1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/bitset.h> 62 #include <sys/eventhandler.h> 63 #include <sys/kernel.h> 64 #include <sys/types.h> 65 #include <sys/limits.h> 66 #include <sys/queue.h> 67 #include <sys/malloc.h> 68 #include <sys/ktr.h> 69 #include <sys/lock.h> 70 #include <sys/sysctl.h> 71 #include <sys/mutex.h> 72 #include <sys/proc.h> 73 #include <sys/random.h> 74 #include <sys/rwlock.h> 75 #include <sys/sbuf.h> 76 #include <sys/sched.h> 77 #include <sys/smp.h> 78 #include <sys/taskqueue.h> 79 #include <sys/vmmeter.h> 80 81 #include <vm/vm.h> 82 #include <vm/vm_object.h> 83 #include <vm/vm_page.h> 84 #include <vm/vm_pageout.h> 85 #include <vm/vm_param.h> 86 #include <vm/vm_phys.h> 87 #include <vm/vm_map.h> 88 #include <vm/vm_kern.h> 89 #include <vm/vm_extern.h> 90 #include <vm/uma.h> 91 #include <vm/uma_int.h> 92 #include <vm/uma_dbg.h> 93 94 #include <ddb/ddb.h> 95 96 #ifdef DEBUG_MEMGUARD 97 #include <vm/memguard.h> 98 #endif 99 100 /* 101 * This is the zone and keg from which all zones are spawned. 102 */ 103 static uma_zone_t kegs; 104 static uma_zone_t zones; 105 106 /* This is the zone from which all offpage uma_slab_ts are allocated. */ 107 static uma_zone_t slabzone; 108 109 /* 110 * The initial hash tables come out of this zone so they can be allocated 111 * prior to malloc coming up. 112 */ 113 static uma_zone_t hashzone; 114 115 /* The boot-time adjusted value for cache line alignment. */ 116 int uma_align_cache = 64 - 1; 117 118 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 119 120 /* 121 * Are we allowed to allocate buckets? 122 */ 123 static int bucketdisable = 1; 124 125 /* Linked list of all kegs in the system */ 126 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 127 128 /* Linked list of all cache-only zones in the system */ 129 static LIST_HEAD(,uma_zone) uma_cachezones = 130 LIST_HEAD_INITIALIZER(uma_cachezones); 131 132 /* This RW lock protects the keg list */ 133 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 134 135 /* 136 * Pointer and counter to pool of pages, that is preallocated at 137 * startup to bootstrap UMA. 138 */ 139 static char *bootmem; 140 static int boot_pages; 141 142 static struct sx uma_drain_lock; 143 144 /* kmem soft limit. */ 145 static unsigned long uma_kmem_limit = LONG_MAX; 146 static volatile unsigned long uma_kmem_total; 147 148 /* Is the VM done starting up? */ 149 static enum { BOOT_COLD = 0, BOOT_STRAPPED, BOOT_PAGEALLOC, BOOT_BUCKETS, 150 BOOT_RUNNING } booted = BOOT_COLD; 151 152 /* 153 * This is the handle used to schedule events that need to happen 154 * outside of the allocation fast path. 155 */ 156 static struct callout uma_callout; 157 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 158 159 /* 160 * This structure is passed as the zone ctor arg so that I don't have to create 161 * a special allocation function just for zones. 162 */ 163 struct uma_zctor_args { 164 const char *name; 165 size_t size; 166 uma_ctor ctor; 167 uma_dtor dtor; 168 uma_init uminit; 169 uma_fini fini; 170 uma_import import; 171 uma_release release; 172 void *arg; 173 uma_keg_t keg; 174 int align; 175 uint32_t flags; 176 }; 177 178 struct uma_kctor_args { 179 uma_zone_t zone; 180 size_t size; 181 uma_init uminit; 182 uma_fini fini; 183 int align; 184 uint32_t flags; 185 }; 186 187 struct uma_bucket_zone { 188 uma_zone_t ubz_zone; 189 char *ubz_name; 190 int ubz_entries; /* Number of items it can hold. */ 191 int ubz_maxsize; /* Maximum allocation size per-item. */ 192 }; 193 194 /* 195 * Compute the actual number of bucket entries to pack them in power 196 * of two sizes for more efficient space utilization. 197 */ 198 #define BUCKET_SIZE(n) \ 199 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 200 201 #define BUCKET_MAX BUCKET_SIZE(256) 202 203 struct uma_bucket_zone bucket_zones[] = { 204 { NULL, "4 Bucket", BUCKET_SIZE(4), 4096 }, 205 { NULL, "6 Bucket", BUCKET_SIZE(6), 3072 }, 206 { NULL, "8 Bucket", BUCKET_SIZE(8), 2048 }, 207 { NULL, "12 Bucket", BUCKET_SIZE(12), 1536 }, 208 { NULL, "16 Bucket", BUCKET_SIZE(16), 1024 }, 209 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 210 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 211 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 212 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 213 { NULL, NULL, 0} 214 }; 215 216 /* 217 * Flags and enumerations to be passed to internal functions. 218 */ 219 enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI }; 220 221 #define UMA_ANYDOMAIN -1 /* Special value for domain search. */ 222 223 /* Prototypes.. */ 224 225 int uma_startup_count(int); 226 void uma_startup(void *, int); 227 void uma_startup1(void); 228 void uma_startup2(void); 229 230 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 231 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 232 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 233 static void page_free(void *, vm_size_t, uint8_t); 234 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int); 235 static void cache_drain(uma_zone_t); 236 static void bucket_drain(uma_zone_t, uma_bucket_t); 237 static void bucket_cache_drain(uma_zone_t zone); 238 static int keg_ctor(void *, int, void *, int); 239 static void keg_dtor(void *, int, void *); 240 static int zone_ctor(void *, int, void *, int); 241 static void zone_dtor(void *, int, void *); 242 static int zero_init(void *, int, int); 243 static void keg_small_init(uma_keg_t keg); 244 static void keg_large_init(uma_keg_t keg); 245 static void zone_foreach(void (*zfunc)(uma_zone_t)); 246 static void zone_timeout(uma_zone_t zone); 247 static int hash_alloc(struct uma_hash *); 248 static int hash_expand(struct uma_hash *, struct uma_hash *); 249 static void hash_free(struct uma_hash *hash); 250 static void uma_timeout(void *); 251 static void uma_startup3(void); 252 static void *zone_alloc_item(uma_zone_t, void *, int, int); 253 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 254 static void bucket_enable(void); 255 static void bucket_init(void); 256 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 257 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 258 static void bucket_zone_drain(void); 259 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int); 260 static uma_slab_t zone_fetch_slab(uma_zone_t, uma_keg_t, int, int); 261 static uma_slab_t zone_fetch_slab_multi(uma_zone_t, uma_keg_t, int, int); 262 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 263 static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item); 264 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 265 uma_fini fini, int align, uint32_t flags); 266 static int zone_import(uma_zone_t, void **, int, int, int); 267 static void zone_release(uma_zone_t, void **, int); 268 static void uma_zero_item(void *, uma_zone_t); 269 270 void uma_print_zone(uma_zone_t); 271 void uma_print_stats(void); 272 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 273 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 274 275 #ifdef INVARIANTS 276 static bool uma_dbg_kskip(uma_keg_t keg, void *mem); 277 static bool uma_dbg_zskip(uma_zone_t zone, void *mem); 278 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 279 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 280 281 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD, 0, 282 "Memory allocation debugging"); 283 284 static u_int dbg_divisor = 1; 285 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor, 286 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0, 287 "Debug & thrash every this item in memory allocator"); 288 289 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER; 290 static counter_u64_t uma_skip_cnt = EARLY_COUNTER; 291 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD, 292 &uma_dbg_cnt, "memory items debugged"); 293 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD, 294 &uma_skip_cnt, "memory items skipped, not debugged"); 295 #endif 296 297 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 298 299 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 300 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 301 302 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 303 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 304 305 static int zone_warnings = 1; 306 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 307 "Warn when UMA zones becomes full"); 308 309 /* Adjust bytes under management by UMA. */ 310 static inline void 311 uma_total_dec(unsigned long size) 312 { 313 314 atomic_subtract_long(&uma_kmem_total, size); 315 } 316 317 static inline void 318 uma_total_inc(unsigned long size) 319 { 320 321 if (atomic_fetchadd_long(&uma_kmem_total, size) > uma_kmem_limit) 322 uma_reclaim_wakeup(); 323 } 324 325 /* 326 * This routine checks to see whether or not it's safe to enable buckets. 327 */ 328 static void 329 bucket_enable(void) 330 { 331 bucketdisable = vm_page_count_min(); 332 } 333 334 /* 335 * Initialize bucket_zones, the array of zones of buckets of various sizes. 336 * 337 * For each zone, calculate the memory required for each bucket, consisting 338 * of the header and an array of pointers. 339 */ 340 static void 341 bucket_init(void) 342 { 343 struct uma_bucket_zone *ubz; 344 int size; 345 346 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 347 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 348 size += sizeof(void *) * ubz->ubz_entries; 349 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 350 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 351 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | UMA_ZONE_NUMA); 352 } 353 } 354 355 /* 356 * Given a desired number of entries for a bucket, return the zone from which 357 * to allocate the bucket. 358 */ 359 static struct uma_bucket_zone * 360 bucket_zone_lookup(int entries) 361 { 362 struct uma_bucket_zone *ubz; 363 364 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 365 if (ubz->ubz_entries >= entries) 366 return (ubz); 367 ubz--; 368 return (ubz); 369 } 370 371 static int 372 bucket_select(int size) 373 { 374 struct uma_bucket_zone *ubz; 375 376 ubz = &bucket_zones[0]; 377 if (size > ubz->ubz_maxsize) 378 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 379 380 for (; ubz->ubz_entries != 0; ubz++) 381 if (ubz->ubz_maxsize < size) 382 break; 383 ubz--; 384 return (ubz->ubz_entries); 385 } 386 387 static uma_bucket_t 388 bucket_alloc(uma_zone_t zone, void *udata, int flags) 389 { 390 struct uma_bucket_zone *ubz; 391 uma_bucket_t bucket; 392 393 /* 394 * This is to stop us from allocating per cpu buckets while we're 395 * running out of vm.boot_pages. Otherwise, we would exhaust the 396 * boot pages. This also prevents us from allocating buckets in 397 * low memory situations. 398 */ 399 if (bucketdisable) 400 return (NULL); 401 /* 402 * To limit bucket recursion we store the original zone flags 403 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 404 * NOVM flag to persist even through deep recursions. We also 405 * store ZFLAG_BUCKET once we have recursed attempting to allocate 406 * a bucket for a bucket zone so we do not allow infinite bucket 407 * recursion. This cookie will even persist to frees of unused 408 * buckets via the allocation path or bucket allocations in the 409 * free path. 410 */ 411 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 412 udata = (void *)(uintptr_t)zone->uz_flags; 413 else { 414 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 415 return (NULL); 416 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 417 } 418 if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY) 419 flags |= M_NOVM; 420 ubz = bucket_zone_lookup(zone->uz_count); 421 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 422 ubz++; 423 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 424 if (bucket) { 425 #ifdef INVARIANTS 426 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 427 #endif 428 bucket->ub_cnt = 0; 429 bucket->ub_entries = ubz->ubz_entries; 430 } 431 432 return (bucket); 433 } 434 435 static void 436 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 437 { 438 struct uma_bucket_zone *ubz; 439 440 KASSERT(bucket->ub_cnt == 0, 441 ("bucket_free: Freeing a non free bucket.")); 442 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 443 udata = (void *)(uintptr_t)zone->uz_flags; 444 ubz = bucket_zone_lookup(bucket->ub_entries); 445 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 446 } 447 448 static void 449 bucket_zone_drain(void) 450 { 451 struct uma_bucket_zone *ubz; 452 453 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 454 zone_drain(ubz->ubz_zone); 455 } 456 457 static void 458 zone_log_warning(uma_zone_t zone) 459 { 460 static const struct timeval warninterval = { 300, 0 }; 461 462 if (!zone_warnings || zone->uz_warning == NULL) 463 return; 464 465 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 466 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 467 } 468 469 static inline void 470 zone_maxaction(uma_zone_t zone) 471 { 472 473 if (zone->uz_maxaction.ta_func != NULL) 474 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 475 } 476 477 static void 478 zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t)) 479 { 480 uma_klink_t klink; 481 482 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) 483 kegfn(klink->kl_keg); 484 } 485 486 /* 487 * Routine called by timeout which is used to fire off some time interval 488 * based calculations. (stats, hash size, etc.) 489 * 490 * Arguments: 491 * arg Unused 492 * 493 * Returns: 494 * Nothing 495 */ 496 static void 497 uma_timeout(void *unused) 498 { 499 bucket_enable(); 500 zone_foreach(zone_timeout); 501 502 /* Reschedule this event */ 503 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 504 } 505 506 /* 507 * Routine to perform timeout driven calculations. This expands the 508 * hashes and does per cpu statistics aggregation. 509 * 510 * Returns nothing. 511 */ 512 static void 513 keg_timeout(uma_keg_t keg) 514 { 515 516 KEG_LOCK(keg); 517 /* 518 * Expand the keg hash table. 519 * 520 * This is done if the number of slabs is larger than the hash size. 521 * What I'm trying to do here is completely reduce collisions. This 522 * may be a little aggressive. Should I allow for two collisions max? 523 */ 524 if (keg->uk_flags & UMA_ZONE_HASH && 525 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) { 526 struct uma_hash newhash; 527 struct uma_hash oldhash; 528 int ret; 529 530 /* 531 * This is so involved because allocating and freeing 532 * while the keg lock is held will lead to deadlock. 