1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/bitset.h> 62 #include <sys/domainset.h> 63 #include <sys/eventhandler.h> 64 #include <sys/kernel.h> 65 #include <sys/types.h> 66 #include <sys/limits.h> 67 #include <sys/queue.h> 68 #include <sys/malloc.h> 69 #include <sys/ktr.h> 70 #include <sys/lock.h> 71 #include <sys/sysctl.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/random.h> 75 #include <sys/rwlock.h> 76 #include <sys/sbuf.h> 77 #include <sys/sched.h> 78 #include <sys/sleepqueue.h> 79 #include <sys/smp.h> 80 #include <sys/smr.h> 81 #include <sys/taskqueue.h> 82 #include <sys/vmmeter.h> 83 84 #include <vm/vm.h> 85 #include <vm/vm_domainset.h> 86 #include <vm/vm_object.h> 87 #include <vm/vm_page.h> 88 #include <vm/vm_pageout.h> 89 #include <vm/vm_param.h> 90 #include <vm/vm_phys.h> 91 #include <vm/vm_pagequeue.h> 92 #include <vm/vm_map.h> 93 #include <vm/vm_kern.h> 94 #include <vm/vm_extern.h> 95 #include <vm/uma.h> 96 #include <vm/uma_int.h> 97 #include <vm/uma_dbg.h> 98 99 #include <ddb/ddb.h> 100 101 #ifdef DEBUG_MEMGUARD 102 #include <vm/memguard.h> 103 #endif 104 105 #include <machine/md_var.h> 106 107 #ifdef INVARIANTS 108 #define UMA_ALWAYS_CTORDTOR 1 109 #else 110 #define UMA_ALWAYS_CTORDTOR 0 111 #endif 112 113 /* 114 * This is the zone and keg from which all zones are spawned. 115 */ 116 static uma_zone_t kegs; 117 static uma_zone_t zones; 118 119 /* 120 * These are the two zones from which all offpage uma_slab_ts are allocated. 121 * 122 * One zone is for slab headers that can represent a larger number of items, 123 * making the slabs themselves more efficient, and the other zone is for 124 * headers that are smaller and represent fewer items, making the headers more 125 * efficient. 126 */ 127 #define SLABZONE_SIZE(setsize) \ 128 (sizeof(struct uma_hash_slab) + BITSET_SIZE(setsize) * SLAB_BITSETS) 129 #define SLABZONE0_SETSIZE (PAGE_SIZE / 16) 130 #define SLABZONE1_SETSIZE SLAB_MAX_SETSIZE 131 #define SLABZONE0_SIZE SLABZONE_SIZE(SLABZONE0_SETSIZE) 132 #define SLABZONE1_SIZE SLABZONE_SIZE(SLABZONE1_SETSIZE) 133 static uma_zone_t slabzones[2]; 134 135 /* 136 * The initial hash tables come out of this zone so they can be allocated 137 * prior to malloc coming up. 138 */ 139 static uma_zone_t hashzone; 140 141 /* The boot-time adjusted value for cache line alignment. */ 142 int uma_align_cache = 64 - 1; 143 144 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 145 static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc"); 146 147 /* 148 * Are we allowed to allocate buckets? 149 */ 150 static int bucketdisable = 1; 151 152 /* Linked list of all kegs in the system */ 153 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 154 155 /* Linked list of all cache-only zones in the system */ 156 static LIST_HEAD(,uma_zone) uma_cachezones = 157 LIST_HEAD_INITIALIZER(uma_cachezones); 158 159 /* This RW lock protects the keg list */ 160 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 161 162 /* 163 * First available virual address for boot time allocations. 164 */ 165 static vm_offset_t bootstart; 166 static vm_offset_t bootmem; 167 168 static struct sx uma_reclaim_lock; 169 170 /* 171 * kmem soft limit, initialized by uma_set_limit(). Ensure that early 172 * allocations don't trigger a wakeup of the reclaim thread. 173 */ 174 unsigned long uma_kmem_limit = LONG_MAX; 175 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0, 176 "UMA kernel memory soft limit"); 177 unsigned long uma_kmem_total; 178 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0, 179 "UMA kernel memory usage"); 180 181 /* Is the VM done starting up? */ 182 static enum { 183 BOOT_COLD, 184 BOOT_KVA, 185 BOOT_RUNNING, 186 BOOT_SHUTDOWN, 187 } booted = BOOT_COLD; 188 189 /* 190 * This is the handle used to schedule events that need to happen 191 * outside of the allocation fast path. 192 */ 193 static struct callout uma_callout; 194 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 195 196 /* 197 * This structure is passed as the zone ctor arg so that I don't have to create 198 * a special allocation function just for zones. 199 */ 200 struct uma_zctor_args { 201 const char *name; 202 size_t size; 203 uma_ctor ctor; 204 uma_dtor dtor; 205 uma_init uminit; 206 uma_fini fini; 207 uma_import import; 208 uma_release release; 209 void *arg; 210 uma_keg_t keg; 211 int align; 212 uint32_t flags; 213 }; 214 215 struct uma_kctor_args { 216 uma_zone_t zone; 217 size_t size; 218 uma_init uminit; 219 uma_fini fini; 220 int align; 221 uint32_t flags; 222 }; 223 224 struct uma_bucket_zone { 225 uma_zone_t ubz_zone; 226 const char *ubz_name; 227 int ubz_entries; /* Number of items it can hold. */ 228 int ubz_maxsize; /* Maximum allocation size per-item. */ 229 }; 230 231 /* 232 * Compute the actual number of bucket entries to pack them in power 233 * of two sizes for more efficient space utilization. 234 */ 235 #define BUCKET_SIZE(n) \ 236 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 237 238 #define BUCKET_MAX BUCKET_SIZE(256) 239 #define BUCKET_MIN 2 240 241 struct uma_bucket_zone bucket_zones[] = { 242 /* Literal bucket sizes. */ 243 { NULL, "2 Bucket", 2, 4096 }, 244 { NULL, "4 Bucket", 4, 3072 }, 245 { NULL, "8 Bucket", 8, 2048 }, 246 { NULL, "16 Bucket", 16, 1024 }, 247 /* Rounded down power of 2 sizes for efficiency. */ 248 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 249 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 250 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 251 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 252 { NULL, NULL, 0} 253 }; 254 255 /* 256 * Flags and enumerations to be passed to internal functions. 257 */ 258 enum zfreeskip { 259 SKIP_NONE = 0, 260 SKIP_CNT = 0x00000001, 261 SKIP_DTOR = 0x00010000, 262 SKIP_FINI = 0x00020000, 263 }; 264 265 /* Prototypes.. */ 266 267 void uma_startup1(vm_offset_t); 268 void uma_startup2(void); 269 270 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 271 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 272 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 273 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 274 static void *contig_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 275 static void page_free(void *, vm_size_t, uint8_t); 276 static void pcpu_page_free(void *, vm_size_t, uint8_t); 277 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int); 278 static void cache_drain(uma_zone_t); 279 static void bucket_drain(uma_zone_t, uma_bucket_t); 280 static void bucket_cache_reclaim(uma_zone_t zone, bool); 281 static int keg_ctor(void *, int, void *, int); 282 static void keg_dtor(void *, int, void *); 283 static int zone_ctor(void *, int, void *, int); 284 static void zone_dtor(void *, int, void *); 285 static inline void item_dtor(uma_zone_t zone, void *item, int size, 286 void *udata, enum zfreeskip skip); 287 static int zero_init(void *, int, int); 288 static void zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 289 int itemdomain, bool ws); 290 static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *); 291 static void zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *), void *); 292 static void zone_timeout(uma_zone_t zone, void *); 293 static int hash_alloc(struct uma_hash *, u_int); 294 static int hash_expand(struct uma_hash *, struct uma_hash *); 295 static void hash_free(struct uma_hash *hash); 296 static void uma_timeout(void *); 297 static void uma_startup3(void); 298 static void uma_shutdown(void); 299 static void *zone_alloc_item(uma_zone_t, void *, int, int); 300 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 301 static int zone_alloc_limit(uma_zone_t zone, int count, int flags); 302 static void zone_free_limit(uma_zone_t zone, int count); 303 static void bucket_enable(void); 304 static void bucket_init(void); 305 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 306 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 307 static void bucket_zone_drain(void); 308 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int); 309 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 310 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item); 311 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 312 uma_fini fini, int align, uint32_t flags); 313 static int zone_import(void *, void **, int, int, int); 314 static void zone_release(void *, void **, int); 315 static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int); 316 static bool cache_free(uma_zone_t, uma_cache_t, void *, void *, int); 317 318 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 319 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 320 static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS); 321 static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS); 322 static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS); 323 static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS); 324 static int sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS); 325 326 static uint64_t uma_zone_get_allocs(uma_zone_t zone); 327 328 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 329 "Memory allocation debugging"); 330 331 #ifdef INVARIANTS 332 static uint64_t uma_keg_get_allocs(uma_keg_t zone); 333 static inline struct noslabbits *slab_dbg_bits(uma_slab_t slab, uma_keg_t keg); 334 335 static bool uma_dbg_kskip(uma_keg_t keg, void *mem); 336 static bool uma_dbg_zskip(uma_zone_t zone, void *mem); 337 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 338 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 339 340 static u_int dbg_divisor = 1; 341 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor, 342 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0, 343 "Debug & thrash every this item in memory allocator"); 344 345 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER; 346 static counter_u64_t uma_skip_cnt = EARLY_COUNTER; 347 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD, 348 &uma_dbg_cnt, "memory items debugged"); 349 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD, 350 &uma_skip_cnt, "memory items skipped, not debugged"); 351 #endif 352 353 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 354 355 SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 356 "Universal Memory Allocator"); 357 358 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_INT, 359 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 360 361 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_STRUCT, 362 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 363 364 static int zone_warnings = 1; 365 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 366 "Warn when UMA zones becomes full"); 367 368 static int multipage_slabs = 1; 369 TUNABLE_INT("vm.debug.uma_multipage_slabs", &multipage_slabs); 370 SYSCTL_INT(_vm_debug, OID_AUTO, uma_multipage_slabs, 371 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &multipage_slabs, 0, 372 "UMA may choose larger slab sizes for better efficiency"); 373 374 /* 375 * Select the slab zone for an offpage slab with the given maximum item count. 376 */ 377 static inline uma_zone_t 378 slabzone(int ipers) 379 { 380 381 return (slabzones[ipers > SLABZONE0_SETSIZE]); 382 } 383 384 /* 385 * This routine checks to see whether or not it's safe to enable buckets. 386 */ 387 static void 388 bucket_enable(void) 389 { 390 391 KASSERT(booted >= BOOT_KVA, ("Bucket enable before init")); 392 bucketdisable = vm_page_count_min(); 393 } 394 395 /* 396 * Initialize bucket_zones, the array of zones of buckets of various sizes. 397 * 398 * For each zone, calculate the memory required for each bucket, consisting 399 * of the header and an array of pointers. 400 */ 401 static void 402 bucket_init(void) 403 { 404 struct uma_bucket_zone *ubz; 405 int size; 406 407 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 408 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 409 size += sizeof(void *) * ubz->ubz_entries; 410 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 411 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 412 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | 413 UMA_ZONE_FIRSTTOUCH); 414 } 415 } 416 417 /* 418 * Given a desired number of entries for a bucket, return the zone from which 419 * to allocate the bucket. 420 */ 421 static struct uma_bucket_zone * 422 bucket_zone_lookup(int entries) 423 { 424 struct uma_bucket_zone *ubz; 425 426 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 427 if (ubz->ubz_entries >= entries) 428 return (ubz); 429 ubz--; 430 return (ubz); 431 } 432 433 static struct uma_bucket_zone * 434 bucket_zone_max(uma_zone_t zone, int nitems) 435 { 436 struct uma_bucket_zone *ubz; 437 int bpcpu; 438 439 bpcpu = 2; 440 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 441 /* Count the cross-domain bucket. */ 442 bpcpu++; 443 444 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 445 if (ubz->ubz_entries * bpcpu * mp_ncpus > nitems) 446 break; 447 if (ubz == &bucket_zones[0]) 448 ubz = NULL; 449 else 450 ubz--; 451 return (ubz); 452 } 453 454 static int 455 bucket_select(int size) 456 { 457 struct uma_bucket_zone *ubz; 458 459 ubz = &bucket_zones[0]; 460 if (size > ubz->ubz_maxsize) 461 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 462 463 for (; ubz->ubz_entries != 0; ubz++) 464 if (ubz->ubz_maxsize < size) 465 break; 466 ubz--; 467 return (ubz->ubz_entries); 468 } 469 470 static uma_bucket_t 471 bucket_alloc(uma_zone_t zone, void *udata, int flags) 472 { 473 struct uma_bucket_zone *ubz; 474 uma_bucket_t bucket; 475 476 /* 477 * Don't allocate buckets early in boot. 478 */ 479 if (__predict_false(booted < BOOT_KVA)) 480 return (NULL); 481 482 /* 483 * To limit bucket recursion we store the original zone flags 484 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 485 * NOVM flag to persist even through deep recursions. We also 486 * store ZFLAG_BUCKET once we have recursed attempting to allocate 487 * a bucket for a bucket zone so we do not allow infinite bucket 488 * recursion. This cookie will even persist to frees of unused 489 * buckets via the allocation path or bucket allocations in the 490 * free path. 491 */ 492 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 493 udata = (void *)(uintptr_t)zone->uz_flags; 494 else { 495 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 496 return (NULL); 497 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 498 } 499 if (((uintptr_t)udata & UMA_ZONE_VM) != 0) 500 flags |= M_NOVM; 501 ubz = bucket_zone_lookup(zone->uz_bucket_size); 502 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 503 ubz++; 504 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 505 if (bucket) { 506 #ifdef INVARIANTS 507 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 508 #endif 509 bucket->ub_cnt = 0; 510 bucket->ub_entries = ubz->ubz_entries; 511 bucket->ub_seq = SMR_SEQ_INVALID; 512 CTR3(KTR_UMA, "bucket_alloc: zone %s(%p) allocated bucket %p", 513 zone->uz_name, zone, bucket); 514 } 515 516 return (bucket); 517 } 518 519 static void 520 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 521 { 522 struct uma_bucket_zone *ubz; 523 524 if (bucket->ub_cnt != 0) 525 bucket_drain(zone, bucket); 526 527 KASSERT(bucket->ub_cnt == 0, 528 ("bucket_free: Freeing a non free bucket.")); 529 KASSERT(bucket->ub_seq == SMR_SEQ_INVALID, 530 ("bucket_free: Freeing an SMR bucket.")); 531 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 532 udata = (void *)(uintptr_t)zone->uz_flags; 533 ubz = bucket_zone_lookup(bucket->ub_entries); 534 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 535 } 536 537 static void 538 bucket_zone_drain(void) 539 { 540 struct uma_bucket_zone *ubz; 541 542 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 543 uma_zone_reclaim(ubz->ubz_zone, UMA_RECLAIM_DRAIN); 544 } 545 546 /* 547 * Acquire the domain lock and record contention. 548 */ 549 static uma_zone_domain_t 550 zone_domain_lock(uma_zone_t zone, int domain) 551 { 552 uma_zone_domain_t zdom; 553 bool lockfail; 554 555 zdom = ZDOM_GET(zone, domain); 556 lockfail = false; 557 if (ZDOM_OWNED(zdom)) 558 lockfail = true; 559 ZDOM_LOCK(zdom); 560 /* This is unsynchronized. The counter does not need to be precise. */ 561 if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max) 562 zone->uz_bucket_size++; 563 return (zdom); 564 } 565 566 /* 567 * Search for the domain with the least cached items and return it if it 568 * is out of balance with the preferred domain. 569 */ 570 static __noinline int 571 zone_domain_lowest(uma_zone_t zone, int pref) 572 { 573 long least, nitems, prefitems; 574 int domain; 575 int i; 576 577 prefitems = least = LONG_MAX; 578 domain = 0; 579 for (i = 0; i < vm_ndomains; i++) { 580 nitems = ZDOM_GET(zone, i)->uzd_nitems; 581 if (nitems < least) { 582 domain = i; 583 least = nitems; 584 } 585 if (domain == pref) 586 prefitems = nitems; 587 } 588 if (prefitems < least * 2) 589 return (pref); 590 591 return (domain); 592 } 593 594 /* 595 * Search for the domain with the most cached items and return it or the 596 * preferred domain if it has enough to proceed. 597 */ 598 static __noinline int 599 zone_domain_highest(uma_zone_t zone, int pref) 600 { 601 long most, nitems; 602 int domain; 603 int i; 604 605 if (ZDOM_GET(zone, pref)->uzd_nitems > BUCKET_MAX) 606 return (pref); 607 608 most = 0; 609 domain = 0; 610 for (i = 0; i < vm_ndomains; i++) { 611 nitems = ZDOM_GET(zone, i)->uzd_nitems; 612 if (nitems > most) { 613 domain = i; 614 most = nitems; 615 } 616 } 617 618 return (domain); 619 } 620 621 /* 622 * Safely subtract cnt from imax. 623 */ 624 static void 625 zone_domain_imax_sub(uma_zone_domain_t zdom, int cnt) 626 { 627 long new; 628 long old; 629 630 old = zdom->uzd_imax; 631 do { 632 if (old <= cnt) 633 new = 0; 634 else 635 new = old - cnt; 636 } while (atomic_fcmpset_long(&zdom->uzd_imax, &old, new) == 0); 637 } 638 639 /* 640 * Set the maximum imax value. 641 */ 642 static void 643 zone_domain_imax_set(uma_zone_domain_t zdom, int nitems) 644 { 645 long old; 646 647 old = zdom->uzd_imax; 648 do { 649 if (old >= nitems) 650 break; 651 } while (atomic_fcmpset_long(&zdom->uzd_imax, &old, nitems) == 0); 652 } 653 654 /* 655 * Attempt to satisfy an allocation by retrieving a full bucket from one of the 656 * zone's caches. If a bucket is found the zone is not locked on return. 657 */ 658 static uma_bucket_t 659 zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom, bool reclaim) 660 { 661 uma_bucket_t bucket; 662 int i; 663 bool dtor = false; 664 665 ZDOM_LOCK_ASSERT(zdom); 666 667 if ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) == NULL) 668 return (NULL); 669 670 /* SMR Buckets can not be re-used until readers expire. */ 671 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 672 bucket->ub_seq != SMR_SEQ_INVALID) { 673 if (!smr_poll(zone->uz_smr, bucket->ub_seq, false)) 674 return (NULL); 675 bucket->ub_seq = SMR_SEQ_INVALID; 676 dtor = (zone->uz_dtor != NULL) || UMA_ALWAYS_CTORDTOR; 677 if (STAILQ_NEXT(bucket, ub_link) != NULL) 678 zdom->uzd_seq = STAILQ_NEXT(bucket, ub_link)->ub_seq; 679 } 680 MPASS(zdom->uzd_nitems >= bucket->ub_cnt); 681 STAILQ_REMOVE_HEAD(&zdom->uzd_buckets, ub_link); 682 zdom->uzd_nitems -= bucket->ub_cnt; 683 684 /* 685 * Shift the bounds of the current WSS interval to avoid 686 * perturbing the estimate. 687 */ 688 if (reclaim) { 689 zdom->uzd_imin -= lmin(zdom->uzd_imin, bucket->ub_cnt); 690 zone_domain_imax_sub(zdom, bucket->ub_cnt); 691 } else if (zdom->uzd_imin > zdom->uzd_nitems) 692 zdom->uzd_imin = zdom->uzd_nitems; 693 694 ZDOM_UNLOCK(zdom); 695 if (dtor) 696 for (i = 0; i < bucket->ub_cnt; i++) 697 item_dtor(zone, bucket->ub_bucket[i], zone->uz_size, 698 NULL, SKIP_NONE); 699 700 return (bucket); 701 } 702 703 /* 704 * Insert a full bucket into the specified cache. The "ws" parameter indicates 705 * whether the bucket's contents should be counted as part of the zone's working 706 * set. The bucket may be freed if it exceeds the bucket limit. 