1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/asan.h> 62 #include <sys/bitset.h> 63 #include <sys/domainset.h> 64 #include <sys/eventhandler.h> 65 #include <sys/kernel.h> 66 #include <sys/types.h> 67 #include <sys/limits.h> 68 #include <sys/queue.h> 69 #include <sys/malloc.h> 70 #include <sys/ktr.h> 71 #include <sys/lock.h> 72 #include <sys/msan.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/random.h> 76 #include <sys/rwlock.h> 77 #include <sys/sbuf.h> 78 #include <sys/sched.h> 79 #include <sys/sleepqueue.h> 80 #include <sys/smp.h> 81 #include <sys/smr.h> 82 #include <sys/sysctl.h> 83 #include <sys/taskqueue.h> 84 #include <sys/vmmeter.h> 85 86 #include <vm/vm.h> 87 #include <vm/vm_param.h> 88 #include <vm/vm_domainset.h> 89 #include <vm/vm_object.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_pageout.h> 92 #include <vm/vm_phys.h> 93 #include <vm/vm_pagequeue.h> 94 #include <vm/vm_map.h> 95 #include <vm/vm_kern.h> 96 #include <vm/vm_extern.h> 97 #include <vm/vm_dumpset.h> 98 #include <vm/uma.h> 99 #include <vm/uma_int.h> 100 #include <vm/uma_dbg.h> 101 102 #include <ddb/ddb.h> 103 104 #ifdef DEBUG_MEMGUARD 105 #include <vm/memguard.h> 106 #endif 107 108 #include <machine/md_var.h> 109 110 #ifdef INVARIANTS 111 #define UMA_ALWAYS_CTORDTOR 1 112 #else 113 #define UMA_ALWAYS_CTORDTOR 0 114 #endif 115 116 /* 117 * This is the zone and keg from which all zones are spawned. 118 */ 119 static uma_zone_t kegs; 120 static uma_zone_t zones; 121 122 /* 123 * On INVARIANTS builds, the slab contains a second bitset of the same size, 124 * "dbg_bits", which is laid out immediately after us_free. 125 */ 126 #ifdef INVARIANTS 127 #define SLAB_BITSETS 2 128 #else 129 #define SLAB_BITSETS 1 130 #endif 131 132 /* 133 * These are the two zones from which all offpage uma_slab_ts are allocated. 134 * 135 * One zone is for slab headers that can represent a larger number of items, 136 * making the slabs themselves more efficient, and the other zone is for 137 * headers that are smaller and represent fewer items, making the headers more 138 * efficient. 139 */ 140 #define SLABZONE_SIZE(setsize) \ 141 (sizeof(struct uma_hash_slab) + BITSET_SIZE(setsize) * SLAB_BITSETS) 142 #define SLABZONE0_SETSIZE (PAGE_SIZE / 16) 143 #define SLABZONE1_SETSIZE SLAB_MAX_SETSIZE 144 #define SLABZONE0_SIZE SLABZONE_SIZE(SLABZONE0_SETSIZE) 145 #define SLABZONE1_SIZE SLABZONE_SIZE(SLABZONE1_SETSIZE) 146 static uma_zone_t slabzones[2]; 147 148 /* 149 * The initial hash tables come out of this zone so they can be allocated 150 * prior to malloc coming up. 151 */ 152 static uma_zone_t hashzone; 153 154 /* The boot-time adjusted value for cache line alignment. */ 155 int uma_align_cache = 64 - 1; 156 157 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 158 static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc"); 159 160 /* 161 * Are we allowed to allocate buckets? 162 */ 163 static int bucketdisable = 1; 164 165 /* Linked list of all kegs in the system */ 166 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 167 168 /* Linked list of all cache-only zones in the system */ 169 static LIST_HEAD(,uma_zone) uma_cachezones = 170 LIST_HEAD_INITIALIZER(uma_cachezones); 171 172 /* 173 * Mutex for global lists: uma_kegs, uma_cachezones, and the per-keg list of 174 * zones. 175 */ 176 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 177 178 static struct sx uma_reclaim_lock; 179 180 /* 181 * First available virual address for boot time allocations. 182 */ 183 static vm_offset_t bootstart; 184 static vm_offset_t bootmem; 185 186 /* 187 * kmem soft limit, initialized by uma_set_limit(). Ensure that early 188 * allocations don't trigger a wakeup of the reclaim thread. 189 */ 190 unsigned long uma_kmem_limit = LONG_MAX; 191 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0, 192 "UMA kernel memory soft limit"); 193 unsigned long uma_kmem_total; 194 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0, 195 "UMA kernel memory usage"); 196 197 /* Is the VM done starting up? */ 198 static enum { 199 BOOT_COLD, 200 BOOT_KVA, 201 BOOT_PCPU, 202 BOOT_RUNNING, 203 BOOT_SHUTDOWN, 204 } booted = BOOT_COLD; 205 206 /* 207 * This is the handle used to schedule events that need to happen 208 * outside of the allocation fast path. 209 */ 210 static struct callout uma_callout; 211 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 212 213 /* 214 * This structure is passed as the zone ctor arg so that I don't have to create 215 * a special allocation function just for zones. 216 */ 217 struct uma_zctor_args { 218 const char *name; 219 size_t size; 220 uma_ctor ctor; 221 uma_dtor dtor; 222 uma_init uminit; 223 uma_fini fini; 224 uma_import import; 225 uma_release release; 226 void *arg; 227 uma_keg_t keg; 228 int align; 229 uint32_t flags; 230 }; 231 232 struct uma_kctor_args { 233 uma_zone_t zone; 234 size_t size; 235 uma_init uminit; 236 uma_fini fini; 237 int align; 238 uint32_t flags; 239 }; 240 241 struct uma_bucket_zone { 242 uma_zone_t ubz_zone; 243 const char *ubz_name; 244 int ubz_entries; /* Number of items it can hold. */ 245 int ubz_maxsize; /* Maximum allocation size per-item. */ 246 }; 247 248 /* 249 * Compute the actual number of bucket entries to pack them in power 250 * of two sizes for more efficient space utilization. 251 */ 252 #define BUCKET_SIZE(n) \ 253 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 254 255 #define BUCKET_MAX BUCKET_SIZE(256) 256 257 struct uma_bucket_zone bucket_zones[] = { 258 /* Literal bucket sizes. */ 259 { NULL, "2 Bucket", 2, 4096 }, 260 { NULL, "4 Bucket", 4, 3072 }, 261 { NULL, "8 Bucket", 8, 2048 }, 262 { NULL, "16 Bucket", 16, 1024 }, 263 /* Rounded down power of 2 sizes for efficiency. */ 264 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 265 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 266 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 267 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 268 { NULL, NULL, 0} 269 }; 270 271 /* 272 * Flags and enumerations to be passed to internal functions. 273 */ 274 enum zfreeskip { 275 SKIP_NONE = 0, 276 SKIP_CNT = 0x00000001, 277 SKIP_DTOR = 0x00010000, 278 SKIP_FINI = 0x00020000, 279 }; 280 281 /* Prototypes.. */ 282 283 void uma_startup1(vm_offset_t); 284 void uma_startup2(void); 285 286 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 287 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 288 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 289 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 290 static void *contig_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 291 static void page_free(void *, vm_size_t, uint8_t); 292 static void pcpu_page_free(void *, vm_size_t, uint8_t); 293 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int); 294 static void cache_drain(uma_zone_t); 295 static void bucket_drain(uma_zone_t, uma_bucket_t); 296 static void bucket_cache_reclaim(uma_zone_t zone, bool, int); 297 static bool bucket_cache_reclaim_domain(uma_zone_t, bool, bool, int); 298 static int keg_ctor(void *, int, void *, int); 299 static void keg_dtor(void *, int, void *); 300 static void keg_drain(uma_keg_t keg, int domain); 301 static int zone_ctor(void *, int, void *, int); 302 static void zone_dtor(void *, int, void *); 303 static inline void item_dtor(uma_zone_t zone, void *item, int size, 304 void *udata, enum zfreeskip skip); 305 static int zero_init(void *, int, int); 306 static void zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 307 int itemdomain, bool ws); 308 static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *); 309 static void zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *), void *); 310 static void zone_timeout(uma_zone_t zone, void *); 311 static int hash_alloc(struct uma_hash *, u_int); 312 static int hash_expand(struct uma_hash *, struct uma_hash *); 313 static void hash_free(struct uma_hash *hash); 314 static void uma_timeout(void *); 315 static void uma_shutdown(void); 316 static void *zone_alloc_item(uma_zone_t, void *, int, int); 317 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 318 static int zone_alloc_limit(uma_zone_t zone, int count, int flags); 319 static void zone_free_limit(uma_zone_t zone, int count); 320 static void bucket_enable(void); 321 static void bucket_init(void); 322 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 323 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 324 static void bucket_zone_drain(int domain); 325 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int); 326 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 327 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item); 328 static size_t slab_sizeof(int nitems); 329 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 330 uma_fini fini, int align, uint32_t flags); 331 static int zone_import(void *, void **, int, int, int); 332 static void zone_release(void *, void **, int); 333 static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int); 334 static bool cache_free(uma_zone_t, uma_cache_t, void *, int); 335 336 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 337 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 338 static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS); 339 static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS); 340 static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS); 341 static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS); 342 static int sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS); 343 344 static uint64_t uma_zone_get_allocs(uma_zone_t zone); 345 346 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 347 "Memory allocation debugging"); 348 349 #ifdef INVARIANTS 350 static uint64_t uma_keg_get_allocs(uma_keg_t zone); 351 static inline struct noslabbits *slab_dbg_bits(uma_slab_t slab, uma_keg_t keg); 352 353 static bool uma_dbg_kskip(uma_keg_t keg, void *mem); 354 static bool uma_dbg_zskip(uma_zone_t zone, void *mem); 355 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 356 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 357 358 static u_int dbg_divisor = 1; 359 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor, 360 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0, 361 "Debug & thrash every this item in memory allocator"); 362 363 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER; 364 static counter_u64_t uma_skip_cnt = EARLY_COUNTER; 365 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD, 366 &uma_dbg_cnt, "memory items debugged"); 367 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD, 368 &uma_skip_cnt, "memory items skipped, not debugged"); 369 #endif 370 371 SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 372 "Universal Memory Allocator"); 373 374 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_INT, 375 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 376 377 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_STRUCT, 378 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 379 380 static int zone_warnings = 1; 381 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 382 "Warn when UMA zones becomes full"); 383 384 static int multipage_slabs = 1; 385 TUNABLE_INT("vm.debug.uma_multipage_slabs", &multipage_slabs); 386 SYSCTL_INT(_vm_debug, OID_AUTO, uma_multipage_slabs, 387 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &multipage_slabs, 0, 388 "UMA may choose larger slab sizes for better efficiency"); 389 390 /* 391 * Select the slab zone for an offpage slab with the given maximum item count. 392 */ 393 static inline uma_zone_t 394 slabzone(int ipers) 395 { 396 397 return (slabzones[ipers > SLABZONE0_SETSIZE]); 398 } 399 400 /* 401 * This routine checks to see whether or not it's safe to enable buckets. 402 */ 403 static void 404 bucket_enable(void) 405 { 406 407 KASSERT(booted >= BOOT_KVA, ("Bucket enable before init")); 408 bucketdisable = vm_page_count_min(); 409 } 410 411 /* 412 * Initialize bucket_zones, the array of zones of buckets of various sizes. 413 * 414 * For each zone, calculate the memory required for each bucket, consisting 415 * of the header and an array of pointers. 416 */ 417 static void 418 bucket_init(void) 419 { 420 struct uma_bucket_zone *ubz; 421 int size; 422 423 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 424 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 425 size += sizeof(void *) * ubz->ubz_entries; 426 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 427 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 428 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | 429 UMA_ZONE_FIRSTTOUCH); 430 } 431 } 432 433 /* 434 * Given a desired number of entries for a bucket, return the zone from which 435 * to allocate the bucket. 436 */ 437 static struct uma_bucket_zone * 438 bucket_zone_lookup(int entries) 439 { 440 struct uma_bucket_zone *ubz; 441 442 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 443 if (ubz->ubz_entries >= entries) 444 return (ubz); 445 ubz--; 446 return (ubz); 447 } 448 449 static int 450 bucket_select(int size) 451 { 452 struct uma_bucket_zone *ubz; 453 454 ubz = &bucket_zones[0]; 455 if (size > ubz->ubz_maxsize) 456 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 457 458 for (; ubz->ubz_entries != 0; ubz++) 459 if (ubz->ubz_maxsize < size) 460 break; 461 ubz--; 462 return (ubz->ubz_entries); 463 } 464 465 static uma_bucket_t 466 bucket_alloc(uma_zone_t zone, void *udata, int flags) 467 { 468 struct uma_bucket_zone *ubz; 469 uma_bucket_t bucket; 470 471 /* 472 * Don't allocate buckets early in boot. 473 */ 474 if (__predict_false(booted < BOOT_KVA)) 475 return (NULL); 476 477 /* 478 * To limit bucket recursion we store the original zone flags 479 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 480 * NOVM flag to persist even through deep recursions. We also 481 * store ZFLAG_BUCKET once we have recursed attempting to allocate 482 * a bucket for a bucket zone so we do not allow infinite bucket 483 * recursion. This cookie will even persist to frees of unused 484 * buckets via the allocation path or bucket allocations in the 485 * free path. 486 */ 487 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 488 udata = (void *)(uintptr_t)zone->uz_flags; 489 else { 490 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 491 return (NULL); 492 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 493 } 494 if (((uintptr_t)udata & UMA_ZONE_VM) != 0) 495 flags |= M_NOVM; 496 ubz = bucket_zone_lookup(atomic_load_16(&zone->uz_bucket_size)); 497 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 498 ubz++; 499 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 500 if (bucket) { 501 #ifdef INVARIANTS 502 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 503 #endif 504 bucket->ub_cnt = 0; 505 bucket->ub_entries = min(ubz->ubz_entries, 506 zone->uz_bucket_size_max); 507 bucket->ub_seq = SMR_SEQ_INVALID; 508 CTR3(KTR_UMA, "bucket_alloc: zone %s(%p) allocated bucket %p", 509 zone->uz_name, zone, bucket); 510 } 511 512 return (bucket); 513 } 514 515 static void 516 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 517 { 518 struct uma_bucket_zone *ubz; 519 520 if (bucket->ub_cnt != 0) 521 bucket_drain(zone, bucket); 522 523 KASSERT(bucket->ub_cnt == 0, 524 ("bucket_free: Freeing a non free bucket.")); 525 KASSERT(bucket->ub_seq == SMR_SEQ_INVALID, 526 ("bucket_free: Freeing an SMR bucket.")); 527 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 528 udata = (void *)(uintptr_t)zone->uz_flags; 529 ubz = bucket_zone_lookup(bucket->ub_entries); 530 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 531 } 532 533 static void 534 bucket_zone_drain(int domain) 535 { 536 struct uma_bucket_zone *ubz; 537 538 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 539 uma_zone_reclaim_domain(ubz->ubz_zone, UMA_RECLAIM_DRAIN, 540 domain); 541 } 542 543 #ifdef KASAN 544 _Static_assert(UMA_SMALLEST_UNIT % KASAN_SHADOW_SCALE == 0, 545 "Base UMA allocation size not a multiple of the KASAN scale factor"); 546 547 static void 548 kasan_mark_item_valid(uma_zone_t zone, void *item) 549 { 550 void *pcpu_item; 551 size_t sz, rsz; 552 int i; 553 554 if ((zone->uz_flags & UMA_ZONE_NOKASAN) != 0) 555 return; 556 557 sz = zone->uz_size; 558 rsz = roundup2(sz, KASAN_SHADOW_SCALE); 559 if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) { 560 kasan_mark(item, sz, rsz, KASAN_GENERIC_REDZONE); 561 } else { 562 pcpu_item = zpcpu_base_to_offset(item); 563 for (i = 0; i <= mp_maxid; i++) 564 kasan_mark(zpcpu_get_cpu(pcpu_item, i), sz, rsz, 565 KASAN_GENERIC_REDZONE); 566 } 567 } 568 569 static void 570 kasan_mark_item_invalid(uma_zone_t zone, void *item) 571 { 572 void *pcpu_item; 573 size_t sz; 574 int i; 575 576 if ((zone->uz_flags & UMA_ZONE_NOKASAN) != 0) 577 return; 578 579 sz = roundup2(zone->uz_size, KASAN_SHADOW_SCALE); 580 if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) { 581 kasan_mark(item, 0, sz, KASAN_UMA_FREED); 582 } else { 583 pcpu_item = zpcpu_base_to_offset(item); 584 for (i = 0; i <= mp_maxid; i++) 585 kasan_mark(zpcpu_get_cpu(pcpu_item, i), 0, sz, 586 KASAN_UMA_FREED); 587 } 588 } 589 590 static void 591 kasan_mark_slab_valid(uma_keg_t keg, void *mem) 592 { 593 size_t sz; 594 595 if ((keg->uk_flags & UMA_ZONE_NOKASAN) == 0) { 596 sz = keg->uk_ppera * PAGE_SIZE; 597 kasan_mark(mem, sz, sz, 0); 598 } 599 } 600 601 static void 602 kasan_mark_slab_invalid(uma_keg_t keg, void *mem) 603 { 604 size_t sz; 605 606 if ((keg->uk_flags & UMA_ZONE_NOKASAN) == 0) { 607 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0) 608 sz = keg->uk_ppera * PAGE_SIZE; 609 else 610 sz = keg->uk_pgoff; 611 kasan_mark(mem, 0, sz, KASAN_UMA_FREED); 612 } 613 } 614 #else /* !KASAN */ 615 static void 616 kasan_mark_item_valid(uma_zone_t zone __unused, void *item __unused) 617 { 618 } 619 620 static void 621 kasan_mark_item_invalid(uma_zone_t zone __unused, void *item __unused) 622 { 623 } 624 625 static void 626 kasan_mark_slab_valid(uma_keg_t keg __unused, void *mem __unused) 627 { 628 } 629 630 static void 631 kasan_mark_slab_invalid(uma_keg_t keg __unused, void *mem __unused) 632 { 633 } 634 #endif /* KASAN */ 635 636 #ifdef KMSAN 637 static inline void 638 kmsan_mark_item_uninitialized(uma_zone_t zone, void *item) 639 { 640 void *pcpu_item; 641 size_t sz; 642 int i; 643 644 if ((zone->uz_flags & 645 (UMA_ZFLAG_CACHE | UMA_ZONE_SECONDARY | UMA_ZONE_MALLOC)) != 0) { 646 /* 647 * Cache zones should not be instrumented by default, as UMA 648 * does not have enough information to do so correctly. 649 * Consumers can mark items themselves if it makes sense to do 650 * so. 651 * 652 * Items from secondary zones are initialized by the parent 653 * zone and thus cannot safely be marked by UMA. 654 * 655 * malloc zones are handled directly by malloc(9) and friends, 656 * since they can provide more precise origin tracking. 657 */ 658 return; 659 } 660 if (zone->uz_keg->uk_init != NULL) { 661 /* 662 * By definition, initialized items cannot be marked. The 663 * best we can do is mark items from these zones after they 664 * are freed to the keg. 665 */ 666 return; 667 } 668 669 sz = zone->uz_size; 670 if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) { 671 kmsan_orig(item, sz, KMSAN_TYPE_UMA, KMSAN_RET_ADDR); 672 kmsan_mark(item, sz, KMSAN_STATE_UNINIT); 673 } else { 674 pcpu_item = zpcpu_base_to_offset(item); 675 for (i = 0; i <= mp_maxid; i++) { 676 kmsan_orig(zpcpu_get_cpu(pcpu_item, i), sz, 677 KMSAN_TYPE_UMA, KMSAN_RET_ADDR); 678 kmsan_mark(zpcpu_get_cpu(pcpu_item, i), sz, 679 KMSAN_STATE_INITED); 680 } 681 } 682 } 683 #else /* !KMSAN */ 684 static inline void 685 kmsan_mark_item_uninitialized(uma_zone_t zone __unused, void *item __unused) 686 { 687 } 688 #endif /* KMSAN */ 689 690 /* 691 * Acquire the domain lock and record contention. 692 */ 693 static uma_zone_domain_t 694 zone_domain_lock(uma_zone_t zone, int domain) 695 { 696 uma_zone_domain_t zdom; 697 bool lockfail; 698 699 zdom = ZDOM_GET(zone, domain); 700 lockfail = false; 701 if (ZDOM_OWNED(zdom)) 702 lockfail = true; 703 ZDOM_LOCK(zdom); 704 /* This is unsynchronized. The counter does not need to be precise. */ 705 if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max) 706 zone->uz_bucket_size++; 707 return (zdom); 708 } 709 710 /* 711 * Search for the domain with the least cached items and return it if it 712 * is out of balance with the preferred domain. 713 */ 714 static __noinline int 715 zone_domain_lowest(uma_zone_t zone, int pref) 716 { 717 long least, nitems, prefitems; 718 int domain; 719 int i; 720 721 prefitems = least = LONG_MAX; 722 domain = 0; 723 for (i = 0; i < vm_ndomains; i++) { 724 nitems = ZDOM_GET(zone, i)->uzd_nitems; 725 if (nitems < least) { 726 domain = i; 727 least = nitems; 728 } 729 if (domain == pref) 730 prefitems = nitems; 731 } 732 if (prefitems < least * 2) 733 return (pref); 734 735 return (domain); 736 } 737 738 /* 739 * Search for the domain with the most cached items and return it or the 740 * preferred domain if it has enough to proceed. 741 */ 742 static __noinline int 743 zone_domain_highest(uma_zone_t zone, int pref) 744 { 745 long most, nitems; 746 int domain; 747 int i; 748 749 if (ZDOM_GET(zone, pref)->uzd_nitems > BUCKET_MAX) 750 return (pref); 751 752 most = 0; 753 domain = 0; 754 for (i = 0; i < vm_ndomains; i++) { 755 nitems = ZDOM_GET(zone, i)->uzd_nitems; 756 if (nitems > most) { 757 domain = i; 758 most = nitems; 759 } 760 } 761 762 return (domain); 763 } 764 765 /* 766 * Set the maximum imax value. 