1 /*- 2 * Copyright (c) 2002, 2003, 2004, 2005 Jeffrey Roberson <jeff@FreeBSD.org> 3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 4 * Copyright (c) 2004-2006 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /* 30 * uma_core.c Implementation of the Universal Memory allocator 31 * 32 * This allocator is intended to replace the multitude of similar object caches 33 * in the standard FreeBSD kernel. The intent is to be flexible as well as 34 * effecient. A primary design goal is to return unused memory to the rest of 35 * the system. This will make the system as a whole more flexible due to the 36 * ability to move memory to subsystems which most need it instead of leaving 37 * pools of reserved memory unused. 38 * 39 * The basic ideas stem from similar slab/zone based allocators whose algorithms 40 * are well known. 41 * 42 */ 43 44 /* 45 * TODO: 46 * - Improve memory usage for large allocations 47 * - Investigate cache size adjustments 48 */ 49 50 #include <sys/cdefs.h> 51 __FBSDID("$FreeBSD$"); 52 53 /* I should really use ktr.. */ 54 /* 55 #define UMA_DEBUG 1 56 #define UMA_DEBUG_ALLOC 1 57 #define UMA_DEBUG_ALLOC_1 1 58 */ 59 60 #include "opt_ddb.h" 61 #include "opt_param.h" 62 63 #include <sys/param.h> 64 #include <sys/systm.h> 65 #include <sys/kernel.h> 66 #include <sys/types.h> 67 #include <sys/queue.h> 68 #include <sys/malloc.h> 69 #include <sys/ktr.h> 70 #include <sys/lock.h> 71 #include <sys/sysctl.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/sbuf.h> 75 #include <sys/smp.h> 76 #include <sys/vmmeter.h> 77 78 #include <vm/vm.h> 79 #include <vm/vm_object.h> 80 #include <vm/vm_page.h> 81 #include <vm/vm_param.h> 82 #include <vm/vm_map.h> 83 #include <vm/vm_kern.h> 84 #include <vm/vm_extern.h> 85 #include <vm/uma.h> 86 #include <vm/uma_int.h> 87 #include <vm/uma_dbg.h> 88 89 #include <machine/vmparam.h> 90 91 #include <ddb/ddb.h> 92 93 /* 94 * This is the zone and keg from which all zones are spawned. The idea is that 95 * even the zone & keg heads are allocated from the allocator, so we use the 96 * bss section to bootstrap us. 97 */ 98 static struct uma_keg masterkeg; 99 static struct uma_zone masterzone_k; 100 static struct uma_zone masterzone_z; 101 static uma_zone_t kegs = &masterzone_k; 102 static uma_zone_t zones = &masterzone_z; 103 104 /* This is the zone from which all of uma_slab_t's are allocated. */ 105 static uma_zone_t slabzone; 106 static uma_zone_t slabrefzone; /* With refcounters (for UMA_ZONE_REFCNT) */ 107 108 /* 109 * The initial hash tables come out of this zone so they can be allocated 110 * prior to malloc coming up. 111 */ 112 static uma_zone_t hashzone; 113 114 /* The boot-time adjusted value for cache line alignment. */ 115 static int uma_align_cache = 16 - 1; 116 117 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 118 119 /* 120 * Are we allowed to allocate buckets? 121 */ 122 static int bucketdisable = 1; 123 124 /* Linked list of all kegs in the system */ 125 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(&uma_kegs); 126 127 /* This mutex protects the keg list */ 128 static struct mtx uma_mtx; 129 130 /* Linked list of boot time pages */ 131 static LIST_HEAD(,uma_slab) uma_boot_pages = 132 LIST_HEAD_INITIALIZER(&uma_boot_pages); 133 134 /* This mutex protects the boot time pages list */ 135 static struct mtx uma_boot_pages_mtx; 136 137 /* Is the VM done starting up? */ 138 static int booted = 0; 139 140 /* Maximum number of allowed items-per-slab if the slab header is OFFPAGE */ 141 static u_int uma_max_ipers; 142 static u_int uma_max_ipers_ref; 143 144 /* 145 * This is the handle used to schedule events that need to happen 146 * outside of the allocation fast path. 147 */ 148 static struct callout uma_callout; 149 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 150 151 /* 152 * This structure is passed as the zone ctor arg so that I don't have to create 153 * a special allocation function just for zones. 154 */ 155 struct uma_zctor_args { 156 char *name; 157 size_t size; 158 uma_ctor ctor; 159 uma_dtor dtor; 160 uma_init uminit; 161 uma_fini fini; 162 uma_keg_t keg; 163 int align; 164 u_int32_t flags; 165 }; 166 167 struct uma_kctor_args { 168 uma_zone_t zone; 169 size_t size; 170 uma_init uminit; 171 uma_fini fini; 172 int align; 173 u_int32_t flags; 174 }; 175 176 struct uma_bucket_zone { 177 uma_zone_t ubz_zone; 178 char *ubz_name; 179 int ubz_entries; 180 }; 181 182 #define BUCKET_MAX 128 183 184 struct uma_bucket_zone bucket_zones[] = { 185 { NULL, "16 Bucket", 16 }, 186 { NULL, "32 Bucket", 32 }, 187 { NULL, "64 Bucket", 64 }, 188 { NULL, "128 Bucket", 128 }, 189 { NULL, NULL, 0} 190 }; 191 192 #define BUCKET_SHIFT 4 193 #define BUCKET_ZONES ((BUCKET_MAX >> BUCKET_SHIFT) + 1) 194 195 /* 196 * bucket_size[] maps requested bucket sizes to zones that allocate a bucket 197 * of approximately the right size. 198 */ 199 static uint8_t bucket_size[BUCKET_ZONES]; 200 201 /* 202 * Flags and enumerations to be passed to internal functions. 203 */ 204 enum zfreeskip { SKIP_NONE, SKIP_DTOR, SKIP_FINI }; 205 206 #define ZFREE_STATFAIL 0x00000001 /* Update zone failure statistic. */ 207 #define ZFREE_STATFREE 0x00000002 /* Update zone free statistic. */ 208 209 /* Prototypes.. */ 210 211 static void *obj_alloc(uma_zone_t, int, u_int8_t *, int); 212 static void *page_alloc(uma_zone_t, int, u_int8_t *, int); 213 static void *startup_alloc(uma_zone_t, int, u_int8_t *, int); 214 static void page_free(void *, int, u_int8_t); 215 static uma_slab_t slab_zalloc(uma_zone_t, int); 216 static void cache_drain(uma_zone_t); 217 static void bucket_drain(uma_zone_t, uma_bucket_t); 218 static void bucket_cache_drain(uma_zone_t zone); 219 static int keg_ctor(void *, int, void *, int); 220 static void keg_dtor(void *, int, void *); 221 static int zone_ctor(void *, int, void *, int); 222 static void zone_dtor(void *, int, void *); 223 static int zero_init(void *, int, int); 224 static void zone_small_init(uma_zone_t zone); 225 static void zone_large_init(uma_zone_t zone); 226 static void zone_foreach(void (*zfunc)(uma_zone_t)); 227 static void zone_timeout(uma_zone_t zone); 228 static int hash_alloc(struct uma_hash *); 229 static int hash_expand(struct uma_hash *, struct uma_hash *); 230 static void hash_free(struct uma_hash *hash); 231 static void uma_timeout(void *); 232 static void uma_startup3(void); 233 static void *uma_zalloc_internal(uma_zone_t, void *, int); 234 static void uma_zfree_internal(uma_zone_t, void *, void *, enum zfreeskip, 235 int); 236 static void bucket_enable(void); 237 static void bucket_init(void); 238 static uma_bucket_t bucket_alloc(int, int); 239 static void bucket_free(uma_bucket_t); 240 static void bucket_zone_drain(void); 241 static int uma_zalloc_bucket(uma_zone_t zone, int flags); 242 static uma_slab_t uma_zone_slab(uma_zone_t zone, int flags); 243 static void *uma_slab_alloc(uma_zone_t zone, uma_slab_t slab); 244 static uma_zone_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 245 uma_fini fini, int align, u_int32_t flags); 246 247 void uma_print_zone(uma_zone_t); 248 void uma_print_stats(void); 249 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 250 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 251 252 #ifdef WITNESS 253 static int nosleepwithlocks = 1; 254 #else 255 static int nosleepwithlocks = 0; 256 #endif 257 SYSCTL_INT(_debug, OID_AUTO, nosleepwithlocks, CTLFLAG_RW, &nosleepwithlocks, 258 0, "Convert M_WAITOK to M_NOWAIT to avoid lock-held-across-sleep paths"); 259 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 260 261 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 262 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 263 264 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 265 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 266 267 /* 268 * This routine checks to see whether or not it's safe to enable buckets. 269 */ 270 271 static void 272 bucket_enable(void) 273 { 274 if (cnt.v_free_count < cnt.v_free_min) 275 bucketdisable = 1; 276 else 277 bucketdisable = 0; 278 } 279 280 /* 281 * Initialize bucket_zones, the array of zones of buckets of various sizes. 