1 /*- 2 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org> 3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 4 * Copyright (c) 2004-2006 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /* 30 * uma_core.c Implementation of the Universal Memory allocator 31 * 32 * This allocator is intended to replace the multitude of similar object caches 33 * in the standard FreeBSD kernel. The intent is to be flexible as well as 34 * effecient. A primary design goal is to return unused memory to the rest of 35 * the system. This will make the system as a whole more flexible due to the 36 * ability to move memory to subsystems which most need it instead of leaving 37 * pools of reserved memory unused. 38 * 39 * The basic ideas stem from similar slab/zone based allocators whose algorithms 40 * are well known. 41 * 42 */ 43 44 /* 45 * TODO: 46 * - Improve memory usage for large allocations 47 * - Investigate cache size adjustments 48 */ 49 50 #include <sys/cdefs.h> 51 __FBSDID("$FreeBSD$"); 52 53 /* I should really use ktr.. */ 54 /* 55 #define UMA_DEBUG 1 56 #define UMA_DEBUG_ALLOC 1 57 #define UMA_DEBUG_ALLOC_1 1 58 */ 59 60 #include "opt_ddb.h" 61 #include "opt_param.h" 62 #include "opt_vm.h" 63 64 #include <sys/param.h> 65 #include <sys/systm.h> 66 #include <sys/bitset.h> 67 #include <sys/kernel.h> 68 #include <sys/types.h> 69 #include <sys/queue.h> 70 #include <sys/malloc.h> 71 #include <sys/ktr.h> 72 #include <sys/lock.h> 73 #include <sys/sysctl.h> 74 #include <sys/mutex.h> 75 #include <sys/proc.h> 76 #include <sys/rwlock.h> 77 #include <sys/sbuf.h> 78 #include <sys/sched.h> 79 #include <sys/smp.h> 80 #include <sys/vmmeter.h> 81 82 #include <vm/vm.h> 83 #include <vm/vm_object.h> 84 #include <vm/vm_page.h> 85 #include <vm/vm_pageout.h> 86 #include <vm/vm_param.h> 87 #include <vm/vm_map.h> 88 #include <vm/vm_kern.h> 89 #include <vm/vm_extern.h> 90 #include <vm/uma.h> 91 #include <vm/uma_int.h> 92 #include <vm/uma_dbg.h> 93 94 #include <ddb/ddb.h> 95 96 #ifdef DEBUG_MEMGUARD 97 #include <vm/memguard.h> 98 #endif 99 100 /* 101 * This is the zone and keg from which all zones are spawned. The idea is that 102 * even the zone & keg heads are allocated from the allocator, so we use the 103 * bss section to bootstrap us. 104 */ 105 static struct uma_keg masterkeg; 106 static struct uma_zone masterzone_k; 107 static struct uma_zone masterzone_z; 108 static uma_zone_t kegs = &masterzone_k; 109 static uma_zone_t zones = &masterzone_z; 110 111 /* This is the zone from which all of uma_slab_t's are allocated. */ 112 static uma_zone_t slabzone; 113 static uma_zone_t slabrefzone; /* With refcounters (for UMA_ZONE_REFCNT) */ 114 115 /* 116 * The initial hash tables come out of this zone so they can be allocated 117 * prior to malloc coming up. 118 */ 119 static uma_zone_t hashzone; 120 121 /* The boot-time adjusted value for cache line alignment. */ 122 int uma_align_cache = 64 - 1; 123 124 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 125 126 /* 127 * Are we allowed to allocate buckets? 128 */ 129 static int bucketdisable = 1; 130 131 /* Linked list of all kegs in the system */ 132 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 133 134 /* This mutex protects the keg list */ 135 static struct mtx_padalign uma_mtx; 136 137 /* Linked list of boot time pages */ 138 static LIST_HEAD(,uma_slab) uma_boot_pages = 139 LIST_HEAD_INITIALIZER(uma_boot_pages); 140 141 /* This mutex protects the boot time pages list */ 142 static struct mtx_padalign uma_boot_pages_mtx; 143 144 /* Is the VM done starting up? */ 145 static int booted = 0; 146 #define UMA_STARTUP 1 147 #define UMA_STARTUP2 2 148 149 /* Maximum number of allowed items-per-slab if the slab header is OFFPAGE */ 150 static const u_int uma_max_ipers = SLAB_SETSIZE; 151 152 /* 153 * Only mbuf clusters use ref zones. Just provide enough references 154 * to support the one user. New code should not use the ref facility. 155 */ 156 static const u_int uma_max_ipers_ref = PAGE_SIZE / MCLBYTES; 157 158 /* 159 * This is the handle used to schedule events that need to happen 160 * outside of the allocation fast path. 161 */ 162 static struct callout uma_callout; 163 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 164 165 /* 166 * This structure is passed as the zone ctor arg so that I don't have to create 167 * a special allocation function just for zones. 168 */ 169 struct uma_zctor_args { 170 const char *name; 171 size_t size; 172 uma_ctor ctor; 173 uma_dtor dtor; 174 uma_init uminit; 175 uma_fini fini; 176 uma_import import; 177 uma_release release; 178 void *arg; 179 uma_keg_t keg; 180 int align; 181 uint32_t flags; 182 }; 183 184 struct uma_kctor_args { 185 uma_zone_t zone; 186 size_t size; 187 uma_init uminit; 188 uma_fini fini; 189 int align; 190 uint32_t flags; 191 }; 192 193 struct uma_bucket_zone { 194 uma_zone_t ubz_zone; 195 char *ubz_name; 196 int ubz_entries; /* Number of items it can hold. */ 197 int ubz_maxsize; /* Maximum allocation size per-item. */ 198 }; 199 200 /* 201 * Compute the actual number of bucket entries to pack them in power 202 * of two sizes for more efficient space utilization. 203 */ 204 #define BUCKET_SIZE(n) \ 205 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 206 207 #define BUCKET_MAX BUCKET_SIZE(128) 208 209 struct uma_bucket_zone bucket_zones[] = { 210 { NULL, "4 Bucket", BUCKET_SIZE(4), 4096 }, 211 { NULL, "6 Bucket", BUCKET_SIZE(6), 3072 }, 212 { NULL, "8 Bucket", BUCKET_SIZE(8), 2048 }, 213 { NULL, "12 Bucket", BUCKET_SIZE(12), 1536 }, 214 { NULL, "16 Bucket", BUCKET_SIZE(16), 1024 }, 215 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 216 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 217 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 218 { NULL, NULL, 0} 219 }; 220 221 /* 222 * Flags and enumerations to be passed to internal functions. 223 */ 224 enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI }; 225 226 /* Prototypes.. */ 227 228 static void *noobj_alloc(uma_zone_t, int, uint8_t *, int); 229 static void *page_alloc(uma_zone_t, int, uint8_t *, int); 230 static void *startup_alloc(uma_zone_t, int, uint8_t *, int); 231 static void page_free(void *, int, uint8_t); 232 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int); 233 static void cache_drain(uma_zone_t); 234 static void bucket_drain(uma_zone_t, uma_bucket_t); 235 static void bucket_cache_drain(uma_zone_t zone); 236 static int keg_ctor(void *, int, void *, int); 237 static void keg_dtor(void *, int, void *); 238 static int zone_ctor(void *, int, void *, int); 239 static void zone_dtor(void *, int, void *); 240 static int zero_init(void *, int, int); 241 static void keg_small_init(uma_keg_t keg); 242 static void keg_large_init(uma_keg_t keg); 243 static void zone_foreach(void (*zfunc)(uma_zone_t)); 244 static void zone_timeout(uma_zone_t zone); 245 static int hash_alloc(struct uma_hash *); 246 static int hash_expand(struct uma_hash *, struct uma_hash *); 247 static void hash_free(struct uma_hash *hash); 248 static void uma_timeout(void *); 249 static void uma_startup3(void); 250 static void *zone_alloc_item(uma_zone_t, void *, int); 251 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 252 static void bucket_enable(void); 253 static void bucket_init(void); 254 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 255 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 256 static void bucket_zone_drain(void); 257 static uma_bucket_t zone_alloc_bucket(uma_zone_t zone, void *, int flags); 258 static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags); 259 static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags); 260 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 261 static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item); 262 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 263 uma_fini fini, int align, uint32_t flags); 264 static int zone_import(uma_zone_t zone, void **bucket, int max, int flags); 265 static void zone_release(uma_zone_t zone, void **bucket, int cnt); 266 267 void uma_print_zone(uma_zone_t); 268 void uma_print_stats(void); 269 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 270 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 271 272 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 273 274 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 275 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 276 277 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 278 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 279 280 static int zone_warnings = 1; 281 TUNABLE_INT("vm.zone_warnings", &zone_warnings); 282 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RW, &zone_warnings, 0, 283 "Warn when UMA zones becomes full"); 284 285 /* 286 * This routine checks to see whether or not it's safe to enable buckets. 287 */ 288 static void 289 bucket_enable(void) 290 { 291 bucketdisable = vm_page_count_min(); 292 } 293 294 /* 295 * Initialize bucket_zones, the array of zones of buckets of various sizes. 296 * 297 * For each zone, calculate the memory required for each bucket, consisting 298 * of the header and an array of pointers. 299 */ 300 static void 301 bucket_init(void) 302 { 303 struct uma_bucket_zone *ubz; 304 int size; 305 int i; 306 307 for (i = 0, ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 308 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 309 size += sizeof(void *) * ubz->ubz_entries; 310 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 311 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 312 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET); 313 } 314 } 315 316 /* 317 * Given a desired number of entries for a bucket, return the zone from which 318 * to allocate the bucket. 319 */ 320 static struct uma_bucket_zone * 321 bucket_zone_lookup(int entries) 322 { 323 struct uma_bucket_zone *ubz; 324 325 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 326 if (ubz->ubz_entries >= entries) 327 return (ubz); 328 ubz--; 329 return (ubz); 330 } 331 332 static int 333 bucket_select(int size) 334 { 335 struct uma_bucket_zone *ubz; 336 337 ubz = &bucket_zones[0]; 338 if (size > ubz->ubz_maxsize) 339 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 340 341 for (; ubz->ubz_entries != 0; ubz++) 342 if (ubz->ubz_maxsize < size) 343 break; 344 ubz--; 345 return (ubz->ubz_entries); 346 } 347 348 static uma_bucket_t 349 bucket_alloc(uma_zone_t zone, void *udata, int flags) 350 { 351 struct uma_bucket_zone *ubz; 352 uma_bucket_t bucket; 353 354 /* 355 * This is to stop us from allocating per cpu buckets while we're 356 * running out of vm.boot_pages. Otherwise, we would exhaust the 357 * boot pages. This also prevents us from allocating buckets in 358 * low memory situations. 