1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/bitset.h> 62 #include <sys/domainset.h> 63 #include <sys/eventhandler.h> 64 #include <sys/kernel.h> 65 #include <sys/types.h> 66 #include <sys/limits.h> 67 #include <sys/queue.h> 68 #include <sys/malloc.h> 69 #include <sys/ktr.h> 70 #include <sys/lock.h> 71 #include <sys/sysctl.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/random.h> 75 #include <sys/rwlock.h> 76 #include <sys/sbuf.h> 77 #include <sys/sched.h> 78 #include <sys/sleepqueue.h> 79 #include <sys/smp.h> 80 #include <sys/taskqueue.h> 81 #include <sys/vmmeter.h> 82 83 #include <vm/vm.h> 84 #include <vm/vm_domainset.h> 85 #include <vm/vm_object.h> 86 #include <vm/vm_page.h> 87 #include <vm/vm_pageout.h> 88 #include <vm/vm_param.h> 89 #include <vm/vm_phys.h> 90 #include <vm/vm_pagequeue.h> 91 #include <vm/vm_map.h> 92 #include <vm/vm_kern.h> 93 #include <vm/vm_extern.h> 94 #include <vm/uma.h> 95 #include <vm/uma_int.h> 96 #include <vm/uma_dbg.h> 97 98 #include <ddb/ddb.h> 99 100 #ifdef DEBUG_MEMGUARD 101 #include <vm/memguard.h> 102 #endif 103 104 #include <machine/md_var.h> 105 106 /* 107 * This is the zone and keg from which all zones are spawned. 108 */ 109 static uma_zone_t kegs; 110 static uma_zone_t zones; 111 112 /* 113 * These are the two zones from which all offpage uma_slab_ts are allocated. 114 * 115 * One zone is for slab headers that can represent a larger number of items, 116 * making the slabs themselves more efficient, and the other zone is for 117 * headers that are smaller and represent fewer items, making the headers more 118 * efficient. 119 */ 120 #define SLABZONE_SIZE(setsize) \ 121 (sizeof(struct uma_hash_slab) + BITSET_SIZE(setsize) * SLAB_BITSETS) 122 #define SLABZONE0_SETSIZE (PAGE_SIZE / 16) 123 #define SLABZONE1_SETSIZE SLAB_MAX_SETSIZE 124 #define SLABZONE0_SIZE SLABZONE_SIZE(SLABZONE0_SETSIZE) 125 #define SLABZONE1_SIZE SLABZONE_SIZE(SLABZONE1_SETSIZE) 126 static uma_zone_t slabzones[2]; 127 128 /* 129 * The initial hash tables come out of this zone so they can be allocated 130 * prior to malloc coming up. 131 */ 132 static uma_zone_t hashzone; 133 134 /* The boot-time adjusted value for cache line alignment. */ 135 int uma_align_cache = 64 - 1; 136 137 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 138 static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc"); 139 140 /* 141 * Are we allowed to allocate buckets? 142 */ 143 static int bucketdisable = 1; 144 145 /* Linked list of all kegs in the system */ 146 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 147 148 /* Linked list of all cache-only zones in the system */ 149 static LIST_HEAD(,uma_zone) uma_cachezones = 150 LIST_HEAD_INITIALIZER(uma_cachezones); 151 152 /* This RW lock protects the keg list */ 153 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 154 155 /* 156 * First available virual address for boot time allocations. 157 */ 158 static vm_offset_t bootstart; 159 static vm_offset_t bootmem; 160 161 static struct sx uma_reclaim_lock; 162 163 /* 164 * kmem soft limit, initialized by uma_set_limit(). Ensure that early 165 * allocations don't trigger a wakeup of the reclaim thread. 166 */ 167 unsigned long uma_kmem_limit = LONG_MAX; 168 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0, 169 "UMA kernel memory soft limit"); 170 unsigned long uma_kmem_total; 171 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0, 172 "UMA kernel memory usage"); 173 174 /* Is the VM done starting up? */ 175 static enum { 176 BOOT_COLD, 177 BOOT_KVA, 178 BOOT_RUNNING, 179 BOOT_SHUTDOWN, 180 } booted = BOOT_COLD; 181 182 /* 183 * This is the handle used to schedule events that need to happen 184 * outside of the allocation fast path. 185 */ 186 static struct callout uma_callout; 187 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 188 189 /* 190 * This structure is passed as the zone ctor arg so that I don't have to create 191 * a special allocation function just for zones. 192 */ 193 struct uma_zctor_args { 194 const char *name; 195 size_t size; 196 uma_ctor ctor; 197 uma_dtor dtor; 198 uma_init uminit; 199 uma_fini fini; 200 uma_import import; 201 uma_release release; 202 void *arg; 203 uma_keg_t keg; 204 int align; 205 uint32_t flags; 206 }; 207 208 struct uma_kctor_args { 209 uma_zone_t zone; 210 size_t size; 211 uma_init uminit; 212 uma_fini fini; 213 int align; 214 uint32_t flags; 215 }; 216 217 struct uma_bucket_zone { 218 uma_zone_t ubz_zone; 219 char *ubz_name; 220 int ubz_entries; /* Number of items it can hold. */ 221 int ubz_maxsize; /* Maximum allocation size per-item. */ 222 }; 223 224 /* 225 * Compute the actual number of bucket entries to pack them in power 226 * of two sizes for more efficient space utilization. 227 */ 228 #define BUCKET_SIZE(n) \ 229 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 230 231 #define BUCKET_MAX BUCKET_SIZE(256) 232 #define BUCKET_MIN BUCKET_SIZE(4) 233 234 struct uma_bucket_zone bucket_zones[] = { 235 { NULL, "4 Bucket", BUCKET_SIZE(4), 4096 }, 236 { NULL, "6 Bucket", BUCKET_SIZE(6), 3072 }, 237 { NULL, "8 Bucket", BUCKET_SIZE(8), 2048 }, 238 { NULL, "12 Bucket", BUCKET_SIZE(12), 1536 }, 239 { NULL, "16 Bucket", BUCKET_SIZE(16), 1024 }, 240 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 241 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 242 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 243 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 244 { NULL, NULL, 0} 245 }; 246 247 /* 248 * Flags and enumerations to be passed to internal functions. 249 */ 250 enum zfreeskip { 251 SKIP_NONE = 0, 252 SKIP_CNT = 0x00000001, 253 SKIP_DTOR = 0x00010000, 254 SKIP_FINI = 0x00020000, 255 }; 256 257 /* Prototypes.. */ 258 259 void uma_startup1(vm_offset_t); 260 void uma_startup2(void); 261 262 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 263 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 264 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 265 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 266 static void page_free(void *, vm_size_t, uint8_t); 267 static void pcpu_page_free(void *, vm_size_t, uint8_t); 268 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int); 269 static void cache_drain(uma_zone_t); 270 static void bucket_drain(uma_zone_t, uma_bucket_t); 271 static void bucket_cache_reclaim(uma_zone_t zone, bool); 272 static int keg_ctor(void *, int, void *, int); 273 static void keg_dtor(void *, int, void *); 274 static int zone_ctor(void *, int, void *, int); 275 static void zone_dtor(void *, int, void *); 276 static int zero_init(void *, int, int); 277 static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *); 278 static void zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *), void *); 279 static void zone_timeout(uma_zone_t zone, void *); 280 static int hash_alloc(struct uma_hash *, u_int); 281 static int hash_expand(struct uma_hash *, struct uma_hash *); 282 static void hash_free(struct uma_hash *hash); 283 static void uma_timeout(void *); 284 static void uma_startup3(void); 285 static void uma_shutdown(void); 286 static void *zone_alloc_item(uma_zone_t, void *, int, int); 287 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 288 static int zone_alloc_limit(uma_zone_t zone, int count, int flags); 289 static void zone_free_limit(uma_zone_t zone, int count); 290 static void bucket_enable(void); 291 static void bucket_init(void); 292 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 293 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 294 static void bucket_zone_drain(void); 295 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int); 296 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 297 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item); 298 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 299 uma_fini fini, int align, uint32_t flags); 300 static int zone_import(void *, void **, int, int, int); 301 static void zone_release(void *, void **, int); 302 static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int); 303 static bool cache_free(uma_zone_t, uma_cache_t, void *, void *, int); 304 305 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 306 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 307 static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS); 308 static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS); 309 static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS); 310 static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS); 311 static int sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS); 312 313 static uint64_t uma_zone_get_allocs(uma_zone_t zone); 314 315 #ifdef INVARIANTS 316 static uint64_t uma_keg_get_allocs(uma_keg_t zone); 317 static inline struct noslabbits *slab_dbg_bits(uma_slab_t slab, uma_keg_t keg); 318 319 static bool uma_dbg_kskip(uma_keg_t keg, void *mem); 320 static bool uma_dbg_zskip(uma_zone_t zone, void *mem); 321 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 322 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 323 324 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD, 0, 325 "Memory allocation debugging"); 326 327 static u_int dbg_divisor = 1; 328 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor, 329 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0, 330 "Debug & thrash every this item in memory allocator"); 331 332 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER; 333 static counter_u64_t uma_skip_cnt = EARLY_COUNTER; 334 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD, 335 &uma_dbg_cnt, "memory items debugged"); 336 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD, 337 &uma_skip_cnt, "memory items skipped, not debugged"); 338 #endif 339 340 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 341 342 SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW, 0, "Universal Memory Allocator"); 343 344 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_INT, 345 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 346 347 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_STRUCT, 348 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 349 350 static int zone_warnings = 1; 351 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 352 "Warn when UMA zones becomes full"); 353 354 /* 355 * Select the slab zone for an offpage slab with the given maximum item count. 356 */ 357 static inline uma_zone_t 358 slabzone(int ipers) 359 { 360 361 return (slabzones[ipers > SLABZONE0_SETSIZE]); 362 } 363 364 /* 365 * This routine checks to see whether or not it's safe to enable buckets. 366 */ 367 static void 368 bucket_enable(void) 369 { 370 371 KASSERT(booted >= BOOT_KVA, ("Bucket enable before init")); 372 bucketdisable = vm_page_count_min(); 373 } 374 375 /* 376 * Initialize bucket_zones, the array of zones of buckets of various sizes. 377 * 378 * For each zone, calculate the memory required for each bucket, consisting 379 * of the header and an array of pointers. 380 */ 381 static void 382 bucket_init(void) 383 { 384 struct uma_bucket_zone *ubz; 385 int size; 386 387 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 388 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 389 size += sizeof(void *) * ubz->ubz_entries; 390 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 391 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 392 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | 393 UMA_ZONE_FIRSTTOUCH); 394 } 395 } 396 397 /* 398 * Given a desired number of entries for a bucket, return the zone from which 399 * to allocate the bucket. 400 */ 401 static struct uma_bucket_zone * 402 bucket_zone_lookup(int entries) 403 { 404 struct uma_bucket_zone *ubz; 405 406 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 407 if (ubz->ubz_entries >= entries) 408 return (ubz); 409 ubz--; 410 return (ubz); 411 } 412 413 static struct uma_bucket_zone * 414 bucket_zone_max(uma_zone_t zone, int nitems) 415 { 416 struct uma_bucket_zone *ubz; 417 int bpcpu; 418 419 bpcpu = 2; 420 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 421 /* Count the cross-domain bucket. */ 422 bpcpu++; 423 424 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 425 if (ubz->ubz_entries * bpcpu * mp_ncpus > nitems) 426 break; 427 if (ubz == &bucket_zones[0]) 428 ubz = NULL; 429 else 430 ubz--; 431 return (ubz); 432 } 433 434 static int 435 bucket_select(int size) 436 { 437 struct uma_bucket_zone *ubz; 438 439 ubz = &bucket_zones[0]; 440 if (size > ubz->ubz_maxsize) 441 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 442 443 for (; ubz->ubz_entries != 0; ubz++) 444 if (ubz->ubz_maxsize < size) 445 break; 446 ubz--; 447 return (ubz->ubz_entries); 448 } 449 450 static uma_bucket_t 451 bucket_alloc(uma_zone_t zone, void *udata, int flags) 452 { 453 struct uma_bucket_zone *ubz; 454 uma_bucket_t bucket; 455 456 /* 457 * Don't allocate buckets in low memory situations. 458 */ 459 if (bucketdisable) 460 return (NULL); 461 462 /* 463 * To limit bucket recursion we store the original zone flags 464 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 465 * NOVM flag to persist even through deep recursions. We also 466 * store ZFLAG_BUCKET once we have recursed attempting to allocate 467 * a bucket for a bucket zone so we do not allow infinite bucket 468 * recursion. This cookie will even persist to frees of unused 469 * buckets via the allocation path or bucket allocations in the 470 * free path. 471 */ 472 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 473 udata = (void *)(uintptr_t)zone->uz_flags; 474 else { 475 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 476 return (NULL); 477 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 478 } 479 if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY) 480 flags |= M_NOVM; 481 ubz = bucket_zone_lookup(zone->uz_bucket_size); 482 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 483 ubz++; 484 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 485 if (bucket) { 486 #ifdef INVARIANTS 487 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 488 #endif 489 bucket->ub_cnt = 0; 490 bucket->ub_entries = ubz->ubz_entries; 491 } 492 493 return (bucket); 494 } 495 496 static void 497 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 498 { 499 struct uma_bucket_zone *ubz; 500 501 KASSERT(bucket->ub_cnt == 0, 502 ("bucket_free: Freeing a non free bucket.")); 503 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 504 udata = (void *)(uintptr_t)zone->uz_flags; 505 ubz = bucket_zone_lookup(bucket->ub_entries); 506 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 507 } 508 509 static void 510 bucket_zone_drain(void) 511 { 512 struct uma_bucket_zone *ubz; 513 514 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 515 uma_zone_reclaim(ubz->ubz_zone, UMA_RECLAIM_DRAIN); 516 } 517 518 /* 519 * Attempt to satisfy an allocation by retrieving a full bucket from one of the 520 * zone's caches. 521 */ 522 static uma_bucket_t 523 zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom) 524 { 525 uma_bucket_t bucket; 526 527 ZONE_LOCK_ASSERT(zone); 528 529 if ((bucket = TAILQ_FIRST(&zdom->uzd_buckets)) != NULL) { 530 MPASS(zdom->uzd_nitems >= bucket->ub_cnt); 531 TAILQ_REMOVE(&zdom->uzd_buckets, bucket, ub_link); 532 zdom->uzd_nitems -= bucket->ub_cnt; 533 if (zdom->uzd_imin > zdom->uzd_nitems) 534 zdom->uzd_imin = zdom->uzd_nitems; 535 zone->uz_bkt_count -= bucket->ub_cnt; 536 } 537 return (bucket); 538 } 539 540 /* 541 * Insert a full bucket into the specified cache. The "ws" parameter indicates 542 * whether the bucket's contents should be counted as part of the zone's working 543 * set. 544 */ 545 static void 546 zone_put_bucket(uma_zone_t zone, uma_zone_domain_t zdom, uma_bucket_t bucket, 547 const bool ws) 548 { 549 550 ZONE_LOCK_ASSERT(zone); 551 KASSERT(!ws || zone->uz_bkt_count < zone->uz_bkt_max, 552 ("%s: zone %p overflow", __func__, zone)); 553 554 if (ws) 555 TAILQ_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); 556 else 557 TAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link); 558 zdom->uzd_nitems += bucket->ub_cnt; 559 if (ws && zdom->uzd_imax < zdom->uzd_nitems) 560 zdom->uzd_imax = zdom->uzd_nitems; 561 zone->uz_bkt_count += bucket->ub_cnt; 562 } 563 564 /* Pops an item out of a per-cpu cache bucket. */ 565 static inline void * 566 cache_bucket_pop(uma_cache_t cache, uma_cache_bucket_t bucket) 567 { 568 void *item; 569 570 CRITICAL_ASSERT(curthread); 571 572 bucket->ucb_cnt--; 573 item = bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt]; 574 #ifdef INVARIANTS 575 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = NULL; 576 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 577 #endif 578 cache->uc_allocs++; 579 580 return (item); 581 } 582 583 /* Pushes an item into a per-cpu cache bucket. */ 584 static inline void 585 cache_bucket_push(uma_cache_t cache, uma_cache_bucket_t bucket, void *item) 586 { 587 588 CRITICAL_ASSERT(curthread); 589 KASSERT(bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] == NULL, 590 ("uma_zfree: Freeing to non free bucket index.")); 591 592 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = item; 593 bucket->ucb_cnt++; 594 cache->uc_frees++; 595 } 596 597 /* 598 * Unload a UMA bucket from a per-cpu cache. 599 */ 600 static inline uma_bucket_t 601 cache_bucket_unload(uma_cache_bucket_t bucket) 602 { 603 uma_bucket_t b; 604 605 b = bucket->ucb_bucket; 606 if (b != NULL) { 607 MPASS(b->ub_entries == bucket->ucb_entries); 608 b->ub_cnt = bucket->ucb_cnt; 609 bucket->ucb_bucket = NULL; 610 bucket->ucb_entries = bucket->ucb_cnt = 0; 611 } 612 613 return (b); 614 } 615 616 static inline uma_bucket_t 617 cache_bucket_unload_alloc(uma_cache_t cache) 618 { 619 620 return (cache_bucket_unload(&cache->uc_allocbucket)); 621 } 622 623 static inline uma_bucket_t 624 cache_bucket_unload_free(uma_cache_t cache) 625 { 626 627 return (cache_bucket_unload(&cache->uc_freebucket)); 628 } 629 630 static inline uma_bucket_t 631 cache_bucket_unload_cross(uma_cache_t cache) 632 { 633 634 return (cache_bucket_unload(&cache->uc_crossbucket)); 635 } 636 637 /* 638 * Load a bucket into a per-cpu cache bucket. 