282 * 283 * For each zone, calculate the memory required for each bucket, consisting 284 * of the header and an array of pointers. Initialize bucket_size[] to point 285 * the range of appropriate bucket sizes at the zone. 286 */ 287 static void 288 bucket_init(void) 289 { 290 struct uma_bucket_zone *ubz; 291 int i; 292 int j; 293 294 for (i = 0, j = 0; bucket_zones[j].ubz_entries != 0; j++) { 295 int size; 296 297 ubz = &bucket_zones[j]; 298 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 299 size += sizeof(void *) * ubz->ubz_entries; 300 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 301 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 302 for (; i <= ubz->ubz_entries; i += (1 << BUCKET_SHIFT)) 303 bucket_size[i >> BUCKET_SHIFT] = j; 304 } 305 } 306 307 /* 308 * Given a desired number of entries for a bucket, return the zone from which 309 * to allocate the bucket. 310 */ 311 static struct uma_bucket_zone * 312 bucket_zone_lookup(int entries) 313 { 314 int idx; 315 316 idx = howmany(entries, 1 << BUCKET_SHIFT); 317 return (&bucket_zones[bucket_size[idx]]); 318 } 319 320 static uma_bucket_t 321 bucket_alloc(int entries, int bflags) 322 { 323 struct uma_bucket_zone *ubz; 324 uma_bucket_t bucket; 325 326 /* 327 * This is to stop us from allocating per cpu buckets while we're 328 * running out of vm.boot_pages. Otherwise, we would exhaust the 329 * boot pages. This also prevents us from allocating buckets in 330 * low memory situations. 331 */ 332 if (bucketdisable) 333 return (NULL); 334 335 ubz = bucket_zone_lookup(entries); 336 bucket = uma_zalloc_internal(ubz->ubz_zone, NULL, bflags); 337 if (bucket) { 338 #ifdef INVARIANTS 339 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 340 #endif 341 bucket->ub_cnt = 0; 342 bucket->ub_entries = ubz->ubz_entries; 343 } 344 345 return (bucket); 346 } 347 348 static void 349 bucket_free(uma_bucket_t bucket) 350 { 351 struct uma_bucket_zone *ubz; 352 353 ubz = bucket_zone_lookup(bucket->ub_entries); 354 uma_zfree_internal(ubz->ubz_zone, bucket, NULL, SKIP_NONE, 355 ZFREE_STATFREE); 356 } 357 358 static void 359 bucket_zone_drain(void) 360 { 361 struct uma_bucket_zone *ubz; 362 363 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 364 zone_drain(ubz->ubz_zone); 365 } 366 367 368 /* 369 * Routine called by timeout which is used to fire off some time interval 370 * based calculations. (stats, hash size, etc.) 371 * 372 * Arguments: 373 * arg Unused 374 * 375 * Returns: 376 * Nothing 377 */ 378 static void 379 uma_timeout(void *unused) 380 { 381 bucket_enable(); 382 zone_foreach(zone_timeout); 383 384 /* Reschedule this event */ 385 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 386 } 387 388 /* 389 * Routine to perform timeout driven calculations. This expands the 390 * hashes and does per cpu statistics aggregation. 391 * 392 * Arguments: 393 * zone The zone to operate on 394 * 395 * Returns: 396 * Nothing 397 */ 398 static void 399 zone_timeout(uma_zone_t zone) 400 { 401 uma_keg_t keg; 402 u_int64_t alloc; 403 404 keg = zone->uz_keg; 405 alloc = 0; 406 407 /* 408 * Expand the zone hash table. 409 * 410 * This is done if the number of slabs is larger than the hash size. 411 * What I'm trying to do here is completely reduce collisions. This 412 * may be a little aggressive. Should I allow for two collisions max? 413 */ 414 ZONE_LOCK(zone); 415 if (keg->uk_flags & UMA_ZONE_HASH && 416 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) { 417 struct uma_hash newhash; 418 struct uma_hash oldhash; 419 int ret; 420 421 /* 422 * This is so involved because allocating and freeing 423 * while the zone lock is held will lead to deadlock. 424 * I have to do everything in stages and check for 425 * races. 426 */ 427 newhash = keg->uk_hash; 428 ZONE_UNLOCK(zone); 429 ret = hash_alloc(&newhash); 430 ZONE_LOCK(zone); 431 if (ret) { 432 if (hash_expand(&keg->uk_hash, &newhash)) { 433 oldhash = keg->uk_hash; 434 keg->uk_hash = newhash; 435 } else 436 oldhash = newhash; 437 438 ZONE_UNLOCK(zone); 439 hash_free(&oldhash); 440 ZONE_LOCK(zone); 441 } 442 } 443 ZONE_UNLOCK(zone); 444 } 445 446 /* 447 * Allocate and zero fill the next sized hash table from the appropriate 448 * backing store. 449 * 450 * Arguments: 451 * hash A new hash structure with the old hash size in uh_hashsize 452 * 453 * Returns: 454 * 1 on sucess and 0 on failure. 455 */ 456 static int 457 hash_alloc(struct uma_hash *hash) 458 { 459 int oldsize; 460 int alloc; 461 462 oldsize = hash->uh_hashsize; 463 464 /* We're just going to go to a power of two greater */ 465 if (oldsize) { 466 hash->uh_hashsize = oldsize * 2; 467 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 468 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 469 M_UMAHASH, M_NOWAIT); 470 } else { 471 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 472 hash->uh_slab_hash = uma_zalloc_internal(hashzone, NULL, 473 M_WAITOK); 474 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 475 } 476 if (hash->uh_slab_hash) { 477 bzero(hash->uh_slab_hash, alloc); 478 hash->uh_hashmask = hash->uh_hashsize - 1; 479 return (1); 480 } 481 482 return (0); 483 } 484 485 /* 486 * Expands the hash table for HASH zones. This is done from zone_timeout 487 * to reduce collisions. This must not be done in the regular allocation 488 * path, otherwise, we can recurse on the vm while allocating pages. 489 * 490 * Arguments: 491 * oldhash The hash you want to expand 492 * newhash The hash structure for the new table 493 * 494 * Returns: 495 * Nothing 496 * 497 * Discussion: 498 */ 499 static int 500 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 501 { 502 uma_slab_t slab; 503 int hval; 504 int i; 505 506 if (!newhash->uh_slab_hash) 507 return (0); 508 509 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 510 return (0); 511 512 /* 513 * I need to investigate hash algorithms for resizing without a 514 * full rehash. 515 */ 516 517 for (i = 0; i < oldhash->uh_hashsize; i++) 518 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) { 519 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]); 520 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink); 521 hval = UMA_HASH(newhash, slab->us_data); 522 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 523 slab, us_hlink); 524 } 525 526 return (1); 527 } 528 529 /* 530 * Free the hash bucket to the appropriate backing store. 531 * 532 * Arguments: 533 * slab_hash The hash bucket we're freeing 534 * hashsize The number of entries in that hash bucket 535 * 536 * Returns: 537 * Nothing 538 */ 539 static void 540 hash_free(struct uma_hash *hash) 541 { 542 if (hash->uh_slab_hash == NULL) 543 return; 544 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 545 uma_zfree_internal(hashzone, 546 hash->uh_slab_hash, NULL, SKIP_NONE, ZFREE_STATFREE); 547 else 548 free(hash->uh_slab_hash, M_UMAHASH); 549 } 550 551 /* 552 * Frees all outstanding items in a bucket 553 * 554 * Arguments: 555 * zone The zone to free to, must be unlocked. 556 * bucket The free/alloc bucket with items, cpu queue must be locked. 557 * 558 * Returns: 559 * Nothing 560 */ 561 562 static void 563 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 564 { 565 uma_slab_t slab; 566 int mzone; 567 void *item; 568 569 if (bucket == NULL) 570 return; 571 572 slab = NULL; 573 mzone = 0; 574 575 /* We have to lookup the slab again for malloc.. */ 576 if (zone->uz_keg->uk_flags & UMA_ZONE_MALLOC) 577 mzone = 1; 578 579 while (bucket->ub_cnt > 0) { 580 bucket->ub_cnt--; 581 item = bucket->ub_bucket[bucket->ub_cnt]; 582 #ifdef INVARIANTS 583 bucket->ub_bucket[bucket->ub_cnt] = NULL; 584 KASSERT(item != NULL, 585 ("bucket_drain: botched ptr, item is NULL")); 586 #endif 587 /* 588 * This is extremely inefficient. The slab pointer was passed 589 * to uma_zfree_arg, but we lost it because the buckets don't 590 * hold them. This will go away when free() gets a size passed 591 * to it. 592 */ 593 if (mzone) 594 slab = vtoslab((vm_offset_t)item & (~UMA_SLAB_MASK)); 595 uma_zfree_internal(zone, item, slab, SKIP_DTOR, 0); 596 } 597 } 598 599 /* 600 * Drains the per cpu caches for a zone. 601 * 602 * NOTE: This may only be called while the zone is being turn down, and not 603 * during normal operation. This is necessary in order that we do not have 604 * to migrate CPUs to drain the per-CPU caches. 605 * 606 * Arguments: 607 * zone The zone to drain, must be unlocked. 608 * 609 * Returns: 610 * Nothing 611 */ 612 static void 613 cache_drain(uma_zone_t zone) 614 { 615 uma_cache_t cache; 616 int cpu; 617 618 /* 619 * XXX: It is safe to not lock the per-CPU caches, because we're 620 * tearing down the zone anyway. I.e., there will be no further use 621 * of the caches at this point. 