1 /*- 2 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org> 3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 4 * Copyright (c) 2004-2006 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /* 30 * uma_core.c Implementation of the Universal Memory allocator 31 * 32 * This allocator is intended to replace the multitude of similar object caches 33 * in the standard FreeBSD kernel. The intent is to be flexible as well as 34 * efficient. A primary design goal is to return unused memory to the rest of 35 * the system. This will make the system as a whole more flexible due to the 36 * ability to move memory to subsystems which most need it instead of leaving 37 * pools of reserved memory unused. 38 * 39 * The basic ideas stem from similar slab/zone based allocators whose algorithms 40 * are well known. 41 * 42 */ 43 44 /* 45 * TODO: 46 * - Improve memory usage for large allocations 47 * - Investigate cache size adjustments 48 */ 49 50 #include <sys/cdefs.h> 51 __FBSDID("$FreeBSD$"); 52 53 /* I should really use ktr.. */ 54 /* 55 #define UMA_DEBUG 1 56 #define UMA_DEBUG_ALLOC 1 57 #define UMA_DEBUG_ALLOC_1 1 58 */ 59 60 #include "opt_ddb.h" 61 #include "opt_param.h" 62 #include "opt_vm.h" 63 64 #include <sys/param.h> 65 #include <sys/systm.h> 66 #include <sys/bitset.h> 67 #include <sys/eventhandler.h> 68 #include <sys/kernel.h> 69 #include <sys/types.h> 70 #include <sys/queue.h> 71 #include <sys/malloc.h> 72 #include <sys/ktr.h> 73 #include <sys/lock.h> 74 #include <sys/sysctl.h> 75 #include <sys/mutex.h> 76 #include <sys/proc.h> 77 #include <sys/random.h> 78 #include <sys/rwlock.h> 79 #include <sys/sbuf.h> 80 #include <sys/sched.h> 81 #include <sys/smp.h> 82 #include <sys/taskqueue.h> 83 #include <sys/vmmeter.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_object.h> 87 #include <vm/vm_page.h> 88 #include <vm/vm_pageout.h> 89 #include <vm/vm_param.h> 90 #include <vm/vm_map.h> 91 #include <vm/vm_kern.h> 92 #include <vm/vm_extern.h> 93 #include <vm/uma.h> 94 #include <vm/uma_int.h> 95 #include <vm/uma_dbg.h> 96 97 #include <ddb/ddb.h> 98 99 #ifdef DEBUG_MEMGUARD 100 #include <vm/memguard.h> 101 #endif 102 103 /* 104 * This is the zone and keg from which all zones are spawned. The idea is that 105 * even the zone & keg heads are allocated from the allocator, so we use the 106 * bss section to bootstrap us. 107 */ 108 static struct uma_keg masterkeg; 109 static struct uma_zone masterzone_k; 110 static struct uma_zone masterzone_z; 111 static uma_zone_t kegs = &masterzone_k; 112 static uma_zone_t zones = &masterzone_z; 113 114 /* This is the zone from which all of uma_slab_t's are allocated. */ 115 static uma_zone_t slabzone; 116 117 /* 118 * The initial hash tables come out of this zone so they can be allocated 119 * prior to malloc coming up. 120 */ 121 static uma_zone_t hashzone; 122 123 /* The boot-time adjusted value for cache line alignment. */ 124 int uma_align_cache = 64 - 1; 125 126 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 127 128 /* 129 * Are we allowed to allocate buckets? 130 */ 131 static int bucketdisable = 1; 132 133 /* Linked list of all kegs in the system */ 134 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 135 136 /* Linked list of all cache-only zones in the system */ 137 static LIST_HEAD(,uma_zone) uma_cachezones = 138 LIST_HEAD_INITIALIZER(uma_cachezones); 139 140 /* This RW lock protects the keg list */ 141 static struct rwlock_padalign uma_rwlock; 142 143 /* Linked list of boot time pages */ 144 static LIST_HEAD(,uma_slab) uma_boot_pages = 145 LIST_HEAD_INITIALIZER(uma_boot_pages); 146 147 /* This mutex protects the boot time pages list */ 148 static struct mtx_padalign uma_boot_pages_mtx; 149 150 static struct sx uma_drain_lock; 151 152 /* Is the VM done starting up? */ 153 static int booted = 0; 154 #define UMA_STARTUP 1 155 #define UMA_STARTUP2 2 156 157 /* 158 * This is the handle used to schedule events that need to happen 159 * outside of the allocation fast path. 160 */ 161 static struct callout uma_callout; 162 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 163 164 /* 165 * This structure is passed as the zone ctor arg so that I don't have to create 166 * a special allocation function just for zones. 167 */ 168 struct uma_zctor_args { 169 const char *name; 170 size_t size; 171 uma_ctor ctor; 172 uma_dtor dtor; 173 uma_init uminit; 174 uma_fini fini; 175 uma_import import; 176 uma_release release; 177 void *arg; 178 uma_keg_t keg; 179 int align; 180 uint32_t flags; 181 }; 182 183 struct uma_kctor_args { 184 uma_zone_t zone; 185 size_t size; 186 uma_init uminit; 187 uma_fini fini; 188 int align; 189 uint32_t flags; 190 }; 191 192 struct uma_bucket_zone { 193 uma_zone_t ubz_zone; 194 char *ubz_name; 195 int ubz_entries; /* Number of items it can hold. */ 196 int ubz_maxsize; /* Maximum allocation size per-item. */ 197 }; 198 199 /* 200 * Compute the actual number of bucket entries to pack them in power 201 * of two sizes for more efficient space utilization. 202 */ 203 #define BUCKET_SIZE(n) \ 204 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 205 206 #define BUCKET_MAX BUCKET_SIZE(256) 207 208 struct uma_bucket_zone bucket_zones[] = { 209 { NULL, "4 Bucket", BUCKET_SIZE(4), 4096 }, 210 { NULL, "6 Bucket", BUCKET_SIZE(6), 3072 }, 211 { NULL, "8 Bucket", BUCKET_SIZE(8), 2048 }, 212 { NULL, "12 Bucket", BUCKET_SIZE(12), 1536 }, 213 { NULL, "16 Bucket", BUCKET_SIZE(16), 1024 }, 214 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 215 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 216 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 217 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 218 { NULL, NULL, 0} 219 }; 220 221 /* 222 * Flags and enumerations to be passed to internal functions. 223 */ 224 enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI }; 225 226 /* Prototypes.. */ 227 228 static void *noobj_alloc(uma_zone_t, vm_size_t, uint8_t *, int); 229 static void *page_alloc(uma_zone_t, vm_size_t, uint8_t *, int); 230 static void *startup_alloc(uma_zone_t, vm_size_t, uint8_t *, int); 231 static void page_free(void *, vm_size_t, uint8_t); 232 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int); 233 static void cache_drain(uma_zone_t); 234 static void bucket_drain(uma_zone_t, uma_bucket_t); 235 static void bucket_cache_drain(uma_zone_t zone); 236 static int keg_ctor(void *, int, void *, int); 237 static void keg_dtor(void *, int, void *); 238 static int zone_ctor(void *, int, void *, int); 239 static void zone_dtor(void *, int, void *); 240 static int zero_init(void *, int, int); 241 static void keg_small_init(uma_keg_t keg); 242 static void keg_large_init(uma_keg_t keg); 243 static void zone_foreach(void (*zfunc)(uma_zone_t)); 244 static void zone_timeout(uma_zone_t zone); 245 static int hash_alloc(struct uma_hash *); 246 static int hash_expand(struct uma_hash *, struct uma_hash *); 247 static void hash_free(struct uma_hash *hash); 248 static void uma_timeout(void *); 249 static void uma_startup3(void); 250 static void *zone_alloc_item(uma_zone_t, void *, int); 251 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 252 static void bucket_enable(void); 253 static void bucket_init(void); 254 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 255 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 256 static void bucket_zone_drain(void); 257 static uma_bucket_t zone_alloc_bucket(uma_zone_t zone, void *, int flags); 258 static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags); 259 static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags); 260 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 261 static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item); 262 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 263 uma_fini fini, int align, uint32_t flags); 264 static int zone_import(uma_zone_t zone, void **bucket, int max, int flags); 265 static void zone_release(uma_zone_t zone, void **bucket, int cnt); 266 static void uma_zero_item(void *item, uma_zone_t zone); 267 268 void uma_print_zone(uma_zone_t); 269 void uma_print_stats(void); 270 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 271 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 272 273 #ifdef INVARIANTS 274 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 275 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 276 #endif 277 278 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 279 280 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 281 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 282 283 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 284 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 285 286 static int zone_warnings = 1; 287 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 288 "Warn when UMA zones becomes full"); 289 290 /* 291 * This routine checks to see whether or not it's safe to enable buckets. 292 */ 293 static void 294 bucket_enable(void) 295 { 296 bucketdisable = vm_page_count_min(); 297 } 298 299 /* 300 * Initialize bucket_zones, the array of zones of buckets of various sizes. 301 * 302 * For each zone, calculate the memory required for each bucket, consisting 303 * of the header and an array of pointers. 304 */ 305 static void 306 bucket_init(void) 307 { 308 struct uma_bucket_zone *ubz; 309 int size; 310 311 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 312 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 313 size += sizeof(void *) * ubz->ubz_entries; 314 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 315 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 316 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET); 317 } 318 } 319 320 /* 321 * Given a desired number of entries for a bucket, return the zone from which 322 * to allocate the bucket. 323 */ 324 static struct uma_bucket_zone * 325 bucket_zone_lookup(int entries) 326 { 327 struct uma_bucket_zone *ubz; 328 329 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 330 if (ubz->ubz_entries >= entries) 331 return (ubz); 332 ubz--; 333 return (ubz); 334 } 335 336 static int 337 bucket_select(int size) 338 { 339 struct uma_bucket_zone *ubz; 340 341 ubz = &bucket_zones[0]; 342 if (size > ubz->ubz_maxsize) 343 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 344 345 for (; ubz->ubz_entries != 0; ubz++) 346 if (ubz->ubz_maxsize < size) 347 break; 348 ubz--; 349 return (ubz->ubz_entries); 350 } 351 352 static uma_bucket_t 353 bucket_alloc(uma_zone_t zone, void *udata, int flags) 354 { 355 struct uma_bucket_zone *ubz; 356 uma_bucket_t bucket; 357 358 /* 359 * This is to stop us from allocating per cpu buckets while we're 360 * running out of vm.boot_pages. Otherwise, we would exhaust the 361 * boot pages. This also prevents us from allocating buckets in 362 * low memory situations. 363 */ 364 if (bucketdisable) 365 return (NULL); 366 /* 367 * To limit bucket recursion we store the original zone flags 368 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 369 * NOVM flag to persist even through deep recursions. We also 370 * store ZFLAG_BUCKET once we have recursed attempting to allocate 371 * a bucket for a bucket zone so we do not allow infinite bucket 372 * recursion. This cookie will even persist to frees of unused 373 * buckets via the allocation path or bucket allocations in the 374 * free path. 375 */ 376 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 377 udata = (void *)(uintptr_t)zone->uz_flags; 378 else { 379 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 380 return (NULL); 381 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 382 } 383 if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY) 384 flags |= M_NOVM; 385 ubz = bucket_zone_lookup(zone->uz_count); 386 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 387 ubz++; 388 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 389 if (bucket) { 390 #ifdef INVARIANTS 391 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 392 #endif 393 bucket->ub_cnt = 0; 394 bucket->ub_entries = ubz->ubz_entries; 395 } 396 397 return (bucket); 398 } 399 400 static void 401 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 402 { 403 struct uma_bucket_zone *ubz; 404 405 KASSERT(bucket->ub_cnt == 0, 406 ("bucket_free: Freeing a non free bucket.")); 407 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 408 udata = (void *)(uintptr_t)zone->uz_flags; 409 ubz = bucket_zone_lookup(bucket->ub_entries); 410 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 411 } 412 413 static void 414 bucket_zone_drain(void) 415 { 416 struct uma_bucket_zone *ubz; 417 418 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 419 zone_drain(ubz->ubz_zone); 420 } 421 422 static void 423 zone_log_warning(uma_zone_t zone) 424 { 425 static const struct timeval warninterval = { 300, 0 }; 426 427 if (!zone_warnings || zone->uz_warning == NULL) 428 return; 429 430 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 431 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 432 } 433 434 static inline void 435 zone_maxaction(uma_zone_t zone) 436 { 437 438 if (zone->uz_maxaction.ta_func != NULL) 439 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 440 } 441 442 static void 443 zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t)) 444 { 445 uma_klink_t klink; 446 447 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) 448 kegfn(klink->kl_keg); 449 } 450 451 /* 452 * Routine called by timeout which is used to fire off some time interval 453 * based calculations. (stats, hash size, etc.) 454 * 455 * Arguments: 456 * arg Unused 457 * 458 * Returns: 459 * Nothing 460 */ 461 static void 462 uma_timeout(void *unused) 463 { 464 bucket_enable(); 465 zone_foreach(zone_timeout); 466 467 /* Reschedule this event */ 468 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 469 } 470 471 /* 472 * Routine to perform timeout driven calculations. This expands the 473 * hashes and does per cpu statistics aggregation. 