639 */ 640 static inline void 641 cache_bucket_load(uma_cache_bucket_t bucket, uma_bucket_t b) 642 { 643 644 CRITICAL_ASSERT(curthread); 645 MPASS(bucket->ucb_bucket == NULL); 646 647 bucket->ucb_bucket = b; 648 bucket->ucb_cnt = b->ub_cnt; 649 bucket->ucb_entries = b->ub_entries; 650 } 651 652 static inline void 653 cache_bucket_load_alloc(uma_cache_t cache, uma_bucket_t b) 654 { 655 656 cache_bucket_load(&cache->uc_allocbucket, b); 657 } 658 659 static inline void 660 cache_bucket_load_free(uma_cache_t cache, uma_bucket_t b) 661 { 662 663 cache_bucket_load(&cache->uc_freebucket, b); 664 } 665 666 #ifdef NUMA 667 static inline void 668 cache_bucket_load_cross(uma_cache_t cache, uma_bucket_t b) 669 { 670 671 cache_bucket_load(&cache->uc_crossbucket, b); 672 } 673 #endif 674 675 /* 676 * Copy and preserve ucb_spare. 677 */ 678 static inline void 679 cache_bucket_copy(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 680 { 681 682 b1->ucb_bucket = b2->ucb_bucket; 683 b1->ucb_entries = b2->ucb_entries; 684 b1->ucb_cnt = b2->ucb_cnt; 685 } 686 687 /* 688 * Swap two cache buckets. 689 */ 690 static inline void 691 cache_bucket_swap(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 692 { 693 struct uma_cache_bucket b3; 694 695 CRITICAL_ASSERT(curthread); 696 697 cache_bucket_copy(&b3, b1); 698 cache_bucket_copy(b1, b2); 699 cache_bucket_copy(b2, &b3); 700 } 701 702 static void 703 zone_log_warning(uma_zone_t zone) 704 { 705 static const struct timeval warninterval = { 300, 0 }; 706 707 if (!zone_warnings || zone->uz_warning == NULL) 708 return; 709 710 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 711 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 712 } 713 714 static inline void 715 zone_maxaction(uma_zone_t zone) 716 { 717 718 if (zone->uz_maxaction.ta_func != NULL) 719 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 720 } 721 722 /* 723 * Routine called by timeout which is used to fire off some time interval 724 * based calculations. (stats, hash size, etc.) 725 * 726 * Arguments: 727 * arg Unused 728 * 729 * Returns: 730 * Nothing 731 */ 732 static void 733 uma_timeout(void *unused) 734 { 735 bucket_enable(); 736 zone_foreach(zone_timeout, NULL); 737 738 /* Reschedule this event */ 739 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 740 } 741 742 /* 743 * Update the working set size estimate for the zone's bucket cache. 744 * The constants chosen here are somewhat arbitrary. With an update period of 745 * 20s (UMA_TIMEOUT), this estimate is dominated by zone activity over the 746 * last 100s. 747 */ 748 static void 749 zone_domain_update_wss(uma_zone_domain_t zdom) 750 { 751 long wss; 752 753 MPASS(zdom->uzd_imax >= zdom->uzd_imin); 754 wss = zdom->uzd_imax - zdom->uzd_imin; 755 zdom->uzd_imax = zdom->uzd_imin = zdom->uzd_nitems; 756 zdom->uzd_wss = (4 * wss + zdom->uzd_wss) / 5; 757 } 758 759 /* 760 * Routine to perform timeout driven calculations. This expands the 761 * hashes and does per cpu statistics aggregation. 762 * 763 * Returns nothing. 764 */ 765 static void 766 zone_timeout(uma_zone_t zone, void *unused) 767 { 768 uma_keg_t keg; 769 u_int slabs, pages; 770 771 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 772 goto update_wss; 773 774 keg = zone->uz_keg; 775 776 /* 777 * Hash zones are non-numa by definition so the first domain 778 * is the only one present. 779 */ 780 KEG_LOCK(keg, 0); 781 pages = keg->uk_domain[0].ud_pages; 782 783 /* 784 * Expand the keg hash table. 785 * 786 * This is done if the number of slabs is larger than the hash size. 787 * What I'm trying to do here is completely reduce collisions. This 788 * may be a little aggressive. Should I allow for two collisions max? 789 */ 790 if ((slabs = pages / keg->uk_ppera) > keg->uk_hash.uh_hashsize) { 791 struct uma_hash newhash; 792 struct uma_hash oldhash; 793 int ret; 794 795 /* 796 * This is so involved because allocating and freeing 797 * while the keg lock is held will lead to deadlock. 798 * I have to do everything in stages and check for 799 * races. 800 */ 801 KEG_UNLOCK(keg, 0); 802 ret = hash_alloc(&newhash, 1 << fls(slabs)); 803 KEG_LOCK(keg, 0); 804 if (ret) { 805 if (hash_expand(&keg->uk_hash, &newhash)) { 806 oldhash = keg->uk_hash; 807 keg->uk_hash = newhash; 808 } else 809 oldhash = newhash; 810 811 KEG_UNLOCK(keg, 0); 812 hash_free(&oldhash); 813 goto update_wss; 814 } 815 } 816 KEG_UNLOCK(keg, 0); 817 818 update_wss: 819 ZONE_LOCK(zone); 820 for (int i = 0; i < vm_ndomains; i++) 821 zone_domain_update_wss(&zone->uz_domain[i]); 822 ZONE_UNLOCK(zone); 823 } 824 825 /* 826 * Allocate and zero fill the next sized hash table from the appropriate 827 * backing store. 828 * 829 * Arguments: 830 * hash A new hash structure with the old hash size in uh_hashsize 831 * 832 * Returns: 833 * 1 on success and 0 on failure. 834 */ 835 static int 836 hash_alloc(struct uma_hash *hash, u_int size) 837 { 838 size_t alloc; 839 840 KASSERT(powerof2(size), ("hash size must be power of 2")); 841 if (size > UMA_HASH_SIZE_INIT) { 842 hash->uh_hashsize = size; 843 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 844 hash->uh_slab_hash = malloc(alloc, M_UMAHASH, M_NOWAIT); 845 } else { 846 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 847 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 848 UMA_ANYDOMAIN, M_WAITOK); 849 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 850 } 851 if (hash->uh_slab_hash) { 852 bzero(hash->uh_slab_hash, alloc); 853 hash->uh_hashmask = hash->uh_hashsize - 1; 854 return (1); 855 } 856 857 return (0); 858 } 859 860 /* 861 * Expands the hash table for HASH zones. This is done from zone_timeout 862 * to reduce collisions. This must not be done in the regular allocation 863 * path, otherwise, we can recurse on the vm while allocating pages. 864 * 865 * Arguments: 866 * oldhash The hash you want to expand 867 * newhash The hash structure for the new table 868 * 869 * Returns: 870 * Nothing 871 * 872 * Discussion: 873 */ 874 static int 875 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 876 { 877 uma_hash_slab_t slab; 878 u_int hval; 879 u_int idx; 880 881 if (!newhash->uh_slab_hash) 882 return (0); 883 884 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 885 return (0); 886 887 /* 888 * I need to investigate hash algorithms for resizing without a 889 * full rehash. 890 */ 891 892 for (idx = 0; idx < oldhash->uh_hashsize; idx++) 893 while (!LIST_EMPTY(&oldhash->uh_slab_hash[idx])) { 894 slab = LIST_FIRST(&oldhash->uh_slab_hash[idx]); 895 LIST_REMOVE(slab, uhs_hlink); 896 hval = UMA_HASH(newhash, slab->uhs_data); 897 LIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 898 slab, uhs_hlink); 899 } 900 901 return (1); 902 } 903 904 /* 905 * Free the hash bucket to the appropriate backing store. 906 * 907 * Arguments: 908 * slab_hash The hash bucket we're freeing 909 * hashsize The number of entries in that hash bucket 910 * 911 * Returns: 912 * Nothing 913 */ 914 static void 915 hash_free(struct uma_hash *hash) 916 { 917 if (hash->uh_slab_hash == NULL) 918 return; 919 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 920 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 921 else 922 free(hash->uh_slab_hash, M_UMAHASH); 923 } 924 925 /* 926 * Frees all outstanding items in a bucket 927 * 928 * Arguments: 929 * zone The zone to free to, must be unlocked. 930 * bucket The free/alloc bucket with items. 931 * 932 * Returns: 933 * Nothing 934 */ 935 936 static void 937 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 938 { 939 int i; 940 941 if (bucket == NULL || bucket->ub_cnt == 0) 942 return; 943 944 if (zone->uz_fini) 945 for (i = 0; i < bucket->ub_cnt; i++) 946 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 947 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 948 if (zone->uz_max_items > 0) 949 zone_free_limit(zone, bucket->ub_cnt); 950 bucket->ub_cnt = 0; 951 } 952 953 /* 954 * Drains the per cpu caches for a zone. 955 * 956 * NOTE: This may only be called while the zone is being torn down, and not 957 * during normal operation. This is necessary in order that we do not have 958 * to migrate CPUs to drain the per-CPU caches. 959 * 960 * Arguments: 961 * zone The zone to drain, must be unlocked. 962 * 963 * Returns: 964 * Nothing 965 */ 966 static void 967 cache_drain(uma_zone_t zone) 968 { 969 uma_cache_t cache; 970 uma_bucket_t bucket; 971 int cpu; 972 973 /* 974 * XXX: It is safe to not lock the per-CPU caches, because we're 975 * tearing down the zone anyway. I.e., there will be no further use 976 * of the caches at this point. 977 * 978 * XXX: It would good to be able to assert that the zone is being 979 * torn down to prevent improper use of cache_drain(). 980 */ 981 CPU_FOREACH(cpu) { 982 cache = &zone->uz_cpu[cpu]; 983 bucket = cache_bucket_unload_alloc(cache); 984 if (bucket != NULL) { 985 bucket_drain(zone, bucket); 986 bucket_free(zone, bucket, NULL); 987 } 988 bucket = cache_bucket_unload_free(cache); 989 if (bucket != NULL) { 990 bucket_drain(zone, bucket); 991 bucket_free(zone, bucket, NULL); 992 } 993 bucket = cache_bucket_unload_cross(cache); 994 if (bucket != NULL) { 995 bucket_drain(zone, bucket); 996 bucket_free(zone, bucket, NULL); 997 } 998 } 999 bucket_cache_reclaim(zone, true); 1000 } 1001 1002 static void 1003 cache_shrink(uma_zone_t zone, void *unused) 1004 { 1005 1006 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1007 return; 1008 1009 ZONE_LOCK(zone); 1010 zone->uz_bucket_size = 1011 (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2; 1012 ZONE_UNLOCK(zone); 1013 } 1014 1015 static void 1016 cache_drain_safe_cpu(uma_zone_t zone, void *unused) 1017 { 1018 uma_cache_t cache; 1019 uma_bucket_t b1, b2, b3; 1020 int domain; 1021 1022 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1023 return; 1024 1025 b1 = b2 = b3 = NULL; 1026 ZONE_LOCK(zone); 1027 critical_enter(); 1028 if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH) 1029 domain = PCPU_GET(domain); 1030 else 1031 domain = 0; 1032 cache = &zone->uz_cpu[curcpu]; 1033 b1 = cache_bucket_unload_alloc(cache); 1034 if (b1 != NULL && b1->ub_cnt != 0) { 1035 zone_put_bucket(zone, &zone->uz_domain[domain], b1, false); 1036 b1 = NULL; 1037 } 1038 b2 = cache_bucket_unload_free(cache); 1039 if (b2 != NULL && b2->ub_cnt != 0) { 1040 zone_put_bucket(zone, &zone->uz_domain[domain], b2, false); 1041 b2 = NULL; 1042 } 1043 b3 = cache_bucket_unload_cross(cache); 1044 critical_exit(); 1045 ZONE_UNLOCK(zone); 1046 if (b1) 1047 bucket_free(zone, b1, NULL); 1048 if (b2) 1049 bucket_free(zone, b2, NULL); 1050 if (b3) { 1051 bucket_drain(zone, b3); 1052 bucket_free(zone, b3, NULL); 1053 } 1054 } 1055 1056 /* 1057 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 1058 * This is an expensive call because it needs to bind to all CPUs 1059 * one by one and enter a critical section on each of them in order 1060 * to safely access their cache buckets. 1061 * Zone lock must not be held on call this function. 1062 */ 1063 static void 1064 pcpu_cache_drain_safe(uma_zone_t zone) 1065 { 1066 int cpu; 1067 1068 /* 1069 * Polite bucket sizes shrinking was not enough, shrink aggressively. 1070 */ 1071 if (zone) 1072 cache_shrink(zone, NULL); 1073 else 1074 zone_foreach(cache_shrink, NULL); 1075 1076 CPU_FOREACH(cpu) { 1077 thread_lock(curthread); 1078 sched_bind(curthread, cpu); 1079 thread_unlock(curthread); 1080 1081 if (zone) 1082 cache_drain_safe_cpu(zone, NULL); 1083 else 1084 zone_foreach(cache_drain_safe_cpu, NULL); 1085 } 1086 thread_lock(curthread); 1087 sched_unbind(curthread); 1088 thread_unlock(curthread); 1089 } 1090 1091 /* 1092 * Reclaim cached buckets from a zone. All buckets are reclaimed if the caller 1093 * requested a drain, otherwise the per-domain caches are trimmed to either 1094 * estimated working set size. 1095 */ 1096 static void 1097 bucket_cache_reclaim(uma_zone_t zone, bool drain) 1098 { 1099 uma_zone_domain_t zdom; 1100 uma_bucket_t bucket; 1101 long target, tofree; 1102 int i; 1103 1104 for (i = 0; i < vm_ndomains; i++) { 1105 /* 1106 * The cross bucket is partially filled and not part of 1107 * the item count. Reclaim it individually here. 1108 */ 1109 zdom = &zone->uz_domain[i]; 1110 ZONE_CROSS_LOCK(zone); 1111 bucket = zdom->uzd_cross; 1112 zdom->uzd_cross = NULL; 1113 ZONE_CROSS_UNLOCK(zone); 1114 if (bucket != NULL) { 1115 bucket_drain(zone, bucket); 1116 bucket_free(zone, bucket, NULL); 1117 } 1118 1119 /* 1120 * Shrink the zone bucket size to ensure that the per-CPU caches 1121 * don't grow too large. 1122 */ 1123 ZONE_LOCK(zone); 1124 if (i == 0 && zone->uz_bucket_size > zone->uz_bucket_size_min) 1125 zone->uz_bucket_size--; 1126 1127 /* 1128 * If we were asked to drain the zone, we are done only once 1129 * this bucket cache is empty. Otherwise, we reclaim items in 1130 * excess of the zone's estimated working set size. If the 1131 * difference nitems - imin is larger than the WSS estimate, 1132 * then the estimate will grow at the end of this interval and 1133 * we ignore the historical average. 1134 */ 1135 target = drain ? 0 : lmax(zdom->uzd_wss, zdom->uzd_nitems - 1136 zdom->uzd_imin); 1137 while (zdom->uzd_nitems > target) { 1138 bucket = TAILQ_LAST(&zdom->uzd_buckets, uma_bucketlist); 1139 if (bucket == NULL) 1140 break; 1141 tofree = bucket->ub_cnt; 1142 TAILQ_REMOVE(&zdom->uzd_buckets, bucket, ub_link); 1143 zdom->uzd_nitems -= tofree; 1144 1145 /* 1146 * Shift the bounds of the current WSS interval to avoid 1147 * perturbing the estimate. 1148 */ 1149 zdom->uzd_imax -= lmin(zdom->uzd_imax, tofree); 1150 zdom->uzd_imin -= lmin(zdom->uzd_imin, tofree); 1151 1152 ZONE_UNLOCK(zone); 1153 bucket_drain(zone, bucket); 1154 bucket_free(zone, bucket, NULL); 1155 ZONE_LOCK(zone); 1156 } 1157 ZONE_UNLOCK(zone); 1158 } 1159 } 1160 1161 static void 1162 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 1163 { 1164 uint8_t *mem; 1165 int i; 1166 uint8_t flags; 1167 1168 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 1169 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 1170 1171 mem = slab_data(slab, keg); 1172 flags = slab->us_flags; 1173 i = start; 1174 if (keg->uk_fini != NULL) { 1175 for (i--; i > -1; i--) 1176 #ifdef INVARIANTS 1177 /* 1178 * trash_fini implies that dtor was trash_dtor. trash_fini 1179 * would check that memory hasn't been modified since free, 1180 * which executed trash_dtor. 1181 * That's why we need to run uma_dbg_kskip() check here, 1182 * albeit we don't make skip check for other init/fini 1183 * invocations. 1184 */ 1185 if (!uma_dbg_kskip(keg, slab_item(slab, keg, i)) || 1186 keg->uk_fini != trash_fini) 1187 #endif 1188 keg->uk_fini(slab_item(slab, keg, i), keg->uk_size); 1189 } 1190 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) 1191 zone_free_item(slabzone(keg->uk_ipers), slab_tohashslab(slab), 1192 NULL, SKIP_NONE); 1193 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 1194 uma_total_dec(PAGE_SIZE * keg->uk_ppera); 1195 } 1196 1197 /* 1198 * Frees pages from a keg back to the system. This is done on demand from 1199 * the pageout daemon. 1200 * 1201 * Returns nothing. 1202 */ 1203 static void 1204 keg_drain(uma_keg_t keg) 1205 { 1206 struct slabhead freeslabs = { 0 }; 1207 uma_domain_t dom; 1208 uma_slab_t slab, tmp; 1209 int i, n; 1210 1211 /* 1212 * We don't want to take pages from statically allocated kegs at this 1213 * time 1214 */ 1215 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 1216 return; 1217 1218 for (i = 0; i < vm_ndomains; i++) { 1219 CTR4(KTR_UMA, "keg_drain %s(%p) domain %d free items: %u", 1220 keg->uk_name, keg, i, dom->ud_free); 1221 n = 0; 1222 dom = &keg->uk_domain[i]; 1223 KEG_LOCK(keg, i); 1224 LIST_FOREACH_SAFE(slab, &dom->ud_free_slab, us_link, tmp) { 1225 if (keg->uk_flags & UMA_ZFLAG_HASH) 1226 UMA_HASH_REMOVE(&keg->uk_hash, slab); 1227 n++; 1228 LIST_REMOVE(slab, us_link); 1229 LIST_INSERT_HEAD(&freeslabs, slab, us_link); 1230 } 1231 dom->ud_pages -= n * keg->uk_ppera; 1232 dom->ud_free -= n * keg->uk_ipers; 1233 KEG_UNLOCK(keg, i); 1234 } 1235 1236 while ((slab = LIST_FIRST(&freeslabs)) != NULL) { 1237 LIST_REMOVE(slab, us_link); 1238 keg_free_slab(keg, slab, keg->uk_ipers); 1239 } 1240 } 1241 1242 static void 1243 zone_reclaim(uma_zone_t zone, int waitok, bool drain) 1244 { 1245 1246 /* 1247 * Set draining to interlock with zone_dtor() so we can release our 1248 * locks as we go. Only dtor() should do a WAITOK call since it 1249 * is the only call that knows the structure will still be available 1250 * when it wakes up. 1251 */ 1252 ZONE_LOCK(zone); 1253 while (zone->uz_flags & UMA_ZFLAG_RECLAIMING) { 1254 if (waitok == M_NOWAIT) 1255 goto out; 1256 msleep(zone, &zone->uz_lock, PVM, "zonedrain", 1); 1257 } 1258 zone->uz_flags |= UMA_ZFLAG_RECLAIMING; 1259 ZONE_UNLOCK(zone); 1260 bucket_cache_reclaim(zone, drain); 1261 1262 /* 1263 * The DRAINING flag protects us from being freed while 1264 * we're running. Normally the uma_rwlock would protect us but we 1265 * must be able to release and acquire the right lock for each keg. 1266 */ 1267 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) 1268 keg_drain(zone->uz_keg); 1269 ZONE_LOCK(zone); 1270 zone->uz_flags &= ~UMA_ZFLAG_RECLAIMING; 1271 wakeup(zone); 1272 out: 1273 ZONE_UNLOCK(zone); 1274 } 1275 1276 static void 1277 zone_drain(uma_zone_t zone, void *unused) 1278 { 1279 1280 zone_reclaim(zone, M_NOWAIT, true); 1281 } 1282 1283 static void 1284 zone_trim(uma_zone_t zone, void *unused) 1285 { 1286 1287 zone_reclaim(zone, M_NOWAIT, false); 1288 } 1289 1290 /* 1291 * Allocate a new slab for a keg and inserts it into the partial slab list. 1292 * The keg should be unlocked on entry. If the allocation succeeds it will 1293 * be locked on return. 1294 * 1295 * Arguments: 1296 * flags Wait flags for the item initialization routine 1297 * aflags Wait flags for the slab allocation 1298 * 1299 * Returns: 1300 * The slab that was allocated or NULL if there is no memory and the 1301 * caller specified M_NOWAIT. 