xref: /freebsd/sys/vm/uma_core.c (revision dd48af360fdbbb9552f9fc6de7abe50d68ad5331)
1 /*-
2  * Copyright (c) 2002-2005, 2009 Jeffrey Roberson <jeff@FreeBSD.org>
3  * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
4  * Copyright (c) 2004-2006 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * uma_core.c  Implementation of the Universal Memory allocator
31  *
32  * This allocator is intended to replace the multitude of similar object caches
33  * in the standard FreeBSD kernel.  The intent is to be flexible as well as
34  * effecient.  A primary design goal is to return unused memory to the rest of
35  * the system.  This will make the system as a whole more flexible due to the
36  * ability to move memory to subsystems which most need it instead of leaving
37  * pools of reserved memory unused.
38  *
39  * The basic ideas stem from similar slab/zone based allocators whose algorithms
40  * are well known.
41  *
42  */
43 
44 /*
45  * TODO:
46  *	- Improve memory usage for large allocations
47  *	- Investigate cache size adjustments
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 /* I should really use ktr.. */
54 /*
55 #define UMA_DEBUG 1
56 #define UMA_DEBUG_ALLOC 1
57 #define UMA_DEBUG_ALLOC_1 1
58 */
59 
60 #include "opt_ddb.h"
61 #include "opt_param.h"
62 
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/kernel.h>
66 #include <sys/types.h>
67 #include <sys/queue.h>
68 #include <sys/malloc.h>
69 #include <sys/ktr.h>
70 #include <sys/lock.h>
71 #include <sys/sysctl.h>
72 #include <sys/mutex.h>
73 #include <sys/proc.h>
74 #include <sys/sbuf.h>
75 #include <sys/smp.h>
76 #include <sys/vmmeter.h>
77 
78 #include <vm/vm.h>
79 #include <vm/vm_object.h>
80 #include <vm/vm_page.h>
81 #include <vm/vm_param.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_kern.h>
84 #include <vm/vm_extern.h>
85 #include <vm/uma.h>
86 #include <vm/uma_int.h>
87 #include <vm/uma_dbg.h>
88 
89 #include <machine/vmparam.h>
90 
91 #include <ddb/ddb.h>
92 
93 /*
94  * This is the zone and keg from which all zones are spawned.  The idea is that
95  * even the zone & keg heads are allocated from the allocator, so we use the
96  * bss section to bootstrap us.
97  */
98 static struct uma_keg masterkeg;
99 static struct uma_zone masterzone_k;
100 static struct uma_zone masterzone_z;
101 static uma_zone_t kegs = &masterzone_k;
102 static uma_zone_t zones = &masterzone_z;
103 
104 /* This is the zone from which all of uma_slab_t's are allocated. */
105 static uma_zone_t slabzone;
106 static uma_zone_t slabrefzone;	/* With refcounters (for UMA_ZONE_REFCNT) */
107 
108 /*
109  * The initial hash tables come out of this zone so they can be allocated
110  * prior to malloc coming up.
111  */
112 static uma_zone_t hashzone;
113 
114 /* The boot-time adjusted value for cache line alignment. */
115 static int uma_align_cache = 64 - 1;
116 
117 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
118 
119 /*
120  * Are we allowed to allocate buckets?
121  */
122 static int bucketdisable = 1;
123 
124 /* Linked list of all kegs in the system */
125 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs);
126 
127 /* This mutex protects the keg list */
128 static struct mtx uma_mtx;
129 
130 /* Linked list of boot time pages */
131 static LIST_HEAD(,uma_slab) uma_boot_pages =
132     LIST_HEAD_INITIALIZER(uma_boot_pages);
133 
134 /* This mutex protects the boot time pages list */
135 static struct mtx uma_boot_pages_mtx;
136 
137 /* Is the VM done starting up? */
138 static int booted = 0;
139 
140 /* Maximum number of allowed items-per-slab if the slab header is OFFPAGE */
141 static u_int uma_max_ipers;
142 static u_int uma_max_ipers_ref;
143 
144 /*
145  * This is the handle used to schedule events that need to happen
146  * outside of the allocation fast path.
147  */
148 static struct callout uma_callout;
149 #define	UMA_TIMEOUT	20		/* Seconds for callout interval. */
150 
151 /*
152  * This structure is passed as the zone ctor arg so that I don't have to create
153  * a special allocation function just for zones.
154  */
155 struct uma_zctor_args {
156 	char *name;
157 	size_t size;
158 	uma_ctor ctor;
159 	uma_dtor dtor;
160 	uma_init uminit;
161 	uma_fini fini;
162 	uma_keg_t keg;
163 	int align;
164 	u_int32_t flags;
165 };
166 
167 struct uma_kctor_args {
168 	uma_zone_t zone;
169 	size_t size;
170 	uma_init uminit;
171 	uma_fini fini;
172 	int align;
173 	u_int32_t flags;
174 };
175 
176 struct uma_bucket_zone {
177 	uma_zone_t	ubz_zone;
178 	char		*ubz_name;
179 	int		ubz_entries;
180 };
181 
182 #define	BUCKET_MAX	128
183 
184 struct uma_bucket_zone bucket_zones[] = {
185 	{ NULL, "16 Bucket", 16 },
186 	{ NULL, "32 Bucket", 32 },
187 	{ NULL, "64 Bucket", 64 },
188 	{ NULL, "128 Bucket", 128 },
189 	{ NULL, NULL, 0}
190 };
191 
192 #define	BUCKET_SHIFT	4
193 #define	BUCKET_ZONES	((BUCKET_MAX >> BUCKET_SHIFT) + 1)
194 
195 /*
196  * bucket_size[] maps requested bucket sizes to zones that allocate a bucket
197  * of approximately the right size.
198  */
199 static uint8_t bucket_size[BUCKET_ZONES];
200 
201 /*
202  * Flags and enumerations to be passed to internal functions.
203  */
204 enum zfreeskip { SKIP_NONE, SKIP_DTOR, SKIP_FINI };
205 
206 #define	ZFREE_STATFAIL	0x00000001	/* Update zone failure statistic. */
207 #define	ZFREE_STATFREE	0x00000002	/* Update zone free statistic. */
208 
209 /* Prototypes.. */
210 
211 static void *obj_alloc(uma_zone_t, int, u_int8_t *, int);
212 static void *page_alloc(uma_zone_t, int, u_int8_t *, int);
213 static void *startup_alloc(uma_zone_t, int, u_int8_t *, int);
214 static void page_free(void *, int, u_int8_t);
215 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int);
216 static void cache_drain(uma_zone_t);
217 static void bucket_drain(uma_zone_t, uma_bucket_t);
218 static void bucket_cache_drain(uma_zone_t zone);
219 static int keg_ctor(void *, int, void *, int);
220 static void keg_dtor(void *, int, void *);
221 static int zone_ctor(void *, int, void *, int);
222 static void zone_dtor(void *, int, void *);
223 static int zero_init(void *, int, int);
224 static void keg_small_init(uma_keg_t keg);
225 static void keg_large_init(uma_keg_t keg);
226 static void zone_foreach(void (*zfunc)(uma_zone_t));
227 static void zone_timeout(uma_zone_t zone);
228 static int hash_alloc(struct uma_hash *);
229 static int hash_expand(struct uma_hash *, struct uma_hash *);
230 static void hash_free(struct uma_hash *hash);
231 static void uma_timeout(void *);
232 static void uma_startup3(void);
233 static void *zone_alloc_item(uma_zone_t, void *, int);
234 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip,
235     int);
236 static void bucket_enable(void);
237 static void bucket_init(void);
238 static uma_bucket_t bucket_alloc(int, int);
239 static void bucket_free(uma_bucket_t);
240 static void bucket_zone_drain(void);
241 static int zone_alloc_bucket(uma_zone_t zone, int flags);
242 static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags);
243 static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags);
244 static void *slab_alloc_item(uma_zone_t zone, uma_slab_t slab);
245 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
246     uma_fini fini, int align, u_int32_t flags);
247 static inline void zone_relock(uma_zone_t zone, uma_keg_t keg);
248 static inline void keg_relock(uma_keg_t keg, uma_zone_t zone);
249 
250 void uma_print_zone(uma_zone_t);
251 void uma_print_stats(void);
252 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
253 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
254 
255 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
256 
257 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT,
258     0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
259 
260 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
261     0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
262 
263 /*
264  * This routine checks to see whether or not it's safe to enable buckets.
265  */
266 
267 static void
268 bucket_enable(void)
269 {
270 	if (cnt.v_free_count < cnt.v_free_min)
271 		bucketdisable = 1;
272 	else
273 		bucketdisable = 0;
274 }
275 
276 /*
277  * Initialize bucket_zones, the array of zones of buckets of various sizes.
278  *
279  * For each zone, calculate the memory required for each bucket, consisting
280  * of the header and an array of pointers.  Initialize bucket_size[] to point
281  * the range of appropriate bucket sizes at the zone.
282  */
283 static void
284 bucket_init(void)
285 {
286 	struct uma_bucket_zone *ubz;
287 	int i;
288 	int j;
289 
290 	for (i = 0, j = 0; bucket_zones[j].ubz_entries != 0; j++) {
291 		int size;
292 
293 		ubz = &bucket_zones[j];
294 		size = roundup(sizeof(struct uma_bucket), sizeof(void *));
295 		size += sizeof(void *) * ubz->ubz_entries;
296 		ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
297 		    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
298 		    UMA_ZFLAG_INTERNAL | UMA_ZFLAG_BUCKET);
299 		for (; i <= ubz->ubz_entries; i += (1 << BUCKET_SHIFT))
300 			bucket_size[i >> BUCKET_SHIFT] = j;
301 	}
302 }
303 
304 /*
305  * Given a desired number of entries for a bucket, return the zone from which
306  * to allocate the bucket.
307  */
308 static struct uma_bucket_zone *
309 bucket_zone_lookup(int entries)
310 {
311 	int idx;
312 
313 	idx = howmany(entries, 1 << BUCKET_SHIFT);
314 	return (&bucket_zones[bucket_size[idx]]);
315 }
316 
317 static uma_bucket_t
318 bucket_alloc(int entries, int bflags)
319 {
320 	struct uma_bucket_zone *ubz;
321 	uma_bucket_t bucket;
322 
323 	/*
324 	 * This is to stop us from allocating per cpu buckets while we're
325 	 * running out of vm.boot_pages.  Otherwise, we would exhaust the
326 	 * boot pages.  This also prevents us from allocating buckets in
327 	 * low memory situations.
328 	 */
329 	if (bucketdisable)
330 		return (NULL);
331 
332 	ubz = bucket_zone_lookup(entries);
333 	bucket = zone_alloc_item(ubz->ubz_zone, NULL, bflags);
334 	if (bucket) {
335 #ifdef INVARIANTS
336 		bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
337 #endif
338 		bucket->ub_cnt = 0;
339 		bucket->ub_entries = ubz->ubz_entries;
340 	}
341 
342 	return (bucket);
343 }
344 
345 static void
346 bucket_free(uma_bucket_t bucket)
347 {
348 	struct uma_bucket_zone *ubz;
349 
350 	ubz = bucket_zone_lookup(bucket->ub_entries);
351 	zone_free_item(ubz->ubz_zone, bucket, NULL, SKIP_NONE,
352 	    ZFREE_STATFREE);
353 }
354 
355 static void
356 bucket_zone_drain(void)
357 {
358 	struct uma_bucket_zone *ubz;
359 
360 	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
361 		zone_drain(ubz->ubz_zone);
362 }
363 
364 static inline uma_keg_t
365 zone_first_keg(uma_zone_t zone)
366 {
367 
368 	return (LIST_FIRST(&zone->uz_kegs)->kl_keg);
369 }
370 
371 static void
372 zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t))
373 {
374 	uma_klink_t klink;
375 
376 	LIST_FOREACH(klink, &zone->uz_kegs, kl_link)
377 		kegfn(klink->kl_keg);
378 }
379 
380 /*
381  * Routine called by timeout which is used to fire off some time interval
382  * based calculations.  (stats, hash size, etc.)
383  *
384  * Arguments:
385  *	arg   Unused
386  *
387  * Returns:
388  *	Nothing
389  */
390 static void
391 uma_timeout(void *unused)
392 {
393 	bucket_enable();
394 	zone_foreach(zone_timeout);
395 
396 	/* Reschedule this event */
397 	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
398 }
399 
400 /*
401  * Routine to perform timeout driven calculations.  This expands the
402  * hashes and does per cpu statistics aggregation.
403  *
404  *  Returns nothing.
405  */
406 static void
407 keg_timeout(uma_keg_t keg)
408 {
409 
410 	KEG_LOCK(keg);
411 	/*
412 	 * Expand the keg hash table.
413 	 *
414 	 * This is done if the number of slabs is larger than the hash size.
415 	 * What I'm trying to do here is completely reduce collisions.  This
416 	 * may be a little aggressive.  Should I allow for two collisions max?
417 	 */
418 	if (keg->uk_flags & UMA_ZONE_HASH &&
419 	    keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) {
420 		struct uma_hash newhash;
421 		struct uma_hash oldhash;
422 		int ret;
423 
424 		/*
425 		 * This is so involved because allocating and freeing
426 		 * while the keg lock is held will lead to deadlock.
427 		 * I have to do everything in stages and check for
428 		 * races.
429 		 */
430 		newhash = keg->uk_hash;
431 		KEG_UNLOCK(keg);
432 		ret = hash_alloc(&newhash);
433 		KEG_LOCK(keg);
434 		if (ret) {
435 			if (hash_expand(&keg->uk_hash, &newhash)) {
436 				oldhash = keg->uk_hash;
437 				keg->uk_hash = newhash;
438 			} else
439 				oldhash = newhash;
440 
441 			KEG_UNLOCK(keg);
442 			hash_free(&oldhash);
443 			KEG_LOCK(keg);
444 		}
445 	}
446 	KEG_UNLOCK(keg);
447 }
448 
449 static void
450 zone_timeout(uma_zone_t zone)
451 {
452 
453 	zone_foreach_keg(zone, &keg_timeout);
454 }
455 
456 /*
457  * Allocate and zero fill the next sized hash table from the appropriate
458  * backing store.
459  *
460  * Arguments:
461  *	hash  A new hash structure with the old hash size in uh_hashsize
462  *
463  * Returns:
464  *	1 on sucess and 0 on failure.
465  */
466 static int
467 hash_alloc(struct uma_hash *hash)
468 {
469 	int oldsize;
470 	int alloc;
471 
472 	oldsize = hash->uh_hashsize;
473 
474 	/* We're just going to go to a power of two greater */
475 	if (oldsize)  {
476 		hash->uh_hashsize = oldsize * 2;
477 		alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
478 		hash->uh_slab_hash = (struct slabhead *)malloc(alloc,
479 		    M_UMAHASH, M_NOWAIT);
480 	} else {
481 		alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
482 		hash->uh_slab_hash = zone_alloc_item(hashzone, NULL,
483 		    M_WAITOK);
484 		hash->uh_hashsize = UMA_HASH_SIZE_INIT;
485 	}
486 	if (hash->uh_slab_hash) {
487 		bzero(hash->uh_slab_hash, alloc);
488 		hash->uh_hashmask = hash->uh_hashsize - 1;
489 		return (1);
490 	}
491 
492 	return (0);
493 }
494 
495 /*
496  * Expands the hash table for HASH zones.  This is done from zone_timeout
497  * to reduce collisions.  This must not be done in the regular allocation
498  * path, otherwise, we can recurse on the vm while allocating pages.