474 * 475 * Returns nothing. 476 */ 477 static void 478 keg_timeout(uma_keg_t keg) 479 { 480 481 KEG_LOCK(keg); 482 /* 483 * Expand the keg hash table. 484 * 485 * This is done if the number of slabs is larger than the hash size. 486 * What I'm trying to do here is completely reduce collisions. This 487 * may be a little aggressive. Should I allow for two collisions max? 488 */ 489 if (keg->uk_flags & UMA_ZONE_HASH && 490 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) { 491 struct uma_hash newhash; 492 struct uma_hash oldhash; 493 int ret; 494 495 /* 496 * This is so involved because allocating and freeing 497 * while the keg lock is held will lead to deadlock. 498 * I have to do everything in stages and check for 499 * races. 500 */ 501 newhash = keg->uk_hash; 502 KEG_UNLOCK(keg); 503 ret = hash_alloc(&newhash); 504 KEG_LOCK(keg); 505 if (ret) { 506 if (hash_expand(&keg->uk_hash, &newhash)) { 507 oldhash = keg->uk_hash; 508 keg->uk_hash = newhash; 509 } else 510 oldhash = newhash; 511 512 KEG_UNLOCK(keg); 513 hash_free(&oldhash); 514 return; 515 } 516 } 517 KEG_UNLOCK(keg); 518 } 519 520 static void 521 zone_timeout(uma_zone_t zone) 522 { 523 524 zone_foreach_keg(zone, &keg_timeout); 525 } 526 527 /* 528 * Allocate and zero fill the next sized hash table from the appropriate 529 * backing store. 530 * 531 * Arguments: 532 * hash A new hash structure with the old hash size in uh_hashsize 533 * 534 * Returns: 535 * 1 on success and 0 on failure. 536 */ 537 static int 538 hash_alloc(struct uma_hash *hash) 539 { 540 int oldsize; 541 int alloc; 542 543 oldsize = hash->uh_hashsize; 544 545 /* We're just going to go to a power of two greater */ 546 if (oldsize) { 547 hash->uh_hashsize = oldsize * 2; 548 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 549 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 550 M_UMAHASH, M_NOWAIT); 551 } else { 552 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 553 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 554 M_WAITOK); 555 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 556 } 557 if (hash->uh_slab_hash) { 558 bzero(hash->uh_slab_hash, alloc); 559 hash->uh_hashmask = hash->uh_hashsize - 1; 560 return (1); 561 } 562 563 return (0); 564 } 565 566 /* 567 * Expands the hash table for HASH zones. This is done from zone_timeout 568 * to reduce collisions. This must not be done in the regular allocation 569 * path, otherwise, we can recurse on the vm while allocating pages. 570 * 571 * Arguments: 572 * oldhash The hash you want to expand 573 * newhash The hash structure for the new table 574 * 575 * Returns: 576 * Nothing 577 * 578 * Discussion: 579 */ 580 static int 581 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 582 { 583 uma_slab_t slab; 584 int hval; 585 int i; 586 587 if (!newhash->uh_slab_hash) 588 return (0); 589 590 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 591 return (0); 592 593 /* 594 * I need to investigate hash algorithms for resizing without a 595 * full rehash. 596 */ 597 598 for (i = 0; i < oldhash->uh_hashsize; i++) 599 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) { 600 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]); 601 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink); 602 hval = UMA_HASH(newhash, slab->us_data); 603 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 604 slab, us_hlink); 605 } 606 607 return (1); 608 } 609 610 /* 611 * Free the hash bucket to the appropriate backing store. 612 * 613 * Arguments: 614 * slab_hash The hash bucket we're freeing 615 * hashsize The number of entries in that hash bucket 616 * 617 * Returns: 618 * Nothing 619 */ 620 static void 621 hash_free(struct uma_hash *hash) 622 { 623 if (hash->uh_slab_hash == NULL) 624 return; 625 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 626 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 627 else 628 free(hash->uh_slab_hash, M_UMAHASH); 629 } 630 631 /* 632 * Frees all outstanding items in a bucket 633 * 634 * Arguments: 635 * zone The zone to free to, must be unlocked. 636 * bucket The free/alloc bucket with items, cpu queue must be locked. 637 * 638 * Returns: 639 * Nothing 640 */ 641 642 static void 643 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 644 { 645 int i; 646 647 if (bucket == NULL) 648 return; 649 650 if (zone->uz_fini) 651 for (i = 0; i < bucket->ub_cnt; i++) 652 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 653 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 654 bucket->ub_cnt = 0; 655 } 656 657 /* 658 * Drains the per cpu caches for a zone. 659 * 660 * NOTE: This may only be called while the zone is being turn down, and not 661 * during normal operation. This is necessary in order that we do not have 662 * to migrate CPUs to drain the per-CPU caches. 663 * 664 * Arguments: 665 * zone The zone to drain, must be unlocked. 666 * 667 * Returns: 668 * Nothing 669 */ 670 static void 671 cache_drain(uma_zone_t zone) 672 { 673 uma_cache_t cache; 674 int cpu; 675 676 /* 677 * XXX: It is safe to not lock the per-CPU caches, because we're 678 * tearing down the zone anyway. I.e., there will be no further use 679 * of the caches at this point. 680 * 681 * XXX: It would good to be able to assert that the zone is being 682 * torn down to prevent improper use of cache_drain(). 683 * 684 * XXX: We lock the zone before passing into bucket_cache_drain() as 685 * it is used elsewhere. Should the tear-down path be made special 686 * there in some form? 687 */ 688 CPU_FOREACH(cpu) { 689 cache = &zone->uz_cpu[cpu]; 690 bucket_drain(zone, cache->uc_allocbucket); 691 bucket_drain(zone, cache->uc_freebucket); 692 if (cache->uc_allocbucket != NULL) 693 bucket_free(zone, cache->uc_allocbucket, NULL); 694 if (cache->uc_freebucket != NULL) 695 bucket_free(zone, cache->uc_freebucket, NULL); 696 cache->uc_allocbucket = cache->uc_freebucket = NULL; 697 } 698 ZONE_LOCK(zone); 699 bucket_cache_drain(zone); 700 ZONE_UNLOCK(zone); 701 } 702 703 static void 704 cache_shrink(uma_zone_t zone) 705 { 706 707 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 708 return; 709 710 ZONE_LOCK(zone); 711 zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2; 712 ZONE_UNLOCK(zone); 713 } 714 715 static void 716 cache_drain_safe_cpu(uma_zone_t zone) 717 { 718 uma_cache_t cache; 719 uma_bucket_t b1, b2; 720 721 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 722 return; 723 724 b1 = b2 = NULL; 725 ZONE_LOCK(zone); 726 critical_enter(); 727 cache = &zone->uz_cpu[curcpu]; 728 if (cache->uc_allocbucket) { 729 if (cache->uc_allocbucket->ub_cnt != 0) 730 LIST_INSERT_HEAD(&zone->uz_buckets, 731 cache->uc_allocbucket, ub_link); 732 else 733 b1 = cache->uc_allocbucket; 734 cache->uc_allocbucket = NULL; 735 } 736 if (cache->uc_freebucket) { 737 if (cache->uc_freebucket->ub_cnt != 0) 738 LIST_INSERT_HEAD(&zone->uz_buckets, 739 cache->uc_freebucket, ub_link); 740 else 741 b2 = cache->uc_freebucket; 742 cache->uc_freebucket = NULL; 743 } 744 critical_exit(); 745 ZONE_UNLOCK(zone); 746 if (b1) 747 bucket_free(zone, b1, NULL); 748 if (b2) 749 bucket_free(zone, b2, NULL); 750 } 751 752 /* 753 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 754 * This is an expensive call because it needs to bind to all CPUs 755 * one by one and enter a critical section on each of them in order 756 * to safely access their cache buckets. 757 * Zone lock must not be held on call this function. 758 */ 759 static void 760 cache_drain_safe(uma_zone_t zone) 761 { 762 int cpu; 763 764 /* 765 * Polite bucket sizes shrinking was not enouth, shrink aggressively. 766 */ 767 if (zone) 768 cache_shrink(zone); 769 else 770 zone_foreach(cache_shrink); 771 772 CPU_FOREACH(cpu) { 773 thread_lock(curthread); 774 sched_bind(curthread, cpu); 775 thread_unlock(curthread); 776 777 if (zone) 778 cache_drain_safe_cpu(zone); 779 else 780 zone_foreach(cache_drain_safe_cpu); 781 } 782 thread_lock(curthread); 783 sched_unbind(curthread); 784 thread_unlock(curthread); 785 } 786 787 /* 788 * Drain the cached buckets from a zone. Expects a locked zone on entry. 789 */ 790 static void 791 bucket_cache_drain(uma_zone_t zone) 792 { 793 uma_bucket_t bucket; 794 795 /* 796 * Drain the bucket queues and free the buckets, we just keep two per 797 * cpu (alloc/free). 798 */ 799 while ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) { 800 LIST_REMOVE(bucket, ub_link); 801 ZONE_UNLOCK(zone); 802 bucket_drain(zone, bucket); 803 bucket_free(zone, bucket, NULL); 804 ZONE_LOCK(zone); 805 } 806 807 /* 808 * Shrink further bucket sizes. Price of single zone lock collision 809 * is probably lower then price of global cache drain. 810 */ 811 if (zone->uz_count > zone->uz_count_min) 812 zone->uz_count--; 813 } 814 815 static void 816 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 817 { 818 uint8_t *mem; 819 int i; 820 uint8_t flags; 821 822 mem = slab->us_data; 823 flags = slab->us_flags; 824 i = start; 825 if (keg->uk_fini != NULL) { 826 for (i--; i > -1; i--) 827 keg->uk_fini(slab->us_data + (keg->uk_rsize * i), 828 keg->uk_size); 829 } 830 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 831 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 832 #ifdef UMA_DEBUG 833 printf("%s: Returning %d bytes.\n", keg->uk_name, 834 PAGE_SIZE * keg->uk_ppera); 835 #endif 836 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 837 } 838 839 /* 840 * Frees pages from a keg back to the system. This is done on demand from 841 * the pageout daemon. 842 * 843 * Returns nothing. 844 */ 845 static void 846 keg_drain(uma_keg_t keg) 847 { 848 struct slabhead freeslabs = { 0 }; 849 uma_slab_t slab, tmp; 850 851 /* 852 * We don't want to take pages from statically allocated kegs at this 853 * time 854 */ 855 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 856 return; 857 858 #ifdef UMA_DEBUG 859 printf("%s free items: %u\n", keg->uk_name, keg->uk_free); 860 #endif 861 KEG_LOCK(keg); 862 if (keg->uk_free == 0) 863 goto finished; 864 865 LIST_FOREACH_SAFE(slab, &keg->uk_free_slab, us_link, tmp) { 866 /* We have nowhere to free these to. */ 867 if (slab->us_flags & UMA_SLAB_BOOT) 868 continue; 869 870 LIST_REMOVE(slab, us_link); 871 keg->uk_pages -= keg->uk_ppera; 872 keg->uk_free -= keg->uk_ipers; 873 874 if (keg->uk_flags & UMA_ZONE_HASH) 875 UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data); 876 877 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 878 } 879 finished: 880 KEG_UNLOCK(keg); 881 882 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 883 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 884 keg_free_slab(keg, slab, keg->uk_ipers); 885 } 886 } 887 888 static void 889 zone_drain_wait(uma_zone_t zone, int waitok) 890 { 891 892 /* 893 * Set draining to interlock with zone_dtor() so we can release our 894 * locks as we go. Only dtor() should do a WAITOK call since it 895 * is the only call that knows the structure will still be available 896 * when it wakes up. 897 */ 898 ZONE_LOCK(zone); 899 while (zone->uz_flags & UMA_ZFLAG_DRAINING) { 900 if (waitok == M_NOWAIT) 901 goto out; 902 msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1); 903 } 904 zone->uz_flags |= UMA_ZFLAG_DRAINING; 905 bucket_cache_drain(zone); 906 ZONE_UNLOCK(zone); 907 /* 908 * The DRAINING flag protects us from being freed while 909 * we're running. Normally the uma_rwlock would protect us but we 910 * must be able to release and acquire the right lock for each keg. 911 */ 912 zone_foreach_keg(zone, &keg_drain); 913 ZONE_LOCK(zone); 914 zone->uz_flags &= ~UMA_ZFLAG_DRAINING; 915 wakeup(zone); 916 out: 917 ZONE_UNLOCK(zone); 918 } 919 920 void 921 zone_drain(uma_zone_t zone) 922 { 923 924 zone_drain_wait(zone, M_NOWAIT); 925 } 926 927 /* 928 * Allocate a new slab for a keg. This does not insert the slab onto a list. 929 * 930 * Arguments: 931 * wait Shall we wait? 932 * 933 * Returns: 934 * The slab that was allocated or NULL if there is no memory and the 935 * caller specified M_NOWAIT. 