1302 */ 1303 static uma_slab_t 1304 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags, 1305 int aflags) 1306 { 1307 uma_domain_t dom; 1308 uma_alloc allocf; 1309 uma_slab_t slab; 1310 unsigned long size; 1311 uint8_t *mem; 1312 uint8_t sflags; 1313 int i; 1314 1315 KASSERT(domain >= 0 && domain < vm_ndomains, 1316 ("keg_alloc_slab: domain %d out of range", domain)); 1317 1318 allocf = keg->uk_allocf; 1319 slab = NULL; 1320 mem = NULL; 1321 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) { 1322 uma_hash_slab_t hslab; 1323 hslab = zone_alloc_item(slabzone(keg->uk_ipers), NULL, 1324 domain, aflags); 1325 if (hslab == NULL) 1326 goto fail; 1327 slab = &hslab->uhs_slab; 1328 } 1329 1330 /* 1331 * This reproduces the old vm_zone behavior of zero filling pages the 1332 * first time they are added to a zone. 1333 * 1334 * Malloced items are zeroed in uma_zalloc. 1335 */ 1336 1337 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1338 aflags |= M_ZERO; 1339 else 1340 aflags &= ~M_ZERO; 1341 1342 if (keg->uk_flags & UMA_ZONE_NODUMP) 1343 aflags |= M_NODUMP; 1344 1345 /* zone is passed for legacy reasons. */ 1346 size = keg->uk_ppera * PAGE_SIZE; 1347 mem = allocf(zone, size, domain, &sflags, aflags); 1348 if (mem == NULL) { 1349 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) 1350 zone_free_item(slabzone(keg->uk_ipers), 1351 slab_tohashslab(slab), NULL, SKIP_NONE); 1352 goto fail; 1353 } 1354 uma_total_inc(size); 1355 1356 /* For HASH zones all pages go to the same uma_domain. */ 1357 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 1358 domain = 0; 1359 1360 /* Point the slab into the allocated memory */ 1361 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) 1362 slab = (uma_slab_t )(mem + keg->uk_pgoff); 1363 else 1364 slab_tohashslab(slab)->uhs_data = mem; 1365 1366 if (keg->uk_flags & UMA_ZFLAG_VTOSLAB) 1367 for (i = 0; i < keg->uk_ppera; i++) 1368 vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE), 1369 zone, slab); 1370 1371 slab->us_freecount = keg->uk_ipers; 1372 slab->us_flags = sflags; 1373 slab->us_domain = domain; 1374 1375 BIT_FILL(keg->uk_ipers, &slab->us_free); 1376 #ifdef INVARIANTS 1377 BIT_ZERO(keg->uk_ipers, slab_dbg_bits(slab, keg)); 1378 #endif 1379 1380 if (keg->uk_init != NULL) { 1381 for (i = 0; i < keg->uk_ipers; i++) 1382 if (keg->uk_init(slab_item(slab, keg, i), 1383 keg->uk_size, flags) != 0) 1384 break; 1385 if (i != keg->uk_ipers) { 1386 keg_free_slab(keg, slab, i); 1387 goto fail; 1388 } 1389 } 1390 KEG_LOCK(keg, domain); 1391 1392 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1393 slab, keg->uk_name, keg); 1394 1395 if (keg->uk_flags & UMA_ZFLAG_HASH) 1396 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1397 1398 /* 1399 * If we got a slab here it's safe to mark it partially used 1400 * and return. We assume that the caller is going to remove 1401 * at least one item. 1402 */ 1403 dom = &keg->uk_domain[domain]; 1404 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 1405 dom->ud_pages += keg->uk_ppera; 1406 dom->ud_free += keg->uk_ipers; 1407 1408 return (slab); 1409 1410 fail: 1411 return (NULL); 1412 } 1413 1414 /* 1415 * This function is intended to be used early on in place of page_alloc() so 1416 * that we may use the boot time page cache to satisfy allocations before 1417 * the VM is ready. 1418 */ 1419 static void * 1420 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1421 int wait) 1422 { 1423 vm_paddr_t pa; 1424 vm_page_t m; 1425 void *mem; 1426 int pages; 1427 int i; 1428 1429 pages = howmany(bytes, PAGE_SIZE); 1430 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1431 1432 *pflag = UMA_SLAB_BOOT; 1433 m = vm_page_alloc_contig_domain(NULL, 0, domain, 1434 malloc2vm_flags(wait) | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED, pages, 1435 (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT); 1436 if (m == NULL) 1437 return (NULL); 1438 1439 pa = VM_PAGE_TO_PHYS(m); 1440 for (i = 0; i < pages; i++, pa += PAGE_SIZE) { 1441 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 1442 defined(__riscv) || defined(__powerpc64__) 1443 if ((wait & M_NODUMP) == 0) 1444 dump_add_page(pa); 1445 #endif 1446 } 1447 /* Allocate KVA and indirectly advance bootmem. */ 1448 mem = (void *)pmap_map(&bootmem, m->phys_addr, 1449 m->phys_addr + (pages * PAGE_SIZE), VM_PROT_READ | VM_PROT_WRITE); 1450 if ((wait & M_ZERO) != 0) 1451 bzero(mem, pages * PAGE_SIZE); 1452 1453 return (mem); 1454 } 1455 1456 static void 1457 startup_free(void *mem, vm_size_t bytes) 1458 { 1459 vm_offset_t va; 1460 vm_page_t m; 1461 1462 va = (vm_offset_t)mem; 1463 m = PHYS_TO_VM_PAGE(pmap_kextract(va)); 1464 pmap_remove(kernel_pmap, va, va + bytes); 1465 for (; bytes != 0; bytes -= PAGE_SIZE, m++) { 1466 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 1467 defined(__riscv) || defined(__powerpc64__) 1468 dump_drop_page(VM_PAGE_TO_PHYS(m)); 1469 #endif 1470 vm_page_unwire_noq(m); 1471 vm_page_free(m); 1472 } 1473 } 1474 1475 /* 1476 * Allocates a number of pages from the system 1477 * 1478 * Arguments: 1479 * bytes The number of bytes requested 1480 * wait Shall we wait? 1481 * 1482 * Returns: 1483 * A pointer to the alloced memory or possibly 1484 * NULL if M_NOWAIT is set. 1485 */ 1486 static void * 1487 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1488 int wait) 1489 { 1490 void *p; /* Returned page */ 1491 1492 *pflag = UMA_SLAB_KERNEL; 1493 p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait); 1494 1495 return (p); 1496 } 1497 1498 static void * 1499 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1500 int wait) 1501 { 1502 struct pglist alloctail; 1503 vm_offset_t addr, zkva; 1504 int cpu, flags; 1505 vm_page_t p, p_next; 1506 #ifdef NUMA 1507 struct pcpu *pc; 1508 #endif 1509 1510 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE); 1511 1512 TAILQ_INIT(&alloctail); 1513 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1514 malloc2vm_flags(wait); 1515 *pflag = UMA_SLAB_KERNEL; 1516 for (cpu = 0; cpu <= mp_maxid; cpu++) { 1517 if (CPU_ABSENT(cpu)) { 1518 p = vm_page_alloc(NULL, 0, flags); 1519 } else { 1520 #ifndef NUMA 1521 p = vm_page_alloc(NULL, 0, flags); 1522 #else 1523 pc = pcpu_find(cpu); 1524 p = vm_page_alloc_domain(NULL, 0, pc->pc_domain, flags); 1525 if (__predict_false(p == NULL)) 1526 p = vm_page_alloc(NULL, 0, flags); 1527 #endif 1528 } 1529 if (__predict_false(p == NULL)) 1530 goto fail; 1531 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1532 } 1533 if ((addr = kva_alloc(bytes)) == 0) 1534 goto fail; 1535 zkva = addr; 1536 TAILQ_FOREACH(p, &alloctail, listq) { 1537 pmap_qenter(zkva, &p, 1); 1538 zkva += PAGE_SIZE; 1539 } 1540 return ((void*)addr); 1541 fail: 1542 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1543 vm_page_unwire_noq(p); 1544 vm_page_free(p); 1545 } 1546 return (NULL); 1547 } 1548 1549 /* 1550 * Allocates a number of pages from within an object 1551 * 1552 * Arguments: 1553 * bytes The number of bytes requested 1554 * wait Shall we wait? 1555 * 1556 * Returns: 1557 * A pointer to the alloced memory or possibly 1558 * NULL if M_NOWAIT is set. 1559 */ 1560 static void * 1561 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 1562 int wait) 1563 { 1564 TAILQ_HEAD(, vm_page) alloctail; 1565 u_long npages; 1566 vm_offset_t retkva, zkva; 1567 vm_page_t p, p_next; 1568 uma_keg_t keg; 1569 1570 TAILQ_INIT(&alloctail); 1571 keg = zone->uz_keg; 1572 1573 npages = howmany(bytes, PAGE_SIZE); 1574 while (npages > 0) { 1575 p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT | 1576 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1577 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK : 1578 VM_ALLOC_NOWAIT)); 1579 if (p != NULL) { 1580 /* 1581 * Since the page does not belong to an object, its 1582 * listq is unused. 1583 */ 1584 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1585 npages--; 1586 continue; 1587 } 1588 /* 1589 * Page allocation failed, free intermediate pages and 1590 * exit. 1591 */ 1592 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1593 vm_page_unwire_noq(p); 1594 vm_page_free(p); 1595 } 1596 return (NULL); 1597 } 1598 *flags = UMA_SLAB_PRIV; 1599 zkva = keg->uk_kva + 1600 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1601 retkva = zkva; 1602 TAILQ_FOREACH(p, &alloctail, listq) { 1603 pmap_qenter(zkva, &p, 1); 1604 zkva += PAGE_SIZE; 1605 } 1606 1607 return ((void *)retkva); 1608 } 1609 1610 /* 1611 * Frees a number of pages to the system 1612 * 1613 * Arguments: 1614 * mem A pointer to the memory to be freed 1615 * size The size of the memory being freed 1616 * flags The original p->us_flags field 1617 * 1618 * Returns: 1619 * Nothing 1620 */ 1621 static void 1622 page_free(void *mem, vm_size_t size, uint8_t flags) 1623 { 1624 1625 if ((flags & UMA_SLAB_BOOT) != 0) { 1626 startup_free(mem, size); 1627 return; 1628 } 1629 1630 if ((flags & UMA_SLAB_KERNEL) == 0) 1631 panic("UMA: page_free used with invalid flags %x", flags); 1632 1633 kmem_free((vm_offset_t)mem, size); 1634 } 1635 1636 /* 1637 * Frees pcpu zone allocations 1638 * 1639 * Arguments: 1640 * mem A pointer to the memory to be freed 1641 * size The size of the memory being freed 1642 * flags The original p->us_flags field 1643 * 1644 * Returns: 1645 * Nothing 1646 */ 1647 static void 1648 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags) 1649 { 1650 vm_offset_t sva, curva; 1651 vm_paddr_t paddr; 1652 vm_page_t m; 1653 1654 MPASS(size == (mp_maxid+1)*PAGE_SIZE); 1655 sva = (vm_offset_t)mem; 1656 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) { 1657 paddr = pmap_kextract(curva); 1658 m = PHYS_TO_VM_PAGE(paddr); 1659 vm_page_unwire_noq(m); 1660 vm_page_free(m); 1661 } 1662 pmap_qremove(sva, size >> PAGE_SHIFT); 1663 kva_free(sva, size); 1664 } 1665 1666 1667 /* 1668 * Zero fill initializer 1669 * 1670 * Arguments/Returns follow uma_init specifications 1671 */ 1672 static int 1673 zero_init(void *mem, int size, int flags) 1674 { 1675 bzero(mem, size); 1676 return (0); 1677 } 1678 1679 #ifdef INVARIANTS 1680 struct noslabbits * 1681 slab_dbg_bits(uma_slab_t slab, uma_keg_t keg) 1682 { 1683 1684 return ((void *)((char *)&slab->us_free + BITSET_SIZE(keg->uk_ipers))); 1685 } 1686 #endif 1687 1688 /* 1689 * Actual size of embedded struct slab (!OFFPAGE). 1690 */ 1691 size_t 1692 slab_sizeof(int nitems) 1693 { 1694 size_t s; 1695 1696 s = sizeof(struct uma_slab) + BITSET_SIZE(nitems) * SLAB_BITSETS; 1697 return (roundup(s, UMA_ALIGN_PTR + 1)); 1698 } 1699 1700 /* 1701 * Size of memory for embedded slabs (!OFFPAGE). 1702 */ 1703 size_t 1704 slab_space(int nitems) 1705 { 1706 return (UMA_SLAB_SIZE - slab_sizeof(nitems)); 1707 } 1708 1709 #define UMA_FIXPT_SHIFT 31 1710 #define UMA_FRAC_FIXPT(n, d) \ 1711 ((uint32_t)(((uint64_t)(n) << UMA_FIXPT_SHIFT) / (d))) 1712 #define UMA_FIXPT_PCT(f) \ 1713 ((u_int)(((uint64_t)100 * (f)) >> UMA_FIXPT_SHIFT)) 1714 #define UMA_PCT_FIXPT(pct) UMA_FRAC_FIXPT((pct), 100) 1715 #define UMA_MIN_EFF UMA_PCT_FIXPT(100 - UMA_MAX_WASTE) 1716 1717 /* 1718 * Compute the number of items that will fit in a slab. If hdr is true, the 1719 * item count may be limited to provide space in the slab for an inline slab 1720 * header. Otherwise, all slab space will be provided for item storage. 1721 */ 1722 static u_int 1723 slab_ipers_hdr(u_int size, u_int rsize, u_int slabsize, bool hdr) 1724 { 1725 u_int ipers; 1726 u_int padpi; 1727 1728 /* The padding between items is not needed after the last item. */ 1729 padpi = rsize - size; 1730 1731 if (hdr) { 1732 /* 1733 * Start with the maximum item count and remove items until 1734 * the slab header first alongside the allocatable memory. 1735 */ 1736 for (ipers = MIN(SLAB_MAX_SETSIZE, 1737 (slabsize + padpi - slab_sizeof(1)) / rsize); 1738 ipers > 0 && 1739 ipers * rsize - padpi + slab_sizeof(ipers) > slabsize; 1740 ipers--) 1741 continue; 1742 } else { 1743 ipers = MIN((slabsize + padpi) / rsize, SLAB_MAX_SETSIZE); 1744 } 1745 1746 return (ipers); 1747 } 1748 1749 /* 1750 * Compute the number of items that will fit in a slab for a startup zone. 1751 */ 1752 int 1753 slab_ipers(size_t size, int align) 1754 { 1755 int rsize; 1756 1757 rsize = roundup(size, align + 1); /* Assume no CACHESPREAD */ 1758 return (slab_ipers_hdr(size, rsize, UMA_SLAB_SIZE, true)); 1759 } 1760 1761 /* 1762 * Determine the format of a uma keg. This determines where the slab header 1763 * will be placed (inline or offpage) and calculates ipers, rsize, and ppera. 1764 * 1765 * Arguments 1766 * keg The zone we should initialize 1767 * 1768 * Returns 1769 * Nothing 1770 */ 1771 static void 1772 keg_layout(uma_keg_t keg) 1773 { 1774 u_int alignsize; 1775 u_int eff; 1776 u_int eff_offpage; 1777 u_int format; 1778 u_int ipers; 1779 u_int ipers_offpage; 1780 u_int pages; 1781 u_int rsize; 1782 u_int slabsize; 1783 1784 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 1785 (keg->uk_size <= UMA_PCPU_ALLOC_SIZE && 1786 (keg->uk_flags & UMA_ZONE_CACHESPREAD) == 0), 1787 ("%s: cannot configure for PCPU: keg=%s, size=%u, flags=0x%b", 1788 __func__, keg->uk_name, keg->uk_size, keg->uk_flags, 1789 PRINT_UMA_ZFLAGS)); 1790 KASSERT((keg->uk_flags & 1791 (UMA_ZFLAG_INTERNAL | UMA_ZFLAG_CACHEONLY)) == 0 || 1792 (keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0, 1793 ("%s: incompatible flags 0x%b", __func__, keg->uk_flags, 1794 PRINT_UMA_ZFLAGS)); 1795 1796 alignsize = keg->uk_align + 1; 1797 format = 0; 1798 ipers = 0; 1799 1800 /* 1801 * Calculate the size of each allocation (rsize) according to 1802 * alignment. If the requested size is smaller than we have 1803 * allocation bits for we round it up. 1804 */ 1805 rsize = MAX(keg->uk_size, UMA_SMALLEST_UNIT); 1806 rsize = roundup2(rsize, alignsize); 1807 1808 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) { 1809 slabsize = UMA_PCPU_ALLOC_SIZE; 1810 pages = mp_maxid + 1; 1811 } else if ((keg->uk_flags & UMA_ZONE_CACHESPREAD) != 0) { 1812 /* 1813 * We want one item to start on every align boundary in a page. 1814 * To do this we will span pages. We will also extend the item 1815 * by the size of align if it is an even multiple of align. 1816 * Otherwise, it would fall on the same boundary every time. 1817 */ 1818 if ((rsize & alignsize) == 0) 1819 rsize += alignsize; 1820 slabsize = rsize * (PAGE_SIZE / alignsize); 1821 slabsize = MIN(slabsize, rsize * SLAB_MAX_SETSIZE); 1822 slabsize = MIN(slabsize, UMA_CACHESPREAD_MAX_SIZE); 1823 pages = howmany(slabsize, PAGE_SIZE); 1824 slabsize = ptoa(pages); 1825 } else { 1826 /* 1827 * Choose a slab size of as many pages as it takes to represent 1828 * a single item. We will then try to fit as many additional 1829 * items into the slab as possible. At some point, we may want 1830 * to increase the slab size for awkward item sizes in order to 1831 * increase efficiency. 1832 */ 1833 pages = howmany(keg->uk_size, PAGE_SIZE); 1834 slabsize = ptoa(pages); 1835 } 1836 1837 /* Evaluate an inline slab layout. */ 1838 if ((keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0) 1839 ipers = slab_ipers_hdr(keg->uk_size, rsize, slabsize, true); 1840 1841 /* TODO: vm_page-embedded slab. */ 1842 1843 /* 1844 * We can't do OFFPAGE if we're internal or if we've been 1845 * asked to not go to the VM for buckets. If we do this we 1846 * may end up going to the VM for slabs which we do not 1847 * want to do if we're UMA_ZFLAG_CACHEONLY as a result 1848 * of UMA_ZONE_VM, which clearly forbids it. 1849 */ 1850 if ((keg->uk_flags & 1851 (UMA_ZFLAG_INTERNAL | UMA_ZFLAG_CACHEONLY)) != 0) { 1852 if (ipers == 0) { 1853 /* We need an extra page for the slab header. */ 1854 pages++; 1855 slabsize = ptoa(pages); 1856 ipers = slab_ipers_hdr(keg->uk_size, rsize, slabsize, 1857 true); 1858 } 1859 goto out; 1860 } 1861 1862 /* 1863 * See if using an OFFPAGE slab will improve our efficiency. 1864 * Only do this if we are below our efficiency threshold. 1865 * 1866 * XXX We could try growing slabsize to limit max waste as well. 1867 * Historically this was not done because the VM could not 1868 * efficiently handle contiguous allocations. 1869 */ 1870 eff = UMA_FRAC_FIXPT(ipers * rsize, slabsize); 1871 ipers_offpage = slab_ipers_hdr(keg->uk_size, rsize, slabsize, false); 1872 eff_offpage = UMA_FRAC_FIXPT(ipers_offpage * rsize, 1873 slabsize + slabzone(ipers_offpage)->uz_keg->uk_rsize); 1874 if (ipers == 0 || (eff < UMA_MIN_EFF && eff < eff_offpage)) { 1875 CTR5(KTR_UMA, "UMA decided we need offpage slab headers for " 1876 "keg: %s(%p), minimum efficiency allowed = %u%%, " 1877 "old efficiency = %u%%, offpage efficiency = %u%%", 1878 keg->uk_name, keg, UMA_FIXPT_PCT(UMA_MIN_EFF), 1879 UMA_FIXPT_PCT(eff), UMA_FIXPT_PCT(eff_offpage)); 1880 format = UMA_ZFLAG_OFFPAGE; 1881 ipers = ipers_offpage; 1882 } 1883 1884 out: 1885 /* 1886 * How do we find the slab header if it is offpage or if not all item 1887 * start addresses are in the same page? We could solve the latter 1888 * case with vaddr alignment, but we don't. 1889 */ 1890 if ((format & UMA_ZFLAG_OFFPAGE) != 0 || 1891 (ipers - 1) * rsize >= PAGE_SIZE) { 1892 if ((keg->uk_flags & UMA_ZONE_NOTPAGE) != 0) 1893 format |= UMA_ZFLAG_HASH; 1894 else 1895 format |= UMA_ZFLAG_VTOSLAB; 1896 } 1897 keg->uk_ipers = ipers; 1898 keg->uk_rsize = rsize; 1899 keg->uk_flags |= format; 1900 keg->uk_ppera = pages; 1901 CTR6(KTR_UMA, "%s: keg=%s, flags=%#x, rsize=%u, ipers=%u, ppera=%u", 1902 __func__, keg->uk_name, keg->uk_flags, rsize, ipers, pages); 1903 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE, 1904 ("%s: keg=%s, flags=0x%b, rsize=%u, ipers=%u, ppera=%u", __func__, 1905 keg->uk_name, keg->uk_flags, PRINT_UMA_ZFLAGS, rsize, ipers, 1906 pages)); 1907 } 1908 1909 /* 1910 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1911 * the keg onto the global keg list. 1912 * 1913 * Arguments/Returns follow uma_ctor specifications 1914 * udata Actually uma_kctor_args 1915 */ 1916 static int 1917 keg_ctor(void *mem, int size, void *udata, int flags) 1918 { 1919 struct uma_kctor_args *arg = udata; 1920 uma_keg_t keg = mem; 1921 uma_zone_t zone; 1922 int i; 1923 1924 bzero(keg, size); 1925 keg->uk_size = arg->size; 1926 keg->uk_init = arg->uminit; 1927 keg->uk_fini = arg->fini; 1928 keg->uk_align = arg->align; 1929 keg->uk_reserve = 0; 1930 keg->uk_flags = arg->flags; 1931 1932 /* 1933 * We use a global round-robin policy by default. Zones with 1934 * UMA_ZONE_FIRSTTOUCH set will use first-touch instead, in which 1935 * case the iterator is never run. 1936 */ 1937 keg->uk_dr.dr_policy = DOMAINSET_RR(); 1938 keg->uk_dr.dr_iter = 0; 1939 1940 /* 1941 * The master zone is passed to us at keg-creation time. 1942 */ 1943 zone = arg->zone; 1944 keg->uk_name = zone->uz_name; 1945 1946 if (arg->flags & UMA_ZONE_VM) 1947 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1948 1949 if (arg->flags & UMA_ZONE_ZINIT) 1950 keg->uk_init = zero_init; 1951 1952 if (arg->flags & UMA_ZONE_MALLOC) 1953 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 1954 1955 #ifndef SMP 1956 keg->uk_flags &= ~UMA_ZONE_PCPU; 1957 #endif 1958 1959 keg_layout(keg); 1960 1961 /* 1962 * Use a first-touch NUMA policy for all kegs that pmap_extract() 1963 * will work on with the exception of critical VM structures 1964 * necessary for paging. 