622 * 623 * XXX: It would good to be able to assert that the zone is being 624 * torn down to prevent improper use of cache_drain(). 625 * 626 * XXX: We lock the zone before passing into bucket_cache_drain() as 627 * it is used elsewhere. Should the tear-down path be made special 628 * there in some form? 629 */ 630 for (cpu = 0; cpu <= mp_maxid; cpu++) { 631 if (CPU_ABSENT(cpu)) 632 continue; 633 cache = &zone->uz_cpu[cpu]; 634 bucket_drain(zone, cache->uc_allocbucket); 635 bucket_drain(zone, cache->uc_freebucket); 636 if (cache->uc_allocbucket != NULL) 637 bucket_free(cache->uc_allocbucket); 638 if (cache->uc_freebucket != NULL) 639 bucket_free(cache->uc_freebucket); 640 cache->uc_allocbucket = cache->uc_freebucket = NULL; 641 } 642 ZONE_LOCK(zone); 643 bucket_cache_drain(zone); 644 ZONE_UNLOCK(zone); 645 } 646 647 /* 648 * Drain the cached buckets from a zone. Expects a locked zone on entry. 649 */ 650 static void 651 bucket_cache_drain(uma_zone_t zone) 652 { 653 uma_bucket_t bucket; 654 655 /* 656 * Drain the bucket queues and free the buckets, we just keep two per 657 * cpu (alloc/free). 658 */ 659 while ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) { 660 LIST_REMOVE(bucket, ub_link); 661 ZONE_UNLOCK(zone); 662 bucket_drain(zone, bucket); 663 bucket_free(bucket); 664 ZONE_LOCK(zone); 665 } 666 667 /* Now we do the free queue.. */ 668 while ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) { 669 LIST_REMOVE(bucket, ub_link); 670 bucket_free(bucket); 671 } 672 } 673 674 /* 675 * Frees pages from a zone back to the system. This is done on demand from 676 * the pageout daemon. 677 * 678 * Arguments: 679 * zone The zone to free pages from 680 * all Should we drain all items? 681 * 682 * Returns: 683 * Nothing. 684 */ 685 void 686 zone_drain(uma_zone_t zone) 687 { 688 struct slabhead freeslabs = { 0 }; 689 uma_keg_t keg; 690 uma_slab_t slab; 691 uma_slab_t n; 692 u_int8_t flags; 693 u_int8_t *mem; 694 int i; 695 696 keg = zone->uz_keg; 697 698 /* 699 * We don't want to take pages from statically allocated zones at this 700 * time 701 */ 702 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 703 return; 704 705 ZONE_LOCK(zone); 706 707 #ifdef UMA_DEBUG 708 printf("%s free items: %u\n", zone->uz_name, keg->uk_free); 709 #endif 710 bucket_cache_drain(zone); 711 if (keg->uk_free == 0) 712 goto finished; 713 714 slab = LIST_FIRST(&keg->uk_free_slab); 715 while (slab) { 716 n = LIST_NEXT(slab, us_link); 717 718 /* We have no where to free these to */ 719 if (slab->us_flags & UMA_SLAB_BOOT) { 720 slab = n; 721 continue; 722 } 723 724 LIST_REMOVE(slab, us_link); 725 keg->uk_pages -= keg->uk_ppera; 726 keg->uk_free -= keg->uk_ipers; 727 728 if (keg->uk_flags & UMA_ZONE_HASH) 729 UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data); 730 731 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 732 733 slab = n; 734 } 735 finished: 736 ZONE_UNLOCK(zone); 737 738 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 739 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 740 if (keg->uk_fini) 741 for (i = 0; i < keg->uk_ipers; i++) 742 keg->uk_fini( 743 slab->us_data + (keg->uk_rsize * i), 744 keg->uk_size); 745 flags = slab->us_flags; 746 mem = slab->us_data; 747 748 if ((keg->uk_flags & UMA_ZONE_MALLOC) || 749 (keg->uk_flags & UMA_ZONE_REFCNT)) { 750 vm_object_t obj; 751 752 if (flags & UMA_SLAB_KMEM) 753 obj = kmem_object; 754 else if (flags & UMA_SLAB_KERNEL) 755 obj = kernel_object; 756 else 757 obj = NULL; 758 for (i = 0; i < keg->uk_ppera; i++) 759 vsetobj((vm_offset_t)mem + (i * PAGE_SIZE), 760 obj); 761 } 762 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 763 uma_zfree_internal(keg->uk_slabzone, slab, NULL, 764 SKIP_NONE, ZFREE_STATFREE); 765 #ifdef UMA_DEBUG 766 printf("%s: Returning %d bytes.\n", 767 zone->uz_name, UMA_SLAB_SIZE * keg->uk_ppera); 768 #endif 769 keg->uk_freef(mem, UMA_SLAB_SIZE * keg->uk_ppera, flags); 770 } 771 } 772 773 /* 774 * Allocate a new slab for a zone. This does not insert the slab onto a list. 775 * 776 * Arguments: 777 * zone The zone to allocate slabs for 778 * wait Shall we wait? 779 * 780 * Returns: 781 * The slab that was allocated or NULL if there is no memory and the 782 * caller specified M_NOWAIT. 783 */ 784 static uma_slab_t 785 slab_zalloc(uma_zone_t zone, int wait) 786 { 787 uma_slabrefcnt_t slabref; 788 uma_slab_t slab; 789 uma_keg_t keg; 790 u_int8_t *mem; 791 u_int8_t flags; 792 int i; 793 794 slab = NULL; 795 keg = zone->uz_keg; 796 797 #ifdef UMA_DEBUG 798 printf("slab_zalloc: Allocating a new slab for %s\n", zone->uz_name); 799 #endif 800 ZONE_UNLOCK(zone); 801 802 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 803 slab = uma_zalloc_internal(keg->uk_slabzone, NULL, wait); 804 if (slab == NULL) { 805 ZONE_LOCK(zone); 806 return NULL; 807 } 808 } 809 810 /* 811 * This reproduces the old vm_zone behavior of zero filling pages the 812 * first time they are added to a zone. 813 * 814 * Malloced items are zeroed in uma_zalloc. 815 */ 816 817 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 818 wait |= M_ZERO; 819 else 820 wait &= ~M_ZERO; 821 822 mem = keg->uk_allocf(zone, keg->uk_ppera * UMA_SLAB_SIZE, 823 &flags, wait); 824 if (mem == NULL) { 825 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 826 uma_zfree_internal(keg->uk_slabzone, slab, NULL, 827 SKIP_NONE, ZFREE_STATFREE); 828 ZONE_LOCK(zone); 829 return (NULL); 830 } 831 832 /* Point the slab into the allocated memory */ 833 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 834 slab = (uma_slab_t )(mem + keg->uk_pgoff); 835 836 if ((keg->uk_flags & UMA_ZONE_MALLOC) || 837 (keg->uk_flags & UMA_ZONE_REFCNT)) 838 for (i = 0; i < keg->uk_ppera; i++) 839 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 840 841 slab->us_keg = keg; 842 slab->us_data = mem; 843 slab->us_freecount = keg->uk_ipers; 844 slab->us_firstfree = 0; 845 slab->us_flags = flags; 846 847 if (keg->uk_flags & UMA_ZONE_REFCNT) { 848 slabref = (uma_slabrefcnt_t)slab; 849 for (i = 0; i < keg->uk_ipers; i++) { 850 slabref->us_freelist[i].us_refcnt = 0; 851 slabref->us_freelist[i].us_item = i+1; 852 } 853 } else { 854 for (i = 0; i < keg->uk_ipers; i++) 855 slab->us_freelist[i].us_item = i+1; 856 } 857 858 if (keg->uk_init != NULL) { 859 for (i = 0; i < keg->uk_ipers; i++) 860 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 861 keg->uk_size, wait) != 0) 862 break; 863 if (i != keg->uk_ipers) { 864 if (keg->uk_fini != NULL) { 865 for (i--; i > -1; i--) 866 keg->uk_fini(slab->us_data + 867 (keg->uk_rsize * i), 868 keg->uk_size); 869 } 870 if ((keg->uk_flags & UMA_ZONE_MALLOC) || 871 (keg->uk_flags & UMA_ZONE_REFCNT)) { 872 vm_object_t obj; 873 874 if (flags & UMA_SLAB_KMEM) 875 obj = kmem_object; 876 else if (flags & UMA_SLAB_KERNEL) 877 obj = kernel_object; 878 else 879 obj = NULL; 880 for (i = 0; i < keg->uk_ppera; i++) 881 vsetobj((vm_offset_t)mem + 882 (i * PAGE_SIZE), obj); 883 } 884 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 885 uma_zfree_internal(keg->uk_slabzone, slab, 886 NULL, SKIP_NONE, ZFREE_STATFREE); 887 keg->uk_freef(mem, UMA_SLAB_SIZE * keg->uk_ppera, 888 flags); 889 ZONE_LOCK(zone); 890 return (NULL); 891 } 892 } 893 ZONE_LOCK(zone); 894 895 if (keg->uk_flags & UMA_ZONE_HASH) 896 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 897 898 keg->uk_pages += keg->uk_ppera; 899 keg->uk_free += keg->uk_ipers; 900 901 return (slab); 902 } 903 904 /* 905 * This function is intended to be used early on in place of page_alloc() so 906 * that we may use the boot time page cache to satisfy allocations before 907 * the VM is ready. 908 */ 909 static void * 910 startup_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait) 911 { 912 uma_keg_t keg; 913 uma_slab_t tmps; 914 915 keg = zone->uz_keg; 916 917 /* 918 * Check our small startup cache to see if it has pages remaining. 919 */ 920 mtx_lock(&uma_boot_pages_mtx); 921 if ((tmps = LIST_FIRST(&uma_boot_pages)) != NULL) { 922 LIST_REMOVE(tmps, us_link); 923 mtx_unlock(&uma_boot_pages_mtx); 924 *pflag = tmps->us_flags; 925 return (tmps->us_data); 926 } 927 mtx_unlock(&uma_boot_pages_mtx); 928 if (booted == 0) 929 panic("UMA: Increase vm.boot_pages"); 930 /* 931 * Now that we've booted reset these users to their real allocator. 