533 * I have to do everything in stages and check for 534 * races. 535 */ 536 newhash = keg->uk_hash; 537 KEG_UNLOCK(keg); 538 ret = hash_alloc(&newhash); 539 KEG_LOCK(keg); 540 if (ret) { 541 if (hash_expand(&keg->uk_hash, &newhash)) { 542 oldhash = keg->uk_hash; 543 keg->uk_hash = newhash; 544 } else 545 oldhash = newhash; 546 547 KEG_UNLOCK(keg); 548 hash_free(&oldhash); 549 return; 550 } 551 } 552 KEG_UNLOCK(keg); 553 } 554 555 static void 556 zone_timeout(uma_zone_t zone) 557 { 558 559 zone_foreach_keg(zone, &keg_timeout); 560 } 561 562 /* 563 * Allocate and zero fill the next sized hash table from the appropriate 564 * backing store. 565 * 566 * Arguments: 567 * hash A new hash structure with the old hash size in uh_hashsize 568 * 569 * Returns: 570 * 1 on success and 0 on failure. 571 */ 572 static int 573 hash_alloc(struct uma_hash *hash) 574 { 575 int oldsize; 576 int alloc; 577 578 oldsize = hash->uh_hashsize; 579 580 /* We're just going to go to a power of two greater */ 581 if (oldsize) { 582 hash->uh_hashsize = oldsize * 2; 583 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 584 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 585 M_UMAHASH, M_NOWAIT); 586 } else { 587 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 588 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 589 UMA_ANYDOMAIN, M_WAITOK); 590 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 591 } 592 if (hash->uh_slab_hash) { 593 bzero(hash->uh_slab_hash, alloc); 594 hash->uh_hashmask = hash->uh_hashsize - 1; 595 return (1); 596 } 597 598 return (0); 599 } 600 601 /* 602 * Expands the hash table for HASH zones. This is done from zone_timeout 603 * to reduce collisions. This must not be done in the regular allocation 604 * path, otherwise, we can recurse on the vm while allocating pages. 605 * 606 * Arguments: 607 * oldhash The hash you want to expand 608 * newhash The hash structure for the new table 609 * 610 * Returns: 611 * Nothing 612 * 613 * Discussion: 614 */ 615 static int 616 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 617 { 618 uma_slab_t slab; 619 int hval; 620 int i; 621 622 if (!newhash->uh_slab_hash) 623 return (0); 624 625 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 626 return (0); 627 628 /* 629 * I need to investigate hash algorithms for resizing without a 630 * full rehash. 631 */ 632 633 for (i = 0; i < oldhash->uh_hashsize; i++) 634 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) { 635 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]); 636 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink); 637 hval = UMA_HASH(newhash, slab->us_data); 638 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 639 slab, us_hlink); 640 } 641 642 return (1); 643 } 644 645 /* 646 * Free the hash bucket to the appropriate backing store. 647 * 648 * Arguments: 649 * slab_hash The hash bucket we're freeing 650 * hashsize The number of entries in that hash bucket 651 * 652 * Returns: 653 * Nothing 654 */ 655 static void 656 hash_free(struct uma_hash *hash) 657 { 658 if (hash->uh_slab_hash == NULL) 659 return; 660 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 661 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 662 else 663 free(hash->uh_slab_hash, M_UMAHASH); 664 } 665 666 /* 667 * Frees all outstanding items in a bucket 668 * 669 * Arguments: 670 * zone The zone to free to, must be unlocked. 671 * bucket The free/alloc bucket with items, cpu queue must be locked. 672 * 673 * Returns: 674 * Nothing 675 */ 676 677 static void 678 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 679 { 680 int i; 681 682 if (bucket == NULL) 683 return; 684 685 if (zone->uz_fini) 686 for (i = 0; i < bucket->ub_cnt; i++) 687 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 688 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 689 bucket->ub_cnt = 0; 690 } 691 692 /* 693 * Drains the per cpu caches for a zone. 694 * 695 * NOTE: This may only be called while the zone is being turn down, and not 696 * during normal operation. This is necessary in order that we do not have 697 * to migrate CPUs to drain the per-CPU caches. 698 * 699 * Arguments: 700 * zone The zone to drain, must be unlocked. 701 * 702 * Returns: 703 * Nothing 704 */ 705 static void 706 cache_drain(uma_zone_t zone) 707 { 708 uma_cache_t cache; 709 int cpu; 710 711 /* 712 * XXX: It is safe to not lock the per-CPU caches, because we're 713 * tearing down the zone anyway. I.e., there will be no further use 714 * of the caches at this point. 715 * 716 * XXX: It would good to be able to assert that the zone is being 717 * torn down to prevent improper use of cache_drain(). 718 * 719 * XXX: We lock the zone before passing into bucket_cache_drain() as 720 * it is used elsewhere. Should the tear-down path be made special 721 * there in some form? 722 */ 723 CPU_FOREACH(cpu) { 724 cache = &zone->uz_cpu[cpu]; 725 bucket_drain(zone, cache->uc_allocbucket); 726 bucket_drain(zone, cache->uc_freebucket); 727 if (cache->uc_allocbucket != NULL) 728 bucket_free(zone, cache->uc_allocbucket, NULL); 729 if (cache->uc_freebucket != NULL) 730 bucket_free(zone, cache->uc_freebucket, NULL); 731 cache->uc_allocbucket = cache->uc_freebucket = NULL; 732 } 733 ZONE_LOCK(zone); 734 bucket_cache_drain(zone); 735 ZONE_UNLOCK(zone); 736 } 737 738 static void 739 cache_shrink(uma_zone_t zone) 740 { 741 742 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 743 return; 744 745 ZONE_LOCK(zone); 746 zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2; 747 ZONE_UNLOCK(zone); 748 } 749 750 static void 751 cache_drain_safe_cpu(uma_zone_t zone) 752 { 753 uma_cache_t cache; 754 uma_bucket_t b1, b2; 755 int domain; 756 757 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 758 return; 759 760 b1 = b2 = NULL; 761 ZONE_LOCK(zone); 762 critical_enter(); 763 if (zone->uz_flags & UMA_ZONE_NUMA) 764 domain = PCPU_GET(domain); 765 else 766 domain = 0; 767 cache = &zone->uz_cpu[curcpu]; 768 if (cache->uc_allocbucket) { 769 if (cache->uc_allocbucket->ub_cnt != 0) 770 LIST_INSERT_HEAD(&zone->uz_domain[domain].uzd_buckets, 771 cache->uc_allocbucket, ub_link); 772 else 773 b1 = cache->uc_allocbucket; 774 cache->uc_allocbucket = NULL; 775 } 776 if (cache->uc_freebucket) { 777 if (cache->uc_freebucket->ub_cnt != 0) 778 LIST_INSERT_HEAD(&zone->uz_domain[domain].uzd_buckets, 779 cache->uc_freebucket, ub_link); 780 else 781 b2 = cache->uc_freebucket; 782 cache->uc_freebucket = NULL; 783 } 784 critical_exit(); 785 ZONE_UNLOCK(zone); 786 if (b1) 787 bucket_free(zone, b1, NULL); 788 if (b2) 789 bucket_free(zone, b2, NULL); 790 } 791 792 /* 793 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 794 * This is an expensive call because it needs to bind to all CPUs 795 * one by one and enter a critical section on each of them in order 796 * to safely access their cache buckets. 797 * Zone lock must not be held on call this function. 798 */ 799 static void 800 cache_drain_safe(uma_zone_t zone) 801 { 802 int cpu; 803 804 /* 805 * Polite bucket sizes shrinking was not enouth, shrink aggressively. 806 */ 807 if (zone) 808 cache_shrink(zone); 809 else 810 zone_foreach(cache_shrink); 811 812 CPU_FOREACH(cpu) { 813 thread_lock(curthread); 814 sched_bind(curthread, cpu); 815 thread_unlock(curthread); 816 817 if (zone) 818 cache_drain_safe_cpu(zone); 819 else 820 zone_foreach(cache_drain_safe_cpu); 821 } 822 thread_lock(curthread); 823 sched_unbind(curthread); 824 thread_unlock(curthread); 825 } 826 827 /* 828 * Drain the cached buckets from a zone. Expects a locked zone on entry. 829 */ 830 static void 831 bucket_cache_drain(uma_zone_t zone) 832 { 833 uma_zone_domain_t zdom; 834 uma_bucket_t bucket; 835 int i; 836 837 /* 838 * Drain the bucket queues and free the buckets. 839 */ 840 for (i = 0; i < vm_ndomains; i++) { 841 zdom = &zone->uz_domain[i]; 842 while ((bucket = LIST_FIRST(&zdom->uzd_buckets)) != NULL) { 843 LIST_REMOVE(bucket, ub_link); 844 ZONE_UNLOCK(zone); 845 bucket_drain(zone, bucket); 846 bucket_free(zone, bucket, NULL); 847 ZONE_LOCK(zone); 848 } 849 } 850 851 /* 852 * Shrink further bucket sizes. Price of single zone lock collision 853 * is probably lower then price of global cache drain. 854 */ 855 if (zone->uz_count > zone->uz_count_min) 856 zone->uz_count--; 857 } 858 859 static void 860 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 861 { 862 uint8_t *mem; 863 int i; 864 uint8_t flags; 865 866 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 867 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 868 869 mem = slab->us_data; 870 flags = slab->us_flags; 871 i = start; 872 if (keg->uk_fini != NULL) { 873 for (i--; i > -1; i--) 874 #ifdef INVARIANTS 875 /* 876 * trash_fini implies that dtor was trash_dtor. trash_fini 877 * would check that memory hasn't been modified since free, 878 * which executed trash_dtor. 879 * That's why we need to run uma_dbg_kskip() check here, 880 * albeit we don't make skip check for other init/fini 881 * invocations. 882 */ 883 if (!uma_dbg_kskip(keg, slab->us_data + (keg->uk_rsize * i)) || 884 keg->uk_fini != trash_fini) 885 #endif 886 keg->uk_fini(slab->us_data + (keg->uk_rsize * i), 887 keg->uk_size); 888 } 889 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 890 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 891 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 892 uma_total_dec(PAGE_SIZE * keg->uk_ppera); 893 } 894 895 /* 896 * Frees pages from a keg back to the system. This is done on demand from 897 * the pageout daemon. 898 * 899 * Returns nothing. 900 */ 901 static void 902 keg_drain(uma_keg_t keg) 903 { 904 struct slabhead freeslabs = { 0 }; 905 uma_domain_t dom; 906 uma_slab_t slab, tmp; 907 int i; 908 909 /* 910 * We don't want to take pages from statically allocated kegs at this 911 * time 912 */ 913 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 914 return; 915 916 CTR3(KTR_UMA, "keg_drain %s(%p) free items: %u", 917 keg->uk_name, keg, keg->uk_free); 918 KEG_LOCK(keg); 919 if (keg->uk_free == 0) 920 goto finished; 921 922 for (i = 0; i < vm_ndomains; i++) { 923 dom = &keg->uk_domain[i]; 924 LIST_FOREACH_SAFE(slab, &dom->ud_free_slab, us_link, tmp) { 925 /* We have nowhere to free these to. */ 926 if (slab->us_flags & UMA_SLAB_BOOT) 927 continue; 928 929 LIST_REMOVE(slab, us_link); 930 keg->uk_pages -= keg->uk_ppera; 931 keg->uk_free -= keg->uk_ipers; 932 933 if (keg->uk_flags & UMA_ZONE_HASH) 934 UMA_HASH_REMOVE(&keg->uk_hash, slab, 935 slab->us_data); 936 937 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 938 } 939 } 940 941 finished: 942 KEG_UNLOCK(keg); 943 944 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 945 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 946 keg_free_slab(keg, slab, keg->uk_ipers); 947 } 948 } 949 950 static void 951 zone_drain_wait(uma_zone_t zone, int waitok) 952 { 953 954 /* 955 * Set draining to interlock with zone_dtor() so we can release our 956 * locks as we go. Only dtor() should do a WAITOK call since it 957 * is the only call that knows the structure will still be available 958 * when it wakes up. 959 */ 960 ZONE_LOCK(zone); 961 while (zone->uz_flags & UMA_ZFLAG_DRAINING) { 962 if (waitok == M_NOWAIT) 963 goto out; 964 msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1); 965 } 966 zone->uz_flags |= UMA_ZFLAG_DRAINING; 967 bucket_cache_drain(zone); 968 ZONE_UNLOCK(zone); 969 /* 970 * The DRAINING flag protects us from being freed while 971 * we're running. Normally the uma_rwlock would protect us but we 972 * must be able to release and acquire the right lock for each keg. 973 */ 974 zone_foreach_keg(zone, &keg_drain); 975 ZONE_LOCK(zone); 976 zone->uz_flags &= ~UMA_ZFLAG_DRAINING; 977 wakeup(zone); 978 out: 979 ZONE_UNLOCK(zone); 980 } 981 982 void 983 zone_drain(uma_zone_t zone) 984 { 985 986 zone_drain_wait(zone, M_NOWAIT); 987 } 988 989 /* 990 * Allocate a new slab for a keg. This does not insert the slab onto a list. 991 * 992 * Arguments: 993 * wait Shall we wait? 994 * 995 * Returns: 996 * The slab that was allocated or NULL if there is no memory and the 997 * caller specified M_NOWAIT. 998 */ 999 static uma_slab_t 1000 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int wait) 1001 { 1002 uma_alloc allocf; 1003 uma_slab_t slab; 1004 unsigned long size; 1005 uint8_t *mem; 1006 uint8_t flags; 1007 int i; 1008 1009 KASSERT(domain >= 0 && domain < vm_ndomains, 1010 ("keg_alloc_slab: domain %d out of range", domain)); 1011 mtx_assert(&keg->uk_lock, MA_OWNED); 1012 slab = NULL; 1013 mem = NULL; 1014 1015 allocf = keg->uk_allocf; 1016 KEG_UNLOCK(keg); 1017 size = keg->uk_ppera * PAGE_SIZE; 1018 1019 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 1020 slab = zone_alloc_item(keg->uk_slabzone, NULL, domain, wait); 1021 if (slab == NULL) 1022 goto out; 1023 } 1024 1025 /* 1026 * This reproduces the old vm_zone behavior of zero filling pages the 1027 * first time they are added to a zone. 1028 * 1029 * Malloced items are zeroed in uma_zalloc. 1030 */ 1031 1032 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1033 wait |= M_ZERO; 1034 else 1035 wait &= ~M_ZERO; 1036 1037 if (keg->uk_flags & UMA_ZONE_NODUMP) 1038 wait |= M_NODUMP; 1039 1040 /* zone is passed for legacy reasons. */ 1041 mem = allocf(zone, size, domain, &flags, wait); 1042 if (mem == NULL) { 1043 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1044 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 1045 slab = NULL; 1046 goto out; 1047 } 1048 uma_total_inc(size); 1049 1050 /* Point the slab into the allocated memory */ 1051 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 1052 slab = (uma_slab_t )(mem + keg->uk_pgoff); 1053 1054 if (keg->uk_flags & UMA_ZONE_VTOSLAB) 1055 for (i = 0; i < keg->uk_ppera; i++) 1056 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 1057 1058 slab->us_keg = keg; 1059 slab->us_data = mem; 1060 slab->us_freecount = keg->uk_ipers; 1061 slab->us_flags = flags; 1062 slab->us_domain = domain; 1063 BIT_FILL(SLAB_SETSIZE, &slab->us_free); 1064 #ifdef INVARIANTS 1065 BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree); 1066 #endif 1067 1068 if (keg->uk_init != NULL) { 1069 for (i = 0; i < keg->uk_ipers; i++) 1070 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 1071 keg->uk_size, wait) != 0) 1072 break; 1073 if (i != keg->uk_ipers) { 1074 keg_free_slab(keg, slab, i); 1075 slab = NULL; 1076 goto out; 1077 } 1078 } 1079 out: 1080 KEG_LOCK(keg); 1081 1082 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1083 slab, keg->uk_name, keg); 1084 1085 if (slab != NULL) { 1086 if (keg->uk_flags & UMA_ZONE_HASH) 1087 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1088 1089 keg->uk_pages += keg->uk_ppera; 1090 keg->uk_free += keg->uk_ipers; 1091 } 1092 1093 return (slab); 1094 } 1095 1096 /* 1097 * This function is intended to be used early on in place of page_alloc() so 1098 * that we may use the boot time page cache to satisfy allocations before 1099 * the VM is ready. 