1965 * 1966 * Zones may override the default by specifying either. 1967 */ 1968 #ifdef NUMA 1969 if ((keg->uk_flags & 1970 (UMA_ZFLAG_HASH | UMA_ZONE_VM | UMA_ZONE_ROUNDROBIN)) == 0) 1971 keg->uk_flags |= UMA_ZONE_FIRSTTOUCH; 1972 else if ((keg->uk_flags & UMA_ZONE_FIRSTTOUCH) == 0) 1973 keg->uk_flags |= UMA_ZONE_ROUNDROBIN; 1974 #endif 1975 1976 /* 1977 * If we haven't booted yet we need allocations to go through the 1978 * startup cache until the vm is ready. 1979 */ 1980 #ifdef UMA_MD_SMALL_ALLOC 1981 if (keg->uk_ppera == 1) 1982 keg->uk_allocf = uma_small_alloc; 1983 else 1984 #endif 1985 if (booted < BOOT_KVA) 1986 keg->uk_allocf = startup_alloc; 1987 else if (keg->uk_flags & UMA_ZONE_PCPU) 1988 keg->uk_allocf = pcpu_page_alloc; 1989 else 1990 keg->uk_allocf = page_alloc; 1991 #ifdef UMA_MD_SMALL_ALLOC 1992 if (keg->uk_ppera == 1) 1993 keg->uk_freef = uma_small_free; 1994 else 1995 #endif 1996 if (keg->uk_flags & UMA_ZONE_PCPU) 1997 keg->uk_freef = pcpu_page_free; 1998 else 1999 keg->uk_freef = page_free; 2000 2001 /* 2002 * Initialize keg's locks. 2003 */ 2004 for (i = 0; i < vm_ndomains; i++) 2005 KEG_LOCK_INIT(keg, i, (arg->flags & UMA_ZONE_MTXCLASS)); 2006 2007 /* 2008 * If we're putting the slab header in the actual page we need to 2009 * figure out where in each page it goes. See slab_sizeof 2010 * definition. 2011 */ 2012 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) { 2013 size_t shsize; 2014 2015 shsize = slab_sizeof(keg->uk_ipers); 2016 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize; 2017 /* 2018 * The only way the following is possible is if with our 2019 * UMA_ALIGN_PTR adjustments we are now bigger than 2020 * UMA_SLAB_SIZE. I haven't checked whether this is 2021 * mathematically possible for all cases, so we make 2022 * sure here anyway. 2023 */ 2024 KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera, 2025 ("zone %s ipers %d rsize %d size %d slab won't fit", 2026 zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size)); 2027 } 2028 2029 if (keg->uk_flags & UMA_ZFLAG_HASH) 2030 hash_alloc(&keg->uk_hash, 0); 2031 2032 CTR3(KTR_UMA, "keg_ctor %p zone %s(%p)", keg, zone->uz_name, zone); 2033 2034 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 2035 2036 rw_wlock(&uma_rwlock); 2037 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 2038 rw_wunlock(&uma_rwlock); 2039 return (0); 2040 } 2041 2042 static void 2043 zone_kva_available(uma_zone_t zone, void *unused) 2044 { 2045 uma_keg_t keg; 2046 2047 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 2048 return; 2049 KEG_GET(zone, keg); 2050 if (keg->uk_allocf == startup_alloc) 2051 keg->uk_allocf = page_alloc; 2052 } 2053 2054 static void 2055 zone_alloc_counters(uma_zone_t zone, void *unused) 2056 { 2057 2058 zone->uz_allocs = counter_u64_alloc(M_WAITOK); 2059 zone->uz_frees = counter_u64_alloc(M_WAITOK); 2060 zone->uz_fails = counter_u64_alloc(M_WAITOK); 2061 } 2062 2063 static void 2064 zone_alloc_sysctl(uma_zone_t zone, void *unused) 2065 { 2066 uma_zone_domain_t zdom; 2067 uma_domain_t dom; 2068 uma_keg_t keg; 2069 struct sysctl_oid *oid, *domainoid; 2070 int domains, i, cnt; 2071 static const char *nokeg = "cache zone"; 2072 char *c; 2073 2074 /* 2075 * Make a sysctl safe copy of the zone name by removing 2076 * any special characters and handling dups by appending 2077 * an index. 2078 */ 2079 if (zone->uz_namecnt != 0) { 2080 /* Count the number of decimal digits and '_' separator. */ 2081 for (i = 1, cnt = zone->uz_namecnt; cnt != 0; i++) 2082 cnt /= 10; 2083 zone->uz_ctlname = malloc(strlen(zone->uz_name) + i + 1, 2084 M_UMA, M_WAITOK); 2085 sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name, 2086 zone->uz_namecnt); 2087 } else 2088 zone->uz_ctlname = strdup(zone->uz_name, M_UMA); 2089 for (c = zone->uz_ctlname; *c != '\0'; c++) 2090 if (strchr("./\\ -", *c) != NULL) 2091 *c = '_'; 2092 2093 /* 2094 * Basic parameters at the root. 2095 */ 2096 zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma), 2097 OID_AUTO, zone->uz_ctlname, CTLFLAG_RD, NULL, ""); 2098 oid = zone->uz_oid; 2099 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2100 "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size"); 2101 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2102 "flags", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE, 2103 zone, 0, sysctl_handle_uma_zone_flags, "A", 2104 "Allocator configuration flags"); 2105 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2106 "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0, 2107 "Desired per-cpu cache size"); 2108 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2109 "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0, 2110 "Maximum allowed per-cpu cache size"); 2111 2112 /* 2113 * keg if present. 2114 */ 2115 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 2116 domains = vm_ndomains; 2117 else 2118 domains = 1; 2119 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2120 "keg", CTLFLAG_RD, NULL, ""); 2121 keg = zone->uz_keg; 2122 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) { 2123 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2124 "name", CTLFLAG_RD, keg->uk_name, "Keg name"); 2125 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2126 "rsize", CTLFLAG_RD, &keg->uk_rsize, 0, 2127 "Real object size with alignment"); 2128 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2129 "ppera", CTLFLAG_RD, &keg->uk_ppera, 0, 2130 "pages per-slab allocation"); 2131 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2132 "ipers", CTLFLAG_RD, &keg->uk_ipers, 0, 2133 "items available per-slab"); 2134 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2135 "align", CTLFLAG_RD, &keg->uk_align, 0, 2136 "item alignment mask"); 2137 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2138 "efficiency", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2139 keg, 0, sysctl_handle_uma_slab_efficiency, "I", 2140 "Slab utilization (100 - internal fragmentation %)"); 2141 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(oid), 2142 OID_AUTO, "domain", CTLFLAG_RD, NULL, ""); 2143 for (i = 0; i < domains; i++) { 2144 dom = &keg->uk_domain[i]; 2145 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2146 OID_AUTO, VM_DOMAIN(i)->vmd_name, CTLFLAG_RD, 2147 NULL, ""); 2148 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2149 "pages", CTLFLAG_RD, &dom->ud_pages, 0, 2150 "Total pages currently allocated from VM"); 2151 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2152 "free", CTLFLAG_RD, &dom->ud_free, 0, 2153 "items free in the slab layer"); 2154 } 2155 } else 2156 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2157 "name", CTLFLAG_RD, nokeg, "Keg name"); 2158 2159 /* 2160 * Information about zone limits. 2161 */ 2162 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2163 "limit", CTLFLAG_RD, NULL, ""); 2164 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2165 "items", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2166 zone, 0, sysctl_handle_uma_zone_items, "QU", 2167 "current number of allocated items if limit is set"); 2168 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2169 "max_items", CTLFLAG_RD, &zone->uz_max_items, 0, 2170 "Maximum number of cached items"); 2171 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2172 "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0, 2173 "Number of threads sleeping at limit"); 2174 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2175 "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0, 2176 "Total zone limit sleeps"); 2177 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2178 "bucket_max", CTLFLAG_RD, &zone->uz_bkt_max, 0, 2179 "Maximum number of items in the bucket cache"); 2180 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2181 "bucket_cnt", CTLFLAG_RD, &zone->uz_bkt_count, 0, 2182 "Number of items in the bucket cache"); 2183 2184 /* 2185 * Per-domain zone information. 2186 */ 2187 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), 2188 OID_AUTO, "domain", CTLFLAG_RD, NULL, ""); 2189 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2190 domains = 1; 2191 for (i = 0; i < domains; i++) { 2192 zdom = &zone->uz_domain[i]; 2193 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2194 OID_AUTO, VM_DOMAIN(i)->vmd_name, CTLFLAG_RD, NULL, ""); 2195 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2196 "nitems", CTLFLAG_RD, &zdom->uzd_nitems, 2197 "number of items in this domain"); 2198 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2199 "imax", CTLFLAG_RD, &zdom->uzd_imax, 2200 "maximum item count in this period"); 2201 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2202 "imin", CTLFLAG_RD, &zdom->uzd_imin, 2203 "minimum item count in this period"); 2204 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2205 "wss", CTLFLAG_RD, &zdom->uzd_wss, 2206 "Working set size"); 2207 } 2208 2209 /* 2210 * General statistics. 2211 */ 2212 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2213 "stats", CTLFLAG_RD, NULL, ""); 2214 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2215 "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2216 zone, 1, sysctl_handle_uma_zone_cur, "I", 2217 "Current number of allocated items"); 2218 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2219 "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2220 zone, 0, sysctl_handle_uma_zone_allocs, "QU", 2221 "Total allocation calls"); 2222 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2223 "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2224 zone, 0, sysctl_handle_uma_zone_frees, "QU", 2225 "Total free calls"); 2226 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2227 "fails", CTLFLAG_RD, &zone->uz_fails, 2228 "Number of allocation failures"); 2229 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2230 "xdomain", CTLFLAG_RD, &zone->uz_xdomain, 0, 2231 "Free calls from the wrong domain"); 2232 } 2233 2234 struct uma_zone_count { 2235 const char *name; 2236 int count; 2237 }; 2238 2239 static void 2240 zone_count(uma_zone_t zone, void *arg) 2241 { 2242 struct uma_zone_count *cnt; 2243 2244 cnt = arg; 2245 /* 2246 * Some zones are rapidly created with identical names and 2247 * destroyed out of order. This can lead to gaps in the count. 2248 * Use one greater than the maximum observed for this name. 2249 */ 2250 if (strcmp(zone->uz_name, cnt->name) == 0) 2251 cnt->count = MAX(cnt->count, 2252 zone->uz_namecnt + 1); 2253 } 2254 2255 static void 2256 zone_update_caches(uma_zone_t zone) 2257 { 2258 int i; 2259 2260 for (i = 0; i <= mp_maxid; i++) { 2261 cache_set_uz_size(&zone->uz_cpu[i], zone->uz_size); 2262 cache_set_uz_flags(&zone->uz_cpu[i], zone->uz_flags); 2263 } 2264 } 2265 2266 /* 2267 * Zone header ctor. This initializes all fields, locks, etc. 2268 * 2269 * Arguments/Returns follow uma_ctor specifications 2270 * udata Actually uma_zctor_args 2271 */ 2272 static int 2273 zone_ctor(void *mem, int size, void *udata, int flags) 2274 { 2275 struct uma_zone_count cnt; 2276 struct uma_zctor_args *arg = udata; 2277 uma_zone_t zone = mem; 2278 uma_zone_t z; 2279 uma_keg_t keg; 2280 int i; 2281 2282 bzero(zone, size); 2283 zone->uz_name = arg->name; 2284 zone->uz_ctor = arg->ctor; 2285 zone->uz_dtor = arg->dtor; 2286 zone->uz_init = NULL; 2287 zone->uz_fini = NULL; 2288 zone->uz_sleeps = 0; 2289 zone->uz_xdomain = 0; 2290 zone->uz_bucket_size = 0; 2291 zone->uz_bucket_size_min = 0; 2292 zone->uz_bucket_size_max = BUCKET_MAX; 2293 zone->uz_flags = 0; 2294 zone->uz_warning = NULL; 2295 /* The domain structures follow the cpu structures. */ 2296 zone->uz_domain = (struct uma_zone_domain *)&zone->uz_cpu[mp_ncpus]; 2297 zone->uz_bkt_max = ULONG_MAX; 2298 timevalclear(&zone->uz_ratecheck); 2299 2300 /* Count the number of duplicate names. */ 2301 cnt.name = arg->name; 2302 cnt.count = 0; 2303 zone_foreach(zone_count, &cnt); 2304 zone->uz_namecnt = cnt.count; 2305 ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS)); 2306 ZONE_CROSS_LOCK_INIT(zone); 2307 2308 for (i = 0; i < vm_ndomains; i++) 2309 TAILQ_INIT(&zone->uz_domain[i].uzd_buckets); 2310 2311 #ifdef INVARIANTS 2312 if (arg->uminit == trash_init && arg->fini == trash_fini) 2313 zone->uz_flags |= UMA_ZFLAG_TRASH | UMA_ZFLAG_CTORDTOR; 2314 #endif 2315 2316 /* 2317 * This is a pure cache zone, no kegs. 2318 */ 2319 if (arg->import) { 2320 KASSERT((arg->flags & UMA_ZFLAG_CACHE) != 0, 2321 ("zone_ctor: Import specified for non-cache zone.")); 2322 if (arg->flags & UMA_ZONE_VM) 2323 arg->flags |= UMA_ZFLAG_CACHEONLY; 2324 zone->uz_flags = arg->flags; 2325 zone->uz_size = arg->size; 2326 zone->uz_import = arg->import; 2327 zone->uz_release = arg->release; 2328 zone->uz_arg = arg->arg; 2329 rw_wlock(&uma_rwlock); 2330 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 2331 rw_wunlock(&uma_rwlock); 2332 goto out; 2333 } 2334 2335 /* 2336 * Use the regular zone/keg/slab allocator. 2337 */ 2338 zone->uz_import = zone_import; 2339 zone->uz_release = zone_release; 2340 zone->uz_arg = zone; 2341 keg = arg->keg; 2342 2343 if (arg->flags & UMA_ZONE_SECONDARY) { 2344 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 2345 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 2346 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 2347 zone->uz_init = arg->uminit; 2348 zone->uz_fini = arg->fini; 2349 zone->uz_flags |= UMA_ZONE_SECONDARY; 2350 rw_wlock(&uma_rwlock); 2351 ZONE_LOCK(zone); 2352 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 2353 if (LIST_NEXT(z, uz_link) == NULL) { 2354 LIST_INSERT_AFTER(z, zone, uz_link); 2355 break; 2356 } 2357 } 2358 ZONE_UNLOCK(zone); 2359 rw_wunlock(&uma_rwlock); 2360 } else if (keg == NULL) { 2361 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 2362 arg->align, arg->flags)) == NULL) 2363 return (ENOMEM); 2364 } else { 2365 struct uma_kctor_args karg; 2366 int error; 2367 2368 /* We should only be here from uma_startup() */ 2369 karg.size = arg->size; 2370 karg.uminit = arg->uminit; 2371 karg.fini = arg->fini; 2372 karg.align = arg->align; 2373 karg.flags = arg->flags; 2374 karg.zone = zone; 2375 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 2376 flags); 2377 if (error) 2378 return (error); 2379 } 2380 2381 /* Inherit properties from the keg. */ 2382 zone->uz_keg = keg; 2383 zone->uz_size = keg->uk_size; 2384 zone->uz_flags |= (keg->uk_flags & 2385 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 2386 2387 out: 2388 if (__predict_true(booted >= BOOT_RUNNING)) { 2389 zone_alloc_counters(zone, NULL); 2390 zone_alloc_sysctl(zone, NULL); 2391 } else { 2392 zone->uz_allocs = EARLY_COUNTER; 2393 zone->uz_frees = EARLY_COUNTER; 2394 zone->uz_fails = EARLY_COUNTER; 2395 } 2396 2397 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != 2398 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), 2399 ("Invalid zone flag combination")); 2400 if (arg->flags & UMA_ZFLAG_INTERNAL) 2401 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 2402 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) 2403 zone->uz_bucket_size = BUCKET_MAX; 2404 else if ((arg->flags & UMA_ZONE_MINBUCKET) != 0) 2405 zone->uz_bucket_size_max = zone->uz_bucket_size = BUCKET_MIN; 2406 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) 2407 zone->uz_bucket_size = 0; 2408 else 2409 zone->uz_bucket_size = bucket_select(zone->uz_size); 2410 zone->uz_bucket_size_min = zone->uz_bucket_size; 2411 if (zone->uz_dtor != NULL || zone->uz_ctor != NULL) 2412 zone->uz_flags |= UMA_ZFLAG_CTORDTOR; 2413 zone_update_caches(zone); 2414 2415 return (0); 2416 } 2417 2418 /* 2419 * Keg header dtor. This frees all data, destroys locks, frees the hash 2420 * table and removes the keg from the global list. 2421 * 2422 * Arguments/Returns follow uma_dtor specifications 2423 * udata unused 2424 */ 2425 static void 2426 keg_dtor(void *arg, int size, void *udata) 2427 { 2428 uma_keg_t keg; 2429 uint32_t free, pages; 2430 int i; 2431 2432 keg = (uma_keg_t)arg; 2433 free = pages = 0; 2434 for (i = 0; i < vm_ndomains; i++) { 2435 free += keg->uk_domain[i].ud_free; 2436 pages += keg->uk_domain[i].ud_pages; 2437 KEG_LOCK_FINI(keg, i); 2438 } 2439 if (free != 0) 2440 printf("Freed UMA keg (%s) was not empty (%u items). " 2441 " Lost %u pages of memory.\n", 2442 keg->uk_name ? keg->uk_name : "", 2443 free, pages); 2444 2445 hash_free(&keg->uk_hash); 2446 } 2447 2448 /* 2449 * Zone header dtor. 2450 * 2451 * Arguments/Returns follow uma_dtor specifications 2452 * udata unused 2453 */ 2454 static void 2455 zone_dtor(void *arg, int size, void *udata) 2456 { 2457 uma_zone_t zone; 2458 uma_keg_t keg; 2459 2460 zone = (uma_zone_t)arg; 2461 2462 sysctl_remove_oid(zone->uz_oid, 1, 1); 2463 2464 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 2465 cache_drain(zone); 2466 2467 rw_wlock(&uma_rwlock); 2468 LIST_REMOVE(zone, uz_link); 2469 rw_wunlock(&uma_rwlock); 2470 /* 2471 * XXX there are some races here where 2472 * the zone can be drained but zone lock 2473 * released and then refilled before we 2474 * remove it... we dont care for now 2475 */ 2476 zone_reclaim(zone, M_WAITOK, true); 2477 /* 2478 * We only destroy kegs from non secondary/non cache zones. 