359 */ 360 if (bucketdisable) 361 return (NULL); 362 /* 363 * To limit bucket recursion we store the original zone flags 364 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 365 * NOVM flag to persist even through deep recursions. We also 366 * store ZFLAG_BUCKET once we have recursed attempting to allocate 367 * a bucket for a bucket zone so we do not allow infinite bucket 368 * recursion. This cookie will even persist to frees of unused 369 * buckets via the allocation path or bucket allocations in the 370 * free path. 371 */ 372 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 373 return (NULL); 374 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 375 udata = (void *)(uintptr_t)zone->uz_flags; 376 else 377 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 378 if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY) 379 flags |= M_NOVM; 380 ubz = bucket_zone_lookup(zone->uz_count); 381 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 382 if (bucket) { 383 #ifdef INVARIANTS 384 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 385 #endif 386 bucket->ub_cnt = 0; 387 bucket->ub_entries = ubz->ubz_entries; 388 } 389 390 return (bucket); 391 } 392 393 static void 394 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 395 { 396 struct uma_bucket_zone *ubz; 397 398 KASSERT(bucket->ub_cnt == 0, 399 ("bucket_free: Freeing a non free bucket.")); 400 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 401 udata = (void *)(uintptr_t)zone->uz_flags; 402 ubz = bucket_zone_lookup(bucket->ub_entries); 403 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 404 } 405 406 static void 407 bucket_zone_drain(void) 408 { 409 struct uma_bucket_zone *ubz; 410 411 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 412 zone_drain(ubz->ubz_zone); 413 } 414 415 static void 416 zone_log_warning(uma_zone_t zone) 417 { 418 static const struct timeval warninterval = { 300, 0 }; 419 420 if (!zone_warnings || zone->uz_warning == NULL) 421 return; 422 423 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 424 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 425 } 426 427 static void 428 zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t)) 429 { 430 uma_klink_t klink; 431 432 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) 433 kegfn(klink->kl_keg); 434 } 435 436 /* 437 * Routine called by timeout which is used to fire off some time interval 438 * based calculations. (stats, hash size, etc.) 439 * 440 * Arguments: 441 * arg Unused 442 * 443 * Returns: 444 * Nothing 445 */ 446 static void 447 uma_timeout(void *unused) 448 { 449 bucket_enable(); 450 zone_foreach(zone_timeout); 451 452 /* Reschedule this event */ 453 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 454 } 455 456 /* 457 * Routine to perform timeout driven calculations. This expands the 458 * hashes and does per cpu statistics aggregation. 459 * 460 * Returns nothing. 461 */ 462 static void 463 keg_timeout(uma_keg_t keg) 464 { 465 466 KEG_LOCK(keg); 467 /* 468 * Expand the keg hash table. 469 * 470 * This is done if the number of slabs is larger than the hash size. 471 * What I'm trying to do here is completely reduce collisions. This 472 * may be a little aggressive. Should I allow for two collisions max? 473 */ 474 if (keg->uk_flags & UMA_ZONE_HASH && 475 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) { 476 struct uma_hash newhash; 477 struct uma_hash oldhash; 478 int ret; 479 480 /* 481 * This is so involved because allocating and freeing 482 * while the keg lock is held will lead to deadlock. 483 * I have to do everything in stages and check for 484 * races. 485 */ 486 newhash = keg->uk_hash; 487 KEG_UNLOCK(keg); 488 ret = hash_alloc(&newhash); 489 KEG_LOCK(keg); 490 if (ret) { 491 if (hash_expand(&keg->uk_hash, &newhash)) { 492 oldhash = keg->uk_hash; 493 keg->uk_hash = newhash; 494 } else 495 oldhash = newhash; 496 497 KEG_UNLOCK(keg); 498 hash_free(&oldhash); 499 return; 500 } 501 } 502 KEG_UNLOCK(keg); 503 } 504 505 static void 506 zone_timeout(uma_zone_t zone) 507 { 508 509 zone_foreach_keg(zone, &keg_timeout); 510 } 511 512 /* 513 * Allocate and zero fill the next sized hash table from the appropriate 514 * backing store. 515 * 516 * Arguments: 517 * hash A new hash structure with the old hash size in uh_hashsize 518 * 519 * Returns: 520 * 1 on sucess and 0 on failure. 521 */ 522 static int 523 hash_alloc(struct uma_hash *hash) 524 { 525 int oldsize; 526 int alloc; 527 528 oldsize = hash->uh_hashsize; 529 530 /* We're just going to go to a power of two greater */ 531 if (oldsize) { 532 hash->uh_hashsize = oldsize * 2; 533 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 534 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 535 M_UMAHASH, M_NOWAIT); 536 } else { 537 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 538 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 539 M_WAITOK); 540 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 541 } 542 if (hash->uh_slab_hash) { 543 bzero(hash->uh_slab_hash, alloc); 544 hash->uh_hashmask = hash->uh_hashsize - 1; 545 return (1); 546 } 547 548 return (0); 549 } 550 551 /* 552 * Expands the hash table for HASH zones. This is done from zone_timeout 553 * to reduce collisions. This must not be done in the regular allocation 554 * path, otherwise, we can recurse on the vm while allocating pages. 555 * 556 * Arguments: 557 * oldhash The hash you want to expand 558 * newhash The hash structure for the new table 559 * 560 * Returns: 561 * Nothing 562 * 563 * Discussion: 564 */ 565 static int 566 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 567 { 568 uma_slab_t slab; 569 int hval; 570 int i; 571 572 if (!newhash->uh_slab_hash) 573 return (0); 574 575 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 576 return (0); 577 578 /* 579 * I need to investigate hash algorithms for resizing without a 580 * full rehash. 581 */ 582 583 for (i = 0; i < oldhash->uh_hashsize; i++) 584 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) { 585 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]); 586 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink); 587 hval = UMA_HASH(newhash, slab->us_data); 588 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 589 slab, us_hlink); 590 } 591 592 return (1); 593 } 594 595 /* 596 * Free the hash bucket to the appropriate backing store. 597 * 598 * Arguments: 599 * slab_hash The hash bucket we're freeing 600 * hashsize The number of entries in that hash bucket 601 * 602 * Returns: 603 * Nothing 604 */ 605 static void 606 hash_free(struct uma_hash *hash) 607 { 608 if (hash->uh_slab_hash == NULL) 609 return; 610 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 611 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 612 else 613 free(hash->uh_slab_hash, M_UMAHASH); 614 } 615 616 /* 617 * Frees all outstanding items in a bucket 618 * 619 * Arguments: 620 * zone The zone to free to, must be unlocked. 621 * bucket The free/alloc bucket with items, cpu queue must be locked. 622 * 623 * Returns: 624 * Nothing 625 */ 626 627 static void 628 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 629 { 630 int i; 631 632 if (bucket == NULL) 633 return; 634 635 if (zone->uz_fini) 636 for (i = 0; i < bucket->ub_cnt; i++) 637 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 638 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 639 bucket->ub_cnt = 0; 640 } 641 642 /* 643 * Drains the per cpu caches for a zone. 644 * 645 * NOTE: This may only be called while the zone is being turn down, and not 646 * during normal operation. This is necessary in order that we do not have 647 * to migrate CPUs to drain the per-CPU caches. 648 * 649 * Arguments: 650 * zone The zone to drain, must be unlocked. 651 * 652 * Returns: 653 * Nothing 654 */ 655 static void 656 cache_drain(uma_zone_t zone) 657 { 658 uma_cache_t cache; 659 int cpu; 660 661 /* 662 * XXX: It is safe to not lock the per-CPU caches, because we're 663 * tearing down the zone anyway. I.e., there will be no further use 664 * of the caches at this point. 665 * 666 * XXX: It would good to be able to assert that the zone is being 667 * torn down to prevent improper use of cache_drain(). 668 * 669 * XXX: We lock the zone before passing into bucket_cache_drain() as 670 * it is used elsewhere. Should the tear-down path be made special 671 * there in some form? 672 */ 673 CPU_FOREACH(cpu) { 674 cache = &zone->uz_cpu[cpu]; 675 bucket_drain(zone, cache->uc_allocbucket); 676 bucket_drain(zone, cache->uc_freebucket); 677 if (cache->uc_allocbucket != NULL) 678 bucket_free(zone, cache->uc_allocbucket, NULL); 679 if (cache->uc_freebucket != NULL) 680 bucket_free(zone, cache->uc_freebucket, NULL); 681 cache->uc_allocbucket = cache->uc_freebucket = NULL; 682 } 683 ZONE_LOCK(zone); 684 bucket_cache_drain(zone); 685 ZONE_UNLOCK(zone); 686 } 687 688 static void 689 cache_shrink(uma_zone_t zone) 690 { 691 692 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 693 return; 694 695 ZONE_LOCK(zone); 696 zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2; 697 ZONE_UNLOCK(zone); 698 } 699 700 static void 701 cache_drain_safe_cpu(uma_zone_t zone) 702 { 703 uma_cache_t cache; 704 705 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 706 return; 707 708 ZONE_LOCK(zone); 709 critical_enter(); 710 cache = &zone->uz_cpu[curcpu]; 711 if (cache->uc_allocbucket) { 712 LIST_INSERT_HEAD(&zone->uz_buckets, cache->uc_allocbucket, 713 ub_link); 714 cache->uc_allocbucket = NULL; 715 } 716 if (cache->uc_freebucket) { 717 LIST_INSERT_HEAD(&zone->uz_buckets, cache->uc_freebucket, 718 ub_link); 719 cache->uc_freebucket = NULL; 720 } 721 critical_exit(); 722 ZONE_UNLOCK(zone); 723 } 724 725 /* 726 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 727 * This is an expensive call because it needs to bind to all CPUs 728 * one by one and enter a critical section on each of them in order 729 * to safely access their cache buckets. 730 * Zone lock must not be held on call this function. 731 */ 732 static void 733 cache_drain_safe(uma_zone_t zone) 734 { 735 int cpu; 736 737 /* 738 * Polite bucket sizes shrinking was not enouth, shrink aggressively. 739 */ 740 if (zone) 741 cache_shrink(zone); 742 else 743 zone_foreach(cache_shrink); 744 745 CPU_FOREACH(cpu) { 746 thread_lock(curthread); 747 sched_bind(curthread, cpu); 748 thread_unlock(curthread); 749 750 if (zone) 751 cache_drain_safe_cpu(zone); 752 else 753 zone_foreach(cache_drain_safe_cpu); 754 } 755 thread_lock(curthread); 756 sched_unbind(curthread); 757 thread_unlock(curthread); 758 } 759 760 /* 761 * Drain the cached buckets from a zone. Expects a locked zone on entry. 762 */ 763 static void 764 bucket_cache_drain(uma_zone_t zone) 765 { 766 uma_bucket_t bucket; 767 768 /* 769 * Drain the bucket queues and free the buckets, we just keep two per 770 * cpu (alloc/free). 771 */ 772 while ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) { 773 LIST_REMOVE(bucket, ub_link); 774 ZONE_UNLOCK(zone); 775 bucket_drain(zone, bucket); 776 bucket_free(zone, bucket, NULL); 777 ZONE_LOCK(zone); 778 } 779 780 /* 781 * Shrink further bucket sizes. Price of single zone lock collision 782 * is probably lower then price of global cache drain. 783 */ 784 if (zone->uz_count > zone->uz_count_min) 785 zone->uz_count--; 786 } 787 788 static void 789 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 790 { 791 uint8_t *mem; 792 int i; 793 uint8_t flags; 794 795 mem = slab->us_data; 796 flags = slab->us_flags; 797 i = start; 798 if (keg->uk_fini != NULL) { 799 for (i--; i > -1; i--) 800 keg->uk_fini(slab->us_data + (keg->uk_rsize * i), 801 keg->uk_size); 802 } 803 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 804 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 805 #ifdef UMA_DEBUG 806 printf("%s: Returning %d bytes.\n", keg->uk_name, 807 PAGE_SIZE * keg->uk_ppera); 808 #endif 809 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 810 } 811 812 /* 813 * Frees pages from a keg back to the system. This is done on demand from 814 * the pageout daemon. 815 * 816 * Returns nothing. 