558 bzero(&bucket->ub_bucket[i], 2559 sizeof(void *) * (bucket->ub_cnt - i)); 2560 #endif 2561 bucket->ub_cnt = i; 2562 } 2563 } 2564 2565 if (bucket->ub_cnt == 0) { 2566 bucket_free(zone, bucket, udata); 2567 atomic_add_long(&zone->uz_fails, 1); 2568 return (NULL); 2569 } 2570 2571 return (bucket); 2572 } 2573 2574 /* 2575 * Allocates a single item from a zone. 2576 * 2577 * Arguments 2578 * zone The zone to alloc for. 2579 * udata The data to be passed to the constructor. 2580 * flags M_WAITOK, M_NOWAIT, M_ZERO. 2581 * 2582 * Returns 2583 * NULL if there is no memory and M_NOWAIT is set 2584 * An item if successful 2585 */ 2586 2587 static void * 2588 zone_alloc_item(uma_zone_t zone, void *udata, int flags) 2589 { 2590 void *item; 2591 2592 item = NULL; 2593 2594 #ifdef UMA_DEBUG_ALLOC 2595 printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone); 2596 #endif 2597 if (zone->uz_import(zone->uz_arg, &item, 1, flags) != 1) 2598 goto fail; 2599 atomic_add_long(&zone->uz_allocs, 1); 2600 2601 /* 2602 * We have to call both the zone's init (not the keg's init) 2603 * and the zone's ctor. This is because the item is going from 2604 * a keg slab directly to the user, and the user is expecting it 2605 * to be both zone-init'd as well as zone-ctor'd. 2606 */ 2607 if (zone->uz_init != NULL) { 2608 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 2609 zone_free_item(zone, item, udata, SKIP_FINI); 2610 goto fail; 2611 } 2612 } 2613 if (zone->uz_ctor != NULL) { 2614 if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2615 zone_free_item(zone, item, udata, SKIP_DTOR); 2616 goto fail; 2617 } 2618 } 2619 #ifdef INVARIANTS 2620 uma_dbg_alloc(zone, NULL, item); 2621 #endif 2622 if (flags & M_ZERO) 2623 uma_zero_item(item, zone); 2624 2625 return (item); 2626 2627 fail: 2628 atomic_add_long(&zone->uz_fails, 1); 2629 return (NULL); 2630 } 2631 2632 /* See uma.h */ 2633 void 2634 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 2635 { 2636 uma_cache_t cache; 2637 uma_bucket_t bucket; 2638 int lockfail; 2639 int cpu; 2640 2641 #ifdef UMA_DEBUG_ALLOC_1 2642 printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone); 2643 #endif 2644 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 2645 zone->uz_name); 2646 2647 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 2648 if (item == NULL) 2649 return; 2650 #ifdef DEBUG_MEMGUARD 2651 if (is_memguard_addr(item)) { 2652 if (zone->uz_dtor != NULL && zone->uz_dtor != mtrash_dtor) 2653 zone->uz_dtor(item, zone->uz_size, udata); 2654 if (zone->uz_fini != NULL && zone->uz_fini != mtrash_fini) 2655 zone->uz_fini(item, zone->uz_size); 2656 memguard_free(item); 2657 return; 2658 } 2659 #endif 2660 #ifdef INVARIANTS 2661 if (zone->uz_flags & UMA_ZONE_MALLOC) 2662 uma_dbg_free(zone, udata, item); 2663 else 2664 uma_dbg_free(zone, NULL, item); 2665 #endif 2666 if (zone->uz_dtor != NULL) 2667 zone->uz_dtor(item, zone->uz_size, udata); 2668 2669 /* 2670 * The race here is acceptable. If we miss it we'll just have to wait 2671 * a little longer for the limits to be reset. 