2479 */ 2480 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { 2481 keg = zone->uz_keg; 2482 rw_wlock(&uma_rwlock); 2483 LIST_REMOVE(keg, uk_link); 2484 rw_wunlock(&uma_rwlock); 2485 zone_free_item(kegs, keg, NULL, SKIP_NONE); 2486 } 2487 counter_u64_free(zone->uz_allocs); 2488 counter_u64_free(zone->uz_frees); 2489 counter_u64_free(zone->uz_fails); 2490 free(zone->uz_ctlname, M_UMA); 2491 ZONE_LOCK_FINI(zone); 2492 ZONE_CROSS_LOCK_FINI(zone); 2493 } 2494 2495 static void 2496 zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *arg), void *arg) 2497 { 2498 uma_keg_t keg; 2499 uma_zone_t zone; 2500 2501 LIST_FOREACH(keg, &uma_kegs, uk_link) { 2502 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 2503 zfunc(zone, arg); 2504 } 2505 LIST_FOREACH(zone, &uma_cachezones, uz_link) 2506 zfunc(zone, arg); 2507 } 2508 2509 /* 2510 * Traverses every zone in the system and calls a callback 2511 * 2512 * Arguments: 2513 * zfunc A pointer to a function which accepts a zone 2514 * as an argument. 2515 * 2516 * Returns: 2517 * Nothing 2518 */ 2519 static void 2520 zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg) 2521 { 2522 2523 rw_rlock(&uma_rwlock); 2524 zone_foreach_unlocked(zfunc, arg); 2525 rw_runlock(&uma_rwlock); 2526 } 2527 2528 /* 2529 * Initialize the kernel memory allocator. This is done after pages can be 2530 * allocated but before general KVA is available. 2531 */ 2532 void 2533 uma_startup1(vm_offset_t virtual_avail) 2534 { 2535 struct uma_zctor_args args; 2536 size_t ksize, zsize, size; 2537 uma_keg_t masterkeg; 2538 uintptr_t m; 2539 uint8_t pflag; 2540 2541 bootstart = bootmem = virtual_avail; 2542 2543 rw_init(&uma_rwlock, "UMA lock"); 2544 sx_init(&uma_reclaim_lock, "umareclaim"); 2545 2546 ksize = sizeof(struct uma_keg) + 2547 (sizeof(struct uma_domain) * vm_ndomains); 2548 ksize = roundup(ksize, UMA_SUPER_ALIGN); 2549 zsize = sizeof(struct uma_zone) + 2550 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 2551 (sizeof(struct uma_zone_domain) * vm_ndomains); 2552 zsize = roundup(zsize, UMA_SUPER_ALIGN); 2553 2554 /* Allocate the zone of zones, zone of kegs, and zone of zones keg. */ 2555 size = (zsize * 2) + ksize; 2556 m = (uintptr_t)startup_alloc(NULL, size, 0, &pflag, M_NOWAIT | M_ZERO); 2557 zones = (uma_zone_t)m; 2558 m += zsize; 2559 kegs = (uma_zone_t)m; 2560 m += zsize; 2561 masterkeg = (uma_keg_t)m; 2562 2563 /* "manually" create the initial zone */ 2564 memset(&args, 0, sizeof(args)); 2565 args.name = "UMA Kegs"; 2566 args.size = ksize; 2567 args.ctor = keg_ctor; 2568 args.dtor = keg_dtor; 2569 args.uminit = zero_init; 2570 args.fini = NULL; 2571 args.keg = masterkeg; 2572 args.align = UMA_SUPER_ALIGN - 1; 2573 args.flags = UMA_ZFLAG_INTERNAL; 2574 zone_ctor(kegs, zsize, &args, M_WAITOK); 2575 2576 args.name = "UMA Zones"; 2577 args.size = zsize; 2578 args.ctor = zone_ctor; 2579 args.dtor = zone_dtor; 2580 args.uminit = zero_init; 2581 args.fini = NULL; 2582 args.keg = NULL; 2583 args.align = UMA_SUPER_ALIGN - 1; 2584 args.flags = UMA_ZFLAG_INTERNAL; 2585 zone_ctor(zones, zsize, &args, M_WAITOK); 2586 2587 /* Now make zones for slab headers */ 2588 slabzones[0] = uma_zcreate("UMA Slabs 0", SLABZONE0_SIZE, 2589 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2590 slabzones[1] = uma_zcreate("UMA Slabs 1", SLABZONE1_SIZE, 2591 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2592 2593 hashzone = uma_zcreate("UMA Hash", 2594 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 2595 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2596 2597 bucket_init(); 2598 } 2599 2600 #ifndef UMA_MD_SMALL_ALLOC 2601 extern void vm_radix_reserve_kva(void); 2602 #endif 2603 2604 /* 2605 * Advertise the availability of normal kva allocations and switch to 2606 * the default back-end allocator. Marks the KVA we consumed on startup 2607 * as used in the map. 2608 */ 2609 void 2610 uma_startup2(void) 2611 { 2612 2613 if (!PMAP_HAS_DMAP) { 2614 vm_map_lock(kernel_map); 2615 (void)vm_map_insert(kernel_map, NULL, 0, bootstart, bootmem, 2616 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT); 2617 vm_map_unlock(kernel_map); 2618 } 2619 2620 #ifndef UMA_MD_SMALL_ALLOC 2621 /* Set up radix zone to use noobj_alloc. */ 2622 vm_radix_reserve_kva(); 2623 #endif 2624 2625 booted = BOOT_KVA; 2626 zone_foreach_unlocked(zone_kva_available, NULL); 2627 bucket_enable(); 2628 } 2629 2630 /* 2631 * Finish our initialization steps. 2632 */ 2633 static void 2634 uma_startup3(void) 2635 { 2636 2637 #ifdef INVARIANTS 2638 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor); 2639 uma_dbg_cnt = counter_u64_alloc(M_WAITOK); 2640 uma_skip_cnt = counter_u64_alloc(M_WAITOK); 2641 #endif 2642 zone_foreach_unlocked(zone_alloc_counters, NULL); 2643 zone_foreach_unlocked(zone_alloc_sysctl, NULL); 2644 callout_init(&uma_callout, 1); 2645 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 2646 booted = BOOT_RUNNING; 2647 2648 EVENTHANDLER_REGISTER(shutdown_post_sync, uma_shutdown, NULL, 2649 EVENTHANDLER_PRI_FIRST); 2650 } 2651 2652 static void 2653 uma_shutdown(void) 2654 { 2655 2656 booted = BOOT_SHUTDOWN; 2657 } 2658 2659 static uma_keg_t 2660 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 2661 int align, uint32_t flags) 2662 { 2663 struct uma_kctor_args args; 2664 2665 args.size = size; 2666 args.uminit = uminit; 2667 args.fini = fini; 2668 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 2669 args.flags = flags; 2670 args.zone = zone; 2671 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 2672 } 2673 2674 /* Public functions */ 2675 /* See uma.h */ 2676 void 2677 uma_set_align(int align) 2678 { 2679 2680 if (align != UMA_ALIGN_CACHE) 2681 uma_align_cache = align; 2682 } 2683 2684 /* See uma.h */ 2685 uma_zone_t 2686 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 2687 uma_init uminit, uma_fini fini, int align, uint32_t flags) 2688 2689 { 2690 struct uma_zctor_args args; 2691 uma_zone_t res; 2692 2693 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 2694 align, name)); 2695 2696 /* This stuff is essential for the zone ctor */ 2697 memset(&args, 0, sizeof(args)); 2698 args.name = name; 2699 args.size = size; 2700 args.ctor = ctor; 2701 args.dtor = dtor; 2702 args.uminit = uminit; 2703 args.fini = fini; 2704 #ifdef INVARIANTS 2705 /* 2706 * Inject procedures which check for memory use after free if we are 2707 * allowed to scramble the memory while it is not allocated. This 2708 * requires that: UMA is actually able to access the memory, no init 2709 * or fini procedures, no dependency on the initial value of the 2710 * memory, and no (legitimate) use of the memory after free. Note, 2711 * the ctor and dtor do not need to be empty. 2712 */ 2713 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOTOUCH | 2714 UMA_ZONE_NOFREE))) && uminit == NULL && fini == NULL) { 2715 args.uminit = trash_init; 2716 args.fini = trash_fini; 2717 } 2718 #endif 2719 args.align = align; 2720 args.flags = flags; 2721 args.keg = NULL; 2722 2723 sx_slock(&uma_reclaim_lock); 2724 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2725 sx_sunlock(&uma_reclaim_lock); 2726 2727 return (res); 2728 } 2729 2730 /* See uma.h */ 2731 uma_zone_t 2732 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 2733 uma_init zinit, uma_fini zfini, uma_zone_t master) 2734 { 2735 struct uma_zctor_args args; 2736 uma_keg_t keg; 2737 uma_zone_t res; 2738 2739 keg = master->uz_keg; 2740 memset(&args, 0, sizeof(args)); 2741 args.name = name; 2742 args.size = keg->uk_size; 2743 args.ctor = ctor; 2744 args.dtor = dtor; 2745 args.uminit = zinit; 2746 args.fini = zfini; 2747 args.align = keg->uk_align; 2748 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 2749 args.keg = keg; 2750 2751 sx_slock(&uma_reclaim_lock); 2752 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2753 sx_sunlock(&uma_reclaim_lock); 2754 2755 return (res); 2756 } 2757 2758 /* See uma.h */ 2759 uma_zone_t 2760 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor, 2761 uma_init zinit, uma_fini zfini, uma_import zimport, 2762 uma_release zrelease, void *arg, int flags) 2763 { 2764 struct uma_zctor_args args; 2765 2766 memset(&args, 0, sizeof(args)); 2767 args.name = name; 2768 args.size = size; 2769 args.ctor = ctor; 2770 args.dtor = dtor; 2771 args.uminit = zinit; 2772 args.fini = zfini; 2773 args.import = zimport; 2774 args.release = zrelease; 2775 args.arg = arg; 2776 args.align = 0; 2777 args.flags = flags | UMA_ZFLAG_CACHE; 2778 2779 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 2780 } 2781 2782 /* See uma.h */ 2783 void 2784 uma_zdestroy(uma_zone_t zone) 2785 { 2786 2787 /* 2788 * Large slabs are expensive to reclaim, so don't bother doing 2789 * unnecessary work if we're shutting down. 2790 */ 2791 if (booted == BOOT_SHUTDOWN && 2792 zone->uz_fini == NULL && zone->uz_release == zone_release) 2793 return; 2794 sx_slock(&uma_reclaim_lock); 2795 zone_free_item(zones, zone, NULL, SKIP_NONE); 2796 sx_sunlock(&uma_reclaim_lock); 2797 } 2798 2799 void 2800 uma_zwait(uma_zone_t zone) 2801 { 2802 void *item; 2803 2804 item = uma_zalloc_arg(zone, NULL, M_WAITOK); 2805 uma_zfree(zone, item); 2806 } 2807 2808 void * 2809 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags) 2810 { 2811 void *item; 2812 #ifdef SMP 2813 int i; 2814 2815 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 2816 #endif 2817 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO); 2818 if (item != NULL && (flags & M_ZERO)) { 2819 #ifdef SMP 2820 for (i = 0; i <= mp_maxid; i++) 2821 bzero(zpcpu_get_cpu(item, i), zone->uz_size); 2822 #else 2823 bzero(item, zone->uz_size); 2824 #endif 2825 } 2826 return (item); 2827 } 2828 2829 /* 2830 * A stub while both regular and pcpu cases are identical. 2831 */ 2832 void 2833 uma_zfree_pcpu_arg(uma_zone_t zone, void *item, void *udata) 2834 { 2835 2836 #ifdef SMP 2837 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 2838 #endif 2839 uma_zfree_arg(zone, item, udata); 2840 } 2841 2842 #ifdef INVARIANTS 2843 #define UMA_ALWAYS_CTORDTOR 1 2844 #else 2845 #define UMA_ALWAYS_CTORDTOR 0 2846 #endif 2847 2848 static void * 2849 item_ctor(uma_zone_t zone, int size, void *udata, int flags, void *item) 2850 { 2851 #ifdef INVARIANTS 2852 bool skipdbg; 2853 2854 skipdbg = uma_dbg_zskip(zone, item); 2855 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 2856 zone->uz_ctor != trash_ctor) 2857 trash_ctor(item, size, udata, flags); 2858 #endif 2859 if (__predict_false(zone->uz_ctor != NULL) && 2860 zone->uz_ctor(item, size, udata, flags) != 0) { 2861 counter_u64_add(zone->uz_fails, 1); 2862 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT); 2863 return (NULL); 2864 } 2865 #ifdef INVARIANTS 2866 if (!skipdbg) 2867 uma_dbg_alloc(zone, NULL, item); 2868 #endif 2869 if (flags & M_ZERO) 2870 bzero(item, size); 2871 2872 return (item); 2873 } 2874 2875 static inline void 2876 item_dtor(uma_zone_t zone, void *item, int size, void *udata, 2877 enum zfreeskip skip) 2878 { 2879 #ifdef INVARIANTS 2880 bool skipdbg; 2881 2882 skipdbg = uma_dbg_zskip(zone, item); 2883 if (skip == SKIP_NONE && !skipdbg) { 2884 if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0) 2885 uma_dbg_free(zone, udata, item); 2886 else 2887 uma_dbg_free(zone, NULL, item); 2888 } 2889 #endif 2890 if (__predict_true(skip < SKIP_DTOR)) { 2891 if (zone->uz_dtor != NULL) 2892 zone->uz_dtor(item, size, udata); 2893 #ifdef INVARIANTS 2894 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 2895 zone->uz_dtor != trash_dtor) 2896 trash_dtor(item, size, udata); 2897 #endif 2898 } 2899 } 2900 2901 /* See uma.h */ 2902 void * 2903 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 2904 { 2905 uma_cache_bucket_t bucket; 2906 uma_cache_t cache; 2907 void *item; 2908 int domain, size, uz_flags; 2909 2910 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2911 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 2912 2913 /* This is the fast path allocation */ 2914 CTR3(KTR_UMA, "uma_zalloc_arg zone %s(%p) flags %d", zone->uz_name, 2915 zone, flags); 2916 2917 #ifdef WITNESS 2918 if (flags & M_WAITOK) { 2919 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2920 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 2921 } 2922 #endif 2923 2924 #ifdef INVARIANTS 2925 KASSERT((flags & M_EXEC) == 0, ("uma_zalloc_arg: called with M_EXEC")); 2926 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2927 ("uma_zalloc_arg: called with spinlock or critical section held")); 2928 if (zone->uz_flags & UMA_ZONE_PCPU) 2929 KASSERT((flags & M_ZERO) == 0, ("allocating from a pcpu zone " 2930 "with M_ZERO passed")); 2931 #endif 2932 2933 #ifdef DEBUG_MEMGUARD 2934 if (memguard_cmp_zone(zone)) { 2935 item = memguard_alloc(zone->uz_size, flags); 2936 if (item != NULL) { 2937 if (zone->uz_init != NULL && 2938 zone->uz_init(item, zone->uz_size, flags) != 0) 2939 return (NULL); 2940 if (zone->uz_ctor != NULL && 2941 zone->uz_ctor(item, zone->uz_size, udata, 2942 flags) != 0) { 2943 counter_u64_add(zone->uz_fails, 1); 2944 zone->uz_fini(item, zone->uz_size); 2945 return (NULL); 2946 } 2947 return (item); 2948 } 2949 /* This is unfortunate but should not be fatal. */ 2950 } 2951 #endif 2952 /* 2953 * If possible, allocate from the per-CPU cache. There are two 2954 * requirements for safe access to the per-CPU cache: (1) the thread 2955 * accessing the cache must not be preempted or yield during access, 2956 * and (2) the thread must not migrate CPUs without switching which 2957 * cache it accesses. We rely on a critical section to prevent 2958 * preemption and migration. We release the critical section in 2959 * order to acquire the zone mutex if we are unable to allocate from 2960 * the current cache; when we re-acquire the critical section, we 2961 * must detect and handle migration if it has occurred. 2962 */ 2963 critical_enter(); 2964 do { 2965 cache = &zone->uz_cpu[curcpu]; 2966 bucket = &cache->uc_allocbucket; 2967 size = cache_uz_size(cache); 2968 uz_flags = cache_uz_flags(cache); 2969 if (__predict_true(bucket->ucb_cnt != 0)) { 2970 item = cache_bucket_pop(cache, bucket); 2971 critical_exit(); 2972 if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0 || 2973 UMA_ALWAYS_CTORDTOR)) 2974 return (item_ctor(zone, size, udata, flags, item)); 2975 if (flags & M_ZERO) 2976 bzero(item, size); 2977 return (item); 2978 } 2979 } while (cache_alloc(zone, cache, udata, flags)); 2980 critical_exit(); 2981 2982 /* 2983 * We can not get a bucket so try to return a single item. 2984 */ 2985 if (uz_flags & UMA_ZONE_FIRSTTOUCH) 2986 domain = PCPU_GET(domain); 2987 else 2988 domain = UMA_ANYDOMAIN; 2989 return (zone_alloc_item(zone, udata, domain, flags)); 2990 } 2991 2992 /* 2993 * Replenish an alloc bucket and possibly restore an old one. Called in 2994 * a critical section. Returns in a critical section. 2995 * 2996 * A false return value indicates an allocation failure. 2997 * A true return value indicates success and the caller should retry. 2998 */ 2999 static __noinline bool 3000 cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3001 { 3002 uma_zone_domain_t zdom; 3003 uma_bucket_t bucket; 3004 int domain; 3005 bool lockfail; 3006 3007 CRITICAL_ASSERT(curthread); 3008 3009 /* 3010 * If we have run out of items in our alloc bucket see 3011 * if we can switch with the free bucket. 3012 */ 3013 if (cache->uc_freebucket.ucb_cnt != 0) { 3014 cache_bucket_swap(&cache->uc_freebucket, &cache->uc_allocbucket); 3015 return (true); 3016 } 3017 3018 /* 3019 * Discard any empty allocation bucket while we hold no locks. 3020 */ 3021 bucket = cache_bucket_unload_alloc(cache); 3022 critical_exit(); 3023 if (bucket != NULL) 3024 bucket_free(zone, bucket, udata); 3025 3026 /* Short-circuit for zones without buckets and low memory. */ 3027 if (zone->uz_bucket_size == 0 || bucketdisable) { 3028 critical_enter(); 3029 return (false); 3030 } 3031 3032 /* 3033 * Attempt to retrieve the item from the per-CPU cache has failed, so 3034 * we must go back to the zone. This requires the zone lock, so we 3035 * must drop the critical section, then re-acquire it when we go back 3036 * to the cache. Since the critical section is released, we may be 3037 * preempted or migrate. As such, make sure not to maintain any 3038 * thread-local state specific to the cache from prior to releasing 3039 * the critical section. 3040 */ 3041 lockfail = 0; 3042 if (ZONE_TRYLOCK(zone) == 0) { 3043 /* Record contention to size the buckets. */ 3044 ZONE_LOCK(zone); 3045 lockfail = 1; 3046 } 3047 3048 /* See if we lost the race to fill the cache. */ 3049 critical_enter(); 3050 cache = &zone->uz_cpu[curcpu]; 3051 if (cache->uc_allocbucket.ucb_bucket != NULL) { 3052 ZONE_UNLOCK(zone); 3053 return (true); 3054 } 3055 3056 /* 3057 * Check the zone's cache of buckets. 3058 */ 3059 if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH) { 3060 domain = PCPU_GET(domain); 3061 zdom = &zone->uz_domain[domain]; 3062 } else { 3063 domain = UMA_ANYDOMAIN; 3064 zdom = &zone->uz_domain[0]; 3065 } 3066 3067 if ((bucket = zone_fetch_bucket(zone, zdom)) != NULL) { 3068 ZONE_UNLOCK(zone); 3069 KASSERT(bucket->ub_cnt != 0, 3070 ("uma_zalloc_arg: Returning an empty bucket.")); 3071 cache_bucket_load_alloc(cache, bucket); 3072 return (true); 3073 } 3074 /* We are no longer associated with this CPU. */ 3075 critical_exit(); 3076 3077 /* 3078 * We bump the uz count when the cache size is insufficient to 3079 * handle the working set. 3080 */ 3081 if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max) 3082 zone->uz_bucket_size++; 3083 ZONE_UNLOCK(zone); 3084 3085 /* 3086 * Fill a bucket and attempt to use it as the alloc bucket. 