817 */ 818 static void 819 keg_drain(uma_keg_t keg) 820 { 821 struct slabhead freeslabs = { 0 }; 822 uma_slab_t slab; 823 uma_slab_t n; 824 825 /* 826 * We don't want to take pages from statically allocated kegs at this 827 * time 828 */ 829 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 830 return; 831 832 #ifdef UMA_DEBUG 833 printf("%s free items: %u\n", keg->uk_name, keg->uk_free); 834 #endif 835 KEG_LOCK(keg); 836 if (keg->uk_free == 0) 837 goto finished; 838 839 slab = LIST_FIRST(&keg->uk_free_slab); 840 while (slab) { 841 n = LIST_NEXT(slab, us_link); 842 843 /* We have no where to free these to */ 844 if (slab->us_flags & UMA_SLAB_BOOT) { 845 slab = n; 846 continue; 847 } 848 849 LIST_REMOVE(slab, us_link); 850 keg->uk_pages -= keg->uk_ppera; 851 keg->uk_free -= keg->uk_ipers; 852 853 if (keg->uk_flags & UMA_ZONE_HASH) 854 UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data); 855 856 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 857 858 slab = n; 859 } 860 finished: 861 KEG_UNLOCK(keg); 862 863 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 864 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 865 keg_free_slab(keg, slab, keg->uk_ipers); 866 } 867 } 868 869 static void 870 zone_drain_wait(uma_zone_t zone, int waitok) 871 { 872 873 /* 874 * Set draining to interlock with zone_dtor() so we can release our 875 * locks as we go. Only dtor() should do a WAITOK call since it 876 * is the only call that knows the structure will still be available 877 * when it wakes up. 878 */ 879 ZONE_LOCK(zone); 880 while (zone->uz_flags & UMA_ZFLAG_DRAINING) { 881 if (waitok == M_NOWAIT) 882 goto out; 883 mtx_unlock(&uma_mtx); 884 msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1); 885 mtx_lock(&uma_mtx); 886 } 887 zone->uz_flags |= UMA_ZFLAG_DRAINING; 888 bucket_cache_drain(zone); 889 ZONE_UNLOCK(zone); 890 /* 891 * The DRAINING flag protects us from being freed while 892 * we're running. Normally the uma_mtx would protect us but we 893 * must be able to release and acquire the right lock for each keg. 894 */ 895 zone_foreach_keg(zone, &keg_drain); 896 ZONE_LOCK(zone); 897 zone->uz_flags &= ~UMA_ZFLAG_DRAINING; 898 wakeup(zone); 899 out: 900 ZONE_UNLOCK(zone); 901 } 902 903 void 904 zone_drain(uma_zone_t zone) 905 { 906 907 zone_drain_wait(zone, M_NOWAIT); 908 } 909 910 /* 911 * Allocate a new slab for a keg. This does not insert the slab onto a list. 912 * 913 * Arguments: 914 * wait Shall we wait? 915 * 916 * Returns: 917 * The slab that was allocated or NULL if there is no memory and the 918 * caller specified M_NOWAIT. 919 */ 920 static uma_slab_t 921 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait) 922 { 923 uma_slabrefcnt_t slabref; 924 uma_alloc allocf; 925 uma_slab_t slab; 926 uint8_t *mem; 927 uint8_t flags; 928 int i; 929 930 mtx_assert(&keg->uk_lock, MA_OWNED); 931 slab = NULL; 932 mem = NULL; 933 934 #ifdef UMA_DEBUG 935 printf("alloc_slab: Allocating a new slab for %s\n", keg->uk_name); 936 #endif 937 allocf = keg->uk_allocf; 938 KEG_UNLOCK(keg); 939 940 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 941 slab = zone_alloc_item(keg->uk_slabzone, NULL, wait); 942 if (slab == NULL) 943 goto out; 944 } 945 946 /* 947 * This reproduces the old vm_zone behavior of zero filling pages the 948 * first time they are added to a zone. 949 * 950 * Malloced items are zeroed in uma_zalloc. 951 */ 952 953 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 954 wait |= M_ZERO; 955 else 956 wait &= ~M_ZERO; 957 958 if (keg->uk_flags & UMA_ZONE_NODUMP) 959 wait |= M_NODUMP; 960 961 /* zone is passed for legacy reasons. */ 962 mem = allocf(zone, keg->uk_ppera * PAGE_SIZE, &flags, wait); 963 if (mem == NULL) { 964 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 965 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 966 slab = NULL; 967 goto out; 968 } 969 970 /* Point the slab into the allocated memory */ 971 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 972 slab = (uma_slab_t )(mem + keg->uk_pgoff); 973 974 if (keg->uk_flags & UMA_ZONE_VTOSLAB) 975 for (i = 0; i < keg->uk_ppera; i++) 976 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 977 978 slab->us_keg = keg; 979 slab->us_data = mem; 980 slab->us_freecount = keg->uk_ipers; 981 slab->us_flags = flags; 982 BIT_FILL(SLAB_SETSIZE, &slab->us_free); 983 #ifdef INVARIANTS 984 BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree); 985 #endif 986 if (keg->uk_flags & UMA_ZONE_REFCNT) { 987 slabref = (uma_slabrefcnt_t)slab; 988 for (i = 0; i < keg->uk_ipers; i++) 989 slabref->us_refcnt[i] = 0; 990 } 991 992 if (keg->uk_init != NULL) { 993 for (i = 0; i < keg->uk_ipers; i++) 994 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 995 keg->uk_size, wait) != 0) 996 break; 997 if (i != keg->uk_ipers) { 998 keg_free_slab(keg, slab, i); 999 slab = NULL; 1000 goto out; 1001 } 1002 } 1003 out: 1004 KEG_LOCK(keg); 1005 1006 if (slab != NULL) { 1007 if (keg->uk_flags & UMA_ZONE_HASH) 1008 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1009 1010 keg->uk_pages += keg->uk_ppera; 1011 keg->uk_free += keg->uk_ipers; 1012 } 1013 1014 return (slab); 1015 } 1016 1017 /* 1018 * This function is intended to be used early on in place of page_alloc() so 1019 * that we may use the boot time page cache to satisfy allocations before 1020 * the VM is ready. 1021 */ 1022 static void * 1023 startup_alloc(uma_zone_t zone, int bytes, uint8_t *pflag, int wait) 1024 { 1025 uma_keg_t keg; 1026 uma_slab_t tmps; 1027 int pages, check_pages; 1028 1029 keg = zone_first_keg(zone); 1030 pages = howmany(bytes, PAGE_SIZE); 1031 check_pages = pages - 1; 1032 KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n")); 1033 1034 /* 1035 * Check our small startup cache to see if it has pages remaining. 1036 */ 1037 mtx_lock(&uma_boot_pages_mtx); 1038 1039 /* First check if we have enough room. */ 1040 tmps = LIST_FIRST(&uma_boot_pages); 1041 while (tmps != NULL && check_pages-- > 0) 1042 tmps = LIST_NEXT(tmps, us_link); 1043 if (tmps != NULL) { 1044 /* 1045 * It's ok to lose tmps references. The last one will 1046 * have tmps->us_data pointing to the start address of 1047 * "pages" contiguous pages of memory. 1048 */ 1049 while (pages-- > 0) { 1050 tmps = LIST_FIRST(&uma_boot_pages); 1051 LIST_REMOVE(tmps, us_link); 1052 } 1053 mtx_unlock(&uma_boot_pages_mtx); 1054 *pflag = tmps->us_flags; 1055 return (tmps->us_data); 1056 } 1057 mtx_unlock(&uma_boot_pages_mtx); 1058 if (booted < UMA_STARTUP2) 1059 panic("UMA: Increase vm.boot_pages"); 1060 /* 1061 * Now that we've booted reset these users to their real allocator. 1062 */ 1063 #ifdef UMA_MD_SMALL_ALLOC 1064 keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc; 1065 #else 1066 keg->uk_allocf = page_alloc; 1067 #endif 1068 return keg->uk_allocf(zone, bytes, pflag, wait); 1069 } 1070 1071 /* 1072 * Allocates a number of pages from the system 1073 * 1074 * Arguments: 1075 * bytes The number of bytes requested 1076 * wait Shall we wait? 1077 * 1078 * Returns: 1079 * A pointer to the alloced memory or possibly 1080 * NULL if M_NOWAIT is set. 1081 */ 1082 static void * 1083 page_alloc(uma_zone_t zone, int bytes, uint8_t *pflag, int wait) 1084 { 1085 void *p; /* Returned page */ 1086 1087 *pflag = UMA_SLAB_KMEM; 1088 p = (void *) kmem_malloc(kmem_arena, bytes, wait); 1089 1090 return (p); 1091 } 1092 1093 /* 1094 * Allocates a number of pages from within an object 1095 * 1096 * Arguments: 1097 * bytes The number of bytes requested 1098 * wait Shall we wait? 1099 * 1100 * Returns: 1101 * A pointer to the alloced memory or possibly 1102 * NULL if M_NOWAIT is set. 1103 */ 1104 static void * 1105 noobj_alloc(uma_zone_t zone, int bytes, uint8_t *flags, int wait) 1106 { 1107 TAILQ_HEAD(, vm_page) alloctail; 1108 u_long npages; 1109 vm_offset_t retkva, zkva; 1110 vm_page_t p, p_next; 1111 uma_keg_t keg; 1112 1113 TAILQ_INIT(&alloctail); 1114 keg = zone_first_keg(zone); 1115 1116 npages = howmany(bytes, PAGE_SIZE); 1117 while (npages > 0) { 1118 p = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT | 1119 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ); 1120 if (p != NULL) { 1121 /* 1122 * Since the page does not belong to an object, its 1123 * listq is unused. 1124 */ 1125 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1126 npages--; 1127 continue; 1128 } 1129 if (wait & M_WAITOK) { 1130 VM_WAIT; 1131 continue; 1132 } 1133 1134 /* 1135 * Page allocation failed, free intermediate pages and 1136 * exit. 1137 */ 1138 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1139 vm_page_unwire(p, 0); 1140 vm_page_free(p); 1141 } 1142 return (NULL); 1143 } 1144 *flags = UMA_SLAB_PRIV; 1145 zkva = keg->uk_kva + 1146 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1147 retkva = zkva; 1148 TAILQ_FOREACH(p, &alloctail, listq) { 1149 pmap_qenter(zkva, &p, 1); 1150 zkva += PAGE_SIZE; 1151 } 1152 1153 return ((void *)retkva); 1154 } 1155 1156 /* 1157 * Frees a number of pages to the system 1158 * 1159 * Arguments: 1160 * mem A pointer to the memory to be freed 1161 * size The size of the memory being freed 1162 * flags The original p->us_flags field 1163 * 1164 * Returns: 1165 * Nothing 1166 */ 1167 static void 1168 page_free(void *mem, int size, uint8_t flags) 1169 { 1170 struct vmem *vmem; 1171 1172 if (flags & UMA_SLAB_KMEM) 1173 vmem = kmem_arena; 1174 else if (flags & UMA_SLAB_KERNEL) 1175 vmem = kernel_arena; 1176 else 1177 panic("UMA: page_free used with invalid flags %d", flags); 1178 1179 kmem_free(vmem, (vm_offset_t)mem, size); 1180 } 1181 1182 /* 1183 * Zero fill initializer 1184 * 1185 * Arguments/Returns follow uma_init specifications 1186 */ 1187 static int 1188 zero_init(void *mem, int size, int flags) 1189 { 1190 bzero(mem, size); 1191 return (0); 1192 } 1193 1194 /* 1195 * Finish creating a small uma keg. This calculates ipers, and the keg size. 1196 * 1197 * Arguments 1198 * keg The zone we should initialize 1199 * 1200 * Returns 1201 * Nothing 1202 */ 1203 static void 1204 keg_small_init(uma_keg_t keg) 1205 { 1206 u_int rsize; 1207 u_int memused; 1208 u_int wastedspace; 1209 u_int shsize; 1210 1211 if (keg->uk_flags & UMA_ZONE_PCPU) { 1212 u_int ncpus = mp_ncpus ? mp_ncpus : MAXCPU; 1213 1214 keg->uk_slabsize = sizeof(struct pcpu); 1215 keg->uk_ppera = howmany(ncpus * sizeof(struct pcpu), 1216 PAGE_SIZE); 1217 } else { 1218 keg->uk_slabsize = UMA_SLAB_SIZE; 1219 keg->uk_ppera = 1; 1220 } 1221 1222 /* 1223 * Calculate the size of each allocation (rsize) according to 1224 * alignment. If the requested size is smaller than we have 1225 * allocation bits for we round it up. 1226 */ 1227 rsize = keg->uk_size; 1228 if (rsize < keg->uk_slabsize / SLAB_SETSIZE) 1229 rsize = keg->uk_slabsize / SLAB_SETSIZE; 1230 if (rsize & keg->uk_align) 1231 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1232 keg->uk_rsize = rsize; 1233 1234 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 1235 keg->uk_rsize < sizeof(struct pcpu), 1236 ("%s: size %u too large", __func__, keg->uk_rsize)); 1237 1238 if (keg->uk_flags & UMA_ZONE_REFCNT) 1239 rsize += sizeof(uint32_t); 1240 1241 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1242 shsize = 0; 1243 else 1244 shsize = sizeof(struct uma_slab); 1245 1246 keg->uk_ipers = (keg->uk_slabsize - shsize) / rsize; 1247 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1248 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1249 1250 memused = keg->uk_ipers * rsize + shsize; 1251 wastedspace = keg->uk_slabsize - memused; 1252 1253 /* 1254 * We can't do OFFPAGE if we're internal or if we've been 1255 * asked to not go to the VM for buckets. If we do this we 1256 * may end up going to the VM for slabs which we do not 1257 * want to do if we're UMA_ZFLAG_CACHEONLY as a result 1258 * of UMA_ZONE_VM, which clearly forbids it. 1259 */ 1260 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1261 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1262 return; 1263 1264 /* 1265 * See if using an OFFPAGE slab will limit our waste. Only do 1266 * this if it permits more items per-slab. 1267 * 1268 * XXX We could try growing slabsize to limit max waste as well. 1269 * Historically this was not done because the VM could not 1270 * efficiently handle contiguous allocations. 1271 */ 1272 if ((wastedspace >= keg->uk_slabsize / UMA_MAX_WASTE) && 1273 (keg->uk_ipers < (keg->uk_slabsize / keg->uk_rsize))) { 1274 keg->uk_ipers = keg->uk_slabsize / keg->uk_rsize; 1275 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1276 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1277 #ifdef UMA_DEBUG 1278 printf("UMA decided we need offpage slab headers for " 1279 "keg: %s, calculated wastedspace = %d, " 1280 "maximum wasted space allowed = %d, " 1281 "calculated ipers = %d, " 1282 "new wasted space = %d\n", keg->uk_name, wastedspace, 1283 keg->uk_slabsize / UMA_MAX_WASTE, keg->uk_ipers, 1284 keg->uk_slabsize - keg->uk_ipers * keg->uk_rsize); 1285 #endif 1286 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1287 } 1288 1289 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1290 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1291 keg->uk_flags |= UMA_ZONE_HASH; 1292 } 1293 1294 /* 1295 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do 1296 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1297 * more complicated. 