936 */ 937 static uma_slab_t 938 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait) 939 { 940 uma_alloc allocf; 941 uma_slab_t slab; 942 uint8_t *mem; 943 uint8_t flags; 944 int i; 945 946 mtx_assert(&keg->uk_lock, MA_OWNED); 947 slab = NULL; 948 mem = NULL; 949 950 #ifdef UMA_DEBUG 951 printf("alloc_slab: Allocating a new slab for %s\n", keg->uk_name); 952 #endif 953 allocf = keg->uk_allocf; 954 KEG_UNLOCK(keg); 955 956 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 957 slab = zone_alloc_item(keg->uk_slabzone, NULL, wait); 958 if (slab == NULL) 959 goto out; 960 } 961 962 /* 963 * This reproduces the old vm_zone behavior of zero filling pages the 964 * first time they are added to a zone. 965 * 966 * Malloced items are zeroed in uma_zalloc. 967 */ 968 969 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 970 wait |= M_ZERO; 971 else 972 wait &= ~M_ZERO; 973 974 if (keg->uk_flags & UMA_ZONE_NODUMP) 975 wait |= M_NODUMP; 976 977 /* zone is passed for legacy reasons. */ 978 mem = allocf(zone, keg->uk_ppera * PAGE_SIZE, &flags, wait); 979 if (mem == NULL) { 980 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 981 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 982 slab = NULL; 983 goto out; 984 } 985 986 /* Point the slab into the allocated memory */ 987 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 988 slab = (uma_slab_t )(mem + keg->uk_pgoff); 989 990 if (keg->uk_flags & UMA_ZONE_VTOSLAB) 991 for (i = 0; i < keg->uk_ppera; i++) 992 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 993 994 slab->us_keg = keg; 995 slab->us_data = mem; 996 slab->us_freecount = keg->uk_ipers; 997 slab->us_flags = flags; 998 BIT_FILL(SLAB_SETSIZE, &slab->us_free); 999 #ifdef INVARIANTS 1000 BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree); 1001 #endif 1002 1003 if (keg->uk_init != NULL) { 1004 for (i = 0; i < keg->uk_ipers; i++) 1005 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 1006 keg->uk_size, wait) != 0) 1007 break; 1008 if (i != keg->uk_ipers) { 1009 keg_free_slab(keg, slab, i); 1010 slab = NULL; 1011 goto out; 1012 } 1013 } 1014 out: 1015 KEG_LOCK(keg); 1016 1017 if (slab != NULL) { 1018 if (keg->uk_flags & UMA_ZONE_HASH) 1019 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1020 1021 keg->uk_pages += keg->uk_ppera; 1022 keg->uk_free += keg->uk_ipers; 1023 } 1024 1025 return (slab); 1026 } 1027 1028 /* 1029 * This function is intended to be used early on in place of page_alloc() so 1030 * that we may use the boot time page cache to satisfy allocations before 1031 * the VM is ready. 1032 */ 1033 static void * 1034 startup_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait) 1035 { 1036 uma_keg_t keg; 1037 uma_slab_t tmps; 1038 int pages, check_pages; 1039 1040 keg = zone_first_keg(zone); 1041 pages = howmany(bytes, PAGE_SIZE); 1042 check_pages = pages - 1; 1043 KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n")); 1044 1045 /* 1046 * Check our small startup cache to see if it has pages remaining. 1047 */ 1048 mtx_lock(&uma_boot_pages_mtx); 1049 1050 /* First check if we have enough room. */ 1051 tmps = LIST_FIRST(&uma_boot_pages); 1052 while (tmps != NULL && check_pages-- > 0) 1053 tmps = LIST_NEXT(tmps, us_link); 1054 if (tmps != NULL) { 1055 /* 1056 * It's ok to lose tmps references. The last one will 1057 * have tmps->us_data pointing to the start address of 1058 * "pages" contiguous pages of memory. 1059 */ 1060 while (pages-- > 0) { 1061 tmps = LIST_FIRST(&uma_boot_pages); 1062 LIST_REMOVE(tmps, us_link); 1063 } 1064 mtx_unlock(&uma_boot_pages_mtx); 1065 *pflag = tmps->us_flags; 1066 return (tmps->us_data); 1067 } 1068 mtx_unlock(&uma_boot_pages_mtx); 1069 if (booted < UMA_STARTUP2) 1070 panic("UMA: Increase vm.boot_pages"); 1071 /* 1072 * Now that we've booted reset these users to their real allocator. 1073 */ 1074 #ifdef UMA_MD_SMALL_ALLOC 1075 keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc; 1076 #else 1077 keg->uk_allocf = page_alloc; 1078 #endif 1079 return keg->uk_allocf(zone, bytes, pflag, wait); 1080 } 1081 1082 /* 1083 * Allocates a number of pages from the system 1084 * 1085 * Arguments: 1086 * bytes The number of bytes requested 1087 * wait Shall we wait? 1088 * 1089 * Returns: 1090 * A pointer to the alloced memory or possibly 1091 * NULL if M_NOWAIT is set. 1092 */ 1093 static void * 1094 page_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait) 1095 { 1096 void *p; /* Returned page */ 1097 1098 *pflag = UMA_SLAB_KMEM; 1099 p = (void *) kmem_malloc(kmem_arena, bytes, wait); 1100 1101 return (p); 1102 } 1103 1104 /* 1105 * Allocates a number of pages from within an object 1106 * 1107 * Arguments: 1108 * bytes The number of bytes requested 1109 * wait Shall we wait? 1110 * 1111 * Returns: 1112 * A pointer to the alloced memory or possibly 1113 * NULL if M_NOWAIT is set. 1114 */ 1115 static void * 1116 noobj_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *flags, int wait) 1117 { 1118 TAILQ_HEAD(, vm_page) alloctail; 1119 u_long npages; 1120 vm_offset_t retkva, zkva; 1121 vm_page_t p, p_next; 1122 uma_keg_t keg; 1123 1124 TAILQ_INIT(&alloctail); 1125 keg = zone_first_keg(zone); 1126 1127 npages = howmany(bytes, PAGE_SIZE); 1128 while (npages > 0) { 1129 p = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT | 1130 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ); 1131 if (p != NULL) { 1132 /* 1133 * Since the page does not belong to an object, its 1134 * listq is unused. 1135 */ 1136 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1137 npages--; 1138 continue; 1139 } 1140 if (wait & M_WAITOK) { 1141 VM_WAIT; 1142 continue; 1143 } 1144 1145 /* 1146 * Page allocation failed, free intermediate pages and 1147 * exit. 1148 */ 1149 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1150 vm_page_unwire(p, PQ_NONE); 1151 vm_page_free(p); 1152 } 1153 return (NULL); 1154 } 1155 *flags = UMA_SLAB_PRIV; 1156 zkva = keg->uk_kva + 1157 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1158 retkva = zkva; 1159 TAILQ_FOREACH(p, &alloctail, listq) { 1160 pmap_qenter(zkva, &p, 1); 1161 zkva += PAGE_SIZE; 1162 } 1163 1164 return ((void *)retkva); 1165 } 1166 1167 /* 1168 * Frees a number of pages to the system 1169 * 1170 * Arguments: 1171 * mem A pointer to the memory to be freed 1172 * size The size of the memory being freed 1173 * flags The original p->us_flags field 1174 * 1175 * Returns: 1176 * Nothing 1177 */ 1178 static void 1179 page_free(void *mem, vm_size_t size, uint8_t flags) 1180 { 1181 struct vmem *vmem; 1182 1183 if (flags & UMA_SLAB_KMEM) 1184 vmem = kmem_arena; 1185 else if (flags & UMA_SLAB_KERNEL) 1186 vmem = kernel_arena; 1187 else 1188 panic("UMA: page_free used with invalid flags %x", flags); 1189 1190 kmem_free(vmem, (vm_offset_t)mem, size); 1191 } 1192 1193 /* 1194 * Zero fill initializer 1195 * 1196 * Arguments/Returns follow uma_init specifications 1197 */ 1198 static int 1199 zero_init(void *mem, int size, int flags) 1200 { 1201 bzero(mem, size); 1202 return (0); 1203 } 1204 1205 /* 1206 * Finish creating a small uma keg. This calculates ipers, and the keg size. 1207 * 1208 * Arguments 1209 * keg The zone we should initialize 1210 * 1211 * Returns 1212 * Nothing 1213 */ 1214 static void 1215 keg_small_init(uma_keg_t keg) 1216 { 1217 u_int rsize; 1218 u_int memused; 1219 u_int wastedspace; 1220 u_int shsize; 1221 u_int slabsize; 1222 1223 if (keg->uk_flags & UMA_ZONE_PCPU) { 1224 u_int ncpus = (mp_maxid + 1) ? (mp_maxid + 1) : MAXCPU; 1225 1226 slabsize = sizeof(struct pcpu); 1227 keg->uk_ppera = howmany(ncpus * sizeof(struct pcpu), 1228 PAGE_SIZE); 1229 } else { 1230 slabsize = UMA_SLAB_SIZE; 1231 keg->uk_ppera = 1; 1232 } 1233 1234 /* 1235 * Calculate the size of each allocation (rsize) according to 1236 * alignment. If the requested size is smaller than we have 1237 * allocation bits for we round it up. 1238 */ 1239 rsize = keg->uk_size; 1240 if (rsize < slabsize / SLAB_SETSIZE) 1241 rsize = slabsize / SLAB_SETSIZE; 1242 if (rsize & keg->uk_align) 1243 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1244 keg->uk_rsize = rsize; 1245 1246 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 1247 keg->uk_rsize < sizeof(struct pcpu), 1248 ("%s: size %u too large", __func__, keg->uk_rsize)); 1249 1250 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1251 shsize = 0; 1252 else 1253 shsize = sizeof(struct uma_slab); 1254 1255 keg->uk_ipers = (slabsize - shsize) / rsize; 1256 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1257 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1258 1259 memused = keg->uk_ipers * rsize + shsize; 1260 wastedspace = slabsize - memused; 1261 1262 /* 1263 * We can't do OFFPAGE if we're internal or if we've been 1264 * asked to not go to the VM for buckets. If we do this we 1265 * may end up going to the VM for slabs which we do not 1266 * want to do if we're UMA_ZFLAG_CACHEONLY as a result 1267 * of UMA_ZONE_VM, which clearly forbids it. 1268 */ 1269 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1270 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1271 return; 1272 1273 /* 1274 * See if using an OFFPAGE slab will limit our waste. Only do 1275 * this if it permits more items per-slab. 1276 * 1277 * XXX We could try growing slabsize to limit max waste as well. 1278 * Historically this was not done because the VM could not 1279 * efficiently handle contiguous allocations. 1280 */ 1281 if ((wastedspace >= slabsize / UMA_MAX_WASTE) && 1282 (keg->uk_ipers < (slabsize / keg->uk_rsize))) { 1283 keg->uk_ipers = slabsize / keg->uk_rsize; 1284 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1285 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1286 #ifdef UMA_DEBUG 1287 printf("UMA decided we need offpage slab headers for " 1288 "keg: %s, calculated wastedspace = %d, " 1289 "maximum wasted space allowed = %d, " 1290 "calculated ipers = %d, " 1291 "new wasted space = %d\n", keg->uk_name, wastedspace, 1292 slabsize / UMA_MAX_WASTE, keg->uk_ipers, 1293 slabsize - keg->uk_ipers * keg->uk_rsize); 1294 #endif 1295 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1296 } 1297 1298 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1299 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1300 keg->uk_flags |= UMA_ZONE_HASH; 1301 } 1302 1303 /* 1304 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do 1305 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1306 * more complicated. 