1100 */ 1101 static void * 1102 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1103 int wait) 1104 { 1105 uma_keg_t keg; 1106 void *mem; 1107 int pages; 1108 1109 keg = zone_first_keg(zone); 1110 1111 /* 1112 * If we are in BOOT_BUCKETS or higher, than switch to real 1113 * allocator. Zones with page sized slabs switch at BOOT_PAGEALLOC. 1114 */ 1115 switch (booted) { 1116 case BOOT_COLD: 1117 case BOOT_STRAPPED: 1118 break; 1119 case BOOT_PAGEALLOC: 1120 if (keg->uk_ppera > 1) 1121 break; 1122 case BOOT_BUCKETS: 1123 case BOOT_RUNNING: 1124 #ifdef UMA_MD_SMALL_ALLOC 1125 keg->uk_allocf = (keg->uk_ppera > 1) ? 1126 page_alloc : uma_small_alloc; 1127 #else 1128 keg->uk_allocf = page_alloc; 1129 #endif 1130 return keg->uk_allocf(zone, bytes, domain, pflag, wait); 1131 } 1132 1133 /* 1134 * Check our small startup cache to see if it has pages remaining. 1135 */ 1136 pages = howmany(bytes, PAGE_SIZE); 1137 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1138 if (pages > boot_pages) 1139 panic("UMA zone \"%s\": Increase vm.boot_pages", zone->uz_name); 1140 #ifdef DIAGNOSTIC 1141 printf("%s from \"%s\", %d boot pages left\n", __func__, zone->uz_name, 1142 boot_pages); 1143 #endif 1144 mem = bootmem; 1145 boot_pages -= pages; 1146 bootmem += pages * PAGE_SIZE; 1147 *pflag = UMA_SLAB_BOOT; 1148 1149 return (mem); 1150 } 1151 1152 /* 1153 * Allocates a number of pages from the system 1154 * 1155 * Arguments: 1156 * bytes The number of bytes requested 1157 * wait Shall we wait? 1158 * 1159 * Returns: 1160 * A pointer to the alloced memory or possibly 1161 * NULL if M_NOWAIT is set. 1162 */ 1163 static void * 1164 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1165 int wait) 1166 { 1167 void *p; /* Returned page */ 1168 1169 *pflag = UMA_SLAB_KERNEL; 1170 p = (void *) kmem_malloc_domain(kernel_arena, domain, bytes, wait); 1171 1172 return (p); 1173 } 1174 1175 /* 1176 * Allocates a number of pages from within an object 1177 * 1178 * Arguments: 1179 * bytes The number of bytes requested 1180 * wait Shall we wait? 1181 * 1182 * Returns: 1183 * A pointer to the alloced memory or possibly 1184 * NULL if M_NOWAIT is set. 1185 */ 1186 static void * 1187 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 1188 int wait) 1189 { 1190 TAILQ_HEAD(, vm_page) alloctail; 1191 u_long npages; 1192 vm_offset_t retkva, zkva; 1193 vm_page_t p, p_next; 1194 uma_keg_t keg; 1195 1196 TAILQ_INIT(&alloctail); 1197 keg = zone_first_keg(zone); 1198 1199 npages = howmany(bytes, PAGE_SIZE); 1200 while (npages > 0) { 1201 p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT | 1202 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1203 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK : 1204 VM_ALLOC_NOWAIT)); 1205 if (p != NULL) { 1206 /* 1207 * Since the page does not belong to an object, its 1208 * listq is unused. 1209 */ 1210 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1211 npages--; 1212 continue; 1213 } 1214 /* 1215 * Page allocation failed, free intermediate pages and 1216 * exit. 1217 */ 1218 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1219 vm_page_unwire(p, PQ_NONE); 1220 vm_page_free(p); 1221 } 1222 return (NULL); 1223 } 1224 *flags = UMA_SLAB_PRIV; 1225 zkva = keg->uk_kva + 1226 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1227 retkva = zkva; 1228 TAILQ_FOREACH(p, &alloctail, listq) { 1229 pmap_qenter(zkva, &p, 1); 1230 zkva += PAGE_SIZE; 1231 } 1232 1233 return ((void *)retkva); 1234 } 1235 1236 /* 1237 * Frees a number of pages to the system 1238 * 1239 * Arguments: 1240 * mem A pointer to the memory to be freed 1241 * size The size of the memory being freed 1242 * flags The original p->us_flags field 1243 * 1244 * Returns: 1245 * Nothing 1246 */ 1247 static void 1248 page_free(void *mem, vm_size_t size, uint8_t flags) 1249 { 1250 struct vmem *vmem; 1251 1252 if (flags & UMA_SLAB_KERNEL) 1253 vmem = kernel_arena; 1254 else 1255 panic("UMA: page_free used with invalid flags %x", flags); 1256 1257 kmem_free(vmem, (vm_offset_t)mem, size); 1258 } 1259 1260 /* 1261 * Zero fill initializer 1262 * 1263 * Arguments/Returns follow uma_init specifications 1264 */ 1265 static int 1266 zero_init(void *mem, int size, int flags) 1267 { 1268 bzero(mem, size); 1269 return (0); 1270 } 1271 1272 /* 1273 * Finish creating a small uma keg. This calculates ipers, and the keg size. 1274 * 1275 * Arguments 1276 * keg The zone we should initialize 1277 * 1278 * Returns 1279 * Nothing 1280 */ 1281 static void 1282 keg_small_init(uma_keg_t keg) 1283 { 1284 u_int rsize; 1285 u_int memused; 1286 u_int wastedspace; 1287 u_int shsize; 1288 u_int slabsize; 1289 1290 if (keg->uk_flags & UMA_ZONE_PCPU) { 1291 u_int ncpus = (mp_maxid + 1) ? (mp_maxid + 1) : MAXCPU; 1292 1293 slabsize = sizeof(struct pcpu); 1294 keg->uk_ppera = howmany(ncpus * sizeof(struct pcpu), 1295 PAGE_SIZE); 1296 } else { 1297 slabsize = UMA_SLAB_SIZE; 1298 keg->uk_ppera = 1; 1299 } 1300 1301 /* 1302 * Calculate the size of each allocation (rsize) according to 1303 * alignment. If the requested size is smaller than we have 1304 * allocation bits for we round it up. 1305 */ 1306 rsize = keg->uk_size; 1307 if (rsize < slabsize / SLAB_SETSIZE) 1308 rsize = slabsize / SLAB_SETSIZE; 1309 if (rsize & keg->uk_align) 1310 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1311 keg->uk_rsize = rsize; 1312 1313 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 1314 keg->uk_rsize < sizeof(struct pcpu), 1315 ("%s: size %u too large", __func__, keg->uk_rsize)); 1316 1317 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1318 shsize = 0; 1319 else 1320 shsize = sizeof(struct uma_slab); 1321 1322 if (rsize <= slabsize - shsize) 1323 keg->uk_ipers = (slabsize - shsize) / rsize; 1324 else { 1325 /* Handle special case when we have 1 item per slab, so 1326 * alignment requirement can be relaxed. */ 1327 KASSERT(keg->uk_size <= slabsize - shsize, 1328 ("%s: size %u greater than slab", __func__, keg->uk_size)); 1329 keg->uk_ipers = 1; 1330 } 1331 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1332 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1333 1334 memused = keg->uk_ipers * rsize + shsize; 1335 wastedspace = slabsize - memused; 1336 1337 /* 1338 * We can't do OFFPAGE if we're internal or if we've been 1339 * asked to not go to the VM for buckets. If we do this we 1340 * may end up going to the VM for slabs which we do not 1341 * want to do if we're UMA_ZFLAG_CACHEONLY as a result 1342 * of UMA_ZONE_VM, which clearly forbids it. 1343 */ 1344 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1345 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1346 return; 1347 1348 /* 1349 * See if using an OFFPAGE slab will limit our waste. Only do 1350 * this if it permits more items per-slab. 1351 * 1352 * XXX We could try growing slabsize to limit max waste as well. 1353 * Historically this was not done because the VM could not 1354 * efficiently handle contiguous allocations. 1355 */ 1356 if ((wastedspace >= slabsize / UMA_MAX_WASTE) && 1357 (keg->uk_ipers < (slabsize / keg->uk_rsize))) { 1358 keg->uk_ipers = slabsize / keg->uk_rsize; 1359 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1360 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1361 CTR6(KTR_UMA, "UMA decided we need offpage slab headers for " 1362 "keg: %s(%p), calculated wastedspace = %d, " 1363 "maximum wasted space allowed = %d, " 1364 "calculated ipers = %d, " 1365 "new wasted space = %d\n", keg->uk_name, keg, wastedspace, 1366 slabsize / UMA_MAX_WASTE, keg->uk_ipers, 1367 slabsize - keg->uk_ipers * keg->uk_rsize); 1368 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1369 } 1370 1371 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1372 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1373 keg->uk_flags |= UMA_ZONE_HASH; 1374 } 1375 1376 /* 1377 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do 1378 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1379 * more complicated. 1380 * 1381 * Arguments 1382 * keg The keg we should initialize 1383 * 1384 * Returns 1385 * Nothing 1386 */ 1387 static void 1388 keg_large_init(uma_keg_t keg) 1389 { 1390 u_int shsize; 1391 1392 KASSERT(keg != NULL, ("Keg is null in keg_large_init")); 1393 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0, 1394 ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg")); 1395 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1396 ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__)); 1397 1398 keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE); 1399 keg->uk_ipers = 1; 1400 keg->uk_rsize = keg->uk_size; 1401 1402 /* Check whether we have enough space to not do OFFPAGE. */ 1403 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) { 1404 shsize = sizeof(struct uma_slab); 1405 if (shsize & UMA_ALIGN_PTR) 1406 shsize = (shsize & ~UMA_ALIGN_PTR) + 1407 (UMA_ALIGN_PTR + 1); 1408 1409 if (PAGE_SIZE * keg->uk_ppera - keg->uk_rsize < shsize) { 1410 /* 1411 * We can't do OFFPAGE if we're internal, in which case 1412 * we need an extra page per allocation to contain the 1413 * slab header. 1414 */ 1415 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) == 0) 1416 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1417 else 1418 keg->uk_ppera++; 1419 } 1420 } 1421 1422 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1423 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1424 keg->uk_flags |= UMA_ZONE_HASH; 1425 } 1426 1427 static void 1428 keg_cachespread_init(uma_keg_t keg) 1429 { 1430 int alignsize; 1431 int trailer; 1432 int pages; 1433 int rsize; 1434 1435 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1436 ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__)); 1437 1438 alignsize = keg->uk_align + 1; 1439 rsize = keg->uk_size; 1440 /* 1441 * We want one item to start on every align boundary in a page. To 1442 * do this we will span pages. We will also extend the item by the 1443 * size of align if it is an even multiple of align. Otherwise, it 1444 * would fall on the same boundary every time. 1445 */ 1446 if (rsize & keg->uk_align) 1447 rsize = (rsize & ~keg->uk_align) + alignsize; 1448 if ((rsize & alignsize) == 0) 1449 rsize += alignsize; 1450 trailer = rsize - keg->uk_size; 1451 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE; 1452 pages = MIN(pages, (128 * 1024) / PAGE_SIZE); 1453 keg->uk_rsize = rsize; 1454 keg->uk_ppera = pages; 1455 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize; 1456 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1457 KASSERT(keg->uk_ipers <= SLAB_SETSIZE, 1458 ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__, 1459 keg->uk_ipers)); 1460 } 1461 1462 /* 1463 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1464 * the keg onto the global keg list. 1465 * 1466 * Arguments/Returns follow uma_ctor specifications 1467 * udata Actually uma_kctor_args 1468 */ 1469 static int 1470 keg_ctor(void *mem, int size, void *udata, int flags) 1471 { 1472 struct uma_kctor_args *arg = udata; 1473 uma_keg_t keg = mem; 1474 uma_zone_t zone; 1475 1476 bzero(keg, size); 1477 keg->uk_size = arg->size; 1478 keg->uk_init = arg->uminit; 1479 keg->uk_fini = arg->fini; 1480 keg->uk_align = arg->align; 1481 keg->uk_cursor = 0; 1482 keg->uk_free = 0; 1483 keg->uk_reserve = 0; 1484 keg->uk_pages = 0; 1485 keg->uk_flags = arg->flags; 1486 keg->uk_slabzone = NULL; 1487 1488 /* 1489 * The master zone is passed to us at keg-creation time. 1490 */ 1491 zone = arg->zone; 1492 keg->uk_name = zone->uz_name; 1493 1494 if (arg->flags & UMA_ZONE_VM) 1495 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1496 1497 if (arg->flags & UMA_ZONE_ZINIT) 1498 keg->uk_init = zero_init; 1499 1500 if (arg->flags & UMA_ZONE_MALLOC) 1501 keg->uk_flags |= UMA_ZONE_VTOSLAB; 1502 1503 if (arg->flags & UMA_ZONE_PCPU) 1504 #ifdef SMP 1505 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1506 #else 1507 keg->uk_flags &= ~UMA_ZONE_PCPU; 1508 #endif 1509 1510 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) { 1511 keg_cachespread_init(keg); 1512 } else { 1513 if (keg->uk_size > UMA_SLAB_SPACE) 1514 keg_large_init(keg); 1515 else 1516 keg_small_init(keg); 1517 } 1518 1519 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1520 keg->uk_slabzone = slabzone; 1521 1522 /* 1523 * If we haven't booted yet we need allocations to go through the 1524 * startup cache until the vm is ready. 1525 */ 1526 if (booted < BOOT_PAGEALLOC) 1527 keg->uk_allocf = startup_alloc; 1528 #ifdef UMA_MD_SMALL_ALLOC 1529 else if (keg->uk_ppera == 1) 1530 keg->uk_allocf = uma_small_alloc; 1531 #endif 1532 else 1533 keg->uk_allocf = page_alloc; 1534 #ifdef UMA_MD_SMALL_ALLOC 1535 if (keg->uk_ppera == 1) 1536 keg->uk_freef = uma_small_free; 1537 else 1538 #endif 1539 keg->uk_freef = page_free; 1540 1541 /* 1542 * Initialize keg's lock 1543 */ 1544 KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS)); 1545 1546 /* 1547 * If we're putting the slab header in the actual page we need to 1548 * figure out where in each page it goes. This calculates a right 1549 * justified offset into the memory on an ALIGN_PTR boundary. 1550 */ 1551 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1552 u_int totsize; 1553 1554 /* Size of the slab struct and free list */ 1555 totsize = sizeof(struct uma_slab); 1556 1557 if (totsize & UMA_ALIGN_PTR) 1558 totsize = (totsize & ~UMA_ALIGN_PTR) + 1559 (UMA_ALIGN_PTR + 1); 1560 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize; 1561 1562 /* 1563 * The only way the following is possible is if with our 1564 * UMA_ALIGN_PTR adjustments we are now bigger than 1565 * UMA_SLAB_SIZE. I haven't checked whether this is 1566 * mathematically possible for all cases, so we make 1567 * sure here anyway. 