1298 * 1299 * Arguments 1300 * keg The keg we should initialize 1301 * 1302 * Returns 1303 * Nothing 1304 */ 1305 static void 1306 keg_large_init(uma_keg_t keg) 1307 { 1308 1309 KASSERT(keg != NULL, ("Keg is null in keg_large_init")); 1310 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0, 1311 ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg")); 1312 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1313 ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__)); 1314 1315 keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE); 1316 keg->uk_slabsize = keg->uk_ppera * PAGE_SIZE; 1317 keg->uk_ipers = 1; 1318 keg->uk_rsize = keg->uk_size; 1319 1320 /* We can't do OFFPAGE if we're internal, bail out here. */ 1321 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) 1322 return; 1323 1324 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1325 if ((keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1326 keg->uk_flags |= UMA_ZONE_HASH; 1327 } 1328 1329 static void 1330 keg_cachespread_init(uma_keg_t keg) 1331 { 1332 int alignsize; 1333 int trailer; 1334 int pages; 1335 int rsize; 1336 1337 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1338 ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__)); 1339 1340 alignsize = keg->uk_align + 1; 1341 rsize = keg->uk_size; 1342 /* 1343 * We want one item to start on every align boundary in a page. To 1344 * do this we will span pages. We will also extend the item by the 1345 * size of align if it is an even multiple of align. Otherwise, it 1346 * would fall on the same boundary every time. 1347 */ 1348 if (rsize & keg->uk_align) 1349 rsize = (rsize & ~keg->uk_align) + alignsize; 1350 if ((rsize & alignsize) == 0) 1351 rsize += alignsize; 1352 trailer = rsize - keg->uk_size; 1353 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE; 1354 pages = MIN(pages, (128 * 1024) / PAGE_SIZE); 1355 keg->uk_rsize = rsize; 1356 keg->uk_ppera = pages; 1357 keg->uk_slabsize = UMA_SLAB_SIZE; 1358 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize; 1359 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1360 KASSERT(keg->uk_ipers <= uma_max_ipers, 1361 ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__, 1362 keg->uk_ipers)); 1363 } 1364 1365 /* 1366 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1367 * the keg onto the global keg list. 1368 * 1369 * Arguments/Returns follow uma_ctor specifications 1370 * udata Actually uma_kctor_args 1371 */ 1372 static int 1373 keg_ctor(void *mem, int size, void *udata, int flags) 1374 { 1375 struct uma_kctor_args *arg = udata; 1376 uma_keg_t keg = mem; 1377 uma_zone_t zone; 1378 1379 bzero(keg, size); 1380 keg->uk_size = arg->size; 1381 keg->uk_init = arg->uminit; 1382 keg->uk_fini = arg->fini; 1383 keg->uk_align = arg->align; 1384 keg->uk_free = 0; 1385 keg->uk_reserve = 0; 1386 keg->uk_pages = 0; 1387 keg->uk_flags = arg->flags; 1388 keg->uk_allocf = page_alloc; 1389 keg->uk_freef = page_free; 1390 keg->uk_slabzone = NULL; 1391 1392 /* 1393 * The master zone is passed to us at keg-creation time. 1394 */ 1395 zone = arg->zone; 1396 keg->uk_name = zone->uz_name; 1397 1398 if (arg->flags & UMA_ZONE_VM) 1399 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1400 1401 if (arg->flags & UMA_ZONE_ZINIT) 1402 keg->uk_init = zero_init; 1403 1404 if (arg->flags & UMA_ZONE_REFCNT || arg->flags & UMA_ZONE_MALLOC) 1405 keg->uk_flags |= UMA_ZONE_VTOSLAB; 1406 1407 if (arg->flags & UMA_ZONE_PCPU) 1408 #ifdef SMP 1409 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1410 #else 1411 keg->uk_flags &= ~UMA_ZONE_PCPU; 1412 #endif 1413 1414 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) { 1415 keg_cachespread_init(keg); 1416 } else if (keg->uk_flags & UMA_ZONE_REFCNT) { 1417 if (keg->uk_size > 1418 (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt) - 1419 sizeof(uint32_t))) 1420 keg_large_init(keg); 1421 else 1422 keg_small_init(keg); 1423 } else { 1424 if (keg->uk_size > (UMA_SLAB_SIZE - sizeof(struct uma_slab))) 1425 keg_large_init(keg); 1426 else 1427 keg_small_init(keg); 1428 } 1429 1430 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 1431 if (keg->uk_flags & UMA_ZONE_REFCNT) { 1432 if (keg->uk_ipers > uma_max_ipers_ref) 1433 panic("Too many ref items per zone: %d > %d\n", 1434 keg->uk_ipers, uma_max_ipers_ref); 1435 keg->uk_slabzone = slabrefzone; 1436 } else 1437 keg->uk_slabzone = slabzone; 1438 } 1439 1440 /* 1441 * If we haven't booted yet we need allocations to go through the 1442 * startup cache until the vm is ready. 1443 */ 1444 if (keg->uk_ppera == 1) { 1445 #ifdef UMA_MD_SMALL_ALLOC 1446 keg->uk_allocf = uma_small_alloc; 1447 keg->uk_freef = uma_small_free; 1448 1449 if (booted < UMA_STARTUP) 1450 keg->uk_allocf = startup_alloc; 1451 #else 1452 if (booted < UMA_STARTUP2) 1453 keg->uk_allocf = startup_alloc; 1454 #endif 1455 } else if (booted < UMA_STARTUP2 && 1456 (keg->uk_flags & UMA_ZFLAG_INTERNAL)) 1457 keg->uk_allocf = startup_alloc; 1458 1459 /* 1460 * Initialize keg's lock 1461 */ 1462 KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS)); 1463 1464 /* 1465 * If we're putting the slab header in the actual page we need to 1466 * figure out where in each page it goes. This calculates a right 1467 * justified offset into the memory on an ALIGN_PTR boundary. 1468 */ 1469 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1470 u_int totsize; 1471 1472 /* Size of the slab struct and free list */ 1473 totsize = sizeof(struct uma_slab); 1474 1475 /* Size of the reference counts. */ 1476 if (keg->uk_flags & UMA_ZONE_REFCNT) 1477 totsize += keg->uk_ipers * sizeof(uint32_t); 1478 1479 if (totsize & UMA_ALIGN_PTR) 1480 totsize = (totsize & ~UMA_ALIGN_PTR) + 1481 (UMA_ALIGN_PTR + 1); 1482 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize; 1483 1484 /* 1485 * The only way the following is possible is if with our 1486 * UMA_ALIGN_PTR adjustments we are now bigger than 1487 * UMA_SLAB_SIZE. I haven't checked whether this is 1488 * mathematically possible for all cases, so we make 1489 * sure here anyway. 1490 */ 1491 totsize = keg->uk_pgoff + sizeof(struct uma_slab); 1492 if (keg->uk_flags & UMA_ZONE_REFCNT) 1493 totsize += keg->uk_ipers * sizeof(uint32_t); 1494 if (totsize > PAGE_SIZE * keg->uk_ppera) { 1495 printf("zone %s ipers %d rsize %d size %d\n", 1496 zone->uz_name, keg->uk_ipers, keg->uk_rsize, 1497 keg->uk_size); 1498 panic("UMA slab won't fit."); 1499 } 1500 } 1501 1502 if (keg->uk_flags & UMA_ZONE_HASH) 1503 hash_alloc(&keg->uk_hash); 1504 1505 #ifdef UMA_DEBUG 1506 printf("UMA: %s(%p) size %d(%d) flags %#x ipers %d ppera %d out %d free %d\n", 1507 zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags, 1508 keg->uk_ipers, keg->uk_ppera, 1509 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free); 1510 #endif 1511 1512 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1513 1514 mtx_lock(&uma_mtx); 1515 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1516 mtx_unlock(&uma_mtx); 1517 return (0); 1518 } 1519 1520 /* 1521 * Zone header ctor. This initializes all fields, locks, etc. 1522 * 1523 * Arguments/Returns follow uma_ctor specifications 1524 * udata Actually uma_zctor_args 1525 */ 1526 static int 1527 zone_ctor(void *mem, int size, void *udata, int flags) 1528 { 1529 struct uma_zctor_args *arg = udata; 1530 uma_zone_t zone = mem; 1531 uma_zone_t z; 1532 uma_keg_t keg; 1533 1534 bzero(zone, size); 1535 zone->uz_name = arg->name; 1536 zone->uz_ctor = arg->ctor; 1537 zone->uz_dtor = arg->dtor; 1538 zone->uz_slab = zone_fetch_slab; 1539 zone->uz_init = NULL; 1540 zone->uz_fini = NULL; 1541 zone->uz_allocs = 0; 1542 zone->uz_frees = 0; 1543 zone->uz_fails = 0; 1544 zone->uz_sleeps = 0; 1545 zone->uz_count = 0; 1546 zone->uz_count_min = 0; 1547 zone->uz_flags = 0; 1548 zone->uz_warning = NULL; 1549 timevalclear(&zone->uz_ratecheck); 1550 keg = arg->keg; 1551 1552 ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS)); 1553 1554 /* 1555 * This is a pure cache zone, no kegs. 1556 */ 1557 if (arg->import) { 1558 if (arg->flags & UMA_ZONE_VM) 1559 arg->flags |= UMA_ZFLAG_CACHEONLY; 1560 zone->uz_flags = arg->flags; 1561 zone->uz_size = arg->size; 1562 zone->uz_import = arg->import; 1563 zone->uz_release = arg->release; 1564 zone->uz_arg = arg->arg; 1565 zone->uz_lockptr = &zone->uz_lock; 1566 goto out; 1567 } 1568 1569 /* 1570 * Use the regular zone/keg/slab allocator. 1571 */ 1572 zone->uz_import = (uma_import)zone_import; 1573 zone->uz_release = (uma_release)zone_release; 1574 zone->uz_arg = zone; 1575 1576 if (arg->flags & UMA_ZONE_SECONDARY) { 1577 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 1578 zone->uz_init = arg->uminit; 1579 zone->uz_fini = arg->fini; 1580 zone->uz_lockptr = &keg->uk_lock; 1581 zone->uz_flags |= UMA_ZONE_SECONDARY; 1582 mtx_lock(&uma_mtx); 1583 ZONE_LOCK(zone); 1584 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 1585 if (LIST_NEXT(z, uz_link) == NULL) { 1586 LIST_INSERT_AFTER(z, zone, uz_link); 1587 break; 1588 } 1589 } 1590 ZONE_UNLOCK(zone); 1591 mtx_unlock(&uma_mtx); 1592 } else if (keg == NULL) { 1593 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 1594 arg->align, arg->flags)) == NULL) 1595 return (ENOMEM); 1596 } else { 1597 struct uma_kctor_args karg; 1598 int error; 1599 1600 /* We should only be here from uma_startup() */ 1601 karg.size = arg->size; 1602 karg.uminit = arg->uminit; 1603 karg.fini = arg->fini; 1604 karg.align = arg->align; 1605 karg.flags = arg->flags; 1606 karg.zone = zone; 1607 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 1608 flags); 1609 if (error) 1610 return (error); 1611 } 1612 1613 /* 1614 * Link in the first keg. 1615 */ 1616 zone->uz_klink.kl_keg = keg; 1617 LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link); 1618 zone->uz_lockptr = &keg->uk_lock; 1619 zone->uz_size = keg->uk_size; 1620 zone->uz_flags |= (keg->uk_flags & 1621 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 1622 1623 /* 1624 * Some internal zones don't have room allocated for the per cpu 1625 * caches. If we're internal, bail out here. 1626 */ 1627 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { 1628 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 1629 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 1630 return (0); 1631 } 1632 1633 out: 1634 if ((arg->flags & UMA_ZONE_MAXBUCKET) == 0) 1635 zone->uz_count = bucket_select(zone->uz_size); 1636 else 1637 zone->uz_count = BUCKET_MAX; 1638 zone->uz_count_min = zone->uz_count; 1639 1640 return (0); 1641 } 1642 1643 /* 1644 * Keg header dtor. This frees all data, destroys locks, frees the hash 1645 * table and removes the keg from the global list. 1646 * 1647 * Arguments/Returns follow uma_dtor specifications 1648 * udata unused 1649 */ 1650 static void 1651 keg_dtor(void *arg, int size, void *udata) 1652 { 1653 uma_keg_t keg; 1654 1655 keg = (uma_keg_t)arg; 1656 KEG_LOCK(keg); 1657 if (keg->uk_free != 0) { 1658 printf("Freed UMA keg was not empty (%d items). " 1659 " Lost %d pages of memory.\n", 1660 keg->uk_free, keg->uk_pages); 1661 } 1662 KEG_UNLOCK(keg); 1663 1664 hash_free(&keg->uk_hash); 1665 1666 KEG_LOCK_FINI(keg); 1667 } 1668 1669 /* 1670 * Zone header dtor. 1671 * 1672 * Arguments/Returns follow uma_dtor specifications 1673 * udata unused 1674 */ 1675 static void 1676 zone_dtor(void *arg, int size, void *udata) 1677 { 1678 uma_klink_t klink; 1679 uma_zone_t zone; 1680 uma_keg_t keg; 1681 1682 zone = (uma_zone_t)arg; 1683 keg = zone_first_keg(zone); 1684 1685 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 1686 cache_drain(zone); 1687 1688 mtx_lock(&uma_mtx); 1689 LIST_REMOVE(zone, uz_link); 1690 mtx_unlock(&uma_mtx); 1691 /* 1692 * XXX there are some races here where 1693 * the zone can be drained but zone lock 1694 * released and then refilled before we 1695 * remove it... we dont care for now 1696 */ 1697 zone_drain_wait(zone, M_WAITOK); 1698 /* 1699 * Unlink all of our kegs. 1700 */ 1701 while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) { 1702 klink->kl_keg = NULL; 1703 LIST_REMOVE(klink, kl_link); 1704 if (klink == &zone->uz_klink) 1705 continue; 1706 free(klink, M_TEMP); 1707 } 1708 /* 1709 * We only destroy kegs from non secondary zones. 