767 */ 768 static void 769 zone_domain_imax_set(uma_zone_domain_t zdom, int nitems) 770 { 771 long old; 772 773 old = zdom->uzd_imax; 774 do { 775 if (old >= nitems) 776 return; 777 } while (atomic_fcmpset_long(&zdom->uzd_imax, &old, nitems) == 0); 778 779 /* 780 * We are at new maximum, so do the last WSS update for the old 781 * bimin and prepare to measure next allocation batch. 782 */ 783 if (zdom->uzd_wss < old - zdom->uzd_bimin) 784 zdom->uzd_wss = old - zdom->uzd_bimin; 785 zdom->uzd_bimin = nitems; 786 } 787 788 /* 789 * Attempt to satisfy an allocation by retrieving a full bucket from one of the 790 * zone's caches. If a bucket is found the zone is not locked on return. 791 */ 792 static uma_bucket_t 793 zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom, bool reclaim) 794 { 795 uma_bucket_t bucket; 796 long cnt; 797 int i; 798 bool dtor = false; 799 800 ZDOM_LOCK_ASSERT(zdom); 801 802 if ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) == NULL) 803 return (NULL); 804 805 /* SMR Buckets can not be re-used until readers expire. */ 806 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 807 bucket->ub_seq != SMR_SEQ_INVALID) { 808 if (!smr_poll(zone->uz_smr, bucket->ub_seq, false)) 809 return (NULL); 810 bucket->ub_seq = SMR_SEQ_INVALID; 811 dtor = (zone->uz_dtor != NULL) || UMA_ALWAYS_CTORDTOR; 812 if (STAILQ_NEXT(bucket, ub_link) != NULL) 813 zdom->uzd_seq = STAILQ_NEXT(bucket, ub_link)->ub_seq; 814 } 815 STAILQ_REMOVE_HEAD(&zdom->uzd_buckets, ub_link); 816 817 KASSERT(zdom->uzd_nitems >= bucket->ub_cnt, 818 ("%s: item count underflow (%ld, %d)", 819 __func__, zdom->uzd_nitems, bucket->ub_cnt)); 820 KASSERT(bucket->ub_cnt > 0, 821 ("%s: empty bucket in bucket cache", __func__)); 822 zdom->uzd_nitems -= bucket->ub_cnt; 823 824 if (reclaim) { 825 /* 826 * Shift the bounds of the current WSS interval to avoid 827 * perturbing the estimates. 828 */ 829 cnt = lmin(zdom->uzd_bimin, bucket->ub_cnt); 830 atomic_subtract_long(&zdom->uzd_imax, cnt); 831 zdom->uzd_bimin -= cnt; 832 zdom->uzd_imin -= lmin(zdom->uzd_imin, bucket->ub_cnt); 833 if (zdom->uzd_limin >= bucket->ub_cnt) { 834 zdom->uzd_limin -= bucket->ub_cnt; 835 } else { 836 zdom->uzd_limin = 0; 837 zdom->uzd_timin = 0; 838 } 839 } else if (zdom->uzd_bimin > zdom->uzd_nitems) { 840 zdom->uzd_bimin = zdom->uzd_nitems; 841 if (zdom->uzd_imin > zdom->uzd_nitems) 842 zdom->uzd_imin = zdom->uzd_nitems; 843 } 844 845 ZDOM_UNLOCK(zdom); 846 if (dtor) 847 for (i = 0; i < bucket->ub_cnt; i++) 848 item_dtor(zone, bucket->ub_bucket[i], zone->uz_size, 849 NULL, SKIP_NONE); 850 851 return (bucket); 852 } 853 854 /* 855 * Insert a full bucket into the specified cache. The "ws" parameter indicates 856 * whether the bucket's contents should be counted as part of the zone's working 857 * set. The bucket may be freed if it exceeds the bucket limit. 858 */ 859 static void 860 zone_put_bucket(uma_zone_t zone, int domain, uma_bucket_t bucket, void *udata, 861 const bool ws) 862 { 863 uma_zone_domain_t zdom; 864 865 /* We don't cache empty buckets. This can happen after a reclaim. */ 866 if (bucket->ub_cnt == 0) 867 goto out; 868 zdom = zone_domain_lock(zone, domain); 869 870 /* 871 * Conditionally set the maximum number of items. 872 */ 873 zdom->uzd_nitems += bucket->ub_cnt; 874 if (__predict_true(zdom->uzd_nitems < zone->uz_bucket_max)) { 875 if (ws) { 876 zone_domain_imax_set(zdom, zdom->uzd_nitems); 877 } else { 878 /* 879 * Shift the bounds of the current WSS interval to 880 * avoid perturbing the estimates. 881 */ 882 atomic_add_long(&zdom->uzd_imax, bucket->ub_cnt); 883 zdom->uzd_imin += bucket->ub_cnt; 884 zdom->uzd_bimin += bucket->ub_cnt; 885 zdom->uzd_limin += bucket->ub_cnt; 886 } 887 if (STAILQ_EMPTY(&zdom->uzd_buckets)) 888 zdom->uzd_seq = bucket->ub_seq; 889 890 /* 891 * Try to promote reuse of recently used items. For items 892 * protected by SMR, try to defer reuse to minimize polling. 893 */ 894 if (bucket->ub_seq == SMR_SEQ_INVALID) 895 STAILQ_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); 896 else 897 STAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link); 898 ZDOM_UNLOCK(zdom); 899 return; 900 } 901 zdom->uzd_nitems -= bucket->ub_cnt; 902 ZDOM_UNLOCK(zdom); 903 out: 904 bucket_free(zone, bucket, udata); 905 } 906 907 /* Pops an item out of a per-cpu cache bucket. */ 908 static inline void * 909 cache_bucket_pop(uma_cache_t cache, uma_cache_bucket_t bucket) 910 { 911 void *item; 912 913 CRITICAL_ASSERT(curthread); 914 915 bucket->ucb_cnt--; 916 item = bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt]; 917 #ifdef INVARIANTS 918 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = NULL; 919 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 920 #endif 921 cache->uc_allocs++; 922 923 return (item); 924 } 925 926 /* Pushes an item into a per-cpu cache bucket. */ 927 static inline void 928 cache_bucket_push(uma_cache_t cache, uma_cache_bucket_t bucket, void *item) 929 { 930 931 CRITICAL_ASSERT(curthread); 932 KASSERT(bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] == NULL, 933 ("uma_zfree: Freeing to non free bucket index.")); 934 935 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = item; 936 bucket->ucb_cnt++; 937 cache->uc_frees++; 938 } 939 940 /* 941 * Unload a UMA bucket from a per-cpu cache. 942 */ 943 static inline uma_bucket_t 944 cache_bucket_unload(uma_cache_bucket_t bucket) 945 { 946 uma_bucket_t b; 947 948 b = bucket->ucb_bucket; 949 if (b != NULL) { 950 MPASS(b->ub_entries == bucket->ucb_entries); 951 b->ub_cnt = bucket->ucb_cnt; 952 bucket->ucb_bucket = NULL; 953 bucket->ucb_entries = bucket->ucb_cnt = 0; 954 } 955 956 return (b); 957 } 958 959 static inline uma_bucket_t 960 cache_bucket_unload_alloc(uma_cache_t cache) 961 { 962 963 return (cache_bucket_unload(&cache->uc_allocbucket)); 964 } 965 966 static inline uma_bucket_t 967 cache_bucket_unload_free(uma_cache_t cache) 968 { 969 970 return (cache_bucket_unload(&cache->uc_freebucket)); 971 } 972 973 static inline uma_bucket_t 974 cache_bucket_unload_cross(uma_cache_t cache) 975 { 976 977 return (cache_bucket_unload(&cache->uc_crossbucket)); 978 } 979 980 /* 981 * Load a bucket into a per-cpu cache bucket. 982 */ 983 static inline void 984 cache_bucket_load(uma_cache_bucket_t bucket, uma_bucket_t b) 985 { 986 987 CRITICAL_ASSERT(curthread); 988 MPASS(bucket->ucb_bucket == NULL); 989 MPASS(b->ub_seq == SMR_SEQ_INVALID); 990 991 bucket->ucb_bucket = b; 992 bucket->ucb_cnt = b->ub_cnt; 993 bucket->ucb_entries = b->ub_entries; 994 } 995 996 static inline void 997 cache_bucket_load_alloc(uma_cache_t cache, uma_bucket_t b) 998 { 999 1000 cache_bucket_load(&cache->uc_allocbucket, b); 1001 } 1002 1003 static inline void 1004 cache_bucket_load_free(uma_cache_t cache, uma_bucket_t b) 1005 { 1006 1007 cache_bucket_load(&cache->uc_freebucket, b); 1008 } 1009 1010 #ifdef NUMA 1011 static inline void 1012 cache_bucket_load_cross(uma_cache_t cache, uma_bucket_t b) 1013 { 1014 1015 cache_bucket_load(&cache->uc_crossbucket, b); 1016 } 1017 #endif 1018 1019 /* 1020 * Copy and preserve ucb_spare. 1021 */ 1022 static inline void 1023 cache_bucket_copy(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 1024 { 1025 1026 b1->ucb_bucket = b2->ucb_bucket; 1027 b1->ucb_entries = b2->ucb_entries; 1028 b1->ucb_cnt = b2->ucb_cnt; 1029 } 1030 1031 /* 1032 * Swap two cache buckets. 1033 */ 1034 static inline void 1035 cache_bucket_swap(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 1036 { 1037 struct uma_cache_bucket b3; 1038 1039 CRITICAL_ASSERT(curthread); 1040 1041 cache_bucket_copy(&b3, b1); 1042 cache_bucket_copy(b1, b2); 1043 cache_bucket_copy(b2, &b3); 1044 } 1045 1046 /* 1047 * Attempt to fetch a bucket from a zone on behalf of the current cpu cache. 1048 */ 1049 static uma_bucket_t 1050 cache_fetch_bucket(uma_zone_t zone, uma_cache_t cache, int domain) 1051 { 1052 uma_zone_domain_t zdom; 1053 uma_bucket_t bucket; 1054 1055 /* 1056 * Avoid the lock if possible. 1057 */ 1058 zdom = ZDOM_GET(zone, domain); 1059 if (zdom->uzd_nitems == 0) 1060 return (NULL); 1061 1062 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) != 0 && 1063 !smr_poll(zone->uz_smr, zdom->uzd_seq, false)) 1064 return (NULL); 1065 1066 /* 1067 * Check the zone's cache of buckets. 1068 */ 1069 zdom = zone_domain_lock(zone, domain); 1070 if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) 1071 return (bucket); 1072 ZDOM_UNLOCK(zdom); 1073 1074 return (NULL); 1075 } 1076 1077 static void 1078 zone_log_warning(uma_zone_t zone) 1079 { 1080 static const struct timeval warninterval = { 300, 0 }; 1081 1082 if (!zone_warnings || zone->uz_warning == NULL) 1083 return; 1084 1085 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 1086 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 1087 } 1088 1089 static inline void 1090 zone_maxaction(uma_zone_t zone) 1091 { 1092 1093 if (zone->uz_maxaction.ta_func != NULL) 1094 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 1095 } 1096 1097 /* 1098 * Routine called by timeout which is used to fire off some time interval 1099 * based calculations. (stats, hash size, etc.) 1100 * 1101 * Arguments: 1102 * arg Unused 1103 * 1104 * Returns: 1105 * Nothing 1106 */ 1107 static void 1108 uma_timeout(void *unused) 1109 { 1110 bucket_enable(); 1111 zone_foreach(zone_timeout, NULL); 1112 1113 /* Reschedule this event */ 1114 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 1115 } 1116 1117 /* 1118 * Update the working set size estimates for the zone's bucket cache. 1119 * The constants chosen here are somewhat arbitrary. 1120 */ 1121 static void 1122 zone_domain_update_wss(uma_zone_domain_t zdom) 1123 { 1124 long m; 1125 1126 ZDOM_LOCK_ASSERT(zdom); 1127 MPASS(zdom->uzd_imax >= zdom->uzd_nitems); 1128 MPASS(zdom->uzd_nitems >= zdom->uzd_bimin); 1129 MPASS(zdom->uzd_bimin >= zdom->uzd_imin); 1130 1131 /* 1132 * Estimate WSS as modified moving average of biggest allocation 1133 * batches for each period over few minutes (UMA_TIMEOUT of 20s). 1134 */ 1135 zdom->uzd_wss = lmax(zdom->uzd_wss * 3 / 4, 1136 zdom->uzd_imax - zdom->uzd_bimin); 1137 1138 /* 1139 * Estimate longtime minimum item count as a combination of recent 1140 * minimum item count, adjusted by WSS for safety, and the modified 1141 * moving average over the last several hours (UMA_TIMEOUT of 20s). 1142 * timin measures time since limin tried to go negative, that means 1143 * we were dangerously close to or got out of cache. 1144 */ 1145 m = zdom->uzd_imin - zdom->uzd_wss; 1146 if (m >= 0) { 1147 if (zdom->uzd_limin >= m) 1148 zdom->uzd_limin = m; 1149 else 1150 zdom->uzd_limin = (m + zdom->uzd_limin * 255) / 256; 1151 zdom->uzd_timin++; 1152 } else { 1153 zdom->uzd_limin = 0; 1154 zdom->uzd_timin = 0; 1155 } 1156 1157 /* To reduce period edge effects on WSS keep half of the imax. */ 1158 atomic_subtract_long(&zdom->uzd_imax, 1159 (zdom->uzd_imax - zdom->uzd_nitems + 1) / 2); 1160 zdom->uzd_imin = zdom->uzd_bimin = zdom->uzd_nitems; 1161 } 1162 1163 /* 1164 * Routine to perform timeout driven calculations. This expands the 1165 * hashes and does per cpu statistics aggregation. 1166 * 1167 * Returns nothing. 1168 */ 1169 static void 1170 zone_timeout(uma_zone_t zone, void *unused) 1171 { 1172 uma_keg_t keg; 1173 u_int slabs, pages; 1174 1175 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 1176 goto trim; 1177 1178 keg = zone->uz_keg; 1179 1180 /* 1181 * Hash zones are non-numa by definition so the first domain 1182 * is the only one present. 1183 */ 1184 KEG_LOCK(keg, 0); 1185 pages = keg->uk_domain[0].ud_pages; 1186 1187 /* 1188 * Expand the keg hash table. 1189 * 1190 * This is done if the number of slabs is larger than the hash size. 1191 * What I'm trying to do here is completely reduce collisions. This 1192 * may be a little aggressive. Should I allow for two collisions max? 1193 */ 1194 if ((slabs = pages / keg->uk_ppera) > keg->uk_hash.uh_hashsize) { 1195 struct uma_hash newhash; 1196 struct uma_hash oldhash; 1197 int ret; 1198 1199 /* 1200 * This is so involved because allocating and freeing 1201 * while the keg lock is held will lead to deadlock. 1202 * I have to do everything in stages and check for 1203 * races. 1204 */ 1205 KEG_UNLOCK(keg, 0); 1206 ret = hash_alloc(&newhash, 1 << fls(slabs)); 1207 KEG_LOCK(keg, 0); 1208 if (ret) { 1209 if (hash_expand(&keg->uk_hash, &newhash)) { 1210 oldhash = keg->uk_hash; 1211 keg->uk_hash = newhash; 1212 } else 1213 oldhash = newhash; 1214 1215 KEG_UNLOCK(keg, 0); 1216 hash_free(&oldhash); 1217 goto trim; 1218 } 1219 } 1220 KEG_UNLOCK(keg, 0); 1221 1222 trim: 1223 /* Trim caches not used for a long time. */ 1224 for (int i = 0; i < vm_ndomains; i++) { 1225 if (bucket_cache_reclaim_domain(zone, false, false, i) && 1226 (zone->uz_flags & UMA_ZFLAG_CACHE) == 0) 1227 keg_drain(zone->uz_keg, i); 1228 } 1229 } 1230 1231 /* 1232 * Allocate and zero fill the next sized hash table from the appropriate 1233 * backing store. 1234 * 1235 * Arguments: 1236 * hash A new hash structure with the old hash size in uh_hashsize 1237 * 1238 * Returns: 1239 * 1 on success and 0 on failure. 1240 */ 1241 static int 1242 hash_alloc(struct uma_hash *hash, u_int size) 1243 { 1244 size_t alloc; 1245 1246 KASSERT(powerof2(size), ("hash size must be power of 2")); 1247 if (size > UMA_HASH_SIZE_INIT) { 1248 hash->uh_hashsize = size; 1249 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 1250 hash->uh_slab_hash = malloc(alloc, M_UMAHASH, M_NOWAIT); 1251 } else { 1252 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 1253 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 1254 UMA_ANYDOMAIN, M_WAITOK); 1255 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 1256 } 1257 if (hash->uh_slab_hash) { 1258 bzero(hash->uh_slab_hash, alloc); 1259 hash->uh_hashmask = hash->uh_hashsize - 1; 1260 return (1); 1261 } 1262 1263 return (0); 1264 } 1265 1266 /* 1267 * Expands the hash table for HASH zones. This is done from zone_timeout 1268 * to reduce collisions. This must not be done in the regular allocation 1269 * path, otherwise, we can recurse on the vm while allocating pages. 1270 * 1271 * Arguments: 1272 * oldhash The hash you want to expand 1273 * newhash The hash structure for the new table 1274 * 1275 * Returns: 1276 * Nothing 1277 * 1278 * Discussion: 1279 */ 1280 static int 1281 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 1282 { 1283 uma_hash_slab_t slab; 1284 u_int hval; 1285 u_int idx; 1286 1287 if (!newhash->uh_slab_hash) 1288 return (0); 1289 1290 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 1291 return (0); 1292 1293 /* 1294 * I need to investigate hash algorithms for resizing without a 1295 * full rehash. 1296 */ 1297 1298 for (idx = 0; idx < oldhash->uh_hashsize; idx++) 1299 while (!LIST_EMPTY(&oldhash->uh_slab_hash[idx])) { 1300 slab = LIST_FIRST(&oldhash->uh_slab_hash[idx]); 1301 LIST_REMOVE(slab, uhs_hlink); 1302 hval = UMA_HASH(newhash, slab->uhs_data); 1303 LIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 1304 slab, uhs_hlink); 1305 } 1306 1307 return (1); 1308 } 1309 1310 /* 1311 * Free the hash bucket to the appropriate backing store. 1312 * 1313 * Arguments: 1314 * slab_hash The hash bucket we're freeing 1315 * hashsize The number of entries in that hash bucket 1316 * 1317 * Returns: 1318 * Nothing 1319 */ 1320 static void 1321 hash_free(struct uma_hash *hash) 1322 { 1323 if (hash->uh_slab_hash == NULL) 1324 return; 1325 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 1326 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 1327 else 1328 free(hash->uh_slab_hash, M_UMAHASH); 1329 } 1330 1331 /* 1332 * Frees all outstanding items in a bucket 1333 * 1334 * Arguments: 1335 * zone The zone to free to, must be unlocked. 1336 * bucket The free/alloc bucket with items. 1337 * 1338 * Returns: 1339 * Nothing 1340 */ 1341 static void 1342 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 1343 { 1344 int i; 1345 1346 if (bucket->ub_cnt == 0) 1347 return; 1348 1349 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 1350 bucket->ub_seq != SMR_SEQ_INVALID) { 1351 smr_wait(zone->uz_smr, bucket->ub_seq); 1352 bucket->ub_seq = SMR_SEQ_INVALID; 1353 for (i = 0; i < bucket->ub_cnt; i++) 1354 item_dtor(zone, bucket->ub_bucket[i], 1355 zone->uz_size, NULL, SKIP_NONE); 1356 } 1357 if (zone->uz_fini) 1358 for (i = 0; i < bucket->ub_cnt; i++) { 1359 kasan_mark_item_valid(zone, bucket->ub_bucket[i]); 1360 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 1361 kasan_mark_item_invalid(zone, bucket->ub_bucket[i]); 1362 } 1363 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 1364 if (zone->uz_max_items > 0) 1365 zone_free_limit(zone, bucket->ub_cnt); 1366 #ifdef INVARIANTS 1367 bzero(bucket->ub_bucket, sizeof(void *) * bucket->ub_cnt); 1368 #endif 1369 bucket->ub_cnt = 0; 1370 } 1371 1372 /* 1373 * Drains the per cpu caches for a zone. 1374 * 1375 * NOTE: This may only be called while the zone is being torn down, and not 1376 * during normal operation. This is necessary in order that we do not have 1377 * to migrate CPUs to drain the per-CPU caches. 1378 * 1379 * Arguments: 1380 * zone The zone to drain, must be unlocked. 1381 * 1382 * Returns: 1383 * Nothing 1384 */ 1385 static void 1386 cache_drain(uma_zone_t zone) 1387 { 1388 uma_cache_t cache; 1389 uma_bucket_t bucket; 1390 smr_seq_t seq; 1391 int cpu; 1392 1393 /* 1394 * XXX: It is safe to not lock the per-CPU caches, because we're 1395 * tearing down the zone anyway. I.e., there will be no further use 1396 * of the caches at this point. 1397 * 1398 * XXX: It would good to be able to assert that the zone is being 1399 * torn down to prevent improper use of cache_drain(). 1400 */ 1401 seq = SMR_SEQ_INVALID; 1402 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 1403 seq = smr_advance(zone->uz_smr); 1404 CPU_FOREACH(cpu) { 1405 cache = &zone->uz_cpu[cpu]; 1406 bucket = cache_bucket_unload_alloc(cache); 1407 if (bucket != NULL) 1408 bucket_free(zone, bucket, NULL); 1409 bucket = cache_bucket_unload_free(cache); 1410 if (bucket != NULL) { 1411 bucket->ub_seq = seq; 1412 bucket_free(zone, bucket, NULL); 1413 } 1414 bucket = cache_bucket_unload_cross(cache); 1415 if (bucket != NULL) { 1416 bucket->ub_seq = seq; 1417 bucket_free(zone, bucket, NULL); 1418 } 1419 } 1420 bucket_cache_reclaim(zone, true, UMA_ANYDOMAIN); 1421 } 1422 1423 static void 1424 cache_shrink(uma_zone_t zone, void *unused) 1425 { 1426 1427 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1428 return; 1429 1430 ZONE_LOCK(zone); 1431 zone->uz_bucket_size = 1432 (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2; 1433 ZONE_UNLOCK(zone); 1434 } 1435 1436 static void 1437 cache_drain_safe_cpu(uma_zone_t zone, void *unused) 1438 { 1439 uma_cache_t cache; 1440 uma_bucket_t b1, b2, b3; 1441 int domain; 1442 1443 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1444 return; 1445 1446 b1 = b2 = b3 = NULL; 1447 critical_enter(); 1448 cache = &zone->uz_cpu[curcpu]; 1449 domain = PCPU_GET(domain); 1450 b1 = cache_bucket_unload_alloc(cache); 1451 1452 /* 1453 * Don't flush SMR zone buckets. This leaves the zone without a 1454 * bucket and forces every free to synchronize(). 1455 */ 1456 if ((zone->uz_flags & UMA_ZONE_SMR) == 0) { 1457 b2 = cache_bucket_unload_free(cache); 1458 b3 = cache_bucket_unload_cross(cache); 1459 } 1460 critical_exit(); 1461 1462 if (b1 != NULL) 1463 zone_free_bucket(zone, b1, NULL, domain, false); 1464 if (b2 != NULL) 1465 zone_free_bucket(zone, b2, NULL, domain, false); 1466 if (b3 != NULL) { 1467 /* Adjust the domain so it goes to zone_free_cross. */ 1468 domain = (domain + 1) % vm_ndomains; 1469 zone_free_bucket(zone, b3, NULL, domain, false); 1470 } 1471 } 1472 1473 /* 1474 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 1475 * This is an expensive call because it needs to bind to all CPUs 1476 * one by one and enter a critical section on each of them in order 1477 * to safely access their cache buckets. 1478 * Zone lock must not be held on call this function. 1479 */ 1480 static void 1481 pcpu_cache_drain_safe(uma_zone_t zone) 1482 { 1483 int cpu; 1484 1485 /* 1486 * Polite bucket sizes shrinking was not enough, shrink aggressively. 