707 */ 708 static void 709 zone_put_bucket(uma_zone_t zone, int domain, uma_bucket_t bucket, void *udata, 710 const bool ws) 711 { 712 uma_zone_domain_t zdom; 713 714 /* We don't cache empty buckets. This can happen after a reclaim. */ 715 if (bucket->ub_cnt == 0) 716 goto out; 717 zdom = zone_domain_lock(zone, domain); 718 719 /* 720 * Conditionally set the maximum number of items. 721 */ 722 zdom->uzd_nitems += bucket->ub_cnt; 723 if (__predict_true(zdom->uzd_nitems < zone->uz_bucket_max)) { 724 if (ws) 725 zone_domain_imax_set(zdom, zdom->uzd_nitems); 726 if (STAILQ_EMPTY(&zdom->uzd_buckets)) 727 zdom->uzd_seq = bucket->ub_seq; 728 STAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link); 729 ZDOM_UNLOCK(zdom); 730 return; 731 } 732 zdom->uzd_nitems -= bucket->ub_cnt; 733 ZDOM_UNLOCK(zdom); 734 out: 735 bucket_free(zone, bucket, udata); 736 } 737 738 /* Pops an item out of a per-cpu cache bucket. */ 739 static inline void * 740 cache_bucket_pop(uma_cache_t cache, uma_cache_bucket_t bucket) 741 { 742 void *item; 743 744 CRITICAL_ASSERT(curthread); 745 746 bucket->ucb_cnt--; 747 item = bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt]; 748 #ifdef INVARIANTS 749 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = NULL; 750 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 751 #endif 752 cache->uc_allocs++; 753 754 return (item); 755 } 756 757 /* Pushes an item into a per-cpu cache bucket. */ 758 static inline void 759 cache_bucket_push(uma_cache_t cache, uma_cache_bucket_t bucket, void *item) 760 { 761 762 CRITICAL_ASSERT(curthread); 763 KASSERT(bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] == NULL, 764 ("uma_zfree: Freeing to non free bucket index.")); 765 766 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = item; 767 bucket->ucb_cnt++; 768 cache->uc_frees++; 769 } 770 771 /* 772 * Unload a UMA bucket from a per-cpu cache. 773 */ 774 static inline uma_bucket_t 775 cache_bucket_unload(uma_cache_bucket_t bucket) 776 { 777 uma_bucket_t b; 778 779 b = bucket->ucb_bucket; 780 if (b != NULL) { 781 MPASS(b->ub_entries == bucket->ucb_entries); 782 b->ub_cnt = bucket->ucb_cnt; 783 bucket->ucb_bucket = NULL; 784 bucket->ucb_entries = bucket->ucb_cnt = 0; 785 } 786 787 return (b); 788 } 789 790 static inline uma_bucket_t 791 cache_bucket_unload_alloc(uma_cache_t cache) 792 { 793 794 return (cache_bucket_unload(&cache->uc_allocbucket)); 795 } 796 797 static inline uma_bucket_t 798 cache_bucket_unload_free(uma_cache_t cache) 799 { 800 801 return (cache_bucket_unload(&cache->uc_freebucket)); 802 } 803 804 static inline uma_bucket_t 805 cache_bucket_unload_cross(uma_cache_t cache) 806 { 807 808 return (cache_bucket_unload(&cache->uc_crossbucket)); 809 } 810 811 /* 812 * Load a bucket into a per-cpu cache bucket. 813 */ 814 static inline void 815 cache_bucket_load(uma_cache_bucket_t bucket, uma_bucket_t b) 816 { 817 818 CRITICAL_ASSERT(curthread); 819 MPASS(bucket->ucb_bucket == NULL); 820 MPASS(b->ub_seq == SMR_SEQ_INVALID); 821 822 bucket->ucb_bucket = b; 823 bucket->ucb_cnt = b->ub_cnt; 824 bucket->ucb_entries = b->ub_entries; 825 } 826 827 static inline void 828 cache_bucket_load_alloc(uma_cache_t cache, uma_bucket_t b) 829 { 830 831 cache_bucket_load(&cache->uc_allocbucket, b); 832 } 833 834 static inline void 835 cache_bucket_load_free(uma_cache_t cache, uma_bucket_t b) 836 { 837 838 cache_bucket_load(&cache->uc_freebucket, b); 839 } 840 841 #ifdef NUMA 842 static inline void 843 cache_bucket_load_cross(uma_cache_t cache, uma_bucket_t b) 844 { 845 846 cache_bucket_load(&cache->uc_crossbucket, b); 847 } 848 #endif 849 850 /* 851 * Copy and preserve ucb_spare. 852 */ 853 static inline void 854 cache_bucket_copy(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 855 { 856 857 b1->ucb_bucket = b2->ucb_bucket; 858 b1->ucb_entries = b2->ucb_entries; 859 b1->ucb_cnt = b2->ucb_cnt; 860 } 861 862 /* 863 * Swap two cache buckets. 864 */ 865 static inline void 866 cache_bucket_swap(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 867 { 868 struct uma_cache_bucket b3; 869 870 CRITICAL_ASSERT(curthread); 871 872 cache_bucket_copy(&b3, b1); 873 cache_bucket_copy(b1, b2); 874 cache_bucket_copy(b2, &b3); 875 } 876 877 /* 878 * Attempt to fetch a bucket from a zone on behalf of the current cpu cache. 879 */ 880 static uma_bucket_t 881 cache_fetch_bucket(uma_zone_t zone, uma_cache_t cache, int domain) 882 { 883 uma_zone_domain_t zdom; 884 uma_bucket_t bucket; 885 886 /* 887 * Avoid the lock if possible. 888 */ 889 zdom = ZDOM_GET(zone, domain); 890 if (zdom->uzd_nitems == 0) 891 return (NULL); 892 893 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) != 0 && 894 !smr_poll(zone->uz_smr, zdom->uzd_seq, false)) 895 return (NULL); 896 897 /* 898 * Check the zone's cache of buckets. 899 */ 900 zdom = zone_domain_lock(zone, domain); 901 if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) { 902 KASSERT(bucket->ub_cnt != 0, 903 ("cache_fetch_bucket: Returning an empty bucket.")); 904 return (bucket); 905 } 906 ZDOM_UNLOCK(zdom); 907 908 return (NULL); 909 } 910 911 static void 912 zone_log_warning(uma_zone_t zone) 913 { 914 static const struct timeval warninterval = { 300, 0 }; 915 916 if (!zone_warnings || zone->uz_warning == NULL) 917 return; 918 919 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 920 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 921 } 922 923 static inline void 924 zone_maxaction(uma_zone_t zone) 925 { 926 927 if (zone->uz_maxaction.ta_func != NULL) 928 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 929 } 930 931 /* 932 * Routine called by timeout which is used to fire off some time interval 933 * based calculations. (stats, hash size, etc.) 934 * 935 * Arguments: 936 * arg Unused 937 * 938 * Returns: 939 * Nothing 940 */ 941 static void 942 uma_timeout(void *unused) 943 { 944 bucket_enable(); 945 zone_foreach(zone_timeout, NULL); 946 947 /* Reschedule this event */ 948 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 949 } 950 951 /* 952 * Update the working set size estimate for the zone's bucket cache. 953 * The constants chosen here are somewhat arbitrary. With an update period of 954 * 20s (UMA_TIMEOUT), this estimate is dominated by zone activity over the 955 * last 100s. 956 */ 957 static void 958 zone_domain_update_wss(uma_zone_domain_t zdom) 959 { 960 long wss; 961 962 ZDOM_LOCK(zdom); 963 MPASS(zdom->uzd_imax >= zdom->uzd_imin); 964 wss = zdom->uzd_imax - zdom->uzd_imin; 965 zdom->uzd_imax = zdom->uzd_imin = zdom->uzd_nitems; 966 zdom->uzd_wss = (4 * wss + zdom->uzd_wss) / 5; 967 ZDOM_UNLOCK(zdom); 968 } 969 970 /* 971 * Routine to perform timeout driven calculations. This expands the 972 * hashes and does per cpu statistics aggregation. 973 * 974 * Returns nothing. 975 */ 976 static void 977 zone_timeout(uma_zone_t zone, void *unused) 978 { 979 uma_keg_t keg; 980 u_int slabs, pages; 981 982 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 983 goto update_wss; 984 985 keg = zone->uz_keg; 986 987 /* 988 * Hash zones are non-numa by definition so the first domain 989 * is the only one present. 990 */ 991 KEG_LOCK(keg, 0); 992 pages = keg->uk_domain[0].ud_pages; 993 994 /* 995 * Expand the keg hash table. 996 * 997 * This is done if the number of slabs is larger than the hash size. 998 * What I'm trying to do here is completely reduce collisions. This 999 * may be a little aggressive. Should I allow for two collisions max? 1000 */ 1001 if ((slabs = pages / keg->uk_ppera) > keg->uk_hash.uh_hashsize) { 1002 struct uma_hash newhash; 1003 struct uma_hash oldhash; 1004 int ret; 1005 1006 /* 1007 * This is so involved because allocating and freeing 1008 * while the keg lock is held will lead to deadlock. 1009 * I have to do everything in stages and check for 1010 * races. 1011 */ 1012 KEG_UNLOCK(keg, 0); 1013 ret = hash_alloc(&newhash, 1 << fls(slabs)); 1014 KEG_LOCK(keg, 0); 1015 if (ret) { 1016 if (hash_expand(&keg->uk_hash, &newhash)) { 1017 oldhash = keg->uk_hash; 1018 keg->uk_hash = newhash; 1019 } else 1020 oldhash = newhash; 1021 1022 KEG_UNLOCK(keg, 0); 1023 hash_free(&oldhash); 1024 goto update_wss; 1025 } 1026 } 1027 KEG_UNLOCK(keg, 0); 1028 1029 update_wss: 1030 for (int i = 0; i < vm_ndomains; i++) 1031 zone_domain_update_wss(ZDOM_GET(zone, i)); 1032 } 1033 1034 /* 1035 * Allocate and zero fill the next sized hash table from the appropriate 1036 * backing store. 1037 * 1038 * Arguments: 1039 * hash A new hash structure with the old hash size in uh_hashsize 1040 * 1041 * Returns: 1042 * 1 on success and 0 on failure. 1043 */ 1044 static int 1045 hash_alloc(struct uma_hash *hash, u_int size) 1046 { 1047 size_t alloc; 1048 1049 KASSERT(powerof2(size), ("hash size must be power of 2")); 1050 if (size > UMA_HASH_SIZE_INIT) { 1051 hash->uh_hashsize = size; 1052 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 1053 hash->uh_slab_hash = malloc(alloc, M_UMAHASH, M_NOWAIT); 1054 } else { 1055 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 1056 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 1057 UMA_ANYDOMAIN, M_WAITOK); 1058 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 1059 } 1060 if (hash->uh_slab_hash) { 1061 bzero(hash->uh_slab_hash, alloc); 1062 hash->uh_hashmask = hash->uh_hashsize - 1; 1063 return (1); 1064 } 1065 1066 return (0); 1067 } 1068 1069 /* 1070 * Expands the hash table for HASH zones. This is done from zone_timeout 1071 * to reduce collisions. This must not be done in the regular allocation 1072 * path, otherwise, we can recurse on the vm while allocating pages. 1073 * 1074 * Arguments: 1075 * oldhash The hash you want to expand 1076 * newhash The hash structure for the new table 1077 * 1078 * Returns: 1079 * Nothing 1080 * 1081 * Discussion: 1082 */ 1083 static int 1084 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 1085 { 1086 uma_hash_slab_t slab; 1087 u_int hval; 1088 u_int idx; 1089 1090 if (!newhash->uh_slab_hash) 1091 return (0); 1092 1093 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 1094 return (0); 1095 1096 /* 1097 * I need to investigate hash algorithms for resizing without a 1098 * full rehash. 1099 */ 1100 1101 for (idx = 0; idx < oldhash->uh_hashsize; idx++) 1102 while (!LIST_EMPTY(&oldhash->uh_slab_hash[idx])) { 1103 slab = LIST_FIRST(&oldhash->uh_slab_hash[idx]); 1104 LIST_REMOVE(slab, uhs_hlink); 1105 hval = UMA_HASH(newhash, slab->uhs_data); 1106 LIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 1107 slab, uhs_hlink); 1108 } 1109 1110 return (1); 1111 } 1112 1113 /* 1114 * Free the hash bucket to the appropriate backing store. 1115 * 1116 * Arguments: 1117 * slab_hash The hash bucket we're freeing 1118 * hashsize The number of entries in that hash bucket 1119 * 1120 * Returns: 1121 * Nothing 1122 */ 1123 static void 1124 hash_free(struct uma_hash *hash) 1125 { 1126 if (hash->uh_slab_hash == NULL) 1127 return; 1128 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 1129 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 1130 else 1131 free(hash->uh_slab_hash, M_UMAHASH); 1132 } 1133 1134 /* 1135 * Frees all outstanding items in a bucket 1136 * 1137 * Arguments: 1138 * zone The zone to free to, must be unlocked. 1139 * bucket The free/alloc bucket with items. 1140 * 1141 * Returns: 1142 * Nothing 1143 */ 1144 static void 1145 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 1146 { 1147 int i; 1148 1149 if (bucket->ub_cnt == 0) 1150 return; 1151 1152 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 1153 bucket->ub_seq != SMR_SEQ_INVALID) { 1154 smr_wait(zone->uz_smr, bucket->ub_seq); 1155 bucket->ub_seq = SMR_SEQ_INVALID; 1156 for (i = 0; i < bucket->ub_cnt; i++) 1157 item_dtor(zone, bucket->ub_bucket[i], 1158 zone->uz_size, NULL, SKIP_NONE); 1159 } 1160 if (zone->uz_fini) 1161 for (i = 0; i < bucket->ub_cnt; i++) 1162 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 1163 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 1164 if (zone->uz_max_items > 0) 1165 zone_free_limit(zone, bucket->ub_cnt); 1166 #ifdef INVARIANTS 1167 bzero(bucket->ub_bucket, sizeof(void *) * bucket->ub_cnt); 1168 #endif 1169 bucket->ub_cnt = 0; 1170 } 1171 1172 /* 1173 * Drains the per cpu caches for a zone. 1174 * 1175 * NOTE: This may only be called while the zone is being torn down, and not 1176 * during normal operation. This is necessary in order that we do not have 1177 * to migrate CPUs to drain the per-CPU caches. 1178 * 1179 * Arguments: 1180 * zone The zone to drain, must be unlocked. 1181 * 1182 * Returns: 1183 * Nothing 1184 */ 1185 static void 1186 cache_drain(uma_zone_t zone) 1187 { 1188 uma_cache_t cache; 1189 uma_bucket_t bucket; 1190 smr_seq_t seq; 1191 int cpu; 1192 1193 /* 1194 * XXX: It is safe to not lock the per-CPU caches, because we're 1195 * tearing down the zone anyway. I.e., there will be no further use 1196 * of the caches at this point. 1197 * 1198 * XXX: It would good to be able to assert that the zone is being 1199 * torn down to prevent improper use of cache_drain(). 1200 */ 1201 seq = SMR_SEQ_INVALID; 1202 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 1203 seq = smr_advance(zone->uz_smr); 1204 CPU_FOREACH(cpu) { 1205 cache = &zone->uz_cpu[cpu]; 1206 bucket = cache_bucket_unload_alloc(cache); 1207 if (bucket != NULL) 1208 bucket_free(zone, bucket, NULL); 1209 bucket = cache_bucket_unload_free(cache); 1210 if (bucket != NULL) { 1211 bucket->ub_seq = seq; 1212 bucket_free(zone, bucket, NULL); 1213 } 1214 bucket = cache_bucket_unload_cross(cache); 1215 if (bucket != NULL) { 1216 bucket->ub_seq = seq; 1217 bucket_free(zone, bucket, NULL); 1218 } 1219 } 1220 bucket_cache_reclaim(zone, true); 1221 } 1222 1223 static void 1224 cache_shrink(uma_zone_t zone, void *unused) 1225 { 1226 1227 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1228 return; 1229 1230 zone->uz_bucket_size = 1231 (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2; 1232 } 1233 1234 static void 1235 cache_drain_safe_cpu(uma_zone_t zone, void *unused) 1236 { 1237 uma_cache_t cache; 1238 uma_bucket_t b1, b2, b3; 1239 int domain; 1240 1241 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1242 return; 1243 1244 b1 = b2 = b3 = NULL; 1245 critical_enter(); 1246 cache = &zone->uz_cpu[curcpu]; 1247 domain = PCPU_GET(domain); 1248 b1 = cache_bucket_unload_alloc(cache); 1249 1250 /* 1251 * Don't flush SMR zone buckets. This leaves the zone without a 1252 * bucket and forces every free to synchronize(). 1253 */ 1254 if ((zone->uz_flags & UMA_ZONE_SMR) == 0) { 1255 b2 = cache_bucket_unload_free(cache); 1256 b3 = cache_bucket_unload_cross(cache); 1257 } 1258 critical_exit(); 1259 1260 if (b1 != NULL) 1261 zone_free_bucket(zone, b1, NULL, domain, false); 1262 if (b2 != NULL) 1263 zone_free_bucket(zone, b2, NULL, domain, false); 1264 if (b3 != NULL) { 1265 /* Adjust the domain so it goes to zone_free_cross. */ 1266 domain = (domain + 1) % vm_ndomains; 1267 zone_free_bucket(zone, b3, NULL, domain, false); 1268 } 1269 } 1270 1271 /* 1272 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 1273 * This is an expensive call because it needs to bind to all CPUs 1274 * one by one and enter a critical section on each of them in order 1275 * to safely access their cache buckets. 1276 * Zone lock must not be held on call this function. 1277 */ 1278 static void 1279 pcpu_cache_drain_safe(uma_zone_t zone) 1280 { 1281 int cpu; 1282 1283 /* 1284 * Polite bucket sizes shrinking was not enough, shrink aggressively. 1285 */ 1286 if (zone) 1287 cache_shrink(zone, NULL); 1288 else 1289 zone_foreach(cache_shrink, NULL); 1290 1291 CPU_FOREACH(cpu) { 1292 thread_lock(curthread); 1293 sched_bind(curthread, cpu); 1294 thread_unlock(curthread); 1295 1296 if (zone) 1297 cache_drain_safe_cpu(zone, NULL); 1298 else 1299 zone_foreach(cache_drain_safe_cpu, NULL); 1300 } 1301 thread_lock(curthread); 1302 sched_unbind(curthread); 1303 thread_unlock(curthread); 1304 } 1305 1306 /* 1307 * Reclaim cached buckets from a zone. All buckets are reclaimed if the caller 1308 * requested a drain, otherwise the per-domain caches are trimmed to either 1309 * estimated working set size. 1310 */ 1311 static void 1312 bucket_cache_reclaim(uma_zone_t zone, bool drain) 1313 { 1314 uma_zone_domain_t zdom; 1315 uma_bucket_t bucket; 1316 long target; 1317 int i; 1318 1319 /* 1320 * Shrink the zone bucket size to ensure that the per-CPU caches 1321 * don't grow too large. 1322 */ 1323 if (zone->uz_bucket_size > zone->uz_bucket_size_min) 1324 zone->uz_bucket_size--; 1325 1326 for (i = 0; i < vm_ndomains; i++) { 1327 /* 1328 * The cross bucket is partially filled and not part of 1329 * the item count. Reclaim it individually here. 1330 */ 1331 zdom = ZDOM_GET(zone, i); 1332 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 || drain) { 1333 ZONE_CROSS_LOCK(zone); 1334 bucket = zdom->uzd_cross; 1335 zdom->uzd_cross = NULL; 1336 ZONE_CROSS_UNLOCK(zone); 1337 if (bucket != NULL) 1338 bucket_free(zone, bucket, NULL); 1339 } 1340 1341 /* 1342 * If we were asked to drain the zone, we are done only once 1343 * this bucket cache is empty. Otherwise, we reclaim items in 1344 * excess of the zone's estimated working set size. If the 1345 * difference nitems - imin is larger than the WSS estimate, 1346 * then the estimate will grow at the end of this interval and 1347 * we ignore the historical average. 1348 */ 1349 ZDOM_LOCK(zdom); 1350 target = drain ? 0 : lmax(zdom->uzd_wss, zdom->uzd_nitems - 1351 zdom->uzd_imin); 1352 while (zdom->uzd_nitems > target) { 1353 bucket = zone_fetch_bucket(zone, zdom, true); 1354 if (bucket == NULL) 1355 break; 1356 bucket_free(zone, bucket, NULL); 1357 ZDOM_LOCK(zdom); 1358 } 1359 ZDOM_UNLOCK(zdom); 1360 } 1361 } 1362 1363 static void 1364 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 1365 { 1366 uint8_t *mem; 1367 int i; 1368 uint8_t flags; 1369 1370 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 1371 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 1372 1373 mem = slab_data(slab, keg); 1374 flags = slab->us_flags; 1375 i = start; 1376 if (keg->uk_fini != NULL) { 1377 for (i--; i > -1; i--) 1378 #ifdef INVARIANTS 1379 /* 1380 * trash_fini implies that dtor was trash_dtor. trash_fini 1381 * would check that memory hasn't been modified since free, 1382 * which executed trash_dtor. 1383 * That's why we need to run uma_dbg_kskip() check here, 1384 * albeit we don't make skip check for other init/fini 1385 * invocations. 1386 */ 1387 if (!uma_dbg_kskip(keg, slab_item(slab, keg, i)) || 1388 keg->uk_fini != trash_fini) 1389 #endif 1390 keg->uk_fini(slab_item(slab, keg, i), keg->uk_size); 1391 } 1392 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) 1393 zone_free_item(slabzone(keg->uk_ipers), slab_tohashslab(slab), 1394 NULL, SKIP_NONE); 1395 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 1396 uma_total_dec(PAGE_SIZE * keg->uk_ppera); 1397 } 1398 1399 /* 1400 * Frees pages from a keg back to the system. This is done on demand from 1401 * the pageout daemon. 1402 * 1403 * Returns nothing. 