2672 */ 2673 if (zone->uz_flags & UMA_ZFLAG_FULL) 2674 goto zfree_item; 2675 2676 /* 2677 * If possible, free to the per-CPU cache. There are two 2678 * requirements for safe access to the per-CPU cache: (1) the thread 2679 * accessing the cache must not be preempted or yield during access, 2680 * and (2) the thread must not migrate CPUs without switching which 2681 * cache it accesses. We rely on a critical section to prevent 2682 * preemption and migration. We release the critical section in 2683 * order to acquire the zone mutex if we are unable to free to the 2684 * current cache; when we re-acquire the critical section, we must 2685 * detect and handle migration if it has occurred. 2686 */ 2687 zfree_restart: 2688 critical_enter(); 2689 cpu = curcpu; 2690 cache = &zone->uz_cpu[cpu]; 2691 2692 zfree_start: 2693 /* 2694 * Try to free into the allocbucket first to give LIFO ordering 2695 * for cache-hot datastructures. Spill over into the freebucket 2696 * if necessary. Alloc will swap them if one runs dry. 2697 */ 2698 bucket = cache->uc_allocbucket; 2699 if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries) 2700 bucket = cache->uc_freebucket; 2701 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 2702 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 2703 ("uma_zfree: Freeing to non free bucket index.")); 2704 bucket->ub_bucket[bucket->ub_cnt] = item; 2705 bucket->ub_cnt++; 2706 cache->uc_frees++; 2707 critical_exit(); 2708 return; 2709 } 2710 2711 /* 2712 * We must go back the zone, which requires acquiring the zone lock, 2713 * which in turn means we must release and re-acquire the critical 2714 * section. Since the critical section is released, we may be 2715 * preempted or migrate. As such, make sure not to maintain any 2716 * thread-local state specific to the cache from prior to releasing 2717 * the critical section. 2718 */ 2719 critical_exit(); 2720 if (zone->uz_count == 0 || bucketdisable) 2721 goto zfree_item; 2722 2723 lockfail = 0; 2724 if (ZONE_TRYLOCK(zone) == 0) { 2725 /* Record contention to size the buckets. */ 2726 ZONE_LOCK(zone); 2727 lockfail = 1; 2728 } 2729 critical_enter(); 2730 cpu = curcpu; 2731 cache = &zone->uz_cpu[cpu]; 2732 2733 /* 2734 * Since we have locked the zone we may as well send back our stats. 2735 */ 2736 atomic_add_long(&zone->uz_allocs, cache->uc_allocs); 2737 atomic_add_long(&zone->uz_frees, cache->uc_frees); 2738 cache->uc_allocs = 0; 2739 cache->uc_frees = 0; 2740 2741 bucket = cache->uc_freebucket; 2742 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 2743 ZONE_UNLOCK(zone); 2744 goto zfree_start; 2745 } 2746 cache->uc_freebucket = NULL; 2747 2748 /* Can we throw this on the zone full list? */ 2749 if (bucket != NULL) { 2750 #ifdef UMA_DEBUG_ALLOC 2751 printf("uma_zfree: Putting old bucket on the free list.\n"); 2752 #endif 2753 /* ub_cnt is pointing to the last free item */ 2754 KASSERT(bucket->ub_cnt != 0, 2755 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n")); 2756 LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link); 2757 } 2758 2759 /* We are no longer associated with this CPU. */ 2760 critical_exit(); 2761 2762 /* 2763 * We bump the uz count when the cache size is insufficient to 2764 * handle the working set. 2765 */ 2766 if (lockfail && zone->uz_count < BUCKET_MAX) 2767 zone->uz_count++; 2768 ZONE_UNLOCK(zone); 2769 2770 #ifdef UMA_DEBUG_ALLOC 2771 printf("uma_zfree: Allocating new free bucket.\n"); 2772 #endif 2773 bucket = bucket_alloc(zone, udata, M_NOWAIT); 2774 if (bucket) { 2775 critical_enter(); 2776 cpu = curcpu; 2777 cache = &zone->uz_cpu[cpu]; 2778 if (cache->uc_freebucket == NULL) { 2779 cache->uc_freebucket = bucket; 2780 goto zfree_start; 2781 } 2782 /* 2783 * We lost the race, start over. We have to drop our 2784 * critical section to free the bucket. 