1487 */ 1488 if (zone) 1489 cache_shrink(zone, NULL); 1490 else 1491 zone_foreach(cache_shrink, NULL); 1492 1493 CPU_FOREACH(cpu) { 1494 thread_lock(curthread); 1495 sched_bind(curthread, cpu); 1496 thread_unlock(curthread); 1497 1498 if (zone) 1499 cache_drain_safe_cpu(zone, NULL); 1500 else 1501 zone_foreach(cache_drain_safe_cpu, NULL); 1502 } 1503 thread_lock(curthread); 1504 sched_unbind(curthread); 1505 thread_unlock(curthread); 1506 } 1507 1508 /* 1509 * Reclaim cached buckets from a zone. All buckets are reclaimed if the caller 1510 * requested a drain, otherwise the per-domain caches are trimmed to either 1511 * estimated working set size. 1512 */ 1513 static bool 1514 bucket_cache_reclaim_domain(uma_zone_t zone, bool drain, bool trim, int domain) 1515 { 1516 uma_zone_domain_t zdom; 1517 uma_bucket_t bucket; 1518 long target; 1519 bool done = false; 1520 1521 /* 1522 * The cross bucket is partially filled and not part of 1523 * the item count. Reclaim it individually here. 1524 */ 1525 zdom = ZDOM_GET(zone, domain); 1526 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 || drain) { 1527 ZONE_CROSS_LOCK(zone); 1528 bucket = zdom->uzd_cross; 1529 zdom->uzd_cross = NULL; 1530 ZONE_CROSS_UNLOCK(zone); 1531 if (bucket != NULL) 1532 bucket_free(zone, bucket, NULL); 1533 } 1534 1535 /* 1536 * If we were asked to drain the zone, we are done only once 1537 * this bucket cache is empty. If trim, we reclaim items in 1538 * excess of the zone's estimated working set size. Multiple 1539 * consecutive calls will shrink the WSS and so reclaim more. 1540 * If neither drain nor trim, then voluntarily reclaim 1/4 1541 * (to reduce first spike) of items not used for a long time. 1542 */ 1543 ZDOM_LOCK(zdom); 1544 zone_domain_update_wss(zdom); 1545 if (drain) 1546 target = 0; 1547 else if (trim) 1548 target = zdom->uzd_wss; 1549 else if (zdom->uzd_timin > 900 / UMA_TIMEOUT) 1550 target = zdom->uzd_nitems - zdom->uzd_limin / 4; 1551 else { 1552 ZDOM_UNLOCK(zdom); 1553 return (done); 1554 } 1555 while ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) != NULL && 1556 zdom->uzd_nitems >= target + bucket->ub_cnt) { 1557 bucket = zone_fetch_bucket(zone, zdom, true); 1558 if (bucket == NULL) 1559 break; 1560 bucket_free(zone, bucket, NULL); 1561 done = true; 1562 ZDOM_LOCK(zdom); 1563 } 1564 ZDOM_UNLOCK(zdom); 1565 return (done); 1566 } 1567 1568 static void 1569 bucket_cache_reclaim(uma_zone_t zone, bool drain, int domain) 1570 { 1571 int i; 1572 1573 /* 1574 * Shrink the zone bucket size to ensure that the per-CPU caches 1575 * don't grow too large. 1576 */ 1577 if (zone->uz_bucket_size > zone->uz_bucket_size_min) 1578 zone->uz_bucket_size--; 1579 1580 if (domain != UMA_ANYDOMAIN && 1581 (zone->uz_flags & UMA_ZONE_ROUNDROBIN) == 0) { 1582 bucket_cache_reclaim_domain(zone, drain, true, domain); 1583 } else { 1584 for (i = 0; i < vm_ndomains; i++) 1585 bucket_cache_reclaim_domain(zone, drain, true, i); 1586 } 1587 } 1588 1589 static void 1590 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 1591 { 1592 uint8_t *mem; 1593 size_t size; 1594 int i; 1595 uint8_t flags; 1596 1597 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 1598 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 1599 1600 mem = slab_data(slab, keg); 1601 size = PAGE_SIZE * keg->uk_ppera; 1602 1603 kasan_mark_slab_valid(keg, mem); 1604 if (keg->uk_fini != NULL) { 1605 for (i = start - 1; i > -1; i--) 1606 #ifdef INVARIANTS 1607 /* 1608 * trash_fini implies that dtor was trash_dtor. trash_fini 1609 * would check that memory hasn't been modified since free, 1610 * which executed trash_dtor. 1611 * That's why we need to run uma_dbg_kskip() check here, 1612 * albeit we don't make skip check for other init/fini 1613 * invocations. 1614 */ 1615 if (!uma_dbg_kskip(keg, slab_item(slab, keg, i)) || 1616 keg->uk_fini != trash_fini) 1617 #endif 1618 keg->uk_fini(slab_item(slab, keg, i), keg->uk_size); 1619 } 1620 flags = slab->us_flags; 1621 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) { 1622 zone_free_item(slabzone(keg->uk_ipers), slab_tohashslab(slab), 1623 NULL, SKIP_NONE); 1624 } 1625 keg->uk_freef(mem, size, flags); 1626 uma_total_dec(size); 1627 } 1628 1629 static void 1630 keg_drain_domain(uma_keg_t keg, int domain) 1631 { 1632 struct slabhead freeslabs; 1633 uma_domain_t dom; 1634 uma_slab_t slab, tmp; 1635 uint32_t i, stofree, stokeep, partial; 1636 1637 dom = &keg->uk_domain[domain]; 1638 LIST_INIT(&freeslabs); 1639 1640 CTR4(KTR_UMA, "keg_drain %s(%p) domain %d free items: %u", 1641 keg->uk_name, keg, domain, dom->ud_free_items); 1642 1643 KEG_LOCK(keg, domain); 1644 1645 /* 1646 * Are the free items in partially allocated slabs sufficient to meet 1647 * the reserve? If not, compute the number of fully free slabs that must 1648 * be kept. 1649 */ 1650 partial = dom->ud_free_items - dom->ud_free_slabs * keg->uk_ipers; 1651 if (partial < keg->uk_reserve) { 1652 stokeep = min(dom->ud_free_slabs, 1653 howmany(keg->uk_reserve - partial, keg->uk_ipers)); 1654 } else { 1655 stokeep = 0; 1656 } 1657 stofree = dom->ud_free_slabs - stokeep; 1658 1659 /* 1660 * Partition the free slabs into two sets: those that must be kept in 1661 * order to maintain the reserve, and those that may be released back to 1662 * the system. Since one set may be much larger than the other, 1663 * populate the smaller of the two sets and swap them if necessary. 1664 */ 1665 for (i = min(stofree, stokeep); i > 0; i--) { 1666 slab = LIST_FIRST(&dom->ud_free_slab); 1667 LIST_REMOVE(slab, us_link); 1668 LIST_INSERT_HEAD(&freeslabs, slab, us_link); 1669 } 1670 if (stofree > stokeep) 1671 LIST_SWAP(&freeslabs, &dom->ud_free_slab, uma_slab, us_link); 1672 1673 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) { 1674 LIST_FOREACH(slab, &freeslabs, us_link) 1675 UMA_HASH_REMOVE(&keg->uk_hash, slab); 1676 } 1677 dom->ud_free_items -= stofree * keg->uk_ipers; 1678 dom->ud_free_slabs -= stofree; 1679 dom->ud_pages -= stofree * keg->uk_ppera; 1680 KEG_UNLOCK(keg, domain); 1681 1682 LIST_FOREACH_SAFE(slab, &freeslabs, us_link, tmp) 1683 keg_free_slab(keg, slab, keg->uk_ipers); 1684 } 1685 1686 /* 1687 * Frees pages from a keg back to the system. This is done on demand from 1688 * the pageout daemon. 1689 * 1690 * Returns nothing. 1691 */ 1692 static void 1693 keg_drain(uma_keg_t keg, int domain) 1694 { 1695 int i; 1696 1697 if ((keg->uk_flags & UMA_ZONE_NOFREE) != 0) 1698 return; 1699 if (domain != UMA_ANYDOMAIN) { 1700 keg_drain_domain(keg, domain); 1701 } else { 1702 for (i = 0; i < vm_ndomains; i++) 1703 keg_drain_domain(keg, i); 1704 } 1705 } 1706 1707 static void 1708 zone_reclaim(uma_zone_t zone, int domain, int waitok, bool drain) 1709 { 1710 /* 1711 * Count active reclaim operations in order to interlock with 1712 * zone_dtor(), which removes the zone from global lists before 1713 * attempting to reclaim items itself. 1714 * 1715 * The zone may be destroyed while sleeping, so only zone_dtor() should 1716 * specify M_WAITOK. 1717 */ 1718 ZONE_LOCK(zone); 1719 if (waitok == M_WAITOK) { 1720 while (zone->uz_reclaimers > 0) 1721 msleep(zone, ZONE_LOCKPTR(zone), PVM, "zonedrain", 1); 1722 } 1723 zone->uz_reclaimers++; 1724 ZONE_UNLOCK(zone); 1725 bucket_cache_reclaim(zone, drain, domain); 1726 1727 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) 1728 keg_drain(zone->uz_keg, domain); 1729 ZONE_LOCK(zone); 1730 zone->uz_reclaimers--; 1731 if (zone->uz_reclaimers == 0) 1732 wakeup(zone); 1733 ZONE_UNLOCK(zone); 1734 } 1735 1736 static void 1737 zone_drain(uma_zone_t zone, void *arg) 1738 { 1739 int domain; 1740 1741 domain = (int)(uintptr_t)arg; 1742 zone_reclaim(zone, domain, M_NOWAIT, true); 1743 } 1744 1745 static void 1746 zone_trim(uma_zone_t zone, void *arg) 1747 { 1748 int domain; 1749 1750 domain = (int)(uintptr_t)arg; 1751 zone_reclaim(zone, domain, M_NOWAIT, false); 1752 } 1753 1754 /* 1755 * Allocate a new slab for a keg and inserts it into the partial slab list. 1756 * The keg should be unlocked on entry. If the allocation succeeds it will 1757 * be locked on return. 1758 * 1759 * Arguments: 1760 * flags Wait flags for the item initialization routine 1761 * aflags Wait flags for the slab allocation 1762 * 1763 * Returns: 1764 * The slab that was allocated or NULL if there is no memory and the 1765 * caller specified M_NOWAIT. 1766 */ 1767 static uma_slab_t 1768 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags, 1769 int aflags) 1770 { 1771 uma_domain_t dom; 1772 uma_slab_t slab; 1773 unsigned long size; 1774 uint8_t *mem; 1775 uint8_t sflags; 1776 int i; 1777 1778 KASSERT(domain >= 0 && domain < vm_ndomains, 1779 ("keg_alloc_slab: domain %d out of range", domain)); 1780 1781 slab = NULL; 1782 mem = NULL; 1783 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) { 1784 uma_hash_slab_t hslab; 1785 hslab = zone_alloc_item(slabzone(keg->uk_ipers), NULL, 1786 domain, aflags); 1787 if (hslab == NULL) 1788 goto fail; 1789 slab = &hslab->uhs_slab; 1790 } 1791 1792 /* 1793 * This reproduces the old vm_zone behavior of zero filling pages the 1794 * first time they are added to a zone. 1795 * 1796 * Malloced items are zeroed in uma_zalloc. 1797 */ 1798 1799 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1800 aflags |= M_ZERO; 1801 else 1802 aflags &= ~M_ZERO; 1803 1804 if (keg->uk_flags & UMA_ZONE_NODUMP) 1805 aflags |= M_NODUMP; 1806 1807 /* zone is passed for legacy reasons. */ 1808 size = keg->uk_ppera * PAGE_SIZE; 1809 mem = keg->uk_allocf(zone, size, domain, &sflags, aflags); 1810 if (mem == NULL) { 1811 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) 1812 zone_free_item(slabzone(keg->uk_ipers), 1813 slab_tohashslab(slab), NULL, SKIP_NONE); 1814 goto fail; 1815 } 1816 uma_total_inc(size); 1817 1818 /* For HASH zones all pages go to the same uma_domain. */ 1819 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 1820 domain = 0; 1821 1822 /* Point the slab into the allocated memory */ 1823 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) 1824 slab = (uma_slab_t)(mem + keg->uk_pgoff); 1825 else 1826 slab_tohashslab(slab)->uhs_data = mem; 1827 1828 if (keg->uk_flags & UMA_ZFLAG_VTOSLAB) 1829 for (i = 0; i < keg->uk_ppera; i++) 1830 vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE), 1831 zone, slab); 1832 1833 slab->us_freecount = keg->uk_ipers; 1834 slab->us_flags = sflags; 1835 slab->us_domain = domain; 1836 1837 BIT_FILL(keg->uk_ipers, &slab->us_free); 1838 #ifdef INVARIANTS 1839 BIT_ZERO(keg->uk_ipers, slab_dbg_bits(slab, keg)); 1840 #endif 1841 1842 if (keg->uk_init != NULL) { 1843 for (i = 0; i < keg->uk_ipers; i++) 1844 if (keg->uk_init(slab_item(slab, keg, i), 1845 keg->uk_size, flags) != 0) 1846 break; 1847 if (i != keg->uk_ipers) { 1848 keg_free_slab(keg, slab, i); 1849 goto fail; 1850 } 1851 } 1852 kasan_mark_slab_invalid(keg, mem); 1853 KEG_LOCK(keg, domain); 1854 1855 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1856 slab, keg->uk_name, keg); 1857 1858 if (keg->uk_flags & UMA_ZFLAG_HASH) 1859 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1860 1861 /* 1862 * If we got a slab here it's safe to mark it partially used 1863 * and return. We assume that the caller is going to remove 1864 * at least one item. 1865 */ 1866 dom = &keg->uk_domain[domain]; 1867 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 1868 dom->ud_pages += keg->uk_ppera; 1869 dom->ud_free_items += keg->uk_ipers; 1870 1871 return (slab); 1872 1873 fail: 1874 return (NULL); 1875 } 1876 1877 /* 1878 * This function is intended to be used early on in place of page_alloc(). It 1879 * performs contiguous physical memory allocations and uses a bump allocator for 1880 * KVA, so is usable before the kernel map is initialized. 1881 */ 1882 static void * 1883 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1884 int wait) 1885 { 1886 vm_paddr_t pa; 1887 vm_page_t m; 1888 int i, pages; 1889 1890 pages = howmany(bytes, PAGE_SIZE); 1891 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1892 1893 *pflag = UMA_SLAB_BOOT; 1894 m = vm_page_alloc_noobj_contig_domain(domain, malloc2vm_flags(wait) | 1895 VM_ALLOC_WIRED, pages, (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0, 1896 VM_MEMATTR_DEFAULT); 1897 if (m == NULL) 1898 return (NULL); 1899 1900 pa = VM_PAGE_TO_PHYS(m); 1901 for (i = 0; i < pages; i++, pa += PAGE_SIZE) { 1902 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 1903 defined(__riscv) || defined(__powerpc64__) 1904 if ((wait & M_NODUMP) == 0) 1905 dump_add_page(pa); 1906 #endif 1907 } 1908 1909 /* Allocate KVA and indirectly advance bootmem. */ 1910 return ((void *)pmap_map(&bootmem, m->phys_addr, 1911 m->phys_addr + (pages * PAGE_SIZE), VM_PROT_READ | VM_PROT_WRITE)); 1912 } 1913 1914 static void 1915 startup_free(void *mem, vm_size_t bytes) 1916 { 1917 vm_offset_t va; 1918 vm_page_t m; 1919 1920 va = (vm_offset_t)mem; 1921 m = PHYS_TO_VM_PAGE(pmap_kextract(va)); 1922 1923 /* 1924 * startup_alloc() returns direct-mapped slabs on some platforms. Avoid 1925 * unmapping ranges of the direct map. 1926 */ 1927 if (va >= bootstart && va + bytes <= bootmem) 1928 pmap_remove(kernel_pmap, va, va + bytes); 1929 for (; bytes != 0; bytes -= PAGE_SIZE, m++) { 1930 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 1931 defined(__riscv) || defined(__powerpc64__) 1932 dump_drop_page(VM_PAGE_TO_PHYS(m)); 1933 #endif 1934 vm_page_unwire_noq(m); 1935 vm_page_free(m); 1936 } 1937 } 1938 1939 /* 1940 * Allocates a number of pages from the system 1941 * 1942 * Arguments: 1943 * bytes The number of bytes requested 1944 * wait Shall we wait? 1945 * 1946 * Returns: 1947 * A pointer to the alloced memory or possibly 1948 * NULL if M_NOWAIT is set. 1949 */ 1950 static void * 1951 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1952 int wait) 1953 { 1954 void *p; /* Returned page */ 1955 1956 *pflag = UMA_SLAB_KERNEL; 1957 p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait); 1958 1959 return (p); 1960 } 1961 1962 static void * 1963 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1964 int wait) 1965 { 1966 struct pglist alloctail; 1967 vm_offset_t addr, zkva; 1968 int cpu, flags; 1969 vm_page_t p, p_next; 1970 #ifdef NUMA 1971 struct pcpu *pc; 1972 #endif 1973 1974 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE); 1975 1976 TAILQ_INIT(&alloctail); 1977 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | malloc2vm_flags(wait); 1978 *pflag = UMA_SLAB_KERNEL; 1979 for (cpu = 0; cpu <= mp_maxid; cpu++) { 1980 if (CPU_ABSENT(cpu)) { 1981 p = vm_page_alloc_noobj(flags); 1982 } else { 1983 #ifndef NUMA 1984 p = vm_page_alloc_noobj(flags); 1985 #else 1986 pc = pcpu_find(cpu); 1987 if (__predict_false(VM_DOMAIN_EMPTY(pc->pc_domain))) 1988 p = NULL; 1989 else 1990 p = vm_page_alloc_noobj_domain(pc->pc_domain, 1991 flags); 1992 if (__predict_false(p == NULL)) 1993 p = vm_page_alloc_noobj(flags); 1994 #endif 1995 } 1996 if (__predict_false(p == NULL)) 1997 goto fail; 1998 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1999 } 2000 if ((addr = kva_alloc(bytes)) == 0) 2001 goto fail; 2002 zkva = addr; 2003 TAILQ_FOREACH(p, &alloctail, listq) { 2004 pmap_qenter(zkva, &p, 1); 2005 zkva += PAGE_SIZE; 2006 } 2007 return ((void*)addr); 2008 fail: 2009 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 2010 vm_page_unwire_noq(p); 2011 vm_page_free(p); 2012 } 2013 return (NULL); 2014 } 2015 2016 /* 2017 * Allocates a number of pages not belonging to a VM object 2018 * 2019 * Arguments: 2020 * bytes The number of bytes requested 2021 * wait Shall we wait? 2022 * 2023 * Returns: 2024 * A pointer to the alloced memory or possibly 2025 * NULL if M_NOWAIT is set. 2026 */ 2027 static void * 2028 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 2029 int wait) 2030 { 2031 TAILQ_HEAD(, vm_page) alloctail; 2032 u_long npages; 2033 vm_offset_t retkva, zkva; 2034 vm_page_t p, p_next; 2035 uma_keg_t keg; 2036 int req; 2037 2038 TAILQ_INIT(&alloctail); 2039 keg = zone->uz_keg; 2040 req = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED; 2041 if ((wait & M_WAITOK) != 0) 2042 req |= VM_ALLOC_WAITOK; 2043 2044 npages = howmany(bytes, PAGE_SIZE); 2045 while (npages > 0) { 2046 p = vm_page_alloc_noobj_domain(domain, req); 2047 if (p != NULL) { 2048 /* 2049 * Since the page does not belong to an object, its 2050 * listq is unused. 2051 */ 2052 TAILQ_INSERT_TAIL(&alloctail, p, listq); 2053 npages--; 2054 continue; 2055 } 2056 /* 2057 * Page allocation failed, free intermediate pages and 2058 * exit. 2059 */ 2060 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 2061 vm_page_unwire_noq(p); 2062 vm_page_free(p); 2063 } 2064 return (NULL); 2065 } 2066 *flags = UMA_SLAB_PRIV; 2067 zkva = keg->uk_kva + 2068 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 2069 retkva = zkva; 2070 TAILQ_FOREACH(p, &alloctail, listq) { 2071 pmap_qenter(zkva, &p, 1); 2072 zkva += PAGE_SIZE; 2073 } 2074 2075 return ((void *)retkva); 2076 } 2077 2078 /* 2079 * Allocate physically contiguous pages. 2080 */ 2081 static void * 2082 contig_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 2083 int wait) 2084 { 2085 2086 *pflag = UMA_SLAB_KERNEL; 2087 return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain), 2088 bytes, wait, 0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT)); 2089 } 2090 2091 /* 2092 * Frees a number of pages to the system 2093 * 2094 * Arguments: 2095 * mem A pointer to the memory to be freed 2096 * size The size of the memory being freed 2097 * flags The original p->us_flags field 2098 * 2099 * Returns: 2100 * Nothing 2101 */ 2102 static void 2103 page_free(void *mem, vm_size_t size, uint8_t flags) 2104 { 2105 2106 if ((flags & UMA_SLAB_BOOT) != 0) { 2107 startup_free(mem, size); 2108 return; 2109 } 2110 2111 KASSERT((flags & UMA_SLAB_KERNEL) != 0, 2112 ("UMA: page_free used with invalid flags %x", flags)); 2113 2114 kmem_free((vm_offset_t)mem, size); 2115 } 2116 2117 /* 2118 * Frees pcpu zone allocations 2119 * 2120 * Arguments: 2121 * mem A pointer to the memory to be freed 2122 * size The size of the memory being freed 2123 * flags The original p->us_flags field 2124 * 2125 * Returns: 2126 * Nothing 2127 */ 2128 static void 2129 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags) 2130 { 2131 vm_offset_t sva, curva; 2132 vm_paddr_t paddr; 2133 vm_page_t m; 2134 2135 MPASS(size == (mp_maxid+1)*PAGE_SIZE); 2136 2137 if ((flags & UMA_SLAB_BOOT) != 0) { 2138 startup_free(mem, size); 2139 return; 2140 } 2141 2142 sva = (vm_offset_t)mem; 2143 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) { 2144 paddr = pmap_kextract(curva); 2145 m = PHYS_TO_VM_PAGE(paddr); 2146 vm_page_unwire_noq(m); 2147 vm_page_free(m); 2148 } 2149 pmap_qremove(sva, size >> PAGE_SHIFT); 2150 kva_free(sva, size); 2151 } 2152 2153 /* 2154 * Zero fill initializer 2155 * 2156 * Arguments/Returns follow uma_init specifications 2157 */ 2158 static int 2159 zero_init(void *mem, int size, int flags) 2160 { 2161 bzero(mem, size); 2162 return (0); 2163 } 2164 2165 #ifdef INVARIANTS 2166 static struct noslabbits * 2167 slab_dbg_bits(uma_slab_t slab, uma_keg_t keg) 2168 { 2169 2170 return ((void *)((char *)&slab->us_free + BITSET_SIZE(keg->uk_ipers))); 2171 } 2172 #endif 2173 2174 /* 2175 * Actual size of embedded struct slab (!OFFPAGE). 2176 */ 2177 static size_t 2178 slab_sizeof(int nitems) 2179 { 2180 size_t s; 2181 2182 s = sizeof(struct uma_slab) + BITSET_SIZE(nitems) * SLAB_BITSETS; 2183 return (roundup(s, UMA_ALIGN_PTR + 1)); 2184 } 2185 2186 #define UMA_FIXPT_SHIFT 31 2187 #define UMA_FRAC_FIXPT(n, d) \ 2188 ((uint32_t)(((uint64_t)(n) << UMA_FIXPT_SHIFT) / (d))) 2189 #define UMA_FIXPT_PCT(f) \ 2190 ((u_int)(((uint64_t)100 * (f)) >> UMA_FIXPT_SHIFT)) 2191 #define UMA_PCT_FIXPT(pct) UMA_FRAC_FIXPT((pct), 100) 2192 #define UMA_MIN_EFF UMA_PCT_FIXPT(100 - UMA_MAX_WASTE) 2193 2194 /* 2195 * Compute the number of items that will fit in a slab. If hdr is true, the 2196 * item count may be limited to provide space in the slab for an inline slab 2197 * header. Otherwise, all slab space will be provided for item storage. 2198 */ 2199 static u_int 2200 slab_ipers_hdr(u_int size, u_int rsize, u_int slabsize, bool hdr) 2201 { 2202 u_int ipers; 2203 u_int padpi; 2204 2205 /* The padding between items is not needed after the last item. */ 2206 padpi = rsize - size; 2207 2208 if (hdr) { 2209 /* 2210 * Start with the maximum item count and remove items until 2211 * the slab header first alongside the allocatable memory. 2212 */ 2213 for (ipers = MIN(SLAB_MAX_SETSIZE, 2214 (slabsize + padpi - slab_sizeof(1)) / rsize); 2215 ipers > 0 && 2216 ipers * rsize - padpi + slab_sizeof(ipers) > slabsize; 2217 ipers--) 2218 continue; 2219 } else { 2220 ipers = MIN((slabsize + padpi) / rsize, SLAB_MAX_SETSIZE); 2221 } 2222 2223 return (ipers); 2224 } 2225 2226 struct keg_layout_result { 2227 u_int format; 2228 u_int slabsize; 2229 u_int ipers; 2230 u_int eff; 2231 }; 2232 2233 static void 2234 keg_layout_one(uma_keg_t keg, u_int rsize, u_int slabsize, u_int fmt, 2235 struct keg_layout_result *kl) 2236 { 2237 u_int total; 2238 2239 kl->format = fmt; 2240 kl->slabsize = slabsize; 2241 2242 /* Handle INTERNAL as inline with an extra page. */ 2243 if ((fmt & UMA_ZFLAG_INTERNAL) != 0) { 2244 kl->format &= ~UMA_ZFLAG_INTERNAL; 2245 kl->slabsize += PAGE_SIZE; 2246 } 2247 2248 kl->ipers = slab_ipers_hdr(keg->uk_size, rsize, kl->slabsize, 2249 (fmt & UMA_ZFLAG_OFFPAGE) == 0); 2250 2251 /* Account for memory used by an offpage slab header. */ 2252 total = kl->slabsize; 2253 if ((fmt & UMA_ZFLAG_OFFPAGE) != 0) 2254 total += slabzone(kl->ipers)->uz_keg->uk_rsize; 2255 2256 kl->eff = UMA_FRAC_FIXPT(kl->ipers * rsize, total); 2257 } 2258 2259 /* 2260 * Determine the format of a uma keg. This determines where the slab header 2261 * will be placed (inline or offpage) and calculates ipers, rsize, and ppera. 2262 * 2263 * Arguments 2264 * keg The zone we should initialize 2265 * 2266 * Returns 2267 * Nothing 2268 */ 2269 static void 2270 keg_layout(uma_keg_t keg) 2271 { 2272 struct keg_layout_result kl = {}, kl_tmp; 2273 u_int fmts[2]; 2274 u_int alignsize; 2275 u_int nfmt; 2276 u_int pages; 2277 u_int rsize; 2278 u_int slabsize; 2279 u_int i, j; 2280 2281 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 2282 (keg->uk_size <= UMA_PCPU_ALLOC_SIZE && 2283 (keg->uk_flags & UMA_ZONE_CACHESPREAD) == 0), 2284 ("%s: cannot configure for PCPU: keg=%s, size=%u, flags=0x%b", 2285 __func__, keg->uk_name, keg->uk_size, keg->uk_flags, 2286 PRINT_UMA_ZFLAGS)); 2287 KASSERT((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) == 0 || 2288 (keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0, 2289 ("%s: incompatible flags 0x%b", __func__, keg->uk_flags, 2290 PRINT_UMA_ZFLAGS)); 2291 2292 alignsize = keg->uk_align + 1; 2293 #ifdef KASAN 2294 /* 2295 * ASAN requires that each allocation be aligned to the shadow map 2296 * scale factor. 