499  *
500  * Arguments:
501  *	oldhash  The hash you want to expand
502  *	newhash  The hash structure for the new table
503  *
504  * Returns:
505  *	Nothing
506  *
507  * Discussion:
508  */
509 static int
510 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
511 {
512 	uma_slab_t slab;
513 	int hval;
514 	int i;
515 
516 	if (!newhash->uh_slab_hash)
517 		return (0);
518 
519 	if (oldhash->uh_hashsize >= newhash->uh_hashsize)
520 		return (0);
521 
522 	/*
523 	 * I need to investigate hash algorithms for resizing without a
524 	 * full rehash.
525 	 */
526 
527 	for (i = 0; i < oldhash->uh_hashsize; i++)
528 		while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) {
529 			slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]);
530 			SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink);
531 			hval = UMA_HASH(newhash, slab->us_data);
532 			SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
533 			    slab, us_hlink);
534 		}
535 
536 	return (1);
537 }
538 
539 /*
540  * Free the hash bucket to the appropriate backing store.
541  *
542  * Arguments:
543  *	slab_hash  The hash bucket we're freeing
544  *	hashsize   The number of entries in that hash bucket
545  *
546  * Returns:
547  *	Nothing
548  */
549 static void
550 hash_free(struct uma_hash *hash)
551 {
552 	if (hash->uh_slab_hash == NULL)
553 		return;
554 	if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
555 		zone_free_item(hashzone,
556 		    hash->uh_slab_hash, NULL, SKIP_NONE, ZFREE_STATFREE);
557 	else
558 		free(hash->uh_slab_hash, M_UMAHASH);
559 }
560 
561 /*
562  * Frees all outstanding items in a bucket
563  *
564  * Arguments:
565  *	zone   The zone to free to, must be unlocked.
566  *	bucket The free/alloc bucket with items, cpu queue must be locked.
567  *
568  * Returns:
569  *	Nothing
570  */
571 
572 static void
573 bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
574 {
575 	void *item;
576 
577 	if (bucket == NULL)
578 		return;
579 
580 	while (bucket->ub_cnt > 0)  {
581 		bucket->ub_cnt--;
582 		item = bucket->ub_bucket[bucket->ub_cnt];
583 #ifdef INVARIANTS
584 		bucket->ub_bucket[bucket->ub_cnt] = NULL;
585 		KASSERT(item != NULL,
586 		    ("bucket_drain: botched ptr, item is NULL"));
587 #endif
588 		zone_free_item(zone, item, NULL, SKIP_DTOR, 0);
589 	}
590 }
591 
592 /*
593  * Drains the per cpu caches for a zone.
594  *
595  * NOTE: This may only be called while the zone is being turn down, and not
596  * during normal operation.  This is necessary in order that we do not have
597  * to migrate CPUs to drain the per-CPU caches.
598  *
599  * Arguments:
600  *	zone     The zone to drain, must be unlocked.
601  *
602  * Returns:
603  *	Nothing
604  */
605 static void
606 cache_drain(uma_zone_t zone)
607 {
608 	uma_cache_t cache;
609 	int cpu;
610 
611 	/*
612 	 * XXX: It is safe to not lock the per-CPU caches, because we're
613 	 * tearing down the zone anyway.  I.e., there will be no further use
614 	 * of the caches at this point.
615 	 *
616 	 * XXX: It would good to be able to assert that the zone is being
617 	 * torn down to prevent improper use of cache_drain().
618 	 *
619 	 * XXX: We lock the zone before passing into bucket_cache_drain() as
620 	 * it is used elsewhere.  Should the tear-down path be made special
621 	 * there in some form?
622 	 */
623 	for (cpu = 0; cpu <= mp_maxid; cpu++) {
624 		if (CPU_ABSENT(cpu))
625 			continue;
626 		cache = &zone->uz_cpu[cpu];
627 		bucket_drain(zone, cache->uc_allocbucket);
628 		bucket_drain(zone, cache->uc_freebucket);
629 		if (cache->uc_allocbucket != NULL)
630 			bucket_free(cache->uc_allocbucket);
631 		if (cache->uc_freebucket != NULL)
632 			bucket_free(cache->uc_freebucket);
633 		cache->uc_allocbucket = cache->uc_freebucket = NULL;
634 	}
635 	ZONE_LOCK(zone);
636 	bucket_cache_drain(zone);
637 	ZONE_UNLOCK(zone);
638 }
639 
640 /*
641  * Drain the cached buckets from a zone.  Expects a locked zone on entry.
642  */
643 static void
644 bucket_cache_drain(uma_zone_t zone)
645 {
646 	uma_bucket_t bucket;
647 
648 	/*
649 	 * Drain the bucket queues and free the buckets, we just keep two per
650 	 * cpu (alloc/free).
651 	 */
652 	while ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) {
653 		LIST_REMOVE(bucket, ub_link);
654 		ZONE_UNLOCK(zone);
655 		bucket_drain(zone, bucket);
656 		bucket_free(bucket);
657 		ZONE_LOCK(zone);
658 	}
659 
660 	/* Now we do the free queue.. */
661 	while ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) {
662 		LIST_REMOVE(bucket, ub_link);
663 		bucket_free(bucket);
664 	}
665 }
666 
667 /*
668  * Frees pages from a keg back to the system.  This is done on demand from
669  * the pageout daemon.
670  *
671  * Returns nothing.
672  */
673 static void
674 keg_drain(uma_keg_t keg)
675 {
676 	struct slabhead freeslabs = { 0 };
677 	uma_slab_t slab;
678 	uma_slab_t n;
679 	u_int8_t flags;
680 	u_int8_t *mem;
681 	int i;
682 
683 	/*
684 	 * We don't want to take pages from statically allocated kegs at this
685 	 * time
686 	 */
687 	if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL)
688 		return;
689 
690 #ifdef UMA_DEBUG
691 	printf("%s free items: %u\n", keg->uk_name, keg->uk_free);
692 #endif
693 	KEG_LOCK(keg);
694 	if (keg->uk_free == 0)
695 		goto finished;
696 
697 	slab = LIST_FIRST(&keg->uk_free_slab);
698 	while (slab) {
699 		n = LIST_NEXT(slab, us_link);
700 
701 		/* We have no where to free these to */
702 		if (slab->us_flags & UMA_SLAB_BOOT) {
703 			slab = n;
704 			continue;
705 		}
706 
707 		LIST_REMOVE(slab, us_link);
708 		keg->uk_pages -= keg->uk_ppera;
709 		keg->uk_free -= keg->uk_ipers;
710 
711 		if (keg->uk_flags & UMA_ZONE_HASH)
712 			UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data);
713 
714 		SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink);
715 
716 		slab = n;
717 	}
718 finished:
719 	KEG_UNLOCK(keg);
720 
721 	while ((slab = SLIST_FIRST(&freeslabs)) != NULL) {
722 		SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink);
723 		if (keg->uk_fini)
724 			for (i = 0; i < keg->uk_ipers; i++)
725 				keg->uk_fini(
726 				    slab->us_data + (keg->uk_rsize * i),
727 				    keg->uk_size);
728 		flags = slab->us_flags;
729 		mem = slab->us_data;
730 
731 		if (keg->uk_flags & UMA_ZONE_VTOSLAB) {
732 			vm_object_t obj;
733 
734 			if (flags & UMA_SLAB_KMEM)
735 				obj = kmem_object;
736 			else if (flags & UMA_SLAB_KERNEL)
737 				obj = kernel_object;
738 			else
739 				obj = NULL;
740 			for (i = 0; i < keg->uk_ppera; i++)
741 				vsetobj((vm_offset_t)mem + (i * PAGE_SIZE),
742 				    obj);
743 		}
744 		if (keg->uk_flags & UMA_ZONE_OFFPAGE)
745 			zone_free_item(keg->uk_slabzone, slab, NULL,
746 			    SKIP_NONE, ZFREE_STATFREE);
747 #ifdef UMA_DEBUG
748 		printf("%s: Returning %d bytes.\n",
749 		    keg->uk_name, UMA_SLAB_SIZE * keg->uk_ppera);
750 #endif
751 		keg->uk_freef(mem, UMA_SLAB_SIZE * keg->uk_ppera, flags);
752 	}
753 }
754 
755 static void
756 zone_drain_wait(uma_zone_t zone, int waitok)
757 {
758 
759 	/*
760 	 * Set draining to interlock with zone_dtor() so we can release our
761 	 * locks as we go.  Only dtor() should do a WAITOK call since it
762 	 * is the only call that knows the structure will still be available
763 	 * when it wakes up.
764 	 */
765 	ZONE_LOCK(zone);
766 	while (zone->uz_flags & UMA_ZFLAG_DRAINING) {
767 		if (waitok == M_NOWAIT)
768 			goto out;
769 		mtx_unlock(&uma_mtx);
770 		msleep(zone, zone->uz_lock, PVM, "zonedrain", 1);
771 		mtx_lock(&uma_mtx);
772 	}
773 	zone->uz_flags |= UMA_ZFLAG_DRAINING;
774 	bucket_cache_drain(zone);
775 	ZONE_UNLOCK(zone);
776 	/*
777 	 * The DRAINING flag protects us from being freed while
778 	 * we're running.  Normally the uma_mtx would protect us but we
779 	 * must be able to release and acquire the right lock for each keg.
780 	 */
781 	zone_foreach_keg(zone, &keg_drain);
782 	ZONE_LOCK(zone);
783 	zone->uz_flags &= ~UMA_ZFLAG_DRAINING;
784 	wakeup(zone);
785 out:
786 	ZONE_UNLOCK(zone);
787 }
788 
789 void
790 zone_drain(uma_zone_t zone)
791 {
792 
793 	zone_drain_wait(zone, M_NOWAIT);
794 }
795 
796 /*
797  * Allocate a new slab for a keg.  This does not insert the slab onto a list.
798  *
799  * Arguments:
800  *	wait  Shall we wait?
801  *
802  * Returns:
803  *	The slab that was allocated or NULL if there is no memory and the
804  *	caller specified M_NOWAIT.
805  */
806 static uma_slab_t
807 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait)
808 {
809 	uma_slabrefcnt_t slabref;
810 	uma_alloc allocf;
811 	uma_slab_t slab;
812 	u_int8_t *mem;
813 	u_int8_t flags;
814 	int i;
815 
816 	mtx_assert(&keg->uk_lock, MA_OWNED);
817 	slab = NULL;
818 
819 #ifdef UMA_DEBUG
820 	printf("slab_zalloc:  Allocating a new slab for %s\n", keg->uk_name);
821 #endif
822 	allocf = keg->uk_allocf;
823 	KEG_UNLOCK(keg);
824 
825 	if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
826 		slab = zone_alloc_item(keg->uk_slabzone, NULL, wait);
827 		if (slab == NULL) {
828 			KEG_LOCK(keg);
829 			return NULL;
830 		}
831 	}
832 
833 	/*
834 	 * This reproduces the old vm_zone behavior of zero filling pages the
835 	 * first time they are added to a zone.
836 	 *
837 	 * Malloced items are zeroed in uma_zalloc.
838 	 */
839 
840 	if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
841 		wait |= M_ZERO;
842 	else
843 		wait &= ~M_ZERO;
844 
845 	/* zone is passed for legacy reasons. */
846 	mem = allocf(zone, keg->uk_ppera * UMA_SLAB_SIZE, &flags, wait);
847 	if (mem == NULL) {
848 		if (keg->uk_flags & UMA_ZONE_OFFPAGE)
849 			zone_free_item(keg->uk_slabzone, slab, NULL,
850 			    SKIP_NONE, ZFREE_STATFREE);
851 		KEG_LOCK(keg);
852 		return (NULL);
853 	}
854 
855 	/* Point the slab into the allocated memory */
856 	if (!(keg->uk_flags & UMA_ZONE_OFFPAGE))
857 		slab = (uma_slab_t )(mem + keg->uk_pgoff);
858 
859 	if (keg->uk_flags & UMA_ZONE_VTOSLAB)
860 		for (i = 0; i < keg->uk_ppera; i++)
861 			vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab);
862 
863 	slab->us_keg = keg;
864 	slab->us_data = mem;
865 	slab->us_freecount = keg->uk_ipers;
866 	slab->us_firstfree = 0;
867 	slab->us_flags = flags;
868 
869 	if (keg->uk_flags & UMA_ZONE_REFCNT) {
870 		slabref = (uma_slabrefcnt_t)slab;
871 		for (i = 0; i < keg->uk_ipers; i++) {
872 			slabref->us_freelist[i].us_refcnt = 0;
873 			slabref->us_freelist[i].us_item = i+1;
874 		}
875 	} else {
876 		for (i = 0; i < keg->uk_ipers; i++)
877 			slab->us_freelist[i].us_item = i+1;
878 	}
879 
880 	if (keg->uk_init != NULL) {
881 		for (i = 0; i < keg->uk_ipers; i++)
882 			if (keg->uk_init(slab->us_data + (keg->uk_rsize * i),
883 			    keg->uk_size, wait) != 0)
884 				break;
885 		if (i != keg->uk_ipers) {
886 			if (keg->uk_fini != NULL) {
887 				for (i--; i > -1; i--)
888 					keg->uk_fini(slab->us_data +
889 					    (keg->uk_rsize * i),
890 					    keg->uk_size);
891 			}
892 			if (keg->uk_flags & UMA_ZONE_VTOSLAB) {
893 				vm_object_t obj;
894 
895 				if (flags & UMA_SLAB_KMEM)
896 					obj = kmem_object;
897 				else if (flags & UMA_SLAB_KERNEL)
898 					obj = kernel_object;
899 				else
900 					obj = NULL;
901 				for (i = 0; i < keg->uk_ppera; i++)
902 					vsetobj((vm_offset_t)mem +
903 					    (i * PAGE_SIZE), obj);
904 			}
905 			if (keg->uk_flags & UMA_ZONE_OFFPAGE)
906 				zone_free_item(keg->uk_slabzone, slab,
907 				    NULL, SKIP_NONE, ZFREE_STATFREE);
908 			keg->uk_freef(mem, UMA_SLAB_SIZE * keg->uk_ppera,
909 			    flags);
910 			KEG_LOCK(keg);
911 			return (NULL);
912 		}
913 	}
914 	KEG_LOCK(keg);
915 
916 	if (keg->uk_flags & UMA_ZONE_HASH)
917 		UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
918 
919 	keg->uk_pages += keg->uk_ppera;
920 	keg->uk_free += keg->uk_ipers;
921 
922 	return (slab);
923 }
924 
925 /*
926  * This function is intended to be used early on in place of page_alloc() so
927  * that we may use the boot time page cache to satisfy allocations before
928  * the VM is ready.