1568 */ 1569 totsize = keg->uk_pgoff + sizeof(struct uma_slab); 1570 if (totsize > PAGE_SIZE * keg->uk_ppera) { 1571 printf("zone %s ipers %d rsize %d size %d\n", 1572 zone->uz_name, keg->uk_ipers, keg->uk_rsize, 1573 keg->uk_size); 1574 panic("UMA slab won't fit."); 1575 } 1576 } 1577 1578 if (keg->uk_flags & UMA_ZONE_HASH) 1579 hash_alloc(&keg->uk_hash); 1580 1581 CTR5(KTR_UMA, "keg_ctor %p zone %s(%p) out %d free %d\n", 1582 keg, zone->uz_name, zone, 1583 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 1584 keg->uk_free); 1585 1586 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1587 1588 rw_wlock(&uma_rwlock); 1589 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1590 rw_wunlock(&uma_rwlock); 1591 return (0); 1592 } 1593 1594 /* 1595 * Zone header ctor. This initializes all fields, locks, etc. 1596 * 1597 * Arguments/Returns follow uma_ctor specifications 1598 * udata Actually uma_zctor_args 1599 */ 1600 static int 1601 zone_ctor(void *mem, int size, void *udata, int flags) 1602 { 1603 struct uma_zctor_args *arg = udata; 1604 uma_zone_t zone = mem; 1605 uma_zone_t z; 1606 uma_keg_t keg; 1607 1608 bzero(zone, size); 1609 zone->uz_name = arg->name; 1610 zone->uz_ctor = arg->ctor; 1611 zone->uz_dtor = arg->dtor; 1612 zone->uz_slab = zone_fetch_slab; 1613 zone->uz_init = NULL; 1614 zone->uz_fini = NULL; 1615 zone->uz_allocs = 0; 1616 zone->uz_frees = 0; 1617 zone->uz_fails = 0; 1618 zone->uz_sleeps = 0; 1619 zone->uz_count = 0; 1620 zone->uz_count_min = 0; 1621 zone->uz_flags = 0; 1622 zone->uz_warning = NULL; 1623 /* The domain structures follow the cpu structures. */ 1624 zone->uz_domain = (struct uma_zone_domain *)&zone->uz_cpu[mp_ncpus]; 1625 timevalclear(&zone->uz_ratecheck); 1626 keg = arg->keg; 1627 1628 ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS)); 1629 1630 /* 1631 * This is a pure cache zone, no kegs. 1632 */ 1633 if (arg->import) { 1634 if (arg->flags & UMA_ZONE_VM) 1635 arg->flags |= UMA_ZFLAG_CACHEONLY; 1636 zone->uz_flags = arg->flags; 1637 zone->uz_size = arg->size; 1638 zone->uz_import = arg->import; 1639 zone->uz_release = arg->release; 1640 zone->uz_arg = arg->arg; 1641 zone->uz_lockptr = &zone->uz_lock; 1642 rw_wlock(&uma_rwlock); 1643 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 1644 rw_wunlock(&uma_rwlock); 1645 goto out; 1646 } 1647 1648 /* 1649 * Use the regular zone/keg/slab allocator. 1650 */ 1651 zone->uz_import = (uma_import)zone_import; 1652 zone->uz_release = (uma_release)zone_release; 1653 zone->uz_arg = zone; 1654 1655 if (arg->flags & UMA_ZONE_SECONDARY) { 1656 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 1657 zone->uz_init = arg->uminit; 1658 zone->uz_fini = arg->fini; 1659 zone->uz_lockptr = &keg->uk_lock; 1660 zone->uz_flags |= UMA_ZONE_SECONDARY; 1661 rw_wlock(&uma_rwlock); 1662 ZONE_LOCK(zone); 1663 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 1664 if (LIST_NEXT(z, uz_link) == NULL) { 1665 LIST_INSERT_AFTER(z, zone, uz_link); 1666 break; 1667 } 1668 } 1669 ZONE_UNLOCK(zone); 1670 rw_wunlock(&uma_rwlock); 1671 } else if (keg == NULL) { 1672 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 1673 arg->align, arg->flags)) == NULL) 1674 return (ENOMEM); 1675 } else { 1676 struct uma_kctor_args karg; 1677 int error; 1678 1679 /* We should only be here from uma_startup() */ 1680 karg.size = arg->size; 1681 karg.uminit = arg->uminit; 1682 karg.fini = arg->fini; 1683 karg.align = arg->align; 1684 karg.flags = arg->flags; 1685 karg.zone = zone; 1686 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 1687 flags); 1688 if (error) 1689 return (error); 1690 } 1691 1692 /* 1693 * Link in the first keg. 1694 */ 1695 zone->uz_klink.kl_keg = keg; 1696 LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link); 1697 zone->uz_lockptr = &keg->uk_lock; 1698 zone->uz_size = keg->uk_size; 1699 zone->uz_flags |= (keg->uk_flags & 1700 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 1701 1702 /* 1703 * Some internal zones don't have room allocated for the per cpu 1704 * caches. If we're internal, bail out here. 1705 */ 1706 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { 1707 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 1708 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 1709 return (0); 1710 } 1711 1712 out: 1713 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != 1714 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), 1715 ("Invalid zone flag combination")); 1716 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) 1717 zone->uz_count = BUCKET_MAX; 1718 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) 1719 zone->uz_count = 0; 1720 else 1721 zone->uz_count = bucket_select(zone->uz_size); 1722 zone->uz_count_min = zone->uz_count; 1723 1724 return (0); 1725 } 1726 1727 /* 1728 * Keg header dtor. This frees all data, destroys locks, frees the hash 1729 * table and removes the keg from the global list. 1730 * 1731 * Arguments/Returns follow uma_dtor specifications 1732 * udata unused 1733 */ 1734 static void 1735 keg_dtor(void *arg, int size, void *udata) 1736 { 1737 uma_keg_t keg; 1738 1739 keg = (uma_keg_t)arg; 1740 KEG_LOCK(keg); 1741 if (keg->uk_free != 0) { 1742 printf("Freed UMA keg (%s) was not empty (%d items). " 1743 " Lost %d pages of memory.\n", 1744 keg->uk_name ? keg->uk_name : "", 1745 keg->uk_free, keg->uk_pages); 1746 } 1747 KEG_UNLOCK(keg); 1748 1749 hash_free(&keg->uk_hash); 1750 1751 KEG_LOCK_FINI(keg); 1752 } 1753 1754 /* 1755 * Zone header dtor. 1756 * 1757 * Arguments/Returns follow uma_dtor specifications 1758 * udata unused 1759 */ 1760 static void 1761 zone_dtor(void *arg, int size, void *udata) 1762 { 1763 uma_klink_t klink; 1764 uma_zone_t zone; 1765 uma_keg_t keg; 1766 1767 zone = (uma_zone_t)arg; 1768 keg = zone_first_keg(zone); 1769 1770 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 1771 cache_drain(zone); 1772 1773 rw_wlock(&uma_rwlock); 1774 LIST_REMOVE(zone, uz_link); 1775 rw_wunlock(&uma_rwlock); 1776 /* 1777 * XXX there are some races here where 1778 * the zone can be drained but zone lock 1779 * released and then refilled before we 1780 * remove it... we dont care for now 1781 */ 1782 zone_drain_wait(zone, M_WAITOK); 1783 /* 1784 * Unlink all of our kegs. 1785 */ 1786 while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) { 1787 klink->kl_keg = NULL; 1788 LIST_REMOVE(klink, kl_link); 1789 if (klink == &zone->uz_klink) 1790 continue; 1791 free(klink, M_TEMP); 1792 } 1793 /* 1794 * We only destroy kegs from non secondary zones. 1795 */ 1796 if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0) { 1797 rw_wlock(&uma_rwlock); 1798 LIST_REMOVE(keg, uk_link); 1799 rw_wunlock(&uma_rwlock); 1800 zone_free_item(kegs, keg, NULL, SKIP_NONE); 1801 } 1802 ZONE_LOCK_FINI(zone); 1803 } 1804 1805 /* 1806 * Traverses every zone in the system and calls a callback 1807 * 1808 * Arguments: 1809 * zfunc A pointer to a function which accepts a zone 1810 * as an argument. 1811 * 1812 * Returns: 1813 * Nothing 1814 */ 1815 static void 1816 zone_foreach(void (*zfunc)(uma_zone_t)) 1817 { 1818 uma_keg_t keg; 1819 uma_zone_t zone; 1820 1821 rw_rlock(&uma_rwlock); 1822 LIST_FOREACH(keg, &uma_kegs, uk_link) { 1823 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 1824 zfunc(zone); 1825 } 1826 rw_runlock(&uma_rwlock); 1827 } 1828 1829 /* 1830 * Count how many pages do we need to bootstrap. VM supplies 1831 * its need in early zones in the argument, we add up our zones, 1832 * which consist of: UMA Slabs, UMA Hash and 9 Bucket zones. The 1833 * zone of zones and zone of kegs are accounted separately. 1834 */ 1835 #define UMA_BOOT_ZONES 11 1836 /* Zone of zones and zone of kegs have arbitrary alignment. */ 1837 #define UMA_BOOT_ALIGN 32 1838 static int zsize, ksize; 1839 int 1840 uma_startup_count(int vm_zones) 1841 { 1842 int zones, pages; 1843 1844 ksize = sizeof(struct uma_keg) + 1845 (sizeof(struct uma_domain) * vm_ndomains); 1846 zsize = sizeof(struct uma_zone) + 1847 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 1848 (sizeof(struct uma_zone_domain) * vm_ndomains); 1849 1850 /* 1851 * Memory for the zone of kegs and its keg, 1852 * and for zone of zones. 1853 */ 1854 pages = howmany(roundup(zsize, CACHE_LINE_SIZE) * 2 + 1855 roundup(ksize, CACHE_LINE_SIZE), PAGE_SIZE); 1856 1857 #ifdef UMA_MD_SMALL_ALLOC 1858 zones = UMA_BOOT_ZONES; 1859 #else 1860 zones = UMA_BOOT_ZONES + vm_zones; 1861 vm_zones = 0; 1862 #endif 1863 1864 /* Memory for the rest of startup zones, UMA and VM, ... */ 1865 if (zsize > UMA_SLAB_SPACE) 1866 pages += (zones + vm_zones) * 1867 howmany(roundup2(zsize, UMA_BOOT_ALIGN), UMA_SLAB_SIZE); 1868 else if (roundup2(zsize, UMA_BOOT_ALIGN) > UMA_SLAB_SPACE) 1869 pages += zones; 1870 else 1871 pages += howmany(zones, 1872 UMA_SLAB_SPACE / roundup2(zsize, UMA_BOOT_ALIGN)); 1873 1874 /* ... and their kegs. Note that zone of zones allocates a keg! */ 1875 pages += howmany(zones + 1, 1876 UMA_SLAB_SPACE / roundup2(ksize, UMA_BOOT_ALIGN)); 1877 1878 /* 1879 * Most of startup zones are not going to be offpages, that's 1880 * why we use UMA_SLAB_SPACE instead of UMA_SLAB_SIZE in all 1881 * calculations. Some large bucket zones will be offpage, and 1882 * thus will allocate hashes. We take conservative approach 1883 * and assume that all zones may allocate hash. This may give 1884 * us some positive inaccuracy, usually an extra single page. 1885 */ 1886 pages += howmany(zones, UMA_SLAB_SPACE / 1887 (sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT)); 1888 1889 return (pages); 1890 } 1891 1892 void 1893 uma_startup(void *mem, int npages) 1894 { 1895 struct uma_zctor_args args; 1896 uma_keg_t masterkeg; 1897 uintptr_t m; 1898 1899 #ifdef DIAGNOSTIC 1900 printf("Entering %s with %d boot pages configured\n", __func__, npages); 1901 #endif 1902 1903 rw_init(&uma_rwlock, "UMA lock"); 1904 1905 /* Use bootpages memory for the zone of zones and zone of kegs. */ 1906 m = (uintptr_t)mem; 1907 zones = (uma_zone_t)m; 1908 m += roundup(zsize, CACHE_LINE_SIZE); 1909 kegs = (uma_zone_t)m; 1910 m += roundup(zsize, CACHE_LINE_SIZE); 1911 masterkeg = (uma_keg_t)m; 1912 m += roundup(ksize, CACHE_LINE_SIZE); 1913 m = roundup(m, PAGE_SIZE); 1914 npages -= (m - (uintptr_t)mem) / PAGE_SIZE; 1915 mem = (void *)m; 1916 1917 /* "manually" create the initial zone */ 1918 memset(&args, 0, sizeof(args)); 1919 args.name = "UMA Kegs"; 1920 args.size = ksize; 1921 args.ctor = keg_ctor; 1922 args.dtor = keg_dtor; 1923 args.uminit = zero_init; 1924 args.fini = NULL; 1925 args.keg = masterkeg; 1926 args.align = UMA_BOOT_ALIGN - 1; 1927 args.flags = UMA_ZFLAG_INTERNAL; 1928 zone_ctor(kegs, zsize, &args, M_WAITOK); 1929 1930 bootmem = mem; 1931 boot_pages = npages; 1932 1933 args.name = "UMA Zones"; 1934 args.size = zsize; 1935 args.ctor = zone_ctor; 1936 args.dtor = zone_dtor; 1937 args.uminit = zero_init; 1938 args.fini = NULL; 1939 args.keg = NULL; 1940 args.align = UMA_BOOT_ALIGN - 1; 1941 args.flags = UMA_ZFLAG_INTERNAL; 1942 zone_ctor(zones, zsize, &args, M_WAITOK); 1943 1944 /* Now make a zone for slab headers */ 1945 slabzone = uma_zcreate("UMA Slabs", 1946 sizeof(struct uma_slab), 1947 NULL, NULL, NULL, NULL, 1948 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1949 1950 hashzone = uma_zcreate("UMA Hash", 1951 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 1952 NULL, NULL, NULL, NULL, 1953 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1954 1955 bucket_init(); 1956 1957 booted = BOOT_STRAPPED; 1958 } 1959 1960 void 1961 uma_startup1(void) 1962 { 1963 1964 #ifdef DIAGNOSTIC 1965 printf("Entering %s with %d boot pages left\n", __func__, boot_pages); 1966 #endif 1967 booted = BOOT_PAGEALLOC; 1968 } 1969 1970 void 1971 uma_startup2(void) 1972 { 1973 1974 #ifdef DIAGNOSTIC 1975 printf("Entering %s with %d boot pages left\n", __func__, boot_pages); 1976 #endif 1977 booted = BOOT_BUCKETS; 1978 sx_init(&uma_drain_lock, "umadrain"); 1979 bucket_enable(); 1980 } 1981 1982 /* 1983 * Initialize our callout handle 1984 * 1985 */ 1986 static void 1987 uma_startup3(void) 1988 { 1989 1990 #ifdef INVARIANTS 1991 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor); 1992 uma_dbg_cnt = counter_u64_alloc(M_WAITOK); 1993 uma_skip_cnt = counter_u64_alloc(M_WAITOK); 1994 #endif 1995 callout_init(&uma_callout, 1); 1996 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 1997 booted = BOOT_RUNNING; 1998 } 1999 2000 static uma_keg_t 2001 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 2002 int align, uint32_t flags) 2003 { 2004 struct uma_kctor_args args; 2005 2006 args.size = size; 2007 args.uminit = uminit; 2008 args.fini = fini; 2009 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 2010 args.flags = flags; 2011 args.zone = zone; 2012 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 2013 } 2014 2015 /* Public functions */ 2016 /* See uma.h */ 2017 void 2018 uma_set_align(int align) 2019 { 2020 2021 if (align != UMA_ALIGN_CACHE) 2022 uma_align_cache = align; 2023 } 2024 2025 /* See uma.h */ 2026 uma_zone_t 2027 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 2028 uma_init uminit, uma_fini fini, int align, uint32_t flags) 2029 2030 { 2031 struct uma_zctor_args args; 2032 uma_zone_t res; 2033 bool locked; 2034 2035 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 2036 align, name)); 2037 2038 /* This stuff is essential for the zone ctor */ 2039 memset(&args, 0, sizeof(args)); 2040 args.name = name; 2041 args.size = size; 2042 args.ctor = ctor; 2043 args.dtor = dtor; 2044 args.uminit = uminit; 2045 args.fini = fini; 2046 #ifdef INVARIANTS 2047 /* 2048 * If a zone is being created with an empty constructor and 2049 * destructor, pass UMA constructor/destructor which checks for 2050 * memory use after free. 2051 */ 2052 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOFREE))) && 2053 ctor == NULL && dtor == NULL && uminit == NULL && fini == NULL) { 2054 args.ctor = trash_ctor; 2055 args.dtor = trash_dtor; 2056 args.uminit = trash_init; 2057 args.fini = trash_fini; 2058 } 2059 #endif 2060 args.align = align; 2061 args.flags = flags; 2062 args.keg = NULL; 2063 2064 if (booted < BOOT_BUCKETS) { 2065 locked = false; 2066 } else { 2067 sx_slock(&uma_drain_lock); 2068 locked = true; 2069 } 2070 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2071 if (locked) 2072 sx_sunlock(&uma_drain_lock); 2073 return (res); 2074 } 2075 2076 /* See uma.h */ 2077 uma_zone_t 2078 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 2079 uma_init zinit, uma_fini zfini, uma_zone_t master) 2080 { 2081 struct uma_zctor_args args; 2082 uma_keg_t keg; 2083 uma_zone_t res; 2084 bool locked; 2085 2086 keg = zone_first_keg(master); 2087 memset(&args, 0, sizeof(args)); 2088 args.name = name; 2089 args.size = keg->uk_size; 2090 args.ctor = ctor; 2091 args.dtor = dtor; 2092 args.uminit = zinit; 2093 args.fini = zfini; 2094 args.align = keg->uk_align; 2095 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 2096 args.keg = keg; 2097 2098 if (booted < BOOT_BUCKETS) { 2099 locked = false; 2100 } else { 2101 sx_slock(&uma_drain_lock); 2102 locked = true; 2103 } 2104 /* XXX Attaches only one keg of potentially many. */ 2105 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2106 if (locked) 2107 sx_sunlock(&uma_drain_lock); 2108 return (res); 2109 } 2110 2111 /* See uma.h */ 2112 uma_zone_t 2113 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor, 2114 uma_init zinit, uma_fini zfini, uma_import zimport, 2115 uma_release zrelease, void *arg, int flags) 2116 { 2117 struct uma_zctor_args args; 2118 2119 memset(&args, 0, sizeof(args)); 2120 args.name = name; 2121 args.size = size; 2122 args.ctor = ctor; 2123 args.dtor = dtor; 2124 args.uminit = zinit; 2125 args.fini = zfini; 2126 args.import = zimport; 2127 args.release = zrelease; 2128 args.arg = arg; 2129 args.align = 0; 2130 args.flags = flags; 2131 2132 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 2133 } 2134 2135 static void 2136 zone_lock_pair(uma_zone_t a, uma_zone_t b) 2137 { 2138 if (a < b) { 2139 ZONE_LOCK(a); 2140 mtx_lock_flags(b->uz_lockptr, MTX_DUPOK); 2141 } else { 2142 ZONE_LOCK(b); 2143 mtx_lock_flags(a->uz_lockptr, MTX_DUPOK); 2144 } 2145 } 2146 2147 static void 2148 zone_unlock_pair(uma_zone_t a, uma_zone_t b) 2149 { 2150 2151 ZONE_UNLOCK(a); 2152 ZONE_UNLOCK(b); 2153 } 2154 2155 int 2156 uma_zsecond_add(uma_zone_t zone, uma_zone_t master) 2157 { 2158 uma_klink_t klink; 2159 uma_klink_t kl; 2160 int error; 2161 2162 error = 0; 2163 klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO); 2164 2165 zone_lock_pair(zone, master); 2166 /* 2167 * zone must use vtoslab() to resolve objects and must already be 2168 * a secondary. 2169 */ 2170 if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) 2171 != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) { 2172 error = EINVAL; 2173 goto out; 2174 } 2175 /* 2176 * The new master must also use vtoslab(). 2177 */ 2178 if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) { 2179 error = EINVAL; 2180 goto out; 2181 } 2182 2183 /* 2184 * The underlying object must be the same size. rsize 2185 * may be different. 2186 */ 2187 if (master->uz_size != zone->uz_size) { 2188 error = E2BIG; 2189 goto out; 2190 } 2191 /* 2192 * Put it at the end of the list. 2193 */ 2194 klink->kl_keg = zone_first_keg(master); 2195 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) { 2196 if (LIST_NEXT(kl, kl_link) == NULL) { 2197 LIST_INSERT_AFTER(kl, klink, kl_link); 2198 break; 2199 } 2200 } 2201 klink = NULL; 2202 zone->uz_flags |= UMA_ZFLAG_MULTI; 2203 zone->uz_slab = zone_fetch_slab_multi; 2204 2205 out: 2206 zone_unlock_pair(zone, master); 2207 if (klink != NULL) 2208 free(klink, M_TEMP); 2209 2210 return (error); 2211 } 2212 2213 2214 /* See uma.h */ 2215 void 2216 uma_zdestroy(uma_zone_t zone) 2217 { 2218 2219 sx_slock(&uma_drain_lock); 2220 zone_free_item(zones, zone, NULL, SKIP_NONE); 2221 sx_sunlock(&uma_drain_lock); 2222 } 2223 2224 void 2225 uma_zwait(uma_zone_t zone) 2226 { 2227 void *item; 2228 2229 item = uma_zalloc_arg(zone, NULL, M_WAITOK); 2230 uma_zfree(zone, item); 2231 } 2232 2233 void * 2234 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags) 2235 { 2236 void *item; 2237 #ifdef SMP 2238 int i; 2239 2240 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 2241 #endif 2242 item = uma_zalloc_arg(zone, udata, flags &~ M_ZERO); 2243 if (item != NULL && (flags & M_ZERO)) { 2244 #ifdef SMP 2245 CPU_FOREACH(i) 2246 bzero(zpcpu_get_cpu(item, i), zone->uz_size); 2247 #else 2248 bzero(item, zone->uz_size); 2249 #endif 2250 } 2251 return (item); 2252 } 2253 2254 /* 2255 * A stub while both regular and pcpu cases are identical. 2256 */ 2257 void 2258 uma_zfree_pcpu_arg(uma_zone_t zone, void *item, void *udata) 2259 { 2260 2261 #ifdef SMP 2262 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 2263 #endif 2264 uma_zfree_arg(zone, item, udata); 2265 } 2266 2267 /* See uma.h */ 2268 void * 2269 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 2270 { 2271 uma_zone_domain_t zdom; 2272 uma_bucket_t bucket; 2273 uma_cache_t cache; 2274 void *item; 2275 int cpu, domain, lockfail; 2276 #ifdef INVARIANTS 2277 bool skipdbg; 2278 #endif 2279 2280 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2281 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 2282 2283 /* This is the fast path allocation */ 2284 CTR4(KTR_UMA, "uma_zalloc_arg thread %x zone %s(%p) flags %d", 2285 curthread, zone->uz_name, zone, flags); 2286 2287 if (flags & M_WAITOK) { 2288 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2289 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 2290 } 2291 KASSERT((flags & M_EXEC) == 0, ("uma_zalloc_arg: called with M_EXEC")); 2292 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2293 ("uma_zalloc_arg: called with spinlock or critical section held")); 2294 if (zone->uz_flags & UMA_ZONE_PCPU) 2295 KASSERT((flags & M_ZERO) == 0, ("allocating from a pcpu zone " 2296 "with M_ZERO passed")); 2297 2298 #ifdef DEBUG_MEMGUARD 2299 if (memguard_cmp_zone(zone)) { 2300 item = memguard_alloc(zone->uz_size, flags); 2301 if (item != NULL) { 2302 if (zone->uz_init != NULL && 2303 zone->uz_init(item, zone->uz_size, flags) != 0) 2304 return (NULL); 2305 if (zone->uz_ctor != NULL && 2306 zone->uz_ctor(item, zone->uz_size, udata, 2307 flags) != 0) { 2308 zone->uz_fini(item, zone->uz_size); 2309 return (NULL); 2310 } 2311 return (item); 2312 } 2313 /* This is unfortunate but should not be fatal. */ 2314 } 2315 #endif 2316 /* 2317 * If possible, allocate from the per-CPU cache. There are two 2318 * requirements for safe access to the per-CPU cache: (1) the thread 2319 * accessing the cache must not be preempted or yield during access, 2320 * and (2) the thread must not migrate CPUs without switching which 2321 * cache it accesses. We rely on a critical section to prevent 2322 * preemption and migration. We release the critical section in 2323 * order to acquire the zone mutex if we are unable to allocate from 2324 * the current cache; when we re-acquire the critical section, we 2325 * must detect and handle migration if it has occurred. 2326 */ 2327 critical_enter(); 2328 cpu = curcpu; 2329 cache = &zone->uz_cpu[cpu]; 2330 2331 zalloc_start: 2332 bucket = cache->uc_allocbucket; 2333 if (bucket != NULL && bucket->ub_cnt > 0) { 2334 bucket->ub_cnt--; 2335 item = bucket->ub_bucket[bucket->ub_cnt]; 2336 #ifdef INVARIANTS 2337 bucket->ub_bucket[bucket->ub_cnt] = NULL; 2338 #endif 2339 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 2340 cache->uc_allocs++; 2341 critical_exit(); 2342 #ifdef INVARIANTS 2343 skipdbg = uma_dbg_zskip(zone, item); 2344 #endif 2345 if (zone->uz_ctor != NULL && 2346 #ifdef INVARIANTS 2347 (!skipdbg || zone->uz_ctor != trash_ctor || 2348 zone->uz_dtor != trash_dtor) && 2349 #endif 2350 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2351 atomic_add_long(&zone->uz_fails, 1); 2352 zone_free_item(zone, item, udata, SKIP_DTOR); 2353 return (NULL); 2354 } 2355 #ifdef INVARIANTS 2356 if (!skipdbg) 2357 uma_dbg_alloc(zone, NULL, item); 2358 #endif 2359 if (flags & M_ZERO) 2360 uma_zero_item(item, zone); 2361 return (item); 2362 } 2363 2364 /* 2365 * We have run out of items in our alloc bucket. 2366 * See if we can switch with our free bucket. 2367 */ 2368 bucket = cache->uc_freebucket; 2369 if (bucket != NULL && bucket->ub_cnt > 0) { 2370 CTR2(KTR_UMA, 2371 "uma_zalloc: zone %s(%p) swapping empty with alloc", 2372 zone->uz_name, zone); 2373 cache->uc_freebucket = cache->uc_allocbucket; 2374 cache->uc_allocbucket = bucket; 2375 goto zalloc_start; 2376 } 2377 2378 /* 2379 * Discard any empty allocation bucket while we hold no locks. 2380 */ 2381 bucket = cache->uc_allocbucket; 2382 cache->uc_allocbucket = NULL; 2383 critical_exit(); 2384 if (bucket != NULL) 2385 bucket_free(zone, bucket, udata); 2386 2387 if (zone->uz_flags & UMA_ZONE_NUMA) 2388 domain = PCPU_GET(domain); 2389 else 2390 domain = UMA_ANYDOMAIN; 2391 2392 /* Short-circuit for zones without buckets and low memory. */ 2393 if (zone->uz_count == 0 || bucketdisable) 2394 goto zalloc_item; 2395 2396 /* 2397 * Attempt to retrieve the item from the per-CPU cache has failed, so 2398 * we must go back to the zone. This requires the zone lock, so we 2399 * must drop the critical section, then re-acquire it when we go back 2400 * to the cache. Since the critical section is released, we may be 2401 * preempted or migrate. As such, make sure not to maintain any 2402 * thread-local state specific to the cache from prior to releasing 2403 * the critical section. 2404 */ 2405 lockfail = 0; 2406 if (ZONE_TRYLOCK(zone) == 0) { 2407 /* Record contention to size the buckets. */ 2408 ZONE_LOCK(zone); 2409 lockfail = 1; 2410 } 2411 critical_enter(); 2412 cpu = curcpu; 2413 cache = &zone->uz_cpu[cpu]; 2414 2415 /* See if we lost the race to fill the cache. */ 2416 if (cache->uc_allocbucket != NULL) { 2417 ZONE_UNLOCK(zone); 2418 goto zalloc_start; 2419 } 2420 2421 /* 2422 * Check the zone's cache of buckets. 2423 */ 2424 if (domain == UMA_ANYDOMAIN) 2425 zdom = &zone->uz_domain[0]; 2426 else 2427 zdom = &zone->uz_domain[domain]; 2428 if ((bucket = LIST_FIRST(&zdom->uzd_buckets)) != NULL) { 2429 KASSERT(bucket->ub_cnt != 0, 2430 ("uma_zalloc_arg: Returning an empty bucket.")); 2431 2432 LIST_REMOVE(bucket, ub_link); 2433 cache->uc_allocbucket = bucket; 2434 ZONE_UNLOCK(zone); 2435 goto zalloc_start; 2436 } 2437 /* We are no longer associated with this CPU. */ 2438 critical_exit(); 2439 2440 /* 2441 * We bump the uz count when the cache size is insufficient to 2442 * handle the working set. 2443 */ 2444 if (lockfail && zone->uz_count < BUCKET_MAX) 2445 zone->uz_count++; 2446 ZONE_UNLOCK(zone); 2447 2448 /* 2449 * Now lets just fill a bucket and put it on the free list. If that 2450 * works we'll restart the allocation from the beginning and it 2451 * will use the just filled bucket. 2452 */ 2453 bucket = zone_alloc_bucket(zone, udata, domain, flags); 2454 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 2455 zone->uz_name, zone, bucket); 2456 if (bucket != NULL) { 2457 ZONE_LOCK(zone); 2458 critical_enter(); 2459 cpu = curcpu; 2460 cache = &zone->uz_cpu[cpu]; 2461 /* 2462 * See if we lost the race or were migrated. Cache the 2463 * initialized bucket to make this less likely or claim 2464 * the memory directly. 2465 */ 2466 if (cache->uc_allocbucket != NULL || 2467 (zone->uz_flags & UMA_ZONE_NUMA && 2468 domain != PCPU_GET(domain))) 2469 LIST_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); 2470 else 2471 cache->uc_allocbucket = bucket; 2472 ZONE_UNLOCK(zone); 2473 goto zalloc_start; 2474 } 2475 2476 /* 2477 * We may not be able to get a bucket so return an actual item. 2478 */ 2479 zalloc_item: 2480 item = zone_alloc_item(zone, udata, domain, flags); 2481 2482 return (item); 2483 } 2484 2485 void * 2486 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 2487 { 2488 2489 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2490 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 2491 2492 /* This is the fast path allocation */ 2493 CTR5(KTR_UMA, 2494 "uma_zalloc_domain thread %x zone %s(%p) domain %d flags %d", 2495 curthread, zone->uz_name, zone, domain, flags); 2496 2497 if (flags & M_WAITOK) { 2498 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2499 "uma_zalloc_domain: zone \"%s\"", zone->uz_name); 2500 } 2501 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2502 ("uma_zalloc_domain: called with spinlock or critical section held")); 2503 2504 return (zone_alloc_item(zone, udata, domain, flags)); 2505 } 2506 2507 /* 2508 * Find a slab with some space. Prefer slabs that are partially used over those 2509 * that are totally full. This helps to reduce fragmentation. 2510 * 2511 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 2512 * only 'domain'. 2513 */ 2514 static uma_slab_t 2515 keg_first_slab(uma_keg_t keg, int domain, int rr) 2516 { 2517 uma_domain_t dom; 2518 uma_slab_t slab; 2519 int start; 2520 2521 KASSERT(domain >= 0 && domain < vm_ndomains, 2522 ("keg_first_slab: domain %d out of range", domain)); 2523 2524 slab = NULL; 2525 start = domain; 2526 do { 2527 dom = &keg->uk_domain[domain]; 2528 if (!LIST_EMPTY(&dom->ud_part_slab)) 2529 return (LIST_FIRST(&dom->ud_part_slab)); 2530 if (!LIST_EMPTY(&dom->ud_free_slab)) { 2531 slab = LIST_FIRST(&dom->ud_free_slab); 2532 LIST_REMOVE(slab, us_link); 2533 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 2534 return (slab); 2535 } 2536 if (rr) 2537 domain = (domain + 1) % vm_ndomains; 2538 } while (domain != start); 2539 2540 return (NULL); 2541 } 2542 2543 static uma_slab_t 2544 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, int flags) 2545 { 2546 uma_domain_t dom; 2547 uma_slab_t slab; 2548 int allocflags, domain, reserve, rr, start; 2549 2550 mtx_assert(&keg->uk_lock, MA_OWNED); 2551 slab = NULL; 2552 reserve = 0; 2553 allocflags = flags; 2554 if ((flags & M_USE_RESERVE) == 0) 2555 reserve = keg->uk_reserve; 2556 2557 /* 2558 * Round-robin for non first-touch zones when there is more than one 2559 * domain. 