1404 */ 1405 static void 1406 keg_drain(uma_keg_t keg) 1407 { 1408 struct slabhead freeslabs; 1409 uma_domain_t dom; 1410 uma_slab_t slab, tmp; 1411 int i, n; 1412 1413 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 1414 return; 1415 1416 for (i = 0; i < vm_ndomains; i++) { 1417 CTR4(KTR_UMA, "keg_drain %s(%p) domain %d free items: %u", 1418 keg->uk_name, keg, i, dom->ud_free_items); 1419 dom = &keg->uk_domain[i]; 1420 LIST_INIT(&freeslabs); 1421 1422 KEG_LOCK(keg, i); 1423 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) { 1424 LIST_FOREACH(slab, &dom->ud_free_slab, us_link) 1425 UMA_HASH_REMOVE(&keg->uk_hash, slab); 1426 } 1427 n = dom->ud_free_slabs; 1428 LIST_SWAP(&freeslabs, &dom->ud_free_slab, uma_slab, us_link); 1429 dom->ud_free_slabs = 0; 1430 dom->ud_free_items -= n * keg->uk_ipers; 1431 dom->ud_pages -= n * keg->uk_ppera; 1432 KEG_UNLOCK(keg, i); 1433 1434 LIST_FOREACH_SAFE(slab, &freeslabs, us_link, tmp) 1435 keg_free_slab(keg, slab, keg->uk_ipers); 1436 } 1437 } 1438 1439 static void 1440 zone_reclaim(uma_zone_t zone, int waitok, bool drain) 1441 { 1442 1443 /* 1444 * Set draining to interlock with zone_dtor() so we can release our 1445 * locks as we go. Only dtor() should do a WAITOK call since it 1446 * is the only call that knows the structure will still be available 1447 * when it wakes up. 1448 */ 1449 ZONE_LOCK(zone); 1450 while (zone->uz_flags & UMA_ZFLAG_RECLAIMING) { 1451 if (waitok == M_NOWAIT) 1452 goto out; 1453 msleep(zone, &ZDOM_GET(zone, 0)->uzd_lock, PVM, "zonedrain", 1454 1); 1455 } 1456 zone->uz_flags |= UMA_ZFLAG_RECLAIMING; 1457 ZONE_UNLOCK(zone); 1458 bucket_cache_reclaim(zone, drain); 1459 1460 /* 1461 * The DRAINING flag protects us from being freed while 1462 * we're running. Normally the uma_rwlock would protect us but we 1463 * must be able to release and acquire the right lock for each keg. 1464 */ 1465 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) 1466 keg_drain(zone->uz_keg); 1467 ZONE_LOCK(zone); 1468 zone->uz_flags &= ~UMA_ZFLAG_RECLAIMING; 1469 wakeup(zone); 1470 out: 1471 ZONE_UNLOCK(zone); 1472 } 1473 1474 static void 1475 zone_drain(uma_zone_t zone, void *unused) 1476 { 1477 1478 zone_reclaim(zone, M_NOWAIT, true); 1479 } 1480 1481 static void 1482 zone_trim(uma_zone_t zone, void *unused) 1483 { 1484 1485 zone_reclaim(zone, M_NOWAIT, false); 1486 } 1487 1488 /* 1489 * Allocate a new slab for a keg and inserts it into the partial slab list. 1490 * The keg should be unlocked on entry. If the allocation succeeds it will 1491 * be locked on return. 1492 * 1493 * Arguments: 1494 * flags Wait flags for the item initialization routine 1495 * aflags Wait flags for the slab allocation 1496 * 1497 * Returns: 1498 * The slab that was allocated or NULL if there is no memory and the 1499 * caller specified M_NOWAIT. 1500 */ 1501 static uma_slab_t 1502 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags, 1503 int aflags) 1504 { 1505 uma_domain_t dom; 1506 uma_alloc allocf; 1507 uma_slab_t slab; 1508 unsigned long size; 1509 uint8_t *mem; 1510 uint8_t sflags; 1511 int i; 1512 1513 KASSERT(domain >= 0 && domain < vm_ndomains, 1514 ("keg_alloc_slab: domain %d out of range", domain)); 1515 1516 allocf = keg->uk_allocf; 1517 slab = NULL; 1518 mem = NULL; 1519 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) { 1520 uma_hash_slab_t hslab; 1521 hslab = zone_alloc_item(slabzone(keg->uk_ipers), NULL, 1522 domain, aflags); 1523 if (hslab == NULL) 1524 goto fail; 1525 slab = &hslab->uhs_slab; 1526 } 1527 1528 /* 1529 * This reproduces the old vm_zone behavior of zero filling pages the 1530 * first time they are added to a zone. 1531 * 1532 * Malloced items are zeroed in uma_zalloc. 1533 */ 1534 1535 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1536 aflags |= M_ZERO; 1537 else 1538 aflags &= ~M_ZERO; 1539 1540 if (keg->uk_flags & UMA_ZONE_NODUMP) 1541 aflags |= M_NODUMP; 1542 1543 /* zone is passed for legacy reasons. */ 1544 size = keg->uk_ppera * PAGE_SIZE; 1545 mem = allocf(zone, size, domain, &sflags, aflags); 1546 if (mem == NULL) { 1547 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) 1548 zone_free_item(slabzone(keg->uk_ipers), 1549 slab_tohashslab(slab), NULL, SKIP_NONE); 1550 goto fail; 1551 } 1552 uma_total_inc(size); 1553 1554 /* For HASH zones all pages go to the same uma_domain. */ 1555 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 1556 domain = 0; 1557 1558 /* Point the slab into the allocated memory */ 1559 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) 1560 slab = (uma_slab_t )(mem + keg->uk_pgoff); 1561 else 1562 slab_tohashslab(slab)->uhs_data = mem; 1563 1564 if (keg->uk_flags & UMA_ZFLAG_VTOSLAB) 1565 for (i = 0; i < keg->uk_ppera; i++) 1566 vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE), 1567 zone, slab); 1568 1569 slab->us_freecount = keg->uk_ipers; 1570 slab->us_flags = sflags; 1571 slab->us_domain = domain; 1572 1573 BIT_FILL(keg->uk_ipers, &slab->us_free); 1574 #ifdef INVARIANTS 1575 BIT_ZERO(keg->uk_ipers, slab_dbg_bits(slab, keg)); 1576 #endif 1577 1578 if (keg->uk_init != NULL) { 1579 for (i = 0; i < keg->uk_ipers; i++) 1580 if (keg->uk_init(slab_item(slab, keg, i), 1581 keg->uk_size, flags) != 0) 1582 break; 1583 if (i != keg->uk_ipers) { 1584 keg_free_slab(keg, slab, i); 1585 goto fail; 1586 } 1587 } 1588 KEG_LOCK(keg, domain); 1589 1590 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1591 slab, keg->uk_name, keg); 1592 1593 if (keg->uk_flags & UMA_ZFLAG_HASH) 1594 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1595 1596 /* 1597 * If we got a slab here it's safe to mark it partially used 1598 * and return. We assume that the caller is going to remove 1599 * at least one item. 1600 */ 1601 dom = &keg->uk_domain[domain]; 1602 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 1603 dom->ud_pages += keg->uk_ppera; 1604 dom->ud_free_items += keg->uk_ipers; 1605 1606 return (slab); 1607 1608 fail: 1609 return (NULL); 1610 } 1611 1612 /* 1613 * This function is intended to be used early on in place of page_alloc() so 1614 * that we may use the boot time page cache to satisfy allocations before 1615 * the VM is ready. 1616 */ 1617 static void * 1618 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1619 int wait) 1620 { 1621 vm_paddr_t pa; 1622 vm_page_t m; 1623 void *mem; 1624 int pages; 1625 int i; 1626 1627 pages = howmany(bytes, PAGE_SIZE); 1628 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1629 1630 *pflag = UMA_SLAB_BOOT; 1631 m = vm_page_alloc_contig_domain(NULL, 0, domain, 1632 malloc2vm_flags(wait) | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED, pages, 1633 (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT); 1634 if (m == NULL) 1635 return (NULL); 1636 1637 pa = VM_PAGE_TO_PHYS(m); 1638 for (i = 0; i < pages; i++, pa += PAGE_SIZE) { 1639 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 1640 defined(__riscv) || defined(__powerpc64__) 1641 if ((wait & M_NODUMP) == 0) 1642 dump_add_page(pa); 1643 #endif 1644 } 1645 /* Allocate KVA and indirectly advance bootmem. */ 1646 mem = (void *)pmap_map(&bootmem, m->phys_addr, 1647 m->phys_addr + (pages * PAGE_SIZE), VM_PROT_READ | VM_PROT_WRITE); 1648 if ((wait & M_ZERO) != 0) 1649 bzero(mem, pages * PAGE_SIZE); 1650 1651 return (mem); 1652 } 1653 1654 static void 1655 startup_free(void *mem, vm_size_t bytes) 1656 { 1657 vm_offset_t va; 1658 vm_page_t m; 1659 1660 va = (vm_offset_t)mem; 1661 m = PHYS_TO_VM_PAGE(pmap_kextract(va)); 1662 pmap_remove(kernel_pmap, va, va + bytes); 1663 for (; bytes != 0; bytes -= PAGE_SIZE, m++) { 1664 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 1665 defined(__riscv) || defined(__powerpc64__) 1666 dump_drop_page(VM_PAGE_TO_PHYS(m)); 1667 #endif 1668 vm_page_unwire_noq(m); 1669 vm_page_free(m); 1670 } 1671 } 1672 1673 /* 1674 * Allocates a number of pages from the system 1675 * 1676 * Arguments: 1677 * bytes The number of bytes requested 1678 * wait Shall we wait? 1679 * 1680 * Returns: 1681 * A pointer to the alloced memory or possibly 1682 * NULL if M_NOWAIT is set. 1683 */ 1684 static void * 1685 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1686 int wait) 1687 { 1688 void *p; /* Returned page */ 1689 1690 *pflag = UMA_SLAB_KERNEL; 1691 p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait); 1692 1693 return (p); 1694 } 1695 1696 static void * 1697 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1698 int wait) 1699 { 1700 struct pglist alloctail; 1701 vm_offset_t addr, zkva; 1702 int cpu, flags; 1703 vm_page_t p, p_next; 1704 #ifdef NUMA 1705 struct pcpu *pc; 1706 #endif 1707 1708 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE); 1709 1710 TAILQ_INIT(&alloctail); 1711 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1712 malloc2vm_flags(wait); 1713 *pflag = UMA_SLAB_KERNEL; 1714 for (cpu = 0; cpu <= mp_maxid; cpu++) { 1715 if (CPU_ABSENT(cpu)) { 1716 p = vm_page_alloc(NULL, 0, flags); 1717 } else { 1718 #ifndef NUMA 1719 p = vm_page_alloc(NULL, 0, flags); 1720 #else 1721 pc = pcpu_find(cpu); 1722 if (__predict_false(VM_DOMAIN_EMPTY(pc->pc_domain))) 1723 p = NULL; 1724 else 1725 p = vm_page_alloc_domain(NULL, 0, 1726 pc->pc_domain, flags); 1727 if (__predict_false(p == NULL)) 1728 p = vm_page_alloc(NULL, 0, flags); 1729 #endif 1730 } 1731 if (__predict_false(p == NULL)) 1732 goto fail; 1733 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1734 } 1735 if ((addr = kva_alloc(bytes)) == 0) 1736 goto fail; 1737 zkva = addr; 1738 TAILQ_FOREACH(p, &alloctail, listq) { 1739 pmap_qenter(zkva, &p, 1); 1740 zkva += PAGE_SIZE; 1741 } 1742 return ((void*)addr); 1743 fail: 1744 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1745 vm_page_unwire_noq(p); 1746 vm_page_free(p); 1747 } 1748 return (NULL); 1749 } 1750 1751 /* 1752 * Allocates a number of pages from within an object 1753 * 1754 * Arguments: 1755 * bytes The number of bytes requested 1756 * wait Shall we wait? 1757 * 1758 * Returns: 1759 * A pointer to the alloced memory or possibly 1760 * NULL if M_NOWAIT is set. 1761 */ 1762 static void * 1763 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 1764 int wait) 1765 { 1766 TAILQ_HEAD(, vm_page) alloctail; 1767 u_long npages; 1768 vm_offset_t retkva, zkva; 1769 vm_page_t p, p_next; 1770 uma_keg_t keg; 1771 1772 TAILQ_INIT(&alloctail); 1773 keg = zone->uz_keg; 1774 1775 npages = howmany(bytes, PAGE_SIZE); 1776 while (npages > 0) { 1777 p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT | 1778 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1779 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK : 1780 VM_ALLOC_NOWAIT)); 1781 if (p != NULL) { 1782 /* 1783 * Since the page does not belong to an object, its 1784 * listq is unused. 1785 */ 1786 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1787 npages--; 1788 continue; 1789 } 1790 /* 1791 * Page allocation failed, free intermediate pages and 1792 * exit. 1793 */ 1794 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1795 vm_page_unwire_noq(p); 1796 vm_page_free(p); 1797 } 1798 return (NULL); 1799 } 1800 *flags = UMA_SLAB_PRIV; 1801 zkva = keg->uk_kva + 1802 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1803 retkva = zkva; 1804 TAILQ_FOREACH(p, &alloctail, listq) { 1805 pmap_qenter(zkva, &p, 1); 1806 zkva += PAGE_SIZE; 1807 } 1808 1809 return ((void *)retkva); 1810 } 1811 1812 /* 1813 * Allocate physically contiguous pages. 1814 */ 1815 static void * 1816 contig_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1817 int wait) 1818 { 1819 1820 *pflag = UMA_SLAB_KERNEL; 1821 return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain), 1822 bytes, wait, 0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT)); 1823 } 1824 1825 /* 1826 * Frees a number of pages to the system 1827 * 1828 * Arguments: 1829 * mem A pointer to the memory to be freed 1830 * size The size of the memory being freed 1831 * flags The original p->us_flags field 1832 * 1833 * Returns: 1834 * Nothing 1835 */ 1836 static void 1837 page_free(void *mem, vm_size_t size, uint8_t flags) 1838 { 1839 1840 if ((flags & UMA_SLAB_BOOT) != 0) { 1841 startup_free(mem, size); 1842 return; 1843 } 1844 1845 KASSERT((flags & UMA_SLAB_KERNEL) != 0, 1846 ("UMA: page_free used with invalid flags %x", flags)); 1847 1848 kmem_free((vm_offset_t)mem, size); 1849 } 1850 1851 /* 1852 * Frees pcpu zone allocations 1853 * 1854 * Arguments: 1855 * mem A pointer to the memory to be freed 1856 * size The size of the memory being freed 1857 * flags The original p->us_flags field 1858 * 1859 * Returns: 1860 * Nothing 1861 */ 1862 static void 1863 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags) 1864 { 1865 vm_offset_t sva, curva; 1866 vm_paddr_t paddr; 1867 vm_page_t m; 1868 1869 MPASS(size == (mp_maxid+1)*PAGE_SIZE); 1870 1871 if ((flags & UMA_SLAB_BOOT) != 0) { 1872 startup_free(mem, size); 1873 return; 1874 } 1875 1876 sva = (vm_offset_t)mem; 1877 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) { 1878 paddr = pmap_kextract(curva); 1879 m = PHYS_TO_VM_PAGE(paddr); 1880 vm_page_unwire_noq(m); 1881 vm_page_free(m); 1882 } 1883 pmap_qremove(sva, size >> PAGE_SHIFT); 1884 kva_free(sva, size); 1885 } 1886 1887 1888 /* 1889 * Zero fill initializer 1890 * 1891 * Arguments/Returns follow uma_init specifications 1892 */ 1893 static int 1894 zero_init(void *mem, int size, int flags) 1895 { 1896 bzero(mem, size); 1897 return (0); 1898 } 1899 1900 #ifdef INVARIANTS 1901 struct noslabbits * 1902 slab_dbg_bits(uma_slab_t slab, uma_keg_t keg) 1903 { 1904 1905 return ((void *)((char *)&slab->us_free + BITSET_SIZE(keg->uk_ipers))); 1906 } 1907 #endif 1908 1909 /* 1910 * Actual size of embedded struct slab (!OFFPAGE). 1911 */ 1912 size_t 1913 slab_sizeof(int nitems) 1914 { 1915 size_t s; 1916 1917 s = sizeof(struct uma_slab) + BITSET_SIZE(nitems) * SLAB_BITSETS; 1918 return (roundup(s, UMA_ALIGN_PTR + 1)); 1919 } 1920 1921 /* 1922 * Size of memory for embedded slabs (!OFFPAGE). 1923 */ 1924 size_t 1925 slab_space(int nitems) 1926 { 1927 return (UMA_SLAB_SIZE - slab_sizeof(nitems)); 1928 } 1929 1930 #define UMA_FIXPT_SHIFT 31 1931 #define UMA_FRAC_FIXPT(n, d) \ 1932 ((uint32_t)(((uint64_t)(n) << UMA_FIXPT_SHIFT) / (d))) 1933 #define UMA_FIXPT_PCT(f) \ 1934 ((u_int)(((uint64_t)100 * (f)) >> UMA_FIXPT_SHIFT)) 1935 #define UMA_PCT_FIXPT(pct) UMA_FRAC_FIXPT((pct), 100) 1936 #define UMA_MIN_EFF UMA_PCT_FIXPT(100 - UMA_MAX_WASTE) 1937 1938 /* 1939 * Compute the number of items that will fit in a slab. If hdr is true, the 1940 * item count may be limited to provide space in the slab for an inline slab 1941 * header. Otherwise, all slab space will be provided for item storage. 1942 */ 1943 static u_int 1944 slab_ipers_hdr(u_int size, u_int rsize, u_int slabsize, bool hdr) 1945 { 1946 u_int ipers; 1947 u_int padpi; 1948 1949 /* The padding between items is not needed after the last item. */ 1950 padpi = rsize - size; 1951 1952 if (hdr) { 1953 /* 1954 * Start with the maximum item count and remove items until 1955 * the slab header first alongside the allocatable memory. 1956 */ 1957 for (ipers = MIN(SLAB_MAX_SETSIZE, 1958 (slabsize + padpi - slab_sizeof(1)) / rsize); 1959 ipers > 0 && 1960 ipers * rsize - padpi + slab_sizeof(ipers) > slabsize; 1961 ipers--) 1962 continue; 1963 } else { 1964 ipers = MIN((slabsize + padpi) / rsize, SLAB_MAX_SETSIZE); 1965 } 1966 1967 return (ipers); 1968 } 1969 1970 /* 1971 * Compute the number of items that will fit in a slab for a startup zone. 1972 */ 1973 int 1974 slab_ipers(size_t size, int align) 1975 { 1976 int rsize; 1977 1978 rsize = roundup(size, align + 1); /* Assume no CACHESPREAD */ 1979 return (slab_ipers_hdr(size, rsize, UMA_SLAB_SIZE, true)); 1980 } 1981 1982 struct keg_layout_result { 1983 u_int format; 1984 u_int slabsize; 1985 u_int ipers; 1986 u_int eff; 1987 }; 1988 1989 static void 1990 keg_layout_one(uma_keg_t keg, u_int rsize, u_int slabsize, u_int fmt, 1991 struct keg_layout_result *kl) 1992 { 1993 u_int total; 1994 1995 kl->format = fmt; 1996 kl->slabsize = slabsize; 1997 1998 /* Handle INTERNAL as inline with an extra page. */ 1999 if ((fmt & UMA_ZFLAG_INTERNAL) != 0) { 2000 kl->format &= ~UMA_ZFLAG_INTERNAL; 2001 kl->slabsize += PAGE_SIZE; 2002 } 2003 2004 kl->ipers = slab_ipers_hdr(keg->uk_size, rsize, kl->slabsize, 2005 (fmt & UMA_ZFLAG_OFFPAGE) == 0); 2006 2007 /* Account for memory used by an offpage slab header. */ 2008 total = kl->slabsize; 2009 if ((fmt & UMA_ZFLAG_OFFPAGE) != 0) 2010 total += slabzone(kl->ipers)->uz_keg->uk_rsize; 2011 2012 kl->eff = UMA_FRAC_FIXPT(kl->ipers * rsize, total); 2013 } 2014 2015 /* 2016 * Determine the format of a uma keg. This determines where the slab header 2017 * will be placed (inline or offpage) and calculates ipers, rsize, and ppera. 2018 * 2019 * Arguments 2020 * keg The zone we should initialize 2021 * 2022 * Returns 2023 * Nothing 2024 */ 2025 static void 2026 keg_layout(uma_keg_t keg) 2027 { 2028 struct keg_layout_result kl = {}, kl_tmp; 2029 u_int fmts[2]; 2030 u_int alignsize; 2031 u_int nfmt; 2032 u_int pages; 2033 u_int rsize; 2034 u_int slabsize; 2035 u_int i, j; 2036 2037 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 2038 (keg->uk_size <= UMA_PCPU_ALLOC_SIZE && 2039 (keg->uk_flags & UMA_ZONE_CACHESPREAD) == 0), 2040 ("%s: cannot configure for PCPU: keg=%s, size=%u, flags=0x%b", 2041 __func__, keg->uk_name, keg->uk_size, keg->uk_flags, 2042 PRINT_UMA_ZFLAGS)); 2043 KASSERT((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) == 0 || 2044 (keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0, 2045 ("%s: incompatible flags 0x%b", __func__, keg->uk_flags, 2046 PRINT_UMA_ZFLAGS)); 2047 2048 alignsize = keg->uk_align + 1; 2049 2050 /* 2051 * Calculate the size of each allocation (rsize) according to 2052 * alignment. If the requested size is smaller than we have 2053 * allocation bits for we round it up. 2054 */ 2055 rsize = MAX(keg->uk_size, UMA_SMALLEST_UNIT); 2056 rsize = roundup2(rsize, alignsize); 2057 2058 if ((keg->uk_flags & UMA_ZONE_CACHESPREAD) != 0) { 2059 /* 2060 * We want one item to start on every align boundary in a page. 2061 * To do this we will span pages. We will also extend the item 2062 * by the size of align if it is an even multiple of align. 2063 * Otherwise, it would fall on the same boundary every time. 2064 */ 2065 if ((rsize & alignsize) == 0) 2066 rsize += alignsize; 2067 slabsize = rsize * (PAGE_SIZE / alignsize); 2068 slabsize = MIN(slabsize, rsize * SLAB_MAX_SETSIZE); 2069 slabsize = MIN(slabsize, UMA_CACHESPREAD_MAX_SIZE); 2070 slabsize = round_page(slabsize); 2071 } else { 2072 /* 2073 * Start with a slab size of as many pages as it takes to 2074 * represent a single item. We will try to fit as many 2075 * additional items into the slab as possible. 2076 */ 2077 slabsize = round_page(keg->uk_size); 2078 } 2079 2080 /* Build a list of all of the available formats for this keg. */ 2081 nfmt = 0; 2082 2083 /* Evaluate an inline slab layout. */ 2084 if ((keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0) 2085 fmts[nfmt++] = 0; 2086 2087 /* TODO: vm_page-embedded slab. */ 2088 2089 /* 2090 * We can't do OFFPAGE if we're internal or if we've been 2091 * asked to not go to the VM for buckets. If we do this we 2092 * may end up going to the VM for slabs which we do not want 2093 * to do if we're UMA_ZONE_VM, which clearly forbids it. 2094 * In those cases, evaluate a pseudo-format called INTERNAL 2095 * which has an inline slab header and one extra page to 2096 * guarantee that it fits. 2097 * 2098 * Otherwise, see if using an OFFPAGE slab will improve our 2099 * efficiency. 2100 */ 2101 if ((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) != 0) 2102 fmts[nfmt++] = UMA_ZFLAG_INTERNAL; 2103 else 2104 fmts[nfmt++] = UMA_ZFLAG_OFFPAGE; 2105 2106 /* 2107 * Choose a slab size and format which satisfy the minimum efficiency. 2108 * Prefer the smallest slab size that meets the constraints. 