932 */ 933 #ifdef UMA_MD_SMALL_ALLOC 934 keg->uk_allocf = uma_small_alloc; 935 #else 936 keg->uk_allocf = page_alloc; 937 #endif 938 return keg->uk_allocf(zone, bytes, pflag, wait); 939 } 940 941 /* 942 * Allocates a number of pages from the system 943 * 944 * Arguments: 945 * zone Unused 946 * bytes The number of bytes requested 947 * wait Shall we wait? 948 * 949 * Returns: 950 * A pointer to the alloced memory or possibly 951 * NULL if M_NOWAIT is set. 952 */ 953 static void * 954 page_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait) 955 { 956 void *p; /* Returned page */ 957 958 *pflag = UMA_SLAB_KMEM; 959 p = (void *) kmem_malloc(kmem_map, bytes, wait); 960 961 return (p); 962 } 963 964 /* 965 * Allocates a number of pages from within an object 966 * 967 * Arguments: 968 * zone Unused 969 * bytes The number of bytes requested 970 * wait Shall we wait? 971 * 972 * Returns: 973 * A pointer to the alloced memory or possibly 974 * NULL if M_NOWAIT is set. 975 */ 976 static void * 977 obj_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait) 978 { 979 vm_object_t object; 980 vm_offset_t retkva, zkva; 981 vm_page_t p; 982 int pages, startpages; 983 984 object = zone->uz_keg->uk_obj; 985 retkva = 0; 986 987 /* 988 * This looks a little weird since we're getting one page at a time. 989 */ 990 VM_OBJECT_LOCK(object); 991 p = TAILQ_LAST(&object->memq, pglist); 992 pages = p != NULL ? p->pindex + 1 : 0; 993 startpages = pages; 994 zkva = zone->uz_keg->uk_kva + pages * PAGE_SIZE; 995 for (; bytes > 0; bytes -= PAGE_SIZE) { 996 p = vm_page_alloc(object, pages, 997 VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED); 998 if (p == NULL) { 999 if (pages != startpages) 1000 pmap_qremove(retkva, pages - startpages); 1001 while (pages != startpages) { 1002 pages--; 1003 p = TAILQ_LAST(&object->memq, pglist); 1004 vm_page_lock_queues(); 1005 vm_page_unwire(p, 0); 1006 vm_page_free(p); 1007 vm_page_unlock_queues(); 1008 } 1009 retkva = 0; 1010 goto done; 1011 } 1012 pmap_qenter(zkva, &p, 1); 1013 if (retkva == 0) 1014 retkva = zkva; 1015 zkva += PAGE_SIZE; 1016 pages += 1; 1017 } 1018 done: 1019 VM_OBJECT_UNLOCK(object); 1020 *flags = UMA_SLAB_PRIV; 1021 1022 return ((void *)retkva); 1023 } 1024 1025 /* 1026 * Frees a number of pages to the system 1027 * 1028 * Arguments: 1029 * mem A pointer to the memory to be freed 1030 * size The size of the memory being freed 1031 * flags The original p->us_flags field 1032 * 1033 * Returns: 1034 * Nothing 1035 */ 1036 static void 1037 page_free(void *mem, int size, u_int8_t flags) 1038 { 1039 vm_map_t map; 1040 1041 if (flags & UMA_SLAB_KMEM) 1042 map = kmem_map; 1043 else 1044 panic("UMA: page_free used with invalid flags %d\n", flags); 1045 1046 kmem_free(map, (vm_offset_t)mem, size); 1047 } 1048 1049 /* 1050 * Zero fill initializer 1051 * 1052 * Arguments/Returns follow uma_init specifications 1053 */ 1054 static int 1055 zero_init(void *mem, int size, int flags) 1056 { 1057 bzero(mem, size); 1058 return (0); 1059 } 1060 1061 /* 1062 * Finish creating a small uma zone. This calculates ipers, and the zone size. 1063 * 1064 * Arguments 1065 * zone The zone we should initialize 1066 * 1067 * Returns 1068 * Nothing 1069 */ 1070 static void 1071 zone_small_init(uma_zone_t zone) 1072 { 1073 uma_keg_t keg; 1074 u_int rsize; 1075 u_int memused; 1076 u_int wastedspace; 1077 u_int shsize; 1078 1079 keg = zone->uz_keg; 1080 KASSERT(keg != NULL, ("Keg is null in zone_small_init")); 1081 rsize = keg->uk_size; 1082 1083 if (rsize < UMA_SMALLEST_UNIT) 1084 rsize = UMA_SMALLEST_UNIT; 1085 if (rsize & keg->uk_align) 1086 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1087 1088 keg->uk_rsize = rsize; 1089 keg->uk_ppera = 1; 1090 1091 if (keg->uk_flags & UMA_ZONE_REFCNT) { 1092 rsize += UMA_FRITMREF_SZ; /* linkage & refcnt */ 1093 shsize = sizeof(struct uma_slab_refcnt); 1094 } else { 1095 rsize += UMA_FRITM_SZ; /* Account for linkage */ 1096 shsize = sizeof(struct uma_slab); 1097 } 1098 1099 keg->uk_ipers = (UMA_SLAB_SIZE - shsize) / rsize; 1100 KASSERT(keg->uk_ipers != 0, ("zone_small_init: ipers is 0")); 1101 memused = keg->uk_ipers * rsize + shsize; 1102 wastedspace = UMA_SLAB_SIZE - memused; 1103 1104 /* 1105 * We can't do OFFPAGE if we're internal or if we've been 1106 * asked to not go to the VM for buckets. If we do this we 1107 * may end up going to the VM (kmem_map) for slabs which we 1108 * do not want to do if we're UMA_ZFLAG_CACHEONLY as a 1109 * result of UMA_ZONE_VM, which clearly forbids it. 1110 */ 1111 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1112 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1113 return; 1114 1115 if ((wastedspace >= UMA_MAX_WASTE) && 1116 (keg->uk_ipers < (UMA_SLAB_SIZE / keg->uk_rsize))) { 1117 keg->uk_ipers = UMA_SLAB_SIZE / keg->uk_rsize; 1118 KASSERT(keg->uk_ipers <= 255, 1119 ("zone_small_init: keg->uk_ipers too high!")); 1120 #ifdef UMA_DEBUG 1121 printf("UMA decided we need offpage slab headers for " 1122 "zone: %s, calculated wastedspace = %d, " 1123 "maximum wasted space allowed = %d, " 1124 "calculated ipers = %d, " 1125 "new wasted space = %d\n", zone->uz_name, wastedspace, 1126 UMA_MAX_WASTE, keg->uk_ipers, 1127 UMA_SLAB_SIZE - keg->uk_ipers * keg->uk_rsize); 1128 #endif 1129 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1130 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1131 keg->uk_flags |= UMA_ZONE_HASH; 1132 } 1133 } 1134 1135 /* 1136 * Finish creating a large (> UMA_SLAB_SIZE) uma zone. Just give in and do 1137 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1138 * more complicated. 1139 * 1140 * Arguments 1141 * zone The zone we should initialize 1142 * 1143 * Returns 1144 * Nothing 1145 */ 1146 static void 1147 zone_large_init(uma_zone_t zone) 1148 { 1149 uma_keg_t keg; 1150 int pages; 1151 1152 keg = zone->uz_keg; 1153 1154 KASSERT(keg != NULL, ("Keg is null in zone_large_init")); 1155 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0, 1156 ("zone_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY zone")); 1157 1158 pages = keg->uk_size / UMA_SLAB_SIZE; 1159 1160 /* Account for remainder */ 1161 if ((pages * UMA_SLAB_SIZE) < keg->uk_size) 1162 pages++; 1163 1164 keg->uk_ppera = pages; 1165 keg->uk_ipers = 1; 1166 1167 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1168 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1169 keg->uk_flags |= UMA_ZONE_HASH; 1170 1171 keg->uk_rsize = keg->uk_size; 1172 } 1173 1174 /* 1175 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1176 * the keg onto the global keg list. 1177 * 1178 * Arguments/Returns follow uma_ctor specifications 1179 * udata Actually uma_kctor_args 1180 */ 1181 static int 1182 keg_ctor(void *mem, int size, void *udata, int flags) 1183 { 1184 struct uma_kctor_args *arg = udata; 1185 uma_keg_t keg = mem; 1186 uma_zone_t zone; 1187 1188 bzero(keg, size); 1189 keg->uk_size = arg->size; 1190 keg->uk_init = arg->uminit; 1191 keg->uk_fini = arg->fini; 1192 keg->uk_align = arg->align; 1193 keg->uk_free = 0; 1194 keg->uk_pages = 0; 1195 keg->uk_flags = arg->flags; 1196 keg->uk_allocf = page_alloc; 1197 keg->uk_freef = page_free; 1198 keg->uk_recurse = 0; 1199 keg->uk_slabzone = NULL; 1200 1201 /* 1202 * The master zone is passed to us at keg-creation time. 1203 */ 1204 zone = arg->zone; 1205 zone->uz_keg = keg; 1206 1207 if (arg->flags & UMA_ZONE_VM) 1208 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1209 1210 if (arg->flags & UMA_ZONE_ZINIT) 1211 keg->uk_init = zero_init; 1212 1213 /* 1214 * The +UMA_FRITM_SZ added to uk_size is to account for the 1215 * linkage that is added to the size in zone_small_init(). If 1216 * we don't account for this here then we may end up in 1217 * zone_small_init() with a calculated 'ipers' of 0. 1218 */ 1219 if (keg->uk_flags & UMA_ZONE_REFCNT) { 1220 if ((keg->uk_size+UMA_FRITMREF_SZ) > 1221 (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt))) 1222 zone_large_init(zone); 1223 else 1224 zone_small_init(zone); 1225 } else { 1226 if ((keg->uk_size+UMA_FRITM_SZ) > 1227 (UMA_SLAB_SIZE - sizeof(struct uma_slab))) 1228 zone_large_init(zone); 1229 else 1230 zone_small_init(zone); 1231 } 1232 1233 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 1234 if (keg->uk_flags & UMA_ZONE_REFCNT) 1235 keg->uk_slabzone = slabrefzone; 1236 else 1237 keg->uk_slabzone = slabzone; 1238 } 1239 1240 /* 1241 * If we haven't booted yet we need allocations to go through the 1242 * startup cache until the vm is ready. 