2560 */ 2561 if (vm_ndomains == 1) 2562 rdomain = 0; 2563 rr = rdomain == UMA_ANYDOMAIN; 2564 if (rr) { 2565 keg->uk_cursor = (keg->uk_cursor + 1) % vm_ndomains; 2566 domain = start = keg->uk_cursor; 2567 /* Only block on the second pass. */ 2568 if ((flags & (M_WAITOK | M_NOVM)) == M_WAITOK) 2569 allocflags = (allocflags & ~M_WAITOK) | M_NOWAIT; 2570 } else 2571 domain = start = rdomain; 2572 2573 again: 2574 do { 2575 if (keg->uk_free > reserve && 2576 (slab = keg_first_slab(keg, domain, rr)) != NULL) { 2577 MPASS(slab->us_keg == keg); 2578 return (slab); 2579 } 2580 2581 /* 2582 * M_NOVM means don't ask at all! 2583 */ 2584 if (flags & M_NOVM) 2585 break; 2586 2587 if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) { 2588 keg->uk_flags |= UMA_ZFLAG_FULL; 2589 /* 2590 * If this is not a multi-zone, set the FULL bit. 2591 * Otherwise slab_multi() takes care of it. 2592 */ 2593 if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) { 2594 zone->uz_flags |= UMA_ZFLAG_FULL; 2595 zone_log_warning(zone); 2596 zone_maxaction(zone); 2597 } 2598 if (flags & M_NOWAIT) 2599 return (NULL); 2600 zone->uz_sleeps++; 2601 msleep(keg, &keg->uk_lock, PVM, "keglimit", 0); 2602 continue; 2603 } 2604 slab = keg_alloc_slab(keg, zone, domain, allocflags); 2605 /* 2606 * If we got a slab here it's safe to mark it partially used 2607 * and return. We assume that the caller is going to remove 2608 * at least one item. 2609 */ 2610 if (slab) { 2611 MPASS(slab->us_keg == keg); 2612 dom = &keg->uk_domain[slab->us_domain]; 2613 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 2614 return (slab); 2615 } 2616 if (rr) { 2617 keg->uk_cursor = (keg->uk_cursor + 1) % vm_ndomains; 2618 domain = keg->uk_cursor; 2619 } 2620 } while (domain != start); 2621 2622 /* Retry domain scan with blocking. */ 2623 if (allocflags != flags) { 2624 allocflags = flags; 2625 goto again; 2626 } 2627 2628 /* 2629 * We might not have been able to get a slab but another cpu 2630 * could have while we were unlocked. Check again before we 2631 * fail. 2632 */ 2633 if (keg->uk_free > reserve && 2634 (slab = keg_first_slab(keg, domain, rr)) != NULL) { 2635 MPASS(slab->us_keg == keg); 2636 return (slab); 2637 } 2638 return (NULL); 2639 } 2640 2641 static uma_slab_t 2642 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int domain, int flags) 2643 { 2644 uma_slab_t slab; 2645 2646 if (keg == NULL) { 2647 keg = zone_first_keg(zone); 2648 KEG_LOCK(keg); 2649 } 2650 2651 for (;;) { 2652 slab = keg_fetch_slab(keg, zone, domain, flags); 2653 if (slab) 2654 return (slab); 2655 if (flags & (M_NOWAIT | M_NOVM)) 2656 break; 2657 } 2658 KEG_UNLOCK(keg); 2659 return (NULL); 2660 } 2661 2662 /* 2663 * uma_zone_fetch_slab_multi: Fetches a slab from one available keg. Returns 2664 * with the keg locked. On NULL no lock is held. 2665 * 2666 * The last pointer is used to seed the search. It is not required. 2667 */ 2668 static uma_slab_t 2669 zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int domain, int rflags) 2670 { 2671 uma_klink_t klink; 2672 uma_slab_t slab; 2673 uma_keg_t keg; 2674 int flags; 2675 int empty; 2676 int full; 2677 2678 /* 2679 * Don't wait on the first pass. This will skip limit tests 2680 * as well. We don't want to block if we can find a provider 2681 * without blocking. 2682 */ 2683 flags = (rflags & ~M_WAITOK) | M_NOWAIT; 2684 /* 2685 * Use the last slab allocated as a hint for where to start 2686 * the search. 2687 */ 2688 if (last != NULL) { 2689 slab = keg_fetch_slab(last, zone, domain, flags); 2690 if (slab) 2691 return (slab); 2692 KEG_UNLOCK(last); 2693 } 2694 /* 2695 * Loop until we have a slab incase of transient failures 2696 * while M_WAITOK is specified. I'm not sure this is 100% 2697 * required but we've done it for so long now. 2698 */ 2699 for (;;) { 2700 empty = 0; 2701 full = 0; 2702 /* 2703 * Search the available kegs for slabs. Be careful to hold the 2704 * correct lock while calling into the keg layer. 2705 */ 2706 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) { 2707 keg = klink->kl_keg; 2708 KEG_LOCK(keg); 2709 if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) { 2710 slab = keg_fetch_slab(keg, zone, domain, flags); 2711 if (slab) 2712 return (slab); 2713 } 2714 if (keg->uk_flags & UMA_ZFLAG_FULL) 2715 full++; 2716 else 2717 empty++; 2718 KEG_UNLOCK(keg); 2719 } 2720 if (rflags & (M_NOWAIT | M_NOVM)) 2721 break; 2722 flags = rflags; 2723 /* 2724 * All kegs are full. XXX We can't atomically check all kegs 2725 * and sleep so just sleep for a short period and retry. 2726 */ 2727 if (full && !empty) { 2728 ZONE_LOCK(zone); 2729 zone->uz_flags |= UMA_ZFLAG_FULL; 2730 zone->uz_sleeps++; 2731 zone_log_warning(zone); 2732 zone_maxaction(zone); 2733 msleep(zone, zone->uz_lockptr, PVM, 2734 "zonelimit", hz/100); 2735 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2736 ZONE_UNLOCK(zone); 2737 continue; 2738 } 2739 } 2740 return (NULL); 2741 } 2742 2743 static void * 2744 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 2745 { 2746 uma_domain_t dom; 2747 void *item; 2748 uint8_t freei; 2749 2750 MPASS(keg == slab->us_keg); 2751 mtx_assert(&keg->uk_lock, MA_OWNED); 2752 2753 freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1; 2754 BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free); 2755 item = slab->us_data + (keg->uk_rsize * freei); 2756 slab->us_freecount--; 2757 keg->uk_free--; 2758 2759 /* Move this slab to the full list */ 2760 if (slab->us_freecount == 0) { 2761 LIST_REMOVE(slab, us_link); 2762 dom = &keg->uk_domain[slab->us_domain]; 2763 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 2764 } 2765 2766 return (item); 2767 } 2768 2769 static int 2770 zone_import(uma_zone_t zone, void **bucket, int max, int domain, int flags) 2771 { 2772 uma_slab_t slab; 2773 uma_keg_t keg; 2774 int stripe; 2775 int i; 2776 2777 slab = NULL; 2778 keg = NULL; 2779 /* Try to keep the buckets totally full */ 2780 for (i = 0; i < max; ) { 2781 if ((slab = zone->uz_slab(zone, keg, domain, flags)) == NULL) 2782 break; 2783 keg = slab->us_keg; 2784 stripe = howmany(max, vm_ndomains); 2785 while (slab->us_freecount && i < max) { 2786 bucket[i++] = slab_alloc_item(keg, slab); 2787 if (keg->uk_free <= keg->uk_reserve) 2788 break; 2789 #ifdef NUMA 2790 /* 2791 * If the zone is striped we pick a new slab for every 2792 * N allocations. Eliminating this conditional will 2793 * instead pick a new domain for each bucket rather 2794 * than stripe within each bucket. The current option 2795 * produces more fragmentation and requires more cpu 2796 * time but yields better distribution. 2797 */ 2798 if ((zone->uz_flags & UMA_ZONE_NUMA) == 0 && 2799 vm_ndomains > 1 && --stripe == 0) 2800 break; 2801 #endif 2802 } 2803 /* Don't block if we allocated any successfully. */ 2804 flags &= ~M_WAITOK; 2805 flags |= M_NOWAIT; 2806 } 2807 if (slab != NULL) 2808 KEG_UNLOCK(keg); 2809 2810 return i; 2811 } 2812 2813 static uma_bucket_t 2814 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags) 2815 { 2816 uma_bucket_t bucket; 2817 int max; 2818 2819 /* Don't wait for buckets, preserve caller's NOVM setting. */ 2820 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 2821 if (bucket == NULL) 2822 return (NULL); 2823 2824 max = MIN(bucket->ub_entries, zone->uz_count); 2825 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 2826 max, domain, flags); 2827 2828 /* 2829 * Initialize the memory if necessary. 2830 */ 2831 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 2832 int i; 2833 2834 for (i = 0; i < bucket->ub_cnt; i++) 2835 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 2836 flags) != 0) 2837 break; 2838 /* 2839 * If we couldn't initialize the whole bucket, put the 2840 * rest back onto the freelist. 2841 */ 2842 if (i != bucket->ub_cnt) { 2843 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 2844 bucket->ub_cnt - i); 2845 #ifdef INVARIANTS 2846 bzero(&bucket->ub_bucket[i], 2847 sizeof(void *) * (bucket->ub_cnt - i)); 2848 #endif 2849 bucket->ub_cnt = i; 2850 } 2851 } 2852 2853 if (bucket->ub_cnt == 0) { 2854 bucket_free(zone, bucket, udata); 2855 atomic_add_long(&zone->uz_fails, 1); 2856 return (NULL); 2857 } 2858 2859 return (bucket); 2860 } 2861 2862 /* 2863 * Allocates a single item from a zone. 2864 * 2865 * Arguments 2866 * zone The zone to alloc for. 2867 * udata The data to be passed to the constructor. 2868 * domain The domain to allocate from or UMA_ANYDOMAIN. 2869 * flags M_WAITOK, M_NOWAIT, M_ZERO. 2870 * 2871 * Returns 2872 * NULL if there is no memory and M_NOWAIT is set 2873 * An item if successful 2874 */ 2875 2876 static void * 2877 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 2878 { 2879 void *item; 2880 #ifdef INVARIANTS 2881 bool skipdbg; 2882 #endif 2883 2884 item = NULL; 2885 2886 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 2887 goto fail; 2888 atomic_add_long(&zone->uz_allocs, 1); 2889 2890 #ifdef INVARIANTS 2891 skipdbg = uma_dbg_zskip(zone, item); 2892 #endif 2893 /* 2894 * We have to call both the zone's init (not the keg's init) 2895 * and the zone's ctor. This is because the item is going from 2896 * a keg slab directly to the user, and the user is expecting it 2897 * to be both zone-init'd as well as zone-ctor'd. 2898 */ 2899 if (zone->uz_init != NULL) { 2900 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 2901 zone_free_item(zone, item, udata, SKIP_FINI); 2902 goto fail; 2903 } 2904 } 2905 if (zone->uz_ctor != NULL && 2906 #ifdef INVARIANTS 2907 (!skipdbg || zone->uz_ctor != trash_ctor || 2908 zone->uz_dtor != trash_dtor) && 2909 #endif 2910 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2911 zone_free_item(zone, item, udata, SKIP_DTOR); 2912 goto fail; 2913 } 2914 #ifdef INVARIANTS 2915 if (!skipdbg) 2916 uma_dbg_alloc(zone, NULL, item); 2917 #endif 2918 if (flags & M_ZERO) 2919 uma_zero_item(item, zone); 2920 2921 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 2922 zone->uz_name, zone); 2923 2924 return (item); 2925 2926 fail: 2927 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 2928 zone->uz_name, zone); 2929 atomic_add_long(&zone->uz_fails, 1); 2930 return (NULL); 2931 } 2932 2933 /* See uma.h */ 2934 void 2935 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 2936 { 2937 uma_cache_t cache; 2938 uma_bucket_t bucket; 2939 uma_zone_domain_t zdom; 2940 int cpu, domain, lockfail; 2941 #ifdef INVARIANTS 2942 bool skipdbg; 2943 #endif 2944 2945 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2946 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 2947 2948 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 2949 zone->uz_name); 2950 2951 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2952 ("uma_zfree_arg: called with spinlock or critical section held")); 2953 2954 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 2955 if (item == NULL) 2956 return; 2957 #ifdef DEBUG_MEMGUARD 2958 if (is_memguard_addr(item)) { 2959 if (zone->uz_dtor != NULL) 2960 zone->uz_dtor(item, zone->uz_size, udata); 2961 if (zone->uz_fini != NULL) 2962 zone->uz_fini(item, zone->uz_size); 2963 memguard_free(item); 2964 return; 2965 } 2966 #endif 2967 #ifdef INVARIANTS 2968 skipdbg = uma_dbg_zskip(zone, item); 2969 if (skipdbg == false) { 2970 if (zone->uz_flags & UMA_ZONE_MALLOC) 2971 uma_dbg_free(zone, udata, item); 2972 else 2973 uma_dbg_free(zone, NULL, item); 2974 } 2975 if (zone->uz_dtor != NULL && (!skipdbg || 2976 zone->uz_dtor != trash_dtor || zone->uz_ctor != trash_ctor)) 2977 #else 2978 if (zone->uz_dtor != NULL) 2979 #endif 2980 zone->uz_dtor(item, zone->uz_size, udata); 2981 2982 /* 2983 * The race here is acceptable. If we miss it we'll just have to wait 2984 * a little longer for the limits to be reset. 2985 */ 2986 if (zone->uz_flags & UMA_ZFLAG_FULL) 2987 goto zfree_item; 2988 2989 /* 2990 * If possible, free to the per-CPU cache. There are two 2991 * requirements for safe access to the per-CPU cache: (1) the thread 2992 * accessing the cache must not be preempted or yield during access, 2993 * and (2) the thread must not migrate CPUs without switching which 2994 * cache it accesses. We rely on a critical section to prevent 2995 * preemption and migration. We release the critical section in 2996 * order to acquire the zone mutex if we are unable to free to the 2997 * current cache; when we re-acquire the critical section, we must 2998 * detect and handle migration if it has occurred. 2999 */ 3000 zfree_restart: 3001 critical_enter(); 3002 cpu = curcpu; 3003 cache = &zone->uz_cpu[cpu]; 3004 3005 zfree_start: 3006 /* 3007 * Try to free into the allocbucket first to give LIFO ordering 3008 * for cache-hot datastructures. Spill over into the freebucket 3009 * if necessary. Alloc will swap them if one runs dry. 3010 */ 3011 bucket = cache->uc_allocbucket; 3012 if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries) 3013 bucket = cache->uc_freebucket; 3014 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 3015 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 3016 ("uma_zfree: Freeing to non free bucket index.")); 3017 bucket->ub_bucket[bucket->ub_cnt] = item; 3018 bucket->ub_cnt++; 3019 cache->uc_frees++; 3020 critical_exit(); 3021 return; 3022 } 3023 3024 /* 3025 * We must go back the zone, which requires acquiring the zone lock, 3026 * which in turn means we must release and re-acquire the critical 3027 * section. Since the critical section is released, we may be 3028 * preempted or migrate. As such, make sure not to maintain any 3029 * thread-local state specific to the cache from prior to releasing 3030 * the critical section. 3031 */ 3032 critical_exit(); 3033 if (zone->uz_count == 0 || bucketdisable) 3034 goto zfree_item; 3035 3036 lockfail = 0; 3037 if (ZONE_TRYLOCK(zone) == 0) { 3038 /* Record contention to size the buckets. */ 3039 ZONE_LOCK(zone); 3040 lockfail = 1; 3041 } 3042 critical_enter(); 3043 cpu = curcpu; 3044 cache = &zone->uz_cpu[cpu]; 3045 3046 /* 3047 * Since we have locked the zone we may as well send back our stats. 