1710 */ 1711 if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0) { 1712 mtx_lock(&uma_mtx); 1713 LIST_REMOVE(keg, uk_link); 1714 mtx_unlock(&uma_mtx); 1715 zone_free_item(kegs, keg, NULL, SKIP_NONE); 1716 } 1717 ZONE_LOCK_FINI(zone); 1718 } 1719 1720 /* 1721 * Traverses every zone in the system and calls a callback 1722 * 1723 * Arguments: 1724 * zfunc A pointer to a function which accepts a zone 1725 * as an argument. 1726 * 1727 * Returns: 1728 * Nothing 1729 */ 1730 static void 1731 zone_foreach(void (*zfunc)(uma_zone_t)) 1732 { 1733 uma_keg_t keg; 1734 uma_zone_t zone; 1735 1736 mtx_lock(&uma_mtx); 1737 LIST_FOREACH(keg, &uma_kegs, uk_link) { 1738 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 1739 zfunc(zone); 1740 } 1741 mtx_unlock(&uma_mtx); 1742 } 1743 1744 /* Public functions */ 1745 /* See uma.h */ 1746 void 1747 uma_startup(void *bootmem, int boot_pages) 1748 { 1749 struct uma_zctor_args args; 1750 uma_slab_t slab; 1751 u_int slabsize; 1752 int i; 1753 1754 #ifdef UMA_DEBUG 1755 printf("Creating uma keg headers zone and keg.\n"); 1756 #endif 1757 mtx_init(&uma_mtx, "UMA lock", NULL, MTX_DEF); 1758 1759 /* "manually" create the initial zone */ 1760 memset(&args, 0, sizeof(args)); 1761 args.name = "UMA Kegs"; 1762 args.size = sizeof(struct uma_keg); 1763 args.ctor = keg_ctor; 1764 args.dtor = keg_dtor; 1765 args.uminit = zero_init; 1766 args.fini = NULL; 1767 args.keg = &masterkeg; 1768 args.align = 32 - 1; 1769 args.flags = UMA_ZFLAG_INTERNAL; 1770 /* The initial zone has no Per cpu queues so it's smaller */ 1771 zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK); 1772 1773 #ifdef UMA_DEBUG 1774 printf("Filling boot free list.\n"); 1775 #endif 1776 for (i = 0; i < boot_pages; i++) { 1777 slab = (uma_slab_t)((uint8_t *)bootmem + (i * UMA_SLAB_SIZE)); 1778 slab->us_data = (uint8_t *)slab; 1779 slab->us_flags = UMA_SLAB_BOOT; 1780 LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link); 1781 } 1782 mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF); 1783 1784 #ifdef UMA_DEBUG 1785 printf("Creating uma zone headers zone and keg.\n"); 1786 #endif 1787 args.name = "UMA Zones"; 1788 args.size = sizeof(struct uma_zone) + 1789 (sizeof(struct uma_cache) * (mp_maxid + 1)); 1790 args.ctor = zone_ctor; 1791 args.dtor = zone_dtor; 1792 args.uminit = zero_init; 1793 args.fini = NULL; 1794 args.keg = NULL; 1795 args.align = 32 - 1; 1796 args.flags = UMA_ZFLAG_INTERNAL; 1797 /* The initial zone has no Per cpu queues so it's smaller */ 1798 zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK); 1799 1800 #ifdef UMA_DEBUG 1801 printf("Initializing pcpu cache locks.\n"); 1802 #endif 1803 #ifdef UMA_DEBUG 1804 printf("Creating slab and hash zones.\n"); 1805 #endif 1806 1807 /* Now make a zone for slab headers */ 1808 slabzone = uma_zcreate("UMA Slabs", 1809 sizeof(struct uma_slab), 1810 NULL, NULL, NULL, NULL, 1811 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1812 1813 /* 1814 * We also create a zone for the bigger slabs with reference 1815 * counts in them, to accomodate UMA_ZONE_REFCNT zones. 1816 */ 1817 slabsize = sizeof(struct uma_slab_refcnt); 1818 slabsize += uma_max_ipers_ref * sizeof(uint32_t); 1819 slabrefzone = uma_zcreate("UMA RCntSlabs", 1820 slabsize, 1821 NULL, NULL, NULL, NULL, 1822 UMA_ALIGN_PTR, 1823 UMA_ZFLAG_INTERNAL); 1824 1825 hashzone = uma_zcreate("UMA Hash", 1826 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 1827 NULL, NULL, NULL, NULL, 1828 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1829 1830 bucket_init(); 1831 1832 booted = UMA_STARTUP; 1833 1834 #ifdef UMA_DEBUG 1835 printf("UMA startup complete.\n"); 1836 #endif 1837 } 1838 1839 /* see uma.h */ 1840 void 1841 uma_startup2(void) 1842 { 1843 booted = UMA_STARTUP2; 1844 bucket_enable(); 1845 #ifdef UMA_DEBUG 1846 printf("UMA startup2 complete.\n"); 1847 #endif 1848 } 1849 1850 /* 1851 * Initialize our callout handle 1852 * 1853 */ 1854 1855 static void 1856 uma_startup3(void) 1857 { 1858 #ifdef UMA_DEBUG 1859 printf("Starting callout.\n"); 1860 #endif 1861 callout_init(&uma_callout, CALLOUT_MPSAFE); 1862 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 1863 #ifdef UMA_DEBUG 1864 printf("UMA startup3 complete.\n"); 1865 #endif 1866 } 1867 1868 static uma_keg_t 1869 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 1870 int align, uint32_t flags) 1871 { 1872 struct uma_kctor_args args; 1873 1874 args.size = size; 1875 args.uminit = uminit; 1876 args.fini = fini; 1877 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 1878 args.flags = flags; 1879 args.zone = zone; 1880 return (zone_alloc_item(kegs, &args, M_WAITOK)); 1881 } 1882 1883 /* See uma.h */ 1884 void 1885 uma_set_align(int align) 1886 { 1887 1888 if (align != UMA_ALIGN_CACHE) 1889 uma_align_cache = align; 1890 } 1891 1892 /* See uma.h */ 1893 uma_zone_t 1894 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 1895 uma_init uminit, uma_fini fini, int align, uint32_t flags) 1896 1897 { 1898 struct uma_zctor_args args; 1899 1900 /* This stuff is essential for the zone ctor */ 1901 memset(&args, 0, sizeof(args)); 1902 args.name = name; 1903 args.size = size; 1904 args.ctor = ctor; 1905 args.dtor = dtor; 1906 args.uminit = uminit; 1907 args.fini = fini; 1908 args.align = align; 1909 args.flags = flags; 1910 args.keg = NULL; 1911 1912 return (zone_alloc_item(zones, &args, M_WAITOK)); 1913 } 1914 1915 /* See uma.h */ 1916 uma_zone_t 1917 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 1918 uma_init zinit, uma_fini zfini, uma_zone_t master) 1919 { 1920 struct uma_zctor_args args; 1921 uma_keg_t keg; 1922 1923 keg = zone_first_keg(master); 1924 memset(&args, 0, sizeof(args)); 1925 args.name = name; 1926 args.size = keg->uk_size; 1927 args.ctor = ctor; 1928 args.dtor = dtor; 1929 args.uminit = zinit; 1930 args.fini = zfini; 1931 args.align = keg->uk_align; 1932 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 1933 args.keg = keg; 1934 1935 /* XXX Attaches only one keg of potentially many. */ 1936 return (zone_alloc_item(zones, &args, M_WAITOK)); 1937 } 1938 1939 /* See uma.h */ 1940 uma_zone_t 1941 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor, 1942 uma_init zinit, uma_fini zfini, uma_import zimport, 1943 uma_release zrelease, void *arg, int flags) 1944 { 1945 struct uma_zctor_args args; 1946 1947 memset(&args, 0, sizeof(args)); 1948 args.name = name; 1949 args.size = size; 1950 args.ctor = ctor; 1951 args.dtor = dtor; 1952 args.uminit = zinit; 1953 args.fini = zfini; 1954 args.import = zimport; 1955 args.release = zrelease; 1956 args.arg = arg; 1957 args.align = 0; 1958 args.flags = flags; 1959 1960 return (zone_alloc_item(zones, &args, M_WAITOK)); 1961 } 1962 1963 static void 1964 zone_lock_pair(uma_zone_t a, uma_zone_t b) 1965 { 1966 if (a < b) { 1967 ZONE_LOCK(a); 1968 mtx_lock_flags(b->uz_lockptr, MTX_DUPOK); 1969 } else { 1970 ZONE_LOCK(b); 1971 mtx_lock_flags(a->uz_lockptr, MTX_DUPOK); 1972 } 1973 } 1974 1975 static void 1976 zone_unlock_pair(uma_zone_t a, uma_zone_t b) 1977 { 1978 1979 ZONE_UNLOCK(a); 1980 ZONE_UNLOCK(b); 1981 } 1982 1983 int 1984 uma_zsecond_add(uma_zone_t zone, uma_zone_t master) 1985 { 1986 uma_klink_t klink; 1987 uma_klink_t kl; 1988 int error; 1989 1990 error = 0; 1991 klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO); 1992 1993 zone_lock_pair(zone, master); 1994 /* 1995 * zone must use vtoslab() to resolve objects and must already be 1996 * a secondary. 1997 */ 1998 if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) 1999 != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) { 2000 error = EINVAL; 2001 goto out; 2002 } 2003 /* 2004 * The new master must also use vtoslab(). 2005 */ 2006 if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) { 2007 error = EINVAL; 2008 goto out; 2009 } 2010 /* 2011 * Both must either be refcnt, or not be refcnt. 2012 */ 2013 if ((zone->uz_flags & UMA_ZONE_REFCNT) != 2014 (master->uz_flags & UMA_ZONE_REFCNT)) { 2015 error = EINVAL; 2016 goto out; 2017 } 2018 /* 2019 * The underlying object must be the same size. rsize 2020 * may be different. 2021 */ 2022 if (master->uz_size != zone->uz_size) { 2023 error = E2BIG; 2024 goto out; 2025 } 2026 /* 2027 * Put it at the end of the list. 2028 */ 2029 klink->kl_keg = zone_first_keg(master); 2030 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) { 2031 if (LIST_NEXT(kl, kl_link) == NULL) { 2032 LIST_INSERT_AFTER(kl, klink, kl_link); 2033 break; 2034 } 2035 } 2036 klink = NULL; 2037 zone->uz_flags |= UMA_ZFLAG_MULTI; 2038 zone->uz_slab = zone_fetch_slab_multi; 2039 2040 out: 2041 zone_unlock_pair(zone, master); 2042 if (klink != NULL) 2043 free(klink, M_TEMP); 2044 2045 return (error); 2046 } 2047 2048 2049 /* See uma.h */ 2050 void 2051 uma_zdestroy(uma_zone_t zone) 2052 { 2053 2054 zone_free_item(zones, zone, NULL, SKIP_NONE); 2055 } 2056 2057 /* See uma.h */ 2058 void * 2059 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 2060 { 2061 void *item; 2062 uma_cache_t cache; 2063 uma_bucket_t bucket; 2064 int lockfail; 2065 int cpu; 2066 2067 /* This is the fast path allocation */ 2068 #ifdef UMA_DEBUG_ALLOC_1 2069 printf("Allocating one item from %s(%p)\n", zone->uz_name, zone); 2070 #endif 2071 CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread, 2072 zone->uz_name, flags); 2073 2074 if (flags & M_WAITOK) { 2075 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2076 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 2077 } 2078 #ifdef DEBUG_MEMGUARD 2079 if (memguard_cmp_zone(zone)) { 2080 item = memguard_alloc(zone->uz_size, flags); 2081 if (item != NULL) { 2082 /* 2083 * Avoid conflict with the use-after-free 2084 * protecting infrastructure from INVARIANTS. 2085 */ 2086 if (zone->uz_init != NULL && 2087 zone->uz_init != mtrash_init && 2088 zone->uz_init(item, zone->uz_size, flags) != 0) 2089 return (NULL); 2090 if (zone->uz_ctor != NULL && 2091 zone->uz_ctor != mtrash_ctor && 2092 zone->uz_ctor(item, zone->uz_size, udata, 2093 flags) != 0) { 2094 zone->uz_fini(item, zone->uz_size); 2095 return (NULL); 2096 } 2097 return (item); 2098 } 2099 /* This is unfortunate but should not be fatal. */ 2100 } 2101 #endif 2102 /* 2103 * If possible, allocate from the per-CPU cache. There are two 2104 * requirements for safe access to the per-CPU cache: (1) the thread 2105 * accessing the cache must not be preempted or yield during access, 2106 * and (2) the thread must not migrate CPUs without switching which 2107 * cache it accesses. We rely on a critical section to prevent 2108 * preemption and migration. We release the critical section in 2109 * order to acquire the zone mutex if we are unable to allocate from 2110 * the current cache; when we re-acquire the critical section, we 2111 * must detect and handle migration if it has occurred. 2112 */ 2113 critical_enter(); 2114 cpu = curcpu; 2115 cache = &zone->uz_cpu[cpu]; 2116 2117 zalloc_start: 2118 bucket = cache->uc_allocbucket; 2119 if (bucket != NULL && bucket->ub_cnt > 0) { 2120 bucket->ub_cnt--; 2121 item = bucket->ub_bucket[bucket->ub_cnt]; 2122 #ifdef INVARIANTS 2123 bucket->ub_bucket[bucket->ub_cnt] = NULL; 2124 #endif 2125 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 2126 cache->uc_allocs++; 2127 critical_exit(); 2128 if (zone->uz_ctor != NULL && 2129 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2130 atomic_add_long(&zone->uz_fails, 1); 2131 zone_free_item(zone, item, udata, SKIP_DTOR); 2132 return (NULL); 2133 } 2134 #ifdef INVARIANTS 2135 uma_dbg_alloc(zone, NULL, item); 2136 #endif 2137 if (flags & M_ZERO) 2138 bzero(item, zone->uz_size); 2139 return (item); 2140 } 2141 2142 /* 2143 * We have run out of items in our alloc bucket. 2144 * See if we can switch with our free bucket. 