1243 */ 1244 if (keg->uk_ppera == 1) { 1245 #ifdef UMA_MD_SMALL_ALLOC 1246 keg->uk_allocf = uma_small_alloc; 1247 keg->uk_freef = uma_small_free; 1248 #endif 1249 if (booted == 0) 1250 keg->uk_allocf = startup_alloc; 1251 } 1252 1253 /* 1254 * Initialize keg's lock (shared among zones) through 1255 * Master zone 1256 */ 1257 zone->uz_lock = &keg->uk_lock; 1258 if (arg->flags & UMA_ZONE_MTXCLASS) 1259 ZONE_LOCK_INIT(zone, 1); 1260 else 1261 ZONE_LOCK_INIT(zone, 0); 1262 1263 /* 1264 * If we're putting the slab header in the actual page we need to 1265 * figure out where in each page it goes. This calculates a right 1266 * justified offset into the memory on an ALIGN_PTR boundary. 1267 */ 1268 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1269 u_int totsize; 1270 1271 /* Size of the slab struct and free list */ 1272 if (keg->uk_flags & UMA_ZONE_REFCNT) 1273 totsize = sizeof(struct uma_slab_refcnt) + 1274 keg->uk_ipers * UMA_FRITMREF_SZ; 1275 else 1276 totsize = sizeof(struct uma_slab) + 1277 keg->uk_ipers * UMA_FRITM_SZ; 1278 1279 if (totsize & UMA_ALIGN_PTR) 1280 totsize = (totsize & ~UMA_ALIGN_PTR) + 1281 (UMA_ALIGN_PTR + 1); 1282 keg->uk_pgoff = UMA_SLAB_SIZE - totsize; 1283 1284 if (keg->uk_flags & UMA_ZONE_REFCNT) 1285 totsize = keg->uk_pgoff + sizeof(struct uma_slab_refcnt) 1286 + keg->uk_ipers * UMA_FRITMREF_SZ; 1287 else 1288 totsize = keg->uk_pgoff + sizeof(struct uma_slab) 1289 + keg->uk_ipers * UMA_FRITM_SZ; 1290 1291 /* 1292 * The only way the following is possible is if with our 1293 * UMA_ALIGN_PTR adjustments we are now bigger than 1294 * UMA_SLAB_SIZE. I haven't checked whether this is 1295 * mathematically possible for all cases, so we make 1296 * sure here anyway. 1297 */ 1298 if (totsize > UMA_SLAB_SIZE) { 1299 printf("zone %s ipers %d rsize %d size %d\n", 1300 zone->uz_name, keg->uk_ipers, keg->uk_rsize, 1301 keg->uk_size); 1302 panic("UMA slab won't fit.\n"); 1303 } 1304 } 1305 1306 if (keg->uk_flags & UMA_ZONE_HASH) 1307 hash_alloc(&keg->uk_hash); 1308 1309 #ifdef UMA_DEBUG 1310 printf("%s(%p) size = %d ipers = %d ppera = %d pgoff = %d\n", 1311 zone->uz_name, zone, 1312 keg->uk_size, keg->uk_ipers, 1313 keg->uk_ppera, keg->uk_pgoff); 1314 #endif 1315 1316 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1317 1318 mtx_lock(&uma_mtx); 1319 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1320 mtx_unlock(&uma_mtx); 1321 return (0); 1322 } 1323 1324 /* 1325 * Zone header ctor. This initializes all fields, locks, etc. 1326 * 1327 * Arguments/Returns follow uma_ctor specifications 1328 * udata Actually uma_zctor_args 1329 */ 1330 1331 static int 1332 zone_ctor(void *mem, int size, void *udata, int flags) 1333 { 1334 struct uma_zctor_args *arg = udata; 1335 uma_zone_t zone = mem; 1336 uma_zone_t z; 1337 uma_keg_t keg; 1338 1339 bzero(zone, size); 1340 zone->uz_name = arg->name; 1341 zone->uz_ctor = arg->ctor; 1342 zone->uz_dtor = arg->dtor; 1343 zone->uz_init = NULL; 1344 zone->uz_fini = NULL; 1345 zone->uz_allocs = 0; 1346 zone->uz_frees = 0; 1347 zone->uz_fails = 0; 1348 zone->uz_fills = zone->uz_count = 0; 1349 1350 if (arg->flags & UMA_ZONE_SECONDARY) { 1351 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 1352 keg = arg->keg; 1353 zone->uz_keg = keg; 1354 zone->uz_init = arg->uminit; 1355 zone->uz_fini = arg->fini; 1356 zone->uz_lock = &keg->uk_lock; 1357 mtx_lock(&uma_mtx); 1358 ZONE_LOCK(zone); 1359 keg->uk_flags |= UMA_ZONE_SECONDARY; 1360 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 1361 if (LIST_NEXT(z, uz_link) == NULL) { 1362 LIST_INSERT_AFTER(z, zone, uz_link); 1363 break; 1364 } 1365 } 1366 ZONE_UNLOCK(zone); 1367 mtx_unlock(&uma_mtx); 1368 } else if (arg->keg == NULL) { 1369 if (uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 1370 arg->align, arg->flags) == NULL) 1371 return (ENOMEM); 1372 } else { 1373 struct uma_kctor_args karg; 1374 int error; 1375 1376 /* We should only be here from uma_startup() */ 1377 karg.size = arg->size; 1378 karg.uminit = arg->uminit; 1379 karg.fini = arg->fini; 1380 karg.align = arg->align; 1381 karg.flags = arg->flags; 1382 karg.zone = zone; 1383 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 1384 flags); 1385 if (error) 1386 return (error); 1387 } 1388 keg = zone->uz_keg; 1389 zone->uz_lock = &keg->uk_lock; 1390 1391 /* 1392 * Some internal zones don't have room allocated for the per cpu 1393 * caches. If we're internal, bail out here. 1394 */ 1395 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { 1396 KASSERT((keg->uk_flags & UMA_ZONE_SECONDARY) == 0, 1397 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 1398 return (0); 1399 } 1400 1401 if (keg->uk_flags & UMA_ZONE_MAXBUCKET) 1402 zone->uz_count = BUCKET_MAX; 1403 else if (keg->uk_ipers <= BUCKET_MAX) 1404 zone->uz_count = keg->uk_ipers; 1405 else 1406 zone->uz_count = BUCKET_MAX; 1407 return (0); 1408 } 1409 1410 /* 1411 * Keg header dtor. This frees all data, destroys locks, frees the hash 1412 * table and removes the keg from the global list. 1413 * 1414 * Arguments/Returns follow uma_dtor specifications 1415 * udata unused 1416 */ 1417 static void 1418 keg_dtor(void *arg, int size, void *udata) 1419 { 1420 uma_keg_t keg; 1421 1422 keg = (uma_keg_t)arg; 1423 mtx_lock(&keg->uk_lock); 1424 if (keg->uk_free != 0) { 1425 printf("Freed UMA keg was not empty (%d items). " 1426 " Lost %d pages of memory.\n", 1427 keg->uk_free, keg->uk_pages); 1428 } 1429 mtx_unlock(&keg->uk_lock); 1430 1431 if (keg->uk_flags & UMA_ZONE_HASH) 1432 hash_free(&keg->uk_hash); 1433 1434 mtx_destroy(&keg->uk_lock); 1435 } 1436 1437 /* 1438 * Zone header dtor. 1439 * 1440 * Arguments/Returns follow uma_dtor specifications 1441 * udata unused 1442 */ 1443 static void 1444 zone_dtor(void *arg, int size, void *udata) 1445 { 1446 uma_zone_t zone; 1447 uma_keg_t keg; 1448 1449 zone = (uma_zone_t)arg; 1450 keg = zone->uz_keg; 1451 1452 if (!(keg->uk_flags & UMA_ZFLAG_INTERNAL)) 1453 cache_drain(zone); 1454 1455 mtx_lock(&uma_mtx); 1456 zone_drain(zone); 1457 if (keg->uk_flags & UMA_ZONE_SECONDARY) { 1458 LIST_REMOVE(zone, uz_link); 1459 /* 1460 * XXX there are some races here where 1461 * the zone can be drained but zone lock 1462 * released and then refilled before we 1463 * remove it... we dont care for now 1464 */ 1465 ZONE_LOCK(zone); 1466 if (LIST_EMPTY(&keg->uk_zones)) 1467 keg->uk_flags &= ~UMA_ZONE_SECONDARY; 1468 ZONE_UNLOCK(zone); 1469 mtx_unlock(&uma_mtx); 1470 } else { 1471 LIST_REMOVE(keg, uk_link); 1472 LIST_REMOVE(zone, uz_link); 1473 mtx_unlock(&uma_mtx); 1474 uma_zfree_internal(kegs, keg, NULL, SKIP_NONE, 1475 ZFREE_STATFREE); 1476 } 1477 zone->uz_keg = NULL; 1478 } 1479 1480 /* 1481 * Traverses every zone in the system and calls a callback 1482 * 1483 * Arguments: 1484 * zfunc A pointer to a function which accepts a zone 1485 * as an argument. 1486 * 1487 * Returns: 1488 * Nothing 1489 */ 1490 static void 1491 zone_foreach(void (*zfunc)(uma_zone_t)) 1492 { 1493 uma_keg_t keg; 1494 uma_zone_t zone; 1495 1496 mtx_lock(&uma_mtx); 1497 LIST_FOREACH(keg, &uma_kegs, uk_link) { 1498 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 1499 zfunc(zone); 1500 } 1501 mtx_unlock(&uma_mtx); 1502 } 1503 1504 /* Public functions */ 1505 /* See uma.h */ 1506 void 1507 uma_startup(void *bootmem, int boot_pages) 1508 { 1509 struct uma_zctor_args args; 1510 uma_slab_t slab; 1511 u_int slabsize; 1512 u_int objsize, totsize, wsize; 1513 int i; 1514 1515 #ifdef UMA_DEBUG 1516 printf("Creating uma keg headers zone and keg.\n"); 1517 #endif 1518 mtx_init(&uma_mtx, "UMA lock", NULL, MTX_DEF); 1519 1520 /* 1521 * Figure out the maximum number of items-per-slab we'll have if 1522 * we're using the OFFPAGE slab header to track free items, given 1523 * all possible object sizes and the maximum desired wastage 1524 * (UMA_MAX_WASTE). 1525 * 1526 * We iterate until we find an object size for 1527 * which the calculated wastage in zone_small_init() will be 1528 * enough to warrant OFFPAGE. Since wastedspace versus objsize 1529 * is an overall increasing see-saw function, we find the smallest 1530 * objsize such that the wastage is always acceptable for objects 1531 * with that objsize or smaller. Since a smaller objsize always 1532 * generates a larger possible uma_max_ipers, we use this computed 1533 * objsize to calculate the largest ipers possible. Since the 1534 * ipers calculated for OFFPAGE slab headers is always larger than 1535 * the ipers initially calculated in zone_small_init(), we use 1536 * the former's equation (UMA_SLAB_SIZE / keg->uk_rsize) to 1537 * obtain the maximum ipers possible for offpage slab headers. 