3048 */ 3049 atomic_add_long(&zone->uz_allocs, cache->uc_allocs); 3050 atomic_add_long(&zone->uz_frees, cache->uc_frees); 3051 cache->uc_allocs = 0; 3052 cache->uc_frees = 0; 3053 3054 bucket = cache->uc_freebucket; 3055 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 3056 ZONE_UNLOCK(zone); 3057 goto zfree_start; 3058 } 3059 cache->uc_freebucket = NULL; 3060 /* We are no longer associated with this CPU. */ 3061 critical_exit(); 3062 3063 if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) 3064 domain = PCPU_GET(domain); 3065 else 3066 domain = 0; 3067 zdom = &zone->uz_domain[0]; 3068 3069 /* Can we throw this on the zone full list? */ 3070 if (bucket != NULL) { 3071 CTR3(KTR_UMA, 3072 "uma_zfree: zone %s(%p) putting bucket %p on free list", 3073 zone->uz_name, zone, bucket); 3074 /* ub_cnt is pointing to the last free item */ 3075 KASSERT(bucket->ub_cnt != 0, 3076 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n")); 3077 if ((zone->uz_flags & UMA_ZONE_NOBUCKETCACHE) != 0) { 3078 ZONE_UNLOCK(zone); 3079 bucket_drain(zone, bucket); 3080 bucket_free(zone, bucket, udata); 3081 goto zfree_restart; 3082 } else 3083 LIST_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); 3084 } 3085 3086 /* 3087 * We bump the uz count when the cache size is insufficient to 3088 * handle the working set. 3089 */ 3090 if (lockfail && zone->uz_count < BUCKET_MAX) 3091 zone->uz_count++; 3092 ZONE_UNLOCK(zone); 3093 3094 bucket = bucket_alloc(zone, udata, M_NOWAIT); 3095 CTR3(KTR_UMA, "uma_zfree: zone %s(%p) allocated bucket %p", 3096 zone->uz_name, zone, bucket); 3097 if (bucket) { 3098 critical_enter(); 3099 cpu = curcpu; 3100 cache = &zone->uz_cpu[cpu]; 3101 if (cache->uc_freebucket == NULL && 3102 ((zone->uz_flags & UMA_ZONE_NUMA) == 0 || 3103 domain == PCPU_GET(domain))) { 3104 cache->uc_freebucket = bucket; 3105 goto zfree_start; 3106 } 3107 /* 3108 * We lost the race, start over. We have to drop our 3109 * critical section to free the bucket. 3110 */ 3111 critical_exit(); 3112 bucket_free(zone, bucket, udata); 3113 goto zfree_restart; 3114 } 3115 3116 /* 3117 * If nothing else caught this, we'll just do an internal free. 3118 */ 3119 zfree_item: 3120 zone_free_item(zone, item, udata, SKIP_DTOR); 3121 3122 return; 3123 } 3124 3125 void 3126 uma_zfree_domain(uma_zone_t zone, void *item, void *udata) 3127 { 3128 3129 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3130 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 3131 3132 CTR2(KTR_UMA, "uma_zfree_domain thread %x zone %s", curthread, 3133 zone->uz_name); 3134 3135 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3136 ("uma_zfree_domain: called with spinlock or critical section held")); 3137 3138 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 3139 if (item == NULL) 3140 return; 3141 zone_free_item(zone, item, udata, SKIP_NONE); 3142 } 3143 3144 static void 3145 slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item) 3146 { 3147 uma_domain_t dom; 3148 uint8_t freei; 3149 3150 mtx_assert(&keg->uk_lock, MA_OWNED); 3151 MPASS(keg == slab->us_keg); 3152 3153 dom = &keg->uk_domain[slab->us_domain]; 3154 3155 /* Do we need to remove from any lists? */ 3156 if (slab->us_freecount+1 == keg->uk_ipers) { 3157 LIST_REMOVE(slab, us_link); 3158 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 3159 } else if (slab->us_freecount == 0) { 3160 LIST_REMOVE(slab, us_link); 3161 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3162 } 3163 3164 /* Slab management. */ 3165 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3166 BIT_SET(SLAB_SETSIZE, freei, &slab->us_free); 3167 slab->us_freecount++; 3168 3169 /* Keg statistics. */ 3170 keg->uk_free++; 3171 } 3172 3173 static void 3174 zone_release(uma_zone_t zone, void **bucket, int cnt) 3175 { 3176 void *item; 3177 uma_slab_t slab; 3178 uma_keg_t keg; 3179 uint8_t *mem; 3180 int clearfull; 3181 int i; 3182 3183 clearfull = 0; 3184 keg = zone_first_keg(zone); 3185 KEG_LOCK(keg); 3186 for (i = 0; i < cnt; i++) { 3187 item = bucket[i]; 3188 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) { 3189 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 3190 if (zone->uz_flags & UMA_ZONE_HASH) { 3191 slab = hash_sfind(&keg->uk_hash, mem); 3192 } else { 3193 mem += keg->uk_pgoff; 3194 slab = (uma_slab_t)mem; 3195 } 3196 } else { 3197 slab = vtoslab((vm_offset_t)item); 3198 if (slab->us_keg != keg) { 3199 KEG_UNLOCK(keg); 3200 keg = slab->us_keg; 3201 KEG_LOCK(keg); 3202 } 3203 } 3204 slab_free_item(keg, slab, item); 3205 if (keg->uk_flags & UMA_ZFLAG_FULL) { 3206 if (keg->uk_pages < keg->uk_maxpages) { 3207 keg->uk_flags &= ~UMA_ZFLAG_FULL; 3208 clearfull = 1; 3209 } 3210 3211 /* 3212 * We can handle one more allocation. Since we're 3213 * clearing ZFLAG_FULL, wake up all procs blocked 3214 * on pages. This should be uncommon, so keeping this 3215 * simple for now (rather than adding count of blocked 3216 * threads etc). 3217 */ 3218 wakeup(keg); 3219 } 3220 } 3221 KEG_UNLOCK(keg); 3222 if (clearfull) { 3223 ZONE_LOCK(zone); 3224 zone->uz_flags &= ~UMA_ZFLAG_FULL; 3225 wakeup(zone); 3226 ZONE_UNLOCK(zone); 3227 } 3228 3229 } 3230 3231 /* 3232 * Frees a single item to any zone. 3233 * 3234 * Arguments: 3235 * zone The zone to free to 3236 * item The item we're freeing 3237 * udata User supplied data for the dtor 3238 * skip Skip dtors and finis 3239 */ 3240 static void 3241 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 3242 { 3243 #ifdef INVARIANTS 3244 bool skipdbg; 3245 3246 skipdbg = uma_dbg_zskip(zone, item); 3247 if (skip == SKIP_NONE && !skipdbg) { 3248 if (zone->uz_flags & UMA_ZONE_MALLOC) 3249 uma_dbg_free(zone, udata, item); 3250 else 3251 uma_dbg_free(zone, NULL, item); 3252 } 3253 3254 if (skip < SKIP_DTOR && zone->uz_dtor != NULL && 3255 (!skipdbg || zone->uz_dtor != trash_dtor || 3256 zone->uz_ctor != trash_ctor)) 3257 #else 3258 if (skip < SKIP_DTOR && zone->uz_dtor != NULL) 3259 #endif 3260 zone->uz_dtor(item, zone->uz_size, udata); 3261 3262 if (skip < SKIP_FINI && zone->uz_fini) 3263 zone->uz_fini(item, zone->uz_size); 3264 3265 atomic_add_long(&zone->uz_frees, 1); 3266 zone->uz_release(zone->uz_arg, &item, 1); 3267 } 3268 3269 /* See uma.h */ 3270 int 3271 uma_zone_set_max(uma_zone_t zone, int nitems) 3272 { 3273 uma_keg_t keg; 3274 3275 keg = zone_first_keg(zone); 3276 if (keg == NULL) 3277 return (0); 3278 KEG_LOCK(keg); 3279 keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera; 3280 if (keg->uk_maxpages * keg->uk_ipers < nitems) 3281 keg->uk_maxpages += keg->uk_ppera; 3282 nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers; 3283 KEG_UNLOCK(keg); 3284 3285 return (nitems); 3286 } 3287 3288 /* See uma.h */ 3289 int 3290 uma_zone_get_max(uma_zone_t zone) 3291 { 3292 int nitems; 3293 uma_keg_t keg; 3294 3295 keg = zone_first_keg(zone); 3296 if (keg == NULL) 3297 return (0); 3298 KEG_LOCK(keg); 3299 nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers; 3300 KEG_UNLOCK(keg); 3301 3302 return (nitems); 3303 } 3304 3305 /* See uma.h */ 3306 void 3307 uma_zone_set_warning(uma_zone_t zone, const char *warning) 3308 { 3309 3310 ZONE_LOCK(zone); 3311 zone->uz_warning = warning; 3312 ZONE_UNLOCK(zone); 3313 } 3314 3315 /* See uma.h */ 3316 void 3317 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 3318 { 3319 3320 ZONE_LOCK(zone); 3321 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 3322 ZONE_UNLOCK(zone); 3323 } 3324 3325 /* See uma.h */ 3326 int 3327 uma_zone_get_cur(uma_zone_t zone) 3328 { 3329 int64_t nitems; 3330 u_int i; 3331 3332 ZONE_LOCK(zone); 3333 nitems = zone->uz_allocs - zone->uz_frees; 3334 CPU_FOREACH(i) { 3335 /* 3336 * See the comment in sysctl_vm_zone_stats() regarding the 3337 * safety of accessing the per-cpu caches. With the zone lock 3338 * held, it is safe, but can potentially result in stale data. 3339 */ 3340 nitems += zone->uz_cpu[i].uc_allocs - 3341 zone->uz_cpu[i].uc_frees; 3342 } 3343 ZONE_UNLOCK(zone); 3344 3345 return (nitems < 0 ? 0 : nitems); 3346 } 3347 3348 /* See uma.h */ 3349 void 3350 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 3351 { 3352 uma_keg_t keg; 3353 3354 keg = zone_first_keg(zone); 3355 KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type")); 3356 KEG_LOCK(keg); 3357 KASSERT(keg->uk_pages == 0, 3358 ("uma_zone_set_init on non-empty keg")); 3359 keg->uk_init = uminit; 3360 KEG_UNLOCK(keg); 3361 } 3362 3363 /* See uma.h */ 3364 void 3365 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 3366 { 3367 uma_keg_t keg; 3368 3369 keg = zone_first_keg(zone); 3370 KASSERT(keg != NULL, ("uma_zone_set_fini: Invalid zone type")); 3371 KEG_LOCK(keg); 3372 KASSERT(keg->uk_pages == 0, 3373 ("uma_zone_set_fini on non-empty keg")); 3374 keg->uk_fini = fini; 3375 KEG_UNLOCK(keg); 3376 } 3377 3378 /* See uma.h */ 3379 void 3380 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 3381 { 3382 3383 ZONE_LOCK(zone); 3384 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3385 ("uma_zone_set_zinit on non-empty keg")); 3386 zone->uz_init = zinit; 3387 ZONE_UNLOCK(zone); 3388 } 3389 3390 /* See uma.h */ 3391 void 3392 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 3393 { 3394 3395 ZONE_LOCK(zone); 3396 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3397 ("uma_zone_set_zfini on non-empty keg")); 3398 zone->uz_fini = zfini; 3399 ZONE_UNLOCK(zone); 3400 } 3401 3402 /* See uma.h */ 3403 /* XXX uk_freef is not actually used with the zone locked */ 3404 void 3405 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 3406 { 3407 uma_keg_t keg; 3408 3409 keg = zone_first_keg(zone); 3410 KASSERT(keg != NULL, ("uma_zone_set_freef: Invalid zone type")); 3411 KEG_LOCK(keg); 3412 keg->uk_freef = freef; 3413 KEG_UNLOCK(keg); 3414 } 3415 3416 /* See uma.h */ 3417 /* XXX uk_allocf is not actually used with the zone locked */ 3418 void 3419 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 3420 { 3421 uma_keg_t keg; 3422 3423 keg = zone_first_keg(zone); 3424 KEG_LOCK(keg); 3425 keg->uk_allocf = allocf; 3426 KEG_UNLOCK(keg); 3427 } 3428 3429 /* See uma.h */ 3430 void 3431 uma_zone_reserve(uma_zone_t zone, int items) 3432 { 3433 uma_keg_t keg; 3434 3435 keg = zone_first_keg(zone); 3436 if (keg == NULL) 3437 return; 3438 KEG_LOCK(keg); 3439 keg->uk_reserve = items; 3440 KEG_UNLOCK(keg); 3441 3442 return; 3443 } 3444 3445 /* See uma.h */ 3446 int 3447 uma_zone_reserve_kva(uma_zone_t zone, int count) 3448 { 3449 uma_keg_t keg; 3450 vm_offset_t kva; 3451 u_int pages; 3452 3453 keg = zone_first_keg(zone); 3454 if (keg == NULL) 3455 return (0); 3456 pages = count / keg->uk_ipers; 3457 3458 if (pages * keg->uk_ipers < count) 3459 pages++; 3460 pages *= keg->uk_ppera; 3461 3462 #ifdef UMA_MD_SMALL_ALLOC 3463 if (keg->uk_ppera > 1) { 3464 #else 3465 if (1) { 3466 #endif 3467 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 3468 if (kva == 0) 3469 return (0); 3470 } else 3471 kva = 0; 3472 KEG_LOCK(keg); 3473 keg->uk_kva = kva; 3474 keg->uk_offset = 0; 3475 keg->uk_maxpages = pages; 3476 #ifdef UMA_MD_SMALL_ALLOC 3477 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 3478 #else 3479 keg->uk_allocf = noobj_alloc; 3480 #endif 3481 keg->uk_flags |= UMA_ZONE_NOFREE; 3482 KEG_UNLOCK(keg); 3483 3484 return (1); 3485 } 3486 3487 /* See uma.h */ 3488 void 3489 uma_prealloc(uma_zone_t zone, int items) 3490 { 3491 uma_domain_t dom; 3492 uma_slab_t slab; 3493 uma_keg_t keg; 3494 int domain, slabs; 3495 3496 keg = zone_first_keg(zone); 3497 if (keg == NULL) 3498 return; 3499 KEG_LOCK(keg); 3500 slabs = items / keg->uk_ipers; 3501 domain = 0; 3502 if (slabs * keg->uk_ipers < items) 3503 slabs++; 3504 while (slabs > 0) { 3505 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK); 3506 if (slab == NULL) 3507 break; 3508 MPASS(slab->us_keg == keg); 3509 dom = &keg->uk_domain[slab->us_domain]; 3510 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 3511 slabs--; 3512 domain = (domain + 1) % vm_ndomains; 3513 } 3514 KEG_UNLOCK(keg); 3515 } 3516 3517 /* See uma.h */ 3518 static void 3519 uma_reclaim_locked(bool kmem_danger) 3520 { 3521 3522 CTR0(KTR_UMA, "UMA: vm asked us to release pages!"); 3523 sx_assert(&uma_drain_lock, SA_XLOCKED); 3524 bucket_enable(); 3525 zone_foreach(zone_drain); 3526 if (vm_page_count_min() || kmem_danger) { 3527 cache_drain_safe(NULL); 3528 zone_foreach(zone_drain); 3529 } 3530 /* 3531 * Some slabs may have been freed but this zone will be visited early 3532 * we visit again so that we can free pages that are empty once other 3533 * zones are drained. We have to do the same for buckets. 3534 */ 3535 zone_drain(slabzone); 3536 bucket_zone_drain(); 3537 } 3538 3539 void 3540 uma_reclaim(void) 3541 { 3542 3543 sx_xlock(&uma_drain_lock); 3544 uma_reclaim_locked(false); 3545 sx_xunlock(&uma_drain_lock); 3546 } 3547 3548 static volatile int uma_reclaim_needed; 3549 3550 void 3551 uma_reclaim_wakeup(void) 3552 { 3553 3554 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 3555 wakeup(uma_reclaim); 3556 } 3557 3558 void 3559 uma_reclaim_worker(void *arg __unused) 3560 { 3561 3562 for (;;) { 3563 sx_xlock(&uma_drain_lock); 3564 while (atomic_load_int(&uma_reclaim_needed) == 0) 3565 sx_sleep(uma_reclaim, &uma_drain_lock, PVM, "umarcl", 3566 hz); 3567 sx_xunlock(&uma_drain_lock); 3568 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 3569 sx_xlock(&uma_drain_lock); 3570 uma_reclaim_locked(true); 3571 atomic_store_int(&uma_reclaim_needed, 0); 3572 sx_xunlock(&uma_drain_lock); 3573 /* Don't fire more than once per-second. */ 3574 pause("umarclslp", hz); 3575 } 3576 } 3577 3578 /* See uma.h */ 3579 int 3580 uma_zone_exhausted(uma_zone_t zone) 3581 { 3582 int full; 3583 3584 ZONE_LOCK(zone); 3585 full = (zone->uz_flags & UMA_ZFLAG_FULL); 3586 ZONE_UNLOCK(zone); 3587 return (full); 3588 } 3589 3590 int 3591 uma_zone_exhausted_nolock(uma_zone_t zone) 3592 { 3593 return (zone->uz_flags & UMA_ZFLAG_FULL); 3594 } 3595 3596 void * 3597 uma_large_malloc_domain(vm_size_t size, int domain, int wait) 3598 { 3599 struct vmem *arena; 3600 vm_offset_t addr; 3601 uma_slab_t slab; 3602 3603 #if VM_NRESERVLEVEL > 0 3604 if (__predict_true((wait & M_EXEC) == 0)) 3605 arena = kernel_arena; 3606 else 3607 arena = kernel_rwx_arena; 3608 #else 3609 arena = kernel_arena; 3610 #endif 3611 3612 slab = zone_alloc_item(slabzone, NULL, domain, wait); 3613 if (slab == NULL) 3614 return (NULL); 3615 if (domain == UMA_ANYDOMAIN) 3616 addr = kmem_malloc(arena, size, wait); 3617 else 3618 addr = kmem_malloc_domain(arena, domain, size, wait); 3619 if (addr != 0) { 3620 vsetslab(addr, slab); 3621 slab->us_data = (void *)addr; 3622 slab->us_flags = UMA_SLAB_KERNEL | UMA_SLAB_MALLOC; 3623 #if VM_NRESERVLEVEL > 0 3624 if (__predict_false(arena == kernel_rwx_arena)) 3625 slab->us_flags |= UMA_SLAB_KRWX; 3626 #endif 3627 slab->us_size = size; 3628 slab->us_domain = vm_phys_domain(PHYS_TO_VM_PAGE( 3629 pmap_kextract(addr))); 3630 uma_total_inc(size); 3631 } else { 3632 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3633 } 3634 3635 return ((void *)addr); 3636 } 3637 3638 void * 3639 uma_large_malloc(vm_size_t size, int wait) 3640 { 3641 3642 return