929  */
930 static void *
931 startup_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait)
932 {
933 	uma_keg_t keg;
934 	uma_slab_t tmps;
935 
936 	keg = zone_first_keg(zone);
937 
938 	/*
939 	 * Check our small startup cache to see if it has pages remaining.
940 	 */
941 	mtx_lock(&uma_boot_pages_mtx);
942 	if ((tmps = LIST_FIRST(&uma_boot_pages)) != NULL) {
943 		LIST_REMOVE(tmps, us_link);
944 		mtx_unlock(&uma_boot_pages_mtx);
945 		*pflag = tmps->us_flags;
946 		return (tmps->us_data);
947 	}
948 	mtx_unlock(&uma_boot_pages_mtx);
949 	if (booted == 0)
950 		panic("UMA: Increase vm.boot_pages");
951 	/*
952 	 * Now that we've booted reset these users to their real allocator.
953 	 */
954 #ifdef UMA_MD_SMALL_ALLOC
955 	keg->uk_allocf = uma_small_alloc;
956 #else
957 	keg->uk_allocf = page_alloc;
958 #endif
959 	return keg->uk_allocf(zone, bytes, pflag, wait);
960 }
961 
962 /*
963  * Allocates a number of pages from the system
964  *
965  * Arguments:
966  *	bytes  The number of bytes requested
967  *	wait  Shall we wait?
968  *
969  * Returns:
970  *	A pointer to the alloced memory or possibly
971  *	NULL if M_NOWAIT is set.
972  */
973 static void *
974 page_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait)
975 {
976 	void *p;	/* Returned page */
977 
978 	*pflag = UMA_SLAB_KMEM;
979 	p = (void *) kmem_malloc(kmem_map, bytes, wait);
980 
981 	return (p);
982 }
983 
984 /*
985  * Allocates a number of pages from within an object
986  *
987  * Arguments:
988  *	bytes  The number of bytes requested
989  *	wait   Shall we wait?
990  *
991  * Returns:
992  *	A pointer to the alloced memory or possibly
993  *	NULL if M_NOWAIT is set.
994  */
995 static void *
996 obj_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
997 {
998 	vm_object_t object;
999 	vm_offset_t retkva, zkva;
1000 	vm_page_t p;
1001 	int pages, startpages;
1002 	uma_keg_t keg;
1003 
1004 	keg = zone_first_keg(zone);
1005 	object = keg->uk_obj;
1006 	retkva = 0;
1007 
1008 	/*
1009 	 * This looks a little weird since we're getting one page at a time.
1010 	 */
1011 	VM_OBJECT_LOCK(object);
1012 	p = TAILQ_LAST(&object->memq, pglist);
1013 	pages = p != NULL ? p->pindex + 1 : 0;
1014 	startpages = pages;
1015 	zkva = keg->uk_kva + pages * PAGE_SIZE;
1016 	for (; bytes > 0; bytes -= PAGE_SIZE) {
1017 		p = vm_page_alloc(object, pages,
1018 		    VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED);
1019 		if (p == NULL) {
1020 			if (pages != startpages)
1021 				pmap_qremove(retkva, pages - startpages);
1022 			while (pages != startpages) {
1023 				pages--;
1024 				p = TAILQ_LAST(&object->memq, pglist);
1025 				vm_page_lock(p);
1026 				vm_page_lock_queues();
1027 				vm_page_unwire(p, 0);
1028 				vm_page_free(p);
1029 				vm_page_unlock_queues();
1030 				vm_page_unlock(p);
1031 			}
1032 			retkva = 0;
1033 			goto done;
1034 		}
1035 		pmap_qenter(zkva, &p, 1);
1036 		if (retkva == 0)
1037 			retkva = zkva;
1038 		zkva += PAGE_SIZE;
1039 		pages += 1;
1040 	}
1041 done:
1042 	VM_OBJECT_UNLOCK(object);
1043 	*flags = UMA_SLAB_PRIV;
1044 
1045 	return ((void *)retkva);
1046 }
1047 
1048 /*
1049  * Frees a number of pages to the system
1050  *
1051  * Arguments:
1052  *	mem   A pointer to the memory to be freed
1053  *	size  The size of the memory being freed
1054  *	flags The original p->us_flags field
1055  *
1056  * Returns:
1057  *	Nothing
1058  */
1059 static void
1060 page_free(void *mem, int size, u_int8_t flags)
1061 {
1062 	vm_map_t map;
1063 
1064 	if (flags & UMA_SLAB_KMEM)
1065 		map = kmem_map;
1066 	else if (flags & UMA_SLAB_KERNEL)
1067 		map = kernel_map;
1068 	else
1069 		panic("UMA: page_free used with invalid flags %d", flags);
1070 
1071 	kmem_free(map, (vm_offset_t)mem, size);
1072 }
1073 
1074 /*
1075  * Zero fill initializer
1076  *
1077  * Arguments/Returns follow uma_init specifications
1078  */
1079 static int
1080 zero_init(void *mem, int size, int flags)
1081 {
1082 	bzero(mem, size);
1083 	return (0);
1084 }
1085 
1086 /*
1087  * Finish creating a small uma keg.  This calculates ipers, and the keg size.
1088  *
1089  * Arguments
1090  *	keg  The zone we should initialize
1091  *
1092  * Returns
1093  *	Nothing
1094  */
1095 static void
1096 keg_small_init(uma_keg_t keg)
1097 {
1098 	u_int rsize;
1099 	u_int memused;
1100 	u_int wastedspace;
1101 	u_int shsize;
1102 
1103 	KASSERT(keg != NULL, ("Keg is null in keg_small_init"));
1104 	rsize = keg->uk_size;
1105 
1106 	if (rsize < UMA_SMALLEST_UNIT)
1107 		rsize = UMA_SMALLEST_UNIT;
1108 	if (rsize & keg->uk_align)
1109 		rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1);
1110 
1111 	keg->uk_rsize = rsize;
1112 	keg->uk_ppera = 1;
1113 
1114 	if (keg->uk_flags & UMA_ZONE_REFCNT) {
1115 		rsize += UMA_FRITMREF_SZ;	/* linkage & refcnt */
1116 		shsize = sizeof(struct uma_slab_refcnt);
1117 	} else {
1118 		rsize += UMA_FRITM_SZ;	/* Account for linkage */
1119 		shsize = sizeof(struct uma_slab);
1120 	}
1121 
1122 	keg->uk_ipers = (UMA_SLAB_SIZE - shsize) / rsize;
1123 	KASSERT(keg->uk_ipers != 0, ("keg_small_init: ipers is 0"));
1124 	memused = keg->uk_ipers * rsize + shsize;
1125 	wastedspace = UMA_SLAB_SIZE - memused;
1126 
1127 	/*
1128 	 * We can't do OFFPAGE if we're internal or if we've been
1129 	 * asked to not go to the VM for buckets.  If we do this we
1130 	 * may end up going to the VM (kmem_map) for slabs which we
1131 	 * do not want to do if we're UMA_ZFLAG_CACHEONLY as a
1132 	 * result of UMA_ZONE_VM, which clearly forbids it.
1133 	 */
1134 	if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) ||
1135 	    (keg->uk_flags & UMA_ZFLAG_CACHEONLY))
1136 		return;
1137 
1138 	if ((wastedspace >= UMA_MAX_WASTE) &&
1139 	    (keg->uk_ipers < (UMA_SLAB_SIZE / keg->uk_rsize))) {
1140 		keg->uk_ipers = UMA_SLAB_SIZE / keg->uk_rsize;
1141 		KASSERT(keg->uk_ipers <= 255,
1142 		    ("keg_small_init: keg->uk_ipers too high!"));
1143 #ifdef UMA_DEBUG
1144 		printf("UMA decided we need offpage slab headers for "
1145 		    "keg: %s, calculated wastedspace = %d, "
1146 		    "maximum wasted space allowed = %d, "
1147 		    "calculated ipers = %d, "
1148 		    "new wasted space = %d\n", keg->uk_name, wastedspace,
1149 		    UMA_MAX_WASTE, keg->uk_ipers,
1150 		    UMA_SLAB_SIZE - keg->uk_ipers * keg->uk_rsize);
1151 #endif
1152 		keg->uk_flags |= UMA_ZONE_OFFPAGE;
1153 		if ((keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1154 			keg->uk_flags |= UMA_ZONE_HASH;
1155 	}
1156 }
1157 
1158 /*
1159  * Finish creating a large (> UMA_SLAB_SIZE) uma kegs.  Just give in and do
1160  * OFFPAGE for now.  When I can allow for more dynamic slab sizes this will be
1161  * more complicated.
1162  *
1163  * Arguments
1164  *	keg  The keg we should initialize
1165  *
1166  * Returns
1167  *	Nothing
1168  */
1169 static void
1170 keg_large_init(uma_keg_t keg)
1171 {
1172 	int pages;
1173 
1174 	KASSERT(keg != NULL, ("Keg is null in keg_large_init"));
1175 	KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0,
1176 	    ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg"));
1177 
1178 	pages = keg->uk_size / UMA_SLAB_SIZE;
1179 
1180 	/* Account for remainder */
1181 	if ((pages * UMA_SLAB_SIZE) < keg->uk_size)
1182 		pages++;
1183 
1184 	keg->uk_ppera = pages;
1185 	keg->uk_ipers = 1;
1186 
1187 	keg->uk_flags |= UMA_ZONE_OFFPAGE;
1188 	if ((keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1189 		keg->uk_flags |= UMA_ZONE_HASH;
1190 
1191 	keg->uk_rsize = keg->uk_size;
1192 }
1193 
1194 static void
1195 keg_cachespread_init(uma_keg_t keg)
1196 {
1197 	int alignsize;
1198 	int trailer;
1199 	int pages;
1200 	int rsize;
1201 
1202 	alignsize = keg->uk_align + 1;
1203 	rsize = keg->uk_size;
1204 	/*
1205 	 * We want one item to start on every align boundary in a page.  To
1206 	 * do this we will span pages.  We will also extend the item by the
1207 	 * size of align if it is an even multiple of align.  Otherwise, it
1208 	 * would fall on the same boundary every time.
1209 	 */
1210 	if (rsize & keg->uk_align)
1211 		rsize = (rsize & ~keg->uk_align) + alignsize;
1212 	if ((rsize & alignsize) == 0)
1213 		rsize += alignsize;
1214 	trailer = rsize - keg->uk_size;
1215 	pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE;
1216 	pages = MIN(pages, (128 * 1024) / PAGE_SIZE);
1217 	keg->uk_rsize = rsize;
1218 	keg->uk_ppera = pages;
1219 	keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize;
1220 	keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB;
1221 	KASSERT(keg->uk_ipers <= uma_max_ipers,
1222 	    ("keg_small_init: keg->uk_ipers too high(%d) increase max_ipers",
1223 	    keg->uk_ipers));
1224 }
1225 
1226 /*
1227  * Keg header ctor.  This initializes all fields, locks, etc.  And inserts
1228  * the keg onto the global keg list.
1229  *
1230  * Arguments/Returns follow uma_ctor specifications
1231  *	udata  Actually uma_kctor_args
1232  */
1233 static int
1234 keg_ctor(void *mem, int size, void *udata, int flags)
1235 {
1236 	struct uma_kctor_args *arg = udata;
1237 	uma_keg_t keg = mem;
1238 	uma_zone_t zone;
1239 
1240 	bzero(keg, size);
1241 	keg->uk_size = arg->size;
1242 	keg->uk_init = arg->uminit;
1243 	keg->uk_fini = arg->fini;
1244 	keg->uk_align = arg->align;
1245 	keg->uk_free = 0;
1246 	keg->uk_pages = 0;
1247 	keg->uk_flags = arg->flags;
1248 	keg->uk_allocf = page_alloc;
1249 	keg->uk_freef = page_free;
1250 	keg->uk_recurse = 0;
1251 	keg->uk_slabzone = NULL;
1252 
1253 	/*
1254 	 * The master zone is passed to us at keg-creation time.
1255 	 */
1256 	zone = arg->zone;
1257 	keg->uk_name = zone->uz_name;
1258 
1259 	if (arg->flags & UMA_ZONE_VM)
1260 		keg->uk_flags |= UMA_ZFLAG_CACHEONLY;
1261 
1262 	if (arg->flags & UMA_ZONE_ZINIT)
1263 		keg->uk_init = zero_init;
1264 
1265 	if (arg->flags & UMA_ZONE_REFCNT || arg->flags & UMA_ZONE_MALLOC)
1266 		keg->uk_flags |= UMA_ZONE_VTOSLAB;
1267 
1268 	/*
1269 	 * The +UMA_FRITM_SZ added to uk_size is to account for the
1270 	 * linkage that is added to the size in keg_small_init().  If
1271 	 * we don't account for this here then we may end up in
1272 	 * keg_small_init() with a calculated 'ipers' of 0.
1273 	 */
1274 	if (keg->uk_flags & UMA_ZONE_REFCNT) {
1275 		if (keg->uk_flags & UMA_ZONE_CACHESPREAD)
1276 			keg_cachespread_init(keg);
1277 		else if ((keg->uk_size+UMA_FRITMREF_SZ) >
1278 		    (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt)))
1279 			keg_large_init(keg);
1280 		else
1281 			keg_small_init(keg);
1282 	} else {
1283 		if (keg->uk_flags & UMA_ZONE_CACHESPREAD)
1284 			keg_cachespread_init(keg);
1285 		else if ((keg->uk_size+UMA_FRITM_SZ) >
1286 		    (UMA_SLAB_SIZE - sizeof(struct uma_slab)))
1287 			keg_large_init(keg);
1288 		else
1289 			keg_small_init(keg);
1290 	}
1291 
1292 	if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
1293 		if (keg->uk_flags & UMA_ZONE_REFCNT)
1294 			keg->uk_slabzone = slabrefzone;
1295 		else
1296 			keg->uk_slabzone = slabzone;
1297 	}
1298 
1299 	/*
1300 	 * If we haven't booted yet we need allocations to go through the
1301 	 * startup cache until the vm is ready.
1302 	 */
1303 	if (keg->uk_ppera == 1) {
1304 #ifdef UMA_MD_SMALL_ALLOC
1305 		keg->uk_allocf = uma_small_alloc;
1306 		keg->uk_freef = uma_small_free;
1307 #endif
1308 		if (booted == 0)
1309 			keg->uk_allocf = startup_alloc;
1310 	}
1311 
1312 	/*
1313 	 * Initialize keg's lock (shared among zones).
1314 	 */
1315 	if (arg->flags & UMA_ZONE_MTXCLASS)
1316 		KEG_LOCK_INIT(keg, 1);
1317 	else
1318 		KEG_LOCK_INIT(keg, 0);
1319 
1320 	/*
1321 	 * If we're putting the slab header in the actual page we need to
1322 	 * figure out where in each page it goes.  This calculates a right
1323 	 * justified offset into the memory on an ALIGN_PTR boundary.