1538 * 1539 * It should be noted that ipers versus objsize is an inversly 1540 * proportional function which drops off rather quickly so as 1541 * long as our UMA_MAX_WASTE is such that the objsize we calculate 1542 * falls into the portion of the inverse relation AFTER the steep 1543 * falloff, then uma_max_ipers shouldn't be too high (~10 on i386). 1544 * 1545 * Note that we have 8-bits (1 byte) to use as a freelist index 1546 * inside the actual slab header itself and this is enough to 1547 * accomodate us. In the worst case, a UMA_SMALLEST_UNIT sized 1548 * object with offpage slab header would have ipers = 1549 * UMA_SLAB_SIZE / UMA_SMALLEST_UNIT (currently = 256), which is 1550 * 1 greater than what our byte-integer freelist index can 1551 * accomodate, but we know that this situation never occurs as 1552 * for UMA_SMALLEST_UNIT-sized objects, we will never calculate 1553 * that we need to go to offpage slab headers. Or, if we do, 1554 * then we trap that condition below and panic in the INVARIANTS case. 1555 */ 1556 wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab) - UMA_MAX_WASTE; 1557 totsize = wsize; 1558 objsize = UMA_SMALLEST_UNIT; 1559 while (totsize >= wsize) { 1560 totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab)) / 1561 (objsize + UMA_FRITM_SZ); 1562 totsize *= (UMA_FRITM_SZ + objsize); 1563 objsize++; 1564 } 1565 if (objsize > UMA_SMALLEST_UNIT) 1566 objsize--; 1567 uma_max_ipers = UMA_SLAB_SIZE / objsize; 1568 1569 wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt) - UMA_MAX_WASTE; 1570 totsize = wsize; 1571 objsize = UMA_SMALLEST_UNIT; 1572 while (totsize >= wsize) { 1573 totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt)) / 1574 (objsize + UMA_FRITMREF_SZ); 1575 totsize *= (UMA_FRITMREF_SZ + objsize); 1576 objsize++; 1577 } 1578 if (objsize > UMA_SMALLEST_UNIT) 1579 objsize--; 1580 uma_max_ipers_ref = UMA_SLAB_SIZE / objsize; 1581 1582 KASSERT((uma_max_ipers_ref <= 255) && (uma_max_ipers <= 255), 1583 ("uma_startup: calculated uma_max_ipers values too large!")); 1584 1585 #ifdef UMA_DEBUG 1586 printf("Calculated uma_max_ipers (for OFFPAGE) is %d\n", uma_max_ipers); 1587 printf("Calculated uma_max_ipers_slab (for OFFPAGE) is %d\n", 1588 uma_max_ipers_ref); 1589 #endif 1590 1591 /* "manually" create the initial zone */ 1592 args.name = "UMA Kegs"; 1593 args.size = sizeof(struct uma_keg); 1594 args.ctor = keg_ctor; 1595 args.dtor = keg_dtor; 1596 args.uminit = zero_init; 1597 args.fini = NULL; 1598 args.keg = &masterkeg; 1599 args.align = 32 - 1; 1600 args.flags = UMA_ZFLAG_INTERNAL; 1601 /* The initial zone has no Per cpu queues so it's smaller */ 1602 zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK); 1603 1604 #ifdef UMA_DEBUG 1605 printf("Filling boot free list.\n"); 1606 #endif 1607 for (i = 0; i < boot_pages; i++) { 1608 slab = (uma_slab_t)((u_int8_t *)bootmem + (i * UMA_SLAB_SIZE)); 1609 slab->us_data = (u_int8_t *)slab; 1610 slab->us_flags = UMA_SLAB_BOOT; 1611 LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link); 1612 } 1613 mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF); 1614 1615 #ifdef UMA_DEBUG 1616 printf("Creating uma zone headers zone and keg.\n"); 1617 #endif 1618 args.name = "UMA Zones"; 1619 args.size = sizeof(struct uma_zone) + 1620 (sizeof(struct uma_cache) * (mp_maxid + 1)); 1621 args.ctor = zone_ctor; 1622 args.dtor = zone_dtor; 1623 args.uminit = zero_init; 1624 args.fini = NULL; 1625 args.keg = NULL; 1626 args.align = 32 - 1; 1627 args.flags = UMA_ZFLAG_INTERNAL; 1628 /* The initial zone has no Per cpu queues so it's smaller */ 1629 zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK); 1630 1631 #ifdef UMA_DEBUG 1632 printf("Initializing pcpu cache locks.\n"); 1633 #endif 1634 #ifdef UMA_DEBUG 1635 printf("Creating slab and hash zones.\n"); 1636 #endif 1637 1638 /* 1639 * This is the max number of free list items we'll have with 1640 * offpage slabs. 1641 */ 1642 slabsize = uma_max_ipers * UMA_FRITM_SZ; 1643 slabsize += sizeof(struct uma_slab); 1644 1645 /* Now make a zone for slab headers */ 1646 slabzone = uma_zcreate("UMA Slabs", 1647 slabsize, 1648 NULL, NULL, NULL, NULL, 1649 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1650 1651 /* 1652 * We also create a zone for the bigger slabs with reference 1653 * counts in them, to accomodate UMA_ZONE_REFCNT zones. 1654 */ 1655 slabsize = uma_max_ipers_ref * UMA_FRITMREF_SZ; 1656 slabsize += sizeof(struct uma_slab_refcnt); 1657 slabrefzone = uma_zcreate("UMA RCntSlabs", 1658 slabsize, 1659 NULL, NULL, NULL, NULL, 1660 UMA_ALIGN_PTR, 1661 UMA_ZFLAG_INTERNAL); 1662 1663 hashzone = uma_zcreate("UMA Hash", 1664 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 1665 NULL, NULL, NULL, NULL, 1666 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1667 1668 bucket_init(); 1669 1670 #ifdef UMA_MD_SMALL_ALLOC 1671 booted = 1; 1672 #endif 1673 1674 #ifdef UMA_DEBUG 1675 printf("UMA startup complete.\n"); 1676 #endif 1677 } 1678 1679 /* see uma.h */ 1680 void 1681 uma_startup2(void) 1682 { 1683 booted = 1; 1684 bucket_enable(); 1685 #ifdef UMA_DEBUG 1686 printf("UMA startup2 complete.\n"); 1687 #endif 1688 } 1689 1690 /* 1691 * Initialize our callout handle 1692 * 1693 */ 1694 1695 static void 1696 uma_startup3(void) 1697 { 1698 #ifdef UMA_DEBUG 1699 printf("Starting callout.\n"); 1700 #endif 1701 callout_init(&uma_callout, CALLOUT_MPSAFE); 1702 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 1703 #ifdef UMA_DEBUG 1704 printf("UMA startup3 complete.\n"); 1705 #endif 1706 } 1707 1708 static uma_zone_t 1709 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 1710 int align, u_int32_t flags) 1711 { 1712 struct uma_kctor_args args; 1713 1714 args.size = size; 1715 args.uminit = uminit; 1716 args.fini = fini; 1717 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 1718 args.flags = flags; 1719 args.zone = zone; 1720 return (uma_zalloc_internal(kegs, &args, M_WAITOK)); 1721 } 1722 1723 /* See uma.h */ 1724 void 1725 uma_set_align(int align) 1726 { 1727 1728 if (align != UMA_ALIGN_CACHE) 1729 uma_align_cache = align; 1730 } 1731 1732 /* See uma.h */ 1733 uma_zone_t 1734 uma_zcreate(char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 1735 uma_init uminit, uma_fini fini, int align, u_int32_t flags) 1736 1737 { 1738 struct uma_zctor_args args; 1739 1740 /* This stuff is essential for the zone ctor */ 1741 args.name = name; 1742 args.size = size; 1743 args.ctor = ctor; 1744 args.dtor = dtor; 1745 args.uminit = uminit; 1746 args.fini = fini; 1747 args.align = align; 1748 args.flags = flags; 1749 args.keg = NULL; 1750 1751 return (uma_zalloc_internal(zones, &args, M_WAITOK)); 1752 } 1753 1754 /* See uma.h */ 1755 uma_zone_t 1756 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 1757 uma_init zinit, uma_fini zfini, uma_zone_t master) 1758 { 1759 struct uma_zctor_args args; 1760 1761 args.name = name; 1762 args.size = master->uz_keg->uk_size; 1763 args.ctor = ctor; 1764 args.dtor = dtor; 1765 args.uminit = zinit; 1766 args.fini = zfini; 1767 args.align = master->uz_keg->uk_align; 1768 args.flags = master->uz_keg->uk_flags | UMA_ZONE_SECONDARY; 1769 args.keg = master->uz_keg; 1770 1771 return (uma_zalloc_internal(zones, &args, M_WAITOK)); 1772 } 1773 1774 /* See uma.h */ 1775 void 1776 uma_zdestroy(uma_zone_t zone) 1777 { 1778 1779 uma_zfree_internal(zones, zone, NULL, SKIP_NONE, ZFREE_STATFREE); 1780 } 1781 1782 /* See uma.h */ 1783 void * 1784 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 1785 { 1786 void *item; 1787 uma_cache_t cache; 1788 uma_bucket_t bucket; 1789 int cpu; 1790 1791 /* This is the fast path allocation */ 1792 #ifdef UMA_DEBUG_ALLOC_1 1793 printf("Allocating one item from %s(%p)\n", zone->uz_name, zone); 1794 #endif 1795 CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread, 1796 zone->uz_name, flags); 1797 1798 if (flags & M_WAITOK) { 1799 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 1800 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 1801 } 1802 1803 /* 1804 * If possible, allocate from the per-CPU cache. There are two 1805 * requirements for safe access to the per-CPU cache: (1) the thread 1806 * accessing the cache must not be preempted or yield during access, 1807 * and (2) the thread must not migrate CPUs without switching which 1808 * cache it accesses. We rely on a critical section to prevent 1809 * preemption and migration. We release the critical section in 1810 * order to acquire the zone mutex if we are unable to allocate from 1811 * the current cache; when we re-acquire the critical section, we 1812 * must detect and handle migration if it has occurred. 