2145 */ 2146 bucket = cache->uc_freebucket; 2147 if (bucket != NULL && bucket->ub_cnt > 0) { 2148 #ifdef UMA_DEBUG_ALLOC 2149 printf("uma_zalloc: Swapping empty with alloc.\n"); 2150 #endif 2151 cache->uc_freebucket = cache->uc_allocbucket; 2152 cache->uc_allocbucket = bucket; 2153 goto zalloc_start; 2154 } 2155 2156 /* 2157 * Discard any empty allocation bucket while we hold no locks. 2158 */ 2159 bucket = cache->uc_allocbucket; 2160 cache->uc_allocbucket = NULL; 2161 critical_exit(); 2162 if (bucket != NULL) 2163 bucket_free(zone, bucket, udata); 2164 2165 /* Short-circuit for zones without buckets and low memory. */ 2166 if (zone->uz_count == 0 || bucketdisable) 2167 goto zalloc_item; 2168 2169 /* 2170 * Attempt to retrieve the item from the per-CPU cache has failed, so 2171 * we must go back to the zone. This requires the zone lock, so we 2172 * must drop the critical section, then re-acquire it when we go back 2173 * to the cache. Since the critical section is released, we may be 2174 * preempted or migrate. As such, make sure not to maintain any 2175 * thread-local state specific to the cache from prior to releasing 2176 * the critical section. 2177 */ 2178 lockfail = 0; 2179 if (ZONE_TRYLOCK(zone) == 0) { 2180 /* Record contention to size the buckets. */ 2181 ZONE_LOCK(zone); 2182 lockfail = 1; 2183 } 2184 critical_enter(); 2185 cpu = curcpu; 2186 cache = &zone->uz_cpu[cpu]; 2187 2188 /* 2189 * Since we have locked the zone we may as well send back our stats. 2190 */ 2191 atomic_add_long(&zone->uz_allocs, cache->uc_allocs); 2192 atomic_add_long(&zone->uz_frees, cache->uc_frees); 2193 cache->uc_allocs = 0; 2194 cache->uc_frees = 0; 2195 2196 /* See if we lost the race to fill the cache. */ 2197 if (cache->uc_allocbucket != NULL) { 2198 ZONE_UNLOCK(zone); 2199 goto zalloc_start; 2200 } 2201 2202 /* 2203 * Check the zone's cache of buckets. 2204 */ 2205 if ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) { 2206 KASSERT(bucket->ub_cnt != 0, 2207 ("uma_zalloc_arg: Returning an empty bucket.")); 2208 2209 LIST_REMOVE(bucket, ub_link); 2210 cache->uc_allocbucket = bucket; 2211 ZONE_UNLOCK(zone); 2212 goto zalloc_start; 2213 } 2214 /* We are no longer associated with this CPU. */ 2215 critical_exit(); 2216 2217 /* 2218 * We bump the uz count when the cache size is insufficient to 2219 * handle the working set. 2220 */ 2221 if (lockfail && zone->uz_count < BUCKET_MAX) 2222 zone->uz_count++; 2223 ZONE_UNLOCK(zone); 2224 2225 /* 2226 * Now lets just fill a bucket and put it on the free list. If that 2227 * works we'll restart the allocation from the begining and it 2228 * will use the just filled bucket. 2229 */ 2230 bucket = zone_alloc_bucket(zone, udata, flags); 2231 if (bucket != NULL) { 2232 ZONE_LOCK(zone); 2233 critical_enter(); 2234 cpu = curcpu; 2235 cache = &zone->uz_cpu[cpu]; 2236 /* 2237 * See if we lost the race or were migrated. Cache the 2238 * initialized bucket to make this less likely or claim 2239 * the memory directly. 2240 */ 2241 if (cache->uc_allocbucket == NULL) 2242 cache->uc_allocbucket = bucket; 2243 else 2244 LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link); 2245 ZONE_UNLOCK(zone); 2246 goto zalloc_start; 2247 } 2248 2249 /* 2250 * We may not be able to get a bucket so return an actual item. 2251 */ 2252 #ifdef UMA_DEBUG 2253 printf("uma_zalloc_arg: Bucketzone returned NULL\n"); 2254 #endif 2255 2256 zalloc_item: 2257 item = zone_alloc_item(zone, udata, flags); 2258 2259 return (item); 2260 } 2261 2262 static uma_slab_t 2263 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags) 2264 { 2265 uma_slab_t slab; 2266 int reserve; 2267 2268 mtx_assert(&keg->uk_lock, MA_OWNED); 2269 slab = NULL; 2270 reserve = 0; 2271 if ((flags & M_USE_RESERVE) == 0) 2272 reserve = keg->uk_reserve; 2273 2274 for (;;) { 2275 /* 2276 * Find a slab with some space. Prefer slabs that are partially 2277 * used over those that are totally full. This helps to reduce 2278 * fragmentation. 2279 */ 2280 if (keg->uk_free > reserve) { 2281 if (!LIST_EMPTY(&keg->uk_part_slab)) { 2282 slab = LIST_FIRST(&keg->uk_part_slab); 2283 } else { 2284 slab = LIST_FIRST(&keg->uk_free_slab); 2285 LIST_REMOVE(slab, us_link); 2286 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, 2287 us_link); 2288 } 2289 MPASS(slab->us_keg == keg); 2290 return (slab); 2291 } 2292 2293 /* 2294 * M_NOVM means don't ask at all! 2295 */ 2296 if (flags & M_NOVM) 2297 break; 2298 2299 if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) { 2300 keg->uk_flags |= UMA_ZFLAG_FULL; 2301 /* 2302 * If this is not a multi-zone, set the FULL bit. 2303 * Otherwise slab_multi() takes care of it. 2304 */ 2305 if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) { 2306 zone->uz_flags |= UMA_ZFLAG_FULL; 2307 zone_log_warning(zone); 2308 } 2309 if (flags & M_NOWAIT) 2310 break; 2311 zone->uz_sleeps++; 2312 msleep(keg, &keg->uk_lock, PVM, "keglimit", 0); 2313 continue; 2314 } 2315 slab = keg_alloc_slab(keg, zone, flags); 2316 /* 2317 * If we got a slab here it's safe to mark it partially used 2318 * and return. We assume that the caller is going to remove 2319 * at least one item. 2320 */ 2321 if (slab) { 2322 MPASS(slab->us_keg == keg); 2323 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2324 return (slab); 2325 } 2326 /* 2327 * We might not have been able to get a slab but another cpu 2328 * could have while we were unlocked. Check again before we 2329 * fail. 2330 */ 2331 flags |= M_NOVM; 2332 } 2333 return (slab); 2334 } 2335 2336 static uma_slab_t 2337 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags) 2338 { 2339 uma_slab_t slab; 2340 2341 if (keg == NULL) { 2342 keg = zone_first_keg(zone); 2343 KEG_LOCK(keg); 2344 } 2345 2346 for (;;) { 2347 slab = keg_fetch_slab(keg, zone, flags); 2348 if (slab) 2349 return (slab); 2350 if (flags & (M_NOWAIT | M_NOVM)) 2351 break; 2352 } 2353 KEG_UNLOCK(keg); 2354 return (NULL); 2355 } 2356 2357 /* 2358 * uma_zone_fetch_slab_multi: Fetches a slab from one available keg. Returns 2359 * with the keg locked. On NULL no lock is held. 2360 * 2361 * The last pointer is used to seed the search. It is not required. 2362 */ 2363 static uma_slab_t 2364 zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags) 2365 { 2366 uma_klink_t klink; 2367 uma_slab_t slab; 2368 uma_keg_t keg; 2369 int flags; 2370 int empty; 2371 int full; 2372 2373 /* 2374 * Don't wait on the first pass. This will skip limit tests 2375 * as well. We don't want to block if we can find a provider 2376 * without blocking. 2377 */ 2378 flags = (rflags & ~M_WAITOK) | M_NOWAIT; 2379 /* 2380 * Use the last slab allocated as a hint for where to start 2381 * the search. 2382 */ 2383 if (last != NULL) { 2384 slab = keg_fetch_slab(last, zone, flags); 2385 if (slab) 2386 return (slab); 2387 KEG_UNLOCK(last); 2388 } 2389 /* 2390 * Loop until we have a slab incase of transient failures 2391 * while M_WAITOK is specified. I'm not sure this is 100% 2392 * required but we've done it for so long now. 2393 */ 2394 for (;;) { 2395 empty = 0; 2396 full = 0; 2397 /* 2398 * Search the available kegs for slabs. Be careful to hold the 2399 * correct lock while calling into the keg layer. 2400 */ 2401 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) { 2402 keg = klink->kl_keg; 2403 KEG_LOCK(keg); 2404 if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) { 2405 slab = keg_fetch_slab(keg, zone, flags); 2406 if (slab) 2407 return (slab); 2408 } 2409 if (keg->uk_flags & UMA_ZFLAG_FULL) 2410 full++; 2411 else 2412 empty++; 2413 KEG_UNLOCK(keg); 2414 } 2415 if (rflags & (M_NOWAIT | M_NOVM)) 2416 break; 2417 flags = rflags; 2418 /* 2419 * All kegs are full. XXX We can't atomically check all kegs 2420 * and sleep so just sleep for a short period and retry. 2421 */ 2422 if (full && !empty) { 2423 ZONE_LOCK(zone); 2424 zone->uz_flags |= UMA_ZFLAG_FULL; 2425 zone->uz_sleeps++; 2426 zone_log_warning(zone); 2427 msleep(zone, zone->uz_lockptr, PVM, 2428 "zonelimit", hz/100); 2429 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2430 ZONE_UNLOCK(zone); 2431 continue; 2432 } 2433 } 2434 return (NULL); 2435 } 2436 2437 static void * 2438 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 2439 { 2440 void *item; 2441 uint8_t freei; 2442 2443 MPASS(keg == slab->us_keg); 2444 mtx_assert(&keg->uk_lock, MA_OWNED); 2445 2446 freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1; 2447 BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free); 2448 item = slab->us_data + (keg->uk_rsize * freei); 2449 slab->us_freecount--; 2450 keg->uk_free--; 2451 2452 /* Move this slab to the full list */ 2453 if (slab->us_freecount == 0) { 2454 LIST_REMOVE(slab, us_link); 2455 LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link); 2456 } 2457 2458 return (item); 2459 } 2460 2461 static int 2462 zone_import(uma_zone_t zone, void **bucket, int max, int flags) 2463 { 2464 uma_slab_t slab; 2465 uma_keg_t keg; 2466 int i; 2467 2468 slab = NULL; 2469 keg = NULL; 2470 /* Try to keep the buckets totally full */ 2471 for (i = 0; i < max; ) { 2472 if ((slab = zone->uz_slab(zone, keg, flags)) == NULL) 2473 break; 2474 keg = slab->us_keg; 2475 while (slab->us_freecount && i < max) { 2476 bucket[i++] = slab_alloc_item(keg, slab); 2477 if (keg->uk_free <= keg->uk_reserve) 2478 break; 2479 } 2480 /* Don't grab more than one slab at a time. */ 2481 flags &= ~M_WAITOK; 2482 flags |= M_NOWAIT; 2483 } 2484 if (slab != NULL) 2485 KEG_UNLOCK(keg); 2486 2487 return i; 2488 } 2489 2490 static uma_bucket_t 2491 zone_alloc_bucket(uma_zone_t zone, void *udata, int flags) 2492 { 2493 uma_bucket_t bucket; 2494 int max; 2495 2496 /* Don't wait for buckets, preserve caller's NOVM setting. */ 2497 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 2498 if (bucket == NULL) 2499 goto out; 2500 2501 max = MIN(bucket->ub_entries, zone->uz_count); 2502 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 2503 max, flags); 2504 2505 /* 2506 * Initialize the memory if necessary. 2507 */ 2508 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 2509 int i; 2510 2511 for (i = 0; i < bucket->ub_cnt; i++) 2512 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 2513 flags) != 0) 2514 break; 2515 /* 2516 * If we couldn't initialize the whole bucket, put the 2517 * rest back onto the freelist. 2518 */ 2519 if (i != bucket->ub_cnt) { 2520 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 2521 bucket->ub_cnt - i); 2522 #ifdef INVARIANTS 2523 bzero(&bucket->ub_bucket[i], 2524 sizeof(void *) * (bucket->ub_cnt - i)); 2525 #endif 2526 bucket->ub_cnt = i; 2527 } 2528 } 2529 2530 out: 2531 if (bucket == NULL || bucket->ub_cnt == 0) { 2532 if (bucket != NULL) 2533 bucket_free(zone, bucket, udata); 2534 atomic_add_long(&zone->uz_fails, 1); 2535 return (NULL); 2536 } 2537 2538 return (bucket); 2539 } 2540 2541 /* 2542 * Allocates a single item from a zone. 2543 * 2544 * Arguments 2545 * zone The zone to alloc for. 2546 * udata The data to be passed to the constructor. 