2109 * 2110 * Start with a minimum slab size, to accommodate CACHESPREAD. Then, 2111 * for small items (up to PAGE_SIZE), the iteration increment is one 2112 * page; and for large items, the increment is one item. 2113 */ 2114 i = (slabsize + rsize - keg->uk_size) / MAX(PAGE_SIZE, rsize); 2115 KASSERT(i >= 1, ("keg %s(%p) flags=0x%b slabsize=%u, rsize=%u, i=%u", 2116 keg->uk_name, keg, keg->uk_flags, PRINT_UMA_ZFLAGS, slabsize, 2117 rsize, i)); 2118 for ( ; ; i++) { 2119 slabsize = (rsize <= PAGE_SIZE) ? ptoa(i) : 2120 round_page(rsize * (i - 1) + keg->uk_size); 2121 2122 for (j = 0; j < nfmt; j++) { 2123 /* Only if we have no viable format yet. */ 2124 if ((fmts[j] & UMA_ZFLAG_INTERNAL) != 0 && 2125 kl.ipers > 0) 2126 continue; 2127 2128 keg_layout_one(keg, rsize, slabsize, fmts[j], &kl_tmp); 2129 if (kl_tmp.eff <= kl.eff) 2130 continue; 2131 2132 kl = kl_tmp; 2133 2134 CTR6(KTR_UMA, "keg %s layout: format %#x " 2135 "(ipers %u * rsize %u) / slabsize %#x = %u%% eff", 2136 keg->uk_name, kl.format, kl.ipers, rsize, 2137 kl.slabsize, UMA_FIXPT_PCT(kl.eff)); 2138 2139 /* Stop when we reach the minimum efficiency. */ 2140 if (kl.eff >= UMA_MIN_EFF) 2141 break; 2142 } 2143 2144 if (kl.eff >= UMA_MIN_EFF || !multipage_slabs || 2145 slabsize >= SLAB_MAX_SETSIZE * rsize || 2146 (keg->uk_flags & (UMA_ZONE_PCPU | UMA_ZONE_CONTIG)) != 0) 2147 break; 2148 } 2149 2150 pages = atop(kl.slabsize); 2151 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 2152 pages *= mp_maxid + 1; 2153 2154 keg->uk_rsize = rsize; 2155 keg->uk_ipers = kl.ipers; 2156 keg->uk_ppera = pages; 2157 keg->uk_flags |= kl.format; 2158 2159 /* 2160 * How do we find the slab header if it is offpage or if not all item 2161 * start addresses are in the same page? We could solve the latter 2162 * case with vaddr alignment, but we don't. 2163 */ 2164 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0 || 2165 (keg->uk_ipers - 1) * rsize >= PAGE_SIZE) { 2166 if ((keg->uk_flags & UMA_ZONE_NOTPAGE) != 0) 2167 keg->uk_flags |= UMA_ZFLAG_HASH; 2168 else 2169 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2170 } 2171 2172 CTR6(KTR_UMA, "%s: keg=%s, flags=%#x, rsize=%u, ipers=%u, ppera=%u", 2173 __func__, keg->uk_name, keg->uk_flags, rsize, keg->uk_ipers, 2174 pages); 2175 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE, 2176 ("%s: keg=%s, flags=0x%b, rsize=%u, ipers=%u, ppera=%u", __func__, 2177 keg->uk_name, keg->uk_flags, PRINT_UMA_ZFLAGS, rsize, 2178 keg->uk_ipers, pages)); 2179 } 2180 2181 /* 2182 * Keg header ctor. This initializes all fields, locks, etc. And inserts 2183 * the keg onto the global keg list. 2184 * 2185 * Arguments/Returns follow uma_ctor specifications 2186 * udata Actually uma_kctor_args 2187 */ 2188 static int 2189 keg_ctor(void *mem, int size, void *udata, int flags) 2190 { 2191 struct uma_kctor_args *arg = udata; 2192 uma_keg_t keg = mem; 2193 uma_zone_t zone; 2194 int i; 2195 2196 bzero(keg, size); 2197 keg->uk_size = arg->size; 2198 keg->uk_init = arg->uminit; 2199 keg->uk_fini = arg->fini; 2200 keg->uk_align = arg->align; 2201 keg->uk_reserve = 0; 2202 keg->uk_flags = arg->flags; 2203 2204 /* 2205 * We use a global round-robin policy by default. Zones with 2206 * UMA_ZONE_FIRSTTOUCH set will use first-touch instead, in which 2207 * case the iterator is never run. 2208 */ 2209 keg->uk_dr.dr_policy = DOMAINSET_RR(); 2210 keg->uk_dr.dr_iter = 0; 2211 2212 /* 2213 * The master zone is passed to us at keg-creation time. 2214 */ 2215 zone = arg->zone; 2216 keg->uk_name = zone->uz_name; 2217 2218 if (arg->flags & UMA_ZONE_ZINIT) 2219 keg->uk_init = zero_init; 2220 2221 if (arg->flags & UMA_ZONE_MALLOC) 2222 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2223 2224 #ifndef SMP 2225 keg->uk_flags &= ~UMA_ZONE_PCPU; 2226 #endif 2227 2228 keg_layout(keg); 2229 2230 /* 2231 * Use a first-touch NUMA policy for kegs that pmap_extract() will 2232 * work on. Use round-robin for everything else. 2233 * 2234 * Zones may override the default by specifying either. 2235 */ 2236 #ifdef NUMA 2237 if ((keg->uk_flags & 2238 (UMA_ZONE_ROUNDROBIN | UMA_ZFLAG_CACHE | UMA_ZONE_NOTPAGE)) == 0) 2239 keg->uk_flags |= UMA_ZONE_FIRSTTOUCH; 2240 else if ((keg->uk_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2241 keg->uk_flags |= UMA_ZONE_ROUNDROBIN; 2242 #endif 2243 2244 /* 2245 * If we haven't booted yet we need allocations to go through the 2246 * startup cache until the vm is ready. 2247 */ 2248 #ifdef UMA_MD_SMALL_ALLOC 2249 if (keg->uk_ppera == 1) 2250 keg->uk_allocf = uma_small_alloc; 2251 else 2252 #endif 2253 if (booted < BOOT_KVA) 2254 keg->uk_allocf = startup_alloc; 2255 else if (keg->uk_flags & UMA_ZONE_PCPU) 2256 keg->uk_allocf = pcpu_page_alloc; 2257 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && keg->uk_ppera > 1) 2258 keg->uk_allocf = contig_alloc; 2259 else 2260 keg->uk_allocf = page_alloc; 2261 #ifdef UMA_MD_SMALL_ALLOC 2262 if (keg->uk_ppera == 1) 2263 keg->uk_freef = uma_small_free; 2264 else 2265 #endif 2266 if (keg->uk_flags & UMA_ZONE_PCPU) 2267 keg->uk_freef = pcpu_page_free; 2268 else 2269 keg->uk_freef = page_free; 2270 2271 /* 2272 * Initialize keg's locks. 2273 */ 2274 for (i = 0; i < vm_ndomains; i++) 2275 KEG_LOCK_INIT(keg, i, (arg->flags & UMA_ZONE_MTXCLASS)); 2276 2277 /* 2278 * If we're putting the slab header in the actual page we need to 2279 * figure out where in each page it goes. See slab_sizeof 2280 * definition. 2281 */ 2282 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) { 2283 size_t shsize; 2284 2285 shsize = slab_sizeof(keg->uk_ipers); 2286 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize; 2287 /* 2288 * The only way the following is possible is if with our 2289 * UMA_ALIGN_PTR adjustments we are now bigger than 2290 * UMA_SLAB_SIZE. I haven't checked whether this is 2291 * mathematically possible for all cases, so we make 2292 * sure here anyway. 2293 */ 2294 KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera, 2295 ("zone %s ipers %d rsize %d size %d slab won't fit", 2296 zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size)); 2297 } 2298 2299 if (keg->uk_flags & UMA_ZFLAG_HASH) 2300 hash_alloc(&keg->uk_hash, 0); 2301 2302 CTR3(KTR_UMA, "keg_ctor %p zone %s(%p)", keg, zone->uz_name, zone); 2303 2304 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 2305 2306 rw_wlock(&uma_rwlock); 2307 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 2308 rw_wunlock(&uma_rwlock); 2309 return (0); 2310 } 2311 2312 static void 2313 zone_kva_available(uma_zone_t zone, void *unused) 2314 { 2315 uma_keg_t keg; 2316 2317 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 2318 return; 2319 KEG_GET(zone, keg); 2320 2321 if (keg->uk_allocf == startup_alloc) { 2322 /* Switch to the real allocator. */ 2323 if (keg->uk_flags & UMA_ZONE_PCPU) 2324 keg->uk_allocf = pcpu_page_alloc; 2325 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && 2326 keg->uk_ppera > 1) 2327 keg->uk_allocf = contig_alloc; 2328 else 2329 keg->uk_allocf = page_alloc; 2330 } 2331 } 2332 2333 static void 2334 zone_alloc_counters(uma_zone_t zone, void *unused) 2335 { 2336 2337 zone->uz_allocs = counter_u64_alloc(M_WAITOK); 2338 zone->uz_frees = counter_u64_alloc(M_WAITOK); 2339 zone->uz_fails = counter_u64_alloc(M_WAITOK); 2340 zone->uz_xdomain = counter_u64_alloc(M_WAITOK); 2341 } 2342 2343 static void 2344 zone_alloc_sysctl(uma_zone_t zone, void *unused) 2345 { 2346 uma_zone_domain_t zdom; 2347 uma_domain_t dom; 2348 uma_keg_t keg; 2349 struct sysctl_oid *oid, *domainoid; 2350 int domains, i, cnt; 2351 static const char *nokeg = "cache zone"; 2352 char *c; 2353 2354 /* 2355 * Make a sysctl safe copy of the zone name by removing 2356 * any special characters and handling dups by appending 2357 * an index. 2358 */ 2359 if (zone->uz_namecnt != 0) { 2360 /* Count the number of decimal digits and '_' separator. */ 2361 for (i = 1, cnt = zone->uz_namecnt; cnt != 0; i++) 2362 cnt /= 10; 2363 zone->uz_ctlname = malloc(strlen(zone->uz_name) + i + 1, 2364 M_UMA, M_WAITOK); 2365 sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name, 2366 zone->uz_namecnt); 2367 } else 2368 zone->uz_ctlname = strdup(zone->uz_name, M_UMA); 2369 for (c = zone->uz_ctlname; *c != '\0'; c++) 2370 if (strchr("./\\ -", *c) != NULL) 2371 *c = '_'; 2372 2373 /* 2374 * Basic parameters at the root. 2375 */ 2376 zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma), 2377 OID_AUTO, zone->uz_ctlname, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2378 oid = zone->uz_oid; 2379 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2380 "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size"); 2381 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2382 "flags", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE, 2383 zone, 0, sysctl_handle_uma_zone_flags, "A", 2384 "Allocator configuration flags"); 2385 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2386 "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0, 2387 "Desired per-cpu cache size"); 2388 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2389 "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0, 2390 "Maximum allowed per-cpu cache size"); 2391 2392 /* 2393 * keg if present. 2394 */ 2395 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 2396 domains = vm_ndomains; 2397 else 2398 domains = 1; 2399 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2400 "keg", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2401 keg = zone->uz_keg; 2402 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) { 2403 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2404 "name", CTLFLAG_RD, keg->uk_name, "Keg name"); 2405 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2406 "rsize", CTLFLAG_RD, &keg->uk_rsize, 0, 2407 "Real object size with alignment"); 2408 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2409 "ppera", CTLFLAG_RD, &keg->uk_ppera, 0, 2410 "pages per-slab allocation"); 2411 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2412 "ipers", CTLFLAG_RD, &keg->uk_ipers, 0, 2413 "items available per-slab"); 2414 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2415 "align", CTLFLAG_RD, &keg->uk_align, 0, 2416 "item alignment mask"); 2417 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2418 "efficiency", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2419 keg, 0, sysctl_handle_uma_slab_efficiency, "I", 2420 "Slab utilization (100 - internal fragmentation %)"); 2421 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(oid), 2422 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2423 for (i = 0; i < domains; i++) { 2424 dom = &keg->uk_domain[i]; 2425 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2426 OID_AUTO, VM_DOMAIN(i)->vmd_name, 2427 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2428 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2429 "pages", CTLFLAG_RD, &dom->ud_pages, 0, 2430 "Total pages currently allocated from VM"); 2431 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2432 "free_items", CTLFLAG_RD, &dom->ud_free_items, 0, 2433 "items free in the slab layer"); 2434 } 2435 } else 2436 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2437 "name", CTLFLAG_RD, nokeg, "Keg name"); 2438 2439 /* 2440 * Information about zone limits. 2441 */ 2442 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2443 "limit", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2444 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2445 "items", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2446 zone, 0, sysctl_handle_uma_zone_items, "QU", 2447 "current number of allocated items if limit is set"); 2448 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2449 "max_items", CTLFLAG_RD, &zone->uz_max_items, 0, 2450 "Maximum number of cached items"); 2451 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2452 "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0, 2453 "Number of threads sleeping at limit"); 2454 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2455 "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0, 2456 "Total zone limit sleeps"); 2457 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2458 "bucket_max", CTLFLAG_RD, &zone->uz_bucket_max, 0, 2459 "Maximum number of items in each domain's bucket cache"); 2460 2461 /* 2462 * Per-domain zone information. 2463 */ 2464 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), 2465 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2466 for (i = 0; i < domains; i++) { 2467 zdom = ZDOM_GET(zone, i); 2468 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2469 OID_AUTO, VM_DOMAIN(i)->vmd_name, 2470 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2471 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2472 "nitems", CTLFLAG_RD, &zdom->uzd_nitems, 2473 "number of items in this domain"); 2474 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2475 "imax", CTLFLAG_RD, &zdom->uzd_imax, 2476 "maximum item count in this period"); 2477 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2478 "imin", CTLFLAG_RD, &zdom->uzd_imin, 2479 "minimum item count in this period"); 2480 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2481 "wss", CTLFLAG_RD, &zdom->uzd_wss, 2482 "Working set size"); 2483 } 2484 2485 /* 2486 * General statistics. 2487 */ 2488 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2489 "stats", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2490 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2491 "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2492 zone, 1, sysctl_handle_uma_zone_cur, "I", 2493 "Current number of allocated items"); 2494 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2495 "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2496 zone, 0, sysctl_handle_uma_zone_allocs, "QU", 2497 "Total allocation calls"); 2498 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2499 "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2500 zone, 0, sysctl_handle_uma_zone_frees, "QU", 2501 "Total free calls"); 2502 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2503 "fails", CTLFLAG_RD, &zone->uz_fails, 2504 "Number of allocation failures"); 2505 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2506 "xdomain", CTLFLAG_RD, &zone->uz_xdomain, 2507 "Free calls from the wrong domain"); 2508 } 2509 2510 struct uma_zone_count { 2511 const char *name; 2512 int count; 2513 }; 2514 2515 static void 2516 zone_count(uma_zone_t zone, void *arg) 2517 { 2518 struct uma_zone_count *cnt; 2519 2520 cnt = arg; 2521 /* 2522 * Some zones are rapidly created with identical names and 2523 * destroyed out of order. This can lead to gaps in the count. 2524 * Use one greater than the maximum observed for this name. 2525 */ 2526 if (strcmp(zone->uz_name, cnt->name) == 0) 2527 cnt->count = MAX(cnt->count, 2528 zone->uz_namecnt + 1); 2529 } 2530 2531 static void 2532 zone_update_caches(uma_zone_t zone) 2533 { 2534 int i; 2535 2536 for (i = 0; i <= mp_maxid; i++) { 2537 cache_set_uz_size(&zone->uz_cpu[i], zone->uz_size); 2538 cache_set_uz_flags(&zone->uz_cpu[i], zone->uz_flags); 2539 } 2540 } 2541 2542 /* 2543 * Zone header ctor. This initializes all fields, locks, etc. 2544 * 2545 * Arguments/Returns follow uma_ctor specifications 2546 * udata Actually uma_zctor_args 2547 */ 2548 static int 2549 zone_ctor(void *mem, int size, void *udata, int flags) 2550 { 2551 struct uma_zone_count cnt; 2552 struct uma_zctor_args *arg = udata; 2553 uma_zone_domain_t zdom; 2554 uma_zone_t zone = mem; 2555 uma_zone_t z; 2556 uma_keg_t keg; 2557 int i; 2558 2559 bzero(zone, size); 2560 zone->uz_name = arg->name; 2561 zone->uz_ctor = arg->ctor; 2562 zone->uz_dtor = arg->dtor; 2563 zone->uz_init = NULL; 2564 zone->uz_fini = NULL; 2565 zone->uz_sleeps = 0; 2566 zone->uz_bucket_size = 0; 2567 zone->uz_bucket_size_min = 0; 2568 zone->uz_bucket_size_max = BUCKET_MAX; 2569 zone->uz_flags = (arg->flags & UMA_ZONE_SMR); 2570 zone->uz_warning = NULL; 2571 /* The domain structures follow the cpu structures. */ 2572 zone->uz_bucket_max = ULONG_MAX; 2573 timevalclear(&zone->uz_ratecheck); 2574 2575 /* Count the number of duplicate names. */ 2576 cnt.name = arg->name; 2577 cnt.count = 0; 2578 zone_foreach(zone_count, &cnt); 2579 zone->uz_namecnt = cnt.count; 2580 ZONE_CROSS_LOCK_INIT(zone); 2581 2582 for (i = 0; i < vm_ndomains; i++) { 2583 zdom = ZDOM_GET(zone, i); 2584 ZDOM_LOCK_INIT(zone, zdom, (arg->flags & UMA_ZONE_MTXCLASS)); 2585 STAILQ_INIT(&zdom->uzd_buckets); 2586 } 2587 2588 #ifdef INVARIANTS 2589 if (arg->uminit == trash_init && arg->fini == trash_fini) 2590 zone->uz_flags |= UMA_ZFLAG_TRASH | UMA_ZFLAG_CTORDTOR; 2591 #endif 2592 2593 /* 2594 * This is a pure cache zone, no kegs. 2595 */ 2596 if (arg->import) { 2597 KASSERT((arg->flags & UMA_ZFLAG_CACHE) != 0, 2598 ("zone_ctor: Import specified for non-cache zone.")); 2599 zone->uz_flags = arg->flags; 2600 zone->uz_size = arg->size; 2601 zone->uz_import = arg->import; 2602 zone->uz_release = arg->release; 2603 zone->uz_arg = arg->arg; 2604 #ifdef NUMA 2605 /* 2606 * Cache zones are round-robin unless a policy is 2607 * specified because they may have incompatible 2608 * constraints. 2609 */ 2610 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2611 zone->uz_flags |= UMA_ZONE_ROUNDROBIN; 2612 #endif 2613 rw_wlock(&uma_rwlock); 2614 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 2615 rw_wunlock(&uma_rwlock); 2616 goto out; 2617 } 2618 2619 /* 2620 * Use the regular zone/keg/slab allocator. 2621 */ 2622 zone->uz_import = zone_import; 2623 zone->uz_release = zone_release; 2624 zone->uz_arg = zone; 2625 keg = arg->keg; 2626 2627 if (arg->flags & UMA_ZONE_SECONDARY) { 2628 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 2629 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 2630 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 2631 zone->uz_init = arg->uminit; 2632 zone->uz_fini = arg->fini; 2633 zone->uz_flags |= UMA_ZONE_SECONDARY; 2634 rw_wlock(&uma_rwlock); 2635 ZONE_LOCK(zone); 2636 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 2637 if (LIST_NEXT(z, uz_link) == NULL) { 2638 LIST_INSERT_AFTER(z, zone, uz_link); 2639 break; 2640 } 2641 } 2642 ZONE_UNLOCK(zone); 2643 rw_wunlock(&uma_rwlock); 2644 } else if (keg == NULL) { 2645 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 2646 arg->align, arg->flags)) == NULL) 2647 return (ENOMEM); 2648 } else { 2649 struct uma_kctor_args karg; 2650 int error; 2651 2652 /* We should only be here from uma_startup() */ 2653 karg.size = arg->size; 2654 karg.uminit = arg->uminit; 2655 karg.fini = arg->fini; 2656 karg.align = arg->align; 2657 karg.flags = (arg->flags & ~UMA_ZONE_SMR); 2658 karg.zone = zone; 2659 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 2660 flags); 2661 if (error) 2662 return (error); 2663 } 2664 2665 /* Inherit properties from the keg. */ 2666 zone->uz_keg = keg; 2667 zone->uz_size = keg->uk_size; 2668 zone->uz_flags |= (keg->uk_flags & 2669 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 2670 2671 out: 2672 if (__predict_true(booted >= BOOT_RUNNING)) { 2673 zone_alloc_counters(zone, NULL); 2674 zone_alloc_sysctl(zone, NULL); 2675 } else { 2676 zone->uz_allocs = EARLY_COUNTER; 2677 zone->uz_frees = EARLY_COUNTER; 2678 zone->uz_fails = EARLY_COUNTER; 2679 } 2680 2681 /* Caller requests a private SMR context. */ 2682 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 2683 zone->uz_smr = smr_create(zone->uz_name, 0, 0); 2684 2685 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != 2686 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), 2687 ("Invalid zone flag combination")); 2688 if (arg->flags & UMA_ZFLAG_INTERNAL) 2689 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 2690 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) 2691 zone->uz_bucket_size = BUCKET_MAX; 2692 else if ((arg->flags & UMA_ZONE_MINBUCKET) != 0) 2693 zone->uz_bucket_size_max = zone->uz_bucket_size = BUCKET_MIN; 2694 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) 2695 zone->uz_bucket_size = 0; 2696 else 2697 zone->uz_bucket_size = bucket_select(zone->uz_size); 2698 zone->uz_bucket_size_min = zone->uz_bucket_size; 2699 if (zone->uz_dtor != NULL || zone->uz_ctor != NULL) 2700 zone->uz_flags |= UMA_ZFLAG_CTORDTOR; 2701 zone_update_caches(zone); 2702 2703 return (0); 2704 } 2705 2706 /* 2707 * Keg header dtor. This frees all data, destroys locks, frees the hash 2708 * table and removes the keg from the global list. 2709 * 2710 * Arguments/Returns follow uma_dtor specifications 2711 * udata unused 2712 */ 2713 static void 2714 keg_dtor(void *arg, int size, void *udata) 2715 { 2716 uma_keg_t keg; 2717 uint32_t free, pages; 2718 int i; 2719 2720 keg = (uma_keg_t)arg; 2721 free = pages = 0; 2722 for (i = 0; i < vm_ndomains; i++) { 2723 free += keg->uk_domain[i].ud_free_items; 2724 pages += keg->uk_domain[i].ud_pages; 2725 KEG_LOCK_FINI(keg, i); 2726 } 2727 if (pages != 0) 2728 printf("Freed UMA keg (%s) was not empty (%u items). " 2729 " Lost %u pages of memory.\n", 2730 keg->uk_name ? keg->uk_name : "", 2731 pages / keg->uk_ppera * keg->uk_ipers - free, pages); 2732 2733 hash_free(&keg->uk_hash); 2734 } 2735 2736 /* 2737 * Zone header dtor. 2738 * 2739 * Arguments/Returns follow uma_dtor specifications 2740 * udata unused 2741 */ 2742 static void 2743 zone_dtor(void *arg, int size, void *udata) 2744 { 2745 uma_zone_t zone; 2746 uma_keg_t keg; 2747 int i; 2748 2749 zone = (uma_zone_t)arg; 2750 2751 sysctl_remove_oid(zone->uz_oid, 1, 1); 2752 2753 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 2754 cache_drain(zone); 2755 2756 rw_wlock(&uma_rwlock); 2757 LIST_REMOVE(zone, uz_link); 2758 rw_wunlock(&uma_rwlock); 2759 zone_reclaim(zone, M_WAITOK, true); 2760 2761 /* 2762 * We only destroy kegs from non secondary/non cache zones. 2763 */ 2764 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { 2765 keg = zone->uz_keg; 2766 rw_wlock(&uma_rwlock); 2767 LIST_REMOVE(keg, uk_link); 2768 rw_wunlock(&uma_rwlock); 2769 zone_free_item(kegs, keg, NULL, SKIP_NONE); 2770 } 2771 counter_u64_free(zone->uz_allocs); 2772 counter_u64_free(zone->uz_frees); 2773 counter_u64_free(zone->uz_fails); 2774 counter_u64_free(zone->uz_xdomain); 2775 free(zone->uz_ctlname, M_UMA); 2776 for (i = 0; i < vm_ndomains; i++) 2777 ZDOM_LOCK_FINI(ZDOM_GET(zone, i)); 2778 ZONE_CROSS_LOCK_FINI(zone); 2779 } 2780 2781 static void 2782 zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *arg), void *arg) 2783 { 2784 uma_keg_t keg; 2785 uma_zone_t zone; 2786 2787 LIST_FOREACH(keg, &uma_kegs, uk_link) { 2788 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 2789 zfunc(zone, arg); 2790 } 2791 LIST_FOREACH(zone, &uma_cachezones, uz_link) 2792 zfunc(zone, arg); 2793 } 2794 2795 /* 2796 * Traverses every zone in the system and calls a callback 2797 * 2798 * Arguments: 2799 * zfunc A pointer to a function which accepts a zone 2800 * as an argument. 2801 * 2802 * Returns: 2803 * Nothing 2804 */ 2805 static void 2806 zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg) 2807 { 2808 2809 rw_rlock(&uma_rwlock); 2810 zone_foreach_unlocked(zfunc, arg); 2811 rw_runlock(&uma_rwlock); 2812 } 2813 2814 /* 2815 * Initialize the kernel memory allocator. This is done after pages can be 2816 * allocated but before general KVA is available. 2817 */ 2818 void 2819 uma_startup1(vm_offset_t virtual_avail) 2820 { 2821 struct uma_zctor_args args; 2822 size_t ksize, zsize, size; 2823 uma_keg_t masterkeg; 2824 uintptr_t m; 2825 uint8_t pflag; 2826 2827 bootstart = bootmem = virtual_avail; 2828 2829 rw_init(&uma_rwlock, "UMA lock"); 2830 sx_init(&uma_reclaim_lock, "umareclaim"); 2831 2832 ksize = sizeof(struct uma_keg) + 2833 (sizeof(struct uma_domain) * vm_ndomains); 2834 ksize = roundup(ksize, UMA_SUPER_ALIGN); 2835 zsize = sizeof(struct uma_zone) + 2836 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 2837 (sizeof(struct uma_zone_domain) * vm_ndomains); 2838 zsize = roundup(zsize, UMA_SUPER_ALIGN); 2839 2840 /* Allocate the zone of zones, zone of kegs, and zone of zones keg. */ 2841 size = (zsize * 2) + ksize; 2842 m = (uintptr_t)startup_alloc(NULL, size, 0, &pflag, M_NOWAIT | M_ZERO); 2843 zones = (uma_zone_t)m; 2844 m += zsize; 2845 kegs = (uma_zone_t)m; 2846 m += zsize; 2847 masterkeg = (uma_keg_t)m; 2848 2849 /* "manually" create the initial zone */ 2850 memset(&args, 0, sizeof(args)); 2851 args.name = "UMA Kegs"; 2852 args.size = ksize; 2853 args.ctor = keg_ctor; 2854 args.dtor = keg_dtor; 2855 args.uminit = zero_init; 2856 args.fini = NULL; 2857 args.keg = masterkeg; 2858 args.align = UMA_SUPER_ALIGN - 1; 2859 args.flags = UMA_ZFLAG_INTERNAL; 2860 zone_ctor(kegs, zsize, &args, M_WAITOK); 2861 2862 args.name = "UMA Zones"; 2863 args.size = zsize; 2864 args.ctor = zone_ctor; 2865 args.dtor = zone_dtor; 2866 args.uminit = zero_init; 2867 args.fini = NULL; 2868 args.keg = NULL; 2869 args.align = UMA_SUPER_ALIGN - 1; 2870 args.flags = UMA_ZFLAG_INTERNAL; 2871 zone_ctor(zones, zsize, &args, M_WAITOK); 2872 2873 /* Now make zones for slab headers */ 2874 slabzones[0] = uma_zcreate("UMA Slabs 0", SLABZONE0_SIZE, 2875 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2876 slabzones[1] = uma_zcreate("UMA Slabs 1", SLABZONE1_SIZE, 2877 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2878 2879 hashzone = uma_zcreate("UMA Hash", 2880 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 2881 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2882 2883 bucket_init(); 2884 smr_init(); 2885 } 2886 2887 #ifndef UMA_MD_SMALL_ALLOC 2888 extern void vm_radix_reserve_kva(void); 2889 #endif 2890 2891 /* 2892 * Advertise the availability of normal kva allocations and switch to 2893 * the default back-end allocator. Marks the KVA we consumed on startup 2894 * as used in the map. 2895 */ 2896 void 2897 uma_startup2(void) 2898 { 2899 2900 if (bootstart != bootmem) { 2901 vm_map_lock(kernel_map); 2902 (void)vm_map_insert(kernel_map, NULL, 0, bootstart, bootmem, 2903 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT); 2904 vm_map_unlock(kernel_map); 2905 } 2906 2907 #ifndef UMA_MD_SMALL_ALLOC 2908 /* Set up radix zone to use noobj_alloc. */ 2909 vm_radix_reserve_kva(); 2910 #endif 2911 2912 booted = BOOT_KVA; 2913 zone_foreach_unlocked(zone_kva_available, NULL); 2914 bucket_enable(); 2915 } 2916 2917 /* 2918 * Finish our initialization steps. 2919 */ 2920 static void 2921 uma_startup3(void) 2922 { 2923 2924 #ifdef INVARIANTS 2925 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor); 2926 uma_dbg_cnt = counter_u64_alloc(M_WAITOK); 2927 uma_skip_cnt = counter_u64_alloc(M_WAITOK); 2928 #endif 2929 zone_foreach_unlocked(zone_alloc_counters, NULL); 2930 zone_foreach_unlocked(zone_alloc_sysctl, NULL); 2931 callout_init(&uma_callout, 1); 2932 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 2933 booted = BOOT_RUNNING; 2934 2935 EVENTHANDLER_REGISTER(shutdown_post_sync, uma_shutdown, NULL, 2936 EVENTHANDLER_PRI_FIRST); 2937 } 2938 2939 static void 2940 uma_shutdown(void) 2941 { 2942 2943 booted = BOOT_SHUTDOWN; 2944 } 2945 2946 static uma_keg_t 2947 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 2948 int align, uint32_t flags) 2949 { 2950 struct uma_kctor_args args; 2951 2952 args.size = size; 2953 args.uminit = uminit; 2954 args.fini = fini; 2955 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 2956 args.flags = flags; 2957 args.zone = zone; 2958 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 2959 } 2960 2961 /* Public functions */ 2962 /* See uma.h */ 2963 void 2964 uma_set_align(int align) 2965 { 2966 2967 if (align != UMA_ALIGN_CACHE) 2968 uma_align_cache = align; 2969 } 2970 2971 /* See uma.h */ 2972 uma_zone_t 2973 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 2974 uma_init uminit, uma_fini fini, int align, uint32_t flags) 2975 2976 { 2977 struct uma_zctor_args args; 2978 uma_zone_t res; 2979 2980 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 2981 align, name)); 2982 2983 /* This stuff is essential for the zone ctor */ 2984 memset(&args, 0, sizeof(args)); 2985 args.name = name; 2986 args.size = size; 2987 args.ctor = ctor; 2988 args.dtor = dtor; 2989 args.uminit = uminit; 2990 args.fini = fini; 2991 #ifdef INVARIANTS 2992 /* 2993 * Inject procedures which check for memory use after free if we are 2994 * allowed to scramble the memory while it is not allocated. This 2995 * requires that: UMA is actually able to access the memory, no init 2996 * or fini procedures, no dependency on the initial value of the 2997 * memory, and no (legitimate) use of the memory after free. Note, 2998 * the ctor and dtor do not need to be empty. 2999 */ 3000 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOTOUCH | 3001 UMA_ZONE_NOFREE))) && uminit == NULL && fini == NULL) { 3002 args.uminit = trash_init; 3003 args.fini = trash_fini; 3004 } 3005 #endif 3006 args.align = align; 3007 args.flags = flags; 3008 args.keg = NULL; 3009 3010 sx_slock(&uma_reclaim_lock); 3011 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 3012 sx_sunlock(&uma_reclaim_lock); 3013 3014 return (res); 3015 } 3016 3017 /* See uma.h */ 3018 uma_zone_t 3019 uma_zsecond_create(const char *name, uma_ctor ctor, uma_dtor dtor, 3020 uma_init zinit, uma_fini zfini, uma_zone_t master) 3021 { 3022 struct uma_zctor_args args; 3023 uma_keg_t keg; 3024 uma_zone_t res; 3025 3026 keg = master->uz_keg; 3027 memset(&args, 0, sizeof(args)); 3028 args.name = name; 3029 args.size = keg->uk_size; 3030 args.ctor = ctor; 3031 args.dtor = dtor; 3032 args.uminit = zinit; 3033 args.fini = zfini; 3034 args.align = keg->uk_align; 3035 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 3036 args.keg = keg; 3037 3038 sx_slock(&uma_reclaim_lock); 3039 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 3040 sx_sunlock(&uma_reclaim_lock); 3041 3042 return (res); 3043 } 3044 3045 /* See uma.h */ 3046 uma_zone_t 3047 uma_zcache_create(const char *name, int size, uma_ctor ctor, uma_dtor dtor, 3048 uma_init zinit, uma_fini zfini, uma_import zimport, uma_release zrelease, 3049 void *arg, int flags) 3050 { 3051 struct uma_zctor_args args; 3052 3053 memset(&args, 0, sizeof(args)); 3054 args.name = name; 3055 args.size = size; 3056 args.ctor = ctor; 3057 args.dtor = dtor; 3058 args.uminit = zinit; 3059 args.fini = zfini; 3060 args.import = zimport; 3061 args.release = zrelease; 3062 args.arg = arg; 3063 args.align = 0; 3064 args.flags = flags | UMA_ZFLAG_CACHE; 3065 3066 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 3067 } 3068 3069 /* See uma.h */ 3070 void 3071 uma_zdestroy(uma_zone_t zone) 3072 { 3073 3074 /* 3075 * Large slabs are expensive to reclaim, so don't bother doing 3076 * unnecessary work if we're shutting down. 3077 */ 3078 if (booted == BOOT_SHUTDOWN && 3079 zone->uz_fini == NULL && zone->uz_release == zone_release) 3080 return; 3081 sx_slock(&uma_reclaim_lock); 3082 zone_free_item(zones, zone, NULL, SKIP_NONE); 3083 sx_sunlock(&uma_reclaim_lock); 3084 } 3085 3086 void 3087 uma_zwait(uma_zone_t zone) 3088 { 3089 3090 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 3091 uma_zfree_smr(zone, uma_zalloc_smr(zone, M_WAITOK)); 3092 else if ((zone->uz_flags & UMA_ZONE_PCPU) != 0) 3093 uma_zfree_pcpu(zone, uma_zalloc_pcpu(zone, M_WAITOK)); 3094 else 3095 uma_zfree(zone, uma_zalloc(zone, M_WAITOK)); 3096 } 3097 3098 void * 3099 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags) 3100 { 3101 void *item, *pcpu_item; 3102 #ifdef SMP 3103 int i; 3104 3105 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 3106 #endif 3107 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO); 3108 if (item == NULL) 3109 return (NULL); 3110 pcpu_item = zpcpu_base_to_offset(item); 3111 if (flags & M_ZERO) { 3112 #ifdef SMP 3113 for (i = 0; i <= mp_maxid; i++) 3114 bzero(zpcpu_get_cpu(pcpu_item, i), zone->uz_size); 3115 #else 3116 bzero(item, zone->uz_size); 3117 #endif 3118 } 3119 return (pcpu_item); 3120 } 3121 3122 /* 3123 * A stub while both regular and pcpu cases are identical. 3124 */ 3125 void 3126 uma_zfree_pcpu_arg(uma_zone_t zone, void *pcpu_item, void *udata) 3127 { 3128 void *item; 3129 3130 #ifdef SMP 3131 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 3132 #endif 3133 item = zpcpu_offset_to_base(pcpu_item); 3134 uma_zfree_arg(zone, item, udata); 3135 } 3136 3137 static inline void * 3138 item_ctor(uma_zone_t zone, int uz_flags, int size, void *udata, int flags, 3139 void *item) 3140 { 3141 #ifdef INVARIANTS 3142 bool skipdbg; 3143 3144 skipdbg = uma_dbg_zskip(zone, item); 3145 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 3146 zone->uz_ctor != trash_ctor) 3147 trash_ctor(item, size, udata, flags); 3148 #endif 3149 /* Check flags before loading ctor pointer. */ 3150 if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0) && 3151 __predict_false(zone->uz_ctor != NULL) && 3152 zone->uz_ctor(item, size, udata, flags) != 0) { 3153 counter_u64_add(zone->uz_fails, 1); 3154 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT); 3155 return (NULL); 3156 } 3157 #ifdef INVARIANTS 3158 if (!skipdbg) 3159 uma_dbg_alloc(zone, NULL, item); 3160 #endif 3161 if (__predict_false(flags & M_ZERO)) 3162 return (memset(item, 0, size)); 3163 3164 return (item); 3165 } 3166 3167 static inline void 3168 item_dtor(uma_zone_t zone, void *item, int size, void *udata, 3169 enum zfreeskip skip) 3170 { 3171 #ifdef INVARIANTS 3172 bool skipdbg; 3173 3174 skipdbg = uma_dbg_zskip(zone, item); 3175 if (skip == SKIP_NONE && !skipdbg) { 3176 if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0) 3177 uma_dbg_free(zone, udata, item); 3178 else 3179 uma_dbg_free(zone, NULL, item); 3180 } 3181 #endif 3182 if (__predict_true(skip < SKIP_DTOR)) { 3183 if (zone->uz_dtor != NULL) 3184 zone->uz_dtor(item, size, udata); 3185 #ifdef INVARIANTS 3186 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 3187 zone->uz_dtor != trash_dtor) 3188 trash_dtor(item, size, udata); 3189 #endif 3190 } 3191 } 3192 3193 #if defined(INVARIANTS) || defined(DEBUG_MEMGUARD) || defined(WITNESS) 3194 #define UMA_ZALLOC_DEBUG 3195 static int 3196 uma_zalloc_debug(uma_zone_t zone, void **itemp, void *udata, int flags) 3197 { 3198 int error; 3199 3200 error = 0; 3201 #ifdef WITNESS 3202 if (flags & M_WAITOK) { 3203 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3204 "uma_zalloc_debug: zone \"%s\"", zone->uz_name); 3205 } 3206 #endif 3207 3208 #ifdef INVARIANTS 3209 KASSERT((flags & M_EXEC) == 0, 3210 ("uma_zalloc_debug: called with M_EXEC")); 3211 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3212 ("uma_zalloc_debug: called within spinlock or critical section")); 3213 KASSERT((zone->uz_flags & UMA_ZONE_PCPU) == 0 || (flags & M_ZERO) == 0, 3214 ("uma_zalloc_debug: allocating from a pcpu zone with M_ZERO")); 3215 #endif 3216 3217 #ifdef DEBUG_MEMGUARD 3218 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && memguard_cmp_zone(zone)) { 3219 void *item; 3220 item = memguard_alloc(zone->uz_size, flags); 3221 if (item != NULL) { 3222 error = EJUSTRETURN; 3223 if (zone->uz_init != NULL && 3224 zone->uz_init(item, zone->uz_size, flags) != 0) { 3225 *itemp = NULL; 3226 return (error); 3227 } 3228 if (zone->uz_ctor != NULL && 3229 zone->uz_ctor(item, zone->uz_size, udata, 3230 flags) != 0) { 3231 counter_u64_add(zone->uz_fails, 1); 3232 zone->uz_fini(item, zone->uz_size); 3233 *itemp = NULL; 3234 return (error); 3235 } 3236 *itemp = item; 3237 return (error); 3238 } 3239 /* This is unfortunate but should not be fatal. */ 3240 } 3241 #endif 3242 return (error); 3243 } 3244 3245 static int 3246 uma_zfree_debug(uma_zone_t zone, void *item, void *udata) 3247 { 3248 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3249 ("uma_zfree_debug: called with spinlock or critical section held")); 3250 3251 #ifdef DEBUG_MEMGUARD 3252 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && is_memguard_addr(item)) { 3253 if (zone->uz_dtor != NULL) 3254 zone->uz_dtor(item, zone->uz_size, udata); 3255 if (zone->uz_fini != NULL) 3256 zone->uz_fini(item, zone->uz_size); 3257 memguard_free(item); 3258 return (EJUSTRETURN); 3259 } 3260 #endif 3261 return (0); 3262 } 3263 #endif 3264 3265 static inline void * 3266 cache_alloc_item(uma_zone_t zone, uma_cache_t cache, uma_cache_bucket_t bucket, 3267 void *udata, int flags) 3268 { 3269 void *item; 3270 int size, uz_flags; 3271 3272 item = cache_bucket_pop(cache, bucket); 3273 size = cache_uz_size(cache); 3274 uz_flags = cache_uz_flags(cache); 3275 critical_exit(); 3276 return (item_ctor(zone, uz_flags, size, udata, flags, item)); 3277 } 3278 3279 static __noinline void * 3280 cache_alloc_retry(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3281 { 3282 uma_cache_bucket_t bucket; 3283 int domain; 3284 3285 while (cache_alloc(zone, cache, udata, flags)) { 3286 cache = &zone->uz_cpu[curcpu]; 3287 bucket = &cache->uc_allocbucket; 3288 if (__predict_false(bucket->ucb_cnt == 0)) 3289 continue; 3290 return (cache_alloc_item(zone, cache, bucket, udata, flags)); 3291 } 3292 critical_exit(); 3293 3294 /* 3295 * We can not get a bucket so try to return a single item. 3296 */ 3297 if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH) 3298 domain = PCPU_GET(domain); 3299 else 3300 domain = UMA_ANYDOMAIN; 3301 return (zone_alloc_item(zone, udata, domain, flags)); 3302 } 3303 3304 /* See uma.h */ 3305 void * 3306 uma_zalloc_smr(uma_zone_t zone, int flags) 3307 { 3308 uma_cache_bucket_t bucket; 3309 uma_cache_t cache; 3310 3311 #ifdef UMA_ZALLOC_DEBUG 3312 void *item; 3313 3314 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 3315 ("uma_zalloc_arg: called with non-SMR zone.\n")); 3316 if (uma_zalloc_debug(zone, &item, NULL, flags) == EJUSTRETURN) 3317 return (item); 3318 #endif 3319 3320 critical_enter(); 3321 cache = &zone->uz_cpu[curcpu]; 3322 bucket = &cache->uc_allocbucket; 3323 if (__predict_false(bucket->ucb_cnt == 0)) 3324 return (cache_alloc_retry(zone, cache, NULL, flags)); 3325 return (cache_alloc_item(zone, cache, bucket, NULL, flags)); 3326 } 3327 3328 /* See uma.h */ 3329 void * 3330 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 3331 { 3332 uma_cache_bucket_t bucket; 3333 uma_cache_t cache; 3334 3335 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3336 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3337 3338 /* This is the fast path allocation */ 3339 CTR3(KTR_UMA, "uma_zalloc_arg zone %s(%p) flags %d", zone->uz_name, 3340 zone, flags); 3341 3342 #ifdef UMA_ZALLOC_DEBUG 3343 void *item; 3344 3345 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 3346 ("uma_zalloc_arg: called with SMR zone.\n")); 3347 if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN) 3348 return (item); 3349 #endif 3350 3351 /* 3352 * If possible, allocate from the per-CPU cache. There are two 3353 * requirements for safe access to the per-CPU cache: (1) the thread 3354 * accessing the cache must not be preempted or yield during access, 3355 * and (2) the thread must not migrate CPUs without switching which 3356 * cache it accesses. We rely on a critical section to prevent 3357 * preemption and migration. We release the critical section in 3358 * order to acquire the zone mutex if we are unable to allocate from 3359 * the current cache; when we re-acquire the critical section, we 3360 * must detect and handle migration if it has occurred. 3361 */ 3362 critical_enter(); 3363 cache = &zone->uz_cpu[curcpu]; 3364 bucket = &cache->uc_allocbucket; 3365 if (__predict_false(bucket->ucb_cnt == 0)) 3366 return (cache_alloc_retry(zone, cache, udata, flags)); 3367 return (cache_alloc_item(zone, cache, bucket, udata, flags)); 3368 } 3369 3370 /* 3371 * Replenish an alloc bucket and possibly restore an old one. Called in 3372 * a critical section. Returns in a critical section. 