3087 */ 3088 bucket = zone_alloc_bucket(zone, udata, domain, flags); 3089 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 3090 zone->uz_name, zone, bucket); 3091 if (bucket == NULL) { 3092 critical_enter(); 3093 return (false); 3094 } 3095 3096 /* 3097 * See if we lost the race or were migrated. Cache the 3098 * initialized bucket to make this less likely or claim 3099 * the memory directly. 3100 */ 3101 ZONE_LOCK(zone); 3102 critical_enter(); 3103 cache = &zone->uz_cpu[curcpu]; 3104 if (cache->uc_allocbucket.ucb_bucket == NULL && 3105 ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0 || 3106 domain == PCPU_GET(domain))) { 3107 cache_bucket_load_alloc(cache, bucket); 3108 zdom->uzd_imax += bucket->ub_cnt; 3109 } else if (zone->uz_bkt_count >= zone->uz_bkt_max) { 3110 critical_exit(); 3111 ZONE_UNLOCK(zone); 3112 bucket_drain(zone, bucket); 3113 bucket_free(zone, bucket, udata); 3114 critical_enter(); 3115 return (true); 3116 } else 3117 zone_put_bucket(zone, zdom, bucket, false); 3118 ZONE_UNLOCK(zone); 3119 return (true); 3120 } 3121 3122 void * 3123 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 3124 { 3125 3126 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3127 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3128 3129 /* This is the fast path allocation */ 3130 CTR4(KTR_UMA, "uma_zalloc_domain zone %s(%p) domain %d flags %d", 3131 zone->uz_name, zone, domain, flags); 3132 3133 if (flags & M_WAITOK) { 3134 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3135 "uma_zalloc_domain: zone \"%s\"", zone->uz_name); 3136 } 3137 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3138 ("uma_zalloc_domain: called with spinlock or critical section held")); 3139 3140 return (zone_alloc_item(zone, udata, domain, flags)); 3141 } 3142 3143 /* 3144 * Find a slab with some space. Prefer slabs that are partially used over those 3145 * that are totally full. This helps to reduce fragmentation. 3146 * 3147 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 3148 * only 'domain'. 3149 */ 3150 static uma_slab_t 3151 keg_first_slab(uma_keg_t keg, int domain, bool rr) 3152 { 3153 uma_domain_t dom; 3154 uma_slab_t slab; 3155 int start; 3156 3157 KASSERT(domain >= 0 && domain < vm_ndomains, 3158 ("keg_first_slab: domain %d out of range", domain)); 3159 KEG_LOCK_ASSERT(keg, domain); 3160 3161 slab = NULL; 3162 start = domain; 3163 do { 3164 dom = &keg->uk_domain[domain]; 3165 if (!LIST_EMPTY(&dom->ud_part_slab)) 3166 return (LIST_FIRST(&dom->ud_part_slab)); 3167 if (!LIST_EMPTY(&dom->ud_free_slab)) { 3168 slab = LIST_FIRST(&dom->ud_free_slab); 3169 LIST_REMOVE(slab, us_link); 3170 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3171 return (slab); 3172 } 3173 if (rr) 3174 domain = (domain + 1) % vm_ndomains; 3175 } while (domain != start); 3176 3177 return (NULL); 3178 } 3179 3180 /* 3181 * Fetch an existing slab from a free or partial list. Returns with the 3182 * keg domain lock held if a slab was found or unlocked if not. 3183 */ 3184 static uma_slab_t 3185 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags) 3186 { 3187 uma_slab_t slab; 3188 uint32_t reserve; 3189 3190 /* HASH has a single free list. */ 3191 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 3192 domain = 0; 3193 3194 KEG_LOCK(keg, domain); 3195 reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve; 3196 if (keg->uk_domain[domain].ud_free <= reserve || 3197 (slab = keg_first_slab(keg, domain, rr)) == NULL) { 3198 KEG_UNLOCK(keg, domain); 3199 return (NULL); 3200 } 3201 return (slab); 3202 } 3203 3204 static uma_slab_t 3205 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags) 3206 { 3207 struct vm_domainset_iter di; 3208 uma_slab_t slab; 3209 int aflags, domain; 3210 bool rr; 3211 3212 restart: 3213 /* 3214 * Use the keg's policy if upper layers haven't already specified a 3215 * domain (as happens with first-touch zones). 3216 * 3217 * To avoid races we run the iterator with the keg lock held, but that 3218 * means that we cannot allow the vm_domainset layer to sleep. Thus, 3219 * clear M_WAITOK and handle low memory conditions locally. 3220 */ 3221 rr = rdomain == UMA_ANYDOMAIN; 3222 if (rr) { 3223 aflags = (flags & ~M_WAITOK) | M_NOWAIT; 3224 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 3225 &aflags); 3226 } else { 3227 aflags = flags; 3228 domain = rdomain; 3229 } 3230 3231 for (;;) { 3232 slab = keg_fetch_free_slab(keg, domain, rr, flags); 3233 if (slab != NULL) 3234 return (slab); 3235 3236 /* 3237 * M_NOVM means don't ask at all! 3238 */ 3239 if (flags & M_NOVM) 3240 break; 3241 3242 slab = keg_alloc_slab(keg, zone, domain, flags, aflags); 3243 if (slab != NULL) 3244 return (slab); 3245 if (!rr && (flags & M_WAITOK) == 0) 3246 break; 3247 if (rr && vm_domainset_iter_policy(&di, &domain) != 0) { 3248 if ((flags & M_WAITOK) != 0) { 3249 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask); 3250 goto restart; 3251 } 3252 break; 3253 } 3254 } 3255 3256 /* 3257 * We might not have been able to get a slab but another cpu 3258 * could have while we were unlocked. Check again before we 3259 * fail. 3260 */ 3261 if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL) 3262 return (slab); 3263 3264 return (NULL); 3265 } 3266 3267 static void * 3268 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 3269 { 3270 uma_domain_t dom; 3271 void *item; 3272 int freei; 3273 3274 KEG_LOCK_ASSERT(keg, slab->us_domain); 3275 3276 dom = &keg->uk_domain[slab->us_domain]; 3277 freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1; 3278 BIT_CLR(keg->uk_ipers, freei, &slab->us_free); 3279 item = slab_item(slab, keg, freei); 3280 slab->us_freecount--; 3281 dom->ud_free--; 3282 3283 /* Move this slab to the full list */ 3284 if (slab->us_freecount == 0) { 3285 LIST_REMOVE(slab, us_link); 3286 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 3287 } 3288 3289 return (item); 3290 } 3291 3292 static int 3293 zone_import(void *arg, void **bucket, int max, int domain, int flags) 3294 { 3295 uma_domain_t dom; 3296 uma_zone_t zone; 3297 uma_slab_t slab; 3298 uma_keg_t keg; 3299 #ifdef NUMA 3300 int stripe; 3301 #endif 3302 int i; 3303 3304 zone = arg; 3305 slab = NULL; 3306 keg = zone->uz_keg; 3307 /* Try to keep the buckets totally full */ 3308 for (i = 0; i < max; ) { 3309 if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL) 3310 break; 3311 #ifdef NUMA 3312 stripe = howmany(max, vm_ndomains); 3313 #endif 3314 dom = &keg->uk_domain[slab->us_domain]; 3315 while (slab->us_freecount && i < max) { 3316 bucket[i++] = slab_alloc_item(keg, slab); 3317 if (dom->ud_free <= keg->uk_reserve) 3318 break; 3319 #ifdef NUMA 3320 /* 3321 * If the zone is striped we pick a new slab for every 3322 * N allocations. Eliminating this conditional will 3323 * instead pick a new domain for each bucket rather 3324 * than stripe within each bucket. The current option 3325 * produces more fragmentation and requires more cpu 3326 * time but yields better distribution. 3327 */ 3328 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0 && 3329 vm_ndomains > 1 && --stripe == 0) 3330 break; 3331 #endif 3332 } 3333 KEG_UNLOCK(keg, slab->us_domain); 3334 /* Don't block if we allocated any successfully. */ 3335 flags &= ~M_WAITOK; 3336 flags |= M_NOWAIT; 3337 } 3338 3339 return i; 3340 } 3341 3342 static int 3343 zone_alloc_limit_hard(uma_zone_t zone, int count, int flags) 3344 { 3345 uint64_t old, new, total, max; 3346 3347 /* 3348 * The hard case. We're going to sleep because there were existing 3349 * sleepers or because we ran out of items. This routine enforces 3350 * fairness by keeping fifo order. 3351 * 3352 * First release our ill gotten gains and make some noise. 3353 */ 3354 for (;;) { 3355 zone_free_limit(zone, count); 3356 zone_log_warning(zone); 3357 zone_maxaction(zone); 3358 if (flags & M_NOWAIT) 3359 return (0); 3360 3361 /* 3362 * We need to allocate an item or set ourself as a sleeper 3363 * while the sleepq lock is held to avoid wakeup races. This 3364 * is essentially a home rolled semaphore. 3365 */ 3366 sleepq_lock(&zone->uz_max_items); 3367 old = zone->uz_items; 3368 do { 3369 MPASS(UZ_ITEMS_SLEEPERS(old) < UZ_ITEMS_SLEEPERS_MAX); 3370 /* Cache the max since we will evaluate twice. */ 3371 max = zone->uz_max_items; 3372 if (UZ_ITEMS_SLEEPERS(old) != 0 || 3373 UZ_ITEMS_COUNT(old) >= max) 3374 new = old + UZ_ITEMS_SLEEPER; 3375 else 3376 new = old + MIN(count, max - old); 3377 } while (atomic_fcmpset_64(&zone->uz_items, &old, new) == 0); 3378 3379 /* We may have successfully allocated under the sleepq lock. */ 3380 if (UZ_ITEMS_SLEEPERS(new) == 0) { 3381 sleepq_release(&zone->uz_max_items); 3382 return (new - old); 3383 } 3384 3385 /* 3386 * This is in a different cacheline from uz_items so that we 3387 * don't constantly invalidate the fastpath cacheline when we 3388 * adjust item counts. This could be limited to toggling on 3389 * transitions. 3390 */ 3391 atomic_add_32(&zone->uz_sleepers, 1); 3392 atomic_add_64(&zone->uz_sleeps, 1); 3393 3394 /* 3395 * We have added ourselves as a sleeper. The sleepq lock 3396 * protects us from wakeup races. Sleep now and then retry. 3397 */ 3398 sleepq_add(&zone->uz_max_items, NULL, "zonelimit", 0, 0); 3399 sleepq_wait(&zone->uz_max_items, PVM); 3400 3401 /* 3402 * After wakeup, remove ourselves as a sleeper and try 3403 * again. We no longer have the sleepq lock for protection. 3404 * 3405 * Subract ourselves as a sleeper while attempting to add 3406 * our count. 3407 */ 3408 atomic_subtract_32(&zone->uz_sleepers, 1); 3409 old = atomic_fetchadd_64(&zone->uz_items, 3410 -(UZ_ITEMS_SLEEPER - count)); 3411 /* We're no longer a sleeper. */ 3412 old -= UZ_ITEMS_SLEEPER; 3413 3414 /* 3415 * If we're still at the limit, restart. Notably do not 3416 * block on other sleepers. Cache the max value to protect 3417 * against changes via sysctl. 3418 */ 3419 total = UZ_ITEMS_COUNT(old); 3420 max = zone->uz_max_items; 3421 if (total >= max) 3422 continue; 3423 /* Truncate if necessary, otherwise wake other sleepers. */ 3424 if (total + count > max) { 3425 zone_free_limit(zone, total + count - max); 3426 count = max - total; 3427 } else if (total + count < max && UZ_ITEMS_SLEEPERS(old) != 0) 3428 wakeup_one(&zone->uz_max_items); 3429 3430 return (count); 3431 } 3432 } 3433 3434 /* 3435 * Allocate 'count' items from our max_items limit. Returns the number 3436 * available. If M_NOWAIT is not specified it will sleep until at least 3437 * one item can be allocated. 3438 */ 3439 static int 3440 zone_alloc_limit(uma_zone_t zone, int count, int flags) 3441 { 3442 uint64_t old; 3443 uint64_t max; 3444 3445 max = zone->uz_max_items; 3446 MPASS(max > 0); 3447 3448 /* 3449 * We expect normal allocations to succeed with a simple 3450 * fetchadd. 3451 */ 3452 old = atomic_fetchadd_64(&zone->uz_items, count); 3453 if (__predict_true(old + count <= max)) 3454 return (count); 3455 3456 /* 3457 * If we had some items and no sleepers just return the 3458 * truncated value. We have to release the excess space 3459 * though because that may wake sleepers who weren't woken 3460 * because we were temporarily over the limit. 3461 */ 3462 if (old < max) { 3463 zone_free_limit(zone, (old + count) - max); 3464 return (max - old); 3465 } 3466 return (zone_alloc_limit_hard(zone, count, flags)); 3467 } 3468 3469 /* 3470 * Free a number of items back to the limit. 3471 */ 3472 static void 3473 zone_free_limit(uma_zone_t zone, int count) 3474 { 3475 uint64_t old; 3476 3477 MPASS(count > 0); 3478 3479 /* 3480 * In the common case we either have no sleepers or 3481 * are still over the limit and can just return. 3482 */ 3483 old = atomic_fetchadd_64(&zone->uz_items, -count); 3484 if (__predict_true(UZ_ITEMS_SLEEPERS(old) == 0 || 3485 UZ_ITEMS_COUNT(old) - count >= zone->uz_max_items)) 3486 return; 3487 3488 /* 3489 * Moderate the rate of wakeups. Sleepers will continue 3490 * to generate wakeups if necessary. 3491 */ 3492 wakeup_one(&zone->uz_max_items); 3493 } 3494 3495 static uma_bucket_t 3496 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags) 3497 { 3498 uma_bucket_t bucket; 3499 int maxbucket, cnt; 3500 3501 CTR3(KTR_UMA, "zone_alloc_bucket zone %s(%p) domain %d", zone->uz_name, 3502 zone, domain); 3503 3504 /* Avoid allocs targeting empty domains. */ 3505 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 3506 domain = UMA_ANYDOMAIN; 3507 3508 if (zone->uz_max_items > 0) 3509 maxbucket = zone_alloc_limit(zone, zone->uz_bucket_size, 3510 M_NOWAIT); 3511 else 3512 maxbucket = zone->uz_bucket_size; 3513 if (maxbucket == 0) 3514 return (false); 3515 3516 /* Don't wait for buckets, preserve caller's NOVM setting. */ 3517 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 3518 if (bucket == NULL) { 3519 cnt = 0; 3520 goto out; 3521 } 3522 3523 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 3524 MIN(maxbucket, bucket->ub_entries), domain, flags); 3525 3526 /* 3527 * Initialize the memory if necessary. 3528 */ 3529 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 3530 int i; 3531 3532 for (i = 0; i < bucket->ub_cnt; i++) 3533 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 3534 flags) != 0) 3535 break; 3536 /* 3537 * If we couldn't initialize the whole bucket, put the 3538 * rest back onto the freelist. 3539 */ 3540 if (i != bucket->ub_cnt) { 3541 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 3542 bucket->ub_cnt - i); 3543 #ifdef INVARIANTS 3544 bzero(&bucket->ub_bucket[i], 3545 sizeof(void *) * (bucket->ub_cnt - i)); 3546 #endif 3547 bucket->ub_cnt = i; 3548 } 3549 } 3550 3551 cnt = bucket->ub_cnt; 3552 if (bucket->ub_cnt == 0) { 3553 bucket_free(zone, bucket, udata); 3554 counter_u64_add(zone->uz_fails, 1); 3555 bucket = NULL; 3556 } 3557 out: 3558 if (zone->uz_max_items > 0 && cnt < maxbucket) 3559 zone_free_limit(zone, maxbucket - cnt); 3560 3561 return (bucket); 3562 } 3563 3564 /* 3565 * Allocates a single item from a zone. 3566 * 3567 * Arguments 3568 * zone The zone to alloc for. 3569 * udata The data to be passed to the constructor. 3570 * domain The domain to allocate from or UMA_ANYDOMAIN. 3571 * flags M_WAITOK, M_NOWAIT, M_ZERO. 3572 * 3573 * Returns 3574 * NULL if there is no memory and M_NOWAIT is set 3575 * An item if successful 3576 */ 3577 3578 static void * 3579 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 3580 { 3581 void *item; 3582 3583 if (zone->uz_max_items > 0 && zone_alloc_limit(zone, 1, flags) == 0) 3584 return (NULL); 3585 3586 /* Avoid allocs targeting empty domains. */ 3587 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 3588 domain = UMA_ANYDOMAIN; 3589 3590 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 3591 goto fail_cnt; 3592 3593 /* 3594 * We have to call both the zone's init (not the keg's init) 3595 * and the zone's ctor. This is because the item is going from 3596 * a keg slab directly to the user, and the user is expecting it 3597 * to be both zone-init'd as well as zone-ctor'd. 3598 */ 3599 if (zone->uz_init != NULL) { 3600 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 3601 zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT); 3602 goto fail_cnt; 3603 } 3604 } 3605 item = item_ctor(zone, zone->uz_size, udata, flags, item); 3606 if (item == NULL) 3607 goto fail; 3608 3609 counter_u64_add(zone->uz_allocs, 1); 3610 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 3611 zone->uz_name, zone); 3612 3613 return (item); 3614 3615 fail_cnt: 3616 counter_u64_add(zone->uz_fails, 1); 3617 fail: 3618 if (zone->uz_max_items > 0) 3619 zone_free_limit(zone, 1); 3620 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 3621 zone->uz_name, zone); 3622 3623 return (NULL); 3624 } 3625 3626 /* See uma.h */ 3627 void 3628 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 3629 { 3630 uma_cache_t cache; 3631 uma_cache_bucket_t bucket; 3632 int domain, itemdomain, uz_flags; 3633 3634 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3635 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3636 3637 CTR2(KTR_UMA, "uma_zfree_arg zone %s(%p)", zone->uz_name, zone); 3638 3639 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3640 ("uma_zfree_arg: called with spinlock or critical section held")); 3641 3642 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 3643 if (item == NULL) 3644 return; 3645 #ifdef DEBUG_MEMGUARD 3646 if (is_memguard_addr(item)) { 3647 if (zone->uz_dtor != NULL) 3648 zone->uz_dtor(item, zone->uz_size, udata); 3649 if (zone->uz_fini != NULL) 3650 zone->uz_fini(item, zone->uz_size); 3651 memguard_free(item); 3652 return; 3653 } 3654 #endif 3655 3656 /* 3657 * We are accessing the per-cpu cache without a critical section to 3658 * fetch size and flags. This is acceptable, if we are preempted we 3659 * will simply read another cpu's line. 3660 */ 3661 cache = &zone->uz_cpu[curcpu]; 3662 uz_flags = cache_uz_flags(cache); 3663 if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0 || 3664 UMA_ALWAYS_CTORDTOR)) 3665 item_dtor(zone, item, cache_uz_size(cache), udata, SKIP_NONE); 3666 3667 /* 3668 * The race here is acceptable. If we miss it we'll just have to wait 3669 * a little longer for the limits to be reset. 3670 */ 3671 if (__predict_false(uz_flags & UMA_ZFLAG_LIMIT)) { 3672 if (zone->uz_sleepers > 0) 3673 goto zfree_item; 3674 } 3675 3676 /* 3677 * If possible, free to the per-CPU cache. There are two 3678 * requirements for safe access to the per-CPU cache: (1) the thread 3679 * accessing the cache must not be preempted or yield during access, 3680 * and (2) the thread must not migrate CPUs without switching which 3681 * cache it accesses. We rely on a critical section to prevent 3682 * preemption and migration. We release the critical section in 3683 * order to acquire the zone mutex if we are unable to free to the 3684 * current cache; when we re-acquire the critical section, we must 3685 * detect and handle migration if it has occurred. 