2297 */ 2298 if (alignsize < KASAN_SHADOW_SCALE) 2299 alignsize = KASAN_SHADOW_SCALE; 2300 #endif 2301 2302 /* 2303 * Calculate the size of each allocation (rsize) according to 2304 * alignment. If the requested size is smaller than we have 2305 * allocation bits for we round it up. 2306 */ 2307 rsize = MAX(keg->uk_size, UMA_SMALLEST_UNIT); 2308 rsize = roundup2(rsize, alignsize); 2309 2310 if ((keg->uk_flags & UMA_ZONE_CACHESPREAD) != 0) { 2311 /* 2312 * We want one item to start on every align boundary in a page. 2313 * To do this we will span pages. We will also extend the item 2314 * by the size of align if it is an even multiple of align. 2315 * Otherwise, it would fall on the same boundary every time. 2316 */ 2317 if ((rsize & alignsize) == 0) 2318 rsize += alignsize; 2319 slabsize = rsize * (PAGE_SIZE / alignsize); 2320 slabsize = MIN(slabsize, rsize * SLAB_MAX_SETSIZE); 2321 slabsize = MIN(slabsize, UMA_CACHESPREAD_MAX_SIZE); 2322 slabsize = round_page(slabsize); 2323 } else { 2324 /* 2325 * Start with a slab size of as many pages as it takes to 2326 * represent a single item. We will try to fit as many 2327 * additional items into the slab as possible. 2328 */ 2329 slabsize = round_page(keg->uk_size); 2330 } 2331 2332 /* Build a list of all of the available formats for this keg. */ 2333 nfmt = 0; 2334 2335 /* Evaluate an inline slab layout. */ 2336 if ((keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0) 2337 fmts[nfmt++] = 0; 2338 2339 /* TODO: vm_page-embedded slab. */ 2340 2341 /* 2342 * We can't do OFFPAGE if we're internal or if we've been 2343 * asked to not go to the VM for buckets. If we do this we 2344 * may end up going to the VM for slabs which we do not want 2345 * to do if we're UMA_ZONE_VM, which clearly forbids it. 2346 * In those cases, evaluate a pseudo-format called INTERNAL 2347 * which has an inline slab header and one extra page to 2348 * guarantee that it fits. 2349 * 2350 * Otherwise, see if using an OFFPAGE slab will improve our 2351 * efficiency. 2352 */ 2353 if ((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) != 0) 2354 fmts[nfmt++] = UMA_ZFLAG_INTERNAL; 2355 else 2356 fmts[nfmt++] = UMA_ZFLAG_OFFPAGE; 2357 2358 /* 2359 * Choose a slab size and format which satisfy the minimum efficiency. 2360 * Prefer the smallest slab size that meets the constraints. 2361 * 2362 * Start with a minimum slab size, to accommodate CACHESPREAD. Then, 2363 * for small items (up to PAGE_SIZE), the iteration increment is one 2364 * page; and for large items, the increment is one item. 2365 */ 2366 i = (slabsize + rsize - keg->uk_size) / MAX(PAGE_SIZE, rsize); 2367 KASSERT(i >= 1, ("keg %s(%p) flags=0x%b slabsize=%u, rsize=%u, i=%u", 2368 keg->uk_name, keg, keg->uk_flags, PRINT_UMA_ZFLAGS, slabsize, 2369 rsize, i)); 2370 for ( ; ; i++) { 2371 slabsize = (rsize <= PAGE_SIZE) ? ptoa(i) : 2372 round_page(rsize * (i - 1) + keg->uk_size); 2373 2374 for (j = 0; j < nfmt; j++) { 2375 /* Only if we have no viable format yet. */ 2376 if ((fmts[j] & UMA_ZFLAG_INTERNAL) != 0 && 2377 kl.ipers > 0) 2378 continue; 2379 2380 keg_layout_one(keg, rsize, slabsize, fmts[j], &kl_tmp); 2381 if (kl_tmp.eff <= kl.eff) 2382 continue; 2383 2384 kl = kl_tmp; 2385 2386 CTR6(KTR_UMA, "keg %s layout: format %#x " 2387 "(ipers %u * rsize %u) / slabsize %#x = %u%% eff", 2388 keg->uk_name, kl.format, kl.ipers, rsize, 2389 kl.slabsize, UMA_FIXPT_PCT(kl.eff)); 2390 2391 /* Stop when we reach the minimum efficiency. */ 2392 if (kl.eff >= UMA_MIN_EFF) 2393 break; 2394 } 2395 2396 if (kl.eff >= UMA_MIN_EFF || !multipage_slabs || 2397 slabsize >= SLAB_MAX_SETSIZE * rsize || 2398 (keg->uk_flags & (UMA_ZONE_PCPU | UMA_ZONE_CONTIG)) != 0) 2399 break; 2400 } 2401 2402 pages = atop(kl.slabsize); 2403 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 2404 pages *= mp_maxid + 1; 2405 2406 keg->uk_rsize = rsize; 2407 keg->uk_ipers = kl.ipers; 2408 keg->uk_ppera = pages; 2409 keg->uk_flags |= kl.format; 2410 2411 /* 2412 * How do we find the slab header if it is offpage or if not all item 2413 * start addresses are in the same page? We could solve the latter 2414 * case with vaddr alignment, but we don't. 2415 */ 2416 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0 || 2417 (keg->uk_ipers - 1) * rsize >= PAGE_SIZE) { 2418 if ((keg->uk_flags & UMA_ZONE_NOTPAGE) != 0) 2419 keg->uk_flags |= UMA_ZFLAG_HASH; 2420 else 2421 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2422 } 2423 2424 CTR6(KTR_UMA, "%s: keg=%s, flags=%#x, rsize=%u, ipers=%u, ppera=%u", 2425 __func__, keg->uk_name, keg->uk_flags, rsize, keg->uk_ipers, 2426 pages); 2427 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE, 2428 ("%s: keg=%s, flags=0x%b, rsize=%u, ipers=%u, ppera=%u", __func__, 2429 keg->uk_name, keg->uk_flags, PRINT_UMA_ZFLAGS, rsize, 2430 keg->uk_ipers, pages)); 2431 } 2432 2433 /* 2434 * Keg header ctor. This initializes all fields, locks, etc. And inserts 2435 * the keg onto the global keg list. 2436 * 2437 * Arguments/Returns follow uma_ctor specifications 2438 * udata Actually uma_kctor_args 2439 */ 2440 static int 2441 keg_ctor(void *mem, int size, void *udata, int flags) 2442 { 2443 struct uma_kctor_args *arg = udata; 2444 uma_keg_t keg = mem; 2445 uma_zone_t zone; 2446 int i; 2447 2448 bzero(keg, size); 2449 keg->uk_size = arg->size; 2450 keg->uk_init = arg->uminit; 2451 keg->uk_fini = arg->fini; 2452 keg->uk_align = arg->align; 2453 keg->uk_reserve = 0; 2454 keg->uk_flags = arg->flags; 2455 2456 /* 2457 * We use a global round-robin policy by default. Zones with 2458 * UMA_ZONE_FIRSTTOUCH set will use first-touch instead, in which 2459 * case the iterator is never run. 2460 */ 2461 keg->uk_dr.dr_policy = DOMAINSET_RR(); 2462 keg->uk_dr.dr_iter = 0; 2463 2464 /* 2465 * The primary zone is passed to us at keg-creation time. 2466 */ 2467 zone = arg->zone; 2468 keg->uk_name = zone->uz_name; 2469 2470 if (arg->flags & UMA_ZONE_ZINIT) 2471 keg->uk_init = zero_init; 2472 2473 if (arg->flags & UMA_ZONE_MALLOC) 2474 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2475 2476 #ifndef SMP 2477 keg->uk_flags &= ~UMA_ZONE_PCPU; 2478 #endif 2479 2480 keg_layout(keg); 2481 2482 /* 2483 * Use a first-touch NUMA policy for kegs that pmap_extract() will 2484 * work on. Use round-robin for everything else. 2485 * 2486 * Zones may override the default by specifying either. 2487 */ 2488 #ifdef NUMA 2489 if ((keg->uk_flags & 2490 (UMA_ZONE_ROUNDROBIN | UMA_ZFLAG_CACHE | UMA_ZONE_NOTPAGE)) == 0) 2491 keg->uk_flags |= UMA_ZONE_FIRSTTOUCH; 2492 else if ((keg->uk_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2493 keg->uk_flags |= UMA_ZONE_ROUNDROBIN; 2494 #endif 2495 2496 /* 2497 * If we haven't booted yet we need allocations to go through the 2498 * startup cache until the vm is ready. 2499 */ 2500 #ifdef UMA_MD_SMALL_ALLOC 2501 if (keg->uk_ppera == 1) 2502 keg->uk_allocf = uma_small_alloc; 2503 else 2504 #endif 2505 if (booted < BOOT_KVA) 2506 keg->uk_allocf = startup_alloc; 2507 else if (keg->uk_flags & UMA_ZONE_PCPU) 2508 keg->uk_allocf = pcpu_page_alloc; 2509 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && keg->uk_ppera > 1) 2510 keg->uk_allocf = contig_alloc; 2511 else 2512 keg->uk_allocf = page_alloc; 2513 #ifdef UMA_MD_SMALL_ALLOC 2514 if (keg->uk_ppera == 1) 2515 keg->uk_freef = uma_small_free; 2516 else 2517 #endif 2518 if (keg->uk_flags & UMA_ZONE_PCPU) 2519 keg->uk_freef = pcpu_page_free; 2520 else 2521 keg->uk_freef = page_free; 2522 2523 /* 2524 * Initialize keg's locks. 2525 */ 2526 for (i = 0; i < vm_ndomains; i++) 2527 KEG_LOCK_INIT(keg, i, (arg->flags & UMA_ZONE_MTXCLASS)); 2528 2529 /* 2530 * If we're putting the slab header in the actual page we need to 2531 * figure out where in each page it goes. See slab_sizeof 2532 * definition. 2533 */ 2534 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) { 2535 size_t shsize; 2536 2537 shsize = slab_sizeof(keg->uk_ipers); 2538 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize; 2539 /* 2540 * The only way the following is possible is if with our 2541 * UMA_ALIGN_PTR adjustments we are now bigger than 2542 * UMA_SLAB_SIZE. I haven't checked whether this is 2543 * mathematically possible for all cases, so we make 2544 * sure here anyway. 2545 */ 2546 KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera, 2547 ("zone %s ipers %d rsize %d size %d slab won't fit", 2548 zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size)); 2549 } 2550 2551 if (keg->uk_flags & UMA_ZFLAG_HASH) 2552 hash_alloc(&keg->uk_hash, 0); 2553 2554 CTR3(KTR_UMA, "keg_ctor %p zone %s(%p)", keg, zone->uz_name, zone); 2555 2556 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 2557 2558 rw_wlock(&uma_rwlock); 2559 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 2560 rw_wunlock(&uma_rwlock); 2561 return (0); 2562 } 2563 2564 static void 2565 zone_kva_available(uma_zone_t zone, void *unused) 2566 { 2567 uma_keg_t keg; 2568 2569 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 2570 return; 2571 KEG_GET(zone, keg); 2572 2573 if (keg->uk_allocf == startup_alloc) { 2574 /* Switch to the real allocator. */ 2575 if (keg->uk_flags & UMA_ZONE_PCPU) 2576 keg->uk_allocf = pcpu_page_alloc; 2577 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && 2578 keg->uk_ppera > 1) 2579 keg->uk_allocf = contig_alloc; 2580 else 2581 keg->uk_allocf = page_alloc; 2582 } 2583 } 2584 2585 static void 2586 zone_alloc_counters(uma_zone_t zone, void *unused) 2587 { 2588 2589 zone->uz_allocs = counter_u64_alloc(M_WAITOK); 2590 zone->uz_frees = counter_u64_alloc(M_WAITOK); 2591 zone->uz_fails = counter_u64_alloc(M_WAITOK); 2592 zone->uz_xdomain = counter_u64_alloc(M_WAITOK); 2593 } 2594 2595 static void 2596 zone_alloc_sysctl(uma_zone_t zone, void *unused) 2597 { 2598 uma_zone_domain_t zdom; 2599 uma_domain_t dom; 2600 uma_keg_t keg; 2601 struct sysctl_oid *oid, *domainoid; 2602 int domains, i, cnt; 2603 static const char *nokeg = "cache zone"; 2604 char *c; 2605 2606 /* 2607 * Make a sysctl safe copy of the zone name by removing 2608 * any special characters and handling dups by appending 2609 * an index. 2610 */ 2611 if (zone->uz_namecnt != 0) { 2612 /* Count the number of decimal digits and '_' separator. */ 2613 for (i = 1, cnt = zone->uz_namecnt; cnt != 0; i++) 2614 cnt /= 10; 2615 zone->uz_ctlname = malloc(strlen(zone->uz_name) + i + 1, 2616 M_UMA, M_WAITOK); 2617 sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name, 2618 zone->uz_namecnt); 2619 } else 2620 zone->uz_ctlname = strdup(zone->uz_name, M_UMA); 2621 for (c = zone->uz_ctlname; *c != '\0'; c++) 2622 if (strchr("./\\ -", *c) != NULL) 2623 *c = '_'; 2624 2625 /* 2626 * Basic parameters at the root. 2627 */ 2628 zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma), 2629 OID_AUTO, zone->uz_ctlname, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2630 oid = zone->uz_oid; 2631 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2632 "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size"); 2633 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2634 "flags", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE, 2635 zone, 0, sysctl_handle_uma_zone_flags, "A", 2636 "Allocator configuration flags"); 2637 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2638 "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0, 2639 "Desired per-cpu cache size"); 2640 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2641 "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0, 2642 "Maximum allowed per-cpu cache size"); 2643 2644 /* 2645 * keg if present. 2646 */ 2647 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 2648 domains = vm_ndomains; 2649 else 2650 domains = 1; 2651 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2652 "keg", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2653 keg = zone->uz_keg; 2654 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) { 2655 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2656 "name", CTLFLAG_RD, keg->uk_name, "Keg name"); 2657 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2658 "rsize", CTLFLAG_RD, &keg->uk_rsize, 0, 2659 "Real object size with alignment"); 2660 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2661 "ppera", CTLFLAG_RD, &keg->uk_ppera, 0, 2662 "pages per-slab allocation"); 2663 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2664 "ipers", CTLFLAG_RD, &keg->uk_ipers, 0, 2665 "items available per-slab"); 2666 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2667 "align", CTLFLAG_RD, &keg->uk_align, 0, 2668 "item alignment mask"); 2669 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2670 "reserve", CTLFLAG_RD, &keg->uk_reserve, 0, 2671 "number of reserved items"); 2672 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2673 "efficiency", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2674 keg, 0, sysctl_handle_uma_slab_efficiency, "I", 2675 "Slab utilization (100 - internal fragmentation %)"); 2676 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(oid), 2677 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2678 for (i = 0; i < domains; i++) { 2679 dom = &keg->uk_domain[i]; 2680 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2681 OID_AUTO, VM_DOMAIN(i)->vmd_name, 2682 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2683 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2684 "pages", CTLFLAG_RD, &dom->ud_pages, 0, 2685 "Total pages currently allocated from VM"); 2686 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2687 "free_items", CTLFLAG_RD, &dom->ud_free_items, 0, 2688 "Items free in the slab layer"); 2689 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2690 "free_slabs", CTLFLAG_RD, &dom->ud_free_slabs, 0, 2691 "Unused slabs"); 2692 } 2693 } else 2694 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2695 "name", CTLFLAG_RD, nokeg, "Keg name"); 2696 2697 /* 2698 * Information about zone limits. 2699 */ 2700 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2701 "limit", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2702 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2703 "items", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2704 zone, 0, sysctl_handle_uma_zone_items, "QU", 2705 "Current number of allocated items if limit is set"); 2706 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2707 "max_items", CTLFLAG_RD, &zone->uz_max_items, 0, 2708 "Maximum number of allocated and cached items"); 2709 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2710 "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0, 2711 "Number of threads sleeping at limit"); 2712 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2713 "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0, 2714 "Total zone limit sleeps"); 2715 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2716 "bucket_max", CTLFLAG_RD, &zone->uz_bucket_max, 0, 2717 "Maximum number of items in each domain's bucket cache"); 2718 2719 /* 2720 * Per-domain zone information. 2721 */ 2722 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), 2723 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2724 for (i = 0; i < domains; i++) { 2725 zdom = ZDOM_GET(zone, i); 2726 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2727 OID_AUTO, VM_DOMAIN(i)->vmd_name, 2728 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2729 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2730 "nitems", CTLFLAG_RD, &zdom->uzd_nitems, 2731 "number of items in this domain"); 2732 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2733 "imax", CTLFLAG_RD, &zdom->uzd_imax, 2734 "maximum item count in this period"); 2735 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2736 "imin", CTLFLAG_RD, &zdom->uzd_imin, 2737 "minimum item count in this period"); 2738 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2739 "bimin", CTLFLAG_RD, &zdom->uzd_bimin, 2740 "Minimum item count in this batch"); 2741 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2742 "wss", CTLFLAG_RD, &zdom->uzd_wss, 2743 "Working set size"); 2744 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2745 "limin", CTLFLAG_RD, &zdom->uzd_limin, 2746 "Long time minimum item count"); 2747 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2748 "timin", CTLFLAG_RD, &zdom->uzd_timin, 0, 2749 "Time since zero long time minimum item count"); 2750 } 2751 2752 /* 2753 * General statistics. 2754 */ 2755 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2756 "stats", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2757 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2758 "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2759 zone, 1, sysctl_handle_uma_zone_cur, "I", 2760 "Current number of allocated items"); 2761 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2762 "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2763 zone, 0, sysctl_handle_uma_zone_allocs, "QU", 2764 "Total allocation calls"); 2765 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2766 "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2767 zone, 0, sysctl_handle_uma_zone_frees, "QU", 2768 "Total free calls"); 2769 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2770 "fails", CTLFLAG_RD, &zone->uz_fails, 2771 "Number of allocation failures"); 2772 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2773 "xdomain", CTLFLAG_RD, &zone->uz_xdomain, 2774 "Free calls from the wrong domain"); 2775 } 2776 2777 struct uma_zone_count { 2778 const char *name; 2779 int count; 2780 }; 2781 2782 static void 2783 zone_count(uma_zone_t zone, void *arg) 2784 { 2785 struct uma_zone_count *cnt; 2786 2787 cnt = arg; 2788 /* 2789 * Some zones are rapidly created with identical names and 2790 * destroyed out of order. This can lead to gaps in the count. 2791 * Use one greater than the maximum observed for this name. 2792 */ 2793 if (strcmp(zone->uz_name, cnt->name) == 0) 2794 cnt->count = MAX(cnt->count, 2795 zone->uz_namecnt + 1); 2796 } 2797 2798 static void 2799 zone_update_caches(uma_zone_t zone) 2800 { 2801 int i; 2802 2803 for (i = 0; i <= mp_maxid; i++) { 2804 cache_set_uz_size(&zone->uz_cpu[i], zone->uz_size); 2805 cache_set_uz_flags(&zone->uz_cpu[i], zone->uz_flags); 2806 } 2807 } 2808 2809 /* 2810 * Zone header ctor. This initializes all fields, locks, etc. 2811 * 2812 * Arguments/Returns follow uma_ctor specifications 2813 * udata Actually uma_zctor_args 2814 */ 2815 static int 2816 zone_ctor(void *mem, int size, void *udata, int flags) 2817 { 2818 struct uma_zone_count cnt; 2819 struct uma_zctor_args *arg = udata; 2820 uma_zone_domain_t zdom; 2821 uma_zone_t zone = mem; 2822 uma_zone_t z; 2823 uma_keg_t keg; 2824 int i; 2825 2826 bzero(zone, size); 2827 zone->uz_name = arg->name; 2828 zone->uz_ctor = arg->ctor; 2829 zone->uz_dtor = arg->dtor; 2830 zone->uz_init = NULL; 2831 zone->uz_fini = NULL; 2832 zone->uz_sleeps = 0; 2833 zone->uz_bucket_size = 0; 2834 zone->uz_bucket_size_min = 0; 2835 zone->uz_bucket_size_max = BUCKET_MAX; 2836 zone->uz_flags = (arg->flags & UMA_ZONE_SMR); 2837 zone->uz_warning = NULL; 2838 /* The domain structures follow the cpu structures. */ 2839 zone->uz_bucket_max = ULONG_MAX; 2840 timevalclear(&zone->uz_ratecheck); 2841 2842 /* Count the number of duplicate names. */ 2843 cnt.name = arg->name; 2844 cnt.count = 0; 2845 zone_foreach(zone_count, &cnt); 2846 zone->uz_namecnt = cnt.count; 2847 ZONE_CROSS_LOCK_INIT(zone); 2848 2849 for (i = 0; i < vm_ndomains; i++) { 2850 zdom = ZDOM_GET(zone, i); 2851 ZDOM_LOCK_INIT(zone, zdom, (arg->flags & UMA_ZONE_MTXCLASS)); 2852 STAILQ_INIT(&zdom->uzd_buckets); 2853 } 2854 2855 #if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN) 2856 if (arg->uminit == trash_init && arg->fini == trash_fini) 2857 zone->uz_flags |= UMA_ZFLAG_TRASH | UMA_ZFLAG_CTORDTOR; 2858 #elif defined(KASAN) 2859 if ((arg->flags & (UMA_ZONE_NOFREE | UMA_ZFLAG_CACHE)) != 0) 2860 arg->flags |= UMA_ZONE_NOKASAN; 2861 #endif 2862 2863 /* 2864 * This is a pure cache zone, no kegs. 2865 */ 2866 if (arg->import) { 2867 KASSERT((arg->flags & UMA_ZFLAG_CACHE) != 0, 2868 ("zone_ctor: Import specified for non-cache zone.")); 2869 zone->uz_flags = arg->flags; 2870 zone->uz_size = arg->size; 2871 zone->uz_import = arg->import; 2872 zone->uz_release = arg->release; 2873 zone->uz_arg = arg->arg; 2874 #ifdef NUMA 2875 /* 2876 * Cache zones are round-robin unless a policy is 2877 * specified because they may have incompatible 2878 * constraints. 2879 */ 2880 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2881 zone->uz_flags |= UMA_ZONE_ROUNDROBIN; 2882 #endif 2883 rw_wlock(&uma_rwlock); 2884 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 2885 rw_wunlock(&uma_rwlock); 2886 goto out; 2887 } 2888 2889 /* 2890 * Use the regular zone/keg/slab allocator. 