3373 * 3374 * A false return value indicates an allocation failure. 3375 * A true return value indicates success and the caller should retry. 3376 */ 3377 static __noinline bool 3378 cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3379 { 3380 uma_bucket_t bucket; 3381 int domain; 3382 bool new; 3383 3384 CRITICAL_ASSERT(curthread); 3385 3386 /* 3387 * If we have run out of items in our alloc bucket see 3388 * if we can switch with the free bucket. 3389 * 3390 * SMR Zones can't re-use the free bucket until the sequence has 3391 * expired. 3392 */ 3393 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) == 0 && 3394 cache->uc_freebucket.ucb_cnt != 0) { 3395 cache_bucket_swap(&cache->uc_freebucket, 3396 &cache->uc_allocbucket); 3397 return (true); 3398 } 3399 3400 /* 3401 * Discard any empty allocation bucket while we hold no locks. 3402 */ 3403 bucket = cache_bucket_unload_alloc(cache); 3404 critical_exit(); 3405 3406 if (bucket != NULL) { 3407 KASSERT(bucket->ub_cnt == 0, 3408 ("cache_alloc: Entered with non-empty alloc bucket.")); 3409 bucket_free(zone, bucket, udata); 3410 } 3411 3412 /* Short-circuit for zones without buckets and low memory. */ 3413 if (zone->uz_bucket_size == 0 || bucketdisable) { 3414 critical_enter(); 3415 return (false); 3416 } 3417 3418 /* 3419 * Attempt to retrieve the item from the per-CPU cache has failed, so 3420 * we must go back to the zone. This requires the zdom lock, so we 3421 * must drop the critical section, then re-acquire it when we go back 3422 * to the cache. Since the critical section is released, we may be 3423 * preempted or migrate. As such, make sure not to maintain any 3424 * thread-local state specific to the cache from prior to releasing 3425 * the critical section. 3426 */ 3427 domain = PCPU_GET(domain); 3428 if ((cache_uz_flags(cache) & UMA_ZONE_ROUNDROBIN) != 0) 3429 domain = zone_domain_highest(zone, domain); 3430 bucket = cache_fetch_bucket(zone, cache, domain); 3431 if (bucket == NULL) { 3432 bucket = zone_alloc_bucket(zone, udata, domain, flags); 3433 new = true; 3434 } else 3435 new = false; 3436 3437 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 3438 zone->uz_name, zone, bucket); 3439 if (bucket == NULL) { 3440 critical_enter(); 3441 return (false); 3442 } 3443 3444 /* 3445 * See if we lost the race or were migrated. Cache the 3446 * initialized bucket to make this less likely or claim 3447 * the memory directly. 3448 */ 3449 critical_enter(); 3450 cache = &zone->uz_cpu[curcpu]; 3451 if (cache->uc_allocbucket.ucb_bucket == NULL && 3452 ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) == 0 || 3453 domain == PCPU_GET(domain))) { 3454 if (new) 3455 atomic_add_long(&ZDOM_GET(zone, domain)->uzd_imax, 3456 bucket->ub_cnt); 3457 cache_bucket_load_alloc(cache, bucket); 3458 return (true); 3459 } 3460 3461 /* 3462 * We lost the race, release this bucket and start over. 3463 */ 3464 critical_exit(); 3465 zone_put_bucket(zone, domain, bucket, udata, false); 3466 critical_enter(); 3467 3468 return (true); 3469 } 3470 3471 void * 3472 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 3473 { 3474 3475 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3476 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3477 3478 /* This is the fast path allocation */ 3479 CTR4(KTR_UMA, "uma_zalloc_domain zone %s(%p) domain %d flags %d", 3480 zone->uz_name, zone, domain, flags); 3481 3482 if (flags & M_WAITOK) { 3483 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3484 "uma_zalloc_domain: zone \"%s\"", zone->uz_name); 3485 } 3486 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3487 ("uma_zalloc_domain: called with spinlock or critical section held")); 3488 3489 return (zone_alloc_item(zone, udata, domain, flags)); 3490 } 3491 3492 /* 3493 * Find a slab with some space. Prefer slabs that are partially used over those 3494 * that are totally full. This helps to reduce fragmentation. 3495 * 3496 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 3497 * only 'domain'. 3498 */ 3499 static uma_slab_t 3500 keg_first_slab(uma_keg_t keg, int domain, bool rr) 3501 { 3502 uma_domain_t dom; 3503 uma_slab_t slab; 3504 int start; 3505 3506 KASSERT(domain >= 0 && domain < vm_ndomains, 3507 ("keg_first_slab: domain %d out of range", domain)); 3508 KEG_LOCK_ASSERT(keg, domain); 3509 3510 slab = NULL; 3511 start = domain; 3512 do { 3513 dom = &keg->uk_domain[domain]; 3514 if ((slab = LIST_FIRST(&dom->ud_part_slab)) != NULL) 3515 return (slab); 3516 if ((slab = LIST_FIRST(&dom->ud_free_slab)) != NULL) { 3517 LIST_REMOVE(slab, us_link); 3518 dom->ud_free_slabs--; 3519 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3520 return (slab); 3521 } 3522 if (rr) 3523 domain = (domain + 1) % vm_ndomains; 3524 } while (domain != start); 3525 3526 return (NULL); 3527 } 3528 3529 /* 3530 * Fetch an existing slab from a free or partial list. Returns with the 3531 * keg domain lock held if a slab was found or unlocked if not. 3532 */ 3533 static uma_slab_t 3534 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags) 3535 { 3536 uma_slab_t slab; 3537 uint32_t reserve; 3538 3539 /* HASH has a single free list. */ 3540 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 3541 domain = 0; 3542 3543 KEG_LOCK(keg, domain); 3544 reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve; 3545 if (keg->uk_domain[domain].ud_free_items <= reserve || 3546 (slab = keg_first_slab(keg, domain, rr)) == NULL) { 3547 KEG_UNLOCK(keg, domain); 3548 return (NULL); 3549 } 3550 return (slab); 3551 } 3552 3553 static uma_slab_t 3554 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags) 3555 { 3556 struct vm_domainset_iter di; 3557 uma_slab_t slab; 3558 int aflags, domain; 3559 bool rr; 3560 3561 restart: 3562 /* 3563 * Use the keg's policy if upper layers haven't already specified a 3564 * domain (as happens with first-touch zones). 3565 * 3566 * To avoid races we run the iterator with the keg lock held, but that 3567 * means that we cannot allow the vm_domainset layer to sleep. Thus, 3568 * clear M_WAITOK and handle low memory conditions locally. 3569 */ 3570 rr = rdomain == UMA_ANYDOMAIN; 3571 if (rr) { 3572 aflags = (flags & ~M_WAITOK) | M_NOWAIT; 3573 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 3574 &aflags); 3575 } else { 3576 aflags = flags; 3577 domain = rdomain; 3578 } 3579 3580 for (;;) { 3581 slab = keg_fetch_free_slab(keg, domain, rr, flags); 3582 if (slab != NULL) 3583 return (slab); 3584 3585 /* 3586 * M_NOVM means don't ask at all! 3587 */ 3588 if (flags & M_NOVM) 3589 break; 3590 3591 slab = keg_alloc_slab(keg, zone, domain, flags, aflags); 3592 if (slab != NULL) 3593 return (slab); 3594 if (!rr && (flags & M_WAITOK) == 0) 3595 break; 3596 if (rr && vm_domainset_iter_policy(&di, &domain) != 0) { 3597 if ((flags & M_WAITOK) != 0) { 3598 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask); 3599 goto restart; 3600 } 3601 break; 3602 } 3603 } 3604 3605 /* 3606 * We might not have been able to get a slab but another cpu 3607 * could have while we were unlocked. Check again before we 3608 * fail. 3609 */ 3610 if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL) 3611 return (slab); 3612 3613 return (NULL); 3614 } 3615 3616 static void * 3617 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 3618 { 3619 uma_domain_t dom; 3620 void *item; 3621 int freei; 3622 3623 KEG_LOCK_ASSERT(keg, slab->us_domain); 3624 3625 dom = &keg->uk_domain[slab->us_domain]; 3626 freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1; 3627 BIT_CLR(keg->uk_ipers, freei, &slab->us_free); 3628 item = slab_item(slab, keg, freei); 3629 slab->us_freecount--; 3630 dom->ud_free_items--; 3631 3632 /* 3633 * Move this slab to the full list. It must be on the partial list, so 3634 * we do not need to update the free slab count. In particular, 3635 * keg_fetch_slab() always returns slabs on the partial list. 3636 */ 3637 if (slab->us_freecount == 0) { 3638 LIST_REMOVE(slab, us_link); 3639 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 3640 } 3641 3642 return (item); 3643 } 3644 3645 static int 3646 zone_import(void *arg, void **bucket, int max, int domain, int flags) 3647 { 3648 uma_domain_t dom; 3649 uma_zone_t zone; 3650 uma_slab_t slab; 3651 uma_keg_t keg; 3652 #ifdef NUMA 3653 int stripe; 3654 #endif 3655 int i; 3656 3657 zone = arg; 3658 slab = NULL; 3659 keg = zone->uz_keg; 3660 /* Try to keep the buckets totally full */ 3661 for (i = 0; i < max; ) { 3662 if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL) 3663 break; 3664 #ifdef NUMA 3665 stripe = howmany(max, vm_ndomains); 3666 #endif 3667 dom = &keg->uk_domain[slab->us_domain]; 3668 while (slab->us_freecount && i < max) { 3669 bucket[i++] = slab_alloc_item(keg, slab); 3670 if (dom->ud_free_items <= keg->uk_reserve) 3671 break; 3672 #ifdef NUMA 3673 /* 3674 * If the zone is striped we pick a new slab for every 3675 * N allocations. Eliminating this conditional will 3676 * instead pick a new domain for each bucket rather 3677 * than stripe within each bucket. The current option 3678 * produces more fragmentation and requires more cpu 3679 * time but yields better distribution. 3680 */ 3681 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0 && 3682 vm_ndomains > 1 && --stripe == 0) 3683 break; 3684 #endif 3685 } 3686 KEG_UNLOCK(keg, slab->us_domain); 3687 /* Don't block if we allocated any successfully. */ 3688 flags &= ~M_WAITOK; 3689 flags |= M_NOWAIT; 3690 } 3691 3692 return i; 3693 } 3694 3695 static int 3696 zone_alloc_limit_hard(uma_zone_t zone, int count, int flags) 3697 { 3698 uint64_t old, new, total, max; 3699 3700 /* 3701 * The hard case. We're going to sleep because there were existing 3702 * sleepers or because we ran out of items. This routine enforces 3703 * fairness by keeping fifo order. 3704 * 3705 * First release our ill gotten gains and make some noise. 3706 */ 3707 for (;;) { 3708 zone_free_limit(zone, count); 3709 zone_log_warning(zone); 3710 zone_maxaction(zone); 3711 if (flags & M_NOWAIT) 3712 return (0); 3713 3714 /* 3715 * We need to allocate an item or set ourself as a sleeper 3716 * while the sleepq lock is held to avoid wakeup races. This 3717 * is essentially a home rolled semaphore. 3718 */ 3719 sleepq_lock(&zone->uz_max_items); 3720 old = zone->uz_items; 3721 do { 3722 MPASS(UZ_ITEMS_SLEEPERS(old) < UZ_ITEMS_SLEEPERS_MAX); 3723 /* Cache the max since we will evaluate twice. */ 3724 max = zone->uz_max_items; 3725 if (UZ_ITEMS_SLEEPERS(old) != 0 || 3726 UZ_ITEMS_COUNT(old) >= max) 3727 new = old + UZ_ITEMS_SLEEPER; 3728 else 3729 new = old + MIN(count, max - old); 3730 } while (atomic_fcmpset_64(&zone->uz_items, &old, new) == 0); 3731 3732 /* We may have successfully allocated under the sleepq lock. */ 3733 if (UZ_ITEMS_SLEEPERS(new) == 0) { 3734 sleepq_release(&zone->uz_max_items); 3735 return (new - old); 3736 } 3737 3738 /* 3739 * This is in a different cacheline from uz_items so that we 3740 * don't constantly invalidate the fastpath cacheline when we 3741 * adjust item counts. This could be limited to toggling on 3742 * transitions. 3743 */ 3744 atomic_add_32(&zone->uz_sleepers, 1); 3745 atomic_add_64(&zone->uz_sleeps, 1); 3746 3747 /* 3748 * We have added ourselves as a sleeper. The sleepq lock 3749 * protects us from wakeup races. Sleep now and then retry. 3750 */ 3751 sleepq_add(&zone->uz_max_items, NULL, "zonelimit", 0, 0); 3752 sleepq_wait(&zone->uz_max_items, PVM); 3753 3754 /* 3755 * After wakeup, remove ourselves as a sleeper and try 3756 * again. We no longer have the sleepq lock for protection. 3757 * 3758 * Subract ourselves as a sleeper while attempting to add 3759 * our count. 3760 */ 3761 atomic_subtract_32(&zone->uz_sleepers, 1); 3762 old = atomic_fetchadd_64(&zone->uz_items, 3763 -(UZ_ITEMS_SLEEPER - count)); 3764 /* We're no longer a sleeper. */ 3765 old -= UZ_ITEMS_SLEEPER; 3766 3767 /* 3768 * If we're still at the limit, restart. Notably do not 3769 * block on other sleepers. Cache the max value to protect 3770 * against changes via sysctl. 3771 */ 3772 total = UZ_ITEMS_COUNT(old); 3773 max = zone->uz_max_items; 3774 if (total >= max) 3775 continue; 3776 /* Truncate if necessary, otherwise wake other sleepers. */ 3777 if (total + count > max) { 3778 zone_free_limit(zone, total + count - max); 3779 count = max - total; 3780 } else if (total + count < max && UZ_ITEMS_SLEEPERS(old) != 0) 3781 wakeup_one(&zone->uz_max_items); 3782 3783 return (count); 3784 } 3785 } 3786 3787 /* 3788 * Allocate 'count' items from our max_items limit. Returns the number 3789 * available. If M_NOWAIT is not specified it will sleep until at least 3790 * one item can be allocated. 3791 */ 3792 static int 3793 zone_alloc_limit(uma_zone_t zone, int count, int flags) 3794 { 3795 uint64_t old; 3796 uint64_t max; 3797 3798 max = zone->uz_max_items; 3799 MPASS(max > 0); 3800 3801 /* 3802 * We expect normal allocations to succeed with a simple 3803 * fetchadd. 3804 */ 3805 old = atomic_fetchadd_64(&zone->uz_items, count); 3806 if (__predict_true(old + count <= max)) 3807 return (count); 3808 3809 /* 3810 * If we had some items and no sleepers just return the 3811 * truncated value. We have to release the excess space 3812 * though because that may wake sleepers who weren't woken 3813 * because we were temporarily over the limit. 3814 */ 3815 if (old < max) { 3816 zone_free_limit(zone, (old + count) - max); 3817 return (max - old); 3818 } 3819 return (zone_alloc_limit_hard(zone, count, flags)); 3820 } 3821 3822 /* 3823 * Free a number of items back to the limit. 3824 */ 3825 static void 3826 zone_free_limit(uma_zone_t zone, int count) 3827 { 3828 uint64_t old; 3829 3830 MPASS(count > 0); 3831 3832 /* 3833 * In the common case we either have no sleepers or 3834 * are still over the limit and can just return. 3835 */ 3836 old = atomic_fetchadd_64(&zone->uz_items, -count); 3837 if (__predict_true(UZ_ITEMS_SLEEPERS(old) == 0 || 3838 UZ_ITEMS_COUNT(old) - count >= zone->uz_max_items)) 3839 return; 3840 3841 /* 3842 * Moderate the rate of wakeups. Sleepers will continue 3843 * to generate wakeups if necessary. 3844 */ 3845 wakeup_one(&zone->uz_max_items); 3846 } 3847 3848 static uma_bucket_t 3849 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags) 3850 { 3851 uma_bucket_t bucket; 3852 int maxbucket, cnt; 3853 3854 CTR3(KTR_UMA, "zone_alloc_bucket zone %s(%p) domain %d", zone->uz_name, 3855 zone, domain); 3856 3857 /* Avoid allocs targeting empty domains. */ 3858 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 3859 domain = UMA_ANYDOMAIN; 3860 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) 3861 domain = UMA_ANYDOMAIN; 3862 3863 if (zone->uz_max_items > 0) 3864 maxbucket = zone_alloc_limit(zone, zone->uz_bucket_size, 3865 M_NOWAIT); 3866 else 3867 maxbucket = zone->uz_bucket_size; 3868 if (maxbucket == 0) 3869 return (false); 3870 3871 /* Don't wait for buckets, preserve caller's NOVM setting. */ 3872 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 3873 if (bucket == NULL) { 3874 cnt = 0; 3875 goto out; 3876 } 3877 3878 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 3879 MIN(maxbucket, bucket->ub_entries), domain, flags); 3880 3881 /* 3882 * Initialize the memory if necessary. 3883 */ 3884 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 3885 int i; 3886 3887 for (i = 0; i < bucket->ub_cnt; i++) 3888 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 3889 flags) != 0) 3890 break; 3891 /* 3892 * If we couldn't initialize the whole bucket, put the 3893 * rest back onto the freelist. 3894 */ 3895 if (i != bucket->ub_cnt) { 3896 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 3897 bucket->ub_cnt - i); 3898 #ifdef INVARIANTS 3899 bzero(&bucket->ub_bucket[i], 3900 sizeof(void *) * (bucket->ub_cnt - i)); 3901 #endif 3902 bucket->ub_cnt = i; 3903 } 3904 } 3905 3906 cnt = bucket->ub_cnt; 3907 if (bucket->ub_cnt == 0) { 3908 bucket_free(zone, bucket, udata); 3909 counter_u64_add(zone->uz_fails, 1); 3910 bucket = NULL; 3911 } 3912 out: 3913 if (zone->uz_max_items > 0 && cnt < maxbucket) 3914 zone_free_limit(zone, maxbucket - cnt); 3915 3916 return (bucket); 3917 } 3918 3919 /* 3920 * Allocates a single item from a zone. 3921 * 3922 * Arguments 3923 * zone The zone to alloc for. 3924 * udata The data to be passed to the constructor. 3925 * domain The domain to allocate from or UMA_ANYDOMAIN. 3926 * flags M_WAITOK, M_NOWAIT, M_ZERO. 3927 * 3928 * Returns 3929 * NULL if there is no memory and M_NOWAIT is set 3930 * An item if successful 3931 */ 3932 3933 static void * 3934 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 3935 { 3936 void *item; 3937 3938 if (zone->uz_max_items > 0 && zone_alloc_limit(zone, 1, flags) == 0) 3939 return (NULL); 3940 3941 /* Avoid allocs targeting empty domains. */ 3942 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 3943 domain = UMA_ANYDOMAIN; 3944 3945 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 3946 goto fail_cnt; 3947 3948 /* 3949 * We have to call both the zone's init (not the keg's init) 3950 * and the zone's ctor. This is because the item is going from 3951 * a keg slab directly to the user, and the user is expecting it 3952 * to be both zone-init'd as well as zone-ctor'd. 3953 */ 3954 if (zone->uz_init != NULL) { 3955 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 3956 zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT); 3957 goto fail_cnt; 3958 } 3959 } 3960 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, flags, 3961 item); 3962 if (item == NULL) 3963 goto fail; 3964 3965 counter_u64_add(zone->uz_allocs, 1); 3966 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 3967 zone->uz_name, zone); 3968 3969 return (item); 3970 3971 fail_cnt: 3972 counter_u64_add(zone->uz_fails, 1); 3973 fail: 3974 if (zone->uz_max_items > 0) 3975 zone_free_limit(zone, 1); 3976 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 3977 zone->uz_name, zone); 3978 3979 return (NULL); 3980 } 3981 3982 /* See uma.h */ 3983 void 3984 uma_zfree_smr(uma_zone_t zone, void *item) 3985 { 3986 uma_cache_t cache; 3987 uma_cache_bucket_t bucket; 3988 int itemdomain, uz_flags; 3989 3990 #ifdef UMA_ZALLOC_DEBUG 3991 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 3992 ("uma_zfree_smr: called with non-SMR zone.\n")); 3993 KASSERT(item != NULL, ("uma_zfree_smr: Called with NULL pointer.")); 3994 SMR_ASSERT_NOT_ENTERED(zone->uz_smr); 3995 if (uma_zfree_debug(zone, item, NULL) == EJUSTRETURN) 3996 return; 3997 #endif 3998 cache = &zone->uz_cpu[curcpu]; 3999 uz_flags = cache_uz_flags(cache); 4000 itemdomain = 0; 4001 #ifdef NUMA 4002 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4003 itemdomain = _vm_phys_domain(pmap_kextract((vm_offset_t)item)); 4004 #endif 4005 critical_enter(); 4006 do { 4007 cache = &zone->uz_cpu[curcpu]; 4008 /* SMR Zones must free to the free bucket. */ 4009 bucket = &cache->uc_freebucket; 4010 #ifdef NUMA 4011 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4012 PCPU_GET(domain) != itemdomain) { 4013 bucket = &cache->uc_crossbucket; 4014 } 4015 #endif 4016 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 4017 cache_bucket_push(cache, bucket, item); 4018 critical_exit(); 4019 return; 4020 } 4021 } while (cache_free(zone, cache, NULL, item, itemdomain)); 4022 critical_exit(); 4023 4024 /* 4025 * If nothing else caught this, we'll just do an internal free. 4026 */ 4027 zone_free_item(zone, item, NULL, SKIP_NONE); 4028 } 4029 4030 /* See uma.h */ 4031 void 4032 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 4033 { 4034 uma_cache_t cache; 4035 uma_cache_bucket_t bucket; 4036 int itemdomain, uz_flags; 4037 4038 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 4039 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 4040 4041 CTR2(KTR_UMA, "uma_zfree_arg zone %s(%p)", zone->uz_name, zone); 4042 4043 #ifdef UMA_ZALLOC_DEBUG 4044 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 4045 ("uma_zfree_arg: called with SMR zone.