3686 */ 3687 domain = itemdomain = 0; 3688 #ifdef NUMA 3689 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 3690 itemdomain = _vm_phys_domain(pmap_kextract((vm_offset_t)item)); 3691 #endif 3692 critical_enter(); 3693 do { 3694 cache = &zone->uz_cpu[curcpu]; 3695 #ifdef NUMA 3696 domain = PCPU_GET(domain); 3697 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 3698 domain != itemdomain) { 3699 bucket = &cache->uc_crossbucket; 3700 } else 3701 #endif 3702 { 3703 /* 3704 * Try to free into the allocbucket first to give LIFO 3705 * ordering for cache-hot datastructures. Spill over 3706 * into the freebucket if necessary. Alloc will swap 3707 * them if one runs dry. 3708 */ 3709 bucket = &cache->uc_allocbucket; 3710 if (__predict_false(bucket->ucb_cnt >= 3711 bucket->ucb_entries)) 3712 bucket = &cache->uc_freebucket; 3713 } 3714 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 3715 cache_bucket_push(cache, bucket, item); 3716 critical_exit(); 3717 return; 3718 } 3719 } while (cache_free(zone, cache, udata, item, itemdomain)); 3720 critical_exit(); 3721 3722 /* 3723 * If nothing else caught this, we'll just do an internal free. 3724 */ 3725 zfree_item: 3726 zone_free_item(zone, item, udata, SKIP_DTOR); 3727 } 3728 3729 #ifdef NUMA 3730 /* 3731 * sort crossdomain free buckets to domain correct buckets and cache 3732 * them. 3733 */ 3734 static void 3735 zone_free_cross(uma_zone_t zone, uma_bucket_t bucket, void *udata) 3736 { 3737 struct uma_bucketlist fullbuckets; 3738 uma_zone_domain_t zdom; 3739 uma_bucket_t b; 3740 void *item; 3741 int domain; 3742 3743 CTR3(KTR_UMA, 3744 "uma_zfree: zone %s(%p) draining cross bucket %p", 3745 zone->uz_name, zone, bucket); 3746 3747 TAILQ_INIT(&fullbuckets); 3748 3749 /* 3750 * To avoid having ndomain * ndomain buckets for sorting we have a 3751 * lock on the current crossfree bucket. A full matrix with 3752 * per-domain locking could be used if necessary. 3753 */ 3754 ZONE_CROSS_LOCK(zone); 3755 while (bucket->ub_cnt > 0) { 3756 item = bucket->ub_bucket[bucket->ub_cnt - 1]; 3757 domain = _vm_phys_domain(pmap_kextract((vm_offset_t)item)); 3758 zdom = &zone->uz_domain[domain]; 3759 if (zdom->uzd_cross == NULL) { 3760 zdom->uzd_cross = bucket_alloc(zone, udata, M_NOWAIT); 3761 if (zdom->uzd_cross == NULL) 3762 break; 3763 } 3764 zdom->uzd_cross->ub_bucket[zdom->uzd_cross->ub_cnt++] = item; 3765 if (zdom->uzd_cross->ub_cnt == zdom->uzd_cross->ub_entries) { 3766 TAILQ_INSERT_HEAD(&fullbuckets, zdom->uzd_cross, 3767 ub_link); 3768 zdom->uzd_cross = NULL; 3769 } 3770 bucket->ub_cnt--; 3771 } 3772 ZONE_CROSS_UNLOCK(zone); 3773 if (!TAILQ_EMPTY(&fullbuckets)) { 3774 ZONE_LOCK(zone); 3775 while ((b = TAILQ_FIRST(&fullbuckets)) != NULL) { 3776 TAILQ_REMOVE(&fullbuckets, b, ub_link); 3777 if (zone->uz_bkt_count >= zone->uz_bkt_max) { 3778 ZONE_UNLOCK(zone); 3779 bucket_drain(zone, b); 3780 bucket_free(zone, b, udata); 3781 ZONE_LOCK(zone); 3782 } else { 3783 domain = _vm_phys_domain( 3784 pmap_kextract( 3785 (vm_offset_t)b->ub_bucket[0])); 3786 zdom = &zone->uz_domain[domain]; 3787 zone_put_bucket(zone, zdom, b, true); 3788 } 3789 } 3790 ZONE_UNLOCK(zone); 3791 } 3792 if (bucket->ub_cnt != 0) 3793 bucket_drain(zone, bucket); 3794 bucket_free(zone, bucket, udata); 3795 } 3796 #endif 3797 3798 static void 3799 zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 3800 int domain, int itemdomain) 3801 { 3802 uma_zone_domain_t zdom; 3803 3804 #ifdef NUMA 3805 /* 3806 * Buckets coming from the wrong domain will be entirely for the 3807 * only other domain on two domain systems. In this case we can 3808 * simply cache them. Otherwise we need to sort them back to 3809 * correct domains. 3810 */ 3811 if (domain != itemdomain && vm_ndomains > 2) { 3812 zone_free_cross(zone, bucket, udata); 3813 return; 3814 } 3815 #endif 3816 3817 /* 3818 * Attempt to save the bucket in the zone's domain bucket cache. 3819 * 3820 * We bump the uz count when the cache size is insufficient to 3821 * handle the working set. 3822 */ 3823 if (ZONE_TRYLOCK(zone) == 0) { 3824 /* Record contention to size the buckets. */ 3825 ZONE_LOCK(zone); 3826 if (zone->uz_bucket_size < zone->uz_bucket_size_max) 3827 zone->uz_bucket_size++; 3828 } 3829 3830 CTR3(KTR_UMA, 3831 "uma_zfree: zone %s(%p) putting bucket %p on free list", 3832 zone->uz_name, zone, bucket); 3833 /* ub_cnt is pointing to the last free item */ 3834 KASSERT(bucket->ub_cnt == bucket->ub_entries, 3835 ("uma_zfree: Attempting to insert partial bucket onto the full list.\n")); 3836 if (zone->uz_bkt_count >= zone->uz_bkt_max) { 3837 ZONE_UNLOCK(zone); 3838 bucket_drain(zone, bucket); 3839 bucket_free(zone, bucket, udata); 3840 } else { 3841 zdom = &zone->uz_domain[itemdomain]; 3842 zone_put_bucket(zone, zdom, bucket, true); 3843 ZONE_UNLOCK(zone); 3844 } 3845 } 3846 3847 /* 3848 * Populate a free or cross bucket for the current cpu cache. Free any 3849 * existing full bucket either to the zone cache or back to the slab layer. 3850 * 3851 * Enters and returns in a critical section. false return indicates that 3852 * we can not satisfy this free in the cache layer. true indicates that 3853 * the caller should retry. 3854 */ 3855 static __noinline bool 3856 cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, void *item, 3857 int itemdomain) 3858 { 3859 uma_cache_bucket_t cbucket; 3860 uma_bucket_t bucket; 3861 int domain; 3862 3863 CRITICAL_ASSERT(curthread); 3864 3865 if (zone->uz_bucket_size == 0 || bucketdisable) 3866 return false; 3867 3868 cache = &zone->uz_cpu[curcpu]; 3869 3870 /* 3871 * FIRSTTOUCH domains need to free to the correct zdom. When 3872 * enabled this is the zdom of the item. The bucket is the 3873 * cross bucket if the current domain and itemdomain do not match. 3874 */ 3875 cbucket = &cache->uc_freebucket; 3876 #ifdef NUMA 3877 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) { 3878 domain = PCPU_GET(domain); 3879 if (domain != itemdomain) { 3880 cbucket = &cache->uc_crossbucket; 3881 if (cbucket->ucb_cnt != 0) 3882 atomic_add_64(&zone->uz_xdomain, 3883 cbucket->ucb_cnt); 3884 } 3885 } else 3886 #endif 3887 itemdomain = domain = 0; 3888 bucket = cache_bucket_unload(cbucket); 3889 3890 /* We are no longer associated with this CPU. */ 3891 critical_exit(); 3892 3893 if (bucket != NULL) 3894 zone_free_bucket(zone, bucket, udata, domain, itemdomain); 3895 3896 bucket = bucket_alloc(zone, udata, M_NOWAIT); 3897 CTR3(KTR_UMA, "uma_zfree: zone %s(%p) allocated bucket %p", 3898 zone->uz_name, zone, bucket); 3899 critical_enter(); 3900 if (bucket == NULL) 3901 return (false); 3902 cache = &zone->uz_cpu[curcpu]; 3903 #ifdef NUMA 3904 /* 3905 * Check to see if we should be populating the cross bucket. If it 3906 * is already populated we will fall through and attempt to populate 3907 * the free bucket. 3908 */ 3909 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) { 3910 domain = PCPU_GET(domain); 3911 if (domain != itemdomain && 3912 cache->uc_crossbucket.ucb_bucket == NULL) { 3913 cache_bucket_load_cross(cache, bucket); 3914 return (true); 3915 } 3916 } 3917 #endif 3918 /* 3919 * We may have lost the race to fill the bucket or switched CPUs. 3920 */ 3921 if (cache->uc_freebucket.ucb_bucket != NULL) { 3922 critical_exit(); 3923 bucket_free(zone, bucket, udata); 3924 critical_enter(); 3925 } else 3926 cache_bucket_load_free(cache, bucket); 3927 3928 return (true); 3929 } 3930 3931 void 3932 uma_zfree_domain(uma_zone_t zone, void *item, void *udata) 3933 { 3934 3935 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3936 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3937 3938 CTR2(KTR_UMA, "uma_zfree_domain zone %s(%p)", zone->uz_name, zone); 3939 3940 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3941 ("uma_zfree_domain: called with spinlock or critical section held")); 3942 3943 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 3944 if (item == NULL) 3945 return; 3946 zone_free_item(zone, item, udata, SKIP_NONE); 3947 } 3948 3949 static void 3950 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item) 3951 { 3952 uma_keg_t keg; 3953 uma_domain_t dom; 3954 int freei; 3955 3956 keg = zone->uz_keg; 3957 KEG_LOCK_ASSERT(keg, slab->us_domain); 3958 3959 /* Do we need to remove from any lists? */ 3960 dom = &keg->uk_domain[slab->us_domain]; 3961 if (slab->us_freecount+1 == keg->uk_ipers) { 3962 LIST_REMOVE(slab, us_link); 3963 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 3964 } else if (slab->us_freecount == 0) { 3965 LIST_REMOVE(slab, us_link); 3966 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3967 } 3968 3969 /* Slab management. */ 3970 freei = slab_item_index(slab, keg, item); 3971 BIT_SET(keg->uk_ipers, freei, &slab->us_free); 3972 slab->us_freecount++; 3973 3974 /* Keg statistics. */ 3975 dom->ud_free++; 3976 } 3977 3978 static void 3979 zone_release(void *arg, void **bucket, int cnt) 3980 { 3981 struct mtx *lock; 3982 uma_zone_t zone; 3983 uma_slab_t slab; 3984 uma_keg_t keg; 3985 uint8_t *mem; 3986 void *item; 3987 int i; 3988 3989 zone = arg; 3990 keg = zone->uz_keg; 3991 lock = NULL; 3992 if (__predict_false((zone->uz_flags & UMA_ZFLAG_HASH) != 0)) 3993 lock = KEG_LOCK(keg, 0); 3994 for (i = 0; i < cnt; i++) { 3995 item = bucket[i]; 3996 if (__predict_true((zone->uz_flags & UMA_ZFLAG_VTOSLAB) != 0)) { 3997 slab = vtoslab((vm_offset_t)item); 3998 } else { 3999 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 4000 if ((zone->uz_flags & UMA_ZFLAG_HASH) != 0) 4001 slab = hash_sfind(&keg->uk_hash, mem); 4002 else 4003 slab = (uma_slab_t)(mem + keg->uk_pgoff); 4004 } 4005 if (lock != KEG_LOCKPTR(keg, slab->us_domain)) { 4006 if (lock != NULL) 4007 mtx_unlock(lock); 4008 lock = KEG_LOCK(keg, slab->us_domain); 4009 } 4010 slab_free_item(zone, slab, item); 4011 } 4012 if (lock != NULL) 4013 mtx_unlock(lock); 4014 } 4015 4016 /* 4017 * Frees a single item to any zone. 4018 * 4019 * Arguments: 4020 * zone The zone to free to 4021 * item The item we're freeing 4022 * udata User supplied data for the dtor 4023 * skip Skip dtors and finis 4024 */ 4025 static void 4026 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 4027 { 4028 4029 item_dtor(zone, item, zone->uz_size, udata, skip); 4030 4031 if (skip < SKIP_FINI && zone->uz_fini) 4032 zone->uz_fini(item, zone->uz_size); 4033 4034 zone->uz_release(zone->uz_arg, &item, 1); 4035 4036 if (skip & SKIP_CNT) 4037 return; 4038 4039 counter_u64_add(zone->uz_frees, 1); 4040 4041 if (zone->uz_max_items > 0) 4042 zone_free_limit(zone, 1); 4043 } 4044 4045 /* See uma.h */ 4046 int 4047 uma_zone_set_max(uma_zone_t zone, int nitems) 4048 { 4049 struct uma_bucket_zone *ubz; 4050 int count; 4051 4052 /* 4053 * XXX This can misbehave if the zone has any allocations with 4054 * no limit and a limit is imposed. There is currently no 4055 * way to clear a limit. 4056 */ 4057 ZONE_LOCK(zone); 4058 ubz = bucket_zone_max(zone, nitems); 4059 count = ubz != NULL ? ubz->ubz_entries : 0; 4060 zone->uz_bucket_size_max = zone->uz_bucket_size = count; 4061 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 4062 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 4063 zone->uz_max_items = nitems; 4064 zone->uz_flags |= UMA_ZFLAG_LIMIT; 4065 zone_update_caches(zone); 4066 /* We may need to wake waiters. */ 4067 wakeup(&zone->uz_max_items); 4068 ZONE_UNLOCK(zone); 4069 4070 return (nitems); 4071 } 4072 4073 /* See uma.h */ 4074 void 4075 uma_zone_set_maxcache(uma_zone_t zone, int nitems) 4076 { 4077 struct uma_bucket_zone *ubz; 4078 int bpcpu; 4079 4080 ZONE_LOCK(zone); 4081 ubz = bucket_zone_max(zone, nitems); 4082 if (ubz != NULL) { 4083 bpcpu = 2; 4084 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4085 /* Count the cross-domain bucket. */ 4086 bpcpu++; 4087 nitems -= ubz->ubz_entries * bpcpu * mp_ncpus; 4088 zone->uz_bucket_size_max = ubz->ubz_entries; 4089 } else { 4090 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 4091 } 4092 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 4093 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 4094 zone->uz_bkt_max = nitems; 4095 ZONE_UNLOCK(zone); 4096 } 4097 4098 /* See uma.h */ 4099 int 4100 uma_zone_get_max(uma_zone_t zone) 4101 { 4102 int nitems; 4103 4104 nitems = atomic_load_64(&zone->uz_max_items); 4105 4106 return (nitems); 4107 } 4108 4109 /* See uma.h */ 4110 void 4111 uma_zone_set_warning(uma_zone_t zone, const char *warning) 4112 { 4113 4114 ZONE_ASSERT_COLD(zone); 4115 zone->uz_warning = warning; 4116 } 4117 4118 /* See uma.h */ 4119 void 4120 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 4121 { 4122 4123 ZONE_ASSERT_COLD(zone); 4124 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 4125 } 4126 4127 /* See uma.h */ 4128 int 4129 uma_zone_get_cur(uma_zone_t zone) 4130 { 4131 int64_t nitems; 4132 u_int i; 4133 4134 nitems = 0; 4135 if (zone->uz_allocs != EARLY_COUNTER && zone->uz_frees != EARLY_COUNTER) 4136 nitems = counter_u64_fetch(zone->uz_allocs) - 4137 counter_u64_fetch(zone->uz_frees); 4138 CPU_FOREACH(i) 4139 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs) - 4140 atomic_load_64(&zone->uz_cpu[i].uc_frees); 4141 4142 return (nitems < 0 ? 0 : nitems); 4143 } 4144 4145 static uint64_t 4146 uma_zone_get_allocs(uma_zone_t zone) 4147 { 4148 uint64_t nitems; 4149 u_int i; 4150 4151 nitems = 0; 4152 if (zone->uz_allocs != EARLY_COUNTER) 4153 nitems = counter_u64_fetch(zone->uz_allocs); 4154 CPU_FOREACH(i) 4155 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs); 4156 4157 return (nitems); 4158 } 4159 4160 static uint64_t 4161 uma_zone_get_frees(uma_zone_t zone) 4162 { 4163 uint64_t nitems; 4164 u_int i; 4165 4166 nitems = 0; 4167 if (zone->uz_frees != EARLY_COUNTER) 4168 nitems = counter_u64_fetch(zone->uz_frees); 4169 CPU_FOREACH(i) 4170 nitems += atomic_load_64(&zone->uz_cpu[i].uc_frees); 4171 4172 return (nitems); 4173 } 4174 4175 #ifdef INVARIANTS 4176 /* Used only for KEG_ASSERT_COLD(). */ 4177 static uint64_t 4178 uma_keg_get_allocs(uma_keg_t keg) 4179 { 4180 uma_zone_t z; 4181 uint64_t nitems; 4182 4183 nitems = 0; 4184 LIST_FOREACH(z, &keg->uk_zones, uz_link) 4185 nitems += uma_zone_get_allocs(z); 4186 4187 return (nitems); 4188 } 4189 #endif 4190 4191 /* See uma.h */ 4192 void 4193 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 4194 { 4195 uma_keg_t keg; 4196 4197 KEG_GET(zone, keg); 4198 KEG_ASSERT_COLD(keg); 4199 keg->uk_init = uminit; 4200 } 4201 4202 /* See uma.h */ 4203 void 4204 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 4205 { 4206 uma_keg_t keg; 4207 4208 KEG_GET(zone, keg); 4209 KEG_ASSERT_COLD(keg); 4210 keg->uk_fini = fini; 4211 } 4212 4213 /* See uma.h */ 4214 void 4215 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 4216 { 4217 4218 ZONE_ASSERT_COLD(zone); 4219 zone->uz_init = zinit; 4220 } 4221 4222 /* See uma.h */ 4223 void 4224 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 4225 { 4226 4227 ZONE_ASSERT_COLD(zone); 4228 zone->uz_fini = zfini; 4229 } 4230 4231 /* See uma.h */ 4232 void 4233 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 4234 { 4235 uma_keg_t keg; 4236 4237 KEG_GET(zone, keg); 4238 KEG_ASSERT_COLD(keg); 4239 keg->uk_freef = freef; 4240 } 4241 4242 /* See uma.h */ 4243 void 4244 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 4245 { 4246 uma_keg_t keg; 4247 4248 KEG_GET(zone, keg); 4249 KEG_ASSERT_COLD(keg); 4250 keg->uk_allocf = allocf; 4251 } 4252 4253 /* See uma.h */ 4254 void 4255 uma_zone_reserve(uma_zone_t zone, int items) 4256 { 4257 uma_keg_t keg; 4258 4259 KEG_GET(zone, keg); 4260 KEG_ASSERT_COLD(keg); 4261 keg->uk_reserve = items; 4262 } 4263 4264 /* See uma.h */ 4265 int 4266 uma_zone_reserve_kva(uma_zone_t zone, int count) 4267 { 4268 uma_keg_t keg; 4269 vm_offset_t kva; 4270 u_int pages; 4271 4272 KEG_GET(zone, keg); 4273 KEG_ASSERT_COLD(keg); 4274 ZONE_ASSERT_COLD(zone); 4275 4276 pages = howmany(count, keg->uk_ipers) * keg->uk_ppera; 4277 4278 #ifdef UMA_MD_SMALL_ALLOC 4279 if (keg->uk_ppera > 1) { 4280 #else 4281 if (1) { 4282 #endif 4283 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 4284 if (kva == 0) 4285 return (0); 4286 } else 4287 kva = 0; 4288 4289 ZONE_LOCK(zone); 4290 MPASS(keg->uk_kva == 0); 4291 keg->uk_kva = kva; 4292 keg->uk_offset = 0; 4293 zone->uz_max_items = pages * keg->uk_ipers; 4294 #ifdef UMA_MD_SMALL_ALLOC 4295 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 4296 #else 4297 keg->uk_allocf = noobj_alloc; 4298 #endif 4299 keg->uk_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 4300 zone->uz_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 4301 zone_update_caches(zone); 4302 ZONE_UNLOCK(zone); 4303 4304 return (1); 4305 } 4306 4307 /* See uma.h */ 4308 void 4309 uma_prealloc(uma_zone_t zone, int items) 4310 { 4311 struct vm_domainset_iter di; 4312 uma_domain_t dom; 4313 uma_slab_t slab; 4314 uma_keg_t keg; 4315 int aflags, domain, slabs; 4316 4317 KEG_GET(zone, keg); 4318 slabs = howmany(items, keg->uk_ipers); 4319 while (slabs-- > 0) { 4320 aflags = M_NOWAIT; 4321 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 4322 &aflags); 4323 for (;;) { 4324 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK, 4325 aflags); 4326 if (slab != NULL) { 4327 dom = &keg->uk_domain[slab->us_domain]; 4328 LIST_REMOVE(slab, us_link); 4329 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, 4330 us_link); 4331 KEG_UNLOCK(keg, slab->us_domain); 4332 break; 4333 } 4334 if (vm_domainset_iter_policy(&di, &domain) != 0) 4335 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask); 4336 } 4337 } 4338 } 4339 4340 /* See uma.h */ 4341 void 4342 uma_reclaim(int req) 4343 { 4344 4345 CTR0(KTR_UMA, "UMA: vm asked us to release pages!"); 4346 sx_xlock(&uma_reclaim_lock); 4347 bucket_enable(); 4348 4349 switch (req) { 4350 case UMA_RECLAIM_TRIM: 4351 zone_foreach(zone_trim, NULL); 4352 break; 4353 case UMA_RECLAIM_DRAIN: 4354 case UMA_RECLAIM_DRAIN_CPU: 4355 zone_foreach(zone_drain, NULL); 4356 if (req == UMA_RECLAIM_DRAIN_CPU) { 4357 pcpu_cache_drain_safe(NULL); 4358 zone_foreach(zone_drain, NULL); 4359 } 4360 break; 4361 default: 4362 panic("unhandled reclamation request %d", req); 4363 } 4364 4365 /* 4366 * Some slabs may have been freed but this zone will be visited early 4367 * we visit again so that we can free pages that are empty once other 4368 * zones are drained. We have to do the same for buckets. 