1307 * 1308 * Arguments 1309 * keg The keg we should initialize 1310 * 1311 * Returns 1312 * Nothing 1313 */ 1314 static void 1315 keg_large_init(uma_keg_t keg) 1316 { 1317 u_int shsize; 1318 1319 KASSERT(keg != NULL, ("Keg is null in keg_large_init")); 1320 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0, 1321 ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg")); 1322 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1323 ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__)); 1324 1325 keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE); 1326 keg->uk_ipers = 1; 1327 keg->uk_rsize = keg->uk_size; 1328 1329 /* We can't do OFFPAGE if we're internal, bail out here. */ 1330 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) 1331 return; 1332 1333 /* Check whether we have enough space to not do OFFPAGE. */ 1334 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) { 1335 shsize = sizeof(struct uma_slab); 1336 if (shsize & UMA_ALIGN_PTR) 1337 shsize = (shsize & ~UMA_ALIGN_PTR) + 1338 (UMA_ALIGN_PTR + 1); 1339 1340 if ((PAGE_SIZE * keg->uk_ppera) - keg->uk_rsize < shsize) 1341 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1342 } 1343 1344 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1345 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1346 keg->uk_flags |= UMA_ZONE_HASH; 1347 } 1348 1349 static void 1350 keg_cachespread_init(uma_keg_t keg) 1351 { 1352 int alignsize; 1353 int trailer; 1354 int pages; 1355 int rsize; 1356 1357 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1358 ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__)); 1359 1360 alignsize = keg->uk_align + 1; 1361 rsize = keg->uk_size; 1362 /* 1363 * We want one item to start on every align boundary in a page. To 1364 * do this we will span pages. We will also extend the item by the 1365 * size of align if it is an even multiple of align. Otherwise, it 1366 * would fall on the same boundary every time. 1367 */ 1368 if (rsize & keg->uk_align) 1369 rsize = (rsize & ~keg->uk_align) + alignsize; 1370 if ((rsize & alignsize) == 0) 1371 rsize += alignsize; 1372 trailer = rsize - keg->uk_size; 1373 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE; 1374 pages = MIN(pages, (128 * 1024) / PAGE_SIZE); 1375 keg->uk_rsize = rsize; 1376 keg->uk_ppera = pages; 1377 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize; 1378 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1379 KASSERT(keg->uk_ipers <= SLAB_SETSIZE, 1380 ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__, 1381 keg->uk_ipers)); 1382 } 1383 1384 /* 1385 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1386 * the keg onto the global keg list. 1387 * 1388 * Arguments/Returns follow uma_ctor specifications 1389 * udata Actually uma_kctor_args 1390 */ 1391 static int 1392 keg_ctor(void *mem, int size, void *udata, int flags) 1393 { 1394 struct uma_kctor_args *arg = udata; 1395 uma_keg_t keg = mem; 1396 uma_zone_t zone; 1397 1398 bzero(keg, size); 1399 keg->uk_size = arg->size; 1400 keg->uk_init = arg->uminit; 1401 keg->uk_fini = arg->fini; 1402 keg->uk_align = arg->align; 1403 keg->uk_free = 0; 1404 keg->uk_reserve = 0; 1405 keg->uk_pages = 0; 1406 keg->uk_flags = arg->flags; 1407 keg->uk_allocf = page_alloc; 1408 keg->uk_freef = page_free; 1409 keg->uk_slabzone = NULL; 1410 1411 /* 1412 * The master zone is passed to us at keg-creation time. 1413 */ 1414 zone = arg->zone; 1415 keg->uk_name = zone->uz_name; 1416 1417 if (arg->flags & UMA_ZONE_VM) 1418 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1419 1420 if (arg->flags & UMA_ZONE_ZINIT) 1421 keg->uk_init = zero_init; 1422 1423 if (arg->flags & UMA_ZONE_MALLOC) 1424 keg->uk_flags |= UMA_ZONE_VTOSLAB; 1425 1426 if (arg->flags & UMA_ZONE_PCPU) 1427 #ifdef SMP 1428 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1429 #else 1430 keg->uk_flags &= ~UMA_ZONE_PCPU; 1431 #endif 1432 1433 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) { 1434 keg_cachespread_init(keg); 1435 } else { 1436 if (keg->uk_size > (UMA_SLAB_SIZE - sizeof(struct uma_slab))) 1437 keg_large_init(keg); 1438 else 1439 keg_small_init(keg); 1440 } 1441 1442 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1443 keg->uk_slabzone = slabzone; 1444 1445 /* 1446 * If we haven't booted yet we need allocations to go through the 1447 * startup cache until the vm is ready. 1448 */ 1449 if (keg->uk_ppera == 1) { 1450 #ifdef UMA_MD_SMALL_ALLOC 1451 keg->uk_allocf = uma_small_alloc; 1452 keg->uk_freef = uma_small_free; 1453 1454 if (booted < UMA_STARTUP) 1455 keg->uk_allocf = startup_alloc; 1456 #else 1457 if (booted < UMA_STARTUP2) 1458 keg->uk_allocf = startup_alloc; 1459 #endif 1460 } else if (booted < UMA_STARTUP2 && 1461 (keg->uk_flags & UMA_ZFLAG_INTERNAL)) 1462 keg->uk_allocf = startup_alloc; 1463 1464 /* 1465 * Initialize keg's lock 1466 */ 1467 KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS)); 1468 1469 /* 1470 * If we're putting the slab header in the actual page we need to 1471 * figure out where in each page it goes. This calculates a right 1472 * justified offset into the memory on an ALIGN_PTR boundary. 1473 */ 1474 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1475 u_int totsize; 1476 1477 /* Size of the slab struct and free list */ 1478 totsize = sizeof(struct uma_slab); 1479 1480 if (totsize & UMA_ALIGN_PTR) 1481 totsize = (totsize & ~UMA_ALIGN_PTR) + 1482 (UMA_ALIGN_PTR + 1); 1483 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize; 1484 1485 /* 1486 * The only way the following is possible is if with our 1487 * UMA_ALIGN_PTR adjustments we are now bigger than 1488 * UMA_SLAB_SIZE. I haven't checked whether this is 1489 * mathematically possible for all cases, so we make 1490 * sure here anyway. 1491 */ 1492 totsize = keg->uk_pgoff + sizeof(struct uma_slab); 1493 if (totsize > PAGE_SIZE * keg->uk_ppera) { 1494 printf("zone %s ipers %d rsize %d size %d\n", 1495 zone->uz_name, keg->uk_ipers, keg->uk_rsize, 1496 keg->uk_size); 1497 panic("UMA slab won't fit."); 1498 } 1499 } 1500 1501 if (keg->uk_flags & UMA_ZONE_HASH) 1502 hash_alloc(&keg->uk_hash); 1503 1504 #ifdef UMA_DEBUG 1505 printf("UMA: %s(%p) size %d(%d) flags %#x ipers %d ppera %d out %d free %d\n", 1506 zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags, 1507 keg->uk_ipers, keg->uk_ppera, 1508 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 1509 keg->uk_free); 1510 #endif 1511 1512 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1513 1514 rw_wlock(&uma_rwlock); 1515 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1516 rw_wunlock(&uma_rwlock); 1517 return (0); 1518 } 1519 1520 /* 1521 * Zone header ctor. This initializes all fields, locks, etc. 1522 * 1523 * Arguments/Returns follow uma_ctor specifications 1524 * udata Actually uma_zctor_args 1525 */ 1526 static int 1527 zone_ctor(void *mem, int size, void *udata, int flags) 1528 { 1529 struct uma_zctor_args *arg = udata; 1530 uma_zone_t zone = mem; 1531 uma_zone_t z; 1532 uma_keg_t keg; 1533 1534 bzero(zone, size); 1535 zone->uz_name = arg->name; 1536 zone->uz_ctor = arg->ctor; 1537 zone->uz_dtor = arg->dtor; 1538 zone->uz_slab = zone_fetch_slab; 1539 zone->uz_init = NULL; 1540 zone->uz_fini = NULL; 1541 zone->uz_allocs = 0; 1542 zone->uz_frees = 0; 1543 zone->uz_fails = 0; 1544 zone->uz_sleeps = 0; 1545 zone->uz_count = 0; 1546 zone->uz_count_min = 0; 1547 zone->uz_flags = 0; 1548 zone->uz_warning = NULL; 1549 timevalclear(&zone->uz_ratecheck); 1550 keg = arg->keg; 1551 1552 ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS)); 1553 1554 /* 1555 * This is a pure cache zone, no kegs. 1556 */ 1557 if (arg->import) { 1558 if (arg->flags & UMA_ZONE_VM) 1559 arg->flags |= UMA_ZFLAG_CACHEONLY; 1560 zone->uz_flags = arg->flags; 1561 zone->uz_size = arg->size; 1562 zone->uz_import = arg->import; 1563 zone->uz_release = arg->release; 1564 zone->uz_arg = arg->arg; 1565 zone->uz_lockptr = &zone->uz_lock; 1566 rw_wlock(&uma_rwlock); 1567 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 1568 rw_wunlock(&uma_rwlock); 1569 goto out; 1570 } 1571 1572 /* 1573 * Use the regular zone/keg/slab allocator. 1574 */ 1575 zone->uz_import = (uma_import)zone_import; 1576 zone->uz_release = (uma_release)zone_release; 1577 zone->uz_arg = zone; 1578 1579 if (arg->flags & UMA_ZONE_SECONDARY) { 1580 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 1581 zone->uz_init = arg->uminit; 1582 zone->uz_fini = arg->fini; 1583 zone->uz_lockptr = &keg->uk_lock; 1584 zone->uz_flags |= UMA_ZONE_SECONDARY; 1585 rw_wlock(&uma_rwlock); 1586 ZONE_LOCK(zone); 1587 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 1588 if (LIST_NEXT(z, uz_link) == NULL) { 1589 LIST_INSERT_AFTER(z, zone, uz_link); 1590 break; 1591 } 1592 } 1593 ZONE_UNLOCK(zone); 1594 rw_wunlock(&uma_rwlock); 1595 } else if (keg == NULL) { 1596 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 1597 arg->align, arg->flags)) == NULL) 1598 return (ENOMEM); 1599 } else { 1600 struct uma_kctor_args karg; 1601 int error; 1602 1603 /* We should only be here from uma_startup() */ 1604 karg.size = arg->size; 1605 karg.uminit = arg->uminit; 1606 karg.fini = arg->fini; 1607 karg.align = arg->align; 1608 karg.flags = arg->flags; 1609 karg.zone = zone; 1610 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 1611 flags); 1612 if (error) 1613 return (error); 1614 } 1615 1616 /* 1617 * Link in the first keg. 1618 */ 1619 zone->uz_klink.kl_keg = keg; 1620 LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link); 1621 zone->uz_lockptr = &keg->uk_lock; 1622 zone->uz_size = keg->uk_size; 1623 zone->uz_flags |= (keg->uk_flags & 1624 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 1625 1626 /* 1627 * Some internal zones don't have room allocated for the per cpu 1628 * caches. If we're internal, bail out here. 1629 */ 1630 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { 1631 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 1632 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 1633 return (0); 1634 } 1635 1636 out: 1637 if ((arg->flags & UMA_ZONE_MAXBUCKET) == 0) 1638 zone->uz_count = bucket_select(zone->uz_size); 1639 else 1640 zone->uz_count = BUCKET_MAX; 1641 zone->uz_count_min = zone->uz_count; 1642 1643 return (0); 1644 } 1645 1646 /* 1647 * Keg header dtor. This frees all data, destroys locks, frees the hash 1648 * table and removes the keg from the global list. 1649 * 1650 * Arguments/Returns follow uma_dtor specifications 1651 * udata unused 1652 */ 1653 static void 1654 keg_dtor(void *arg, int size, void *udata) 1655 { 1656 uma_keg_t keg; 1657 1658 keg = (uma_keg_t)arg; 1659 KEG_LOCK(keg); 1660 if (keg->uk_free != 0) { 1661 printf("Freed UMA keg (%s) was not empty (%d items). " 1662 " Lost %d pages of memory.\n", 1663 keg->uk_name ? keg->uk_name : "", 1664 keg->uk_free, keg->uk_pages); 1665 } 1666 KEG_UNLOCK(keg); 1667 1668 hash_free(&keg->uk_hash); 1669 1670 KEG_LOCK_FINI(keg); 1671 } 1672 1673 /* 1674 * Zone header dtor. 1675 * 1676 * Arguments/Returns follow uma_dtor specifications 1677 * udata unused 1678 */ 1679 static void 1680 zone_dtor(void *arg, int size, void *udata) 1681 { 1682 uma_klink_t klink; 1683 uma_zone_t zone; 1684 uma_keg_t keg; 1685 1686 zone = (uma_zone_t)arg; 1687 keg = zone_first_keg(zone); 1688 1689 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 1690 cache_drain(zone); 1691 1692 rw_wlock(&uma_rwlock); 1693 LIST_REMOVE(zone, uz_link); 1694 rw_wunlock(&uma_rwlock); 1695 /* 1696 * XXX there are some races here where 1697 * the zone can be drained but zone lock 1698 * released and then refilled before we 1699 * remove it... we dont care for now 1700 */ 1701 zone_drain_wait(zone, M_WAITOK); 1702 /* 1703 * Unlink all of our kegs. 1704 */ 1705 while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) { 1706 klink->kl_keg = NULL; 1707 LIST_REMOVE(klink, kl_link); 1708 if (klink == &zone->uz_klink) 1709 continue; 1710 free(klink, M_TEMP); 1711 } 1712 /* 1713 * We only destroy kegs from non secondary zones. 1714 */ 1715 if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0) { 1716 rw_wlock(&uma_rwlock); 1717 LIST_REMOVE(keg, uk_link); 1718 rw_wunlock(&uma_rwlock); 1719 zone_free_item(kegs, keg, NULL, SKIP_NONE); 1720 } 1721 ZONE_LOCK_FINI(zone); 1722 } 1723 1724 /* 1725 * Traverses every zone in the system and calls a callback 1726 * 1727 * Arguments: 1728 * zfunc A pointer to a function which accepts a zone 1729 * as an argument. 1730 * 1731 * Returns: 1732 * Nothing 1733 */ 1734 static void 1735 zone_foreach(void (*zfunc)(uma_zone_t)) 1736 { 1737 uma_keg_t keg; 1738 uma_zone_t zone; 1739 1740 rw_rlock(&uma_rwlock); 1741 LIST_FOREACH(keg, &uma_kegs, uk_link) { 1742 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 1743 zfunc(zone); 1744 } 1745 rw_runlock(&uma_rwlock); 1746 } 1747 1748 /* Public functions */ 1749 /* See uma.h */ 1750 void 1751 uma_startup(void *bootmem, int boot_pages) 1752 { 1753 struct uma_zctor_args args; 1754 uma_slab_t slab; 1755 int i; 1756 1757 #ifdef UMA_DEBUG 1758 printf("Creating uma keg headers zone and keg.\n"); 1759 #endif 1760 rw_init(&uma_rwlock, "UMA lock"); 1761 1762 /* "manually" create the initial zone */ 1763 memset(&args, 0, sizeof(args)); 1764 args.name = "UMA Kegs"; 1765 args.size = sizeof(struct uma_keg); 1766 args.ctor = keg_ctor; 1767 args.dtor = keg_dtor; 1768 args.uminit = zero_init; 1769 args.fini = NULL; 1770 args.keg = &masterkeg; 1771 args.align = 32 - 1; 1772 args.flags = UMA_ZFLAG_INTERNAL; 1773 /* The initial zone has no Per cpu queues so it's smaller */ 1774 zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK); 1775 1776 #ifdef UMA_DEBUG 1777 printf("Filling boot free list.\n"); 1778 #endif 1779 for (i = 0; i < boot_pages; i++) { 1780 slab = (uma_slab_t)((uint8_t *)bootmem + (i * UMA_SLAB_SIZE)); 1781 slab->us_data = (uint8_t *)slab; 1782 slab->us_flags = UMA_SLAB_BOOT; 1783 LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link); 1784 } 1785 mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF); 1786 1787 #ifdef UMA_DEBUG 1788 printf("Creating uma zone headers zone and keg.\n"); 1789 #endif 1790 args.name = "UMA Zones"; 1791 args.size = sizeof(struct uma_zone) + 1792 (sizeof(struct uma_cache) * (mp_maxid + 1)); 1793 args.ctor = zone_ctor; 1794 args.dtor = zone_dtor; 1795 args.uminit = zero_init; 1796 args.fini = NULL; 1797 args.keg = NULL; 1798 args.align = 32 - 1; 1799 args.flags = UMA_ZFLAG_INTERNAL; 1800 /* The initial zone has no Per cpu queues so it's smaller */ 1801 zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK); 1802 1803 #ifdef UMA_DEBUG 1804 printf("Creating slab and hash zones.