2891 */ 2892 zone->uz_import = zone_import; 2893 zone->uz_release = zone_release; 2894 zone->uz_arg = zone; 2895 keg = arg->keg; 2896 2897 if (arg->flags & UMA_ZONE_SECONDARY) { 2898 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 2899 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 2900 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 2901 zone->uz_init = arg->uminit; 2902 zone->uz_fini = arg->fini; 2903 zone->uz_flags |= UMA_ZONE_SECONDARY; 2904 rw_wlock(&uma_rwlock); 2905 ZONE_LOCK(zone); 2906 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 2907 if (LIST_NEXT(z, uz_link) == NULL) { 2908 LIST_INSERT_AFTER(z, zone, uz_link); 2909 break; 2910 } 2911 } 2912 ZONE_UNLOCK(zone); 2913 rw_wunlock(&uma_rwlock); 2914 } else if (keg == NULL) { 2915 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 2916 arg->align, arg->flags)) == NULL) 2917 return (ENOMEM); 2918 } else { 2919 struct uma_kctor_args karg; 2920 int error; 2921 2922 /* We should only be here from uma_startup() */ 2923 karg.size = arg->size; 2924 karg.uminit = arg->uminit; 2925 karg.fini = arg->fini; 2926 karg.align = arg->align; 2927 karg.flags = (arg->flags & ~UMA_ZONE_SMR); 2928 karg.zone = zone; 2929 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 2930 flags); 2931 if (error) 2932 return (error); 2933 } 2934 2935 /* Inherit properties from the keg. */ 2936 zone->uz_keg = keg; 2937 zone->uz_size = keg->uk_size; 2938 zone->uz_flags |= (keg->uk_flags & 2939 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 2940 2941 out: 2942 if (booted >= BOOT_PCPU) { 2943 zone_alloc_counters(zone, NULL); 2944 if (booted >= BOOT_RUNNING) 2945 zone_alloc_sysctl(zone, NULL); 2946 } else { 2947 zone->uz_allocs = EARLY_COUNTER; 2948 zone->uz_frees = EARLY_COUNTER; 2949 zone->uz_fails = EARLY_COUNTER; 2950 } 2951 2952 /* Caller requests a private SMR context. */ 2953 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 2954 zone->uz_smr = smr_create(zone->uz_name, 0, 0); 2955 2956 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != 2957 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), 2958 ("Invalid zone flag combination")); 2959 if (arg->flags & UMA_ZFLAG_INTERNAL) 2960 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 2961 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) 2962 zone->uz_bucket_size = BUCKET_MAX; 2963 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) 2964 zone->uz_bucket_size = 0; 2965 else 2966 zone->uz_bucket_size = bucket_select(zone->uz_size); 2967 zone->uz_bucket_size_min = zone->uz_bucket_size; 2968 if (zone->uz_dtor != NULL || zone->uz_ctor != NULL) 2969 zone->uz_flags |= UMA_ZFLAG_CTORDTOR; 2970 zone_update_caches(zone); 2971 2972 return (0); 2973 } 2974 2975 /* 2976 * Keg header dtor. This frees all data, destroys locks, frees the hash 2977 * table and removes the keg from the global list. 2978 * 2979 * Arguments/Returns follow uma_dtor specifications 2980 * udata unused 2981 */ 2982 static void 2983 keg_dtor(void *arg, int size, void *udata) 2984 { 2985 uma_keg_t keg; 2986 uint32_t free, pages; 2987 int i; 2988 2989 keg = (uma_keg_t)arg; 2990 free = pages = 0; 2991 for (i = 0; i < vm_ndomains; i++) { 2992 free += keg->uk_domain[i].ud_free_items; 2993 pages += keg->uk_domain[i].ud_pages; 2994 KEG_LOCK_FINI(keg, i); 2995 } 2996 if (pages != 0) 2997 printf("Freed UMA keg (%s) was not empty (%u items). " 2998 " Lost %u pages of memory.\n", 2999 keg->uk_name ? keg->uk_name : "", 3000 pages / keg->uk_ppera * keg->uk_ipers - free, pages); 3001 3002 hash_free(&keg->uk_hash); 3003 } 3004 3005 /* 3006 * Zone header dtor. 3007 * 3008 * Arguments/Returns follow uma_dtor specifications 3009 * udata unused 3010 */ 3011 static void 3012 zone_dtor(void *arg, int size, void *udata) 3013 { 3014 uma_zone_t zone; 3015 uma_keg_t keg; 3016 int i; 3017 3018 zone = (uma_zone_t)arg; 3019 3020 sysctl_remove_oid(zone->uz_oid, 1, 1); 3021 3022 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 3023 cache_drain(zone); 3024 3025 rw_wlock(&uma_rwlock); 3026 LIST_REMOVE(zone, uz_link); 3027 rw_wunlock(&uma_rwlock); 3028 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { 3029 keg = zone->uz_keg; 3030 keg->uk_reserve = 0; 3031 } 3032 zone_reclaim(zone, UMA_ANYDOMAIN, M_WAITOK, true); 3033 3034 /* 3035 * We only destroy kegs from non secondary/non cache zones. 3036 */ 3037 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { 3038 keg = zone->uz_keg; 3039 rw_wlock(&uma_rwlock); 3040 LIST_REMOVE(keg, uk_link); 3041 rw_wunlock(&uma_rwlock); 3042 zone_free_item(kegs, keg, NULL, SKIP_NONE); 3043 } 3044 counter_u64_free(zone->uz_allocs); 3045 counter_u64_free(zone->uz_frees); 3046 counter_u64_free(zone->uz_fails); 3047 counter_u64_free(zone->uz_xdomain); 3048 free(zone->uz_ctlname, M_UMA); 3049 for (i = 0; i < vm_ndomains; i++) 3050 ZDOM_LOCK_FINI(ZDOM_GET(zone, i)); 3051 ZONE_CROSS_LOCK_FINI(zone); 3052 } 3053 3054 static void 3055 zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *arg), void *arg) 3056 { 3057 uma_keg_t keg; 3058 uma_zone_t zone; 3059 3060 LIST_FOREACH(keg, &uma_kegs, uk_link) { 3061 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 3062 zfunc(zone, arg); 3063 } 3064 LIST_FOREACH(zone, &uma_cachezones, uz_link) 3065 zfunc(zone, arg); 3066 } 3067 3068 /* 3069 * Traverses every zone in the system and calls a callback 3070 * 3071 * Arguments: 3072 * zfunc A pointer to a function which accepts a zone 3073 * as an argument. 3074 * 3075 * Returns: 3076 * Nothing 3077 */ 3078 static void 3079 zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg) 3080 { 3081 3082 rw_rlock(&uma_rwlock); 3083 zone_foreach_unlocked(zfunc, arg); 3084 rw_runlock(&uma_rwlock); 3085 } 3086 3087 /* 3088 * Initialize the kernel memory allocator. This is done after pages can be 3089 * allocated but before general KVA is available. 3090 */ 3091 void 3092 uma_startup1(vm_offset_t virtual_avail) 3093 { 3094 struct uma_zctor_args args; 3095 size_t ksize, zsize, size; 3096 uma_keg_t primarykeg; 3097 uintptr_t m; 3098 int domain; 3099 uint8_t pflag; 3100 3101 bootstart = bootmem = virtual_avail; 3102 3103 rw_init(&uma_rwlock, "UMA lock"); 3104 sx_init(&uma_reclaim_lock, "umareclaim"); 3105 3106 ksize = sizeof(struct uma_keg) + 3107 (sizeof(struct uma_domain) * vm_ndomains); 3108 ksize = roundup(ksize, UMA_SUPER_ALIGN); 3109 zsize = sizeof(struct uma_zone) + 3110 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 3111 (sizeof(struct uma_zone_domain) * vm_ndomains); 3112 zsize = roundup(zsize, UMA_SUPER_ALIGN); 3113 3114 /* Allocate the zone of zones, zone of kegs, and zone of zones keg. */ 3115 size = (zsize * 2) + ksize; 3116 for (domain = 0; domain < vm_ndomains; domain++) { 3117 m = (uintptr_t)startup_alloc(NULL, size, domain, &pflag, 3118 M_NOWAIT | M_ZERO); 3119 if (m != 0) 3120 break; 3121 } 3122 zones = (uma_zone_t)m; 3123 m += zsize; 3124 kegs = (uma_zone_t)m; 3125 m += zsize; 3126 primarykeg = (uma_keg_t)m; 3127 3128 /* "manually" create the initial zone */ 3129 memset(&args, 0, sizeof(args)); 3130 args.name = "UMA Kegs"; 3131 args.size = ksize; 3132 args.ctor = keg_ctor; 3133 args.dtor = keg_dtor; 3134 args.uminit = zero_init; 3135 args.fini = NULL; 3136 args.keg = primarykeg; 3137 args.align = UMA_SUPER_ALIGN - 1; 3138 args.flags = UMA_ZFLAG_INTERNAL; 3139 zone_ctor(kegs, zsize, &args, M_WAITOK); 3140 3141 args.name = "UMA Zones"; 3142 args.size = zsize; 3143 args.ctor = zone_ctor; 3144 args.dtor = zone_dtor; 3145 args.uminit = zero_init; 3146 args.fini = NULL; 3147 args.keg = NULL; 3148 args.align = UMA_SUPER_ALIGN - 1; 3149 args.flags = UMA_ZFLAG_INTERNAL; 3150 zone_ctor(zones, zsize, &args, M_WAITOK); 3151 3152 /* Now make zones for slab headers */ 3153 slabzones[0] = uma_zcreate("UMA Slabs 0", SLABZONE0_SIZE, 3154 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 3155 slabzones[1] = uma_zcreate("UMA Slabs 1", SLABZONE1_SIZE, 3156 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 3157 3158 hashzone = uma_zcreate("UMA Hash", 3159 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 3160 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 3161 3162 bucket_init(); 3163 smr_init(); 3164 } 3165 3166 #ifndef UMA_MD_SMALL_ALLOC 3167 extern void vm_radix_reserve_kva(void); 3168 #endif 3169 3170 /* 3171 * Advertise the availability of normal kva allocations and switch to 3172 * the default back-end allocator. Marks the KVA we consumed on startup 3173 * as used in the map. 3174 */ 3175 void 3176 uma_startup2(void) 3177 { 3178 3179 if (bootstart != bootmem) { 3180 vm_map_lock(kernel_map); 3181 (void)vm_map_insert(kernel_map, NULL, 0, bootstart, bootmem, 3182 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT); 3183 vm_map_unlock(kernel_map); 3184 } 3185 3186 #ifndef UMA_MD_SMALL_ALLOC 3187 /* Set up radix zone to use noobj_alloc. */ 3188 vm_radix_reserve_kva(); 3189 #endif 3190 3191 booted = BOOT_KVA; 3192 zone_foreach_unlocked(zone_kva_available, NULL); 3193 bucket_enable(); 3194 } 3195 3196 /* 3197 * Allocate counters as early as possible so that boot-time allocations are 3198 * accounted more precisely. 3199 */ 3200 static void 3201 uma_startup_pcpu(void *arg __unused) 3202 { 3203 3204 zone_foreach_unlocked(zone_alloc_counters, NULL); 3205 booted = BOOT_PCPU; 3206 } 3207 SYSINIT(uma_startup_pcpu, SI_SUB_COUNTER, SI_ORDER_ANY, uma_startup_pcpu, NULL); 3208 3209 /* 3210 * Finish our initialization steps. 3211 */ 3212 static void 3213 uma_startup3(void *arg __unused) 3214 { 3215 3216 #ifdef INVARIANTS 3217 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor); 3218 uma_dbg_cnt = counter_u64_alloc(M_WAITOK); 3219 uma_skip_cnt = counter_u64_alloc(M_WAITOK); 3220 #endif 3221 zone_foreach_unlocked(zone_alloc_sysctl, NULL); 3222 callout_init(&uma_callout, 1); 3223 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 3224 booted = BOOT_RUNNING; 3225 3226 EVENTHANDLER_REGISTER(shutdown_post_sync, uma_shutdown, NULL, 3227 EVENTHANDLER_PRI_FIRST); 3228 } 3229 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 3230 3231 static void 3232 uma_shutdown(void) 3233 { 3234 3235 booted = BOOT_SHUTDOWN; 3236 } 3237 3238 static uma_keg_t 3239 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 3240 int align, uint32_t flags) 3241 { 3242 struct uma_kctor_args args; 3243 3244 args.size = size; 3245 args.uminit = uminit; 3246 args.fini = fini; 3247 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 3248 args.flags = flags; 3249 args.zone = zone; 3250 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 3251 } 3252 3253 /* Public functions */ 3254 /* See uma.h */ 3255 void 3256 uma_set_align(int align) 3257 { 3258 3259 if (align != UMA_ALIGN_CACHE) 3260 uma_align_cache = align; 3261 } 3262 3263 /* See uma.h */ 3264 uma_zone_t 3265 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 3266 uma_init uminit, uma_fini fini, int align, uint32_t flags) 3267 3268 { 3269 struct uma_zctor_args args; 3270 uma_zone_t res; 3271 3272 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 3273 align, name)); 3274 3275 /* This stuff is essential for the zone ctor */ 3276 memset(&args, 0, sizeof(args)); 3277 args.name = name; 3278 args.size = size; 3279 args.ctor = ctor; 3280 args.dtor = dtor; 3281 args.uminit = uminit; 3282 args.fini = fini; 3283 #if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN) 3284 /* 3285 * Inject procedures which check for memory use after free if we are 3286 * allowed to scramble the memory while it is not allocated. This 3287 * requires that: UMA is actually able to access the memory, no init 3288 * or fini procedures, no dependency on the initial value of the 3289 * memory, and no (legitimate) use of the memory after free. Note, 3290 * the ctor and dtor do not need to be empty. 3291 */ 3292 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOTOUCH | 3293 UMA_ZONE_NOFREE))) && uminit == NULL && fini == NULL) { 3294 args.uminit = trash_init; 3295 args.fini = trash_fini; 3296 } 3297 #endif 3298 args.align = align; 3299 args.flags = flags; 3300 args.keg = NULL; 3301 3302 sx_xlock(&uma_reclaim_lock); 3303 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 3304 sx_xunlock(&uma_reclaim_lock); 3305 3306 return (res); 3307 } 3308 3309 /* See uma.h */ 3310 uma_zone_t 3311 uma_zsecond_create(const char *name, uma_ctor ctor, uma_dtor dtor, 3312 uma_init zinit, uma_fini zfini, uma_zone_t primary) 3313 { 3314 struct uma_zctor_args args; 3315 uma_keg_t keg; 3316 uma_zone_t res; 3317 3318 keg = primary->uz_keg; 3319 memset(&args, 0, sizeof(args)); 3320 args.name = name; 3321 args.size = keg->uk_size; 3322 args.ctor = ctor; 3323 args.dtor = dtor; 3324 args.uminit = zinit; 3325 args.fini = zfini; 3326 args.align = keg->uk_align; 3327 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 3328 args.keg = keg; 3329 3330 sx_xlock(&uma_reclaim_lock); 3331 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 3332 sx_xunlock(&uma_reclaim_lock); 3333 3334 return (res); 3335 } 3336 3337 /* See uma.h */ 3338 uma_zone_t 3339 uma_zcache_create(const char *name, int size, uma_ctor ctor, uma_dtor dtor, 3340 uma_init zinit, uma_fini zfini, uma_import zimport, uma_release zrelease, 3341 void *arg, int flags) 3342 { 3343 struct uma_zctor_args args; 3344 3345 memset(&args, 0, sizeof(args)); 3346 args.name = name; 3347 args.size = size; 3348 args.ctor = ctor; 3349 args.dtor = dtor; 3350 args.uminit = zinit; 3351 args.fini = zfini; 3352 args.import = zimport; 3353 args.release = zrelease; 3354 args.arg = arg; 3355 args.align = 0; 3356 args.flags = flags | UMA_ZFLAG_CACHE; 3357 3358 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 3359 } 3360 3361 /* See uma.h */ 3362 void 3363 uma_zdestroy(uma_zone_t zone) 3364 { 3365 3366 /* 3367 * Large slabs are expensive to reclaim, so don't bother doing 3368 * unnecessary work if we're shutting down. 3369 */ 3370 if (booted == BOOT_SHUTDOWN && 3371 zone->uz_fini == NULL && zone->uz_release == zone_release) 3372 return; 3373 sx_xlock(&uma_reclaim_lock); 3374 zone_free_item(zones, zone, NULL, SKIP_NONE); 3375 sx_xunlock(&uma_reclaim_lock); 3376 } 3377 3378 void 3379 uma_zwait(uma_zone_t zone) 3380 { 3381 3382 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 3383 uma_zfree_smr(zone, uma_zalloc_smr(zone, M_WAITOK)); 3384 else if ((zone->uz_flags & UMA_ZONE_PCPU) != 0) 3385 uma_zfree_pcpu(zone, uma_zalloc_pcpu(zone, M_WAITOK)); 3386 else 3387 uma_zfree(zone, uma_zalloc(zone, M_WAITOK)); 3388 } 3389 3390 void * 3391 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags) 3392 { 3393 void *item, *pcpu_item; 3394 #ifdef SMP 3395 int i; 3396 3397 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 3398 #endif 3399 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO); 3400 if (item == NULL) 3401 return (NULL); 3402 pcpu_item = zpcpu_base_to_offset(item); 3403 if (flags & M_ZERO) { 3404 #ifdef SMP 3405 for (i = 0; i <= mp_maxid; i++) 3406 bzero(zpcpu_get_cpu(pcpu_item, i), zone->uz_size); 3407 #else 3408 bzero(item, zone->uz_size); 3409 #endif 3410 } 3411 return (pcpu_item); 3412 } 3413 3414 /* 3415 * A stub while both regular and pcpu cases are identical. 3416 */ 3417 void 3418 uma_zfree_pcpu_arg(uma_zone_t zone, void *pcpu_item, void *udata) 3419 { 3420 void *item; 3421 3422 #ifdef SMP 3423 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 3424 #endif 3425 3426 /* uma_zfree_pcu_*(..., NULL) does nothing, to match free(9). */ 3427 if (pcpu_item == NULL) 3428 return; 3429 3430 item = zpcpu_offset_to_base(pcpu_item); 3431 uma_zfree_arg(zone, item, udata); 3432 } 3433 3434 static inline void * 3435 item_ctor(uma_zone_t zone, int uz_flags, int size, void *udata, int flags, 3436 void *item) 3437 { 3438 #ifdef INVARIANTS 3439 bool skipdbg; 3440 #endif 3441 3442 kasan_mark_item_valid(zone, item); 3443 kmsan_mark_item_uninitialized(zone, item); 3444 3445 #ifdef INVARIANTS 3446 skipdbg = uma_dbg_zskip(zone, item); 3447 if (!skipdbg && (uz_flags & UMA_ZFLAG_TRASH) != 0 && 3448 zone->uz_ctor != trash_ctor) 3449 trash_ctor(item, size, udata, flags); 3450 #endif 3451 3452 /* Check flags before loading ctor pointer. */ 3453 if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0) && 3454 __predict_false(zone->uz_ctor != NULL) && 3455 zone->uz_ctor(item, size, udata, flags) != 0) { 3456 counter_u64_add(zone->uz_fails, 1); 3457 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT); 3458 return (NULL); 3459 } 3460 #ifdef INVARIANTS 3461 if (!skipdbg) 3462 uma_dbg_alloc(zone, NULL, item); 3463 #endif 3464 if (__predict_false(flags & M_ZERO)) 3465 return (memset(item, 0, size)); 3466 3467 return (item); 3468 } 3469 3470 static inline void 3471 item_dtor(uma_zone_t zone, void *item, int size, void *udata, 3472 enum zfreeskip skip) 3473 { 3474 #ifdef INVARIANTS 3475 bool skipdbg; 3476 3477 skipdbg = uma_dbg_zskip(zone, item); 3478 if (skip == SKIP_NONE && !skipdbg) { 3479 if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0) 3480 uma_dbg_free(zone, udata, item); 3481 else 3482 uma_dbg_free(zone, NULL, item); 3483 } 3484 #endif 3485 if (__predict_true(skip < SKIP_DTOR)) { 3486 if (zone->uz_dtor != NULL) 3487 zone->uz_dtor(item, size, udata); 3488 #ifdef INVARIANTS 3489 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 3490 zone->uz_dtor != trash_dtor) 3491 trash_dtor(item, size, udata); 3492 #endif 3493 } 3494 kasan_mark_item_invalid(zone, item); 3495 } 3496 3497 #ifdef NUMA 3498 static int 3499 item_domain(void *item) 3500 { 3501 int domain; 3502 3503 domain = vm_phys_domain(vtophys(item)); 3504 KASSERT(domain >= 0 && domain < vm_ndomains, 3505 ("%s: unknown domain for item %p", __func__, item)); 3506 return (domain); 3507 } 3508 #endif 3509 3510 #if defined(INVARIANTS) || defined(DEBUG_MEMGUARD) || defined(WITNESS) 3511 #define UMA_ZALLOC_DEBUG 3512 static int 3513 uma_zalloc_debug(uma_zone_t zone, void **itemp, void *udata, int flags) 3514 { 3515 int error; 3516 3517 error = 0; 3518 #ifdef WITNESS 3519 if (flags & M_WAITOK) { 3520 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3521 "uma_zalloc_debug: zone \"%s\"", zone->uz_name); 3522 } 3523 #endif 3524 3525 #ifdef INVARIANTS 3526 KASSERT((flags & M_EXEC) == 0, 3527 ("uma_zalloc_debug: called with M_EXEC")); 3528 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3529 ("uma_zalloc_debug: called within spinlock or critical section")); 3530 KASSERT((zone->uz_flags & UMA_ZONE_PCPU) == 0 || (flags & M_ZERO) == 0, 3531 ("uma_zalloc_debug: allocating from a pcpu zone with M_ZERO")); 3532 #endif 3533 3534 #ifdef DEBUG_MEMGUARD 3535 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && memguard_cmp_zone(zone)) { 3536 void *item; 3537 item = memguard_alloc(zone->uz_size, flags); 3538 if (item != NULL) { 3539 error = EJUSTRETURN; 3540 if (zone->uz_init != NULL && 3541 zone->uz_init(item, zone->uz_size, flags) != 0) { 3542 *itemp = NULL; 3543 return (error); 3544 } 3545 if (zone->uz_ctor != NULL && 3546 zone->uz_ctor(item, zone->uz_size, udata, 3547 flags) != 0) { 3548 counter_u64_add(zone->uz_fails, 1); 3549 zone->uz_fini(item, zone->uz_size); 3550 *itemp = NULL; 3551 return (error); 3552 } 3553 *itemp = item; 3554 return (error); 3555 } 3556 /* This is unfortunate but should not be fatal. */ 3557 } 3558 #endif 3559 return (error); 3560 } 3561 3562 static int 3563 uma_zfree_debug(uma_zone_t zone, void *item, void *udata) 3564 { 3565 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3566 ("uma_zfree_debug: called with spinlock or critical section held")); 3567 3568 #ifdef DEBUG_MEMGUARD 3569 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && is_memguard_addr(item)) { 3570 if (zone->uz_dtor != NULL) 3571 zone->uz_dtor(item, zone->uz_size, udata); 3572 if (zone->uz_fini != NULL) 3573 zone->uz_fini(item, zone->uz_size); 3574 memguard_free(item); 3575 return (EJUSTRETURN); 3576 } 3577 #endif 3578 return (0); 3579 } 3580 #endif 3581 3582 static inline void * 3583 cache_alloc_item(uma_zone_t zone, uma_cache_t cache, uma_cache_bucket_t bucket, 3584 void *udata, int flags) 3585 { 3586 void *item; 3587 int size, uz_flags; 3588 3589 item = cache_bucket_pop(cache, bucket); 3590 size = cache_uz_size(cache); 3591 uz_flags = cache_uz_flags(cache); 3592 critical_exit(); 3593 return (item_ctor(zone, uz_flags, size, udata, flags, item)); 3594 } 3595 3596 static __noinline void * 3597 cache_alloc_retry(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3598 { 3599 uma_cache_bucket_t bucket; 3600 int domain; 3601 3602 while (cache_alloc(zone, cache, udata, flags)) { 3603 cache = &zone->uz_cpu[curcpu]; 3604 bucket = &cache->uc_allocbucket; 3605 if (__predict_false(bucket->ucb_cnt == 0)) 3606 continue; 3607 return (cache_alloc_item(zone, cache, bucket, udata, flags)); 3608 } 3609 critical_exit(); 3610 3611 /* 3612 * We can not get a bucket so try to return a single item. 3613 */ 3614 if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH) 3615 domain = PCPU_GET(domain); 3616 else 3617 domain = UMA_ANYDOMAIN; 3618 return (zone_alloc_item(zone, udata, domain, flags)); 3619 } 3620 3621 /* See uma.h */ 3622 void * 3623 uma_zalloc_smr(uma_zone_t zone, int flags) 3624 { 3625 uma_cache_bucket_t bucket; 3626 uma_cache_t cache; 3627 3628 #ifdef UMA_ZALLOC_DEBUG 3629 void *item; 3630 3631 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 3632 ("uma_zalloc_arg: called with non-SMR zone.")); 3633 if (uma_zalloc_debug(zone, &item, NULL, flags) == EJUSTRETURN) 3634 return (item); 3635 #endif 3636 3637 critical_enter(); 3638 cache = &zone->uz_cpu[curcpu]; 3639 bucket = &cache->uc_allocbucket; 3640 if (__predict_false(bucket->ucb_cnt == 0)) 3641 return (cache_alloc_retry(zone, cache, NULL, flags)); 3642 return (cache_alloc_item(zone, cache, bucket, NULL, flags)); 3643 } 3644 3645 /* See uma.h */ 3646 void * 3647 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 3648 { 3649 uma_cache_bucket_t bucket; 3650 uma_cache_t cache; 3651 3652 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3653 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3654 3655 /* This is the fast path allocation */ 3656 CTR3(KTR_UMA, "uma_zalloc_arg zone %s(%p) flags %d", zone->uz_name, 3657 zone, flags); 3658 3659 #ifdef UMA_ZALLOC_DEBUG 3660 void *item; 3661 3662 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 3663 ("uma_zalloc_arg: called with SMR zone.")); 3664 if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN) 3665 return (item); 3666 #endif 3667 3668 /* 3669 * If possible, allocate from the per-CPU cache. There are two 3670 * requirements for safe access to the per-CPU cache: (1) the thread 3671 * accessing the cache must not be preempted or yield during access, 3672 * and (2) the thread must not migrate CPUs without switching which 3673 * cache it accesses. We rely on a critical section to prevent 3674 * preemption and migration. We release the critical section in 3675 * order to acquire the zone mutex if we are unable to allocate from 3676 * the current cache; when we re-acquire the critical section, we 3677 * must detect and handle migration if it has occurred. 