2547 * flags M_WAITOK, M_NOWAIT, M_ZERO. 2548 * 2549 * Returns 2550 * NULL if there is no memory and M_NOWAIT is set 2551 * An item if successful 2552 */ 2553 2554 static void * 2555 zone_alloc_item(uma_zone_t zone, void *udata, int flags) 2556 { 2557 void *item; 2558 2559 item = NULL; 2560 2561 #ifdef UMA_DEBUG_ALLOC 2562 printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone); 2563 #endif 2564 if (zone->uz_import(zone->uz_arg, &item, 1, flags) != 1) 2565 goto fail; 2566 atomic_add_long(&zone->uz_allocs, 1); 2567 2568 /* 2569 * We have to call both the zone's init (not the keg's init) 2570 * and the zone's ctor. This is because the item is going from 2571 * a keg slab directly to the user, and the user is expecting it 2572 * to be both zone-init'd as well as zone-ctor'd. 2573 */ 2574 if (zone->uz_init != NULL) { 2575 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 2576 zone_free_item(zone, item, udata, SKIP_FINI); 2577 goto fail; 2578 } 2579 } 2580 if (zone->uz_ctor != NULL) { 2581 if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2582 zone_free_item(zone, item, udata, SKIP_DTOR); 2583 goto fail; 2584 } 2585 } 2586 #ifdef INVARIANTS 2587 uma_dbg_alloc(zone, NULL, item); 2588 #endif 2589 if (flags & M_ZERO) 2590 bzero(item, zone->uz_size); 2591 2592 return (item); 2593 2594 fail: 2595 atomic_add_long(&zone->uz_fails, 1); 2596 return (NULL); 2597 } 2598 2599 /* See uma.h */ 2600 void 2601 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 2602 { 2603 uma_cache_t cache; 2604 uma_bucket_t bucket; 2605 int lockfail; 2606 int cpu; 2607 2608 #ifdef UMA_DEBUG_ALLOC_1 2609 printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone); 2610 #endif 2611 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 2612 zone->uz_name); 2613 2614 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 2615 if (item == NULL) 2616 return; 2617 #ifdef DEBUG_MEMGUARD 2618 if (is_memguard_addr(item)) { 2619 if (zone->uz_dtor != NULL && zone->uz_dtor != mtrash_dtor) 2620 zone->uz_dtor(item, zone->uz_size, udata); 2621 if (zone->uz_fini != NULL && zone->uz_fini != mtrash_fini) 2622 zone->uz_fini(item, zone->uz_size); 2623 memguard_free(item); 2624 return; 2625 } 2626 #endif 2627 #ifdef INVARIANTS 2628 if (zone->uz_flags & UMA_ZONE_MALLOC) 2629 uma_dbg_free(zone, udata, item); 2630 else 2631 uma_dbg_free(zone, NULL, item); 2632 #endif 2633 if (zone->uz_dtor != NULL) 2634 zone->uz_dtor(item, zone->uz_size, udata); 2635 2636 /* 2637 * The race here is acceptable. If we miss it we'll just have to wait 2638 * a little longer for the limits to be reset. 2639 */ 2640 if (zone->uz_flags & UMA_ZFLAG_FULL) 2641 goto zfree_item; 2642 2643 /* 2644 * If possible, free to the per-CPU cache. There are two 2645 * requirements for safe access to the per-CPU cache: (1) the thread 2646 * accessing the cache must not be preempted or yield during access, 2647 * and (2) the thread must not migrate CPUs without switching which 2648 * cache it accesses. We rely on a critical section to prevent 2649 * preemption and migration. We release the critical section in 2650 * order to acquire the zone mutex if we are unable to free to the 2651 * current cache; when we re-acquire the critical section, we must 2652 * detect and handle migration if it has occurred. 2653 */ 2654 zfree_restart: 2655 critical_enter(); 2656 cpu = curcpu; 2657 cache = &zone->uz_cpu[cpu]; 2658 2659 zfree_start: 2660 /* 2661 * Try to free into the allocbucket first to give LIFO ordering 2662 * for cache-hot datastructures. Spill over into the freebucket 2663 * if necessary. Alloc will swap them if one runs dry. 2664 */ 2665 bucket = cache->uc_allocbucket; 2666 if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries) 2667 bucket = cache->uc_freebucket; 2668 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 2669 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 2670 ("uma_zfree: Freeing to non free bucket index.")); 2671 bucket->ub_bucket[bucket->ub_cnt] = item; 2672 bucket->ub_cnt++; 2673 cache->uc_frees++; 2674 critical_exit(); 2675 return; 2676 } 2677 2678 /* 2679 * We must go back the zone, which requires acquiring the zone lock, 2680 * which in turn means we must release and re-acquire the critical 2681 * section. Since the critical section is released, we may be 2682 * preempted or migrate. As such, make sure not to maintain any 2683 * thread-local state specific to the cache from prior to releasing 2684 * the critical section. 2685 */ 2686 critical_exit(); 2687 if (zone->uz_count == 0 || bucketdisable) 2688 goto zfree_item; 2689 2690 lockfail = 0; 2691 if (ZONE_TRYLOCK(zone) == 0) { 2692 /* Record contention to size the buckets. */ 2693 ZONE_LOCK(zone); 2694 lockfail = 1; 2695 } 2696 critical_enter(); 2697 cpu = curcpu; 2698 cache = &zone->uz_cpu[cpu]; 2699 2700 /* 2701 * Since we have locked the zone we may as well send back our stats. 2702 */ 2703 atomic_add_long(&zone->uz_allocs, cache->uc_allocs); 2704 atomic_add_long(&zone->uz_frees, cache->uc_frees); 2705 cache->uc_allocs = 0; 2706 cache->uc_frees = 0; 2707 2708 bucket = cache->uc_freebucket; 2709 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 2710 ZONE_UNLOCK(zone); 2711 goto zfree_start; 2712 } 2713 cache->uc_freebucket = NULL; 2714 2715 /* Can we throw this on the zone full list? */ 2716 if (bucket != NULL) { 2717 #ifdef UMA_DEBUG_ALLOC 2718 printf("uma_zfree: Putting old bucket on the free list.\n"); 2719 #endif 2720 /* ub_cnt is pointing to the last free item */ 2721 KASSERT(bucket->ub_cnt != 0, 2722 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n")); 2723 LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link); 2724 } 2725 2726 /* We are no longer associated with this CPU. */ 2727 critical_exit(); 2728 2729 /* 2730 * We bump the uz count when the cache size is insufficient to 2731 * handle the working set. 2732 */ 2733 if (lockfail && zone->uz_count < BUCKET_MAX) 2734 zone->uz_count++; 2735 ZONE_UNLOCK(zone); 2736 2737 #ifdef UMA_DEBUG_ALLOC 2738 printf("uma_zfree: Allocating new free bucket.\n"); 2739 #endif 2740 bucket = bucket_alloc(zone, udata, M_NOWAIT); 2741 if (bucket) { 2742 critical_enter(); 2743 cpu = curcpu; 2744 cache = &zone->uz_cpu[cpu]; 2745 if (cache->uc_freebucket == NULL) { 2746 cache->uc_freebucket = bucket; 2747 goto zfree_start; 2748 } 2749 /* 2750 * We lost the race, start over. We have to drop our 2751 * critical section to free the bucket. 2752 */ 2753 critical_exit(); 2754 bucket_free(zone, bucket, udata); 2755 goto zfree_restart; 2756 } 2757 2758 /* 2759 * If nothing else caught this, we'll just do an internal free. 2760 */ 2761 zfree_item: 2762 zone_free_item(zone, item, udata, SKIP_DTOR); 2763 2764 return; 2765 } 2766 2767 static void 2768 slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item) 2769 { 2770 uint8_t freei; 2771 2772 mtx_assert(&keg->uk_lock, MA_OWNED); 2773 MPASS(keg == slab->us_keg); 2774 2775 /* Do we need to remove from any lists? */ 2776 if (slab->us_freecount+1 == keg->uk_ipers) { 2777 LIST_REMOVE(slab, us_link); 2778 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 2779 } else if (slab->us_freecount == 0) { 2780 LIST_REMOVE(slab, us_link); 2781 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2782 } 2783 2784 /* Slab management. */ 2785 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 2786 BIT_SET(SLAB_SETSIZE, freei, &slab->us_free); 2787 slab->us_freecount++; 2788 2789 /* Keg statistics. */ 2790 keg->uk_free++; 2791 } 2792 2793 static void 2794 zone_release(uma_zone_t zone, void **bucket, int cnt) 2795 { 2796 void *item; 2797 uma_slab_t slab; 2798 uma_keg_t keg; 2799 uint8_t *mem; 2800 int clearfull; 2801 int i; 2802 2803 clearfull = 0; 2804 keg = zone_first_keg(zone); 2805 KEG_LOCK(keg); 2806 for (i = 0; i < cnt; i++) { 2807 item = bucket[i]; 2808 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) { 2809 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 2810 if (zone->uz_flags & UMA_ZONE_HASH) { 2811 slab = hash_sfind(&keg->uk_hash, mem); 2812 } else { 2813 mem += keg->uk_pgoff; 2814 slab = (uma_slab_t)mem; 2815 } 2816 } else { 2817 slab = vtoslab((vm_offset_t)item); 2818 if (slab->us_keg != keg) { 2819 KEG_UNLOCK(keg); 2820 keg = slab->us_keg; 2821 KEG_LOCK(keg); 2822 } 2823 } 2824 slab_free_item(keg, slab, item); 2825 if (keg->uk_flags & UMA_ZFLAG_FULL) { 2826 if (keg->uk_pages < keg->uk_maxpages) { 2827 keg->uk_flags &= ~UMA_ZFLAG_FULL; 2828 clearfull = 1; 2829 } 2830 2831 /* 2832 * We can handle one more allocation. Since we're 2833 * clearing ZFLAG_FULL, wake up all procs blocked 2834 * on pages. This should be uncommon, so keeping this 2835 * simple for now (rather than adding count of blocked 2836 * threads etc). 2837 */ 2838 wakeup(keg); 2839 } 2840 } 2841 KEG_UNLOCK(keg); 2842 if (clearfull) { 2843 ZONE_LOCK(zone); 2844 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2845 wakeup(zone); 2846 ZONE_UNLOCK(zone); 2847 } 2848 2849 } 2850 2851 /* 2852 * Frees a single item to any zone. 2853 * 2854 * Arguments: 2855 * zone The zone to free to 2856 * item The item we're freeing 2857 * udata User supplied data for the dtor 2858 * skip Skip dtors and finis 2859 */ 2860 static void 2861 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 2862 { 2863 2864 #ifdef INVARIANTS 2865 if (skip == SKIP_NONE) { 2866 if (zone->uz_flags & UMA_ZONE_MALLOC) 2867 uma_dbg_free(zone, udata, item); 2868 else 2869 uma_dbg_free(zone, NULL, item); 2870 } 2871 #endif 2872 if (skip < SKIP_DTOR && zone->uz_dtor) 2873 zone->uz_dtor(item, zone->uz_size, udata); 2874 2875 if (skip < SKIP_FINI && zone->uz_fini) 2876 zone->uz_fini(item, zone->uz_size); 2877 2878 atomic_add_long(&zone->uz_frees, 1); 2879 zone->uz_release(zone->uz_arg, &item, 1); 2880 } 2881 2882 /* See uma.h */ 2883 int 2884 uma_zone_set_max(uma_zone_t zone, int nitems) 2885 { 2886 uma_keg_t keg; 2887 2888 keg = zone_first_keg(zone); 2889 if (keg == NULL) 2890 return (0); 2891 KEG_LOCK(keg); 2892 keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera; 2893 if (keg->uk_maxpages * keg->uk_ipers < nitems) 2894 keg->uk_maxpages += keg->uk_ppera; 2895 nitems = keg->uk_maxpages * keg->uk_ipers; 2896 KEG_UNLOCK(keg); 2897 2898 return (nitems); 2899 } 2900 2901 /* See uma.h */ 2902 int 2903 uma_zone_get_max(uma_zone_t zone) 2904 { 2905 int nitems; 2906 uma_keg_t keg; 2907 2908 keg = zone_first_keg(zone); 2909 if (keg == NULL) 2910 return (0); 2911 KEG_LOCK(keg); 2912 nitems = keg->uk_maxpages * keg->uk_ipers; 2913 KEG_UNLOCK(keg); 2914 2915 return (nitems); 2916 } 2917 2918 /* See uma.h */ 2919 void 2920 uma_zone_set_warning(uma_zone_t zone, const char *warning) 2921 { 2922 2923 ZONE_LOCK(zone); 2924 zone->uz_warning = warning; 2925 ZONE_UNLOCK(zone); 2926 } 2927 2928 /* See uma.h */ 2929 int 2930 uma_zone_get_cur(uma_zone_t zone) 2931 { 2932 int64_t nitems; 2933 u_int i; 2934 2935 ZONE_LOCK(zone); 2936 nitems = zone->uz_allocs - zone->uz_frees; 2937 CPU_FOREACH(i) { 2938 /* 2939 * See the comment in sysctl_vm_zone_stats() regarding the 2940 * safety of accessing the per-cpu caches. With the zone lock 2941 * held, it is safe, but can potentially result in stale data. 2942 */ 2943 nitems += zone->uz_cpu[i].uc_allocs - 2944 zone->uz_cpu[i].uc_frees; 2945 } 2946 ZONE_UNLOCK(zone); 2947 2948 return (nitems < 0 ? 0 : nitems); 2949 } 2950 2951 /* See uma.h */ 2952 void 2953 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 2954 { 2955 uma_keg_t keg; 2956 2957 keg = zone_first_keg(zone); 2958 KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type")); 2959 KEG_LOCK(keg); 2960 KASSERT(keg->uk_pages == 0, 2961 ("uma_zone_set_init on non-empty keg")); 2962 keg->uk_init = uminit; 2963 KEG_UNLOCK(keg); 2964 } 2965 2966 /* See uma.h */ 2967 void 2968 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 2969 { 2970 uma_keg_t keg; 2971 2972 keg = zone_first_keg(zone); 2973 KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type")); 2974 KEG_LOCK(keg); 2975 KASSERT(keg->uk_pages == 0, 2976 ("uma_zone_set_fini on non-empty keg")); 2977 keg->uk_fini = fini; 2978 KEG_UNLOCK(keg); 2979 } 2980 2981 /* See uma.h */ 2982 void 2983 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 2984 { 2985 2986 ZONE_LOCK(zone); 2987 KASSERT(zone_first_keg(zone)->uk_pages == 0, 2988 ("uma_zone_set_zinit on non-empty keg")); 2989 zone->uz_init = zinit; 2990 ZONE_UNLOCK(zone); 2991 } 2992 2993 /* See uma.h */ 2994 void 2995 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 2996 { 2997 2998 ZONE_LOCK(zone); 2999 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3000 ("uma_zone_set_zfini on non-empty keg")); 3001 zone->uz_fini = zfini; 3002 ZONE_UNLOCK(zone); 3003 } 3004 3005 /* See uma.h */ 3006 /* XXX uk_freef is not actually used with the zone locked */ 3007 void 3008 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 3009 { 3010 uma_keg_t keg; 3011 3012 keg = zone_first_keg(zone); 3013 KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type")); 3014 KEG_LOCK(keg); 3015 keg->uk_freef = freef; 3016 KEG_UNLOCK(keg); 3017 } 3018 3019 /* See uma.h */ 3020 /* XXX uk_allocf is not actually used with the zone locked */ 3021 void 