1324 	 */
1325 	if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) {
1326 		u_int totsize;
1327 
1328 		/* Size of the slab struct and free list */
1329 		if (keg->uk_flags & UMA_ZONE_REFCNT)
1330 			totsize = sizeof(struct uma_slab_refcnt) +
1331 			    keg->uk_ipers * UMA_FRITMREF_SZ;
1332 		else
1333 			totsize = sizeof(struct uma_slab) +
1334 			    keg->uk_ipers * UMA_FRITM_SZ;
1335 
1336 		if (totsize & UMA_ALIGN_PTR)
1337 			totsize = (totsize & ~UMA_ALIGN_PTR) +
1338 			    (UMA_ALIGN_PTR + 1);
1339 		keg->uk_pgoff = UMA_SLAB_SIZE - totsize;
1340 
1341 		if (keg->uk_flags & UMA_ZONE_REFCNT)
1342 			totsize = keg->uk_pgoff + sizeof(struct uma_slab_refcnt)
1343 			    + keg->uk_ipers * UMA_FRITMREF_SZ;
1344 		else
1345 			totsize = keg->uk_pgoff + sizeof(struct uma_slab)
1346 			    + keg->uk_ipers * UMA_FRITM_SZ;
1347 
1348 		/*
1349 		 * The only way the following is possible is if with our
1350 		 * UMA_ALIGN_PTR adjustments we are now bigger than
1351 		 * UMA_SLAB_SIZE.  I haven't checked whether this is
1352 		 * mathematically possible for all cases, so we make
1353 		 * sure here anyway.
1354 		 */
1355 		if (totsize > UMA_SLAB_SIZE) {
1356 			printf("zone %s ipers %d rsize %d size %d\n",
1357 			    zone->uz_name, keg->uk_ipers, keg->uk_rsize,
1358 			    keg->uk_size);
1359 			panic("UMA slab won't fit.");
1360 		}
1361 	}
1362 
1363 	if (keg->uk_flags & UMA_ZONE_HASH)
1364 		hash_alloc(&keg->uk_hash);
1365 
1366 #ifdef UMA_DEBUG
1367 	printf("UMA: %s(%p) size %d(%d) flags %d ipers %d ppera %d out %d free %d\n",
1368 	    zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags,
1369 	    keg->uk_ipers, keg->uk_ppera,
1370 	    (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free);
1371 #endif
1372 
1373 	LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
1374 
1375 	mtx_lock(&uma_mtx);
1376 	LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
1377 	mtx_unlock(&uma_mtx);
1378 	return (0);
1379 }
1380 
1381 /*
1382  * Zone header ctor.  This initializes all fields, locks, etc.
1383  *
1384  * Arguments/Returns follow uma_ctor specifications
1385  *	udata  Actually uma_zctor_args
1386  */
1387 static int
1388 zone_ctor(void *mem, int size, void *udata, int flags)
1389 {
1390 	struct uma_zctor_args *arg = udata;
1391 	uma_zone_t zone = mem;
1392 	uma_zone_t z;
1393 	uma_keg_t keg;
1394 
1395 	bzero(zone, size);
1396 	zone->uz_name = arg->name;
1397 	zone->uz_ctor = arg->ctor;
1398 	zone->uz_dtor = arg->dtor;
1399 	zone->uz_slab = zone_fetch_slab;
1400 	zone->uz_init = NULL;
1401 	zone->uz_fini = NULL;
1402 	zone->uz_allocs = 0;
1403 	zone->uz_frees = 0;
1404 	zone->uz_fails = 0;
1405 	zone->uz_fills = zone->uz_count = 0;
1406 	zone->uz_flags = 0;
1407 	keg = arg->keg;
1408 
1409 	if (arg->flags & UMA_ZONE_SECONDARY) {
1410 		KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
1411 		zone->uz_init = arg->uminit;
1412 		zone->uz_fini = arg->fini;
1413 		zone->uz_lock = &keg->uk_lock;
1414 		zone->uz_flags |= UMA_ZONE_SECONDARY;
1415 		mtx_lock(&uma_mtx);
1416 		ZONE_LOCK(zone);
1417 		LIST_FOREACH(z, &keg->uk_zones, uz_link) {
1418 			if (LIST_NEXT(z, uz_link) == NULL) {
1419 				LIST_INSERT_AFTER(z, zone, uz_link);
1420 				break;
1421 			}
1422 		}
1423 		ZONE_UNLOCK(zone);
1424 		mtx_unlock(&uma_mtx);
1425 	} else if (keg == NULL) {
1426 		if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
1427 		    arg->align, arg->flags)) == NULL)
1428 			return (ENOMEM);
1429 	} else {
1430 		struct uma_kctor_args karg;
1431 		int error;
1432 
1433 		/* We should only be here from uma_startup() */
1434 		karg.size = arg->size;
1435 		karg.uminit = arg->uminit;
1436 		karg.fini = arg->fini;
1437 		karg.align = arg->align;
1438 		karg.flags = arg->flags;
1439 		karg.zone = zone;
1440 		error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
1441 		    flags);
1442 		if (error)
1443 			return (error);
1444 	}
1445 	/*
1446 	 * Link in the first keg.
1447 	 */
1448 	zone->uz_klink.kl_keg = keg;
1449 	LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link);
1450 	zone->uz_lock = &keg->uk_lock;
1451 	zone->uz_size = keg->uk_size;
1452 	zone->uz_flags |= (keg->uk_flags &
1453 	    (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT));
1454 
1455 	/*
1456 	 * Some internal zones don't have room allocated for the per cpu
1457 	 * caches.  If we're internal, bail out here.
1458 	 */
1459 	if (keg->uk_flags & UMA_ZFLAG_INTERNAL) {
1460 		KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0,
1461 		    ("Secondary zone requested UMA_ZFLAG_INTERNAL"));
1462 		return (0);
1463 	}
1464 
1465 	if (keg->uk_flags & UMA_ZONE_MAXBUCKET)
1466 		zone->uz_count = BUCKET_MAX;
1467 	else if (keg->uk_ipers <= BUCKET_MAX)
1468 		zone->uz_count = keg->uk_ipers;
1469 	else
1470 		zone->uz_count = BUCKET_MAX;
1471 	return (0);
1472 }
1473 
1474 /*
1475  * Keg header dtor.  This frees all data, destroys locks, frees the hash
1476  * table and removes the keg from the global list.
1477  *
1478  * Arguments/Returns follow uma_dtor specifications
1479  *	udata  unused
1480  */
1481 static void
1482 keg_dtor(void *arg, int size, void *udata)
1483 {
1484 	uma_keg_t keg;
1485 
1486 	keg = (uma_keg_t)arg;
1487 	KEG_LOCK(keg);
1488 	if (keg->uk_free != 0) {
1489 		printf("Freed UMA keg was not empty (%d items). "
1490 		    " Lost %d pages of memory.\n",
1491 		    keg->uk_free, keg->uk_pages);
1492 	}
1493 	KEG_UNLOCK(keg);
1494 
1495 	hash_free(&keg->uk_hash);
1496 
1497 	KEG_LOCK_FINI(keg);
1498 }
1499 
1500 /*
1501  * Zone header dtor.
1502  *
1503  * Arguments/Returns follow uma_dtor specifications
1504  *	udata  unused
1505  */
1506 static void
1507 zone_dtor(void *arg, int size, void *udata)
1508 {
1509 	uma_klink_t klink;
1510 	uma_zone_t zone;
1511 	uma_keg_t keg;
1512 
1513 	zone = (uma_zone_t)arg;
1514 	keg = zone_first_keg(zone);
1515 
1516 	if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
1517 		cache_drain(zone);
1518 
1519 	mtx_lock(&uma_mtx);
1520 	LIST_REMOVE(zone, uz_link);
1521 	mtx_unlock(&uma_mtx);
1522 	/*
1523 	 * XXX there are some races here where
1524 	 * the zone can be drained but zone lock
1525 	 * released and then refilled before we
1526 	 * remove it... we dont care for now
1527 	 */
1528 	zone_drain_wait(zone, M_WAITOK);
1529 	/*
1530 	 * Unlink all of our kegs.
1531 	 */
1532 	while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) {
1533 		klink->kl_keg = NULL;
1534 		LIST_REMOVE(klink, kl_link);
1535 		if (klink == &zone->uz_klink)
1536 			continue;
1537 		free(klink, M_TEMP);
1538 	}
1539 	/*
1540 	 * We only destroy kegs from non secondary zones.
1541 	 */
1542 	if ((zone->uz_flags & UMA_ZONE_SECONDARY) == 0)  {
1543 		mtx_lock(&uma_mtx);
1544 		LIST_REMOVE(keg, uk_link);
1545 		mtx_unlock(&uma_mtx);
1546 		zone_free_item(kegs, keg, NULL, SKIP_NONE,
1547 		    ZFREE_STATFREE);
1548 	}
1549 }
1550 
1551 /*
1552  * Traverses every zone in the system and calls a callback
1553  *
1554  * Arguments:
1555  *	zfunc  A pointer to a function which accepts a zone
1556  *		as an argument.
1557  *
1558  * Returns:
1559  *	Nothing
1560  */
1561 static void
1562 zone_foreach(void (*zfunc)(uma_zone_t))
1563 {
1564 	uma_keg_t keg;
1565 	uma_zone_t zone;
1566 
1567 	mtx_lock(&uma_mtx);
1568 	LIST_FOREACH(keg, &uma_kegs, uk_link) {
1569 		LIST_FOREACH(zone, &keg->uk_zones, uz_link)
1570 			zfunc(zone);
1571 	}
1572 	mtx_unlock(&uma_mtx);
1573 }
1574 
1575 /* Public functions */
1576 /* See uma.h */
1577 void
1578 uma_startup(void *bootmem, int boot_pages)
1579 {
1580 	struct uma_zctor_args args;
1581 	uma_slab_t slab;
1582 	u_int slabsize;
1583 	u_int objsize, totsize, wsize;
1584 	int i;
1585 
1586 #ifdef UMA_DEBUG
1587 	printf("Creating uma keg headers zone and keg.\n");
1588 #endif
1589 	mtx_init(&uma_mtx, "UMA lock", NULL, MTX_DEF);
1590 
1591 	/*
1592 	 * Figure out the maximum number of items-per-slab we'll have if
1593 	 * we're using the OFFPAGE slab header to track free items, given
1594 	 * all possible object sizes and the maximum desired wastage
1595 	 * (UMA_MAX_WASTE).
1596 	 *
1597 	 * We iterate until we find an object size for
1598 	 * which the calculated wastage in keg_small_init() will be
1599 	 * enough to warrant OFFPAGE.  Since wastedspace versus objsize
1600 	 * is an overall increasing see-saw function, we find the smallest
1601 	 * objsize such that the wastage is always acceptable for objects
1602 	 * with that objsize or smaller.  Since a smaller objsize always
1603 	 * generates a larger possible uma_max_ipers, we use this computed
1604 	 * objsize to calculate the largest ipers possible.  Since the
1605 	 * ipers calculated for OFFPAGE slab headers is always larger than
1606 	 * the ipers initially calculated in keg_small_init(), we use
1607 	 * the former's equation (UMA_SLAB_SIZE / keg->uk_rsize) to
1608 	 * obtain the maximum ipers possible for offpage slab headers.
1609 	 *
1610 	 * It should be noted that ipers versus objsize is an inversly
1611 	 * proportional function which drops off rather quickly so as
1612 	 * long as our UMA_MAX_WASTE is such that the objsize we calculate
1613 	 * falls into the portion of the inverse relation AFTER the steep
1614 	 * falloff, then uma_max_ipers shouldn't be too high (~10 on i386).
1615 	 *
1616 	 * Note that we have 8-bits (1 byte) to use as a freelist index
1617 	 * inside the actual slab header itself and this is enough to
1618 	 * accomodate us.  In the worst case, a UMA_SMALLEST_UNIT sized
1619 	 * object with offpage slab header would have ipers =
1620 	 * UMA_SLAB_SIZE / UMA_SMALLEST_UNIT (currently = 256), which is
1621 	 * 1 greater than what our byte-integer freelist index can
1622 	 * accomodate, but we know that this situation never occurs as
1623 	 * for UMA_SMALLEST_UNIT-sized objects, we will never calculate
1624 	 * that we need to go to offpage slab headers.  Or, if we do,
1625 	 * then we trap that condition below and panic in the INVARIANTS case.
1626 	 */
1627 	wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab) - UMA_MAX_WASTE;
1628 	totsize = wsize;
1629 	objsize = UMA_SMALLEST_UNIT;
1630 	while (totsize >= wsize) {
1631 		totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab)) /
1632 		    (objsize + UMA_FRITM_SZ);
1633 		totsize *= (UMA_FRITM_SZ + objsize);
1634 		objsize++;
1635 	}
1636 	if (objsize > UMA_SMALLEST_UNIT)
1637 		objsize--;
1638 	uma_max_ipers = MAX(UMA_SLAB_SIZE / objsize, 64);
1639 
1640 	wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt) - UMA_MAX_WASTE;
1641 	totsize = wsize;
1642 	objsize = UMA_SMALLEST_UNIT;
1643 	while (totsize >= wsize) {
1644 		totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt)) /
1645 		    (objsize + UMA_FRITMREF_SZ);
1646 		totsize *= (UMA_FRITMREF_SZ + objsize);
1647 		objsize++;
1648 	}
1649 	if (objsize > UMA_SMALLEST_UNIT)
1650 		objsize--;
1651 	uma_max_ipers_ref = MAX(UMA_SLAB_SIZE / objsize, 64);
1652 
1653 	KASSERT((uma_max_ipers_ref <= 255) && (uma_max_ipers <= 255),
1654 	    ("uma_startup: calculated uma_max_ipers values too large!"));
1655 
1656 #ifdef UMA_DEBUG
1657 	printf("Calculated uma_max_ipers (for OFFPAGE) is %d\n", uma_max_ipers);
1658 	printf("Calculated uma_max_ipers_slab (for OFFPAGE) is %d\n",
1659 	    uma_max_ipers_ref);
1660 #endif
1661 
1662 	/* "manually" create the initial zone */
1663 	args.name = "UMA Kegs";
1664 	args.size = sizeof(struct uma_keg);
1665 	args.ctor = keg_ctor;
1666 	args.dtor = keg_dtor;
1667 	args.uminit = zero_init;
1668 	args.fini = NULL;
1669 	args.keg = &masterkeg;
1670 	args.align = 32 - 1;
1671 	args.flags = UMA_ZFLAG_INTERNAL;
1672 	/* The initial zone has no Per cpu queues so it's smaller */
1673 	zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK);
1674 
1675 #ifdef UMA_DEBUG
1676 	printf("Filling boot free list.\n");
1677 #endif
1678 	for (i = 0; i < boot_pages; i++) {
1679 		slab = (uma_slab_t)((u_int8_t *)bootmem + (i * UMA_SLAB_SIZE));
1680 		slab->us_data = (u_int8_t *)slab;
1681 		slab->us_flags = UMA_SLAB_BOOT;
1682 		LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link);
1683 	}
1684 	mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF);
1685 
1686 #ifdef UMA_DEBUG
1687 	printf("Creating uma zone headers zone and keg.\n");
1688 #endif
1689 	args.name = "UMA Zones";
1690 	args.size = sizeof(struct uma_zone) +
1691 	    (sizeof(struct uma_cache) * (mp_maxid + 1));
1692 	args.ctor = zone_ctor;
1693 	args.dtor = zone_dtor;
1694 	args.uminit = zero_init;
1695 	args.fini = NULL;
1696 	args.keg = NULL;
1697 	args.align = 32 - 1;
1698 	args.flags = UMA_ZFLAG_INTERNAL;
1699 	/* The initial zone has no Per cpu queues so it's smaller */
1700 	zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK);
1701 
1702 #ifdef UMA_DEBUG
1703 	printf("Initializing pcpu cache locks.\n");
1704 #endif
1705 #ifdef UMA_DEBUG
1706 	printf("Creating slab and hash zones.\n");
1707 #endif
1708 
1709 	/*
1710 	 * This is the max number of free list items we'll have with
1711 	 * offpage slabs.