1813 */ 1814 zalloc_restart: 1815 critical_enter(); 1816 cpu = curcpu; 1817 cache = &zone->uz_cpu[cpu]; 1818 1819 zalloc_start: 1820 bucket = cache->uc_allocbucket; 1821 1822 if (bucket) { 1823 if (bucket->ub_cnt > 0) { 1824 bucket->ub_cnt--; 1825 item = bucket->ub_bucket[bucket->ub_cnt]; 1826 #ifdef INVARIANTS 1827 bucket->ub_bucket[bucket->ub_cnt] = NULL; 1828 #endif 1829 KASSERT(item != NULL, 1830 ("uma_zalloc: Bucket pointer mangled.")); 1831 cache->uc_allocs++; 1832 critical_exit(); 1833 #ifdef INVARIANTS 1834 ZONE_LOCK(zone); 1835 uma_dbg_alloc(zone, NULL, item); 1836 ZONE_UNLOCK(zone); 1837 #endif 1838 if (zone->uz_ctor != NULL) { 1839 if (zone->uz_ctor(item, zone->uz_keg->uk_size, 1840 udata, flags) != 0) { 1841 uma_zfree_internal(zone, item, udata, 1842 SKIP_DTOR, ZFREE_STATFAIL | 1843 ZFREE_STATFREE); 1844 return (NULL); 1845 } 1846 } 1847 if (flags & M_ZERO) 1848 bzero(item, zone->uz_keg->uk_size); 1849 return (item); 1850 } else if (cache->uc_freebucket) { 1851 /* 1852 * We have run out of items in our allocbucket. 1853 * See if we can switch with our free bucket. 1854 */ 1855 if (cache->uc_freebucket->ub_cnt > 0) { 1856 #ifdef UMA_DEBUG_ALLOC 1857 printf("uma_zalloc: Swapping empty with" 1858 " alloc.\n"); 1859 #endif 1860 bucket = cache->uc_freebucket; 1861 cache->uc_freebucket = cache->uc_allocbucket; 1862 cache->uc_allocbucket = bucket; 1863 1864 goto zalloc_start; 1865 } 1866 } 1867 } 1868 /* 1869 * Attempt to retrieve the item from the per-CPU cache has failed, so 1870 * we must go back to the zone. This requires the zone lock, so we 1871 * must drop the critical section, then re-acquire it when we go back 1872 * to the cache. Since the critical section is released, we may be 1873 * preempted or migrate. As such, make sure not to maintain any 1874 * thread-local state specific to the cache from prior to releasing 1875 * the critical section. 1876 */ 1877 critical_exit(); 1878 ZONE_LOCK(zone); 1879 critical_enter(); 1880 cpu = curcpu; 1881 cache = &zone->uz_cpu[cpu]; 1882 bucket = cache->uc_allocbucket; 1883 if (bucket != NULL) { 1884 if (bucket->ub_cnt > 0) { 1885 ZONE_UNLOCK(zone); 1886 goto zalloc_start; 1887 } 1888 bucket = cache->uc_freebucket; 1889 if (bucket != NULL && bucket->ub_cnt > 0) { 1890 ZONE_UNLOCK(zone); 1891 goto zalloc_start; 1892 } 1893 } 1894 1895 /* Since we have locked the zone we may as well send back our stats */ 1896 zone->uz_allocs += cache->uc_allocs; 1897 cache->uc_allocs = 0; 1898 zone->uz_frees += cache->uc_frees; 1899 cache->uc_frees = 0; 1900 1901 /* Our old one is now a free bucket */ 1902 if (cache->uc_allocbucket) { 1903 KASSERT(cache->uc_allocbucket->ub_cnt == 0, 1904 ("uma_zalloc_arg: Freeing a non free bucket.")); 1905 LIST_INSERT_HEAD(&zone->uz_free_bucket, 1906 cache->uc_allocbucket, ub_link); 1907 cache->uc_allocbucket = NULL; 1908 } 1909 1910 /* Check the free list for a new alloc bucket */ 1911 if ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) { 1912 KASSERT(bucket->ub_cnt != 0, 1913 ("uma_zalloc_arg: Returning an empty bucket.")); 1914 1915 LIST_REMOVE(bucket, ub_link); 1916 cache->uc_allocbucket = bucket; 1917 ZONE_UNLOCK(zone); 1918 goto zalloc_start; 1919 } 1920 /* We are no longer associated with this CPU. */ 1921 critical_exit(); 1922 1923 /* Bump up our uz_count so we get here less */ 1924 if (zone->uz_count < BUCKET_MAX) 1925 zone->uz_count++; 1926 1927 /* 1928 * Now lets just fill a bucket and put it on the free list. If that 1929 * works we'll restart the allocation from the begining. 1930 */ 1931 if (uma_zalloc_bucket(zone, flags)) { 1932 ZONE_UNLOCK(zone); 1933 goto zalloc_restart; 1934 } 1935 ZONE_UNLOCK(zone); 1936 /* 1937 * We may not be able to get a bucket so return an actual item. 1938 */ 1939 #ifdef UMA_DEBUG 1940 printf("uma_zalloc_arg: Bucketzone returned NULL\n"); 1941 #endif 1942 1943 return (uma_zalloc_internal(zone, udata, flags)); 1944 } 1945 1946 static uma_slab_t 1947 uma_zone_slab(uma_zone_t zone, int flags) 1948 { 1949 uma_slab_t slab; 1950 uma_keg_t keg; 1951 1952 keg = zone->uz_keg; 1953 1954 /* 1955 * This is to prevent us from recursively trying to allocate 1956 * buckets. The problem is that if an allocation forces us to 1957 * grab a new bucket we will call page_alloc, which will go off 1958 * and cause the vm to allocate vm_map_entries. If we need new 1959 * buckets there too we will recurse in kmem_alloc and bad 1960 * things happen. So instead we return a NULL bucket, and make 1961 * the code that allocates buckets smart enough to deal with it 1962 * 1963 * XXX: While we want this protection for the bucket zones so that 1964 * recursion from the VM is handled (and the calling code that 1965 * allocates buckets knows how to deal with it), we do not want 1966 * to prevent allocation from the slab header zones (slabzone 1967 * and slabrefzone) if uk_recurse is not zero for them. The 1968 * reason is that it could lead to NULL being returned for 1969 * slab header allocations even in the M_WAITOK case, and the 1970 * caller can't handle that. 1971 */ 1972 if (keg->uk_flags & UMA_ZFLAG_INTERNAL && keg->uk_recurse != 0) 1973 if (zone != slabzone && zone != slabrefzone && zone != zones) 1974 return (NULL); 1975 1976 slab = NULL; 1977 1978 for (;;) { 1979 /* 1980 * Find a slab with some space. Prefer slabs that are partially 1981 * used over those that are totally full. This helps to reduce 1982 * fragmentation. 1983 */ 1984 if (keg->uk_free != 0) { 1985 if (!LIST_EMPTY(&keg->uk_part_slab)) { 1986 slab = LIST_FIRST(&keg->uk_part_slab); 1987 } else { 1988 slab = LIST_FIRST(&keg->uk_free_slab); 1989 LIST_REMOVE(slab, us_link); 1990 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, 1991 us_link); 1992 } 1993 return (slab); 1994 } 1995 1996 /* 1997 * M_NOVM means don't ask at all! 1998 */ 1999 if (flags & M_NOVM) 2000 break; 2001 2002 if (keg->uk_maxpages && 2003 keg->uk_pages >= keg->uk_maxpages) { 2004 keg->uk_flags |= UMA_ZFLAG_FULL; 2005 2006 if (flags & M_NOWAIT) 2007 break; 2008 else 2009 msleep(keg, &keg->uk_lock, PVM, 2010 "zonelimit", 0); 2011 continue; 2012 } 2013 keg->uk_recurse++; 2014 slab = slab_zalloc(zone, flags); 2015 keg->uk_recurse--; 2016 2017 /* 2018 * If we got a slab here it's safe to mark it partially used 2019 * and return. We assume that the caller is going to remove 2020 * at least one item. 2021 */ 2022 if (slab) { 2023 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2024 return (slab); 2025 } 2026 /* 2027 * We might not have been able to get a slab but another cpu 2028 * could have while we were unlocked. Check again before we 2029 * fail. 2030 */ 2031 if (flags & M_NOWAIT) 2032 flags |= M_NOVM; 2033 } 2034 return (slab); 2035 } 2036 2037 static void * 2038 uma_slab_alloc(uma_zone_t zone, uma_slab_t slab) 2039 { 2040 uma_keg_t keg; 2041 uma_slabrefcnt_t slabref; 2042 void *item; 2043 u_int8_t freei; 2044 2045 keg = zone->uz_keg; 2046 2047 freei = slab->us_firstfree; 2048 if (keg->uk_flags & UMA_ZONE_REFCNT) { 2049 slabref = (uma_slabrefcnt_t)slab; 2050 slab->us_firstfree = slabref->us_freelist[freei].us_item; 2051 } else { 2052 slab->us_firstfree = slab->us_freelist[freei].us_item; 2053 } 2054 item = slab->us_data + (keg->uk_rsize * freei); 2055 2056 slab->us_freecount--; 2057 keg->uk_free--; 2058 #ifdef INVARIANTS 2059 uma_dbg_alloc(zone, slab, item); 2060 #endif 2061 /* Move this slab to the full list */ 2062 if (slab->us_freecount == 0) { 2063 LIST_REMOVE(slab, us_link); 2064 LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link); 2065 } 2066 2067 return (item); 2068 } 2069 2070 static int 2071 uma_zalloc_bucket(uma_zone_t zone, int flags) 2072 { 2073 uma_bucket_t bucket; 2074 uma_slab_t slab; 2075 int16_t saved; 2076 int max, origflags = flags; 2077 2078 /* 2079 * Try this zone's free list first so we don't allocate extra buckets. 