3022 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 3023 { 3024 uma_keg_t keg; 3025 3026 keg = zone_first_keg(zone); 3027 KEG_LOCK(keg); 3028 keg->uk_allocf = allocf; 3029 KEG_UNLOCK(keg); 3030 } 3031 3032 /* See uma.h */ 3033 void 3034 uma_zone_reserve(uma_zone_t zone, int items) 3035 { 3036 uma_keg_t keg; 3037 3038 keg = zone_first_keg(zone); 3039 if (keg == NULL) 3040 return; 3041 KEG_LOCK(keg); 3042 keg->uk_reserve = items; 3043 KEG_UNLOCK(keg); 3044 3045 return; 3046 } 3047 3048 /* See uma.h */ 3049 int 3050 uma_zone_reserve_kva(uma_zone_t zone, int count) 3051 { 3052 uma_keg_t keg; 3053 vm_offset_t kva; 3054 int pages; 3055 3056 keg = zone_first_keg(zone); 3057 if (keg == NULL) 3058 return (0); 3059 pages = count / keg->uk_ipers; 3060 3061 if (pages * keg->uk_ipers < count) 3062 pages++; 3063 3064 #ifdef UMA_MD_SMALL_ALLOC 3065 if (keg->uk_ppera > 1) { 3066 #else 3067 if (1) { 3068 #endif 3069 kva = kva_alloc(pages * UMA_SLAB_SIZE); 3070 if (kva == 0) 3071 return (0); 3072 } else 3073 kva = 0; 3074 KEG_LOCK(keg); 3075 keg->uk_kva = kva; 3076 keg->uk_offset = 0; 3077 keg->uk_maxpages = pages; 3078 #ifdef UMA_MD_SMALL_ALLOC 3079 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 3080 #else 3081 keg->uk_allocf = noobj_alloc; 3082 #endif 3083 keg->uk_flags |= UMA_ZONE_NOFREE; 3084 KEG_UNLOCK(keg); 3085 3086 return (1); 3087 } 3088 3089 /* See uma.h */ 3090 void 3091 uma_prealloc(uma_zone_t zone, int items) 3092 { 3093 int slabs; 3094 uma_slab_t slab; 3095 uma_keg_t keg; 3096 3097 keg = zone_first_keg(zone); 3098 if (keg == NULL) 3099 return; 3100 KEG_LOCK(keg); 3101 slabs = items / keg->uk_ipers; 3102 if (slabs * keg->uk_ipers < items) 3103 slabs++; 3104 while (slabs > 0) { 3105 slab = keg_alloc_slab(keg, zone, M_WAITOK); 3106 if (slab == NULL) 3107 break; 3108 MPASS(slab->us_keg == keg); 3109 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 3110 slabs--; 3111 } 3112 KEG_UNLOCK(keg); 3113 } 3114 3115 /* See uma.h */ 3116 uint32_t * 3117 uma_find_refcnt(uma_zone_t zone, void *item) 3118 { 3119 uma_slabrefcnt_t slabref; 3120 uma_slab_t slab; 3121 uma_keg_t keg; 3122 uint32_t *refcnt; 3123 int idx; 3124 3125 slab = vtoslab((vm_offset_t)item & (~UMA_SLAB_MASK)); 3126 slabref = (uma_slabrefcnt_t)slab; 3127 keg = slab->us_keg; 3128 KASSERT(keg->uk_flags & UMA_ZONE_REFCNT, 3129 ("uma_find_refcnt(): zone possibly not UMA_ZONE_REFCNT")); 3130 idx = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3131 refcnt = &slabref->us_refcnt[idx]; 3132 return refcnt; 3133 } 3134 3135 /* See uma.h */ 3136 void 3137 uma_reclaim(void) 3138 { 3139 #ifdef UMA_DEBUG 3140 printf("UMA: vm asked us to release pages!\n"); 3141 #endif 3142 bucket_enable(); 3143 zone_foreach(zone_drain); 3144 if (vm_page_count_min()) { 3145 cache_drain_safe(NULL); 3146 zone_foreach(zone_drain); 3147 } 3148 /* 3149 * Some slabs may have been freed but this zone will be visited early 3150 * we visit again so that we can free pages that are empty once other 3151 * zones are drained. We have to do the same for buckets. 3152 */ 3153 zone_drain(slabzone); 3154 zone_drain(slabrefzone); 3155 bucket_zone_drain(); 3156 } 3157 3158 /* See uma.h */ 3159 int 3160 uma_zone_exhausted(uma_zone_t zone) 3161 { 3162 int full; 3163 3164 ZONE_LOCK(zone); 3165 full = (zone->uz_flags & UMA_ZFLAG_FULL); 3166 ZONE_UNLOCK(zone); 3167 return (full); 3168 } 3169 3170 int 3171 uma_zone_exhausted_nolock(uma_zone_t zone) 3172 { 3173 return (zone->uz_flags & UMA_ZFLAG_FULL); 3174 } 3175 3176 void * 3177 uma_large_malloc(int size, int wait) 3178 { 3179 void *mem; 3180 uma_slab_t slab; 3181 uint8_t flags; 3182 3183 slab = zone_alloc_item(slabzone, NULL, wait); 3184 if (slab == NULL) 3185 return (NULL); 3186 mem = page_alloc(NULL, size, &flags, wait); 3187 if (mem) { 3188 vsetslab((vm_offset_t)mem, slab); 3189 slab->us_data = mem; 3190 slab->us_flags = flags | UMA_SLAB_MALLOC; 3191 slab->us_size = size; 3192 } else { 3193 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3194 } 3195 3196 return (mem); 3197 } 3198 3199 void 3200 uma_large_free(uma_slab_t slab) 3201 { 3202 3203 page_free(slab->us_data, slab->us_size, slab->us_flags); 3204 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3205 } 3206 3207 void 3208 uma_print_stats(void) 3209 { 3210 zone_foreach(uma_print_zone); 3211 } 3212 3213 static void 3214 slab_print(uma_slab_t slab) 3215 { 3216 printf("slab: keg %p, data %p, freecount %d\n", 3217 slab->us_keg, slab->us_data, slab->us_freecount); 3218 } 3219 3220 static void 3221 cache_print(uma_cache_t cache) 3222 { 3223 printf("alloc: %p(%d), free: %p(%d)\n", 3224 cache->uc_allocbucket, 3225 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, 3226 cache->uc_freebucket, 3227 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0); 3228 } 3229 3230 static void 3231 uma_print_keg(uma_keg_t keg) 3232 { 3233 uma_slab_t slab; 3234 3235 printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d " 3236 "out %d free %d limit %d\n", 3237 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags, 3238 keg->uk_ipers, keg->uk_ppera, 3239 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free, 3240 (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers); 3241 printf("Part slabs:\n"); 3242 LIST_FOREACH(slab, &keg->uk_part_slab, us_link) 3243 slab_print(slab); 3244 printf("Free slabs:\n"); 3245 LIST_FOREACH(slab, &keg->uk_free_slab, us_link) 3246 slab_print(slab); 3247 printf("Full slabs:\n"); 3248 LIST_FOREACH(slab, &keg->uk_full_slab, us_link) 3249 slab_print(slab); 3250 } 3251 3252 void 3253 uma_print_zone(uma_zone_t zone) 3254 { 3255 uma_cache_t cache; 3256 uma_klink_t kl; 3257 int i; 3258 3259 printf("zone: %s(%p) size %d flags %#x\n", 3260 zone->uz_name, zone, zone->uz_size, zone->uz_flags); 3261 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) 3262 uma_print_keg(kl->kl_keg); 3263 CPU_FOREACH(i) { 3264 cache = &zone->uz_cpu[i]; 3265 printf("CPU %d Cache:\n", i); 3266 cache_print(cache); 3267 } 3268 } 3269 3270 #ifdef DDB 3271 /* 3272 * Generate statistics across both the zone and its per-cpu cache's. Return 3273 * desired statistics if the pointer is non-NULL for that statistic. 3274 * 3275 * Note: does not update the zone statistics, as it can't safely clear the 3276 * per-CPU cache statistic. 3277 * 3278 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't 3279 * safe from off-CPU; we should modify the caches to track this information 3280 * directly so that we don't have to. 3281 */ 3282 static void 3283 uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp, 3284 uint64_t *freesp, uint64_t *sleepsp) 3285 { 3286 uma_cache_t cache; 3287 uint64_t allocs, frees, sleeps; 3288 int cachefree, cpu; 3289 3290 allocs = frees = sleeps = 0; 3291 cachefree = 0; 3292 CPU_FOREACH(cpu) { 3293 cache = &z->uz_cpu[cpu]; 3294 if (cache->uc_allocbucket != NULL) 3295 cachefree += cache->uc_allocbucket->ub_cnt; 3296 if (cache->uc_freebucket != NULL) 3297 cachefree += cache->uc_freebucket->ub_cnt; 3298 allocs += cache->uc_allocs; 3299 frees += cache->uc_frees; 3300 } 3301 allocs += z->uz_allocs; 3302 frees += z->uz_frees; 3303 sleeps += z->uz_sleeps; 3304 if (cachefreep != NULL) 3305 *cachefreep = cachefree; 3306 if (allocsp != NULL) 3307 *allocsp = allocs; 3308 if (freesp != NULL) 3309 *freesp = frees; 3310 if (sleepsp != NULL) 3311 *sleepsp = sleeps; 3312 } 3313 #endif /* DDB */ 3314 3315 static int 3316 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 3317 { 3318 uma_keg_t kz; 3319 uma_zone_t z; 3320 int count; 3321 3322 count = 0; 3323 mtx_lock(&uma_mtx); 3324 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3325 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3326 count++; 3327 } 3328 mtx_unlock(&uma_mtx); 3329 return (sysctl_handle_int(oidp, &count, 0, req)); 3330 } 3331 3332 static int 3333 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 3334 { 3335 struct uma_stream_header ush; 3336 struct uma_type_header uth; 3337 struct uma_percpu_stat ups; 3338 uma_bucket_t bucket; 3339 struct sbuf sbuf; 3340 uma_cache_t cache; 3341 uma_klink_t kl; 3342 uma_keg_t kz; 3343 uma_zone_t z; 3344 uma_keg_t k; 3345 int count, error, i; 3346 3347 error = sysctl_wire_old_buffer(req, 0); 3348 if (error != 0) 3349 return (error); 3350 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 3351 3352 count = 0; 3353 mtx_lock(&uma_mtx); 3354 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3355 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3356 count++; 3357 } 3358 3359 /* 3360 * Insert stream header. 3361 */ 3362 bzero(&ush, sizeof(ush)); 3363 ush.ush_version = UMA_STREAM_VERSION; 3364 ush.ush_maxcpus = (mp_maxid + 1); 3365 ush.ush_count = count; 3366 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 3367 3368 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3369 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3370 bzero(&uth, sizeof(uth)); 3371 ZONE_LOCK(z); 3372 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 3373 uth.uth_align = kz->uk_align; 3374 uth.uth_size = kz->uk_size; 3375 uth.uth_rsize = kz->uk_rsize; 3376 LIST_FOREACH(kl, &z->uz_kegs, kl_link) { 3377 k = kl->kl_keg; 3378 uth.uth_maxpages += k->uk_maxpages; 3379 uth.uth_pages += k->uk_pages; 3380 uth.uth_keg_free += k->uk_free; 3381 uth.uth_limit = (k->uk_maxpages / k->uk_ppera) 3382 * k->uk_ipers; 3383 } 3384 3385 /* 3386 * A zone is secondary is it is not the first entry 3387 * on the keg's zone list. 3388 */ 3389 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 3390 (LIST_FIRST(&kz->uk_zones) != z)) 3391 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 3392 3393 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3394 uth.uth_zone_free += bucket->ub_cnt; 3395 uth.uth_allocs = z->uz_allocs; 3396 uth.uth_frees = z->uz_frees; 3397 uth.uth_fails = z->uz_fails; 3398 uth.uth_sleeps = z->uz_sleeps; 3399 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 3400 /* 3401 * While it is not normally safe to access the cache 3402 * bucket pointers while not on the CPU that owns the 3403 * cache, we only allow the pointers to be exchanged 3404 * without the zone lock held, not invalidated, so 3405 * accept the possible race associated with bucket 3406 * exchange during monitoring. 3407 */ 3408 for (i = 0; i < (mp_maxid + 1); i++) { 3409 bzero(&ups, sizeof(ups)); 3410 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) 3411 goto skip; 3412 if (CPU_ABSENT(i)) 3413 goto skip; 3414 cache = &z->uz_cpu[i]; 3415 if (cache->uc_allocbucket != NULL) 3416 ups.ups_cache_free += 3417 cache->uc_allocbucket->ub_cnt; 3418 if (cache->uc_freebucket != NULL) 3419 ups.ups_cache_free += 3420 cache->uc_freebucket->ub_cnt; 3421 ups.ups_allocs = cache->uc_allocs; 3422 ups.ups_frees = cache->uc_frees; 3423 skip: 3424 (void)sbuf_bcat(&sbuf, &ups, sizeof(ups)); 3425 } 3426 ZONE_UNLOCK(z); 3427 } 3428 } 3429 mtx_unlock(&uma_mtx); 3430 error = sbuf_finish(&sbuf); 3431 sbuf_delete(&sbuf); 3432 return (error); 3433 } 3434 3435 #ifdef DDB 3436 DB_SHOW_COMMAND(uma, db_show_uma) 3437 { 3438 uint64_t allocs, frees, sleeps; 3439 uma_bucket_t bucket; 3440 uma_keg_t kz; 3441 uma_zone_t z; 3442 int cachefree; 3443 3444 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 3445 "Requests", "Sleeps"); 3446 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3447 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3448 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 3449 allocs = z->uz_allocs; 3450 frees = z->uz_frees; 3451 sleeps = z->uz_sleeps; 3452 cachefree = 0; 3453 } else 3454 uma_zone_sumstat(z, &cachefree, &allocs, 3455 &frees, &sleeps); 3456 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 3457 (LIST_FIRST(&kz->uk_zones) != z))) 3458 cachefree += kz->uk_free; 3459 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3460 cachefree += bucket->ub_cnt; 3461 db_printf("%18s %8ju %8jd %8d %12ju %8ju\n", z->uz_name, 3462 (uintmax_t)kz->uk_size, 3463 (intmax_t)(allocs - frees), cachefree, 3464 (uintmax_t)allocs, sleeps); 3465 if (db_pager_quit) 3466 return; 3467 } 3468 } 3469 } 3470 #endif 3471