3678 */ 3679 critical_enter(); 3680 cache = &zone->uz_cpu[curcpu]; 3681 bucket = &cache->uc_allocbucket; 3682 if (__predict_false(bucket->ucb_cnt == 0)) 3683 return (cache_alloc_retry(zone, cache, udata, flags)); 3684 return (cache_alloc_item(zone, cache, bucket, udata, flags)); 3685 } 3686 3687 /* 3688 * Replenish an alloc bucket and possibly restore an old one. Called in 3689 * a critical section. Returns in a critical section. 3690 * 3691 * A false return value indicates an allocation failure. 3692 * A true return value indicates success and the caller should retry. 3693 */ 3694 static __noinline bool 3695 cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3696 { 3697 uma_bucket_t bucket; 3698 int curdomain, domain; 3699 bool new; 3700 3701 CRITICAL_ASSERT(curthread); 3702 3703 /* 3704 * If we have run out of items in our alloc bucket see 3705 * if we can switch with the free bucket. 3706 * 3707 * SMR Zones can't re-use the free bucket until the sequence has 3708 * expired. 3709 */ 3710 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) == 0 && 3711 cache->uc_freebucket.ucb_cnt != 0) { 3712 cache_bucket_swap(&cache->uc_freebucket, 3713 &cache->uc_allocbucket); 3714 return (true); 3715 } 3716 3717 /* 3718 * Discard any empty allocation bucket while we hold no locks. 3719 */ 3720 bucket = cache_bucket_unload_alloc(cache); 3721 critical_exit(); 3722 3723 if (bucket != NULL) { 3724 KASSERT(bucket->ub_cnt == 0, 3725 ("cache_alloc: Entered with non-empty alloc bucket.")); 3726 bucket_free(zone, bucket, udata); 3727 } 3728 3729 /* 3730 * Attempt to retrieve the item from the per-CPU cache has failed, so 3731 * we must go back to the zone. This requires the zdom lock, so we 3732 * must drop the critical section, then re-acquire it when we go back 3733 * to the cache. Since the critical section is released, we may be 3734 * preempted or migrate. As such, make sure not to maintain any 3735 * thread-local state specific to the cache from prior to releasing 3736 * the critical section. 3737 */ 3738 domain = PCPU_GET(domain); 3739 if ((cache_uz_flags(cache) & UMA_ZONE_ROUNDROBIN) != 0 || 3740 VM_DOMAIN_EMPTY(domain)) 3741 domain = zone_domain_highest(zone, domain); 3742 bucket = cache_fetch_bucket(zone, cache, domain); 3743 if (bucket == NULL && zone->uz_bucket_size != 0 && !bucketdisable) { 3744 bucket = zone_alloc_bucket(zone, udata, domain, flags); 3745 new = true; 3746 } else { 3747 new = false; 3748 } 3749 3750 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 3751 zone->uz_name, zone, bucket); 3752 if (bucket == NULL) { 3753 critical_enter(); 3754 return (false); 3755 } 3756 3757 /* 3758 * See if we lost the race or were migrated. Cache the 3759 * initialized bucket to make this less likely or claim 3760 * the memory directly. 3761 */ 3762 critical_enter(); 3763 cache = &zone->uz_cpu[curcpu]; 3764 if (cache->uc_allocbucket.ucb_bucket == NULL && 3765 ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) == 0 || 3766 (curdomain = PCPU_GET(domain)) == domain || 3767 VM_DOMAIN_EMPTY(curdomain))) { 3768 if (new) 3769 atomic_add_long(&ZDOM_GET(zone, domain)->uzd_imax, 3770 bucket->ub_cnt); 3771 cache_bucket_load_alloc(cache, bucket); 3772 return (true); 3773 } 3774 3775 /* 3776 * We lost the race, release this bucket and start over. 3777 */ 3778 critical_exit(); 3779 zone_put_bucket(zone, domain, bucket, udata, !new); 3780 critical_enter(); 3781 3782 return (true); 3783 } 3784 3785 void * 3786 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 3787 { 3788 #ifdef NUMA 3789 uma_bucket_t bucket; 3790 uma_zone_domain_t zdom; 3791 void *item; 3792 #endif 3793 3794 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3795 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3796 3797 /* This is the fast path allocation */ 3798 CTR4(KTR_UMA, "uma_zalloc_domain zone %s(%p) domain %d flags %d", 3799 zone->uz_name, zone, domain, flags); 3800 3801 if (flags & M_WAITOK) { 3802 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3803 "uma_zalloc_domain: zone \"%s\"", zone->uz_name); 3804 } 3805 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3806 ("uma_zalloc_domain: called with spinlock or critical section held")); 3807 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 3808 ("uma_zalloc_domain: called with SMR zone.")); 3809 #ifdef NUMA 3810 KASSERT((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0, 3811 ("uma_zalloc_domain: called with non-FIRSTTOUCH zone.")); 3812 3813 if (vm_ndomains == 1) 3814 return (uma_zalloc_arg(zone, udata, flags)); 3815 3816 /* 3817 * Try to allocate from the bucket cache before falling back to the keg. 3818 * We could try harder and attempt to allocate from per-CPU caches or 3819 * the per-domain cross-domain buckets, but the complexity is probably 3820 * not worth it. It is more important that frees of previous 3821 * cross-domain allocations do not blow up the cache. 3822 */ 3823 zdom = zone_domain_lock(zone, domain); 3824 if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) { 3825 item = bucket->ub_bucket[bucket->ub_cnt - 1]; 3826 #ifdef INVARIANTS 3827 bucket->ub_bucket[bucket->ub_cnt - 1] = NULL; 3828 #endif 3829 bucket->ub_cnt--; 3830 zone_put_bucket(zone, domain, bucket, udata, true); 3831 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, 3832 flags, item); 3833 if (item != NULL) { 3834 KASSERT(item_domain(item) == domain, 3835 ("%s: bucket cache item %p from wrong domain", 3836 __func__, item)); 3837 counter_u64_add(zone->uz_allocs, 1); 3838 } 3839 return (item); 3840 } 3841 ZDOM_UNLOCK(zdom); 3842 return (zone_alloc_item(zone, udata, domain, flags)); 3843 #else 3844 return (uma_zalloc_arg(zone, udata, flags)); 3845 #endif 3846 } 3847 3848 /* 3849 * Find a slab with some space. Prefer slabs that are partially used over those 3850 * that are totally full. This helps to reduce fragmentation. 3851 * 3852 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 3853 * only 'domain'. 3854 */ 3855 static uma_slab_t 3856 keg_first_slab(uma_keg_t keg, int domain, bool rr) 3857 { 3858 uma_domain_t dom; 3859 uma_slab_t slab; 3860 int start; 3861 3862 KASSERT(domain >= 0 && domain < vm_ndomains, 3863 ("keg_first_slab: domain %d out of range", domain)); 3864 KEG_LOCK_ASSERT(keg, domain); 3865 3866 slab = NULL; 3867 start = domain; 3868 do { 3869 dom = &keg->uk_domain[domain]; 3870 if ((slab = LIST_FIRST(&dom->ud_part_slab)) != NULL) 3871 return (slab); 3872 if ((slab = LIST_FIRST(&dom->ud_free_slab)) != NULL) { 3873 LIST_REMOVE(slab, us_link); 3874 dom->ud_free_slabs--; 3875 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3876 return (slab); 3877 } 3878 if (rr) 3879 domain = (domain + 1) % vm_ndomains; 3880 } while (domain != start); 3881 3882 return (NULL); 3883 } 3884 3885 /* 3886 * Fetch an existing slab from a free or partial list. Returns with the 3887 * keg domain lock held if a slab was found or unlocked if not. 3888 */ 3889 static uma_slab_t 3890 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags) 3891 { 3892 uma_slab_t slab; 3893 uint32_t reserve; 3894 3895 /* HASH has a single free list. */ 3896 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 3897 domain = 0; 3898 3899 KEG_LOCK(keg, domain); 3900 reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve; 3901 if (keg->uk_domain[domain].ud_free_items <= reserve || 3902 (slab = keg_first_slab(keg, domain, rr)) == NULL) { 3903 KEG_UNLOCK(keg, domain); 3904 return (NULL); 3905 } 3906 return (slab); 3907 } 3908 3909 static uma_slab_t 3910 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags) 3911 { 3912 struct vm_domainset_iter di; 3913 uma_slab_t slab; 3914 int aflags, domain; 3915 bool rr; 3916 3917 KASSERT((flags & (M_WAITOK | M_NOVM)) != (M_WAITOK | M_NOVM), 3918 ("%s: invalid flags %#x", __func__, flags)); 3919 3920 restart: 3921 /* 3922 * Use the keg's policy if upper layers haven't already specified a 3923 * domain (as happens with first-touch zones). 3924 * 3925 * To avoid races we run the iterator with the keg lock held, but that 3926 * means that we cannot allow the vm_domainset layer to sleep. Thus, 3927 * clear M_WAITOK and handle low memory conditions locally. 3928 */ 3929 rr = rdomain == UMA_ANYDOMAIN; 3930 if (rr) { 3931 aflags = (flags & ~M_WAITOK) | M_NOWAIT; 3932 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 3933 &aflags); 3934 } else { 3935 aflags = flags; 3936 domain = rdomain; 3937 } 3938 3939 for (;;) { 3940 slab = keg_fetch_free_slab(keg, domain, rr, flags); 3941 if (slab != NULL) 3942 return (slab); 3943 3944 /* 3945 * M_NOVM is used to break the recursion that can otherwise 3946 * occur if low-level memory management routines use UMA. 3947 */ 3948 if ((flags & M_NOVM) == 0) { 3949 slab = keg_alloc_slab(keg, zone, domain, flags, aflags); 3950 if (slab != NULL) 3951 return (slab); 3952 } 3953 3954 if (!rr) { 3955 if ((flags & M_USE_RESERVE) != 0) { 3956 /* 3957 * Drain reserves from other domains before 3958 * giving up or sleeping. It may be useful to 3959 * support per-domain reserves eventually. 3960 */ 3961 rdomain = UMA_ANYDOMAIN; 3962 goto restart; 3963 } 3964 if ((flags & M_WAITOK) == 0) 3965 break; 3966 vm_wait_domain(domain); 3967 } else if (vm_domainset_iter_policy(&di, &domain) != 0) { 3968 if ((flags & M_WAITOK) != 0) { 3969 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0); 3970 goto restart; 3971 } 3972 break; 3973 } 3974 } 3975 3976 /* 3977 * We might not have been able to get a slab but another cpu 3978 * could have while we were unlocked. Check again before we 3979 * fail. 3980 */ 3981 if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL) 3982 return (slab); 3983 3984 return (NULL); 3985 } 3986 3987 static void * 3988 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 3989 { 3990 uma_domain_t dom; 3991 void *item; 3992 int freei; 3993 3994 KEG_LOCK_ASSERT(keg, slab->us_domain); 3995 3996 dom = &keg->uk_domain[slab->us_domain]; 3997 freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1; 3998 BIT_CLR(keg->uk_ipers, freei, &slab->us_free); 3999 item = slab_item(slab, keg, freei); 4000 slab->us_freecount--; 4001 dom->ud_free_items--; 4002 4003 /* 4004 * Move this slab to the full list. It must be on the partial list, so 4005 * we do not need to update the free slab count. In particular, 4006 * keg_fetch_slab() always returns slabs on the partial list. 4007 */ 4008 if (slab->us_freecount == 0) { 4009 LIST_REMOVE(slab, us_link); 4010 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 4011 } 4012 4013 return (item); 4014 } 4015 4016 static int 4017 zone_import(void *arg, void **bucket, int max, int domain, int flags) 4018 { 4019 uma_domain_t dom; 4020 uma_zone_t zone; 4021 uma_slab_t slab; 4022 uma_keg_t keg; 4023 #ifdef NUMA 4024 int stripe; 4025 #endif 4026 int i; 4027 4028 zone = arg; 4029 slab = NULL; 4030 keg = zone->uz_keg; 4031 /* Try to keep the buckets totally full */ 4032 for (i = 0; i < max; ) { 4033 if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL) 4034 break; 4035 #ifdef NUMA 4036 stripe = howmany(max, vm_ndomains); 4037 #endif 4038 dom = &keg->uk_domain[slab->us_domain]; 4039 do { 4040 bucket[i++] = slab_alloc_item(keg, slab); 4041 if (keg->uk_reserve > 0 && 4042 dom->ud_free_items <= keg->uk_reserve) { 4043 /* 4044 * Avoid depleting the reserve after a 4045 * successful item allocation, even if 4046 * M_USE_RESERVE is specified. 4047 */ 4048 KEG_UNLOCK(keg, slab->us_domain); 4049 goto out; 4050 } 4051 #ifdef NUMA 4052 /* 4053 * If the zone is striped we pick a new slab for every 4054 * N allocations. Eliminating this conditional will 4055 * instead pick a new domain for each bucket rather 4056 * than stripe within each bucket. The current option 4057 * produces more fragmentation and requires more cpu 4058 * time but yields better distribution. 4059 */ 4060 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0 && 4061 vm_ndomains > 1 && --stripe == 0) 4062 break; 4063 #endif 4064 } while (slab->us_freecount != 0 && i < max); 4065 KEG_UNLOCK(keg, slab->us_domain); 4066 4067 /* Don't block if we allocated any successfully. */ 4068 flags &= ~M_WAITOK; 4069 flags |= M_NOWAIT; 4070 } 4071 out: 4072 return i; 4073 } 4074 4075 static int 4076 zone_alloc_limit_hard(uma_zone_t zone, int count, int flags) 4077 { 4078 uint64_t old, new, total, max; 4079 4080 /* 4081 * The hard case. We're going to sleep because there were existing 4082 * sleepers or because we ran out of items. This routine enforces 4083 * fairness by keeping fifo order. 4084 * 4085 * First release our ill gotten gains and make some noise. 4086 */ 4087 for (;;) { 4088 zone_free_limit(zone, count); 4089 zone_log_warning(zone); 4090 zone_maxaction(zone); 4091 if (flags & M_NOWAIT) 4092 return (0); 4093 4094 /* 4095 * We need to allocate an item or set ourself as a sleeper 4096 * while the sleepq lock is held to avoid wakeup races. This 4097 * is essentially a home rolled semaphore. 4098 */ 4099 sleepq_lock(&zone->uz_max_items); 4100 old = zone->uz_items; 4101 do { 4102 MPASS(UZ_ITEMS_SLEEPERS(old) < UZ_ITEMS_SLEEPERS_MAX); 4103 /* Cache the max since we will evaluate twice. */ 4104 max = zone->uz_max_items; 4105 if (UZ_ITEMS_SLEEPERS(old) != 0 || 4106 UZ_ITEMS_COUNT(old) >= max) 4107 new = old + UZ_ITEMS_SLEEPER; 4108 else 4109 new = old + MIN(count, max - old); 4110 } while (atomic_fcmpset_64(&zone->uz_items, &old, new) == 0); 4111 4112 /* We may have successfully allocated under the sleepq lock. */ 4113 if (UZ_ITEMS_SLEEPERS(new) == 0) { 4114 sleepq_release(&zone->uz_max_items); 4115 return (new - old); 4116 } 4117 4118 /* 4119 * This is in a different cacheline from uz_items so that we 4120 * don't constantly invalidate the fastpath cacheline when we 4121 * adjust item counts. This could be limited to toggling on 4122 * transitions. 4123 */ 4124 atomic_add_32(&zone->uz_sleepers, 1); 4125 atomic_add_64(&zone->uz_sleeps, 1); 4126 4127 /* 4128 * We have added ourselves as a sleeper. The sleepq lock 4129 * protects us from wakeup races. Sleep now and then retry. 4130 */ 4131 sleepq_add(&zone->uz_max_items, NULL, "zonelimit", 0, 0); 4132 sleepq_wait(&zone->uz_max_items, PVM); 4133 4134 /* 4135 * After wakeup, remove ourselves as a sleeper and try 4136 * again. We no longer have the sleepq lock for protection. 4137 * 4138 * Subract ourselves as a sleeper while attempting to add 4139 * our count. 4140 */ 4141 atomic_subtract_32(&zone->uz_sleepers, 1); 4142 old = atomic_fetchadd_64(&zone->uz_items, 4143 -(UZ_ITEMS_SLEEPER - count)); 4144 /* We're no longer a sleeper. */ 4145 old -= UZ_ITEMS_SLEEPER; 4146 4147 /* 4148 * If we're still at the limit, restart. Notably do not 4149 * block on other sleepers. Cache the max value to protect 4150 * against changes via sysctl. 4151 */ 4152 total = UZ_ITEMS_COUNT(old); 4153 max = zone->uz_max_items; 4154 if (total >= max) 4155 continue; 4156 /* Truncate if necessary, otherwise wake other sleepers. */ 4157 if (total + count > max) { 4158 zone_free_limit(zone, total + count - max); 4159 count = max - total; 4160 } else if (total + count < max && UZ_ITEMS_SLEEPERS(old) != 0) 4161 wakeup_one(&zone->uz_max_items); 4162 4163 return (count); 4164 } 4165 } 4166 4167 /* 4168 * Allocate 'count' items from our max_items limit. Returns the number 4169 * available. If M_NOWAIT is not specified it will sleep until at least 4170 * one item can be allocated. 4171 */ 4172 static int 4173 zone_alloc_limit(uma_zone_t zone, int count, int flags) 4174 { 4175 uint64_t old; 4176 uint64_t max; 4177 4178 max = zone->uz_max_items; 4179 MPASS(max > 0); 4180 4181 /* 4182 * We expect normal allocations to succeed with a simple 4183 * fetchadd. 4184 */ 4185 old = atomic_fetchadd_64(&zone->uz_items, count); 4186 if (__predict_true(old + count <= max)) 4187 return (count); 4188 4189 /* 4190 * If we had some items and no sleepers just return the 4191 * truncated value. We have to release the excess space 4192 * though because that may wake sleepers who weren't woken 4193 * because we were temporarily over the limit. 4194 */ 4195 if (old < max) { 4196 zone_free_limit(zone, (old + count) - max); 4197 return (max - old); 4198 } 4199 return (zone_alloc_limit_hard(zone, count, flags)); 4200 } 4201 4202 /* 4203 * Free a number of items back to the limit. 4204 */ 4205 static void 4206 zone_free_limit(uma_zone_t zone, int count) 4207 { 4208 uint64_t old; 4209 4210 MPASS(count > 0); 4211 4212 /* 4213 * In the common case we either have no sleepers or 4214 * are still over the limit and can just return. 4215 */ 4216 old = atomic_fetchadd_64(&zone->uz_items, -count); 4217 if (__predict_true(UZ_ITEMS_SLEEPERS(old) == 0 || 4218 UZ_ITEMS_COUNT(old) - count >= zone->uz_max_items)) 4219 return; 4220 4221 /* 4222 * Moderate the rate of wakeups. Sleepers will continue 4223 * to generate wakeups if necessary. 4224 */ 4225 wakeup_one(&zone->uz_max_items); 4226 } 4227 4228 static uma_bucket_t 4229 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags) 4230 { 4231 uma_bucket_t bucket; 4232 int error, maxbucket, cnt; 4233 4234 CTR3(KTR_UMA, "zone_alloc_bucket zone %s(%p) domain %d", zone->uz_name, 4235 zone, domain); 4236 4237 /* Avoid allocs targeting empty domains. */ 4238 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 4239 domain = UMA_ANYDOMAIN; 4240 else if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) 4241 domain = UMA_ANYDOMAIN; 4242 4243 if (zone->uz_max_items > 0) 4244 maxbucket = zone_alloc_limit(zone, zone->uz_bucket_size, 4245 M_NOWAIT); 4246 else 4247 maxbucket = zone->uz_bucket_size; 4248 if (maxbucket == 0) 4249 return (false); 4250 4251 /* Don't wait for buckets, preserve caller's NOVM setting. */ 4252 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 4253 if (bucket == NULL) { 4254 cnt = 0; 4255 goto out; 4256 } 4257 4258 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 4259 MIN(maxbucket, bucket->ub_entries), domain, flags); 4260 4261 /* 4262 * Initialize the memory if necessary. 4263 */ 4264 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 4265 int i; 4266 4267 for (i = 0; i < bucket->ub_cnt; i++) { 4268 kasan_mark_item_valid(zone, bucket->ub_bucket[i]); 4269 error = zone->uz_init(bucket->ub_bucket[i], 4270 zone->uz_size, flags); 4271 kasan_mark_item_invalid(zone, bucket->ub_bucket[i]); 4272 if (error != 0) 4273 break; 4274 } 4275 4276 /* 4277 * If we couldn't initialize the whole bucket, put the 4278 * rest back onto the freelist. 4279 */ 4280 if (i != bucket->ub_cnt) { 4281 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 4282 bucket->ub_cnt - i); 4283 #ifdef INVARIANTS 4284 bzero(&bucket->ub_bucket[i], 4285 sizeof(void *) * (bucket->ub_cnt - i)); 4286 #endif 4287 bucket->ub_cnt = i; 4288 } 4289 } 4290 4291 cnt = bucket->ub_cnt; 4292 if (bucket->ub_cnt == 0) { 4293 bucket_free(zone, bucket, udata); 4294 counter_u64_add(zone->uz_fails, 1); 4295 bucket = NULL; 4296 } 4297 out: 4298 if (zone->uz_max_items > 0 && cnt < maxbucket) 4299 zone_free_limit(zone, maxbucket - cnt); 4300 4301 return (bucket); 4302 } 4303 4304 /* 4305 * Allocates a single item from a zone. 4306 * 4307 * Arguments 4308 * zone The zone to alloc for. 4309 * udata The data to be passed to the constructor. 4310 * domain The domain to allocate from or UMA_ANYDOMAIN. 