2785 */ 2786 critical_exit(); 2787 bucket_free(zone, bucket, udata); 2788 goto zfree_restart; 2789 } 2790 2791 /* 2792 * If nothing else caught this, we'll just do an internal free. 2793 */ 2794 zfree_item: 2795 zone_free_item(zone, item, udata, SKIP_DTOR); 2796 2797 return; 2798 } 2799 2800 static void 2801 slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item) 2802 { 2803 uint8_t freei; 2804 2805 mtx_assert(&keg->uk_lock, MA_OWNED); 2806 MPASS(keg == slab->us_keg); 2807 2808 /* Do we need to remove from any lists? */ 2809 if (slab->us_freecount+1 == keg->uk_ipers) { 2810 LIST_REMOVE(slab, us_link); 2811 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 2812 } else if (slab->us_freecount == 0) { 2813 LIST_REMOVE(slab, us_link); 2814 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2815 } 2816 2817 /* Slab management. */ 2818 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 2819 BIT_SET(SLAB_SETSIZE, freei, &slab->us_free); 2820 slab->us_freecount++; 2821 2822 /* Keg statistics. */ 2823 keg->uk_free++; 2824 } 2825 2826 static void 2827 zone_release(uma_zone_t zone, void **bucket, int cnt) 2828 { 2829 void *item; 2830 uma_slab_t slab; 2831 uma_keg_t keg; 2832 uint8_t *mem; 2833 int clearfull; 2834 int i; 2835 2836 clearfull = 0; 2837 keg = zone_first_keg(zone); 2838 KEG_LOCK(keg); 2839 for (i = 0; i < cnt; i++) { 2840 item = bucket[i]; 2841 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) { 2842 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 2843 if (zone->uz_flags & UMA_ZONE_HASH) { 2844 slab = hash_sfind(&keg->uk_hash, mem); 2845 } else { 2846 mem += keg->uk_pgoff; 2847 slab = (uma_slab_t)mem; 2848 } 2849 } else { 2850 slab = vtoslab((vm_offset_t)item); 2851 if (slab->us_keg != keg) { 2852 KEG_UNLOCK(keg); 2853 keg = slab->us_keg; 2854 KEG_LOCK(keg); 2855 } 2856 } 2857 slab_free_item(keg, slab, item); 2858 if (keg->uk_flags & UMA_ZFLAG_FULL) { 2859 if (keg->uk_pages < keg->uk_maxpages) { 2860 keg->uk_flags &= ~UMA_ZFLAG_FULL; 2861 clearfull = 1; 2862 } 2863 2864 /* 2865 * We can handle one more allocation. Since we're 2866 * clearing ZFLAG_FULL, wake up all procs blocked 2867 * on pages. This should be uncommon, so keeping this 2868 * simple for now (rather than adding count of blocked 2869 * threads etc). 2870 */ 2871 wakeup(keg); 2872 } 2873 } 2874 KEG_UNLOCK(keg); 2875 if (clearfull) { 2876 ZONE_LOCK(zone); 2877 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2878 wakeup(zone); 2879 ZONE_UNLOCK(zone); 2880 } 2881 2882 } 2883 2884 /* 2885 * Frees a single item to any zone. 2886 * 2887 * Arguments: 2888 * zone The zone to free to 2889 * item The item we're freeing 2890 * udata User supplied data for the dtor 2891 * skip Skip dtors and finis 2892 */ 2893 static void 2894 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 2895 { 2896 2897 #ifdef INVARIANTS 2898 if (skip == SKIP_NONE) { 2899 if (zone->uz_flags & UMA_ZONE_MALLOC) 2900 uma_dbg_free(zone, udata, item); 2901 else 2902 uma_dbg_free(zone, NULL, item); 2903 } 2904 #endif 2905 if (skip < SKIP_DTOR && zone->uz_dtor) 2906 zone->uz_dtor(item, zone->uz_size, udata); 2907 2908 if (skip < SKIP_FINI && zone->uz_fini) 2909 zone->uz_fini(item, zone->uz_size); 2910 2911 atomic_add_long(&zone->uz_frees, 1); 2912 zone->uz_release(zone->uz_arg, &item, 1); 2913 } 2914 2915 /* See uma.h */ 2916 int 2917 uma_zone_set_max(uma_zone_t zone, int nitems) 2918 { 2919 uma_keg_t keg; 2920 2921 keg = zone_first_keg(zone); 2922 if (keg == NULL) 2923 return (0); 2924 KEG_LOCK(keg); 2925 keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera; 2926 if (keg->uk_maxpages * keg->uk_ipers < nitems) 2927 keg->uk_maxpages += keg->uk_ppera; 2928 nitems = keg->uk_maxpages * keg->uk_ipers; 2929 KEG_UNLOCK(keg); 2930 2931 return (nitems); 2932 } 2933 2934 /* See uma.h */ 2935 int 2936 uma_zone_get_max(uma_zone_t zone) 2937 { 2938 int nitems; 2939 uma_keg_t keg; 2940 2941 keg = zone_first_keg(zone); 2942 if (keg == NULL) 2943 return (0); 2944 KEG_LOCK(keg); 2945 nitems = keg->uk_maxpages * keg->uk_ipers; 2946 KEG_UNLOCK(keg); 2947 2948 return (nitems); 2949 } 2950 2951 /* See uma.h */ 2952 void 2953 uma_zone_set_warning(uma_zone_t zone, const char *warning) 2954 { 2955 2956 ZONE_LOCK(zone); 2957 zone->uz_warning = warning; 2958 ZONE_UNLOCK(zone); 2959 } 2960 2961 /* See uma.h */ 2962 int 2963 uma_zone_get_cur(uma_zone_t zone) 2964 { 2965 int64_t nitems; 2966 u_int i; 2967 2968 ZONE_LOCK(zone); 2969 nitems = zone->uz_allocs - zone->uz_frees; 2970 CPU_FOREACH(i) { 2971 /* 2972 * See the comment in sysctl_vm_zone_stats() regarding the 2973 * safety of accessing the per-cpu caches. With the zone lock 2974 * held, it is safe, but can potentially result in stale data. 2975 */ 2976 nitems += zone->uz_cpu[i].uc_allocs - 2977 zone->uz_cpu[i].uc_frees; 2978 } 2979 ZONE_UNLOCK(zone); 2980 2981 return (nitems < 0 ? 0 : nitems); 2982 } 2983 2984 /* See uma.h */ 2985 void 2986 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 2987 { 2988 uma_keg_t keg; 2989 2990 keg = zone_first_keg(zone); 2991 KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type")); 2992 KEG_LOCK(keg); 2993 KASSERT(keg->uk_pages == 0, 2994 ("uma_zone_set_init on non-empty keg")); 2995 keg->uk_init = uminit; 2996 KEG_UNLOCK(keg); 2997 } 2998 2999 /* See uma.h */ 3000 void 3001 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 3002 { 3003 uma_keg_t keg; 3004 3005 keg = zone_first_keg(zone); 3006 KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type")); 3007 KEG_LOCK(keg); 3008 KASSERT(keg->uk_pages == 0, 3009 ("uma_zone_set_fini on non-empty keg")); 3010 keg->uk_fini = fini; 3011 KEG_UNLOCK(keg); 3012 } 3013 3014 /* See uma.h */ 3015 void 3016 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 3017 { 3018 3019 ZONE_LOCK(zone); 3020 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3021 ("uma_zone_set_zinit on non-empty keg")); 3022 zone->uz_init = zinit; 3023 ZONE_UNLOCK(zone); 3024 } 3025 3026 /* See uma.h */ 3027 void 3028 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 3029 { 3030 3031 ZONE_LOCK(zone); 3032 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3033 ("uma_zone_set_zfini on non-empty keg")); 3034 zone->uz_fini = zfini; 3035 ZONE_UNLOCK(zone); 3036 } 3037 3038 /* See uma.h */ 3039 /* XXX uk_freef is not actually used with the zone locked */ 3040 void 3041 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 3042 { 3043 uma_keg_t keg; 3044 3045 keg = zone_first_keg(zone); 3046 KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type")); 3047 KEG_LOCK(keg); 3048 keg->uk_freef = freef; 3049 KEG_UNLOCK(keg); 3050 } 3051 3052 /* See uma.h */ 3053 /* XXX uk_allocf is not actually used with the zone locked */ 3054 void 3055 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 