\n"); 1805 #endif 1806 1807 /* Now make a zone for slab headers */ 1808 slabzone = uma_zcreate("UMA Slabs", 1809 sizeof(struct uma_slab), 1810 NULL, NULL, NULL, NULL, 1811 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1812 1813 hashzone = uma_zcreate("UMA Hash", 1814 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 1815 NULL, NULL, NULL, NULL, 1816 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1817 1818 bucket_init(); 1819 1820 booted = UMA_STARTUP; 1821 1822 #ifdef UMA_DEBUG 1823 printf("UMA startup complete.\n"); 1824 #endif 1825 } 1826 1827 /* see uma.h */ 1828 void 1829 uma_startup2(void) 1830 { 1831 booted = UMA_STARTUP2; 1832 bucket_enable(); 1833 sx_init(&uma_drain_lock, "umadrain"); 1834 #ifdef UMA_DEBUG 1835 printf("UMA startup2 complete.\n"); 1836 #endif 1837 } 1838 1839 /* 1840 * Initialize our callout handle 1841 * 1842 */ 1843 1844 static void 1845 uma_startup3(void) 1846 { 1847 #ifdef UMA_DEBUG 1848 printf("Starting callout.\n"); 1849 #endif 1850 callout_init(&uma_callout, 1); 1851 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 1852 #ifdef UMA_DEBUG 1853 printf("UMA startup3 complete.\n"); 1854 #endif 1855 } 1856 1857 static uma_keg_t 1858 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 1859 int align, uint32_t flags) 1860 { 1861 struct uma_kctor_args args; 1862 1863 args.size = size; 1864 args.uminit = uminit; 1865 args.fini = fini; 1866 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 1867 args.flags = flags; 1868 args.zone = zone; 1869 return (zone_alloc_item(kegs, &args, M_WAITOK)); 1870 } 1871 1872 /* See uma.h */ 1873 void 1874 uma_set_align(int align) 1875 { 1876 1877 if (align != UMA_ALIGN_CACHE) 1878 uma_align_cache = align; 1879 } 1880 1881 /* See uma.h */ 1882 uma_zone_t 1883 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 1884 uma_init uminit, uma_fini fini, int align, uint32_t flags) 1885 1886 { 1887 struct uma_zctor_args args; 1888 uma_zone_t res; 1889 bool locked; 1890 1891 /* This stuff is essential for the zone ctor */ 1892 memset(&args, 0, sizeof(args)); 1893 args.name = name; 1894 args.size = size; 1895 args.ctor = ctor; 1896 args.dtor = dtor; 1897 args.uminit = uminit; 1898 args.fini = fini; 1899 #ifdef INVARIANTS 1900 /* 1901 * If a zone is being created with an empty constructor and 1902 * destructor, pass UMA constructor/destructor which checks for 1903 * memory use after free. 1904 */ 1905 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOFREE))) && 1906 ctor == NULL && dtor == NULL && uminit == NULL && fini == NULL) { 1907 args.ctor = trash_ctor; 1908 args.dtor = trash_dtor; 1909 args.uminit = trash_init; 1910 args.fini = trash_fini; 1911 } 1912 #endif 1913 args.align = align; 1914 args.flags = flags; 1915 args.keg = NULL; 1916 1917 if (booted < UMA_STARTUP2) { 1918 locked = false; 1919 } else { 1920 sx_slock(&uma_drain_lock); 1921 locked = true; 1922 } 1923 res = zone_alloc_item(zones, &args, M_WAITOK); 1924 if (locked) 1925 sx_sunlock(&uma_drain_lock); 1926 return (res); 1927 } 1928 1929 /* See uma.h */ 1930 uma_zone_t 1931 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 1932 uma_init zinit, uma_fini zfini, uma_zone_t master) 1933 { 1934 struct uma_zctor_args args; 1935 uma_keg_t keg; 1936 uma_zone_t res; 1937 bool locked; 1938 1939 keg = zone_first_keg(master); 1940 memset(&args, 0, sizeof(args)); 1941 args.name = name; 1942 args.size = keg->uk_size; 1943 args.ctor = ctor; 1944 args.dtor = dtor; 1945 args.uminit = zinit; 1946 args.fini = zfini; 1947 args.align = keg->uk_align; 1948 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 1949 args.keg = keg; 1950 1951 if (booted < UMA_STARTUP2) { 1952 locked = false; 1953 } else { 1954 sx_slock(&uma_drain_lock); 1955 locked = true; 1956 } 1957 /* XXX Attaches only one keg of potentially many. */ 1958 res = zone_alloc_item(zones, &args, M_WAITOK); 1959 if (locked) 1960 sx_sunlock(&uma_drain_lock); 1961 return (res); 1962 } 1963 1964 /* See uma.h */ 1965 uma_zone_t 1966 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor, 1967 uma_init zinit, uma_fini zfini, uma_import zimport, 1968 uma_release zrelease, void *arg, int flags) 1969 { 1970 struct uma_zctor_args args; 1971 1972 memset(&args, 0, sizeof(args)); 1973 args.name = name; 1974 args.size = size; 1975 args.ctor = ctor; 1976 args.dtor = dtor; 1977 args.uminit = zinit; 1978 args.fini = zfini; 1979 args.import = zimport; 1980 args.release = zrelease; 1981 args.arg = arg; 1982 args.align = 0; 1983 args.flags = flags; 1984 1985 return (zone_alloc_item(zones, &args, M_WAITOK)); 1986 } 1987 1988 static void 1989 zone_lock_pair(uma_zone_t a, uma_zone_t b) 1990 { 1991 if (a < b) { 1992 ZONE_LOCK(a); 1993 mtx_lock_flags(b->uz_lockptr, MTX_DUPOK); 1994 } else { 1995 ZONE_LOCK(b); 1996 mtx_lock_flags(a->uz_lockptr, MTX_DUPOK); 1997 } 1998 } 1999 2000 static void 2001 zone_unlock_pair(uma_zone_t a, uma_zone_t b) 2002 { 2003 2004 ZONE_UNLOCK(a); 2005 ZONE_UNLOCK(b); 2006 } 2007 2008 int 2009 uma_zsecond_add(uma_zone_t zone, uma_zone_t master) 2010 { 2011 uma_klink_t klink; 2012 uma_klink_t kl; 2013 int error; 2014 2015 error = 0; 2016 klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO); 2017 2018 zone_lock_pair(zone, master); 2019 /* 2020 * zone must use vtoslab() to resolve objects and must already be 2021 * a secondary. 2022 */ 2023 if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) 2024 != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) { 2025 error = EINVAL; 2026 goto out; 2027 } 2028 /* 2029 * The new master must also use vtoslab(). 2030 */ 2031 if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) { 2032 error = EINVAL; 2033 goto out; 2034 } 2035 2036 /* 2037 * The underlying object must be the same size. rsize 2038 * may be different. 2039 */ 2040 if (master->uz_size != zone->uz_size) { 2041 error = E2BIG; 2042 goto out; 2043 } 2044 /* 2045 * Put it at the end of the list. 2046 */ 2047 klink->kl_keg = zone_first_keg(master); 2048 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) { 2049 if (LIST_NEXT(kl, kl_link) == NULL) { 2050 LIST_INSERT_AFTER(kl, klink, kl_link); 2051 break; 2052 } 2053 } 2054 klink = NULL; 2055 zone->uz_flags |= UMA_ZFLAG_MULTI; 2056 zone->uz_slab = zone_fetch_slab_multi; 2057 2058 out: 2059 zone_unlock_pair(zone, master); 2060 if (klink != NULL) 2061 free(klink, M_TEMP); 2062 2063 return (error); 2064 } 2065 2066 2067 /* See uma.h */ 2068 void 2069 uma_zdestroy(uma_zone_t zone) 2070 { 2071 2072 sx_slock(&uma_drain_lock); 2073 zone_free_item(zones, zone, NULL, SKIP_NONE); 2074 sx_sunlock(&uma_drain_lock); 2075 } 2076 2077 /* See uma.h */ 2078 void * 2079 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 2080 { 2081 void *item; 2082 uma_cache_t cache; 2083 uma_bucket_t bucket; 2084 int lockfail; 2085 int cpu; 2086 2087 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2088 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 2089 2090 /* This is the fast path allocation */ 2091 #ifdef UMA_DEBUG_ALLOC_1 2092 printf("Allocating one item from %s(%p)\n", zone->uz_name, zone); 2093 #endif 2094 CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread, 2095 zone->uz_name, flags); 2096 2097 if (flags & M_WAITOK) { 2098 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2099 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 2100 } 2101 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2102 ("uma_zalloc_arg: called with spinlock or critical section held")); 2103 2104 #ifdef DEBUG_MEMGUARD 2105 if (memguard_cmp_zone(zone)) { 2106 item = memguard_alloc(zone->uz_size, flags); 2107 if (item != NULL) { 2108 if (zone->uz_init != NULL && 2109 zone->uz_init(item, zone->uz_size, flags) != 0) 2110 return (NULL); 2111 if (zone->uz_ctor != NULL && 2112 zone->uz_ctor(item, zone->uz_size, udata, 2113 flags) != 0) { 2114 zone->uz_fini(item, zone->uz_size); 2115 return (NULL); 2116 } 2117 return (item); 2118 } 2119 /* This is unfortunate but should not be fatal. */ 2120 } 2121 #endif 2122 /* 2123 * If possible, allocate from the per-CPU cache. There are two 2124 * requirements for safe access to the per-CPU cache: (1) the thread 2125 * accessing the cache must not be preempted or yield during access, 2126 * and (2) the thread must not migrate CPUs without switching which 2127 * cache it accesses. We rely on a critical section to prevent 2128 * preemption and migration. We release the critical section in 2129 * order to acquire the zone mutex if we are unable to allocate from 2130 * the current cache; when we re-acquire the critical section, we 2131 * must detect and handle migration if it has occurred. 2132 */ 2133 critical_enter(); 2134 cpu = curcpu; 2135 cache = &zone->uz_cpu[cpu]; 2136 2137 zalloc_start: 2138 bucket = cache->uc_allocbucket; 2139 if (bucket != NULL && bucket->ub_cnt > 0) { 2140 bucket->ub_cnt--; 2141 item = bucket->ub_bucket[bucket->ub_cnt]; 2142 #ifdef INVARIANTS 2143 bucket->ub_bucket[bucket->ub_cnt] = NULL; 2144 #endif 2145 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 2146 cache->uc_allocs++; 2147 critical_exit(); 2148 if (zone->uz_ctor != NULL && 2149 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2150 atomic_add_long(&zone->uz_fails, 1); 2151 zone_free_item(zone, item, udata, SKIP_DTOR); 2152 return (NULL); 2153 } 2154 #ifdef INVARIANTS 2155 uma_dbg_alloc(zone, NULL, item); 2156 #endif 2157 if (flags & M_ZERO) 2158 uma_zero_item(item, zone); 2159 return (item); 2160 } 2161 2162 /* 2163 * We have run out of items in our alloc bucket. 2164 * See if we can switch with our free bucket. 2165 */ 2166 bucket = cache->uc_freebucket; 2167 if (bucket != NULL && bucket->ub_cnt > 0) { 2168 #ifdef UMA_DEBUG_ALLOC 2169 printf("uma_zalloc: Swapping empty with alloc.\n"); 2170 #endif 2171 cache->uc_freebucket = cache->uc_allocbucket; 2172 cache->uc_allocbucket = bucket; 2173 goto zalloc_start; 2174 } 2175 2176 /* 2177 * Discard any empty allocation bucket while we hold no locks. 2178 */ 2179 bucket = cache->uc_allocbucket; 2180 cache->uc_allocbucket = NULL; 2181 critical_exit(); 2182 if (bucket != NULL) 2183 bucket_free(zone, bucket, udata); 2184 2185 /* Short-circuit for zones without buckets and low memory. */ 2186 if (zone->uz_count == 0 || bucketdisable) 2187 goto zalloc_item; 2188 2189 /* 2190 * Attempt to retrieve the item from the per-CPU cache has failed, so 2191 * we must go back to the zone. This requires the zone lock, so we 2192 * must drop the critical section, then re-acquire it when we go back 2193 * to the cache. Since the critical section is released, we may be 2194 * preempted or migrate. As such, make sure not to maintain any 2195 * thread-local state specific to the cache from prior to releasing 2196 * the critical section. 2197 */ 2198 lockfail = 0; 2199 if (ZONE_TRYLOCK(zone) == 0) { 2200 /* Record contention to size the buckets. */ 2201 ZONE_LOCK(zone); 2202 lockfail = 1; 2203 } 2204 critical_enter(); 2205 cpu = curcpu; 2206 cache = &zone->uz_cpu[cpu]; 2207 2208 /* 2209 * Since we have locked the zone we may as well send back our stats. 2210 */ 2211 atomic_add_long(&zone->uz_allocs, cache->uc_allocs); 2212 atomic_add_long(&zone->uz_frees, cache->uc_frees); 2213 cache->uc_allocs = 0; 2214 cache->uc_frees = 0; 2215 2216 /* See if we lost the race to fill the cache. */ 2217 if (cache->uc_allocbucket != NULL) { 2218 ZONE_UNLOCK(zone); 2219 goto zalloc_start; 2220 } 2221 2222 /* 2223 * Check the zone's cache of buckets. 2224 */ 2225 if ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) { 2226 KASSERT(bucket->ub_cnt != 0, 2227 ("uma_zalloc_arg: Returning an empty bucket.")); 2228 2229 LIST_REMOVE(bucket, ub_link); 2230 cache->uc_allocbucket = bucket; 2231 ZONE_UNLOCK(zone); 2232 goto zalloc_start; 2233 } 2234 /* We are no longer associated with this CPU. */ 2235 critical_exit(); 2236 2237 /* 2238 * We bump the uz count when the cache size is insufficient to 2239 * handle the working set. 2240 */ 2241 if (lockfail && zone->uz_count < BUCKET_MAX) 2242 zone->uz_count++; 2243 ZONE_UNLOCK(zone); 2244 2245 /* 2246 * Now lets just fill a bucket and put it on the free list. If that 2247 * works we'll restart the allocation from the beginning and it 2248 * will use the just filled bucket. 2249 */ 2250 bucket = zone_alloc_bucket(zone, udata, flags); 2251 if (bucket != NULL) { 2252 ZONE_LOCK(zone); 2253 critical_enter(); 2254 cpu = curcpu; 2255 cache = &zone->uz_cpu[cpu]; 2256 /* 2257 * See if we lost the race or were migrated. Cache the 2258 * initialized bucket to make this less likely or claim 2259 * the memory directly. 