4311 * flags M_WAITOK, M_NOWAIT, M_ZERO. 4312 * 4313 * Returns 4314 * NULL if there is no memory and M_NOWAIT is set 4315 * An item if successful 4316 */ 4317 4318 static void * 4319 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 4320 { 4321 void *item; 4322 4323 if (zone->uz_max_items > 0 && zone_alloc_limit(zone, 1, flags) == 0) { 4324 counter_u64_add(zone->uz_fails, 1); 4325 return (NULL); 4326 } 4327 4328 /* Avoid allocs targeting empty domains. */ 4329 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 4330 domain = UMA_ANYDOMAIN; 4331 4332 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 4333 goto fail_cnt; 4334 4335 /* 4336 * We have to call both the zone's init (not the keg's init) 4337 * and the zone's ctor. This is because the item is going from 4338 * a keg slab directly to the user, and the user is expecting it 4339 * to be both zone-init'd as well as zone-ctor'd. 4340 */ 4341 if (zone->uz_init != NULL) { 4342 int error; 4343 4344 kasan_mark_item_valid(zone, item); 4345 error = zone->uz_init(item, zone->uz_size, flags); 4346 kasan_mark_item_invalid(zone, item); 4347 if (error != 0) { 4348 zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT); 4349 goto fail_cnt; 4350 } 4351 } 4352 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, flags, 4353 item); 4354 if (item == NULL) 4355 goto fail; 4356 4357 counter_u64_add(zone->uz_allocs, 1); 4358 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 4359 zone->uz_name, zone); 4360 4361 return (item); 4362 4363 fail_cnt: 4364 counter_u64_add(zone->uz_fails, 1); 4365 fail: 4366 if (zone->uz_max_items > 0) 4367 zone_free_limit(zone, 1); 4368 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 4369 zone->uz_name, zone); 4370 4371 return (NULL); 4372 } 4373 4374 /* See uma.h */ 4375 void 4376 uma_zfree_smr(uma_zone_t zone, void *item) 4377 { 4378 uma_cache_t cache; 4379 uma_cache_bucket_t bucket; 4380 int itemdomain, uz_flags; 4381 4382 #ifdef UMA_ZALLOC_DEBUG 4383 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 4384 ("uma_zfree_smr: called with non-SMR zone.")); 4385 KASSERT(item != NULL, ("uma_zfree_smr: Called with NULL pointer.")); 4386 SMR_ASSERT_NOT_ENTERED(zone->uz_smr); 4387 if (uma_zfree_debug(zone, item, NULL) == EJUSTRETURN) 4388 return; 4389 #endif 4390 cache = &zone->uz_cpu[curcpu]; 4391 uz_flags = cache_uz_flags(cache); 4392 itemdomain = 0; 4393 #ifdef NUMA 4394 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4395 itemdomain = item_domain(item); 4396 #endif 4397 critical_enter(); 4398 do { 4399 cache = &zone->uz_cpu[curcpu]; 4400 /* SMR Zones must free to the free bucket. */ 4401 bucket = &cache->uc_freebucket; 4402 #ifdef NUMA 4403 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4404 PCPU_GET(domain) != itemdomain) { 4405 bucket = &cache->uc_crossbucket; 4406 } 4407 #endif 4408 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 4409 cache_bucket_push(cache, bucket, item); 4410 critical_exit(); 4411 return; 4412 } 4413 } while (cache_free(zone, cache, NULL, itemdomain)); 4414 critical_exit(); 4415 4416 /* 4417 * If nothing else caught this, we'll just do an internal free. 4418 */ 4419 zone_free_item(zone, item, NULL, SKIP_NONE); 4420 } 4421 4422 /* See uma.h */ 4423 void 4424 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 4425 { 4426 uma_cache_t cache; 4427 uma_cache_bucket_t bucket; 4428 int itemdomain, uz_flags; 4429 4430 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 4431 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 4432 4433 CTR2(KTR_UMA, "uma_zfree_arg zone %s(%p)", zone->uz_name, zone); 4434 4435 #ifdef UMA_ZALLOC_DEBUG 4436 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 4437 ("uma_zfree_arg: called with SMR zone.")); 4438 if (uma_zfree_debug(zone, item, udata) == EJUSTRETURN) 4439 return; 4440 #endif 4441 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 4442 if (item == NULL) 4443 return; 4444 4445 /* 4446 * We are accessing the per-cpu cache without a critical section to 4447 * fetch size and flags. This is acceptable, if we are preempted we 4448 * will simply read another cpu's line. 4449 */ 4450 cache = &zone->uz_cpu[curcpu]; 4451 uz_flags = cache_uz_flags(cache); 4452 if (UMA_ALWAYS_CTORDTOR || 4453 __predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0)) 4454 item_dtor(zone, item, cache_uz_size(cache), udata, SKIP_NONE); 4455 4456 /* 4457 * The race here is acceptable. If we miss it we'll just have to wait 4458 * a little longer for the limits to be reset. 4459 */ 4460 if (__predict_false(uz_flags & UMA_ZFLAG_LIMIT)) { 4461 if (atomic_load_32(&zone->uz_sleepers) > 0) 4462 goto zfree_item; 4463 } 4464 4465 /* 4466 * If possible, free to the per-CPU cache. There are two 4467 * requirements for safe access to the per-CPU cache: (1) the thread 4468 * accessing the cache must not be preempted or yield during access, 4469 * and (2) the thread must not migrate CPUs without switching which 4470 * cache it accesses. We rely on a critical section to prevent 4471 * preemption and migration. We release the critical section in 4472 * order to acquire the zone mutex if we are unable to free to the 4473 * current cache; when we re-acquire the critical section, we must 4474 * detect and handle migration if it has occurred. 4475 */ 4476 itemdomain = 0; 4477 #ifdef NUMA 4478 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4479 itemdomain = item_domain(item); 4480 #endif 4481 critical_enter(); 4482 do { 4483 cache = &zone->uz_cpu[curcpu]; 4484 /* 4485 * Try to free into the allocbucket first to give LIFO 4486 * ordering for cache-hot datastructures. Spill over 4487 * into the freebucket if necessary. Alloc will swap 4488 * them if one runs dry. 4489 */ 4490 bucket = &cache->uc_allocbucket; 4491 #ifdef NUMA 4492 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4493 PCPU_GET(domain) != itemdomain) { 4494 bucket = &cache->uc_crossbucket; 4495 } else 4496 #endif 4497 if (bucket->ucb_cnt == bucket->ucb_entries && 4498 cache->uc_freebucket.ucb_cnt < 4499 cache->uc_freebucket.ucb_entries) 4500 cache_bucket_swap(&cache->uc_freebucket, 4501 &cache->uc_allocbucket); 4502 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 4503 cache_bucket_push(cache, bucket, item); 4504 critical_exit(); 4505 return; 4506 } 4507 } while (cache_free(zone, cache, udata, itemdomain)); 4508 critical_exit(); 4509 4510 /* 4511 * If nothing else caught this, we'll just do an internal free. 4512 */ 4513 zfree_item: 4514 zone_free_item(zone, item, udata, SKIP_DTOR); 4515 } 4516 4517 #ifdef NUMA 4518 /* 4519 * sort crossdomain free buckets to domain correct buckets and cache 4520 * them. 4521 */ 4522 static void 4523 zone_free_cross(uma_zone_t zone, uma_bucket_t bucket, void *udata) 4524 { 4525 struct uma_bucketlist emptybuckets, fullbuckets; 4526 uma_zone_domain_t zdom; 4527 uma_bucket_t b; 4528 smr_seq_t seq; 4529 void *item; 4530 int domain; 4531 4532 CTR3(KTR_UMA, 4533 "uma_zfree: zone %s(%p) draining cross bucket %p", 4534 zone->uz_name, zone, bucket); 4535 4536 /* 4537 * It is possible for buckets to arrive here out of order so we fetch 4538 * the current smr seq rather than accepting the bucket's. 4539 */ 4540 seq = SMR_SEQ_INVALID; 4541 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 4542 seq = smr_advance(zone->uz_smr); 4543 4544 /* 4545 * To avoid having ndomain * ndomain buckets for sorting we have a 4546 * lock on the current crossfree bucket. A full matrix with 4547 * per-domain locking could be used if necessary. 4548 */ 4549 STAILQ_INIT(&emptybuckets); 4550 STAILQ_INIT(&fullbuckets); 4551 ZONE_CROSS_LOCK(zone); 4552 for (; bucket->ub_cnt > 0; bucket->ub_cnt--) { 4553 item = bucket->ub_bucket[bucket->ub_cnt - 1]; 4554 domain = item_domain(item); 4555 zdom = ZDOM_GET(zone, domain); 4556 if (zdom->uzd_cross == NULL) { 4557 if ((b = STAILQ_FIRST(&emptybuckets)) != NULL) { 4558 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link); 4559 zdom->uzd_cross = b; 4560 } else { 4561 /* 4562 * Avoid allocating a bucket with the cross lock 4563 * held, since allocation can trigger a 4564 * cross-domain free and bucket zones may 4565 * allocate from each other. 4566 */ 4567 ZONE_CROSS_UNLOCK(zone); 4568 b = bucket_alloc(zone, udata, M_NOWAIT); 4569 if (b == NULL) 4570 goto out; 4571 ZONE_CROSS_LOCK(zone); 4572 if (zdom->uzd_cross != NULL) { 4573 STAILQ_INSERT_HEAD(&emptybuckets, b, 4574 ub_link); 4575 } else { 4576 zdom->uzd_cross = b; 4577 } 4578 } 4579 } 4580 b = zdom->uzd_cross; 4581 b->ub_bucket[b->ub_cnt++] = item; 4582 b->ub_seq = seq; 4583 if (b->ub_cnt == b->ub_entries) { 4584 STAILQ_INSERT_HEAD(&fullbuckets, b, ub_link); 4585 if ((b = STAILQ_FIRST(&emptybuckets)) != NULL) 4586 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link); 4587 zdom->uzd_cross = b; 4588 } 4589 } 4590 ZONE_CROSS_UNLOCK(zone); 4591 out: 4592 if (bucket->ub_cnt == 0) 4593 bucket->ub_seq = SMR_SEQ_INVALID; 4594 bucket_free(zone, bucket, udata); 4595 4596 while ((b = STAILQ_FIRST(&emptybuckets)) != NULL) { 4597 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link); 4598 bucket_free(zone, b, udata); 4599 } 4600 while ((b = STAILQ_FIRST(&fullbuckets)) != NULL) { 4601 STAILQ_REMOVE_HEAD(&fullbuckets, ub_link); 4602 domain = item_domain(b->ub_bucket[0]); 4603 zone_put_bucket(zone, domain, b, udata, true); 4604 } 4605 } 4606 #endif 4607 4608 static void 4609 zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 4610 int itemdomain, bool ws) 4611 { 4612 4613 #ifdef NUMA 4614 /* 4615 * Buckets coming from the wrong domain will be entirely for the 4616 * only other domain on two domain systems. In this case we can 4617 * simply cache them. Otherwise we need to sort them back to 4618 * correct domains. 4619 */ 4620 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4621 vm_ndomains > 2 && PCPU_GET(domain) != itemdomain) { 4622 zone_free_cross(zone, bucket, udata); 4623 return; 4624 } 4625 #endif 4626 4627 /* 4628 * Attempt to save the bucket in the zone's domain bucket cache. 4629 */ 4630 CTR3(KTR_UMA, 4631 "uma_zfree: zone %s(%p) putting bucket %p on free list", 4632 zone->uz_name, zone, bucket); 4633 /* ub_cnt is pointing to the last free item */ 4634 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) 4635 itemdomain = zone_domain_lowest(zone, itemdomain); 4636 zone_put_bucket(zone, itemdomain, bucket, udata, ws); 4637 } 4638 4639 /* 4640 * Populate a free or cross bucket for the current cpu cache. Free any 4641 * existing full bucket either to the zone cache or back to the slab layer. 4642 * 4643 * Enters and returns in a critical section. false return indicates that 4644 * we can not satisfy this free in the cache layer. true indicates that 4645 * the caller should retry. 4646 */ 4647 static __noinline bool 4648 cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, int itemdomain) 4649 { 4650 uma_cache_bucket_t cbucket; 4651 uma_bucket_t newbucket, bucket; 4652 4653 CRITICAL_ASSERT(curthread); 4654 4655 if (zone->uz_bucket_size == 0) 4656 return false; 4657 4658 cache = &zone->uz_cpu[curcpu]; 4659 newbucket = NULL; 4660 4661 /* 4662 * FIRSTTOUCH domains need to free to the correct zdom. When 4663 * enabled this is the zdom of the item. The bucket is the 4664 * cross bucket if the current domain and itemdomain do not match. 4665 */ 4666 cbucket = &cache->uc_freebucket; 4667 #ifdef NUMA 4668 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { 4669 if (PCPU_GET(domain) != itemdomain) { 4670 cbucket = &cache->uc_crossbucket; 4671 if (cbucket->ucb_cnt != 0) 4672 counter_u64_add(zone->uz_xdomain, 4673 cbucket->ucb_cnt); 4674 } 4675 } 4676 #endif 4677 bucket = cache_bucket_unload(cbucket); 4678 KASSERT(bucket == NULL || bucket->ub_cnt == bucket->ub_entries, 4679 ("cache_free: Entered with non-full free bucket.")); 4680 4681 /* We are no longer associated with this CPU. */ 4682 critical_exit(); 4683 4684 /* 4685 * Don't let SMR zones operate without a free bucket. Force 4686 * a synchronize and re-use this one. We will only degrade 4687 * to a synchronize every bucket_size items rather than every 4688 * item if we fail to allocate a bucket. 4689 */ 4690 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) { 4691 if (bucket != NULL) 4692 bucket->ub_seq = smr_advance(zone->uz_smr); 4693 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4694 if (newbucket == NULL && bucket != NULL) { 4695 bucket_drain(zone, bucket); 4696 newbucket = bucket; 4697 bucket = NULL; 4698 } 4699 } else if (!bucketdisable) 4700 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4701 4702 if (bucket != NULL) 4703 zone_free_bucket(zone, bucket, udata, itemdomain, true); 4704 4705 critical_enter(); 4706 if ((bucket = newbucket) == NULL) 4707 return (false); 4708 cache = &zone->uz_cpu[curcpu]; 4709 #ifdef NUMA 4710 /* 4711 * Check to see if we should be populating the cross bucket. If it 4712 * is already populated we will fall through and attempt to populate 4713 * the free bucket. 4714 */ 4715 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { 4716 if (PCPU_GET(domain) != itemdomain && 4717 cache->uc_crossbucket.ucb_bucket == NULL) { 4718 cache_bucket_load_cross(cache, bucket); 4719 return (true); 4720 } 4721 } 4722 #endif 4723 /* 4724 * We may have lost the race to fill the bucket or switched CPUs. 4725 */ 4726 if (cache->uc_freebucket.ucb_bucket != NULL) { 4727 critical_exit(); 4728 bucket_free(zone, bucket, udata); 4729 critical_enter(); 4730 } else 4731 cache_bucket_load_free(cache, bucket); 4732 4733 return (true); 4734 } 4735 4736 static void 4737 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item) 4738 { 4739 uma_keg_t keg; 4740 uma_domain_t dom; 4741 int freei; 4742 4743 keg = zone->uz_keg; 4744 KEG_LOCK_ASSERT(keg, slab->us_domain); 4745 4746 /* Do we need to remove from any lists? */ 4747 dom = &keg->uk_domain[slab->us_domain]; 4748 if (slab->us_freecount + 1 == keg->uk_ipers) { 4749 LIST_REMOVE(slab, us_link); 4750 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 4751 dom->ud_free_slabs++; 4752 } else if (slab->us_freecount == 0) { 4753 LIST_REMOVE(slab, us_link); 4754 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 4755 } 4756 4757 /* Slab management. */ 4758 freei = slab_item_index(slab, keg, item); 4759 BIT_SET(keg->uk_ipers, freei, &slab->us_free); 4760 slab->us_freecount++; 4761 4762 /* Keg statistics. */ 4763 dom->ud_free_items++; 4764 } 4765 4766 static void 4767 zone_release(void *arg, void **bucket, int cnt) 4768 { 4769 struct mtx *lock; 4770 uma_zone_t zone; 4771 uma_slab_t slab; 4772 uma_keg_t keg; 4773 uint8_t *mem; 4774 void *item; 4775 int i; 4776 4777 zone = arg; 4778 keg = zone->uz_keg; 4779 lock = NULL; 4780 if (__predict_false((zone->uz_flags & UMA_ZFLAG_HASH) != 0)) 4781 lock = KEG_LOCK(keg, 0); 4782 for (i = 0; i < cnt; i++) { 4783 item = bucket[i]; 4784 if (__predict_true((zone->uz_flags & UMA_ZFLAG_VTOSLAB) != 0)) { 4785 slab = vtoslab((vm_offset_t)item); 4786 } else { 4787 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 4788 if ((zone->uz_flags & UMA_ZFLAG_HASH) != 0) 4789 slab = hash_sfind(&keg->uk_hash, mem); 4790 else 4791 slab = (uma_slab_t)(mem + keg->uk_pgoff); 4792 } 4793 if (lock != KEG_LOCKPTR(keg, slab->us_domain)) { 4794 if (lock != NULL) 4795 mtx_unlock(lock); 4796 lock = KEG_LOCK(keg, slab->us_domain); 4797 } 4798 slab_free_item(zone, slab, item); 4799 } 4800 if (lock != NULL) 4801 mtx_unlock(lock); 4802 } 4803 4804 /* 4805 * Frees a single item to any zone. 4806 * 4807 * Arguments: 4808 * zone The zone to free to 4809 * item The item we're freeing 4810 * udata User supplied data for the dtor 4811 * skip Skip dtors and finis 4812 */ 4813 static __noinline void 4814 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 4815 { 4816 4817 /* 4818 * If a free is sent directly to an SMR zone we have to 4819 * synchronize immediately because the item can instantly 4820 * be reallocated. This should only happen in degenerate 4821 * cases when no memory is available for per-cpu caches. 4822 */ 4823 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && skip == SKIP_NONE) 4824 smr_synchronize(zone->uz_smr); 4825 4826 item_dtor(zone, item, zone->uz_size, udata, skip); 4827 4828 if (skip < SKIP_FINI && zone->uz_fini) { 4829 kasan_mark_item_valid(zone, item); 4830 zone->uz_fini(item, zone->uz_size); 4831 kasan_mark_item_invalid(zone, item); 4832 } 4833 4834 zone->uz_release(zone->uz_arg, &item, 1); 4835 4836 if (skip & SKIP_CNT) 4837 return; 4838 4839 counter_u64_add(zone->uz_frees, 1); 4840 4841 if (zone->uz_max_items > 0) 4842 zone_free_limit(zone, 1); 4843 } 4844 4845 /* See uma.h */ 4846 int 4847 uma_zone_set_max(uma_zone_t zone, int nitems) 4848 { 4849 4850 /* 4851 * If the limit is small, we may need to constrain the maximum per-CPU 4852 * cache size, or disable caching entirely. 4853 */ 4854 uma_zone_set_maxcache(zone, nitems); 4855 4856 /* 4857 * XXX This can misbehave if the zone has any allocations with 4858 * no limit and a limit is imposed. There is currently no 4859 * way to clear a limit. 4860 */ 4861 ZONE_LOCK(zone); 4862 zone->uz_max_items = nitems; 4863 zone->uz_flags |= UMA_ZFLAG_LIMIT; 4864 zone_update_caches(zone); 4865 /* We may need to wake waiters. */ 4866 wakeup(&zone->uz_max_items); 4867 ZONE_UNLOCK(zone); 4868 4869 return (nitems); 4870 } 4871 4872 /* See uma.h */ 4873 void 4874 uma_zone_set_maxcache(uma_zone_t zone, int nitems) 4875 { 4876 int bpcpu, bpdom, bsize, nb; 4877 4878 ZONE_LOCK(zone); 4879 4880 /* 4881 * Compute a lower bound on the number of items that may be cached in 4882 * the zone. Each CPU gets at least two buckets, and for cross-domain 4883 * frees we use an additional bucket per CPU and per domain. Select the 4884 * largest bucket size that does not exceed half of the requested limit, 4885 * with the left over space given to the full bucket cache. 4886 */ 4887 bpdom = 0; 4888 bpcpu = 2; 4889 #ifdef NUMA 4890 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && vm_ndomains > 1) { 4891 bpcpu++; 4892 bpdom++; 4893 } 4894 #endif 4895 nb = bpcpu * mp_ncpus + bpdom * vm_ndomains; 4896 bsize = nitems / nb / 2; 4897 if (bsize > BUCKET_MAX) 4898 bsize = BUCKET_MAX; 4899 else if (bsize == 0 && nitems / nb > 0) 4900 bsize = 1; 4901 zone->uz_bucket_size_max = zone->uz_bucket_size = bsize; 4902 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 4903 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 4904 zone->uz_bucket_max = nitems - nb * bsize; 4905 ZONE_UNLOCK(zone); 4906 } 4907 4908 /* See uma.h */ 4909 int 4910 uma_zone_get_max(uma_zone_t zone) 4911 { 4912 int nitems; 4913 4914 nitems = atomic_load_64(&zone->uz_max_items); 4915 4916 return (nitems); 4917 } 4918 4919 /* See uma.h */ 4920 void 4921 uma_zone_set_warning(uma_zone_t zone, const char *warning) 4922 { 4923 4924 ZONE_ASSERT_COLD(zone); 4925 zone->uz_warning = warning; 4926 } 4927 4928 /* See uma.h */ 4929 void 4930 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 4931 { 4932 4933 ZONE_ASSERT_COLD(zone); 4934 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 4935 } 4936 4937 /* See uma.h */ 4938 int 4939 uma_zone_get_cur(uma_zone_t zone) 4940 { 4941 int64_t nitems; 4942 u_int i; 4943 4944 nitems = 0; 4945 if (zone->uz_allocs != EARLY_COUNTER && zone->uz_frees != EARLY_COUNTER) 4946 nitems = counter_u64_fetch(zone->uz_allocs) - 4947 counter_u64_fetch(zone->uz_frees); 4948 CPU_FOREACH(i) 4949 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs) - 4950 atomic_load_64(&zone->uz_cpu[i].uc_frees); 4951 4952 return (nitems < 0 ? 0 : nitems); 4953 } 4954 4955 static uint64_t 4956 uma_zone_get_allocs(uma_zone_t zone) 4957 { 4958 uint64_t nitems; 4959 u_int i; 4960 4961 nitems = 0; 4962 if (zone->uz_allocs != EARLY_COUNTER) 4963 nitems = counter_u64_fetch(zone->uz_allocs); 4964 CPU_FOREACH(i) 4965 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs); 4966 4967 return (nitems); 4968 } 4969 4970 static uint64_t 4971 uma_zone_get_frees(uma_zone_t zone) 4972 { 4973 uint64_t nitems; 4974 u_int i; 4975 4976 nitems = 0; 4977 if (zone->uz_frees != EARLY_COUNTER) 4978 nitems = counter_u64_fetch(zone->uz_frees); 4979 CPU_FOREACH(i) 4980 nitems += atomic_load_64(&zone->uz_cpu[i].uc_frees); 4981 4982 return (nitems); 4983 } 4984 4985 #ifdef INVARIANTS 4986 /* Used only for KEG_ASSERT_COLD(). */ 4987 static uint64_t 4988 uma_keg_get_allocs(uma_keg_t keg) 4989 { 4990 uma_zone_t z; 4991 uint64_t nitems; 4992 4993 nitems = 0; 4994 LIST_FOREACH(z, &keg->uk_zones, uz_link) 4995 nitems += uma_zone_get_allocs(z); 4996 4997 return (nitems); 4998 } 4999 #endif 5000 5001 /* See uma.h */ 5002 void 5003 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 5004 { 5005 uma_keg_t keg; 5006 5007 KEG_GET(zone, keg); 5008 KEG_ASSERT_COLD(keg); 5009 keg->uk_init = uminit; 5010 } 5011 5012 /* See uma.h */ 5013 void 5014 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 5015 { 5016 uma_keg_t keg; 5017 5018 KEG_GET(zone, keg); 5019 KEG_ASSERT_COLD(keg); 5020 keg->uk_fini = fini; 5021 } 5022 5023 /* See uma.h */ 5024 void 5025 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 5026 { 5027 5028 ZONE_ASSERT_COLD(zone); 5029 zone->uz_init = zinit; 5030 } 5031 5032 /* See uma.h */ 5033 void 5034 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 5035 { 5036 5037 ZONE_ASSERT_COLD(zone); 5038 zone->uz_fini = zfini; 5039 } 5040 5041 /* See uma.h */ 5042 void 5043 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 5044 { 5045 uma_keg_t keg; 5046 5047 KEG_GET(zone, keg); 5048 KEG_ASSERT_COLD(keg); 5049 keg->uk_freef = freef; 5050 } 5051 5052 /* See uma.h */ 5053 void 5054 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 5055 { 5056 uma_keg_t keg; 5057 5058 KEG_GET(zone, keg); 5059 KEG_ASSERT_COLD(keg); 5060 keg->uk_allocf = allocf; 5061 } 5062 5063 /* See uma.h */ 5064 void 5065 uma_zone_set_smr(uma_zone_t zone, smr_t smr) 5066 { 5067 5068 ZONE_ASSERT_COLD(zone); 5069 5070 KASSERT(smr != NULL, ("Got NULL smr")); 5071 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 5072 ("zone %p (%s) already uses SMR", zone, zone->uz_name)); 5073 zone->uz_flags |= UMA_ZONE_SMR; 5074 zone->uz_smr = smr; 5075 zone_update_caches(zone); 5076 } 5077 5078 smr_t 5079 uma_zone_get_smr(uma_zone_t zone) 5080 { 5081 5082 return (zone->uz_smr); 5083 } 5084 5085 /* See uma.h */ 5086 void 5087 uma_zone_reserve(uma_zone_t zone, int items) 5088 { 5089 uma_keg_t keg; 5090 5091 KEG_GET(zone, keg); 5092 KEG_ASSERT_COLD(keg); 5093 keg->uk_reserve = items; 5094 } 5095 5096 /* See uma.h */ 5097 int 5098 uma_zone_reserve_kva(uma_zone_t zone, int count) 5099 { 5100 uma_keg_t keg; 5101 vm_offset_t kva; 5102 u_int pages; 5103 5104 KEG_GET(zone, keg); 5105 KEG_ASSERT_COLD(keg); 5106 ZONE_ASSERT_COLD(zone); 5107 5108 pages = howmany(count, keg->uk_ipers) * keg->uk_ppera; 5109 5110 #ifdef UMA_MD_SMALL_ALLOC 5111 if (keg->uk_ppera > 1) { 5112 #else 5113 if (1) { 5114 #endif 5115 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 5116 if (kva == 0) 5117 return (0); 5118 } else 5119 kva = 0; 5120 5121 MPASS(keg->uk_kva == 0); 5122 keg->uk_kva = kva; 5123 keg->uk_offset = 0; 5124 zone->uz_max_items = pages * keg->uk_ipers; 5125 #ifdef UMA_MD_SMALL_ALLOC 5126 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 5127 #else 5128 keg->uk_allocf = noobj_alloc; 5129 #endif 5130 keg->uk_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 5131 zone->uz_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 5132 zone_update_caches(zone); 5133 5134 return (1); 5135 } 5136 5137 /* See uma.h */ 5138 void 5139 uma_prealloc(uma_zone_t zone, int items) 5140 { 5141 struct vm_domainset_iter di; 5142 uma_domain_t dom; 5143 uma_slab_t slab; 5144 uma_keg_t keg; 5145 int aflags, domain, slabs; 5146 5147 KEG_GET(zone, keg); 5148 slabs = howmany(items, keg->uk_ipers); 5149 while (slabs-- > 0) { 5150 aflags = M_NOWAIT; 5151 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 5152 &aflags); 5153 for (;;) { 5154 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK, 5155 aflags); 5156 if (slab != NULL) { 5157 dom = &keg->uk_domain[slab->us_domain]; 5158 /* 5159 * keg_alloc_slab() always returns a slab on the 5160 * partial list. 5161 */ 5162 LIST_REMOVE(slab, us_link); 5163 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, 5164 us_link); 5165 dom->ud_free_slabs++; 5166 KEG_UNLOCK(keg, slab->us_domain); 5167 break; 5168 } 5169 if (vm_domainset_iter_policy(&di, &domain) != 0) 5170 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0); 5171 } 5172 } 5173 } 5174 5175 /* 5176 * Returns a snapshot of memory consumption in bytes. 