1712 	 */
1713 	slabsize = uma_max_ipers * UMA_FRITM_SZ;
1714 	slabsize += sizeof(struct uma_slab);
1715 
1716 	/* Now make a zone for slab headers */
1717 	slabzone = uma_zcreate("UMA Slabs",
1718 				slabsize,
1719 				NULL, NULL, NULL, NULL,
1720 				UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1721 
1722 	/*
1723 	 * We also create a zone for the bigger slabs with reference
1724 	 * counts in them, to accomodate UMA_ZONE_REFCNT zones.
1725 	 */
1726 	slabsize = uma_max_ipers_ref * UMA_FRITMREF_SZ;
1727 	slabsize += sizeof(struct uma_slab_refcnt);
1728 	slabrefzone = uma_zcreate("UMA RCntSlabs",
1729 				  slabsize,
1730 				  NULL, NULL, NULL, NULL,
1731 				  UMA_ALIGN_PTR,
1732 				  UMA_ZFLAG_INTERNAL);
1733 
1734 	hashzone = uma_zcreate("UMA Hash",
1735 	    sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
1736 	    NULL, NULL, NULL, NULL,
1737 	    UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1738 
1739 	bucket_init();
1740 
1741 #if defined(UMA_MD_SMALL_ALLOC) && !defined(UMA_MD_SMALL_ALLOC_NEEDS_VM)
1742 	booted = 1;
1743 #endif
1744 
1745 #ifdef UMA_DEBUG
1746 	printf("UMA startup complete.\n");
1747 #endif
1748 }
1749 
1750 /* see uma.h */
1751 void
1752 uma_startup2(void)
1753 {
1754 	booted = 1;
1755 	bucket_enable();
1756 #ifdef UMA_DEBUG
1757 	printf("UMA startup2 complete.\n");
1758 #endif
1759 }
1760 
1761 /*
1762  * Initialize our callout handle
1763  *
1764  */
1765 
1766 static void
1767 uma_startup3(void)
1768 {
1769 #ifdef UMA_DEBUG
1770 	printf("Starting callout.\n");
1771 #endif
1772 	callout_init(&uma_callout, CALLOUT_MPSAFE);
1773 	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
1774 #ifdef UMA_DEBUG
1775 	printf("UMA startup3 complete.\n");
1776 #endif
1777 }
1778 
1779 static uma_keg_t
1780 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
1781 		int align, u_int32_t flags)
1782 {
1783 	struct uma_kctor_args args;
1784 
1785 	args.size = size;
1786 	args.uminit = uminit;
1787 	args.fini = fini;
1788 	args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align;
1789 	args.flags = flags;
1790 	args.zone = zone;
1791 	return (zone_alloc_item(kegs, &args, M_WAITOK));
1792 }
1793 
1794 /* See uma.h */
1795 void
1796 uma_set_align(int align)
1797 {
1798 
1799 	if (align != UMA_ALIGN_CACHE)
1800 		uma_align_cache = align;
1801 }
1802 
1803 /* See uma.h */
1804 uma_zone_t
1805 uma_zcreate(char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
1806 		uma_init uminit, uma_fini fini, int align, u_int32_t flags)
1807 
1808 {
1809 	struct uma_zctor_args args;
1810 
1811 	/* This stuff is essential for the zone ctor */
1812 	args.name = name;
1813 	args.size = size;
1814 	args.ctor = ctor;
1815 	args.dtor = dtor;
1816 	args.uminit = uminit;
1817 	args.fini = fini;
1818 	args.align = align;
1819 	args.flags = flags;
1820 	args.keg = NULL;
1821 
1822 	return (zone_alloc_item(zones, &args, M_WAITOK));
1823 }
1824 
1825 /* See uma.h */
1826 uma_zone_t
1827 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor,
1828 		    uma_init zinit, uma_fini zfini, uma_zone_t master)
1829 {
1830 	struct uma_zctor_args args;
1831 	uma_keg_t keg;
1832 
1833 	keg = zone_first_keg(master);
1834 	args.name = name;
1835 	args.size = keg->uk_size;
1836 	args.ctor = ctor;
1837 	args.dtor = dtor;
1838 	args.uminit = zinit;
1839 	args.fini = zfini;
1840 	args.align = keg->uk_align;
1841 	args.flags = keg->uk_flags | UMA_ZONE_SECONDARY;
1842 	args.keg = keg;
1843 
1844 	/* XXX Attaches only one keg of potentially many. */
1845 	return (zone_alloc_item(zones, &args, M_WAITOK));
1846 }
1847 
1848 static void
1849 zone_lock_pair(uma_zone_t a, uma_zone_t b)
1850 {
1851 	if (a < b) {
1852 		ZONE_LOCK(a);
1853 		mtx_lock_flags(b->uz_lock, MTX_DUPOK);
1854 	} else {
1855 		ZONE_LOCK(b);
1856 		mtx_lock_flags(a->uz_lock, MTX_DUPOK);
1857 	}
1858 }
1859 
1860 static void
1861 zone_unlock_pair(uma_zone_t a, uma_zone_t b)
1862 {
1863 
1864 	ZONE_UNLOCK(a);
1865 	ZONE_UNLOCK(b);
1866 }
1867 
1868 int
1869 uma_zsecond_add(uma_zone_t zone, uma_zone_t master)
1870 {
1871 	uma_klink_t klink;
1872 	uma_klink_t kl;
1873 	int error;
1874 
1875 	error = 0;
1876 	klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO);
1877 
1878 	zone_lock_pair(zone, master);
1879 	/*
1880 	 * zone must use vtoslab() to resolve objects and must already be
1881 	 * a secondary.
1882 	 */
1883 	if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY))
1884 	    != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) {
1885 		error = EINVAL;
1886 		goto out;
1887 	}
1888 	/*
1889 	 * The new master must also use vtoslab().
1890 	 */
1891 	if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) {
1892 		error = EINVAL;
1893 		goto out;
1894 	}
1895 	/*
1896 	 * Both must either be refcnt, or not be refcnt.
1897 	 */
1898 	if ((zone->uz_flags & UMA_ZONE_REFCNT) !=
1899 	    (master->uz_flags & UMA_ZONE_REFCNT)) {
1900 		error = EINVAL;
1901 		goto out;
1902 	}
1903 	/*
1904 	 * The underlying object must be the same size.  rsize
1905 	 * may be different.
1906 	 */
1907 	if (master->uz_size != zone->uz_size) {
1908 		error = E2BIG;
1909 		goto out;
1910 	}
1911 	/*
1912 	 * Put it at the end of the list.
1913 	 */
1914 	klink->kl_keg = zone_first_keg(master);
1915 	LIST_FOREACH(kl, &zone->uz_kegs, kl_link) {
1916 		if (LIST_NEXT(kl, kl_link) == NULL) {
1917 			LIST_INSERT_AFTER(kl, klink, kl_link);
1918 			break;
1919 		}
1920 	}
1921 	klink = NULL;
1922 	zone->uz_flags |= UMA_ZFLAG_MULTI;
1923 	zone->uz_slab = zone_fetch_slab_multi;
1924 
1925 out:
1926 	zone_unlock_pair(zone, master);
1927 	if (klink != NULL)
1928 		free(klink, M_TEMP);
1929 
1930 	return (error);
1931 }
1932 
1933 
1934 /* See uma.h */
1935 void
1936 uma_zdestroy(uma_zone_t zone)
1937 {
1938 
1939 	zone_free_item(zones, zone, NULL, SKIP_NONE, ZFREE_STATFREE);
1940 }
1941 
1942 /* See uma.h */
1943 void *
1944 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
1945 {
1946 	void *item;
1947 	uma_cache_t cache;
1948 	uma_bucket_t bucket;
1949 	int cpu;
1950 
1951 	/* This is the fast path allocation */
1952 #ifdef UMA_DEBUG_ALLOC_1
1953 	printf("Allocating one item from %s(%p)\n", zone->uz_name, zone);
1954 #endif
1955 	CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread,
1956 	    zone->uz_name, flags);
1957 
1958 	if (flags & M_WAITOK) {
1959 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
1960 		    "uma_zalloc_arg: zone \"%s\"", zone->uz_name);
1961 	}
1962 
1963 	/*
1964 	 * If possible, allocate from the per-CPU cache.  There are two
1965 	 * requirements for safe access to the per-CPU cache: (1) the thread
1966 	 * accessing the cache must not be preempted or yield during access,
1967 	 * and (2) the thread must not migrate CPUs without switching which
1968 	 * cache it accesses.  We rely on a critical section to prevent
1969 	 * preemption and migration.  We release the critical section in
1970 	 * order to acquire the zone mutex if we are unable to allocate from
1971 	 * the current cache; when we re-acquire the critical section, we
1972 	 * must detect and handle migration if it has occurred.
1973 	 */
1974 zalloc_restart:
1975 	critical_enter();
1976 	cpu = curcpu;
1977 	cache = &zone->uz_cpu[cpu];
1978 
1979 zalloc_start:
1980 	bucket = cache->uc_allocbucket;
1981 
1982 	if (bucket) {
1983 		if (bucket->ub_cnt > 0) {
1984 			bucket->ub_cnt--;
1985 			item = bucket->ub_bucket[bucket->ub_cnt];
1986 #ifdef INVARIANTS
1987 			bucket->ub_bucket[bucket->ub_cnt] = NULL;
1988 #endif
1989 			KASSERT(item != NULL,
1990 			    ("uma_zalloc: Bucket pointer mangled."));
1991 			cache->uc_allocs++;
1992 			critical_exit();
1993 #ifdef INVARIANTS
1994 			ZONE_LOCK(zone);
1995 			uma_dbg_alloc(zone, NULL, item);
1996 			ZONE_UNLOCK(zone);
1997 #endif
1998 			if (zone->uz_ctor != NULL) {
1999 				if (zone->uz_ctor(item, zone->uz_size,
2000 				    udata, flags) != 0) {
2001 					zone_free_item(zone, item, udata,
2002 					    SKIP_DTOR, ZFREE_STATFAIL |
2003 					    ZFREE_STATFREE);
2004 					return (NULL);
2005 				}
2006 			}
2007 			if (flags & M_ZERO)
2008 				bzero(item, zone->uz_size);
2009 			return (item);
2010 		} else if (cache->uc_freebucket) {
2011 			/*
2012 			 * We have run out of items in our allocbucket.
2013 			 * See if we can switch with our free bucket.
2014 			 */
2015 			if (cache->uc_freebucket->ub_cnt > 0) {
2016 #ifdef UMA_DEBUG_ALLOC
2017 				printf("uma_zalloc: Swapping empty with"
2018 				    " alloc.\n");
2019 #endif
2020 				bucket = cache->uc_freebucket;
2021 				cache->uc_freebucket = cache->uc_allocbucket;
2022 				cache->uc_allocbucket = bucket;
2023 
2024 				goto zalloc_start;
2025 			}
2026 		}
2027 	}
2028 	/*
2029 	 * Attempt to retrieve the item from the per-CPU cache has failed, so
2030 	 * we must go back to the zone.  This requires the zone lock, so we
2031 	 * must drop the critical section, then re-acquire it when we go back
2032 	 * to the cache.  Since the critical section is released, we may be
2033 	 * preempted or migrate.  As such, make sure not to maintain any
2034 	 * thread-local state specific to the cache from prior to releasing
2035 	 * the critical section.
2036 	 */
2037 	critical_exit();
2038 	ZONE_LOCK(zone);
2039 	critical_enter();
2040 	cpu = curcpu;
2041 	cache = &zone->uz_cpu[cpu];
2042 	bucket = cache->uc_allocbucket;
2043 	if (bucket != NULL) {
2044 		if (bucket->ub_cnt > 0) {
2045 			ZONE_UNLOCK(zone);
2046 			goto zalloc_start;
2047 		}
2048 		bucket = cache->uc_freebucket;
2049 		if (bucket != NULL && bucket->ub_cnt > 0) {
2050 			ZONE_UNLOCK(zone);
2051 			goto zalloc_start;
2052 		}
2053 	}
2054 
2055 	/* Since we have locked the zone we may as well send back our stats */
2056 	zone->uz_allocs += cache->uc_allocs;
2057 	cache->uc_allocs = 0;
2058 	zone->uz_frees += cache->uc_frees;
2059 	cache->uc_frees = 0;
2060 
2061 	/* Our old one is now a free bucket */
2062 	if (cache->uc_allocbucket) {
2063 		KASSERT(cache->uc_allocbucket->ub_cnt == 0,
2064 		    ("uma_zalloc_arg: Freeing a non free bucket."));
2065 		LIST_INSERT_HEAD(&zone->uz_free_bucket,
2066 		    cache->uc_allocbucket, ub_link);
2067 		cache->uc_allocbucket = NULL;
2068 	}
2069 
2070 	/* Check the free list for a new alloc bucket */
2071 	if ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) {
2072 		KASSERT(bucket->ub_cnt != 0,
2073 		    ("uma_zalloc_arg: Returning an empty bucket."));
2074 
2075 		LIST_REMOVE(bucket, ub_link);
2076 		cache->uc_allocbucket = bucket;
2077 		ZONE_UNLOCK(zone);
2078 		goto zalloc_start;
2079 	}
2080 	/* We are no longer associated with this CPU. */
2081 	critical_exit();
2082 
2083 	/* Bump up our uz_count so we get here less */
2084 	if (zone->uz_count < BUCKET_MAX)
2085 		zone->uz_count++;
2086 
2087 	/*
2088 	 * Now lets just fill a bucket and put it on the free list.  If that
2089 	 * works we'll restart the allocation from the begining.
2090 	 */
2091 	if (zone_alloc_bucket(zone, flags)) {
2092 		ZONE_UNLOCK(zone);
2093 		goto zalloc_restart;
2094 	}
2095 	ZONE_UNLOCK(zone);
2096 	/*
2097 	 * We may not be able to get a bucket so return an actual item.
2098 	 */
2099 #ifdef UMA_DEBUG
2100 	printf("uma_zalloc_arg: Bucketzone returned NULL\n");
2101 #endif
2102 
2103 	item = zone_alloc_item(zone, udata, flags);
2104 	return (item);
2105 }
2106 
2107 static uma_slab_t
2108 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags)
2109 {
2110 	uma_slab_t slab;
2111 
2112 	mtx_assert(&keg->uk_lock, MA_OWNED);
2113 	slab = NULL;
2114 
2115 	for (;;) {
2116 		/*
2117 		 * Find a slab with some space.  Prefer slabs that are partially
2118 		 * used over those that are totally full.  This helps to reduce
2119 		 * fragmentation.