2260 */ 2261 if (cache->uc_allocbucket == NULL) 2262 cache->uc_allocbucket = bucket; 2263 else 2264 LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link); 2265 ZONE_UNLOCK(zone); 2266 goto zalloc_start; 2267 } 2268 2269 /* 2270 * We may not be able to get a bucket so return an actual item. 2271 */ 2272 #ifdef UMA_DEBUG 2273 printf("uma_zalloc_arg: Bucketzone returned NULL\n"); 2274 #endif 2275 2276 zalloc_item: 2277 item = zone_alloc_item(zone, udata, flags); 2278 2279 return (item); 2280 } 2281 2282 static uma_slab_t 2283 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags) 2284 { 2285 uma_slab_t slab; 2286 int reserve; 2287 2288 mtx_assert(&keg->uk_lock, MA_OWNED); 2289 slab = NULL; 2290 reserve = 0; 2291 if ((flags & M_USE_RESERVE) == 0) 2292 reserve = keg->uk_reserve; 2293 2294 for (;;) { 2295 /* 2296 * Find a slab with some space. Prefer slabs that are partially 2297 * used over those that are totally full. This helps to reduce 2298 * fragmentation. 2299 */ 2300 if (keg->uk_free > reserve) { 2301 if (!LIST_EMPTY(&keg->uk_part_slab)) { 2302 slab = LIST_FIRST(&keg->uk_part_slab); 2303 } else { 2304 slab = LIST_FIRST(&keg->uk_free_slab); 2305 LIST_REMOVE(slab, us_link); 2306 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, 2307 us_link); 2308 } 2309 MPASS(slab->us_keg == keg); 2310 return (slab); 2311 } 2312 2313 /* 2314 * M_NOVM means don't ask at all! 2315 */ 2316 if (flags & M_NOVM) 2317 break; 2318 2319 if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) { 2320 keg->uk_flags |= UMA_ZFLAG_FULL; 2321 /* 2322 * If this is not a multi-zone, set the FULL bit. 2323 * Otherwise slab_multi() takes care of it. 2324 */ 2325 if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) { 2326 zone->uz_flags |= UMA_ZFLAG_FULL; 2327 zone_log_warning(zone); 2328 zone_maxaction(zone); 2329 } 2330 if (flags & M_NOWAIT) 2331 break; 2332 zone->uz_sleeps++; 2333 msleep(keg, &keg->uk_lock, PVM, "keglimit", 0); 2334 continue; 2335 } 2336 slab = keg_alloc_slab(keg, zone, flags); 2337 /* 2338 * If we got a slab here it's safe to mark it partially used 2339 * and return. We assume that the caller is going to remove 2340 * at least one item. 2341 */ 2342 if (slab) { 2343 MPASS(slab->us_keg == keg); 2344 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2345 return (slab); 2346 } 2347 /* 2348 * We might not have been able to get a slab but another cpu 2349 * could have while we were unlocked. Check again before we 2350 * fail. 2351 */ 2352 flags |= M_NOVM; 2353 } 2354 return (slab); 2355 } 2356 2357 static uma_slab_t 2358 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags) 2359 { 2360 uma_slab_t slab; 2361 2362 if (keg == NULL) { 2363 keg = zone_first_keg(zone); 2364 KEG_LOCK(keg); 2365 } 2366 2367 for (;;) { 2368 slab = keg_fetch_slab(keg, zone, flags); 2369 if (slab) 2370 return (slab); 2371 if (flags & (M_NOWAIT | M_NOVM)) 2372 break; 2373 } 2374 KEG_UNLOCK(keg); 2375 return (NULL); 2376 } 2377 2378 /* 2379 * uma_zone_fetch_slab_multi: Fetches a slab from one available keg. Returns 2380 * with the keg locked. On NULL no lock is held. 2381 * 2382 * The last pointer is used to seed the search. It is not required. 2383 */ 2384 static uma_slab_t 2385 zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags) 2386 { 2387 uma_klink_t klink; 2388 uma_slab_t slab; 2389 uma_keg_t keg; 2390 int flags; 2391 int empty; 2392 int full; 2393 2394 /* 2395 * Don't wait on the first pass. This will skip limit tests 2396 * as well. We don't want to block if we can find a provider 2397 * without blocking. 2398 */ 2399 flags = (rflags & ~M_WAITOK) | M_NOWAIT; 2400 /* 2401 * Use the last slab allocated as a hint for where to start 2402 * the search. 2403 */ 2404 if (last != NULL) { 2405 slab = keg_fetch_slab(last, zone, flags); 2406 if (slab) 2407 return (slab); 2408 KEG_UNLOCK(last); 2409 } 2410 /* 2411 * Loop until we have a slab incase of transient failures 2412 * while M_WAITOK is specified. I'm not sure this is 100% 2413 * required but we've done it for so long now. 2414 */ 2415 for (;;) { 2416 empty = 0; 2417 full = 0; 2418 /* 2419 * Search the available kegs for slabs. Be careful to hold the 2420 * correct lock while calling into the keg layer. 2421 */ 2422 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) { 2423 keg = klink->kl_keg; 2424 KEG_LOCK(keg); 2425 if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) { 2426 slab = keg_fetch_slab(keg, zone, flags); 2427 if (slab) 2428 return (slab); 2429 } 2430 if (keg->uk_flags & UMA_ZFLAG_FULL) 2431 full++; 2432 else 2433 empty++; 2434 KEG_UNLOCK(keg); 2435 } 2436 if (rflags & (M_NOWAIT | M_NOVM)) 2437 break; 2438 flags = rflags; 2439 /* 2440 * All kegs are full. XXX We can't atomically check all kegs 2441 * and sleep so just sleep for a short period and retry. 2442 */ 2443 if (full && !empty) { 2444 ZONE_LOCK(zone); 2445 zone->uz_flags |= UMA_ZFLAG_FULL; 2446 zone->uz_sleeps++; 2447 zone_log_warning(zone); 2448 zone_maxaction(zone); 2449 msleep(zone, zone->uz_lockptr, PVM, 2450 "zonelimit", hz/100); 2451 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2452 ZONE_UNLOCK(zone); 2453 continue; 2454 } 2455 } 2456 return (NULL); 2457 } 2458 2459 static void * 2460 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 2461 { 2462 void *item; 2463 uint8_t freei; 2464 2465 MPASS(keg == slab->us_keg); 2466 mtx_assert(&keg->uk_lock, MA_OWNED); 2467 2468 freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1; 2469 BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free); 2470 item = slab->us_data + (keg->uk_rsize * freei); 2471 slab->us_freecount--; 2472 keg->uk_free--; 2473 2474 /* Move this slab to the full list */ 2475 if (slab->us_freecount == 0) { 2476 LIST_REMOVE(slab, us_link); 2477 LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link); 2478 } 2479 2480 return (item); 2481 } 2482 2483 static int 2484 zone_import(uma_zone_t zone, void **bucket, int max, int flags) 2485 { 2486 uma_slab_t slab; 2487 uma_keg_t keg; 2488 int i; 2489 2490 slab = NULL; 2491 keg = NULL; 2492 /* Try to keep the buckets totally full */ 2493 for (i = 0; i < max; ) { 2494 if ((slab = zone->uz_slab(zone, keg, flags)) == NULL) 2495 break; 2496 keg = slab->us_keg; 2497 while (slab->us_freecount && i < max) { 2498 bucket[i++] = slab_alloc_item(keg, slab); 2499 if (keg->uk_free <= keg->uk_reserve) 2500 break; 2501 } 2502 /* Don't grab more than one slab at a time. */ 2503 flags &= ~M_WAITOK; 2504 flags |= M_NOWAIT; 2505 } 2506 if (slab != NULL) 2507 KEG_UNLOCK(keg); 2508 2509 return i; 2510 } 2511 2512 static uma_bucket_t 2513 zone_alloc_bucket(uma_zone_t zone, void *udata, int flags) 2514 { 2515 uma_bucket_t bucket; 2516 int max; 2517 2518 /* Don't wait for buckets, preserve caller's NOVM setting. */ 2519 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 2520 if (bucket == NULL) 2521 return (NULL); 2522 2523 max = MIN(bucket->ub_entries, zone->uz_count); 2524 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 2525 max, flags); 2526 2527 /* 2528 * Initialize the memory if necessary. 2529 */ 2530 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 2531 int i; 2532 2533 for (i = 0; i < bucket->ub_cnt; i++) 2534 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 2535 flags) != 0) 2536 break; 2537 /* 2538 * If we couldn't initialize the whole bucket, put the 2539 * rest back onto the freelist. 2540 */ 2541 if (i != bucket->ub_cnt) { 2542 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 2543 bucket->ub_cnt - i); 2544 #ifdef INVARIANTS 2545 bzero(&bucket->ub_bucket[i], 2546 sizeof(void *) * (bucket->ub_cnt - i)); 2547 #endif 2548 bucket->ub_cnt = i; 2549 } 2550 } 2551 2552 if (bucket->ub_cnt == 0) { 2553 bucket_free(zone, bucket, udata); 2554 atomic_add_long(&zone->uz_fails, 1); 2555 return (NULL); 2556 } 2557 2558 return (bucket); 2559 } 2560 2561 /* 2562 * Allocates a single item from a zone. 2563 * 2564 * Arguments 2565 * zone The zone to alloc for. 2566 * udata The data to be passed to the constructor. 2567 * flags M_WAITOK, M_NOWAIT, M_ZERO. 2568 * 2569 * Returns 2570 * NULL if there is no memory and M_NOWAIT is set 2571 * An item if successful 2572 */ 2573 2574 static void * 2575 zone_alloc_item(uma_zone_t zone, void *udata, int flags) 2576 { 2577 void *item; 2578 2579 item = NULL; 2580 2581 #ifdef UMA_DEBUG_ALLOC 2582 printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone); 2583 #endif 2584 if (zone->uz_import(zone->uz_arg, &item, 1, flags) != 1) 2585 goto fail; 2586 atomic_add_long(&zone->uz_allocs, 1); 2587 2588 /* 2589 * We have to call both the zone's init (not the keg's init) 2590 * and the zone's ctor. This is because the item is going from 2591 * a keg slab directly to the user, and the user is expecting it 2592 * to be both zone-init'd as well as zone-ctor'd. 2593 */ 2594 if (zone->uz_init != NULL) { 2595 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 2596 zone_free_item(zone, item, udata, SKIP_FINI); 2597 goto fail; 2598 } 2599 } 2600 if (zone->uz_ctor != NULL) { 2601 if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2602 zone_free_item(zone, item, udata, SKIP_DTOR); 2603 goto fail; 2604 } 2605 } 2606 #ifdef INVARIANTS 2607 uma_dbg_alloc(zone, NULL, item); 2608 #endif 2609 if (flags & M_ZERO) 2610 uma_zero_item(item, zone); 2611 2612 return (item); 2613 2614 fail: 2615 atomic_add_long(&zone->uz_fails, 1); 2616 return (NULL); 2617 } 2618 2619 /* See uma.h */ 2620 void 2621 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 2622 { 2623 uma_cache_t cache; 2624 uma_bucket_t bucket; 2625 int lockfail; 2626 int cpu; 2627 2628 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2629 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 2630 2631 #ifdef UMA_DEBUG_ALLOC_1 2632 printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone); 2633 #endif 2634 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 2635 zone->uz_name); 2636 2637 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2638 ("uma_zfree_arg: called with spinlock or critical section held")); 2639 2640 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 2641 if (item == NULL) 2642 return; 2643 #ifdef DEBUG_MEMGUARD 2644 if (is_memguard_addr(item)) { 2645 if (zone->uz_dtor != NULL) 2646 zone->uz_dtor(item, zone->uz_size, udata); 2647 if (zone->uz_fini != NULL) 2648 zone->uz_fini(item, zone->uz_size); 2649 memguard_free(item); 2650 return; 2651 } 2652 #endif 2653 #ifdef INVARIANTS 2654 if (zone->uz_flags & UMA_ZONE_MALLOC) 2655 uma_dbg_free(zone, udata, item); 2656 else 2657 uma_dbg_free(zone, NULL, item); 2658 #endif 2659 if (zone->uz_dtor != NULL) 2660 zone->uz_dtor(item, zone->uz_size, udata); 2661 2662 /* 2663 * The race here is acceptable. If we miss it we'll just have to wait 2664 * a little longer for the limits to be reset. 2665 */ 2666 if (zone->uz_flags & UMA_ZFLAG_FULL) 2667 goto zfree_item; 2668 2669 /* 2670 * If possible, free to the per-CPU cache. There are two 2671 * requirements for safe access to the per-CPU cache: (1) the thread 2672 * accessing the cache must not be preempted or yield during access, 2673 * and (2) the thread must not migrate CPUs without switching which 2674 * cache it accesses. We rely on a critical section to prevent 2675 * preemption and migration. We release the critical section in 2676 * order to acquire the zone mutex if we are unable to free to the 2677 * current cache; when we re-acquire the critical section, we must 2678 * detect and handle migration if it has occurred. 2679 */ 2680 zfree_restart: 2681 critical_enter(); 2682 cpu = curcpu; 2683 cache = &zone->uz_cpu[cpu]; 2684 2685 zfree_start: 2686 /* 2687 * Try to free into the allocbucket first to give LIFO ordering 2688 * for cache-hot datastructures. Spill over into the freebucket 2689 * if necessary. Alloc will swap them if one runs dry. 2690 */ 2691 bucket = cache->uc_allocbucket; 2692 if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries) 2693 bucket = cache->uc_freebucket; 2694 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 2695 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 2696 ("uma_zfree: Freeing to non free bucket index.")); 2697 bucket->ub_bucket[bucket->ub_cnt] = item; 2698 bucket->ub_cnt++; 2699 cache->uc_frees++; 2700 critical_exit(); 2701 return; 2702 } 2703 2704 /* 2705 * We must go back the zone, which requires acquiring the zone lock, 2706 * which in turn means we must release and re-acquire the critical 2707 * section. Since the critical section is released, we may be 2708 * preempted or migrate. As such, make sure not to maintain any 2709 * thread-local state specific to the cache from prior to releasing 2710 * the critical section. 