\n")); 4046 if (uma_zfree_debug(zone, item, udata) == EJUSTRETURN) 4047 return; 4048 #endif 4049 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 4050 if (item == NULL) 4051 return; 4052 4053 /* 4054 * We are accessing the per-cpu cache without a critical section to 4055 * fetch size and flags. This is acceptable, if we are preempted we 4056 * will simply read another cpu's line. 4057 */ 4058 cache = &zone->uz_cpu[curcpu]; 4059 uz_flags = cache_uz_flags(cache); 4060 if (UMA_ALWAYS_CTORDTOR || 4061 __predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0)) 4062 item_dtor(zone, item, cache_uz_size(cache), udata, SKIP_NONE); 4063 4064 /* 4065 * The race here is acceptable. If we miss it we'll just have to wait 4066 * a little longer for the limits to be reset. 4067 */ 4068 if (__predict_false(uz_flags & UMA_ZFLAG_LIMIT)) { 4069 if (zone->uz_sleepers > 0) 4070 goto zfree_item; 4071 } 4072 4073 /* 4074 * If possible, free to the per-CPU cache. There are two 4075 * requirements for safe access to the per-CPU cache: (1) the thread 4076 * accessing the cache must not be preempted or yield during access, 4077 * and (2) the thread must not migrate CPUs without switching which 4078 * cache it accesses. We rely on a critical section to prevent 4079 * preemption and migration. We release the critical section in 4080 * order to acquire the zone mutex if we are unable to free to the 4081 * current cache; when we re-acquire the critical section, we must 4082 * detect and handle migration if it has occurred. 4083 */ 4084 itemdomain = 0; 4085 #ifdef NUMA 4086 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4087 itemdomain = _vm_phys_domain(pmap_kextract((vm_offset_t)item)); 4088 #endif 4089 critical_enter(); 4090 do { 4091 cache = &zone->uz_cpu[curcpu]; 4092 /* 4093 * Try to free into the allocbucket first to give LIFO 4094 * ordering for cache-hot datastructures. Spill over 4095 * into the freebucket if necessary. Alloc will swap 4096 * them if one runs dry. 4097 */ 4098 bucket = &cache->uc_allocbucket; 4099 #ifdef NUMA 4100 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4101 PCPU_GET(domain) != itemdomain) { 4102 bucket = &cache->uc_crossbucket; 4103 } else 4104 #endif 4105 if (bucket->ucb_cnt == bucket->ucb_entries && 4106 cache->uc_freebucket.ucb_cnt < 4107 cache->uc_freebucket.ucb_entries) 4108 cache_bucket_swap(&cache->uc_freebucket, 4109 &cache->uc_allocbucket); 4110 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 4111 cache_bucket_push(cache, bucket, item); 4112 critical_exit(); 4113 return; 4114 } 4115 } while (cache_free(zone, cache, udata, item, itemdomain)); 4116 critical_exit(); 4117 4118 /* 4119 * If nothing else caught this, we'll just do an internal free. 4120 */ 4121 zfree_item: 4122 zone_free_item(zone, item, udata, SKIP_DTOR); 4123 } 4124 4125 #ifdef NUMA 4126 /* 4127 * sort crossdomain free buckets to domain correct buckets and cache 4128 * them. 4129 */ 4130 static void 4131 zone_free_cross(uma_zone_t zone, uma_bucket_t bucket, void *udata) 4132 { 4133 struct uma_bucketlist fullbuckets; 4134 uma_zone_domain_t zdom; 4135 uma_bucket_t b; 4136 smr_seq_t seq; 4137 void *item; 4138 int domain; 4139 4140 CTR3(KTR_UMA, 4141 "uma_zfree: zone %s(%p) draining cross bucket %p", 4142 zone->uz_name, zone, bucket); 4143 4144 /* 4145 * It is possible for buckets to arrive here out of order so we fetch 4146 * the current smr seq rather than accepting the bucket's. 4147 */ 4148 seq = SMR_SEQ_INVALID; 4149 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 4150 seq = smr_advance(zone->uz_smr); 4151 4152 /* 4153 * To avoid having ndomain * ndomain buckets for sorting we have a 4154 * lock on the current crossfree bucket. A full matrix with 4155 * per-domain locking could be used if necessary. 4156 */ 4157 STAILQ_INIT(&fullbuckets); 4158 ZONE_CROSS_LOCK(zone); 4159 while (bucket->ub_cnt > 0) { 4160 item = bucket->ub_bucket[bucket->ub_cnt - 1]; 4161 domain = _vm_phys_domain(pmap_kextract((vm_offset_t)item)); 4162 zdom = ZDOM_GET(zone, domain); 4163 if (zdom->uzd_cross == NULL) { 4164 zdom->uzd_cross = bucket_alloc(zone, udata, M_NOWAIT); 4165 if (zdom->uzd_cross == NULL) 4166 break; 4167 } 4168 b = zdom->uzd_cross; 4169 b->ub_bucket[b->ub_cnt++] = item; 4170 b->ub_seq = seq; 4171 if (b->ub_cnt == b->ub_entries) { 4172 STAILQ_INSERT_HEAD(&fullbuckets, b, ub_link); 4173 zdom->uzd_cross = NULL; 4174 } 4175 bucket->ub_cnt--; 4176 } 4177 ZONE_CROSS_UNLOCK(zone); 4178 if (bucket->ub_cnt == 0) 4179 bucket->ub_seq = SMR_SEQ_INVALID; 4180 bucket_free(zone, bucket, udata); 4181 4182 while ((b = STAILQ_FIRST(&fullbuckets)) != NULL) { 4183 STAILQ_REMOVE_HEAD(&fullbuckets, ub_link); 4184 domain = _vm_phys_domain(pmap_kextract( 4185 (vm_offset_t)b->ub_bucket[0])); 4186 zone_put_bucket(zone, domain, b, udata, true); 4187 } 4188 } 4189 #endif 4190 4191 static void 4192 zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 4193 int itemdomain, bool ws) 4194 { 4195 4196 #ifdef NUMA 4197 /* 4198 * Buckets coming from the wrong domain will be entirely for the 4199 * only other domain on two domain systems. In this case we can 4200 * simply cache them. Otherwise we need to sort them back to 4201 * correct domains. 4202 */ 4203 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4204 vm_ndomains > 2 && PCPU_GET(domain) != itemdomain) { 4205 zone_free_cross(zone, bucket, udata); 4206 return; 4207 } 4208 #endif 4209 4210 /* 4211 * Attempt to save the bucket in the zone's domain bucket cache. 4212 */ 4213 CTR3(KTR_UMA, 4214 "uma_zfree: zone %s(%p) putting bucket %p on free list", 4215 zone->uz_name, zone, bucket); 4216 /* ub_cnt is pointing to the last free item */ 4217 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) 4218 itemdomain = zone_domain_lowest(zone, itemdomain); 4219 zone_put_bucket(zone, itemdomain, bucket, udata, ws); 4220 } 4221 4222 /* 4223 * Populate a free or cross bucket for the current cpu cache. Free any 4224 * existing full bucket either to the zone cache or back to the slab layer. 4225 * 4226 * Enters and returns in a critical section. false return indicates that 4227 * we can not satisfy this free in the cache layer. true indicates that 4228 * the caller should retry. 4229 */ 4230 static __noinline bool 4231 cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, void *item, 4232 int itemdomain) 4233 { 4234 uma_cache_bucket_t cbucket; 4235 uma_bucket_t newbucket, bucket; 4236 4237 CRITICAL_ASSERT(curthread); 4238 4239 if (zone->uz_bucket_size == 0) 4240 return false; 4241 4242 cache = &zone->uz_cpu[curcpu]; 4243 newbucket = NULL; 4244 4245 /* 4246 * FIRSTTOUCH domains need to free to the correct zdom. When 4247 * enabled this is the zdom of the item. The bucket is the 4248 * cross bucket if the current domain and itemdomain do not match. 4249 */ 4250 cbucket = &cache->uc_freebucket; 4251 #ifdef NUMA 4252 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { 4253 if (PCPU_GET(domain) != itemdomain) { 4254 cbucket = &cache->uc_crossbucket; 4255 if (cbucket->ucb_cnt != 0) 4256 counter_u64_add(zone->uz_xdomain, 4257 cbucket->ucb_cnt); 4258 } 4259 } 4260 #endif 4261 bucket = cache_bucket_unload(cbucket); 4262 KASSERT(bucket == NULL || bucket->ub_cnt == bucket->ub_entries, 4263 ("cache_free: Entered with non-full free bucket.")); 4264 4265 /* We are no longer associated with this CPU. */ 4266 critical_exit(); 4267 4268 /* 4269 * Don't let SMR zones operate without a free bucket. Force 4270 * a synchronize and re-use this one. We will only degrade 4271 * to a synchronize every bucket_size items rather than every 4272 * item if we fail to allocate a bucket. 4273 */ 4274 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) { 4275 if (bucket != NULL) 4276 bucket->ub_seq = smr_advance(zone->uz_smr); 4277 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4278 if (newbucket == NULL && bucket != NULL) { 4279 bucket_drain(zone, bucket); 4280 newbucket = bucket; 4281 bucket = NULL; 4282 } 4283 } else if (!bucketdisable) 4284 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4285 4286 if (bucket != NULL) 4287 zone_free_bucket(zone, bucket, udata, itemdomain, true); 4288 4289 critical_enter(); 4290 if ((bucket = newbucket) == NULL) 4291 return (false); 4292 cache = &zone->uz_cpu[curcpu]; 4293 #ifdef NUMA 4294 /* 4295 * Check to see if we should be populating the cross bucket. If it 4296 * is already populated we will fall through and attempt to populate 4297 * the free bucket. 4298 */ 4299 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { 4300 if (PCPU_GET(domain) != itemdomain && 4301 cache->uc_crossbucket.ucb_bucket == NULL) { 4302 cache_bucket_load_cross(cache, bucket); 4303 return (true); 4304 } 4305 } 4306 #endif 4307 /* 4308 * We may have lost the race to fill the bucket or switched CPUs. 4309 */ 4310 if (cache->uc_freebucket.ucb_bucket != NULL) { 4311 critical_exit(); 4312 bucket_free(zone, bucket, udata); 4313 critical_enter(); 4314 } else 4315 cache_bucket_load_free(cache, bucket); 4316 4317 return (true); 4318 } 4319 4320 void 4321 uma_zfree_domain(uma_zone_t zone, void *item, void *udata) 4322 { 4323 4324 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 4325 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 4326 4327 CTR2(KTR_UMA, "uma_zfree_domain zone %s(%p)", zone->uz_name, zone); 4328 4329 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 4330 ("uma_zfree_domain: called with spinlock or critical section held")); 4331 4332 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 4333 if (item == NULL) 4334 return; 4335 zone_free_item(zone, item, udata, SKIP_NONE); 4336 } 4337 4338 static void 4339 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item) 4340 { 4341 uma_keg_t keg; 4342 uma_domain_t dom; 4343 int freei; 4344 4345 keg = zone->uz_keg; 4346 KEG_LOCK_ASSERT(keg, slab->us_domain); 4347 4348 /* Do we need to remove from any lists? */ 4349 dom = &keg->uk_domain[slab->us_domain]; 4350 if (slab->us_freecount + 1 == keg->uk_ipers) { 4351 LIST_REMOVE(slab, us_link); 4352 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 4353 dom->ud_free_slabs++; 4354 } else if (slab->us_freecount == 0) { 4355 LIST_REMOVE(slab, us_link); 4356 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 4357 } 4358 4359 /* Slab management. */ 4360 freei = slab_item_index(slab, keg, item); 4361 BIT_SET(keg->uk_ipers, freei, &slab->us_free); 4362 slab->us_freecount++; 4363 4364 /* Keg statistics. */ 4365 dom->ud_free_items++; 4366 } 4367 4368 static void 4369 zone_release(void *arg, void **bucket, int cnt) 4370 { 4371 struct mtx *lock; 4372 uma_zone_t zone; 4373 uma_slab_t slab; 4374 uma_keg_t keg; 4375 uint8_t *mem; 4376 void *item; 4377 int i; 4378 4379 zone = arg; 4380 keg = zone->uz_keg; 4381 lock = NULL; 4382 if (__predict_false((zone->uz_flags & UMA_ZFLAG_HASH) != 0)) 4383 lock = KEG_LOCK(keg, 0); 4384 for (i = 0; i < cnt; i++) { 4385 item = bucket[i]; 4386 if (__predict_true((zone->uz_flags & UMA_ZFLAG_VTOSLAB) != 0)) { 4387 slab = vtoslab((vm_offset_t)item); 4388 } else { 4389 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 4390 if ((zone->uz_flags & UMA_ZFLAG_HASH) != 0) 4391 slab = hash_sfind(&keg->uk_hash, mem); 4392 else 4393 slab = (uma_slab_t)(mem + keg->uk_pgoff); 4394 } 4395 if (lock != KEG_LOCKPTR(keg, slab->us_domain)) { 4396 if (lock != NULL) 4397 mtx_unlock(lock); 4398 lock = KEG_LOCK(keg, slab->us_domain); 4399 } 4400 slab_free_item(zone, slab, item); 4401 } 4402 if (lock != NULL) 4403 mtx_unlock(lock); 4404 } 4405 4406 /* 4407 * Frees a single item to any zone. 4408 * 4409 * Arguments: 4410 * zone The zone to free to 4411 * item The item we're freeing 4412 * udata User supplied data for the dtor 4413 * skip Skip dtors and finis 4414 */ 4415 static __noinline void 4416 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 4417 { 4418 4419 /* 4420 * If a free is sent directly to an SMR zone we have to 4421 * synchronize immediately because the item can instantly 4422 * be reallocated. This should only happen in degenerate 4423 * cases when no memory is available for per-cpu caches. 4424 */ 4425 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && skip == SKIP_NONE) 4426 smr_synchronize(zone->uz_smr); 4427 4428 item_dtor(zone, item, zone->uz_size, udata, skip); 4429 4430 if (skip < SKIP_FINI && zone->uz_fini) 4431 zone->uz_fini(item, zone->uz_size); 4432 4433 zone->uz_release(zone->uz_arg, &item, 1); 4434 4435 if (skip & SKIP_CNT) 4436 return; 4437 4438 counter_u64_add(zone->uz_frees, 1); 4439 4440 if (zone->uz_max_items > 0) 4441 zone_free_limit(zone, 1); 4442 } 4443 4444 /* See uma.h */ 4445 int 4446 uma_zone_set_max(uma_zone_t zone, int nitems) 4447 { 4448 struct uma_bucket_zone *ubz; 4449 int count; 4450 4451 /* 4452 * XXX This can misbehave if the zone has any allocations with 4453 * no limit and a limit is imposed. There is currently no 4454 * way to clear a limit. 4455 */ 4456 ZONE_LOCK(zone); 4457 ubz = bucket_zone_max(zone, nitems); 4458 count = ubz != NULL ? ubz->ubz_entries : 0; 4459 zone->uz_bucket_size_max = zone->uz_bucket_size = count; 4460 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 4461 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 4462 zone->uz_max_items = nitems; 4463 zone->uz_flags |= UMA_ZFLAG_LIMIT; 4464 zone_update_caches(zone); 4465 /* We may need to wake waiters. */ 4466 wakeup(&zone->uz_max_items); 4467 ZONE_UNLOCK(zone); 4468 4469 return (nitems); 4470 } 4471 4472 /* See uma.h */ 4473 void 4474 uma_zone_set_maxcache(uma_zone_t zone, int nitems) 4475 { 4476 struct uma_bucket_zone *ubz; 4477 int bpcpu; 4478 4479 ZONE_LOCK(zone); 4480 ubz = bucket_zone_max(zone, nitems); 4481 if (ubz != NULL) { 4482 bpcpu = 2; 4483 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4484 /* Count the cross-domain bucket. */ 4485 bpcpu++; 4486 nitems -= ubz->ubz_entries * bpcpu * mp_ncpus; 4487 zone->uz_bucket_size_max = ubz->ubz_entries; 4488 } else { 4489 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 4490 } 4491 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 4492 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 4493 zone->uz_bucket_max = nitems / vm_ndomains; 4494 ZONE_UNLOCK(zone); 4495 } 4496 4497 /* See uma.h */ 4498 int 4499 uma_zone_get_max(uma_zone_t zone) 4500 { 4501 int nitems; 4502 4503 nitems = atomic_load_64(&zone->uz_max_items); 4504 4505 return (nitems); 4506 } 4507 4508 /* See uma.h */ 4509 void 4510 uma_zone_set_warning(uma_zone_t zone, const char *warning) 4511 { 4512 4513 ZONE_ASSERT_COLD(zone); 4514 zone->uz_warning = warning; 4515 } 4516 4517 /* See uma.h */ 4518 void 4519 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 4520 { 4521 4522 ZONE_ASSERT_COLD(zone); 4523 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 4524 } 4525 4526 /* See uma.h */ 4527 int 4528 uma_zone_get_cur(uma_zone_t zone) 4529 { 4530 int64_t nitems; 4531 u_int i; 4532 4533 nitems = 0; 4534 if (zone->uz_allocs != EARLY_COUNTER && zone->uz_frees != EARLY_COUNTER) 4535 nitems = counter_u64_fetch(zone->uz_allocs) - 4536 counter_u64_fetch(zone->uz_frees); 4537 CPU_FOREACH(i) 4538 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs) - 4539 atomic_load_64(&zone->uz_cpu[i].uc_frees); 4540 4541 return (nitems < 0 ? 0 : nitems); 4542 } 4543 4544 static uint64_t 4545 uma_zone_get_allocs(uma_zone_t zone) 4546 { 4547 uint64_t nitems; 4548 u_int i; 4549 4550 nitems = 0; 4551 if (zone->uz_allocs != EARLY_COUNTER) 4552 nitems = counter_u64_fetch(zone->uz_allocs); 4553 CPU_FOREACH(i) 4554 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs); 4555 4556 return (nitems); 4557 } 4558 4559 static uint64_t 4560 uma_zone_get_frees(uma_zone_t zone) 4561 { 4562 uint64_t nitems; 4563 u_int i; 4564 4565 nitems = 0; 4566 if (zone->uz_frees != EARLY_COUNTER) 4567 nitems = counter_u64_fetch(zone->uz_frees); 4568 CPU_FOREACH(i) 4569 nitems += atomic_load_64(&zone->uz_cpu[i].uc_frees); 4570 4571 return (nitems); 4572 } 4573 4574 #ifdef INVARIANTS 4575 /* Used only for KEG_ASSERT_COLD(). */ 4576 static uint64_t 4577 uma_keg_get_allocs(uma_keg_t keg) 4578 { 4579 uma_zone_t z; 4580 uint64_t nitems; 4581 4582 nitems = 0; 4583 LIST_FOREACH(z, &keg->uk_zones, uz_link) 4584 nitems += uma_zone_get_allocs(z); 4585 4586 return (nitems); 4587 } 4588 #endif 4589 4590 /* See uma.h */ 4591 void 4592 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 4593 { 4594 uma_keg_t keg; 4595 4596 KEG_GET(zone, keg); 4597 KEG_ASSERT_COLD(keg); 4598 keg->uk_init = uminit; 4599 } 4600 4601 /* See uma.h */ 4602 void 4603 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 4604 { 4605 uma_keg_t keg; 4606 4607 KEG_GET(zone, keg); 4608 KEG_ASSERT_COLD(keg); 4609 keg->uk_fini = fini; 4610 } 4611 4612 /* See uma.h */ 4613 void 4614 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 4615 { 4616 4617 ZONE_ASSERT_COLD(zone); 4618 zone->uz_init = zinit; 4619 } 4620 4621 /* See uma.h */ 4622 void 4623 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 4624 { 4625 4626 ZONE_ASSERT_COLD(zone); 4627 zone->uz_fini = zfini; 4628 } 4629 4630 /* See uma.h */ 4631 void 4632 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 4633 { 4634 uma_keg_t keg; 4635 4636 KEG_GET(zone, keg); 4637 KEG_ASSERT_COLD(keg); 4638 keg->uk_freef = freef; 4639 } 4640 4641 /* See uma.h */ 4642 void 4643 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 4644 { 4645 uma_keg_t keg; 4646 4647 KEG_GET(zone, keg); 4648 KEG_ASSERT_COLD(keg); 4649 keg->uk_allocf = allocf; 4650 } 4651 4652 /* See uma.h */ 4653 void 4654 uma_zone_set_smr(uma_zone_t zone, smr_t smr) 4655 { 4656 4657 ZONE_ASSERT_COLD(zone); 4658 4659 KASSERT(smr != NULL, ("Got NULL smr")); 4660 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 4661 ("zone %p (%s) already uses SMR", zone, zone->uz_name)); 4662 zone->uz_flags |= UMA_ZONE_SMR; 4663 zone->uz_smr = smr; 4664 zone_update_caches(zone); 4665 } 4666 4667 smr_t 4668 uma_zone_get_smr(uma_zone_t zone) 4669 { 4670 4671 return (zone->uz_smr); 4672 } 4673 4674 /* See uma.h */ 4675 void 4676 uma_zone_reserve(uma_zone_t zone, int items) 4677 { 4678 uma_keg_t keg; 4679 4680 KEG_GET(zone, keg); 4681 KEG_ASSERT_COLD(keg); 4682 keg->uk_reserve = items; 4683 } 4684 4685 /* See uma.h */ 4686 int 4687 uma_zone_reserve_kva(uma_zone_t zone, int count) 4688 { 4689 uma_keg_t keg; 4690 vm_offset_t kva; 4691 u_int pages; 4692 4693 KEG_GET(zone, keg); 4694 KEG_ASSERT_COLD(keg); 4695 ZONE_ASSERT_COLD(zone); 4696 4697 pages = howmany(count, keg->uk_ipers) * keg->uk_ppera; 4698 4699 #ifdef UMA_MD_SMALL_ALLOC 4700 if (keg->uk_ppera > 1) { 4701 #else 4702 if (1) { 4703 #endif 4704 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 4705 if (kva == 0) 4706 return (0); 4707 } else 4708 kva = 0; 4709 4710 MPASS(keg->uk_kva == 0); 4711 keg->uk_kva = kva; 4712 keg->uk_offset = 0; 4713 zone->uz_max_items = pages * keg->uk_ipers; 4714 #ifdef UMA_MD_SMALL_ALLOC 4715 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 4716 #else 4717 keg->uk_allocf = noobj_alloc; 4718 #endif 4719 keg->uk_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 4720 zone->uz_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 4721 zone_update_caches(zone); 4722 4723 return (1); 4724 } 4725 4726 /* See uma.h */ 4727 void 4728 uma_prealloc(uma_zone_t zone, int items) 4729 { 4730 struct vm_domainset_iter di; 4731 uma_domain_t dom; 4732 uma_slab_t slab; 4733 uma_keg_t keg; 4734 int aflags, domain, slabs; 4735 4736 KEG_GET(zone, keg); 4737 slabs = howmany(items, keg->uk_ipers); 4738 while (slabs-- > 0) { 4739 aflags = M_NOWAIT; 4740 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 4741 &aflags); 4742 for (;;) { 4743 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK, 4744 aflags); 4745 if (slab != NULL) { 4746 dom = &keg->uk_domain[slab->us_domain]; 4747 /* 4748 * keg_alloc_slab() always returns a slab on the 4749 * partial list. 4750 */ 4751 LIST_REMOVE(slab, us_link); 4752 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, 4753 us_link); 4754 dom->ud_free_slabs++; 4755 KEG_UNLOCK(keg, slab->us_domain); 4756 break; 4757 } 4758 if (vm_domainset_iter_policy(&di, &domain) != 0) 4759 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask); 4760 } 4761 } 4762 } 4763 4764 /* 4765 * Returns a snapshot of memory consumption in bytes. 