3056 { 3057 uma_keg_t keg; 3058 3059 keg = zone_first_keg(zone); 3060 KEG_LOCK(keg); 3061 keg->uk_allocf = allocf; 3062 KEG_UNLOCK(keg); 3063 } 3064 3065 /* See uma.h */ 3066 void 3067 uma_zone_reserve(uma_zone_t zone, int items) 3068 { 3069 uma_keg_t keg; 3070 3071 keg = zone_first_keg(zone); 3072 if (keg == NULL) 3073 return; 3074 KEG_LOCK(keg); 3075 keg->uk_reserve = items; 3076 KEG_UNLOCK(keg); 3077 3078 return; 3079 } 3080 3081 /* See uma.h */ 3082 int 3083 uma_zone_reserve_kva(uma_zone_t zone, int count) 3084 { 3085 uma_keg_t keg; 3086 vm_offset_t kva; 3087 int pages; 3088 3089 keg = zone_first_keg(zone); 3090 if (keg == NULL) 3091 return (0); 3092 pages = count / keg->uk_ipers; 3093 3094 if (pages * keg->uk_ipers < count) 3095 pages++; 3096 3097 #ifdef UMA_MD_SMALL_ALLOC 3098 if (keg->uk_ppera > 1) { 3099 #else 3100 if (1) { 3101 #endif 3102 kva = kva_alloc(pages * UMA_SLAB_SIZE); 3103 if (kva == 0) 3104 return (0); 3105 } else 3106 kva = 0; 3107 KEG_LOCK(keg); 3108 keg->uk_kva = kva; 3109 keg->uk_offset = 0; 3110 keg->uk_maxpages = pages; 3111 #ifdef UMA_MD_SMALL_ALLOC 3112 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 3113 #else 3114 keg->uk_allocf = noobj_alloc; 3115 #endif 3116 keg->uk_flags |= UMA_ZONE_NOFREE; 3117 KEG_UNLOCK(keg); 3118 3119 return (1); 3120 } 3121 3122 /* See uma.h */ 3123 void 3124 uma_prealloc(uma_zone_t zone, int items) 3125 { 3126 int slabs; 3127 uma_slab_t slab; 3128 uma_keg_t keg; 3129 3130 keg = zone_first_keg(zone); 3131 if (keg == NULL) 3132 return; 3133 KEG_LOCK(keg); 3134 slabs = items / keg->uk_ipers; 3135 if (slabs * keg->uk_ipers < items) 3136 slabs++; 3137 while (slabs > 0) { 3138 slab = keg_alloc_slab(keg, zone, M_WAITOK); 3139 if (slab == NULL) 3140 break; 3141 MPASS(slab->us_keg == keg); 3142 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 3143 slabs--; 3144 } 3145 KEG_UNLOCK(keg); 3146 } 3147 3148 /* See uma.h */ 3149 uint32_t * 3150 uma_find_refcnt(uma_zone_t zone, void *item) 3151 { 3152 uma_slabrefcnt_t slabref; 3153 uma_slab_t slab; 3154 uma_keg_t keg; 3155 uint32_t *refcnt; 3156 int idx; 3157 3158 slab = vtoslab((vm_offset_t)item & (~UMA_SLAB_MASK)); 3159 slabref = (uma_slabrefcnt_t)slab; 3160 keg = slab->us_keg; 3161 KASSERT(keg->uk_flags & UMA_ZONE_REFCNT, 3162 ("uma_find_refcnt(): zone possibly not UMA_ZONE_REFCNT")); 3163 idx = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3164 refcnt = &slabref->us_refcnt[idx]; 3165 return refcnt; 3166 } 3167 3168 /* See uma.h */ 3169 void 3170 uma_reclaim(void) 3171 { 3172 #ifdef UMA_DEBUG 3173 printf("UMA: vm asked us to release pages!\n"); 3174 #endif 3175 bucket_enable(); 3176 zone_foreach(zone_drain); 3177 if (vm_page_count_min()) { 3178 cache_drain_safe(NULL); 3179 zone_foreach(zone_drain); 3180 } 3181 /* 3182 * Some slabs may have been freed but this zone will be visited early 3183 * we visit again so that we can free pages that are empty once other 3184 * zones are drained. We have to do the same for buckets. 