2711 */ 2712 critical_exit(); 2713 if (zone->uz_count == 0 || bucketdisable) 2714 goto zfree_item; 2715 2716 lockfail = 0; 2717 if (ZONE_TRYLOCK(zone) == 0) { 2718 /* Record contention to size the buckets. */ 2719 ZONE_LOCK(zone); 2720 lockfail = 1; 2721 } 2722 critical_enter(); 2723 cpu = curcpu; 2724 cache = &zone->uz_cpu[cpu]; 2725 2726 /* 2727 * Since we have locked the zone we may as well send back our stats. 2728 */ 2729 atomic_add_long(&zone->uz_allocs, cache->uc_allocs); 2730 atomic_add_long(&zone->uz_frees, cache->uc_frees); 2731 cache->uc_allocs = 0; 2732 cache->uc_frees = 0; 2733 2734 bucket = cache->uc_freebucket; 2735 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 2736 ZONE_UNLOCK(zone); 2737 goto zfree_start; 2738 } 2739 cache->uc_freebucket = NULL; 2740 /* We are no longer associated with this CPU. */ 2741 critical_exit(); 2742 2743 /* Can we throw this on the zone full list? */ 2744 if (bucket != NULL) { 2745 #ifdef UMA_DEBUG_ALLOC 2746 printf("uma_zfree: Putting old bucket on the free list.\n"); 2747 #endif 2748 /* ub_cnt is pointing to the last free item */ 2749 KASSERT(bucket->ub_cnt != 0, 2750 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n")); 2751 LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link); 2752 } 2753 2754 /* 2755 * We bump the uz count when the cache size is insufficient to 2756 * handle the working set. 2757 */ 2758 if (lockfail && zone->uz_count < BUCKET_MAX) 2759 zone->uz_count++; 2760 ZONE_UNLOCK(zone); 2761 2762 #ifdef UMA_DEBUG_ALLOC 2763 printf("uma_zfree: Allocating new free bucket.\n"); 2764 #endif 2765 bucket = bucket_alloc(zone, udata, M_NOWAIT); 2766 if (bucket) { 2767 critical_enter(); 2768 cpu = curcpu; 2769 cache = &zone->uz_cpu[cpu]; 2770 if (cache->uc_freebucket == NULL) { 2771 cache->uc_freebucket = bucket; 2772 goto zfree_start; 2773 } 2774 /* 2775 * We lost the race, start over. We have to drop our 2776 * critical section to free the bucket. 2777 */ 2778 critical_exit(); 2779 bucket_free(zone, bucket, udata); 2780 goto zfree_restart; 2781 } 2782 2783 /* 2784 * If nothing else caught this, we'll just do an internal free. 2785 */ 2786 zfree_item: 2787 zone_free_item(zone, item, udata, SKIP_DTOR); 2788 2789 return; 2790 } 2791 2792 static void 2793 slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item) 2794 { 2795 uint8_t freei; 2796 2797 mtx_assert(&keg->uk_lock, MA_OWNED); 2798 MPASS(keg == slab->us_keg); 2799 2800 /* Do we need to remove from any lists? */ 2801 if (slab->us_freecount+1 == keg->uk_ipers) { 2802 LIST_REMOVE(slab, us_link); 2803 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 2804 } else if (slab->us_freecount == 0) { 2805 LIST_REMOVE(slab, us_link); 2806 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2807 } 2808 2809 /* Slab management. */ 2810 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 2811 BIT_SET(SLAB_SETSIZE, freei, &slab->us_free); 2812 slab->us_freecount++; 2813 2814 /* Keg statistics. */ 2815 keg->uk_free++; 2816 } 2817 2818 static void 2819 zone_release(uma_zone_t zone, void **bucket, int cnt) 2820 { 2821 void *item; 2822 uma_slab_t slab; 2823 uma_keg_t keg; 2824 uint8_t *mem; 2825 int clearfull; 2826 int i; 2827 2828 clearfull = 0; 2829 keg = zone_first_keg(zone); 2830 KEG_LOCK(keg); 2831 for (i = 0; i < cnt; i++) { 2832 item = bucket[i]; 2833 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) { 2834 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 2835 if (zone->uz_flags & UMA_ZONE_HASH) { 2836 slab = hash_sfind(&keg->uk_hash, mem); 2837 } else { 2838 mem += keg->uk_pgoff; 2839 slab = (uma_slab_t)mem; 2840 } 2841 } else { 2842 slab = vtoslab((vm_offset_t)item); 2843 if (slab->us_keg != keg) { 2844 KEG_UNLOCK(keg); 2845 keg = slab->us_keg; 2846 KEG_LOCK(keg); 2847 } 2848 } 2849 slab_free_item(keg, slab, item); 2850 if (keg->uk_flags & UMA_ZFLAG_FULL) { 2851 if (keg->uk_pages < keg->uk_maxpages) { 2852 keg->uk_flags &= ~UMA_ZFLAG_FULL; 2853 clearfull = 1; 2854 } 2855 2856 /* 2857 * We can handle one more allocation. Since we're 2858 * clearing ZFLAG_FULL, wake up all procs blocked 2859 * on pages. This should be uncommon, so keeping this 2860 * simple for now (rather than adding count of blocked 2861 * threads etc). 2862 */ 2863 wakeup(keg); 2864 } 2865 } 2866 KEG_UNLOCK(keg); 2867 if (clearfull) { 2868 ZONE_LOCK(zone); 2869 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2870 wakeup(zone); 2871 ZONE_UNLOCK(zone); 2872 } 2873 2874 } 2875 2876 /* 2877 * Frees a single item to any zone. 2878 * 2879 * Arguments: 2880 * zone The zone to free to 2881 * item The item we're freeing 2882 * udata User supplied data for the dtor 2883 * skip Skip dtors and finis 2884 */ 2885 static void 2886 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 2887 { 2888 2889 #ifdef INVARIANTS 2890 if (skip == SKIP_NONE) { 2891 if (zone->uz_flags & UMA_ZONE_MALLOC) 2892 uma_dbg_free(zone, udata, item); 2893 else 2894 uma_dbg_free(zone, NULL, item); 2895 } 2896 #endif 2897 if (skip < SKIP_DTOR && zone->uz_dtor) 2898 zone->uz_dtor(item, zone->uz_size, udata); 2899 2900 if (skip < SKIP_FINI && zone->uz_fini) 2901 zone->uz_fini(item, zone->uz_size); 2902 2903 atomic_add_long(&zone->uz_frees, 1); 2904 zone->uz_release(zone->uz_arg, &item, 1); 2905 } 2906 2907 /* See uma.h */ 2908 int 2909 uma_zone_set_max(uma_zone_t zone, int nitems) 2910 { 2911 uma_keg_t keg; 2912 2913 keg = zone_first_keg(zone); 2914 if (keg == NULL) 2915 return (0); 2916 KEG_LOCK(keg); 2917 keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera; 2918 if (keg->uk_maxpages * keg->uk_ipers < nitems) 2919 keg->uk_maxpages += keg->uk_ppera; 2920 nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers; 2921 KEG_UNLOCK(keg); 2922 2923 return (nitems); 2924 } 2925 2926 /* See uma.h */ 2927 int 2928 uma_zone_get_max(uma_zone_t zone) 2929 { 2930 int nitems; 2931 uma_keg_t keg; 2932 2933 keg = zone_first_keg(zone); 2934 if (keg == NULL) 2935 return (0); 2936 KEG_LOCK(keg); 2937 nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers; 2938 KEG_UNLOCK(keg); 2939 2940 return (nitems); 2941 } 2942 2943 /* See uma.h */ 2944 void 2945 uma_zone_set_warning(uma_zone_t zone, const char *warning) 2946 { 2947 2948 ZONE_LOCK(zone); 2949 zone->uz_warning = warning; 2950 ZONE_UNLOCK(zone); 2951 } 2952 2953 /* See uma.h */ 2954 void 2955 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 2956 { 2957 2958 ZONE_LOCK(zone); 2959 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 2960 ZONE_UNLOCK(zone); 2961 } 2962 2963 /* See uma.h */ 2964 int 2965 uma_zone_get_cur(uma_zone_t zone) 2966 { 2967 int64_t nitems; 2968 u_int i; 2969 2970 ZONE_LOCK(zone); 2971 nitems = zone->uz_allocs - zone->uz_frees; 2972 CPU_FOREACH(i) { 2973 /* 2974 * See the comment in sysctl_vm_zone_stats() regarding the 2975 * safety of accessing the per-cpu caches. With the zone lock 2976 * held, it is safe, but can potentially result in stale data. 2977 */ 2978 nitems += zone->uz_cpu[i].uc_allocs - 2979 zone->uz_cpu[i].uc_frees; 2980 } 2981 ZONE_UNLOCK(zone); 2982 2983 return (nitems < 0 ? 0 : nitems); 2984 } 2985 2986 /* See uma.h */ 2987 void 2988 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 2989 { 2990 uma_keg_t keg; 2991 2992 keg = zone_first_keg(zone); 2993 KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type")); 2994 KEG_LOCK(keg); 2995 KASSERT(keg->uk_pages == 0, 2996 ("uma_zone_set_init on non-empty keg")); 2997 keg->uk_init = uminit; 2998 KEG_UNLOCK(keg); 2999 } 3000 3001 /* See uma.h */ 3002 void 3003 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 3004 { 3005 uma_keg_t keg; 3006 3007 keg = zone_first_keg(zone); 3008 KASSERT(keg != NULL, ("uma_zone_set_fini: Invalid zone type")); 3009 KEG_LOCK(keg); 3010 KASSERT(keg->uk_pages == 0, 3011 ("uma_zone_set_fini on non-empty keg")); 3012 keg->uk_fini = fini; 3013 KEG_UNLOCK(keg); 3014 } 3015 3016 /* See uma.h */ 3017 void 3018 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 3019 { 3020 3021 ZONE_LOCK(zone); 3022 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3023 ("uma_zone_set_zinit on non-empty keg")); 3024 zone->uz_init = zinit; 3025 ZONE_UNLOCK(zone); 3026 } 3027 3028 /* See uma.h */ 3029 void 3030 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 3031 { 3032 3033 ZONE_LOCK(zone); 3034 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3035 ("uma_zone_set_zfini on non-empty keg")); 3036 zone->uz_fini = zfini; 3037 ZONE_UNLOCK(zone); 3038 } 3039 3040 /* See uma.h */ 3041 /* XXX uk_freef is not actually used with the zone locked */ 3042 void 3043 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 3044 { 3045 uma_keg_t keg; 3046 3047 keg = zone_first_keg(zone); 3048 KASSERT(keg != NULL, ("uma_zone_set_freef: Invalid zone type")); 3049 KEG_LOCK(keg); 3050 keg->uk_freef = freef; 3051 KEG_UNLOCK(keg); 3052 } 3053 3054 /* See uma.h */ 3055 /* XXX uk_allocf is not actually used with the zone locked */ 3056 void 3057 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 3058 { 3059 uma_keg_t keg; 3060 3061 keg = zone_first_keg(zone); 3062 KEG_LOCK(keg); 3063 keg->uk_allocf = allocf; 3064 KEG_UNLOCK(keg); 3065 } 3066 3067 /* See uma.h */ 3068 void 3069 uma_zone_reserve(uma_zone_t zone, int items) 3070 { 3071 uma_keg_t keg; 3072 3073 keg = zone_first_keg(zone); 3074 if (keg == NULL) 3075 return; 3076 KEG_LOCK(keg); 3077 keg->uk_reserve = items; 3078 KEG_UNLOCK(keg); 3079 3080 return; 3081 } 3082 3083 /* See uma.h */ 3084 int 3085 uma_zone_reserve_kva(uma_zone_t zone, int count) 3086 { 3087 uma_keg_t keg; 3088 vm_offset_t kva; 3089 u_int pages; 3090 3091 keg = zone_first_keg(zone); 3092 if (keg == NULL) 3093 return (0); 3094 pages = count / keg->uk_ipers; 3095 3096 if (pages * keg->uk_ipers < count) 3097 pages++; 3098 pages *= keg->uk_ppera; 3099 3100 #ifdef UMA_MD_SMALL_ALLOC 3101 if (keg->uk_ppera > 1) { 3102 #else 3103 if (1) { 3104 #endif 3105 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 3106 if (kva == 0) 3107 return (0); 3108 } else 3109 kva = 0; 3110 KEG_LOCK(keg); 3111 keg->uk_kva = kva; 3112 keg->uk_offset = 0; 3113 keg->uk_maxpages = pages; 3114 #ifdef UMA_MD_SMALL_ALLOC 3115 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 3116 #else 3117 keg->uk_allocf = noobj_alloc; 3118 #endif 3119 keg->uk_flags |= UMA_ZONE_NOFREE; 3120 KEG_UNLOCK(keg); 3121 3122 return (1); 3123 } 3124 3125 /* See uma.h */ 3126 void 3127 uma_prealloc(uma_zone_t zone, int items) 3128 { 3129 int slabs; 3130 uma_slab_t slab; 3131 uma_keg_t keg; 3132 3133 keg = zone_first_keg(zone); 3134 if (keg == NULL) 3135 return; 3136 KEG_LOCK(keg); 3137 slabs = items / keg->uk_ipers; 3138 if (slabs * keg->uk_ipers < items) 3139 slabs++; 3140 while (slabs > 0) { 3141 slab = keg_alloc_slab(keg, zone, M_WAITOK); 3142 if (slab == NULL) 3143 break; 3144 MPASS(slab->us_keg == keg); 3145 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 3146 slabs--; 3147 } 3148 KEG_UNLOCK(keg); 3149 } 3150 3151 /* See uma.h */ 3152 static void 3153 uma_reclaim_locked(bool kmem_danger) 3154 { 3155 3156 #ifdef UMA_DEBUG 3157 printf("UMA: vm asked us to release pages!\n"); 3158 #endif 3159 sx_assert(&uma_drain_lock, SA_XLOCKED); 3160 bucket_enable(); 3161 zone_foreach(zone_drain); 3162 if (vm_page_count_min() || kmem_danger) { 3163 cache_drain_safe(NULL); 3164 zone_foreach(zone_drain); 3165 } 3166 /* 3167 * Some slabs may have been freed but this zone will be visited early 3168 * we visit again so that we can free pages that are empty once other 3169 * zones are drained. We have to do the same for buckets. 