4766 */ 4767 size_t 4768 uma_zone_memory(uma_zone_t zone) 4769 { 4770 size_t sz; 4771 int i; 4772 4773 sz = 0; 4774 if (zone->uz_flags & UMA_ZFLAG_CACHE) { 4775 for (i = 0; i < vm_ndomains; i++) 4776 sz += ZDOM_GET(zone, i)->uzd_nitems; 4777 return (sz * zone->uz_size); 4778 } 4779 for (i = 0; i < vm_ndomains; i++) 4780 sz += zone->uz_keg->uk_domain[i].ud_pages; 4781 4782 return (sz * PAGE_SIZE); 4783 } 4784 4785 /* See uma.h */ 4786 void 4787 uma_reclaim(int req) 4788 { 4789 4790 CTR0(KTR_UMA, "UMA: vm asked us to release pages!"); 4791 sx_xlock(&uma_reclaim_lock); 4792 bucket_enable(); 4793 4794 switch (req) { 4795 case UMA_RECLAIM_TRIM: 4796 zone_foreach(zone_trim, NULL); 4797 break; 4798 case UMA_RECLAIM_DRAIN: 4799 case UMA_RECLAIM_DRAIN_CPU: 4800 zone_foreach(zone_drain, NULL); 4801 if (req == UMA_RECLAIM_DRAIN_CPU) { 4802 pcpu_cache_drain_safe(NULL); 4803 zone_foreach(zone_drain, NULL); 4804 } 4805 break; 4806 default: 4807 panic("unhandled reclamation request %d", req); 4808 } 4809 4810 /* 4811 * Some slabs may have been freed but this zone will be visited early 4812 * we visit again so that we can free pages that are empty once other 4813 * zones are drained. We have to do the same for buckets. 4814 */ 4815 zone_drain(slabzones[0], NULL); 4816 zone_drain(slabzones[1], NULL); 4817 bucket_zone_drain(); 4818 sx_xunlock(&uma_reclaim_lock); 4819 } 4820 4821 static volatile int uma_reclaim_needed; 4822 4823 void 4824 uma_reclaim_wakeup(void) 4825 { 4826 4827 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 4828 wakeup(uma_reclaim); 4829 } 4830 4831 void 4832 uma_reclaim_worker(void *arg __unused) 4833 { 4834 4835 for (;;) { 4836 sx_xlock(&uma_reclaim_lock); 4837 while (atomic_load_int(&uma_reclaim_needed) == 0) 4838 sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl", 4839 hz); 4840 sx_xunlock(&uma_reclaim_lock); 4841 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 4842 uma_reclaim(UMA_RECLAIM_DRAIN_CPU); 4843 atomic_store_int(&uma_reclaim_needed, 0); 4844 /* Don't fire more than once per-second. */ 4845 pause("umarclslp", hz); 4846 } 4847 } 4848 4849 /* See uma.h */ 4850 void 4851 uma_zone_reclaim(uma_zone_t zone, int req) 4852 { 4853 4854 switch (req) { 4855 case UMA_RECLAIM_TRIM: 4856 zone_trim(zone, NULL); 4857 break; 4858 case UMA_RECLAIM_DRAIN: 4859 zone_drain(zone, NULL); 4860 break; 4861 case UMA_RECLAIM_DRAIN_CPU: 4862 pcpu_cache_drain_safe(zone); 4863 zone_drain(zone, NULL); 4864 break; 4865 default: 4866 panic("unhandled reclamation request %d", req); 4867 } 4868 } 4869 4870 /* See uma.h */ 4871 int 4872 uma_zone_exhausted(uma_zone_t zone) 4873 { 4874 4875 return (atomic_load_32(&zone->uz_sleepers) > 0); 4876 } 4877 4878 unsigned long 4879 uma_limit(void) 4880 { 4881 4882 return (uma_kmem_limit); 4883 } 4884 4885 void 4886 uma_set_limit(unsigned long limit) 4887 { 4888 4889 uma_kmem_limit = limit; 4890 } 4891 4892 unsigned long 4893 uma_size(void) 4894 { 4895 4896 return (atomic_load_long(&uma_kmem_total)); 4897 } 4898 4899 long 4900 uma_avail(void) 4901 { 4902 4903 return (uma_kmem_limit - uma_size()); 4904 } 4905 4906 #ifdef DDB 4907 /* 4908 * Generate statistics across both the zone and its per-cpu cache's. Return 4909 * desired statistics if the pointer is non-NULL for that statistic. 4910 * 4911 * Note: does not update the zone statistics, as it can't safely clear the 4912 * per-CPU cache statistic. 4913 * 4914 */ 4915 static void 4916 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp, 4917 uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp) 4918 { 4919 uma_cache_t cache; 4920 uint64_t allocs, frees, sleeps, xdomain; 4921 int cachefree, cpu; 4922 4923 allocs = frees = sleeps = xdomain = 0; 4924 cachefree = 0; 4925 CPU_FOREACH(cpu) { 4926 cache = &z->uz_cpu[cpu]; 4927 cachefree += cache->uc_allocbucket.ucb_cnt; 4928 cachefree += cache->uc_freebucket.ucb_cnt; 4929 xdomain += cache->uc_crossbucket.ucb_cnt; 4930 cachefree += cache->uc_crossbucket.ucb_cnt; 4931 allocs += cache->uc_allocs; 4932 frees += cache->uc_frees; 4933 } 4934 allocs += counter_u64_fetch(z->uz_allocs); 4935 frees += counter_u64_fetch(z->uz_frees); 4936 xdomain += counter_u64_fetch(z->uz_xdomain); 4937 sleeps += z->uz_sleeps; 4938 if (cachefreep != NULL) 4939 *cachefreep = cachefree; 4940 if (allocsp != NULL) 4941 *allocsp = allocs; 4942 if (freesp != NULL) 4943 *freesp = frees; 4944 if (sleepsp != NULL) 4945 *sleepsp = sleeps; 4946 if (xdomainp != NULL) 4947 *xdomainp = xdomain; 4948 } 4949 #endif /* DDB */ 4950 4951 static int 4952 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 4953 { 4954 uma_keg_t kz; 4955 uma_zone_t z; 4956 int count; 4957 4958 count = 0; 4959 rw_rlock(&uma_rwlock); 4960 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4961 LIST_FOREACH(z, &kz->uk_zones, uz_link) 4962 count++; 4963 } 4964 LIST_FOREACH(z, &uma_cachezones, uz_link) 4965 count++; 4966 4967 rw_runlock(&uma_rwlock); 4968 return (sysctl_handle_int(oidp, &count, 0, req)); 4969 } 4970 4971 static void 4972 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf, 4973 struct uma_percpu_stat *ups, bool internal) 4974 { 4975 uma_zone_domain_t zdom; 4976 uma_cache_t cache; 4977 int i; 4978 4979 4980 for (i = 0; i < vm_ndomains; i++) { 4981 zdom = ZDOM_GET(z, i); 4982 uth->uth_zone_free += zdom->uzd_nitems; 4983 } 4984 uth->uth_allocs = counter_u64_fetch(z->uz_allocs); 4985 uth->uth_frees = counter_u64_fetch(z->uz_frees); 4986 uth->uth_fails = counter_u64_fetch(z->uz_fails); 4987 uth->uth_xdomain = counter_u64_fetch(z->uz_xdomain); 4988 uth->uth_sleeps = z->uz_sleeps; 4989 4990 for (i = 0; i < mp_maxid + 1; i++) { 4991 bzero(&ups[i], sizeof(*ups)); 4992 if (internal || CPU_ABSENT(i)) 4993 continue; 4994 cache = &z->uz_cpu[i]; 4995 ups[i].ups_cache_free += cache->uc_allocbucket.ucb_cnt; 4996 ups[i].ups_cache_free += cache->uc_freebucket.ucb_cnt; 4997 ups[i].ups_cache_free += cache->uc_crossbucket.ucb_cnt; 4998 ups[i].ups_allocs = cache->uc_allocs; 4999 ups[i].ups_frees = cache->uc_frees; 5000 } 5001 } 5002 5003 static int 5004 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 5005 { 5006 struct uma_stream_header ush; 5007 struct uma_type_header uth; 5008 struct uma_percpu_stat *ups; 5009 struct sbuf sbuf; 5010 uma_keg_t kz; 5011 uma_zone_t z; 5012 uint64_t items; 5013 uint32_t kfree, pages; 5014 int count, error, i; 5015 5016 error = sysctl_wire_old_buffer(req, 0); 5017 if (error != 0) 5018 return (error); 5019 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 5020 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 5021 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 5022 5023 count = 0; 5024 rw_rlock(&uma_rwlock); 5025 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5026 LIST_FOREACH(z, &kz->uk_zones, uz_link) 5027 count++; 5028 } 5029 5030 LIST_FOREACH(z, &uma_cachezones, uz_link) 5031 count++; 5032 5033 /* 5034 * Insert stream header. 5035 */ 5036 bzero(&ush, sizeof(ush)); 5037 ush.ush_version = UMA_STREAM_VERSION; 5038 ush.ush_maxcpus = (mp_maxid + 1); 5039 ush.ush_count = count; 5040 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 5041 5042 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5043 kfree = pages = 0; 5044 for (i = 0; i < vm_ndomains; i++) { 5045 kfree += kz->uk_domain[i].ud_free_items; 5046 pages += kz->uk_domain[i].ud_pages; 5047 } 5048 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5049 bzero(&uth, sizeof(uth)); 5050 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 5051 uth.uth_align = kz->uk_align; 5052 uth.uth_size = kz->uk_size; 5053 uth.uth_rsize = kz->uk_rsize; 5054 if (z->uz_max_items > 0) { 5055 items = UZ_ITEMS_COUNT(z->uz_items); 5056 uth.uth_pages = (items / kz->uk_ipers) * 5057 kz->uk_ppera; 5058 } else 5059 uth.uth_pages = pages; 5060 uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) * 5061 kz->uk_ppera; 5062 uth.uth_limit = z->uz_max_items; 5063 uth.uth_keg_free = kfree; 5064 5065 /* 5066 * A zone is secondary is it is not the first entry 5067 * on the keg's zone list. 5068 */ 5069 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 5070 (LIST_FIRST(&kz->uk_zones) != z)) 5071 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 5072 uma_vm_zone_stats(&uth, z, &sbuf, ups, 5073 kz->uk_flags & UMA_ZFLAG_INTERNAL); 5074 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 5075 for (i = 0; i < mp_maxid + 1; i++) 5076 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 5077 } 5078 } 5079 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5080 bzero(&uth, sizeof(uth)); 5081 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 5082 uth.uth_size = z->uz_size; 5083 uma_vm_zone_stats(&uth, z, &sbuf, ups, false); 5084 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 5085 for (i = 0; i < mp_maxid + 1; i++) 5086 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 5087 } 5088 5089 rw_runlock(&uma_rwlock); 5090 error = sbuf_finish(&sbuf); 5091 sbuf_delete(&sbuf); 5092 free(ups, M_TEMP); 5093 return (error); 5094 } 5095 5096 int 5097 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 5098 { 5099 uma_zone_t zone = *(uma_zone_t *)arg1; 5100 int error, max; 5101 5102 max = uma_zone_get_max(zone); 5103 error = sysctl_handle_int(oidp, &max, 0, req); 5104 if (error || !req->newptr) 5105 return (error); 5106 5107 uma_zone_set_max(zone, max); 5108 5109 return (0); 5110 } 5111 5112 int 5113 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 5114 { 5115 uma_zone_t zone; 5116 int cur; 5117 5118 /* 5119 * Some callers want to add sysctls for global zones that 5120 * may not yet exist so they pass a pointer to a pointer. 5121 */ 5122 if (arg2 == 0) 5123 zone = *(uma_zone_t *)arg1; 5124 else 5125 zone = arg1; 5126 cur = uma_zone_get_cur(zone); 5127 return (sysctl_handle_int(oidp, &cur, 0, req)); 5128 } 5129 5130 static int 5131 sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS) 5132 { 5133 uma_zone_t zone = arg1; 5134 uint64_t cur; 5135 5136 cur = uma_zone_get_allocs(zone); 5137 return (sysctl_handle_64(oidp, &cur, 0, req)); 5138 } 5139 5140 static int 5141 sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS) 5142 { 5143 uma_zone_t zone = arg1; 5144 uint64_t cur; 5145 5146 cur = uma_zone_get_frees(zone); 5147 return (sysctl_handle_64(oidp, &cur, 0, req)); 5148 } 5149 5150 static int 5151 sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS) 5152 { 5153 struct sbuf sbuf; 5154 uma_zone_t zone = arg1; 5155 int error; 5156 5157 sbuf_new_for_sysctl(&sbuf, NULL, 0, req); 5158 if (zone->uz_flags != 0) 5159 sbuf_printf(&sbuf, "0x%b", zone->uz_flags, PRINT_UMA_ZFLAGS); 5160 else 5161 sbuf_printf(&sbuf, "0"); 5162 error = sbuf_finish(&sbuf); 5163 sbuf_delete(&sbuf); 5164 5165 return (error); 5166 } 5167 5168 static int 5169 sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS) 5170 { 5171 uma_keg_t keg = arg1; 5172 int avail, effpct, total; 5173 5174 total = keg->uk_ppera * PAGE_SIZE; 5175 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0) 5176 total += slabzone(keg->uk_ipers)->uz_keg->uk_rsize; 5177 /* 5178 * We consider the client's requested size and alignment here, not the 5179 * real size determination uk_rsize, because we also adjust the real 5180 * size for internal implementation reasons (max bitset size). 5181 */ 5182 avail = keg->uk_ipers * roundup2(keg->uk_size, keg->uk_align + 1); 5183 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 5184 avail *= mp_maxid + 1; 5185 effpct = 100 * avail / total; 5186 return (sysctl_handle_int(oidp, &effpct, 0, req)); 5187 } 5188 5189 static int 5190 sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS) 5191 { 5192 uma_zone_t zone = arg1; 5193 uint64_t cur; 5194 5195 cur = UZ_ITEMS_COUNT(atomic_load_64(&zone->uz_items)); 5196 return (sysctl_handle_64(oidp, &cur, 0, req)); 5197 } 5198 5199 #ifdef INVARIANTS 5200 static uma_slab_t 5201 uma_dbg_getslab(uma_zone_t zone, void *item) 5202 { 5203 uma_slab_t slab; 5204 uma_keg_t keg; 5205 uint8_t *mem; 5206 5207 /* 5208 * It is safe to return the slab here even though the 5209 * zone is unlocked because the item's allocation state 5210 * essentially holds a reference. 5211 */ 5212 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 5213 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5214 return (NULL); 5215 if (zone->uz_flags & UMA_ZFLAG_VTOSLAB) 5216 return (vtoslab((vm_offset_t)mem)); 5217 keg = zone->uz_keg; 5218 if ((keg->uk_flags & UMA_ZFLAG_HASH) == 0) 5219 return ((uma_slab_t)(mem + keg->uk_pgoff)); 5220 KEG_LOCK(keg, 0); 5221 slab = hash_sfind(&keg->uk_hash, mem); 5222 KEG_UNLOCK(keg, 0); 5223 5224 return (slab); 5225 } 5226 5227 static bool 5228 uma_dbg_zskip(uma_zone_t zone, void *mem) 5229 { 5230 5231 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5232 return (true); 5233 5234 return (uma_dbg_kskip(zone->uz_keg, mem)); 5235 } 5236 5237 static bool 5238 uma_dbg_kskip(uma_keg_t keg, void *mem) 5239 { 5240 uintptr_t idx; 5241 5242 if (dbg_divisor == 0) 5243 return (true); 5244 5245 if (dbg_divisor == 1) 5246 return (false); 5247 5248 idx = (uintptr_t)mem >> PAGE_SHIFT; 5249 if (keg->uk_ipers > 1) { 5250 idx *= keg->uk_ipers; 5251 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize; 5252 } 5253 5254 if ((idx / dbg_divisor) * dbg_divisor != idx) { 5255 counter_u64_add(uma_skip_cnt, 1); 5256 return (true); 5257 } 5258 counter_u64_add(uma_dbg_cnt, 1); 5259 5260 return (false); 5261 } 5262 5263 /* 5264 * Set up the slab's freei data such that uma_dbg_free can function. 5265 * 5266 */ 5267 static void 5268 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 5269 { 5270 uma_keg_t keg; 5271 int freei; 5272 5273 if (slab == NULL) { 5274 slab = uma_dbg_getslab(zone, item); 5275 if (slab == NULL) 5276 panic("uma: item %p did not belong to zone %s\n", 5277 item, zone->uz_name); 5278 } 5279 keg = zone->uz_keg; 5280 freei = slab_item_index(slab, keg, item); 5281 5282 if (BIT_ISSET(keg->uk_ipers, freei, slab_dbg_bits(slab, keg))) 5283 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n", 5284 item, zone, zone->uz_name, slab, freei); 5285 BIT_SET_ATOMIC(keg->uk_ipers, freei, slab_dbg_bits(slab, keg)); 5286 } 5287 5288 /* 5289 * Verifies freed addresses. Checks for alignment, valid slab membership 5290 * and duplicate frees. 5291 * 5292 */ 5293 static void 5294 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 5295 { 5296 uma_keg_t keg; 5297 int freei; 5298 5299 if (slab == NULL) { 5300 slab = uma_dbg_getslab(zone, item); 5301 if (slab == NULL) 5302 panic("uma: Freed item %p did not belong to zone %s\n", 5303 item, zone->uz_name); 5304 } 5305 keg = zone->uz_keg; 5306 freei = slab_item_index(slab, keg, item); 5307 5308 if (freei >= keg->uk_ipers) 5309 panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n", 5310 item, zone, zone->uz_name, slab, freei); 5311 5312 if (slab_item(slab, keg, freei) != item) 5313 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n", 5314 item, zone, zone->uz_name, slab, freei); 5315 5316 if (!BIT_ISSET(keg->uk_ipers, freei, slab_dbg_bits(slab, keg))) 5317 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n", 5318 item, zone, zone->uz_name, slab, freei); 5319 5320 BIT_CLR_ATOMIC(keg->uk_ipers, freei, slab_dbg_bits(slab, keg)); 5321 } 5322 #endif /* INVARIANTS */ 5323 5324 #ifdef DDB 5325 static int64_t 5326 get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used, 5327 uint64_t *sleeps, long *cachefree, uint64_t *xdomain) 5328 { 5329 uint64_t frees; 5330 int i; 5331 5332 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 5333 *allocs = counter_u64_fetch(z->uz_allocs); 5334 frees = counter_u64_fetch(z->uz_frees); 5335 *sleeps = z->uz_sleeps; 5336 *cachefree = 0; 5337 *xdomain = 0; 5338 } else 5339 uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps, 5340 xdomain); 5341 for (i = 0; i < vm_ndomains; i++) { 5342 *cachefree += ZDOM_GET(z, i)->uzd_nitems; 5343 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 5344 (LIST_FIRST(&kz->uk_zones) != z))) 5345 *cachefree += kz->uk_domain[i].ud_free_items; 5346 } 5347 *used = *allocs - frees; 5348 return (((int64_t)*used + *cachefree) * kz->uk_size); 5349 } 5350 5351 DB_SHOW_COMMAND(uma, db_show_uma) 5352 { 5353 const char *fmt_hdr, *fmt_entry; 5354 uma_keg_t kz; 5355 uma_zone_t z; 5356 uint64_t allocs, used, sleeps, xdomain; 5357 long cachefree; 5358 /* variables for sorting */ 5359 uma_keg_t cur_keg; 5360 uma_zone_t cur_zone, last_zone; 5361 int64_t cur_size, last_size, size; 5362 int ties; 5363 5364 /* /i option produces machine-parseable CSV output */ 5365 if (modif[0] == 'i') { 5366 fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n"; 5367 fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n"; 5368 } else { 5369 fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n"; 5370 fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n"; 5371 } 5372 5373 db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests", 5374 "Sleeps", "Bucket", "Total Mem", "XFree"); 5375 5376 /* Sort the zones with largest size first. */ 5377 last_zone = NULL; 5378 last_size = INT64_MAX; 5379 for (;;) { 5380 cur_zone = NULL; 5381 cur_size = -1; 5382 ties = 0; 5383 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5384 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5385 /* 5386 * In the case of size ties, print out zones 5387 * in the order they are encountered. That is, 5388 * when we encounter the most recently output 5389 * zone, we have already printed all preceding 5390 * ties, and we must print all following ties. 5391 */ 5392 if (z == last_zone) { 5393 ties = 1; 5394 continue; 5395 } 5396 size = get_uma_stats(kz, z, &allocs, &used, 5397 &sleeps, &cachefree, &xdomain); 5398 if (size > cur_size && size < last_size + ties) 5399 { 5400 cur_size = size; 5401 cur_zone = z; 5402 cur_keg = kz; 5403 } 5404 } 5405 } 5406 if (cur_zone == NULL) 5407 break; 5408 5409 size = get_uma_stats(cur_keg, cur_zone, &allocs, &used, 5410 &sleeps, &cachefree, &xdomain); 5411 db_printf(fmt_entry, cur_zone->uz_name, 5412 (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree, 5413 (uintmax_t)allocs, (uintmax_t)sleeps, 5414 (unsigned)cur_zone->uz_bucket_size, (intmax_t)size, 5415 xdomain); 5416 5417 if (db_pager_quit) 5418 return; 5419 last_zone = cur_zone; 5420 last_size = cur_size; 5421 } 5422 } 5423 5424 DB_SHOW_COMMAND(umacache, db_show_umacache) 5425 { 5426 uma_zone_t z; 5427 uint64_t allocs, frees; 5428 long cachefree; 5429 int i; 5430 5431 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 5432 "Requests", "Bucket"); 5433 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5434 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL); 5435 for (i = 0; i < vm_ndomains; i++) 5436 cachefree += ZDOM_GET(z, i)->uzd_nitems; 5437 db_printf("%18s %8ju %8jd %8ld %12ju %8u\n", 5438 z->uz_name, (uintmax_t)z->uz_size, 5439 (intmax_t)(allocs - frees), cachefree, 5440 (uintmax_t)allocs, z->uz_bucket_size); 5441 if (db_pager_quit) 5442 return; 5443 } 5444 } 5445 #endif /* DDB */ 5446