3185 */ 3186 zone_drain(slabzone); 3187 zone_drain(slabrefzone); 3188 bucket_zone_drain(); 3189 } 3190 3191 /* See uma.h */ 3192 int 3193 uma_zone_exhausted(uma_zone_t zone) 3194 { 3195 int full; 3196 3197 ZONE_LOCK(zone); 3198 full = (zone->uz_flags & UMA_ZFLAG_FULL); 3199 ZONE_UNLOCK(zone); 3200 return (full); 3201 } 3202 3203 int 3204 uma_zone_exhausted_nolock(uma_zone_t zone) 3205 { 3206 return (zone->uz_flags & UMA_ZFLAG_FULL); 3207 } 3208 3209 void * 3210 uma_large_malloc(int size, int wait) 3211 { 3212 void *mem; 3213 uma_slab_t slab; 3214 uint8_t flags; 3215 3216 slab = zone_alloc_item(slabzone, NULL, wait); 3217 if (slab == NULL) 3218 return (NULL); 3219 mem = page_alloc(NULL, size, &flags, wait); 3220 if (mem) { 3221 vsetslab((vm_offset_t)mem, slab); 3222 slab->us_data = mem; 3223 slab->us_flags = flags | UMA_SLAB_MALLOC; 3224 slab->us_size = size; 3225 } else { 3226 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3227 } 3228 3229 return (mem); 3230 } 3231 3232 void 3233 uma_large_free(uma_slab_t slab) 3234 { 3235 3236 page_free(slab->us_data, slab->us_size, slab->us_flags); 3237 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3238 } 3239 3240 static void 3241 uma_zero_item(void *item, uma_zone_t zone) 3242 { 3243 3244 if (zone->uz_flags & UMA_ZONE_PCPU) { 3245 for (int i = 0; i < mp_ncpus; i++) 3246 bzero(zpcpu_get_cpu(item, i), zone->uz_size); 3247 } else 3248 bzero(item, zone->uz_size); 3249 } 3250 3251 void 3252 uma_print_stats(void) 3253 { 3254 zone_foreach(uma_print_zone); 3255 } 3256 3257 static void 3258 slab_print(uma_slab_t slab) 3259 { 3260 printf("slab: keg %p, data %p, freecount %d\n", 3261 slab->us_keg, slab->us_data, slab->us_freecount); 3262 } 3263 3264 static void 3265 cache_print(uma_cache_t cache) 3266 { 3267 printf("alloc: %p(%d), free: %p(%d)\n", 3268 cache->uc_allocbucket, 3269 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, 3270 cache->uc_freebucket, 3271 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0); 3272 } 3273 3274 static void 3275 uma_print_keg(uma_keg_t keg) 3276 { 3277 uma_slab_t slab; 3278 3279 printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d " 3280 "out %d free %d limit %d\n", 3281 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags, 3282 keg->uk_ipers, keg->uk_ppera, 3283 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free, 3284 (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers); 3285 printf("Part slabs:\n"); 3286 LIST_FOREACH(slab, &keg->uk_part_slab, us_link) 3287 slab_print(slab); 3288 printf("Free slabs:\n"); 3289 LIST_FOREACH(slab, &keg->uk_free_slab, us_link) 3290 slab_print(slab); 3291 printf("Full slabs:\n"); 3292 LIST_FOREACH(slab, &keg->uk_full_slab, us_link) 3293 slab_print(slab); 3294 } 3295 3296 void 3297 uma_print_zone(uma_zone_t zone) 3298 { 3299 uma_cache_t cache; 3300 uma_klink_t kl; 3301 int i; 3302 3303 printf("zone: %s(%p) size %d flags %#x\n", 3304 zone->uz_name, zone, zone->uz_size, zone->uz_flags); 3305 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) 3306 uma_print_keg(kl->kl_keg); 3307 CPU_FOREACH(i) { 3308 cache = &zone->uz_cpu[i]; 3309 printf("CPU %d Cache:\n", i); 3310 cache_print(cache); 3311 } 3312 } 3313 3314 #ifdef DDB 3315 /* 3316 * Generate statistics across both the zone and its per-cpu cache's. Return 3317 * desired statistics if the pointer is non-NULL for that statistic. 3318 * 3319 * Note: does not update the zone statistics, as it can't safely clear the 3320 * per-CPU cache statistic. 