3170 */ 3171 zone_drain(slabzone); 3172 bucket_zone_drain(); 3173 } 3174 3175 void 3176 uma_reclaim(void) 3177 { 3178 3179 sx_xlock(&uma_drain_lock); 3180 uma_reclaim_locked(false); 3181 sx_xunlock(&uma_drain_lock); 3182 } 3183 3184 static int uma_reclaim_needed; 3185 3186 void 3187 uma_reclaim_wakeup(void) 3188 { 3189 3190 uma_reclaim_needed = 1; 3191 wakeup(&uma_reclaim_needed); 3192 } 3193 3194 void 3195 uma_reclaim_worker(void *arg __unused) 3196 { 3197 3198 sx_xlock(&uma_drain_lock); 3199 for (;;) { 3200 sx_sleep(&uma_reclaim_needed, &uma_drain_lock, PVM, 3201 "umarcl", 0); 3202 if (uma_reclaim_needed) { 3203 uma_reclaim_needed = 0; 3204 sx_xunlock(&uma_drain_lock); 3205 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 3206 sx_xlock(&uma_drain_lock); 3207 uma_reclaim_locked(true); 3208 } 3209 } 3210 } 3211 3212 /* See uma.h */ 3213 int 3214 uma_zone_exhausted(uma_zone_t zone) 3215 { 3216 int full; 3217 3218 ZONE_LOCK(zone); 3219 full = (zone->uz_flags & UMA_ZFLAG_FULL); 3220 ZONE_UNLOCK(zone); 3221 return (full); 3222 } 3223 3224 int 3225 uma_zone_exhausted_nolock(uma_zone_t zone) 3226 { 3227 return (zone->uz_flags & UMA_ZFLAG_FULL); 3228 } 3229 3230 void * 3231 uma_large_malloc(vm_size_t size, int wait) 3232 { 3233 void *mem; 3234 uma_slab_t slab; 3235 uint8_t flags; 3236 3237 slab = zone_alloc_item(slabzone, NULL, wait); 3238 if (slab == NULL) 3239 return (NULL); 3240 mem = page_alloc(NULL, size, &flags, wait); 3241 if (mem) { 3242 vsetslab((vm_offset_t)mem, slab); 3243 slab->us_data = mem; 3244 slab->us_flags = flags | UMA_SLAB_MALLOC; 3245 slab->us_size = size; 3246 } else { 3247 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3248 } 3249 3250 return (mem); 3251 } 3252 3253 void 3254 uma_large_free(uma_slab_t slab) 3255 { 3256 3257 page_free(slab->us_data, slab->us_size, slab->us_flags); 3258 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3259 } 3260 3261 static void 3262 uma_zero_item(void *item, uma_zone_t zone) 3263 { 3264 int i; 3265 3266 if (zone->uz_flags & UMA_ZONE_PCPU) { 3267 CPU_FOREACH(i) 3268 bzero(zpcpu_get_cpu(item, i), zone->uz_size); 3269 } else 3270 bzero(item, zone->uz_size); 3271 } 3272 3273 void 3274 uma_print_stats(void) 3275 { 3276 zone_foreach(uma_print_zone); 3277 } 3278 3279 static void 3280 slab_print(uma_slab_t slab) 3281 { 3282 printf("slab: keg %p, data %p, freecount %d\n", 3283 slab->us_keg, slab->us_data, slab->us_freecount); 3284 } 3285 3286 static void 3287 cache_print(uma_cache_t cache) 3288 { 3289 printf("alloc: %p(%d), free: %p(%d)\n", 3290 cache->uc_allocbucket, 3291 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, 3292 cache->uc_freebucket, 3293 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0); 3294 } 3295 3296 static void 3297 uma_print_keg(uma_keg_t keg) 3298 { 3299 uma_slab_t slab; 3300 3301 printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d " 3302 "out %d free %d limit %d\n", 3303 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags, 3304 keg->uk_ipers, keg->uk_ppera, 3305 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 3306 keg->uk_free, (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers); 3307 printf("Part slabs:\n"); 3308 LIST_FOREACH(slab, &keg->uk_part_slab, us_link) 3309 slab_print(slab); 3310 printf("Free slabs:\n"); 3311 LIST_FOREACH(slab, &keg->uk_free_slab, us_link) 3312 slab_print(slab); 3313 printf("Full slabs:\n"); 3314 LIST_FOREACH(slab, &keg->uk_full_slab, us_link) 3315 slab_print(slab); 3316 } 3317 3318 void 3319 uma_print_zone(uma_zone_t zone) 3320 { 3321 uma_cache_t cache; 3322 uma_klink_t kl; 3323 int i; 3324 3325 printf("zone: %s(%p) size %d flags %#x\n", 3326 zone->uz_name, zone, zone->uz_size, zone->uz_flags); 3327 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) 3328 uma_print_keg(kl->kl_keg); 3329 CPU_FOREACH(i) { 3330 cache = &zone->uz_cpu[i]; 3331 printf("CPU %d Cache:\n", i); 3332 cache_print(cache); 3333 } 3334 } 3335 3336 #ifdef DDB 3337 /* 3338 * Generate statistics across both the zone and its per-cpu cache's. Return 3339 * desired statistics if the pointer is non-NULL for that statistic. 3340 * 3341 * Note: does not update the zone statistics, as it can't safely clear the 3342 * per-CPU cache statistic. 3343 * 3344 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't 3345 * safe from off-CPU; we should modify the caches to track this information 3346 * directly so that we don't have to. 3347 */ 3348 static void 3349 uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp, 3350 uint64_t *freesp, uint64_t *sleepsp) 3351 { 3352 uma_cache_t cache; 3353 uint64_t allocs, frees, sleeps; 3354 int cachefree, cpu; 3355 3356 allocs = frees = sleeps = 0; 3357 cachefree = 0; 3358 CPU_FOREACH(cpu) { 3359 cache = &z->uz_cpu[cpu]; 3360 if (cache->uc_allocbucket != NULL) 3361 cachefree += cache->uc_allocbucket->ub_cnt; 3362 if (cache->uc_freebucket != NULL) 3363 cachefree += cache->uc_freebucket->ub_cnt; 3364 allocs += cache->uc_allocs; 3365 frees += cache->uc_frees; 3366 } 3367 allocs += z->uz_allocs; 3368 frees += z->uz_frees; 3369 sleeps += z->uz_sleeps; 3370 if (cachefreep != NULL) 3371 *cachefreep = cachefree; 3372 if (allocsp != NULL) 3373 *allocsp = allocs; 3374 if (freesp != NULL) 3375 *freesp = frees; 3376 if (sleepsp != NULL) 3377 *sleepsp = sleeps; 3378 } 3379 #endif /* DDB */ 3380 3381 static int 3382 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 3383 { 3384 uma_keg_t kz; 3385 uma_zone_t z; 3386 int count; 3387 3388 count = 0; 3389 rw_rlock(&uma_rwlock); 3390 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3391 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3392 count++; 3393 } 3394 rw_runlock(&uma_rwlock); 3395 return (sysctl_handle_int(oidp, &count, 0, req)); 3396 } 3397 3398 static int 3399 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 3400 { 3401 struct uma_stream_header ush; 3402 struct uma_type_header uth; 3403 struct uma_percpu_stat ups; 3404 uma_bucket_t bucket; 3405 struct sbuf sbuf; 3406 uma_cache_t cache; 3407 uma_klink_t kl; 3408 uma_keg_t kz; 3409 uma_zone_t z; 3410 uma_keg_t k; 3411 int count, error, i; 3412 3413 error = sysctl_wire_old_buffer(req, 0); 3414 if (error != 0) 3415 return (error); 3416 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 3417 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 3418 3419 count = 0; 3420 rw_rlock(&uma_rwlock); 3421 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3422 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3423 count++; 3424 } 3425 3426 /* 3427 * Insert stream header. 3428 */ 3429 bzero(&ush, sizeof(ush)); 3430 ush.ush_version = UMA_STREAM_VERSION; 3431 ush.ush_maxcpus = (mp_maxid + 1); 3432 ush.ush_count = count; 3433 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 3434 3435 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3436 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3437 bzero(&uth, sizeof(uth)); 3438 ZONE_LOCK(z); 3439 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 3440 uth.uth_align = kz->uk_align; 3441 uth.uth_size = kz->uk_size; 3442 uth.uth_rsize = kz->uk_rsize; 3443 LIST_FOREACH(kl, &z->uz_kegs, kl_link) { 3444 k = kl->kl_keg; 3445 uth.uth_maxpages += k->uk_maxpages; 3446 uth.uth_pages += k->uk_pages; 3447 uth.uth_keg_free += k->uk_free; 3448 uth.uth_limit = (k->uk_maxpages / k->uk_ppera) 3449 * k->uk_ipers; 3450 } 3451 3452 /* 3453 * A zone is secondary is it is not the first entry 3454 * on the keg's zone list. 3455 */ 3456 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 3457 (LIST_FIRST(&kz->uk_zones) != z)) 3458 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 3459 3460 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3461 uth.uth_zone_free += bucket->ub_cnt; 3462 uth.uth_allocs = z->uz_allocs; 3463 uth.uth_frees = z->uz_frees; 3464 uth.uth_fails = z->uz_fails; 3465 uth.uth_sleeps = z->uz_sleeps; 3466 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 3467 /* 3468 * While it is not normally safe to access the cache 3469 * bucket pointers while not on the CPU that owns the 3470 * cache, we only allow the pointers to be exchanged 3471 * without the zone lock held, not invalidated, so 3472 * accept the possible race associated with bucket 3473 * exchange during monitoring. 3474 */ 3475 for (i = 0; i < (mp_maxid + 1); i++) { 3476 bzero(&ups, sizeof(ups)); 3477 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) 3478 goto skip; 3479 if (CPU_ABSENT(i)) 3480 goto skip; 3481 cache = &z->uz_cpu[i]; 3482 if (cache->uc_allocbucket != NULL) 3483 ups.ups_cache_free += 3484 cache->uc_allocbucket->ub_cnt; 3485 if (cache->uc_freebucket != NULL) 3486 ups.ups_cache_free += 3487 cache->uc_freebucket->ub_cnt; 3488 ups.ups_allocs = cache->uc_allocs; 3489 ups.ups_frees = cache->uc_frees; 3490 skip: 3491 (void)sbuf_bcat(&sbuf, &ups, sizeof(ups)); 3492 } 3493 ZONE_UNLOCK(z); 3494 } 3495 } 3496 rw_runlock(&uma_rwlock); 3497 error = sbuf_finish(&sbuf); 3498 sbuf_delete(&sbuf); 3499 return (error); 3500 } 3501 3502 int 3503 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 3504 { 3505 uma_zone_t zone = *(uma_zone_t *)arg1; 3506 int error, max; 3507 3508 max = uma_zone_get_max(zone); 3509 error = sysctl_handle_int(oidp, &max, 0, req); 3510 if (error || !req->newptr) 3511 return (error); 3512 3513 uma_zone_set_max(zone, max); 3514 3515 return (0); 3516 } 3517 3518 int 3519 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 3520 { 3521 uma_zone_t zone = *(uma_zone_t *)arg1; 3522 int cur; 3523 3524 cur = uma_zone_get_cur(zone); 3525 return (sysctl_handle_int(oidp, &cur, 0, req)); 3526 } 3527 3528 #ifdef INVARIANTS 3529 static uma_slab_t 3530 uma_dbg_getslab(uma_zone_t zone, void *item) 3531 { 3532 uma_slab_t slab; 3533 uma_keg_t keg; 3534 uint8_t *mem; 3535 3536 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 3537 if (zone->uz_flags & UMA_ZONE_VTOSLAB) { 3538 slab = vtoslab((vm_offset_t)mem); 3539 } else { 3540 /* 3541 * It is safe to return the slab here even though the 3542 * zone is unlocked because the item's allocation state 3543 * essentially holds a reference. 3544 */ 3545 ZONE_LOCK(zone); 3546 keg = LIST_FIRST(&zone->uz_kegs)->kl_keg; 3547 if (keg->uk_flags & UMA_ZONE_HASH) 3548 slab = hash_sfind(&keg->uk_hash, mem); 3549 else 3550 slab = (uma_slab_t)(mem + keg->uk_pgoff); 3551 ZONE_UNLOCK(zone); 3552 } 3553 3554 return (slab); 3555 } 3556 3557 /* 3558 * Set up the slab's freei data such that uma_dbg_free can function. 3559 * 3560 */ 3561 static void 3562 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 3563 { 3564 uma_keg_t keg; 3565 int freei; 3566 3567 if (zone_first_keg(zone) == NULL) 3568 return; 3569 if (slab == NULL) { 3570 slab = uma_dbg_getslab(zone, item); 3571 if (slab == NULL) 3572 panic("uma: item %p did not belong to zone %s\n", 3573 item, zone->uz_name); 3574 } 3575 keg = slab->us_keg; 3576 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3577 3578 if (BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 3579 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n", 3580 item, zone, zone->uz_name, slab, freei); 3581 BIT_SET_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 3582 3583 return; 3584 } 3585 3586 /* 3587 * Verifies freed addresses. Checks for alignment, valid slab membership 3588 * and duplicate frees. 3589 * 3590 */ 3591 static void 3592 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 3593 { 3594 uma_keg_t keg; 3595 int freei; 3596 3597 if (zone_first_keg(zone) == NULL) 3598 return; 3599 if (slab == NULL) { 3600 slab = uma_dbg_getslab(zone, item); 3601 if (slab == NULL) 3602 panic("uma: Freed item %p did not belong to zone %s\n", 3603 item, zone->uz_name); 3604 } 3605 keg = slab->us_keg; 3606 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3607 3608 if (freei >= keg->uk_ipers) 3609 panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n", 3610 item, zone, zone->uz_name, slab, freei); 3611 3612 if (((freei * keg->uk_rsize) + slab->us_data) != item) 3613 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n", 3614 item, zone, zone->uz_name, slab, freei); 3615 3616 if (!BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 3617 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n", 3618 item, zone, zone->uz_name, slab, freei); 3619 3620 BIT_CLR_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 3621 } 3622 #endif /* INVARIANTS */ 3623 3624 #ifdef DDB 3625 DB_SHOW_COMMAND(uma, db_show_uma) 3626 { 3627 uint64_t allocs, frees, sleeps; 3628 uma_bucket_t bucket; 3629 uma_keg_t kz; 3630 uma_zone_t z; 3631 int cachefree; 3632 3633 db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used", 3634 "Free", "Requests", "Sleeps", "Bucket"); 3635 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3636 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3637 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 3638 allocs = z->uz_allocs; 3639 frees = z->uz_frees; 3640 sleeps = z->uz_sleeps; 3641 cachefree = 0; 3642 } else 3643 uma_zone_sumstat(z, &cachefree, &allocs, 3644 &frees, &sleeps); 3645 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 3646 (LIST_FIRST(&kz->uk_zones) != z))) 3647 cachefree += kz->uk_free; 3648 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3649 cachefree += bucket->ub_cnt; 3650 db_printf("%18s %8ju %8jd %8d %12ju %8ju %8u\n", 3651 z->uz_name, (uintmax_t)kz->uk_size, 3652 (intmax_t)(allocs - frees), cachefree, 3653 (uintmax_t)allocs, sleeps, z->uz_count); 3654 if (db_pager_quit) 3655 return; 3656 } 3657 } 3658 } 3659 3660 DB_SHOW_COMMAND(umacache, db_show_umacache) 3661 { 3662 uint64_t allocs, frees; 3663 uma_bucket_t bucket; 3664 uma_zone_t z; 3665 int cachefree; 3666 3667 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 3668 "Requests", "Bucket"); 3669 LIST_FOREACH(z, &uma_cachezones, uz_link) { 3670 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL); 3671 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3672 cachefree += bucket->ub_cnt; 3673 db_printf("%18s %8ju %8jd %8d %12ju %8u\n", 3674 z->uz_name, (uintmax_t)z->uz_size, 3675 (intmax_t)(allocs - frees), cachefree, 3676 (uintmax_t)allocs, z->uz_count); 3677 if (db_pager_quit) 3678 return; 3679 } 3680 } 3681 #endif /* DDB */ 3682