2120 		 */
2121 		if (keg->uk_free != 0) {
2122 			if (!LIST_EMPTY(&keg->uk_part_slab)) {
2123 				slab = LIST_FIRST(&keg->uk_part_slab);
2124 			} else {
2125 				slab = LIST_FIRST(&keg->uk_free_slab);
2126 				LIST_REMOVE(slab, us_link);
2127 				LIST_INSERT_HEAD(&keg->uk_part_slab, slab,
2128 				    us_link);
2129 			}
2130 			MPASS(slab->us_keg == keg);
2131 			return (slab);
2132 		}
2133 
2134 		/*
2135 		 * M_NOVM means don't ask at all!
2136 		 */
2137 		if (flags & M_NOVM)
2138 			break;
2139 
2140 		if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) {
2141 			keg->uk_flags |= UMA_ZFLAG_FULL;
2142 			/*
2143 			 * If this is not a multi-zone, set the FULL bit.
2144 			 * Otherwise slab_multi() takes care of it.
2145 			 */
2146 			if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0)
2147 				zone->uz_flags |= UMA_ZFLAG_FULL;
2148 			if (flags & M_NOWAIT)
2149 				break;
2150 			msleep(keg, &keg->uk_lock, PVM, "keglimit", 0);
2151 			continue;
2152 		}
2153 		keg->uk_recurse++;
2154 		slab = keg_alloc_slab(keg, zone, flags);
2155 		keg->uk_recurse--;
2156 		/*
2157 		 * If we got a slab here it's safe to mark it partially used
2158 		 * and return.  We assume that the caller is going to remove
2159 		 * at least one item.
2160 		 */
2161 		if (slab) {
2162 			MPASS(slab->us_keg == keg);
2163 			LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2164 			return (slab);
2165 		}
2166 		/*
2167 		 * We might not have been able to get a slab but another cpu
2168 		 * could have while we were unlocked.  Check again before we
2169 		 * fail.
2170 		 */
2171 		flags |= M_NOVM;
2172 	}
2173 	return (slab);
2174 }
2175 
2176 static inline void
2177 zone_relock(uma_zone_t zone, uma_keg_t keg)
2178 {
2179 	if (zone->uz_lock != &keg->uk_lock) {
2180 		KEG_UNLOCK(keg);
2181 		ZONE_LOCK(zone);
2182 	}
2183 }
2184 
2185 static inline void
2186 keg_relock(uma_keg_t keg, uma_zone_t zone)
2187 {
2188 	if (zone->uz_lock != &keg->uk_lock) {
2189 		ZONE_UNLOCK(zone);
2190 		KEG_LOCK(keg);
2191 	}
2192 }
2193 
2194 static uma_slab_t
2195 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags)
2196 {
2197 	uma_slab_t slab;
2198 
2199 	if (keg == NULL)
2200 		keg = zone_first_keg(zone);
2201 	/*
2202 	 * This is to prevent us from recursively trying to allocate
2203 	 * buckets.  The problem is that if an allocation forces us to
2204 	 * grab a new bucket we will call page_alloc, which will go off
2205 	 * and cause the vm to allocate vm_map_entries.  If we need new
2206 	 * buckets there too we will recurse in kmem_alloc and bad
2207 	 * things happen.  So instead we return a NULL bucket, and make
2208 	 * the code that allocates buckets smart enough to deal with it
2209 	 */
2210 	if (keg->uk_flags & UMA_ZFLAG_BUCKET && keg->uk_recurse != 0)
2211 		return (NULL);
2212 
2213 	for (;;) {
2214 		slab = keg_fetch_slab(keg, zone, flags);
2215 		if (slab)
2216 			return (slab);
2217 		if (flags & (M_NOWAIT | M_NOVM))
2218 			break;
2219 	}
2220 	return (NULL);
2221 }
2222 
2223 /*
2224  * uma_zone_fetch_slab_multi:  Fetches a slab from one available keg.  Returns
2225  * with the keg locked.  Caller must call zone_relock() afterwards if the
2226  * zone lock is required.  On NULL the zone lock is held.
2227  *
2228  * The last pointer is used to seed the search.  It is not required.
2229  */
2230 static uma_slab_t
2231 zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags)
2232 {
2233 	uma_klink_t klink;
2234 	uma_slab_t slab;
2235 	uma_keg_t keg;
2236 	int flags;
2237 	int empty;
2238 	int full;
2239 
2240 	/*
2241 	 * Don't wait on the first pass.  This will skip limit tests
2242 	 * as well.  We don't want to block if we can find a provider
2243 	 * without blocking.
2244 	 */
2245 	flags = (rflags & ~M_WAITOK) | M_NOWAIT;
2246 	/*
2247 	 * Use the last slab allocated as a hint for where to start
2248 	 * the search.
2249 	 */
2250 	if (last) {
2251 		slab = keg_fetch_slab(last, zone, flags);
2252 		if (slab)
2253 			return (slab);
2254 		zone_relock(zone, last);
2255 		last = NULL;
2256 	}
2257 	/*
2258 	 * Loop until we have a slab incase of transient failures
2259 	 * while M_WAITOK is specified.  I'm not sure this is 100%
2260 	 * required but we've done it for so long now.
2261 	 */
2262 	for (;;) {
2263 		empty = 0;
2264 		full = 0;
2265 		/*
2266 		 * Search the available kegs for slabs.  Be careful to hold the
2267 		 * correct lock while calling into the keg layer.
2268 		 */
2269 		LIST_FOREACH(klink, &zone->uz_kegs, kl_link) {
2270 			keg = klink->kl_keg;
2271 			keg_relock(keg, zone);
2272 			if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) {
2273 				slab = keg_fetch_slab(keg, zone, flags);
2274 				if (slab)
2275 					return (slab);
2276 			}
2277 			if (keg->uk_flags & UMA_ZFLAG_FULL)
2278 				full++;
2279 			else
2280 				empty++;
2281 			zone_relock(zone, keg);
2282 		}
2283 		if (rflags & (M_NOWAIT | M_NOVM))
2284 			break;
2285 		flags = rflags;
2286 		/*
2287 		 * All kegs are full.  XXX We can't atomically check all kegs
2288 		 * and sleep so just sleep for a short period and retry.
2289 		 */
2290 		if (full && !empty) {
2291 			zone->uz_flags |= UMA_ZFLAG_FULL;
2292 			msleep(zone, zone->uz_lock, PVM, "zonelimit", hz/100);
2293 			zone->uz_flags &= ~UMA_ZFLAG_FULL;
2294 			continue;
2295 		}
2296 	}
2297 	return (NULL);
2298 }
2299 
2300 static void *
2301 slab_alloc_item(uma_zone_t zone, uma_slab_t slab)
2302 {
2303 	uma_keg_t keg;
2304 	uma_slabrefcnt_t slabref;
2305 	void *item;
2306 	u_int8_t freei;
2307 
2308 	keg = slab->us_keg;
2309 	mtx_assert(&keg->uk_lock, MA_OWNED);
2310 
2311 	freei = slab->us_firstfree;
2312 	if (keg->uk_flags & UMA_ZONE_REFCNT) {
2313 		slabref = (uma_slabrefcnt_t)slab;
2314 		slab->us_firstfree = slabref->us_freelist[freei].us_item;
2315 	} else {
2316 		slab->us_firstfree = slab->us_freelist[freei].us_item;
2317 	}
2318 	item = slab->us_data + (keg->uk_rsize * freei);
2319 
2320 	slab->us_freecount--;
2321 	keg->uk_free--;
2322 #ifdef INVARIANTS
2323 	uma_dbg_alloc(zone, slab, item);
2324 #endif
2325 	/* Move this slab to the full list */
2326 	if (slab->us_freecount == 0) {
2327 		LIST_REMOVE(slab, us_link);
2328 		LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link);
2329 	}
2330 
2331 	return (item);
2332 }
2333 
2334 static int
2335 zone_alloc_bucket(uma_zone_t zone, int flags)
2336 {
2337 	uma_bucket_t bucket;
2338 	uma_slab_t slab;
2339 	uma_keg_t keg;
2340 	int16_t saved;
2341 	int max, origflags = flags;
2342 
2343 	/*
2344 	 * Try this zone's free list first so we don't allocate extra buckets.
2345 	 */
2346 	if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) {
2347 		KASSERT(bucket->ub_cnt == 0,
2348 		    ("zone_alloc_bucket: Bucket on free list is not empty."));
2349 		LIST_REMOVE(bucket, ub_link);
2350 	} else {
2351 		int bflags;
2352 
2353 		bflags = (flags & ~M_ZERO);
2354 		if (zone->uz_flags & UMA_ZFLAG_CACHEONLY)
2355 			bflags |= M_NOVM;
2356 
2357 		ZONE_UNLOCK(zone);
2358 		bucket = bucket_alloc(zone->uz_count, bflags);
2359 		ZONE_LOCK(zone);
2360 	}
2361 
2362 	if (bucket == NULL) {
2363 		return (0);
2364 	}
2365 
2366 #ifdef SMP
2367 	/*
2368 	 * This code is here to limit the number of simultaneous bucket fills
2369 	 * for any given zone to the number of per cpu caches in this zone. This
2370 	 * is done so that we don't allocate more memory than we really need.
2371 	 */
2372 	if (zone->uz_fills >= mp_ncpus)
2373 		goto done;
2374 
2375 #endif
2376 	zone->uz_fills++;
2377 
2378 	max = MIN(bucket->ub_entries, zone->uz_count);
2379 	/* Try to keep the buckets totally full */
2380 	saved = bucket->ub_cnt;
2381 	slab = NULL;
2382 	keg = NULL;
2383 	while (bucket->ub_cnt < max &&
2384 	    (slab = zone->uz_slab(zone, keg, flags)) != NULL) {
2385 		keg = slab->us_keg;
2386 		while (slab->us_freecount && bucket->ub_cnt < max) {
2387 			bucket->ub_bucket[bucket->ub_cnt++] =
2388 			    slab_alloc_item(zone, slab);
2389 		}
2390 
2391 		/* Don't block on the next fill */
2392 		flags |= M_NOWAIT;
2393 	}
2394 	if (slab)
2395 		zone_relock(zone, keg);
2396 
2397 	/*
2398 	 * We unlock here because we need to call the zone's init.
2399 	 * It should be safe to unlock because the slab dealt with
2400 	 * above is already on the appropriate list within the keg
2401 	 * and the bucket we filled is not yet on any list, so we
2402 	 * own it.
2403 	 */
2404 	if (zone->uz_init != NULL) {
2405 		int i;
2406 
2407 		ZONE_UNLOCK(zone);
2408 		for (i = saved; i < bucket->ub_cnt; i++)
2409 			if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size,
2410 			    origflags) != 0)
2411 				break;
2412 		/*
2413 		 * If we couldn't initialize the whole bucket, put the
2414 		 * rest back onto the freelist.
2415 		 */
2416 		if (i != bucket->ub_cnt) {
2417 			int j;
2418 
2419 			for (j = i; j < bucket->ub_cnt; j++) {
2420 				zone_free_item(zone, bucket->ub_bucket[j],
2421 				    NULL, SKIP_FINI, 0);
2422 #ifdef INVARIANTS
2423 				bucket->ub_bucket[j] = NULL;
2424 #endif
2425 			}
2426 			bucket->ub_cnt = i;
2427 		}
2428 		ZONE_LOCK(zone);
2429 	}
2430 
2431 	zone->uz_fills--;
2432 	if (bucket->ub_cnt != 0) {
2433 		LIST_INSERT_HEAD(&zone->uz_full_bucket,
2434 		    bucket, ub_link);
2435 		return (1);
2436 	}
2437 #ifdef SMP
2438 done:
2439 #endif
2440 	bucket_free(bucket);
2441 
2442 	return (0);
2443 }
2444 /*
2445  * Allocates an item for an internal zone
2446  *
2447  * Arguments
2448  *	zone   The zone to alloc for.
2449  *	udata  The data to be passed to the constructor.
2450  *	flags  M_WAITOK, M_NOWAIT, M_ZERO.
2451  *
2452  * Returns
2453  *	NULL if there is no memory and M_NOWAIT is set
2454  *	An item if successful
2455  */
2456 
2457 static void *
2458 zone_alloc_item(uma_zone_t zone, void *udata, int flags)
2459 {
2460 	uma_slab_t slab;
2461 	void *item;
2462 
2463 	item = NULL;
2464 
2465 #ifdef UMA_DEBUG_ALLOC
2466 	printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone);
2467 #endif
2468 	ZONE_LOCK(zone);
2469 
2470 	slab = zone->uz_slab(zone, NULL, flags);
2471 	if (slab == NULL) {
2472 		zone->uz_fails++;
2473 		ZONE_UNLOCK(zone);
2474 		return (NULL);
2475 	}
2476 
2477 	item = slab_alloc_item(zone, slab);
2478 
2479 	zone_relock(zone, slab->us_keg);
2480 	zone->uz_allocs++;
2481 	ZONE_UNLOCK(zone);
2482 
2483 	/*
2484 	 * We have to call both the zone's init (not the keg's init)
2485 	 * and the zone's ctor.  This is because the item is going from
2486 	 * a keg slab directly to the user, and the user is expecting it
2487 	 * to be both zone-init'd as well as zone-ctor'd.
2488 	 */
2489 	if (zone->uz_init != NULL) {
2490 		if (zone->uz_init(item, zone->uz_size, flags) != 0) {
2491 			zone_free_item(zone, item, udata, SKIP_FINI,
2492 			    ZFREE_STATFAIL | ZFREE_STATFREE);
2493 			return (NULL);
2494 		}
2495 	}
2496 	if (zone->uz_ctor != NULL) {
2497 		if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
2498 			zone_free_item(zone, item, udata, SKIP_DTOR,
2499 			    ZFREE_STATFAIL | ZFREE_STATFREE);
2500 			return (NULL);
2501 		}
2502 	}
2503 	if (flags & M_ZERO)
2504 		bzero(item, zone->uz_size);
2505 
2506 	return (item);
2507 }
2508 
2509 /* See uma.h */
2510 void
2511 uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
2512 {
2513 	uma_cache_t cache;
2514 	uma_bucket_t bucket;
2515 	int bflags;
2516 	int cpu;
2517 
2518 #ifdef UMA_DEBUG_ALLOC_1
2519 	printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone);
2520 #endif
2521 	CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread,
2522 	    zone->uz_name);
2523 
2524 	if (zone->uz_dtor)
2525 		zone->uz_dtor(item, zone->uz_size, udata);
2526 
2527 #ifdef INVARIANTS
2528 	ZONE_LOCK(zone);
2529 	if (zone->uz_flags & UMA_ZONE_MALLOC)
2530 		uma_dbg_free(zone, udata, item);
2531 	else
2532 		uma_dbg_free(zone, NULL, item);
2533 	ZONE_UNLOCK(zone);
2534 #endif
2535 	/*
2536 	 * The race here is acceptable.  If we miss it we'll just have to wait
2537 	 * a little longer for the limits to be reset.