uma_large_malloc_domain(size, UMA_ANYDOMAIN, wait); 3643 } 3644 3645 void 3646 uma_large_free(uma_slab_t slab) 3647 { 3648 struct vmem *arena; 3649 3650 KASSERT((slab->us_flags & UMA_SLAB_KERNEL) != 0, 3651 ("uma_large_free: Memory not allocated with uma_large_malloc.")); 3652 #if VM_NRESERVLEVEL > 0 3653 if (__predict_true((slab->us_flags & UMA_SLAB_KRWX) == 0)) 3654 arena = kernel_arena; 3655 else 3656 arena = kernel_rwx_arena; 3657 #else 3658 arena = kernel_arena; 3659 #endif 3660 kmem_free(arena, (vm_offset_t)slab->us_data, slab->us_size); 3661 uma_total_dec(slab->us_size); 3662 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3663 } 3664 3665 static void 3666 uma_zero_item(void *item, uma_zone_t zone) 3667 { 3668 3669 bzero(item, zone->uz_size); 3670 } 3671 3672 unsigned long 3673 uma_limit(void) 3674 { 3675 3676 return (uma_kmem_limit); 3677 } 3678 3679 void 3680 uma_set_limit(unsigned long limit) 3681 { 3682 3683 uma_kmem_limit = limit; 3684 } 3685 3686 unsigned long 3687 uma_size(void) 3688 { 3689 3690 return (uma_kmem_total); 3691 } 3692 3693 long 3694 uma_avail(void) 3695 { 3696 3697 return (uma_kmem_limit - uma_kmem_total); 3698 } 3699 3700 void 3701 uma_print_stats(void) 3702 { 3703 zone_foreach(uma_print_zone); 3704 } 3705 3706 static void 3707 slab_print(uma_slab_t slab) 3708 { 3709 printf("slab: keg %p, data %p, freecount %d\n", 3710 slab->us_keg, slab->us_data, slab->us_freecount); 3711 } 3712 3713 static void 3714 cache_print(uma_cache_t cache) 3715 { 3716 printf("alloc: %p(%d), free: %p(%d)\n", 3717 cache->uc_allocbucket, 3718 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, 3719 cache->uc_freebucket, 3720 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0); 3721 } 3722 3723 static void 3724 uma_print_keg(uma_keg_t keg) 3725 { 3726 uma_domain_t dom; 3727 uma_slab_t slab; 3728 int i; 3729 3730 printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d " 3731 "out %d free %d limit %d\n", 3732 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags, 3733 keg->uk_ipers, keg->uk_ppera, 3734 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 3735 keg->uk_free, (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers); 3736 for (i = 0; i < vm_ndomains; i++) { 3737 dom = &keg->uk_domain[i]; 3738 printf("Part slabs:\n"); 3739 LIST_FOREACH(slab, &dom->ud_part_slab, us_link) 3740 slab_print(slab); 3741 printf("Free slabs:\n"); 3742 LIST_FOREACH(slab, &dom->ud_free_slab, us_link) 3743 slab_print(slab); 3744 printf("Full slabs:\n"); 3745 LIST_FOREACH(slab, &dom->ud_full_slab, us_link) 3746 slab_print(slab); 3747 } 3748 } 3749 3750 void 3751 uma_print_zone(uma_zone_t zone) 3752 { 3753 uma_cache_t cache; 3754 uma_klink_t kl; 3755 int i; 3756 3757 printf("zone: %s(%p) size %d flags %#x\n", 3758 zone->uz_name, zone, zone->uz_size, zone->uz_flags); 3759 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) 3760 uma_print_keg(kl->kl_keg); 3761 CPU_FOREACH(i) { 3762 cache = &zone->uz_cpu[i]; 3763 printf("CPU %d Cache:\n", i); 3764 cache_print(cache); 3765 } 3766 } 3767 3768 #ifdef DDB 3769 /* 3770 * Generate statistics across both the zone and its per-cpu cache's. Return 3771 * desired statistics if the pointer is non-NULL for that statistic. 3772 * 3773 * Note: does not update the zone statistics, as it can't safely clear the 3774 * per-CPU cache statistic. 3775 * 3776 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't 3777 * safe from off-CPU; we should modify the caches to track this information 3778 * directly so that we don't have to. 3779 */ 3780 static void 3781 uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp, 3782 uint64_t *freesp, uint64_t *sleepsp) 3783 { 3784 uma_cache_t cache; 3785 uint64_t allocs, frees, sleeps; 3786 int cachefree, cpu; 3787 3788 allocs = frees = sleeps = 0; 3789 cachefree = 0; 3790 CPU_FOREACH(cpu) { 3791 cache = &z->uz_cpu[cpu]; 3792 if (cache->uc_allocbucket != NULL) 3793 cachefree += cache->uc_allocbucket->ub_cnt; 3794 if (cache->uc_freebucket != NULL) 3795 cachefree += cache->uc_freebucket->ub_cnt; 3796 allocs += cache->uc_allocs; 3797 frees += cache->uc_frees; 3798 } 3799 allocs += z->uz_allocs; 3800 frees += z->uz_frees; 3801 sleeps += z->uz_sleeps; 3802 if (cachefreep != NULL) 3803 *cachefreep = cachefree; 3804 if (allocsp != NULL) 3805 *allocsp = allocs; 3806 if (freesp != NULL) 3807 *freesp = frees; 3808 if (sleepsp != NULL) 3809 *sleepsp = sleeps; 3810 } 3811 #endif /* DDB */ 3812 3813 static int 3814 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 3815 { 3816 uma_keg_t kz; 3817 uma_zone_t z; 3818 int count; 3819 3820 count = 0; 3821 rw_rlock(&uma_rwlock); 3822 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3823 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3824 count++; 3825 } 3826 rw_runlock(&uma_rwlock); 3827 return (sysctl_handle_int(oidp, &count, 0, req)); 3828 } 3829 3830 static int 3831 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 3832 { 3833 struct uma_stream_header ush; 3834 struct uma_type_header uth; 3835 struct uma_percpu_stat *ups; 3836 uma_bucket_t bucket; 3837 uma_zone_domain_t zdom; 3838 struct sbuf sbuf; 3839 uma_cache_t cache; 3840 uma_klink_t kl; 3841 uma_keg_t kz; 3842 uma_zone_t z; 3843 uma_keg_t k; 3844 int count, error, i; 3845 3846 error = sysctl_wire_old_buffer(req, 0); 3847 if (error != 0) 3848 return (error); 3849 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 3850 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 3851 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 3852 3853 count = 0; 3854 rw_rlock(&uma_rwlock); 3855 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3856 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3857 count++; 3858 } 3859 3860 /* 3861 * Insert stream header. 3862 */ 3863 bzero(&ush, sizeof(ush)); 3864 ush.ush_version = UMA_STREAM_VERSION; 3865 ush.ush_maxcpus = (mp_maxid + 1); 3866 ush.ush_count = count; 3867 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 3868 3869 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3870 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3871 bzero(&uth, sizeof(uth)); 3872 ZONE_LOCK(z); 3873 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 3874 uth.uth_align = kz->uk_align; 3875 uth.uth_size = kz->uk_size; 3876 uth.uth_rsize = kz->uk_rsize; 3877 LIST_FOREACH(kl, &z->uz_kegs, kl_link) { 3878 k = kl->kl_keg; 3879 uth.uth_maxpages += k->uk_maxpages; 3880 uth.uth_pages += k->uk_pages; 3881 uth.uth_keg_free += k->uk_free; 3882 uth.uth_limit = (k->uk_maxpages / k->uk_ppera) 3883 * k->uk_ipers; 3884 } 3885 3886 /* 3887 * A zone is secondary is it is not the first entry 3888 * on the keg's zone list. 3889 */ 3890 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 3891 (LIST_FIRST(&kz->uk_zones) != z)) 3892 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 3893 3894 for (i = 0; i < vm_ndomains; i++) { 3895 zdom = &z->uz_domain[i]; 3896 LIST_FOREACH(bucket, &zdom->uzd_buckets, 3897 ub_link) 3898 uth.uth_zone_free += bucket->ub_cnt; 3899 } 3900 uth.uth_allocs = z->uz_allocs; 3901 uth.uth_frees = z->uz_frees; 3902 uth.uth_fails = z->uz_fails; 3903 uth.uth_sleeps = z->uz_sleeps; 3904 /* 3905 * While it is not normally safe to access the cache 3906 * bucket pointers while not on the CPU that owns the 3907 * cache, we only allow the pointers to be exchanged 3908 * without the zone lock held, not invalidated, so 3909 * accept the possible race associated with bucket 3910 * exchange during monitoring. 3911 */ 3912 for (i = 0; i < mp_maxid + 1; i++) { 3913 bzero(&ups[i], sizeof(*ups)); 3914 if (kz->uk_flags & UMA_ZFLAG_INTERNAL || 3915 CPU_ABSENT(i)) 3916 continue; 3917 cache = &z->uz_cpu[i]; 3918 if (cache->uc_allocbucket != NULL) 3919 ups[i].ups_cache_free += 3920 cache->uc_allocbucket->ub_cnt; 3921 if (cache->uc_freebucket != NULL) 3922 ups[i].ups_cache_free += 3923 cache->uc_freebucket->ub_cnt; 3924 ups[i].ups_allocs = cache->uc_allocs; 3925 ups[i].ups_frees = cache->uc_frees; 3926 } 3927 ZONE_UNLOCK(z); 3928 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 3929 for (i = 0; i < mp_maxid + 1; i++) 3930 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 3931 } 3932 } 3933 rw_runlock(&uma_rwlock); 3934 error = sbuf_finish(&sbuf); 3935 sbuf_delete(&sbuf); 3936 free(ups, M_TEMP); 3937 return (error); 3938 } 3939 3940 int 3941 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 3942 { 3943 uma_zone_t zone = *(uma_zone_t *)arg1; 3944 int error, max; 3945 3946 max = uma_zone_get_max(zone); 3947 error = sysctl_handle_int(oidp, &max, 0, req); 3948 if (error || !req->newptr) 3949 return (error); 3950 3951 uma_zone_set_max(zone, max); 3952 3953 return (0); 3954 } 3955 3956 int 3957 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 3958 { 3959 uma_zone_t zone = *(uma_zone_t *)arg1; 3960 int cur; 3961 3962 cur = uma_zone_get_cur(zone); 3963 return (sysctl_handle_int(oidp, &cur, 0, req)); 3964 } 3965 3966 #ifdef INVARIANTS 3967 static uma_slab_t 3968 uma_dbg_getslab(uma_zone_t zone, void *item) 3969 { 3970 uma_slab_t slab; 3971 uma_keg_t keg; 3972 uint8_t *mem; 3973 3974 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 3975 if (zone->uz_flags & UMA_ZONE_VTOSLAB) { 3976 slab = vtoslab((vm_offset_t)mem); 3977 } else { 3978 /* 3979 * It is safe to return the slab here even though the 3980 * zone is unlocked because the item's allocation state 3981 * essentially holds a reference. 3982 */ 3983 ZONE_LOCK(zone); 3984 keg = LIST_FIRST(&zone->uz_kegs)->kl_keg; 3985 if (keg->uk_flags & UMA_ZONE_HASH) 3986 slab = hash_sfind(&keg->uk_hash, mem); 3987 else 3988 slab = (uma_slab_t)(mem + keg->uk_pgoff); 3989 ZONE_UNLOCK(zone); 3990 } 3991 3992 return (slab); 3993 } 3994 3995 static bool 3996 uma_dbg_zskip(uma_zone_t zone, void *mem) 3997 { 3998 uma_keg_t keg; 3999 4000 if ((keg = zone_first_keg(zone)) == NULL) 4001 return (true); 4002 4003 return (uma_dbg_kskip(keg, mem)); 4004 } 4005 4006 static bool 4007 uma_dbg_kskip(uma_keg_t keg, void *mem) 4008 { 4009 uintptr_t idx; 4010 4011 if (dbg_divisor == 0) 4012 return (true); 4013 4014 if (dbg_divisor == 1) 4015 return (false); 4016 4017 idx = (uintptr_t)mem >> PAGE_SHIFT; 4018 if (keg->uk_ipers > 1) { 4019 idx *= keg->uk_ipers; 4020 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize; 4021 } 4022 4023 if ((idx / dbg_divisor) * dbg_divisor != idx) { 4024 counter_u64_add(uma_skip_cnt, 1); 4025 return (true); 4026 } 4027 counter_u64_add(uma_dbg_cnt, 1); 4028 4029 return (false); 4030 } 4031 4032 /* 4033 * Set up the slab's freei data such that uma_dbg_free can function. 4034 * 4035 */ 4036 static void 4037 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 4038 { 4039 uma_keg_t keg; 4040 int freei; 4041 4042 if (slab == NULL) { 4043 slab = uma_dbg_getslab(zone, item); 4044 if (slab == NULL) 4045 panic("uma: item %p did not belong to zone %s\n", 4046 item, zone->uz_name); 4047 } 4048 keg = slab->us_keg; 4049 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 4050 4051 if (BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 4052 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n", 4053 item, zone, zone->uz_name, slab, freei); 4054 BIT_SET_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 4055 4056 return; 4057 } 4058 4059 /* 4060 * Verifies freed addresses. Checks for alignment, valid slab membership 4061 * and duplicate frees. 4062 * 4063 */ 4064 static void 4065 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 4066 { 4067 uma_keg_t keg; 4068 int freei; 4069 4070 if (slab == NULL) { 4071 slab = uma_dbg_getslab(zone, item); 4072 if (slab == NULL) 4073 panic("uma: Freed item %p did not belong to zone %s\n", 4074 item, zone->uz_name); 4075 } 4076 keg = slab->us_keg; 4077 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 4078 4079 if (freei >= keg->uk_ipers) 4080 panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n", 4081 item, zone, zone->uz_name, slab, freei); 4082 4083 if (((freei * keg->uk_rsize) + slab->us_data) != item) 4084 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n", 4085 item, zone, zone->uz_name, slab, freei); 4086 4087 if (!BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 4088 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n", 4089 item, zone, zone->uz_name, slab, freei); 4090 4091 BIT_CLR_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 4092 } 4093 #endif /* INVARIANTS */ 4094 4095 #ifdef DDB 4096 DB_SHOW_COMMAND(uma, db_show_uma) 4097 { 4098 uma_bucket_t bucket; 4099 uma_keg_t kz; 4100 uma_zone_t z; 4101 uma_zone_domain_t zdom; 4102 uint64_t allocs, frees, sleeps; 4103 int cachefree, i; 4104 4105 db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used", 4106 "Free", "Requests", "Sleeps", "Bucket"); 4107 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4108 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 4109 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 4110 allocs = z->uz_allocs; 4111 frees = z->uz_frees; 4112 sleeps = z->uz_sleeps; 4113 cachefree = 0; 4114 } else 4115 uma_zone_sumstat(z, &cachefree, &allocs, 4116 &frees, &sleeps); 4117 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 4118 (LIST_FIRST(&kz->uk_zones) != z))) 4119 cachefree += kz->uk_free; 4120 for (i = 0; i < vm_ndomains; i++) { 4121 zdom = &z->uz_domain[i]; 4122 LIST_FOREACH(bucket, &zdom->uzd_buckets, 4123 ub_link) 4124 cachefree += bucket->ub_cnt; 4125 } 4126 db_printf("%18s %8ju %8jd %8d %12ju %8ju %8u\n", 4127 z->uz_name, (uintmax_t)kz->uk_size, 4128 (intmax_t)(allocs - frees), cachefree, 4129 (uintmax_t)allocs, sleeps, z->uz_count); 4130 if (db_pager_quit) 4131 return; 4132 } 4133 } 4134 } 4135 4136 DB_SHOW_COMMAND(umacache, db_show_umacache) 4137 { 4138 uma_bucket_t bucket; 4139 uma_zone_t z; 4140 uma_zone_domain_t zdom; 4141 uint64_t allocs, frees; 4142 int cachefree, i; 4143 4144 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 4145 "Requests", "Bucket"); 4146 LIST_FOREACH(z, &uma_cachezones, uz_link) { 4147 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL); 4148 for (i = 0; i < vm_ndomains; i++) { 4149 zdom = &z->uz_domain[i]; 4150 LIST_FOREACH(bucket, &zdom->uzd_buckets, ub_link) 4151 cachefree += bucket->ub_cnt; 4152 } 4153 db_printf("%18s %8ju %8jd %8d %12ju %8u\n", 4154 z->uz_name, (uintmax_t)z->uz_size, 4155 (intmax_t)(allocs - frees), cachefree, 4156 (uintmax_t)allocs, z->uz_count); 4157 if (db_pager_quit) 4158 return; 4159 } 4160 } 4161 #endif /* DDB */ 4162