5177 */ 5178 size_t 5179 uma_zone_memory(uma_zone_t zone) 5180 { 5181 size_t sz; 5182 int i; 5183 5184 sz = 0; 5185 if (zone->uz_flags & UMA_ZFLAG_CACHE) { 5186 for (i = 0; i < vm_ndomains; i++) 5187 sz += ZDOM_GET(zone, i)->uzd_nitems; 5188 return (sz * zone->uz_size); 5189 } 5190 for (i = 0; i < vm_ndomains; i++) 5191 sz += zone->uz_keg->uk_domain[i].ud_pages; 5192 5193 return (sz * PAGE_SIZE); 5194 } 5195 5196 /* See uma.h */ 5197 void 5198 uma_reclaim(int req) 5199 { 5200 uma_reclaim_domain(req, UMA_ANYDOMAIN); 5201 } 5202 5203 void 5204 uma_reclaim_domain(int req, int domain) 5205 { 5206 void *arg; 5207 5208 bucket_enable(); 5209 5210 arg = (void *)(uintptr_t)domain; 5211 sx_slock(&uma_reclaim_lock); 5212 switch (req) { 5213 case UMA_RECLAIM_TRIM: 5214 zone_foreach(zone_trim, arg); 5215 break; 5216 case UMA_RECLAIM_DRAIN: 5217 zone_foreach(zone_drain, arg); 5218 break; 5219 case UMA_RECLAIM_DRAIN_CPU: 5220 zone_foreach(zone_drain, arg); 5221 pcpu_cache_drain_safe(NULL); 5222 zone_foreach(zone_drain, arg); 5223 break; 5224 default: 5225 panic("unhandled reclamation request %d", req); 5226 } 5227 5228 /* 5229 * Some slabs may have been freed but this zone will be visited early 5230 * we visit again so that we can free pages that are empty once other 5231 * zones are drained. We have to do the same for buckets. 5232 */ 5233 zone_drain(slabzones[0], arg); 5234 zone_drain(slabzones[1], arg); 5235 bucket_zone_drain(domain); 5236 sx_sunlock(&uma_reclaim_lock); 5237 } 5238 5239 static volatile int uma_reclaim_needed; 5240 5241 void 5242 uma_reclaim_wakeup(void) 5243 { 5244 5245 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 5246 wakeup(uma_reclaim); 5247 } 5248 5249 void 5250 uma_reclaim_worker(void *arg __unused) 5251 { 5252 5253 for (;;) { 5254 sx_xlock(&uma_reclaim_lock); 5255 while (atomic_load_int(&uma_reclaim_needed) == 0) 5256 sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl", 5257 hz); 5258 sx_xunlock(&uma_reclaim_lock); 5259 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 5260 uma_reclaim(UMA_RECLAIM_DRAIN_CPU); 5261 atomic_store_int(&uma_reclaim_needed, 0); 5262 /* Don't fire more than once per-second. */ 5263 pause("umarclslp", hz); 5264 } 5265 } 5266 5267 /* See uma.h */ 5268 void 5269 uma_zone_reclaim(uma_zone_t zone, int req) 5270 { 5271 uma_zone_reclaim_domain(zone, req, UMA_ANYDOMAIN); 5272 } 5273 5274 void 5275 uma_zone_reclaim_domain(uma_zone_t zone, int req, int domain) 5276 { 5277 void *arg; 5278 5279 arg = (void *)(uintptr_t)domain; 5280 switch (req) { 5281 case UMA_RECLAIM_TRIM: 5282 zone_trim(zone, arg); 5283 break; 5284 case UMA_RECLAIM_DRAIN: 5285 zone_drain(zone, arg); 5286 break; 5287 case UMA_RECLAIM_DRAIN_CPU: 5288 pcpu_cache_drain_safe(zone); 5289 zone_drain(zone, arg); 5290 break; 5291 default: 5292 panic("unhandled reclamation request %d", req); 5293 } 5294 } 5295 5296 /* See uma.h */ 5297 int 5298 uma_zone_exhausted(uma_zone_t zone) 5299 { 5300 5301 return (atomic_load_32(&zone->uz_sleepers) > 0); 5302 } 5303 5304 unsigned long 5305 uma_limit(void) 5306 { 5307 5308 return (uma_kmem_limit); 5309 } 5310 5311 void 5312 uma_set_limit(unsigned long limit) 5313 { 5314 5315 uma_kmem_limit = limit; 5316 } 5317 5318 unsigned long 5319 uma_size(void) 5320 { 5321 5322 return (atomic_load_long(&uma_kmem_total)); 5323 } 5324 5325 long 5326 uma_avail(void) 5327 { 5328 5329 return (uma_kmem_limit - uma_size()); 5330 } 5331 5332 #ifdef DDB 5333 /* 5334 * Generate statistics across both the zone and its per-cpu cache's. Return 5335 * desired statistics if the pointer is non-NULL for that statistic. 5336 * 5337 * Note: does not update the zone statistics, as it can't safely clear the 5338 * per-CPU cache statistic. 5339 * 5340 */ 5341 static void 5342 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp, 5343 uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp) 5344 { 5345 uma_cache_t cache; 5346 uint64_t allocs, frees, sleeps, xdomain; 5347 int cachefree, cpu; 5348 5349 allocs = frees = sleeps = xdomain = 0; 5350 cachefree = 0; 5351 CPU_FOREACH(cpu) { 5352 cache = &z->uz_cpu[cpu]; 5353 cachefree += cache->uc_allocbucket.ucb_cnt; 5354 cachefree += cache->uc_freebucket.ucb_cnt; 5355 xdomain += cache->uc_crossbucket.ucb_cnt; 5356 cachefree += cache->uc_crossbucket.ucb_cnt; 5357 allocs += cache->uc_allocs; 5358 frees += cache->uc_frees; 5359 } 5360 allocs += counter_u64_fetch(z->uz_allocs); 5361 frees += counter_u64_fetch(z->uz_frees); 5362 xdomain += counter_u64_fetch(z->uz_xdomain); 5363 sleeps += z->uz_sleeps; 5364 if (cachefreep != NULL) 5365 *cachefreep = cachefree; 5366 if (allocsp != NULL) 5367 *allocsp = allocs; 5368 if (freesp != NULL) 5369 *freesp = frees; 5370 if (sleepsp != NULL) 5371 *sleepsp = sleeps; 5372 if (xdomainp != NULL) 5373 *xdomainp = xdomain; 5374 } 5375 #endif /* DDB */ 5376 5377 static int 5378 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 5379 { 5380 uma_keg_t kz; 5381 uma_zone_t z; 5382 int count; 5383 5384 count = 0; 5385 rw_rlock(&uma_rwlock); 5386 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5387 LIST_FOREACH(z, &kz->uk_zones, uz_link) 5388 count++; 5389 } 5390 LIST_FOREACH(z, &uma_cachezones, uz_link) 5391 count++; 5392 5393 rw_runlock(&uma_rwlock); 5394 return (sysctl_handle_int(oidp, &count, 0, req)); 5395 } 5396 5397 static void 5398 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf, 5399 struct uma_percpu_stat *ups, bool internal) 5400 { 5401 uma_zone_domain_t zdom; 5402 uma_cache_t cache; 5403 int i; 5404 5405 for (i = 0; i < vm_ndomains; i++) { 5406 zdom = ZDOM_GET(z, i); 5407 uth->uth_zone_free += zdom->uzd_nitems; 5408 } 5409 uth->uth_allocs = counter_u64_fetch(z->uz_allocs); 5410 uth->uth_frees = counter_u64_fetch(z->uz_frees); 5411 uth->uth_fails = counter_u64_fetch(z->uz_fails); 5412 uth->uth_xdomain = counter_u64_fetch(z->uz_xdomain); 5413 uth->uth_sleeps = z->uz_sleeps; 5414 5415 for (i = 0; i < mp_maxid + 1; i++) { 5416 bzero(&ups[i], sizeof(*ups)); 5417 if (internal || CPU_ABSENT(i)) 5418 continue; 5419 cache = &z->uz_cpu[i]; 5420 ups[i].ups_cache_free += cache->uc_allocbucket.ucb_cnt; 5421 ups[i].ups_cache_free += cache->uc_freebucket.ucb_cnt; 5422 ups[i].ups_cache_free += cache->uc_crossbucket.ucb_cnt; 5423 ups[i].ups_allocs = cache->uc_allocs; 5424 ups[i].ups_frees = cache->uc_frees; 5425 } 5426 } 5427 5428 static int 5429 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 5430 { 5431 struct uma_stream_header ush; 5432 struct uma_type_header uth; 5433 struct uma_percpu_stat *ups; 5434 struct sbuf sbuf; 5435 uma_keg_t kz; 5436 uma_zone_t z; 5437 uint64_t items; 5438 uint32_t kfree, pages; 5439 int count, error, i; 5440 5441 error = sysctl_wire_old_buffer(req, 0); 5442 if (error != 0) 5443 return (error); 5444 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 5445 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 5446 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 5447 5448 count = 0; 5449 rw_rlock(&uma_rwlock); 5450 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5451 LIST_FOREACH(z, &kz->uk_zones, uz_link) 5452 count++; 5453 } 5454 5455 LIST_FOREACH(z, &uma_cachezones, uz_link) 5456 count++; 5457 5458 /* 5459 * Insert stream header. 5460 */ 5461 bzero(&ush, sizeof(ush)); 5462 ush.ush_version = UMA_STREAM_VERSION; 5463 ush.ush_maxcpus = (mp_maxid + 1); 5464 ush.ush_count = count; 5465 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 5466 5467 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5468 kfree = pages = 0; 5469 for (i = 0; i < vm_ndomains; i++) { 5470 kfree += kz->uk_domain[i].ud_free_items; 5471 pages += kz->uk_domain[i].ud_pages; 5472 } 5473 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5474 bzero(&uth, sizeof(uth)); 5475 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 5476 uth.uth_align = kz->uk_align; 5477 uth.uth_size = kz->uk_size; 5478 uth.uth_rsize = kz->uk_rsize; 5479 if (z->uz_max_items > 0) { 5480 items = UZ_ITEMS_COUNT(z->uz_items); 5481 uth.uth_pages = (items / kz->uk_ipers) * 5482 kz->uk_ppera; 5483 } else 5484 uth.uth_pages = pages; 5485 uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) * 5486 kz->uk_ppera; 5487 uth.uth_limit = z->uz_max_items; 5488 uth.uth_keg_free = kfree; 5489 5490 /* 5491 * A zone is secondary is it is not the first entry 5492 * on the keg's zone list. 5493 */ 5494 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 5495 (LIST_FIRST(&kz->uk_zones) != z)) 5496 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 5497 uma_vm_zone_stats(&uth, z, &sbuf, ups, 5498 kz->uk_flags & UMA_ZFLAG_INTERNAL); 5499 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 5500 for (i = 0; i < mp_maxid + 1; i++) 5501 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 5502 } 5503 } 5504 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5505 bzero(&uth, sizeof(uth)); 5506 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 5507 uth.uth_size = z->uz_size; 5508 uma_vm_zone_stats(&uth, z, &sbuf, ups, false); 5509 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 5510 for (i = 0; i < mp_maxid + 1; i++) 5511 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 5512 } 5513 5514 rw_runlock(&uma_rwlock); 5515 error = sbuf_finish(&sbuf); 5516 sbuf_delete(&sbuf); 5517 free(ups, M_TEMP); 5518 return (error); 5519 } 5520 5521 int 5522 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 5523 { 5524 uma_zone_t zone = *(uma_zone_t *)arg1; 5525 int error, max; 5526 5527 max = uma_zone_get_max(zone); 5528 error = sysctl_handle_int(oidp, &max, 0, req); 5529 if (error || !req->newptr) 5530 return (error); 5531 5532 uma_zone_set_max(zone, max); 5533 5534 return (0); 5535 } 5536 5537 int 5538 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 5539 { 5540 uma_zone_t zone; 5541 int cur; 5542 5543 /* 5544 * Some callers want to add sysctls for global zones that 5545 * may not yet exist so they pass a pointer to a pointer. 5546 */ 5547 if (arg2 == 0) 5548 zone = *(uma_zone_t *)arg1; 5549 else 5550 zone = arg1; 5551 cur = uma_zone_get_cur(zone); 5552 return (sysctl_handle_int(oidp, &cur, 0, req)); 5553 } 5554 5555 static int 5556 sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS) 5557 { 5558 uma_zone_t zone = arg1; 5559 uint64_t cur; 5560 5561 cur = uma_zone_get_allocs(zone); 5562 return (sysctl_handle_64(oidp, &cur, 0, req)); 5563 } 5564 5565 static int 5566 sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS) 5567 { 5568 uma_zone_t zone = arg1; 5569 uint64_t cur; 5570 5571 cur = uma_zone_get_frees(zone); 5572 return (sysctl_handle_64(oidp, &cur, 0, req)); 5573 } 5574 5575 static int 5576 sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS) 5577 { 5578 struct sbuf sbuf; 5579 uma_zone_t zone = arg1; 5580 int error; 5581 5582 sbuf_new_for_sysctl(&sbuf, NULL, 0, req); 5583 if (zone->uz_flags != 0) 5584 sbuf_printf(&sbuf, "0x%b", zone->uz_flags, PRINT_UMA_ZFLAGS); 5585 else 5586 sbuf_printf(&sbuf, "0"); 5587 error = sbuf_finish(&sbuf); 5588 sbuf_delete(&sbuf); 5589 5590 return (error); 5591 } 5592 5593 static int 5594 sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS) 5595 { 5596 uma_keg_t keg = arg1; 5597 int avail, effpct, total; 5598 5599 total = keg->uk_ppera * PAGE_SIZE; 5600 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0) 5601 total += slabzone(keg->uk_ipers)->uz_keg->uk_rsize; 5602 /* 5603 * We consider the client's requested size and alignment here, not the 5604 * real size determination uk_rsize, because we also adjust the real 5605 * size for internal implementation reasons (max bitset size). 5606 */ 5607 avail = keg->uk_ipers * roundup2(keg->uk_size, keg->uk_align + 1); 5608 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 5609 avail *= mp_maxid + 1; 5610 effpct = 100 * avail / total; 5611 return (sysctl_handle_int(oidp, &effpct, 0, req)); 5612 } 5613 5614 static int 5615 sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS) 5616 { 5617 uma_zone_t zone = arg1; 5618 uint64_t cur; 5619 5620 cur = UZ_ITEMS_COUNT(atomic_load_64(&zone->uz_items)); 5621 return (sysctl_handle_64(oidp, &cur, 0, req)); 5622 } 5623 5624 #ifdef INVARIANTS 5625 static uma_slab_t 5626 uma_dbg_getslab(uma_zone_t zone, void *item) 5627 { 5628 uma_slab_t slab; 5629 uma_keg_t keg; 5630 uint8_t *mem; 5631 5632 /* 5633 * It is safe to return the slab here even though the 5634 * zone is unlocked because the item's allocation state 5635 * essentially holds a reference. 5636 */ 5637 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 5638 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5639 return (NULL); 5640 if (zone->uz_flags & UMA_ZFLAG_VTOSLAB) 5641 return (vtoslab((vm_offset_t)mem)); 5642 keg = zone->uz_keg; 5643 if ((keg->uk_flags & UMA_ZFLAG_HASH) == 0) 5644 return ((uma_slab_t)(mem + keg->uk_pgoff)); 5645 KEG_LOCK(keg, 0); 5646 slab = hash_sfind(&keg->uk_hash, mem); 5647 KEG_UNLOCK(keg, 0); 5648 5649 return (slab); 5650 } 5651 5652 static bool 5653 uma_dbg_zskip(uma_zone_t zone, void *mem) 5654 { 5655 5656 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5657 return (true); 5658 5659 return (uma_dbg_kskip(zone->uz_keg, mem)); 5660 } 5661 5662 static bool 5663 uma_dbg_kskip(uma_keg_t keg, void *mem) 5664 { 5665 uintptr_t idx; 5666 5667 if (dbg_divisor == 0) 5668 return (true); 5669 5670 if (dbg_divisor == 1) 5671 return (false); 5672 5673 idx = (uintptr_t)mem >> PAGE_SHIFT; 5674 if (keg->uk_ipers > 1) { 5675 idx *= keg->uk_ipers; 5676 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize; 5677 } 5678 5679 if ((idx / dbg_divisor) * dbg_divisor != idx) { 5680 counter_u64_add(uma_skip_cnt, 1); 5681 return (true); 5682 } 5683 counter_u64_add(uma_dbg_cnt, 1); 5684 5685 return (false); 5686 } 5687 5688 /* 5689 * Set up the slab's freei data such that uma_dbg_free can function. 5690 * 5691 */ 5692 static void 5693 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 5694 { 5695 uma_keg_t keg; 5696 int freei; 5697 5698 if (slab == NULL) { 5699 slab = uma_dbg_getslab(zone, item); 5700 if (slab == NULL) 5701 panic("uma: item %p did not belong to zone %s", 5702 item, zone->uz_name); 5703 } 5704 keg = zone->uz_keg; 5705 freei = slab_item_index(slab, keg, item); 5706 5707 if (BIT_TEST_SET_ATOMIC(keg->uk_ipers, freei, 5708 slab_dbg_bits(slab, keg))) 5709 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)", 5710 item, zone, zone->uz_name, slab, freei); 5711 } 5712 5713 /* 5714 * Verifies freed addresses. Checks for alignment, valid slab membership 5715 * and duplicate frees. 5716 * 5717 */ 5718 static void 5719 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 5720 { 5721 uma_keg_t keg; 5722 int freei; 5723 5724 if (slab == NULL) { 5725 slab = uma_dbg_getslab(zone, item); 5726 if (slab == NULL) 5727 panic("uma: Freed item %p did not belong to zone %s", 5728 item, zone->uz_name); 5729 } 5730 keg = zone->uz_keg; 5731 freei = slab_item_index(slab, keg, item); 5732 5733 if (freei >= keg->uk_ipers) 5734 panic("Invalid free of %p from zone %p(%s) slab %p(%d)", 5735 item, zone, zone->uz_name, slab, freei); 5736 5737 if (slab_item(slab, keg, freei) != item) 5738 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)", 5739 item, zone, zone->uz_name, slab, freei); 5740 5741 if (!BIT_TEST_CLR_ATOMIC(keg->uk_ipers, freei, 5742 slab_dbg_bits(slab, keg))) 5743 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)", 5744 item, zone, zone->uz_name, slab, freei); 5745 } 5746 #endif /* INVARIANTS */ 5747 5748 #ifdef DDB 5749 static int64_t 5750 get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used, 5751 uint64_t *sleeps, long *cachefree, uint64_t *xdomain) 5752 { 5753 uint64_t frees; 5754 int i; 5755 5756 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 5757 *allocs = counter_u64_fetch(z->uz_allocs); 5758 frees = counter_u64_fetch(z->uz_frees); 5759 *sleeps = z->uz_sleeps; 5760 *cachefree = 0; 5761 *xdomain = 0; 5762 } else 5763 uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps, 5764 xdomain); 5765 for (i = 0; i < vm_ndomains; i++) { 5766 *cachefree += ZDOM_GET(z, i)->uzd_nitems; 5767 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 5768 (LIST_FIRST(&kz->uk_zones) != z))) 5769 *cachefree += kz->uk_domain[i].ud_free_items; 5770 } 5771 *used = *allocs - frees; 5772 return (((int64_t)*used + *cachefree) * kz->uk_size); 5773 } 5774 5775 DB_SHOW_COMMAND(uma, db_show_uma) 5776 { 5777 const char *fmt_hdr, *fmt_entry; 5778 uma_keg_t kz; 5779 uma_zone_t z; 5780 uint64_t allocs, used, sleeps, xdomain; 5781 long cachefree; 5782 /* variables for sorting */ 5783 uma_keg_t cur_keg; 5784 uma_zone_t cur_zone, last_zone; 5785 int64_t cur_size, last_size, size; 5786 int ties; 5787 5788 /* /i option produces machine-parseable CSV output */ 5789 if (modif[0] == 'i') { 5790 fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n"; 5791 fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n"; 5792 } else { 5793 fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n"; 5794 fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n"; 5795 } 5796 5797 db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests", 5798 "Sleeps", "Bucket", "Total Mem", "XFree"); 5799 5800 /* Sort the zones with largest size first. */ 5801 last_zone = NULL; 5802 last_size = INT64_MAX; 5803 for (;;) { 5804 cur_zone = NULL; 5805 cur_size = -1; 5806 ties = 0; 5807 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5808 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5809 /* 5810 * In the case of size ties, print out zones 5811 * in the order they are encountered. That is, 5812 * when we encounter the most recently output 5813 * zone, we have already printed all preceding 5814 * ties, and we must print all following ties. 5815 */ 5816 if (z == last_zone) { 5817 ties = 1; 5818 continue; 5819 } 5820 size = get_uma_stats(kz, z, &allocs, &used, 5821 &sleeps, &cachefree, &xdomain); 5822 if (size > cur_size && size < last_size + ties) 5823 { 5824 cur_size = size; 5825 cur_zone = z; 5826 cur_keg = kz; 5827 } 5828 } 5829 } 5830 if (cur_zone == NULL) 5831 break; 5832 5833 size = get_uma_stats(cur_keg, cur_zone, &allocs, &used, 5834 &sleeps, &cachefree, &xdomain); 5835 db_printf(fmt_entry, cur_zone->uz_name, 5836 (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree, 5837 (uintmax_t)allocs, (uintmax_t)sleeps, 5838 (unsigned)cur_zone->uz_bucket_size, (intmax_t)size, 5839 xdomain); 5840 5841 if (db_pager_quit) 5842 return; 5843 last_zone = cur_zone; 5844 last_size = cur_size; 5845 } 5846 } 5847 5848 DB_SHOW_COMMAND(umacache, db_show_umacache) 5849 { 5850 uma_zone_t z; 5851 uint64_t allocs, frees; 5852 long cachefree; 5853 int i; 5854 5855 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 5856 "Requests", "Bucket"); 5857 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5858 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL); 5859 for (i = 0; i < vm_ndomains; i++) 5860 cachefree += ZDOM_GET(z, i)->uzd_nitems; 5861 db_printf("%18s %8ju %8jd %8ld %12ju %8u\n", 5862 z->uz_name, (uintmax_t)z->uz_size, 5863 (intmax_t)(allocs - frees), cachefree, 5864 (uintmax_t)allocs, z->uz_bucket_size); 5865 if (db_pager_quit) 5866 return; 5867 } 5868 } 5869 #endif /* DDB */ 5870