4369 */ 4370 zone_drain(slabzones[0], NULL); 4371 zone_drain(slabzones[1], NULL); 4372 bucket_zone_drain(); 4373 sx_xunlock(&uma_reclaim_lock); 4374 } 4375 4376 static volatile int uma_reclaim_needed; 4377 4378 void 4379 uma_reclaim_wakeup(void) 4380 { 4381 4382 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 4383 wakeup(uma_reclaim); 4384 } 4385 4386 void 4387 uma_reclaim_worker(void *arg __unused) 4388 { 4389 4390 for (;;) { 4391 sx_xlock(&uma_reclaim_lock); 4392 while (atomic_load_int(&uma_reclaim_needed) == 0) 4393 sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl", 4394 hz); 4395 sx_xunlock(&uma_reclaim_lock); 4396 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 4397 uma_reclaim(UMA_RECLAIM_DRAIN_CPU); 4398 atomic_store_int(&uma_reclaim_needed, 0); 4399 /* Don't fire more than once per-second. */ 4400 pause("umarclslp", hz); 4401 } 4402 } 4403 4404 /* See uma.h */ 4405 void 4406 uma_zone_reclaim(uma_zone_t zone, int req) 4407 { 4408 4409 switch (req) { 4410 case UMA_RECLAIM_TRIM: 4411 zone_trim(zone, NULL); 4412 break; 4413 case UMA_RECLAIM_DRAIN: 4414 zone_drain(zone, NULL); 4415 break; 4416 case UMA_RECLAIM_DRAIN_CPU: 4417 pcpu_cache_drain_safe(zone); 4418 zone_drain(zone, NULL); 4419 break; 4420 default: 4421 panic("unhandled reclamation request %d", req); 4422 } 4423 } 4424 4425 /* See uma.h */ 4426 int 4427 uma_zone_exhausted(uma_zone_t zone) 4428 { 4429 4430 return (atomic_load_32(&zone->uz_sleepers) > 0); 4431 } 4432 4433 unsigned long 4434 uma_limit(void) 4435 { 4436 4437 return (uma_kmem_limit); 4438 } 4439 4440 void 4441 uma_set_limit(unsigned long limit) 4442 { 4443 4444 uma_kmem_limit = limit; 4445 } 4446 4447 unsigned long 4448 uma_size(void) 4449 { 4450 4451 return (atomic_load_long(&uma_kmem_total)); 4452 } 4453 4454 long 4455 uma_avail(void) 4456 { 4457 4458 return (uma_kmem_limit - uma_size()); 4459 } 4460 4461 #ifdef DDB 4462 /* 4463 * Generate statistics across both the zone and its per-cpu cache's. Return 4464 * desired statistics if the pointer is non-NULL for that statistic. 4465 * 4466 * Note: does not update the zone statistics, as it can't safely clear the 4467 * per-CPU cache statistic. 4468 * 4469 */ 4470 static void 4471 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp, 4472 uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp) 4473 { 4474 uma_cache_t cache; 4475 uint64_t allocs, frees, sleeps, xdomain; 4476 int cachefree, cpu; 4477 4478 allocs = frees = sleeps = xdomain = 0; 4479 cachefree = 0; 4480 CPU_FOREACH(cpu) { 4481 cache = &z->uz_cpu[cpu]; 4482 cachefree += cache->uc_allocbucket.ucb_cnt; 4483 cachefree += cache->uc_freebucket.ucb_cnt; 4484 xdomain += cache->uc_crossbucket.ucb_cnt; 4485 cachefree += cache->uc_crossbucket.ucb_cnt; 4486 allocs += cache->uc_allocs; 4487 frees += cache->uc_frees; 4488 } 4489 allocs += counter_u64_fetch(z->uz_allocs); 4490 frees += counter_u64_fetch(z->uz_frees); 4491 sleeps += z->uz_sleeps; 4492 xdomain += z->uz_xdomain; 4493 if (cachefreep != NULL) 4494 *cachefreep = cachefree; 4495 if (allocsp != NULL) 4496 *allocsp = allocs; 4497 if (freesp != NULL) 4498 *freesp = frees; 4499 if (sleepsp != NULL) 4500 *sleepsp = sleeps; 4501 if (xdomainp != NULL) 4502 *xdomainp = xdomain; 4503 } 4504 #endif /* DDB */ 4505 4506 static int 4507 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 4508 { 4509 uma_keg_t kz; 4510 uma_zone_t z; 4511 int count; 4512 4513 count = 0; 4514 rw_rlock(&uma_rwlock); 4515 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4516 LIST_FOREACH(z, &kz->uk_zones, uz_link) 4517 count++; 4518 } 4519 LIST_FOREACH(z, &uma_cachezones, uz_link) 4520 count++; 4521 4522 rw_runlock(&uma_rwlock); 4523 return (sysctl_handle_int(oidp, &count, 0, req)); 4524 } 4525 4526 static void 4527 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf, 4528 struct uma_percpu_stat *ups, bool internal) 4529 { 4530 uma_zone_domain_t zdom; 4531 uma_cache_t cache; 4532 int i; 4533 4534 4535 for (i = 0; i < vm_ndomains; i++) { 4536 zdom = &z->uz_domain[i]; 4537 uth->uth_zone_free += zdom->uzd_nitems; 4538 } 4539 uth->uth_allocs = counter_u64_fetch(z->uz_allocs); 4540 uth->uth_frees = counter_u64_fetch(z->uz_frees); 4541 uth->uth_fails = counter_u64_fetch(z->uz_fails); 4542 uth->uth_sleeps = z->uz_sleeps; 4543 uth->uth_xdomain = z->uz_xdomain; 4544 4545 /* 4546 * While it is not normally safe to access the cache bucket pointers 4547 * while not on the CPU that owns the cache, we only allow the pointers 4548 * to be exchanged without the zone lock held, not invalidated, so 4549 * accept the possible race associated with bucket exchange during 4550 * monitoring. Use atomic_load_ptr() to ensure that the bucket pointers 4551 * are loaded only once. 4552 */ 4553 for (i = 0; i < mp_maxid + 1; i++) { 4554 bzero(&ups[i], sizeof(*ups)); 4555 if (internal || CPU_ABSENT(i)) 4556 continue; 4557 cache = &z->uz_cpu[i]; 4558 ups[i].ups_cache_free += cache->uc_allocbucket.ucb_cnt; 4559 ups[i].ups_cache_free += cache->uc_freebucket.ucb_cnt; 4560 ups[i].ups_cache_free += cache->uc_crossbucket.ucb_cnt; 4561 ups[i].ups_allocs = cache->uc_allocs; 4562 ups[i].ups_frees = cache->uc_frees; 4563 } 4564 } 4565 4566 static int 4567 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 4568 { 4569 struct uma_stream_header ush; 4570 struct uma_type_header uth; 4571 struct uma_percpu_stat *ups; 4572 struct sbuf sbuf; 4573 uma_keg_t kz; 4574 uma_zone_t z; 4575 uint64_t items; 4576 uint32_t kfree, pages; 4577 int count, error, i; 4578 4579 error = sysctl_wire_old_buffer(req, 0); 4580 if (error != 0) 4581 return (error); 4582 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 4583 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 4584 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 4585 4586 count = 0; 4587 rw_rlock(&uma_rwlock); 4588 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4589 LIST_FOREACH(z, &kz->uk_zones, uz_link) 4590 count++; 4591 } 4592 4593 LIST_FOREACH(z, &uma_cachezones, uz_link) 4594 count++; 4595 4596 /* 4597 * Insert stream header. 4598 */ 4599 bzero(&ush, sizeof(ush)); 4600 ush.ush_version = UMA_STREAM_VERSION; 4601 ush.ush_maxcpus = (mp_maxid + 1); 4602 ush.ush_count = count; 4603 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 4604 4605 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4606 kfree = pages = 0; 4607 for (i = 0; i < vm_ndomains; i++) { 4608 kfree += kz->uk_domain[i].ud_free; 4609 pages += kz->uk_domain[i].ud_pages; 4610 } 4611 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 4612 bzero(&uth, sizeof(uth)); 4613 ZONE_LOCK(z); 4614 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 4615 uth.uth_align = kz->uk_align; 4616 uth.uth_size = kz->uk_size; 4617 uth.uth_rsize = kz->uk_rsize; 4618 if (z->uz_max_items > 0) { 4619 items = UZ_ITEMS_COUNT(z->uz_items); 4620 uth.uth_pages = (items / kz->uk_ipers) * 4621 kz->uk_ppera; 4622 } else 4623 uth.uth_pages = pages; 4624 uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) * 4625 kz->uk_ppera; 4626 uth.uth_limit = z->uz_max_items; 4627 uth.uth_keg_free = kfree; 4628 4629 /* 4630 * A zone is secondary is it is not the first entry 4631 * on the keg's zone list. 4632 */ 4633 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 4634 (LIST_FIRST(&kz->uk_zones) != z)) 4635 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 4636 uma_vm_zone_stats(&uth, z, &sbuf, ups, 4637 kz->uk_flags & UMA_ZFLAG_INTERNAL); 4638 ZONE_UNLOCK(z); 4639 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 4640 for (i = 0; i < mp_maxid + 1; i++) 4641 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 4642 } 4643 } 4644 LIST_FOREACH(z, &uma_cachezones, uz_link) { 4645 bzero(&uth, sizeof(uth)); 4646 ZONE_LOCK(z); 4647 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 4648 uth.uth_size = z->uz_size; 4649 uma_vm_zone_stats(&uth, z, &sbuf, ups, false); 4650 ZONE_UNLOCK(z); 4651 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 4652 for (i = 0; i < mp_maxid + 1; i++) 4653 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 4654 } 4655 4656 rw_runlock(&uma_rwlock); 4657 error = sbuf_finish(&sbuf); 4658 sbuf_delete(&sbuf); 4659 free(ups, M_TEMP); 4660 return (error); 4661 } 4662 4663 int 4664 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 4665 { 4666 uma_zone_t zone = *(uma_zone_t *)arg1; 4667 int error, max; 4668 4669 max = uma_zone_get_max(zone); 4670 error = sysctl_handle_int(oidp, &max, 0, req); 4671 if (error || !req->newptr) 4672 return (error); 4673 4674 uma_zone_set_max(zone, max); 4675 4676 return (0); 4677 } 4678 4679 int 4680 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 4681 { 4682 uma_zone_t zone; 4683 int cur; 4684 4685 /* 4686 * Some callers want to add sysctls for global zones that 4687 * may not yet exist so they pass a pointer to a pointer. 4688 */ 4689 if (arg2 == 0) 4690 zone = *(uma_zone_t *)arg1; 4691 else 4692 zone = arg1; 4693 cur = uma_zone_get_cur(zone); 4694 return (sysctl_handle_int(oidp, &cur, 0, req)); 4695 } 4696 4697 static int 4698 sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS) 4699 { 4700 uma_zone_t zone = arg1; 4701 uint64_t cur; 4702 4703 cur = uma_zone_get_allocs(zone); 4704 return (sysctl_handle_64(oidp, &cur, 0, req)); 4705 } 4706 4707 static int 4708 sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS) 4709 { 4710 uma_zone_t zone = arg1; 4711 uint64_t cur; 4712 4713 cur = uma_zone_get_frees(zone); 4714 return (sysctl_handle_64(oidp, &cur, 0, req)); 4715 } 4716 4717 static int 4718 sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS) 4719 { 4720 struct sbuf sbuf; 4721 uma_zone_t zone = arg1; 4722 int error; 4723 4724 sbuf_new_for_sysctl(&sbuf, NULL, 0, req); 4725 if (zone->uz_flags != 0) 4726 sbuf_printf(&sbuf, "0x%b", zone->uz_flags, PRINT_UMA_ZFLAGS); 4727 else 4728 sbuf_printf(&sbuf, "0"); 4729 error = sbuf_finish(&sbuf); 4730 sbuf_delete(&sbuf); 4731 4732 return (error); 4733 } 4734 4735 static int 4736 sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS) 4737 { 4738 uma_keg_t keg = arg1; 4739 int avail, effpct, total; 4740 4741 total = keg->uk_ppera * PAGE_SIZE; 4742 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0) 4743 total += slabzone(keg->uk_ipers)->uz_keg->uk_rsize; 4744 /* 4745 * We consider the client's requested size and alignment here, not the 4746 * real size determination uk_rsize, because we also adjust the real 4747 * size for internal implementation reasons (max bitset size). 4748 */ 4749 avail = keg->uk_ipers * roundup2(keg->uk_size, keg->uk_align + 1); 4750 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 4751 avail *= mp_maxid + 1; 4752 effpct = 100 * avail / total; 4753 return (sysctl_handle_int(oidp, &effpct, 0, req)); 4754 } 4755 4756 static int 4757 sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS) 4758 { 4759 uma_zone_t zone = arg1; 4760 uint64_t cur; 4761 4762 cur = UZ_ITEMS_COUNT(atomic_load_64(&zone->uz_items)); 4763 return (sysctl_handle_64(oidp, &cur, 0, req)); 4764 } 4765 4766 #ifdef INVARIANTS 4767 static uma_slab_t 4768 uma_dbg_getslab(uma_zone_t zone, void *item) 4769 { 4770 uma_slab_t slab; 4771 uma_keg_t keg; 4772 uint8_t *mem; 4773 4774 /* 4775 * It is safe to return the slab here even though the 4776 * zone is unlocked because the item's allocation state 4777 * essentially holds a reference. 4778 */ 4779 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 4780 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 4781 return (NULL); 4782 if (zone->uz_flags & UMA_ZFLAG_VTOSLAB) 4783 return (vtoslab((vm_offset_t)mem)); 4784 keg = zone->uz_keg; 4785 if ((keg->uk_flags & UMA_ZFLAG_HASH) == 0) 4786 return ((uma_slab_t)(mem + keg->uk_pgoff)); 4787 KEG_LOCK(keg, 0); 4788 slab = hash_sfind(&keg->uk_hash, mem); 4789 KEG_UNLOCK(keg, 0); 4790 4791 return (slab); 4792 } 4793 4794 static bool 4795 uma_dbg_zskip(uma_zone_t zone, void *mem) 4796 { 4797 4798 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 4799 return (true); 4800 4801 return (uma_dbg_kskip(zone->uz_keg, mem)); 4802 } 4803 4804 static bool 4805 uma_dbg_kskip(uma_keg_t keg, void *mem) 4806 { 4807 uintptr_t idx; 4808 4809 if (dbg_divisor == 0) 4810 return (true); 4811 4812 if (dbg_divisor == 1) 4813 return (false); 4814 4815 idx = (uintptr_t)mem >> PAGE_SHIFT; 4816 if (keg->uk_ipers > 1) { 4817 idx *= keg->uk_ipers; 4818 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize; 4819 } 4820 4821 if ((idx / dbg_divisor) * dbg_divisor != idx) { 4822 counter_u64_add(uma_skip_cnt, 1); 4823 return (true); 4824 } 4825 counter_u64_add(uma_dbg_cnt, 1); 4826 4827 return (false); 4828 } 4829 4830 /* 4831 * Set up the slab's freei data such that uma_dbg_free can function. 4832 * 4833 */ 4834 static void 4835 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 4836 { 4837 uma_keg_t keg; 4838 int freei; 4839 4840 if (slab == NULL) { 4841 slab = uma_dbg_getslab(zone, item); 4842 if (slab == NULL) 4843 panic("uma: item %p did not belong to zone %s\n", 4844 item, zone->uz_name); 4845 } 4846 keg = zone->uz_keg; 4847 freei = slab_item_index(slab, keg, item); 4848 4849 if (BIT_ISSET(keg->uk_ipers, freei, slab_dbg_bits(slab, keg))) 4850 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n", 4851 item, zone, zone->uz_name, slab, freei); 4852 BIT_SET_ATOMIC(keg->uk_ipers, freei, slab_dbg_bits(slab, keg)); 4853 } 4854 4855 /* 4856 * Verifies freed addresses. Checks for alignment, valid slab membership 4857 * and duplicate frees. 4858 * 4859 */ 4860 static void 4861 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 4862 { 4863 uma_keg_t keg; 4864 int freei; 4865 4866 if (slab == NULL) { 4867 slab = uma_dbg_getslab(zone, item); 4868 if (slab == NULL) 4869 panic("uma: Freed item %p did not belong to zone %s\n", 4870 item, zone->uz_name); 4871 } 4872 keg = zone->uz_keg; 4873 freei = slab_item_index(slab, keg, item); 4874 4875 if (freei >= keg->uk_ipers) 4876 panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n", 4877 item, zone, zone->uz_name, slab, freei); 4878 4879 if (slab_item(slab, keg, freei) != item) 4880 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n", 4881 item, zone, zone->uz_name, slab, freei); 4882 4883 if (!BIT_ISSET(keg->uk_ipers, freei, slab_dbg_bits(slab, keg))) 4884 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n", 4885 item, zone, zone->uz_name, slab, freei); 4886 4887 BIT_CLR_ATOMIC(keg->uk_ipers, freei, slab_dbg_bits(slab, keg)); 4888 } 4889 #endif /* INVARIANTS */ 4890 4891 #ifdef DDB 4892 static int64_t 4893 get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used, 4894 uint64_t *sleeps, long *cachefree, uint64_t *xdomain) 4895 { 4896 uint64_t frees; 4897 int i; 4898 4899 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 4900 *allocs = counter_u64_fetch(z->uz_allocs); 4901 frees = counter_u64_fetch(z->uz_frees); 4902 *sleeps = z->uz_sleeps; 4903 *cachefree = 0; 4904 *xdomain = 0; 4905 } else 4906 uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps, 4907 xdomain); 4908 for (i = 0; i < vm_ndomains; i++) { 4909 *cachefree += z->uz_domain[i].uzd_nitems; 4910 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 4911 (LIST_FIRST(&kz->uk_zones) != z))) 4912 *cachefree += kz->uk_domain[i].ud_free; 4913 } 4914 *used = *allocs - frees; 4915 return (((int64_t)*used + *cachefree) * kz->uk_size); 4916 } 4917 4918 DB_SHOW_COMMAND(uma, db_show_uma) 4919 { 4920 const char *fmt_hdr, *fmt_entry; 4921 uma_keg_t kz; 4922 uma_zone_t z; 4923 uint64_t allocs, used, sleeps, xdomain; 4924 long cachefree; 4925 /* variables for sorting */ 4926 uma_keg_t cur_keg; 4927 uma_zone_t cur_zone, last_zone; 4928 int64_t cur_size, last_size, size; 4929 int ties; 4930 4931 /* /i option produces machine-parseable CSV output */ 4932 if (modif[0] == 'i') { 4933 fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n"; 4934 fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n"; 4935 } else { 4936 fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n"; 4937 fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n"; 4938 } 4939 4940 db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests", 4941 "Sleeps", "Bucket", "Total Mem", "XFree"); 4942 4943 /* Sort the zones with largest size first. */ 4944 last_zone = NULL; 4945 last_size = INT64_MAX; 4946 for (;;) { 4947 cur_zone = NULL; 4948 cur_size = -1; 4949 ties = 0; 4950 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4951 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 4952 /* 4953 * In the case of size ties, print out zones 4954 * in the order they are encountered. That is, 4955 * when we encounter the most recently output 4956 * zone, we have already printed all preceding 4957 * ties, and we must print all following ties. 4958 */ 4959 if (z == last_zone) { 4960 ties = 1; 4961 continue; 4962 } 4963 size = get_uma_stats(kz, z, &allocs, &used, 4964 &sleeps, &cachefree, &xdomain); 4965 if (size > cur_size && size < last_size + ties) 4966 { 4967 cur_size = size; 4968 cur_zone = z; 4969 cur_keg = kz; 4970 } 4971 } 4972 } 4973 if (cur_zone == NULL) 4974 break; 4975 4976 size = get_uma_stats(cur_keg, cur_zone, &allocs, &used, 4977 &sleeps, &cachefree, &xdomain); 4978 db_printf(fmt_entry, cur_zone->uz_name, 4979 (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree, 4980 (uintmax_t)allocs, (uintmax_t)sleeps, 4981 (unsigned)cur_zone->uz_bucket_size, (intmax_t)size, 4982 xdomain); 4983 4984 if (db_pager_quit) 4985 return; 4986 last_zone = cur_zone; 4987 last_size = cur_size; 4988 } 4989 } 4990 4991 DB_SHOW_COMMAND(umacache, db_show_umacache) 4992 { 4993 uma_zone_t z; 4994 uint64_t allocs, frees; 4995 long cachefree; 4996 int i; 4997 4998 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 4999 "Requests", "Bucket"); 5000 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5001 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL); 5002 for (i = 0; i < vm_ndomains; i++) 5003 cachefree += z->uz_domain[i].uzd_nitems; 5004 db_printf("%18s %8ju %8jd %8ld %12ju %8u\n", 5005 z->uz_name, (uintmax_t)z->uz_size, 5006 (intmax_t)(allocs - frees), cachefree, 5007 (uintmax_t)allocs, z->uz_bucket_size); 5008 if (db_pager_quit) 5009 return; 5010 } 5011 } 5012 #endif /* DDB */ 5013