2538 	 */
2539 	if (zone->uz_flags & UMA_ZFLAG_FULL)
2540 		goto zfree_internal;
2541 
2542 	/*
2543 	 * If possible, free to the per-CPU cache.  There are two
2544 	 * requirements for safe access to the per-CPU cache: (1) the thread
2545 	 * accessing the cache must not be preempted or yield during access,
2546 	 * and (2) the thread must not migrate CPUs without switching which
2547 	 * cache it accesses.  We rely on a critical section to prevent
2548 	 * preemption and migration.  We release the critical section in
2549 	 * order to acquire the zone mutex if we are unable to free to the
2550 	 * current cache; when we re-acquire the critical section, we must
2551 	 * detect and handle migration if it has occurred.
2552 	 */
2553 zfree_restart:
2554 	critical_enter();
2555 	cpu = curcpu;
2556 	cache = &zone->uz_cpu[cpu];
2557 
2558 zfree_start:
2559 	bucket = cache->uc_freebucket;
2560 
2561 	if (bucket) {
2562 		/*
2563 		 * Do we have room in our bucket? It is OK for this uz count
2564 		 * check to be slightly out of sync.
2565 		 */
2566 
2567 		if (bucket->ub_cnt < bucket->ub_entries) {
2568 			KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL,
2569 			    ("uma_zfree: Freeing to non free bucket index."));
2570 			bucket->ub_bucket[bucket->ub_cnt] = item;
2571 			bucket->ub_cnt++;
2572 			cache->uc_frees++;
2573 			critical_exit();
2574 			return;
2575 		} else if (cache->uc_allocbucket) {
2576 #ifdef UMA_DEBUG_ALLOC
2577 			printf("uma_zfree: Swapping buckets.\n");
2578 #endif
2579 			/*
2580 			 * We have run out of space in our freebucket.
2581 			 * See if we can switch with our alloc bucket.
2582 			 */
2583 			if (cache->uc_allocbucket->ub_cnt <
2584 			    cache->uc_freebucket->ub_cnt) {
2585 				bucket = cache->uc_freebucket;
2586 				cache->uc_freebucket = cache->uc_allocbucket;
2587 				cache->uc_allocbucket = bucket;
2588 				goto zfree_start;
2589 			}
2590 		}
2591 	}
2592 	/*
2593 	 * We can get here for two reasons:
2594 	 *
2595 	 * 1) The buckets are NULL
2596 	 * 2) The alloc and free buckets are both somewhat full.
2597 	 *
2598 	 * We must go back the zone, which requires acquiring the zone lock,
2599 	 * which in turn means we must release and re-acquire the critical
2600 	 * section.  Since the critical section is released, we may be
2601 	 * preempted or migrate.  As such, make sure not to maintain any
2602 	 * thread-local state specific to the cache from prior to releasing
2603 	 * the critical section.
2604 	 */
2605 	critical_exit();
2606 	ZONE_LOCK(zone);
2607 	critical_enter();
2608 	cpu = curcpu;
2609 	cache = &zone->uz_cpu[cpu];
2610 	if (cache->uc_freebucket != NULL) {
2611 		if (cache->uc_freebucket->ub_cnt <
2612 		    cache->uc_freebucket->ub_entries) {
2613 			ZONE_UNLOCK(zone);
2614 			goto zfree_start;
2615 		}
2616 		if (cache->uc_allocbucket != NULL &&
2617 		    (cache->uc_allocbucket->ub_cnt <
2618 		    cache->uc_freebucket->ub_cnt)) {
2619 			ZONE_UNLOCK(zone);
2620 			goto zfree_start;
2621 		}
2622 	}
2623 
2624 	/* Since we have locked the zone we may as well send back our stats */
2625 	zone->uz_allocs += cache->uc_allocs;
2626 	cache->uc_allocs = 0;
2627 	zone->uz_frees += cache->uc_frees;
2628 	cache->uc_frees = 0;
2629 
2630 	bucket = cache->uc_freebucket;
2631 	cache->uc_freebucket = NULL;
2632 
2633 	/* Can we throw this on the zone full list? */
2634 	if (bucket != NULL) {
2635 #ifdef UMA_DEBUG_ALLOC
2636 		printf("uma_zfree: Putting old bucket on the free list.\n");
2637 #endif
2638 		/* ub_cnt is pointing to the last free item */
2639 		KASSERT(bucket->ub_cnt != 0,
2640 		    ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n"));
2641 		LIST_INSERT_HEAD(&zone->uz_full_bucket,
2642 		    bucket, ub_link);
2643 	}
2644 	if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) {
2645 		LIST_REMOVE(bucket, ub_link);
2646 		ZONE_UNLOCK(zone);
2647 		cache->uc_freebucket = bucket;
2648 		goto zfree_start;
2649 	}
2650 	/* We are no longer associated with this CPU. */
2651 	critical_exit();
2652 
2653 	/* And the zone.. */
2654 	ZONE_UNLOCK(zone);
2655 
2656 #ifdef UMA_DEBUG_ALLOC
2657 	printf("uma_zfree: Allocating new free bucket.\n");
2658 #endif
2659 	bflags = M_NOWAIT;
2660 
2661 	if (zone->uz_flags & UMA_ZFLAG_CACHEONLY)
2662 		bflags |= M_NOVM;
2663 	bucket = bucket_alloc(zone->uz_count, bflags);
2664 	if (bucket) {
2665 		ZONE_LOCK(zone);
2666 		LIST_INSERT_HEAD(&zone->uz_free_bucket,
2667 		    bucket, ub_link);
2668 		ZONE_UNLOCK(zone);
2669 		goto zfree_restart;
2670 	}
2671 
2672 	/*
2673 	 * If nothing else caught this, we'll just do an internal free.
2674 	 */
2675 zfree_internal:
2676 	zone_free_item(zone, item, udata, SKIP_DTOR, ZFREE_STATFREE);
2677 
2678 	return;
2679 }
2680 
2681 /*
2682  * Frees an item to an INTERNAL zone or allocates a free bucket
2683  *
2684  * Arguments:
2685  *	zone   The zone to free to
2686  *	item   The item we're freeing
2687  *	udata  User supplied data for the dtor
2688  *	skip   Skip dtors and finis
2689  */
2690 static void
2691 zone_free_item(uma_zone_t zone, void *item, void *udata,
2692     enum zfreeskip skip, int flags)
2693 {
2694 	uma_slab_t slab;
2695 	uma_slabrefcnt_t slabref;
2696 	uma_keg_t keg;
2697 	u_int8_t *mem;
2698 	u_int8_t freei;
2699 	int clearfull;
2700 
2701 	if (skip < SKIP_DTOR && zone->uz_dtor)
2702 		zone->uz_dtor(item, zone->uz_size, udata);
2703 
2704 	if (skip < SKIP_FINI && zone->uz_fini)
2705 		zone->uz_fini(item, zone->uz_size);
2706 
2707 	ZONE_LOCK(zone);
2708 
2709 	if (flags & ZFREE_STATFAIL)
2710 		zone->uz_fails++;
2711 	if (flags & ZFREE_STATFREE)
2712 		zone->uz_frees++;
2713 
2714 	if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) {
2715 		mem = (u_int8_t *)((unsigned long)item & (~UMA_SLAB_MASK));
2716 		keg = zone_first_keg(zone); /* Must only be one. */
2717 		if (zone->uz_flags & UMA_ZONE_HASH) {
2718 			slab = hash_sfind(&keg->uk_hash, mem);
2719 		} else {
2720 			mem += keg->uk_pgoff;
2721 			slab = (uma_slab_t)mem;
2722 		}
2723 	} else {
2724 		/* This prevents redundant lookups via free(). */
2725 		if ((zone->uz_flags & UMA_ZONE_MALLOC) && udata != NULL)
2726 			slab = (uma_slab_t)udata;
2727 		else
2728 			slab = vtoslab((vm_offset_t)item);
2729 		keg = slab->us_keg;
2730 		keg_relock(keg, zone);
2731 	}
2732 	MPASS(keg == slab->us_keg);
2733 
2734 	/* Do we need to remove from any lists? */
2735 	if (slab->us_freecount+1 == keg->uk_ipers) {
2736 		LIST_REMOVE(slab, us_link);
2737 		LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
2738 	} else if (slab->us_freecount == 0) {
2739 		LIST_REMOVE(slab, us_link);
2740 		LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2741 	}
2742 
2743 	/* Slab management stuff */
2744 	freei = ((unsigned long)item - (unsigned long)slab->us_data)
2745 		/ keg->uk_rsize;
2746 
2747 #ifdef INVARIANTS
2748 	if (!skip)
2749 		uma_dbg_free(zone, slab, item);
2750 #endif
2751 
2752 	if (keg->uk_flags & UMA_ZONE_REFCNT) {
2753 		slabref = (uma_slabrefcnt_t)slab;
2754 		slabref->us_freelist[freei].us_item = slab->us_firstfree;
2755 	} else {
2756 		slab->us_freelist[freei].us_item = slab->us_firstfree;
2757 	}
2758 	slab->us_firstfree = freei;
2759 	slab->us_freecount++;
2760 
2761 	/* Zone statistics */
2762 	keg->uk_free++;
2763 
2764 	clearfull = 0;
2765 	if (keg->uk_flags & UMA_ZFLAG_FULL) {
2766 		if (keg->uk_pages < keg->uk_maxpages) {
2767 			keg->uk_flags &= ~UMA_ZFLAG_FULL;
2768 			clearfull = 1;
2769 		}
2770 
2771 		/*
2772 		 * We can handle one more allocation. Since we're clearing ZFLAG_FULL,
2773 		 * wake up all procs blocked on pages. This should be uncommon, so
2774 		 * keeping this simple for now (rather than adding count of blocked
2775 		 * threads etc).
2776 		 */
2777 		wakeup(keg);
2778 	}
2779 	if (clearfull) {
2780 		zone_relock(zone, keg);
2781 		zone->uz_flags &= ~UMA_ZFLAG_FULL;
2782 		wakeup(zone);
2783 		ZONE_UNLOCK(zone);
2784 	} else
2785 		KEG_UNLOCK(keg);
2786 }
2787 
2788 /* See uma.h */
2789 void
2790 uma_zone_set_max(uma_zone_t zone, int nitems)
2791 {
2792 	uma_keg_t keg;
2793 
2794 	ZONE_LOCK(zone);
2795 	keg = zone_first_keg(zone);
2796 	keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera;
2797 	if (keg->uk_maxpages * keg->uk_ipers < nitems)
2798 		keg->uk_maxpages += keg->uk_ppera;
2799 
2800 	ZONE_UNLOCK(zone);
2801 }
2802 
2803 /* See uma.h */
2804 void
2805 uma_zone_set_init(uma_zone_t zone, uma_init uminit)
2806 {
2807 	uma_keg_t keg;
2808 
2809 	ZONE_LOCK(zone);
2810 	keg = zone_first_keg(zone);
2811 	KASSERT(keg->uk_pages == 0,
2812 	    ("uma_zone_set_init on non-empty keg"));
2813 	keg->uk_init = uminit;
2814 	ZONE_UNLOCK(zone);
2815 }
2816 
2817 /* See uma.h */
2818 void
2819 uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
2820 {
2821 	uma_keg_t keg;
2822 
2823 	ZONE_LOCK(zone);
2824 	keg = zone_first_keg(zone);
2825 	KASSERT(keg->uk_pages == 0,
2826 	    ("uma_zone_set_fini on non-empty keg"));
2827 	keg->uk_fini = fini;
2828 	ZONE_UNLOCK(zone);
2829 }
2830 
2831 /* See uma.h */
2832 void
2833 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
2834 {
2835 	ZONE_LOCK(zone);
2836 	KASSERT(zone_first_keg(zone)->uk_pages == 0,
2837 	    ("uma_zone_set_zinit on non-empty keg"));
2838 	zone->uz_init = zinit;
2839 	ZONE_UNLOCK(zone);
2840 }
2841 
2842 /* See uma.h */
2843 void
2844 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
2845 {
2846 	ZONE_LOCK(zone);
2847 	KASSERT(zone_first_keg(zone)->uk_pages == 0,
2848 	    ("uma_zone_set_zfini on non-empty keg"));
2849 	zone->uz_fini = zfini;
2850 	ZONE_UNLOCK(zone);
2851 }
2852 
2853 /* See uma.h */
2854 /* XXX uk_freef is not actually used with the zone locked */
2855 void
2856 uma_zone_set_freef(uma_zone_t zone, uma_free freef)
2857 {
2858 
2859 	ZONE_LOCK(zone);
2860 	zone_first_keg(zone)->uk_freef = freef;
2861 	ZONE_UNLOCK(zone);
2862 }
2863 
2864 /* See uma.h */
2865 /* XXX uk_allocf is not actually used with the zone locked */
2866 void
2867 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
2868 {
2869 	uma_keg_t keg;
2870 
2871 	ZONE_LOCK(zone);
2872 	keg = zone_first_keg(zone);
2873 	keg->uk_flags |= UMA_ZFLAG_PRIVALLOC;
2874 	keg->uk_allocf = allocf;
2875 	ZONE_UNLOCK(zone);
2876 }
2877 
2878 /* See uma.h */
2879 int
2880 uma_zone_set_obj(uma_zone_t zone, struct vm_object *obj, int count)
2881 {
2882 	uma_keg_t keg;
2883 	vm_offset_t kva;
2884 	int pages;
2885 
2886 	keg = zone_first_keg(zone);
2887 	pages = count / keg->uk_ipers;
2888 
2889 	if (pages * keg->uk_ipers < count)
2890 		pages++;
2891 
2892 	kva = kmem_alloc_nofault(kernel_map, pages * UMA_SLAB_SIZE);
2893 
2894 	if (kva == 0)
2895 		return (0);
2896 	if (obj == NULL) {
2897 		obj = vm_object_allocate(OBJT_DEFAULT,
2898 		    pages);
2899 	} else {
2900 		VM_OBJECT_LOCK_INIT(obj, "uma object");
2901 		_vm_object_allocate(OBJT_DEFAULT,
2902 		    pages, obj);
2903 	}
2904 	ZONE_LOCK(zone);
2905 	keg->uk_kva = kva;
2906 	keg->uk_obj = obj;
2907 	keg->uk_maxpages = pages;
2908 	keg->uk_allocf = obj_alloc;
2909 	keg->uk_flags |= UMA_ZONE_NOFREE | UMA_ZFLAG_PRIVALLOC;
2910 	ZONE_UNLOCK(zone);
2911 	return (1);
2912 }
2913 
2914 /* See uma.h */
2915 void
2916 uma_prealloc(uma_zone_t zone, int items)
2917 {
2918 	int slabs;
2919 	uma_slab_t slab;
2920 	uma_keg_t keg;
2921 
2922 	keg = zone_first_keg(zone);
2923 	ZONE_LOCK(zone);
2924 	slabs = items / keg->uk_ipers;
2925 	if (slabs * keg->uk_ipers < items)
2926 		slabs++;
2927 	while (slabs > 0) {
2928 		slab = keg_alloc_slab(keg, zone, M_WAITOK);
2929 		if (slab == NULL)
2930 			break;
2931 		MPASS(slab->us_keg == keg);
2932 		LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
2933 		slabs--;
2934 	}
2935 	ZONE_UNLOCK(zone);
2936 }
2937 
2938 /* See uma.h */
2939 u_int32_t *
2940 uma_find_refcnt(uma_zone_t zone, void *item)
2941 {
2942 	uma_slabrefcnt_t slabref;
2943 	uma_keg_t keg;
2944 	u_int32_t *refcnt;
2945 	int idx;
2946 
2947 	slabref = (uma_slabrefcnt_t)vtoslab((vm_offset_t)item &
2948 	    (~UMA_SLAB_MASK));
2949 	keg = slabref->us_keg;
2950 	KASSERT(slabref != NULL && slabref->us_keg->uk_flags & UMA_ZONE_REFCNT,
2951 	    ("uma_find_refcnt(): zone possibly not UMA_ZONE_REFCNT"));
2952 	idx = ((unsigned long)item - (unsigned long)slabref->us_data)
2953 	    / keg->uk_rsize;
2954 	refcnt = &slabref->us_freelist[idx].us_refcnt;
2955 	return refcnt;
2956 }
2957 
2958 /* See uma.h */
2959 void
2960 uma_reclaim(void)
2961 {
2962 #ifdef UMA_DEBUG
2963 	printf("UMA: vm asked us to release pages!\n");
2964 #endif
2965 	bucket_enable();
2966 	zone_foreach(zone_drain);
2967 	/*
2968 	 * Some slabs may have been freed but this zone will be visited early
2969 	 * we visit again so that we can free pages that are empty once other
2970 	 * zones are drained.  We have to do the same for buckets.