3321 * 3322 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't 3323 * safe from off-CPU; we should modify the caches to track this information 3324 * directly so that we don't have to. 3325 */ 3326 static void 3327 uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp, 3328 uint64_t *freesp, uint64_t *sleepsp) 3329 { 3330 uma_cache_t cache; 3331 uint64_t allocs, frees, sleeps; 3332 int cachefree, cpu; 3333 3334 allocs = frees = sleeps = 0; 3335 cachefree = 0; 3336 CPU_FOREACH(cpu) { 3337 cache = &z->uz_cpu[cpu]; 3338 if (cache->uc_allocbucket != NULL) 3339 cachefree += cache->uc_allocbucket->ub_cnt; 3340 if (cache->uc_freebucket != NULL) 3341 cachefree += cache->uc_freebucket->ub_cnt; 3342 allocs += cache->uc_allocs; 3343 frees += cache->uc_frees; 3344 } 3345 allocs += z->uz_allocs; 3346 frees += z->uz_frees; 3347 sleeps += z->uz_sleeps; 3348 if (cachefreep != NULL) 3349 *cachefreep = cachefree; 3350 if (allocsp != NULL) 3351 *allocsp = allocs; 3352 if (freesp != NULL) 3353 *freesp = frees; 3354 if (sleepsp != NULL) 3355 *sleepsp = sleeps; 3356 } 3357 #endif /* DDB */ 3358 3359 static int 3360 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 3361 { 3362 uma_keg_t kz; 3363 uma_zone_t z; 3364 int count; 3365 3366 count = 0; 3367 mtx_lock(&uma_mtx); 3368 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3369 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3370 count++; 3371 } 3372 mtx_unlock(&uma_mtx); 3373 return (sysctl_handle_int(oidp, &count, 0, req)); 3374 } 3375 3376 static int 3377 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 3378 { 3379 struct uma_stream_header ush; 3380 struct uma_type_header uth; 3381 struct uma_percpu_stat ups; 3382 uma_bucket_t bucket; 3383 struct sbuf sbuf; 3384 uma_cache_t cache; 3385 uma_klink_t kl; 3386 uma_keg_t kz; 3387 uma_zone_t z; 3388 uma_keg_t k; 3389 int count, error, i; 3390 3391 error = sysctl_wire_old_buffer(req, 0); 3392 if (error != 0) 3393 return (error); 3394 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 3395 3396 count = 0; 3397 mtx_lock(&uma_mtx); 3398 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3399 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3400 count++; 3401 } 3402 3403 /* 3404 * Insert stream header. 3405 */ 3406 bzero(&ush, sizeof(ush)); 3407 ush.ush_version = UMA_STREAM_VERSION; 3408 ush.ush_maxcpus = (mp_maxid + 1); 3409 ush.ush_count = count; 3410 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 3411 3412 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3413 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3414 bzero(&uth, sizeof(uth)); 3415 ZONE_LOCK(z); 3416 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 3417 uth.uth_align = kz->uk_align; 3418 uth.uth_size = kz->uk_size; 3419 uth.uth_rsize = kz->uk_rsize; 3420 LIST_FOREACH(kl, &z->uz_kegs, kl_link) { 3421 k = kl->kl_keg; 3422 uth.uth_maxpages += k->uk_maxpages; 3423 uth.uth_pages += k->uk_pages; 3424 uth.uth_keg_free += k->uk_free; 3425 uth.uth_limit = (k->uk_maxpages / k->uk_ppera) 3426 * k->uk_ipers; 3427 } 3428 3429 /* 3430 * A zone is secondary is it is not the first entry 3431 * on the keg's zone list. 3432 */ 3433 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 3434 (LIST_FIRST(&kz->uk_zones) != z)) 3435 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 3436 3437 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3438 uth.uth_zone_free += bucket->ub_cnt; 3439 uth.uth_allocs = z->uz_allocs; 3440 uth.uth_frees = z->uz_frees; 3441 uth.uth_fails = z->uz_fails; 3442 uth.uth_sleeps = z->uz_sleeps; 3443 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 3444 /* 3445 * While it is not normally safe to access the cache 3446 * bucket pointers while not on the CPU that owns the 3447 * cache, we only allow the pointers to be exchanged 3448 * without the zone lock held, not invalidated, so 3449 * accept the possible race associated with bucket 3450 * exchange during monitoring. 