2971 	 */
2972 	zone_drain(slabzone);
2973 	zone_drain(slabrefzone);
2974 	bucket_zone_drain();
2975 }
2976 
2977 /* See uma.h */
2978 int
2979 uma_zone_exhausted(uma_zone_t zone)
2980 {
2981 	int full;
2982 
2983 	ZONE_LOCK(zone);
2984 	full = (zone->uz_flags & UMA_ZFLAG_FULL);
2985 	ZONE_UNLOCK(zone);
2986 	return (full);
2987 }
2988 
2989 int
2990 uma_zone_exhausted_nolock(uma_zone_t zone)
2991 {
2992 	return (zone->uz_flags & UMA_ZFLAG_FULL);
2993 }
2994 
2995 void *
2996 uma_large_malloc(int size, int wait)
2997 {
2998 	void *mem;
2999 	uma_slab_t slab;
3000 	u_int8_t flags;
3001 
3002 	slab = zone_alloc_item(slabzone, NULL, wait);
3003 	if (slab == NULL)
3004 		return (NULL);
3005 	mem = page_alloc(NULL, size, &flags, wait);
3006 	if (mem) {
3007 		vsetslab((vm_offset_t)mem, slab);
3008 		slab->us_data = mem;
3009 		slab->us_flags = flags | UMA_SLAB_MALLOC;
3010 		slab->us_size = size;
3011 	} else {
3012 		zone_free_item(slabzone, slab, NULL, SKIP_NONE,
3013 		    ZFREE_STATFAIL | ZFREE_STATFREE);
3014 	}
3015 
3016 	return (mem);
3017 }
3018 
3019 void
3020 uma_large_free(uma_slab_t slab)
3021 {
3022 	vsetobj((vm_offset_t)slab->us_data, kmem_object);
3023 	page_free(slab->us_data, slab->us_size, slab->us_flags);
3024 	zone_free_item(slabzone, slab, NULL, SKIP_NONE, ZFREE_STATFREE);
3025 }
3026 
3027 void
3028 uma_print_stats(void)
3029 {
3030 	zone_foreach(uma_print_zone);
3031 }
3032 
3033 static void
3034 slab_print(uma_slab_t slab)
3035 {
3036 	printf("slab: keg %p, data %p, freecount %d, firstfree %d\n",
3037 		slab->us_keg, slab->us_data, slab->us_freecount,
3038 		slab->us_firstfree);
3039 }
3040 
3041 static void
3042 cache_print(uma_cache_t cache)
3043 {
3044 	printf("alloc: %p(%d), free: %p(%d)\n",
3045 		cache->uc_allocbucket,
3046 		cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0,
3047 		cache->uc_freebucket,
3048 		cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0);
3049 }
3050 
3051 static void
3052 uma_print_keg(uma_keg_t keg)
3053 {
3054 	uma_slab_t slab;
3055 
3056 	printf("keg: %s(%p) size %d(%d) flags %d ipers %d ppera %d "
3057 	    "out %d free %d limit %d\n",
3058 	    keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags,
3059 	    keg->uk_ipers, keg->uk_ppera,
3060 	    (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free,
3061 	    (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers);
3062 	printf("Part slabs:\n");
3063 	LIST_FOREACH(slab, &keg->uk_part_slab, us_link)
3064 		slab_print(slab);
3065 	printf("Free slabs:\n");
3066 	LIST_FOREACH(slab, &keg->uk_free_slab, us_link)
3067 		slab_print(slab);
3068 	printf("Full slabs:\n");
3069 	LIST_FOREACH(slab, &keg->uk_full_slab, us_link)
3070 		slab_print(slab);
3071 }
3072 
3073 void
3074 uma_print_zone(uma_zone_t zone)
3075 {
3076 	uma_cache_t cache;
3077 	uma_klink_t kl;
3078 	int i;
3079 
3080 	printf("zone: %s(%p) size %d flags %d\n",
3081 	    zone->uz_name, zone, zone->uz_size, zone->uz_flags);
3082 	LIST_FOREACH(kl, &zone->uz_kegs, kl_link)
3083 		uma_print_keg(kl->kl_keg);
3084 	for (i = 0; i <= mp_maxid; i++) {
3085 		if (CPU_ABSENT(i))
3086 			continue;
3087 		cache = &zone->uz_cpu[i];
3088 		printf("CPU %d Cache:\n", i);
3089 		cache_print(cache);
3090 	}
3091 }
3092 
3093 #ifdef DDB
3094 /*
3095  * Generate statistics across both the zone and its per-cpu cache's.  Return
3096  * desired statistics if the pointer is non-NULL for that statistic.
3097  *
3098  * Note: does not update the zone statistics, as it can't safely clear the
3099  * per-CPU cache statistic.
3100  *
3101  * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't
3102  * safe from off-CPU; we should modify the caches to track this information
3103  * directly so that we don't have to.
3104  */
3105 static void
3106 uma_zone_sumstat(uma_zone_t z, int *cachefreep, u_int64_t *allocsp,
3107     u_int64_t *freesp)
3108 {
3109 	uma_cache_t cache;
3110 	u_int64_t allocs, frees;
3111 	int cachefree, cpu;
3112 
3113 	allocs = frees = 0;
3114 	cachefree = 0;
3115 	for (cpu = 0; cpu <= mp_maxid; cpu++) {
3116 		if (CPU_ABSENT(cpu))
3117 			continue;
3118 		cache = &z->uz_cpu[cpu];
3119 		if (cache->uc_allocbucket != NULL)
3120 			cachefree += cache->uc_allocbucket->ub_cnt;
3121 		if (cache->uc_freebucket != NULL)
3122 			cachefree += cache->uc_freebucket->ub_cnt;
3123 		allocs += cache->uc_allocs;
3124 		frees += cache->uc_frees;
3125 	}
3126 	allocs += z->uz_allocs;
3127 	frees += z->uz_frees;
3128 	if (cachefreep != NULL)
3129 		*cachefreep = cachefree;
3130 	if (allocsp != NULL)
3131 		*allocsp = allocs;
3132 	if (freesp != NULL)
3133 		*freesp = frees;
3134 }
3135 #endif /* DDB */
3136 
3137 static int
3138 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
3139 {
3140 	uma_keg_t kz;
3141 	uma_zone_t z;
3142 	int count;
3143 
3144 	count = 0;
3145 	mtx_lock(&uma_mtx);
3146 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3147 		LIST_FOREACH(z, &kz->uk_zones, uz_link)
3148 			count++;
3149 	}
3150 	mtx_unlock(&uma_mtx);
3151 	return (sysctl_handle_int(oidp, &count, 0, req));
3152 }
3153 
3154 static int
3155 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
3156 {
3157 	struct uma_stream_header ush;
3158 	struct uma_type_header uth;
3159 	struct uma_percpu_stat ups;
3160 	uma_bucket_t bucket;
3161 	struct sbuf sbuf;
3162 	uma_cache_t cache;
3163 	uma_klink_t kl;
3164 	uma_keg_t kz;
3165 	uma_zone_t z;
3166 	uma_keg_t k;
3167 	char *buffer;
3168 	int buflen, count, error, i;
3169 
3170 	mtx_lock(&uma_mtx);
3171 restart:
3172 	mtx_assert(&uma_mtx, MA_OWNED);
3173 	count = 0;
3174 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3175 		LIST_FOREACH(z, &kz->uk_zones, uz_link)
3176 			count++;
3177 	}
3178 	mtx_unlock(&uma_mtx);
3179 
3180 	buflen = sizeof(ush) + count * (sizeof(uth) + sizeof(ups) *
3181 	    (mp_maxid + 1)) + 1;
3182 	buffer = malloc(buflen, M_TEMP, M_WAITOK | M_ZERO);
3183 
3184 	mtx_lock(&uma_mtx);
3185 	i = 0;
3186 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3187 		LIST_FOREACH(z, &kz->uk_zones, uz_link)
3188 			i++;
3189 	}
3190 	if (i > count) {
3191 		free(buffer, M_TEMP);
3192 		goto restart;
3193 	}
3194 	count =  i;
3195 
3196 	sbuf_new(&sbuf, buffer, buflen, SBUF_FIXEDLEN);
3197 
3198 	/*
3199 	 * Insert stream header.
3200 	 */
3201 	bzero(&ush, sizeof(ush));
3202 	ush.ush_version = UMA_STREAM_VERSION;
3203 	ush.ush_maxcpus = (mp_maxid + 1);
3204 	ush.ush_count = count;
3205 	if (sbuf_bcat(&sbuf, &ush, sizeof(ush)) < 0) {
3206 		mtx_unlock(&uma_mtx);
3207 		error = ENOMEM;
3208 		goto out;
3209 	}
3210 
3211 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3212 		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3213 			bzero(&uth, sizeof(uth));
3214 			ZONE_LOCK(z);
3215 			strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
3216 			uth.uth_align = kz->uk_align;
3217 			uth.uth_size = kz->uk_size;
3218 			uth.uth_rsize = kz->uk_rsize;
3219 			LIST_FOREACH(kl, &z->uz_kegs, kl_link) {
3220 				k = kl->kl_keg;
3221 				uth.uth_maxpages += k->uk_maxpages;
3222 				uth.uth_pages += k->uk_pages;
3223 				uth.uth_keg_free += k->uk_free;
3224 				uth.uth_limit = (k->uk_maxpages / k->uk_ppera)
3225 				    * k->uk_ipers;
3226 			}
3227 
3228 			/*
3229 			 * A zone is secondary is it is not the first entry
3230 			 * on the keg's zone list.
3231 			 */
3232 			if ((z->uz_flags & UMA_ZONE_SECONDARY) &&
3233 			    (LIST_FIRST(&kz->uk_zones) != z))
3234 				uth.uth_zone_flags = UTH_ZONE_SECONDARY;
3235 
3236 			LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link)
3237 				uth.uth_zone_free += bucket->ub_cnt;
3238 			uth.uth_allocs = z->uz_allocs;
3239 			uth.uth_frees = z->uz_frees;
3240 			uth.uth_fails = z->uz_fails;
3241 			if (sbuf_bcat(&sbuf, &uth, sizeof(uth)) < 0) {
3242 				ZONE_UNLOCK(z);
3243 				mtx_unlock(&uma_mtx);
3244 				error = ENOMEM;
3245 				goto out;
3246 			}
3247 			/*
3248 			 * While it is not normally safe to access the cache
3249 			 * bucket pointers while not on the CPU that owns the
3250 			 * cache, we only allow the pointers to be exchanged
3251 			 * without the zone lock held, not invalidated, so
3252 			 * accept the possible race associated with bucket
3253 			 * exchange during monitoring.
3254 			 */
3255 			for (i = 0; i < (mp_maxid + 1); i++) {
3256 				bzero(&ups, sizeof(ups));
3257 				if (kz->uk_flags & UMA_ZFLAG_INTERNAL)
3258 					goto skip;
3259 				if (CPU_ABSENT(i))
3260 					goto skip;
3261 				cache = &z->uz_cpu[i];
3262 				if (cache->uc_allocbucket != NULL)
3263 					ups.ups_cache_free +=
3264 					    cache->uc_allocbucket->ub_cnt;
3265 				if (cache->uc_freebucket != NULL)
3266 					ups.ups_cache_free +=
3267 					    cache->uc_freebucket->ub_cnt;
3268 				ups.ups_allocs = cache->uc_allocs;
3269 				ups.ups_frees = cache->uc_frees;
3270 skip:
3271 				if (sbuf_bcat(&sbuf, &ups, sizeof(ups)) < 0) {
3272 					ZONE_UNLOCK(z);
3273 					mtx_unlock(&uma_mtx);
3274 					error = ENOMEM;
3275 					goto out;
3276 				}
3277 			}
3278 			ZONE_UNLOCK(z);
3279 		}
3280 	}
3281 	mtx_unlock(&uma_mtx);
3282 	sbuf_finish(&sbuf);
3283 	error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf));
3284 out:
3285 	free(buffer, M_TEMP);
3286 	return (error);
3287 }
3288 
3289 #ifdef DDB
3290 DB_SHOW_COMMAND(uma, db_show_uma)
3291 {
3292 	u_int64_t allocs, frees;
3293 	uma_bucket_t bucket;
3294 	uma_keg_t kz;
3295 	uma_zone_t z;
3296 	int cachefree;
3297 
3298 	db_printf("%18s %8s %8s %8s %12s\n", "Zone", "Size", "Used", "Free",
3299 	    "Requests");
3300 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3301 		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3302 			if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
3303 				allocs = z->uz_allocs;
3304 				frees = z->uz_frees;
3305 				cachefree = 0;
3306 			} else
3307 				uma_zone_sumstat(z, &cachefree, &allocs,
3308 				    &frees);
3309 			if (!((z->uz_flags & UMA_ZONE_SECONDARY) &&
3310 			    (LIST_FIRST(&kz->uk_zones) != z)))
3311 				cachefree += kz->uk_free;
3312 			LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link)
3313 				cachefree += bucket->ub_cnt;
3314 			db_printf("%18s %8ju %8jd %8d %12ju\n", z->uz_name,
3315 			    (uintmax_t)kz->uk_size,
3316 			    (intmax_t)(allocs - frees), cachefree,
3317 			    (uintmax_t)allocs);
3318 		}
3319 	}
3320 }
3321 #endif
3322