3451 */ 3452 for (i = 0; i < (mp_maxid + 1); i++) { 3453 bzero(&ups, sizeof(ups)); 3454 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) 3455 goto skip; 3456 if (CPU_ABSENT(i)) 3457 goto skip; 3458 cache = &z->uz_cpu[i]; 3459 if (cache->uc_allocbucket != NULL) 3460 ups.ups_cache_free += 3461 cache->uc_allocbucket->ub_cnt; 3462 if (cache->uc_freebucket != NULL) 3463 ups.ups_cache_free += 3464 cache->uc_freebucket->ub_cnt; 3465 ups.ups_allocs = cache->uc_allocs; 3466 ups.ups_frees = cache->uc_frees; 3467 skip: 3468 (void)sbuf_bcat(&sbuf, &ups, sizeof(ups)); 3469 } 3470 ZONE_UNLOCK(z); 3471 } 3472 } 3473 mtx_unlock(&uma_mtx); 3474 error = sbuf_finish(&sbuf); 3475 sbuf_delete(&sbuf); 3476 return (error); 3477 } 3478 3479 int 3480 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 3481 { 3482 uma_zone_t zone = *(uma_zone_t *)arg1; 3483 int error, max, old; 3484 3485 old = max = uma_zone_get_max(zone); 3486 error = sysctl_handle_int(oidp, &max, 0, req); 3487 if (error || !req->newptr) 3488 return (error); 3489 3490 if (max < old) 3491 return (EINVAL); 3492 3493 uma_zone_set_max(zone, max); 3494 3495 return (0); 3496 } 3497 3498 int 3499 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 3500 { 3501 uma_zone_t zone = *(uma_zone_t *)arg1; 3502 int cur; 3503 3504 cur = uma_zone_get_cur(zone); 3505 return (sysctl_handle_int(oidp, &cur, 0, req)); 3506 } 3507 3508 #ifdef DDB 3509 DB_SHOW_COMMAND(uma, db_show_uma) 3510 { 3511 uint64_t allocs, frees, sleeps; 3512 uma_bucket_t bucket; 3513 uma_keg_t kz; 3514 uma_zone_t z; 3515 int cachefree; 3516 3517 db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used", 3518 "Free", "Requests", "Sleeps", "Bucket"); 3519 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3520 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3521 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 3522 allocs = z->uz_allocs; 3523 frees = z->uz_frees; 3524 sleeps = z->uz_sleeps; 3525 cachefree = 0; 3526 } else 3527 uma_zone_sumstat(z, &cachefree, &allocs, 3528 &frees, &sleeps); 3529 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 3530 (LIST_FIRST(&kz->uk_zones) != z))) 3531 cachefree += kz->uk_free; 3532 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3533 cachefree += bucket->ub_cnt; 3534 db_printf("%18s %8ju %8jd %8d %12ju %8ju %8u\n", 3535 z->uz_name, (uintmax_t)kz->uk_size, 3536 (intmax_t)(allocs - frees), cachefree, 3537 (uintmax_t)allocs, sleeps, z->uz_count); 3538 if (db_pager_quit) 3539 return; 3540 } 3541 } 3542 } 3543 3544 DB_SHOW_COMMAND(umacache, db_show_umacache) 3545 { 3546 uint64_t allocs, frees; 3547 uma_bucket_t bucket; 3548 uma_zone_t z; 3549 int cachefree; 3550 3551 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 3552 "Requests", "Bucket"); 3553 LIST_FOREACH(z, &uma_cachezones, uz_link) { 3554 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL); 3555 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3556 cachefree += bucket->ub_cnt; 3557 db_printf("%18s %8ju %8jd %8d %12ju %8u\n", 3558 z->uz_name, (uintmax_t)z->uz_size, 3559 (intmax_t)(allocs - frees), cachefree, 3560 (uintmax_t)allocs, z->uz_count); 3561 if (db_pager_quit) 3562 return; 3563 } 3564 } 3565 #endif 3566