2080 */ 2081 if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) { 2082 KASSERT(bucket->ub_cnt == 0, 2083 ("uma_zalloc_bucket: Bucket on free list is not empty.")); 2084 LIST_REMOVE(bucket, ub_link); 2085 } else { 2086 int bflags; 2087 2088 bflags = (flags & ~M_ZERO); 2089 if (zone->uz_keg->uk_flags & UMA_ZFLAG_CACHEONLY) 2090 bflags |= M_NOVM; 2091 2092 ZONE_UNLOCK(zone); 2093 bucket = bucket_alloc(zone->uz_count, bflags); 2094 ZONE_LOCK(zone); 2095 } 2096 2097 if (bucket == NULL) 2098 return (0); 2099 2100 #ifdef SMP 2101 /* 2102 * This code is here to limit the number of simultaneous bucket fills 2103 * for any given zone to the number of per cpu caches in this zone. This 2104 * is done so that we don't allocate more memory than we really need. 2105 */ 2106 if (zone->uz_fills >= mp_ncpus) 2107 goto done; 2108 2109 #endif 2110 zone->uz_fills++; 2111 2112 max = MIN(bucket->ub_entries, zone->uz_count); 2113 /* Try to keep the buckets totally full */ 2114 saved = bucket->ub_cnt; 2115 while (bucket->ub_cnt < max && 2116 (slab = uma_zone_slab(zone, flags)) != NULL) { 2117 while (slab->us_freecount && bucket->ub_cnt < max) { 2118 bucket->ub_bucket[bucket->ub_cnt++] = 2119 uma_slab_alloc(zone, slab); 2120 } 2121 2122 /* Don't block on the next fill */ 2123 flags |= M_NOWAIT; 2124 } 2125 2126 /* 2127 * We unlock here because we need to call the zone's init. 2128 * It should be safe to unlock because the slab dealt with 2129 * above is already on the appropriate list within the keg 2130 * and the bucket we filled is not yet on any list, so we 2131 * own it. 2132 */ 2133 if (zone->uz_init != NULL) { 2134 int i; 2135 2136 ZONE_UNLOCK(zone); 2137 for (i = saved; i < bucket->ub_cnt; i++) 2138 if (zone->uz_init(bucket->ub_bucket[i], 2139 zone->uz_keg->uk_size, origflags) != 0) 2140 break; 2141 /* 2142 * If we couldn't initialize the whole bucket, put the 2143 * rest back onto the freelist. 2144 */ 2145 if (i != bucket->ub_cnt) { 2146 int j; 2147 2148 for (j = i; j < bucket->ub_cnt; j++) { 2149 uma_zfree_internal(zone, bucket->ub_bucket[j], 2150 NULL, SKIP_FINI, 0); 2151 #ifdef INVARIANTS 2152 bucket->ub_bucket[j] = NULL; 2153 #endif 2154 } 2155 bucket->ub_cnt = i; 2156 } 2157 ZONE_LOCK(zone); 2158 } 2159 2160 zone->uz_fills--; 2161 if (bucket->ub_cnt != 0) { 2162 LIST_INSERT_HEAD(&zone->uz_full_bucket, 2163 bucket, ub_link); 2164 return (1); 2165 } 2166 #ifdef SMP 2167 done: 2168 #endif 2169 bucket_free(bucket); 2170 2171 return (0); 2172 } 2173 /* 2174 * Allocates an item for an internal zone 2175 * 2176 * Arguments 2177 * zone The zone to alloc for. 2178 * udata The data to be passed to the constructor. 2179 * flags M_WAITOK, M_NOWAIT, M_ZERO. 2180 * 2181 * Returns 2182 * NULL if there is no memory and M_NOWAIT is set 2183 * An item if successful 2184 */ 2185 2186 static void * 2187 uma_zalloc_internal(uma_zone_t zone, void *udata, int flags) 2188 { 2189 uma_keg_t keg; 2190 uma_slab_t slab; 2191 void *item; 2192 2193 item = NULL; 2194 keg = zone->uz_keg; 2195 2196 #ifdef UMA_DEBUG_ALLOC 2197 printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone); 2198 #endif 2199 ZONE_LOCK(zone); 2200 2201 slab = uma_zone_slab(zone, flags); 2202 if (slab == NULL) { 2203 zone->uz_fails++; 2204 ZONE_UNLOCK(zone); 2205 return (NULL); 2206 } 2207 2208 item = uma_slab_alloc(zone, slab); 2209 2210 zone->uz_allocs++; 2211 2212 ZONE_UNLOCK(zone); 2213 2214 /* 2215 * We have to call both the zone's init (not the keg's init) 2216 * and the zone's ctor. This is because the item is going from 2217 * a keg slab directly to the user, and the user is expecting it 2218 * to be both zone-init'd as well as zone-ctor'd. 2219 */ 2220 if (zone->uz_init != NULL) { 2221 if (zone->uz_init(item, keg->uk_size, flags) != 0) { 2222 uma_zfree_internal(zone, item, udata, SKIP_FINI, 2223 ZFREE_STATFAIL | ZFREE_STATFREE); 2224 return (NULL); 2225 } 2226 } 2227 if (zone->uz_ctor != NULL) { 2228 if (zone->uz_ctor(item, keg->uk_size, udata, flags) != 0) { 2229 uma_zfree_internal(zone, item, udata, SKIP_DTOR, 2230 ZFREE_STATFAIL | ZFREE_STATFREE); 2231 return (NULL); 2232 } 2233 } 2234 if (flags & M_ZERO) 2235 bzero(item, keg->uk_size); 2236 2237 return (item); 2238 } 2239 2240 /* See uma.h */ 2241 void 2242 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 2243 { 2244 uma_keg_t keg; 2245 uma_cache_t cache; 2246 uma_bucket_t bucket; 2247 int bflags; 2248 int cpu; 2249 2250 keg = zone->uz_keg; 2251 2252 #ifdef UMA_DEBUG_ALLOC_1 2253 printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone); 2254 #endif 2255 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 2256 zone->uz_name); 2257 2258 if (zone->uz_dtor) 2259 zone->uz_dtor(item, keg->uk_size, udata); 2260 #ifdef INVARIANTS 2261 ZONE_LOCK(zone); 2262 if (keg->uk_flags & UMA_ZONE_MALLOC) 2263 uma_dbg_free(zone, udata, item); 2264 else 2265 uma_dbg_free(zone, NULL, item); 2266 ZONE_UNLOCK(zone); 2267 #endif 2268 /* 2269 * The race here is acceptable. If we miss it we'll just have to wait 2270 * a little longer for the limits to be reset. 2271 */ 2272 if (keg->uk_flags & UMA_ZFLAG_FULL) 2273 goto zfree_internal; 2274 2275 /* 2276 * If possible, free to the per-CPU cache. There are two 2277 * requirements for safe access to the per-CPU cache: (1) the thread 2278 * accessing the cache must not be preempted or yield during access, 2279 * and (2) the thread must not migrate CPUs without switching which 2280 * cache it accesses. We rely on a critical section to prevent 2281 * preemption and migration. We release the critical section in 2282 * order to acquire the zone mutex if we are unable to free to the 2283 * current cache; when we re-acquire the critical section, we must 2284 * detect and handle migration if it has occurred. 2285 */ 2286 zfree_restart: 2287 critical_enter(); 2288 cpu = curcpu; 2289 cache = &zone->uz_cpu[cpu]; 2290 2291 zfree_start: 2292 bucket = cache->uc_freebucket; 2293 2294 if (bucket) { 2295 /* 2296 * Do we have room in our bucket? It is OK for this uz count 2297 * check to be slightly out of sync. 2298 */ 2299 2300 if (bucket->ub_cnt < bucket->ub_entries) { 2301 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 2302 ("uma_zfree: Freeing to non free bucket index.")); 2303 bucket->ub_bucket[bucket->ub_cnt] = item; 2304 bucket->ub_cnt++; 2305 cache->uc_frees++; 2306 critical_exit(); 2307 return; 2308 } else if (cache->uc_allocbucket) { 2309 #ifdef UMA_DEBUG_ALLOC 2310 printf("uma_zfree: Swapping buckets.\n"); 2311 #endif 2312 /* 2313 * We have run out of space in our freebucket. 2314 * See if we can switch with our alloc bucket. 2315 */ 2316 if (cache->uc_allocbucket->ub_cnt < 2317 cache->uc_freebucket->ub_cnt) { 2318 bucket = cache->uc_freebucket; 2319 cache->uc_freebucket = cache->uc_allocbucket; 2320 cache->uc_allocbucket = bucket; 2321 goto zfree_start; 2322 } 2323 } 2324 } 2325 /* 2326 * We can get here for two reasons: 2327 * 2328 * 1) The buckets are NULL 2329 * 2) The alloc and free buckets are both somewhat full. 2330 * 2331 * We must go back the zone, which requires acquiring the zone lock, 2332 * which in turn means we must release and re-acquire the critical 2333 * section. Since the critical section is released, we may be 2334 * preempted or migrate. As such, make sure not to maintain any 2335 * thread-local state specific to the cache from prior to releasing 2336 * the critical section. 2337 */ 2338 critical_exit(); 2339 ZONE_LOCK(zone); 2340 critical_enter(); 2341 cpu = curcpu; 2342 cache = &zone->uz_cpu[cpu]; 2343 if (cache->uc_freebucket != NULL) { 2344 if (cache->uc_freebucket->ub_cnt < 2345 cache->uc_freebucket->ub_entries) { 2346 ZONE_UNLOCK(zone); 2347 goto zfree_start; 2348 } 2349 if (cache->uc_allocbucket != NULL && 2350 (cache->uc_allocbucket->ub_cnt < 2351 cache->uc_freebucket->ub_cnt)) { 2352 ZONE_UNLOCK(zone); 2353 goto zfree_start; 2354 } 2355 } 2356 2357 /* Since we have locked the zone we may as well send back our stats */ 2358 zone->uz_allocs += cache->uc_allocs; 2359 cache->uc_allocs = 0; 2360 zone->uz_frees += cache->uc_frees; 2361 cache->uc_frees = 0; 2362 2363 bucket = cache->uc_freebucket; 2364 cache->uc_freebucket = NULL; 2365 2366 /* Can we throw this on the zone full list? */ 2367 if (bucket != NULL) { 2368 #ifdef UMA_DEBUG_ALLOC 2369 printf("uma_zfree: Putting old bucket on the free list.\n"); 2370 #endif 2371 /* ub_cnt is pointing to the last free item */ 2372 KASSERT(bucket->ub_cnt != 0, 2373 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n")); 2374 LIST_INSERT_HEAD(&zone->uz_full_bucket, 2375 bucket, ub_link); 2376 } 2377 if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) { 2378 LIST_REMOVE(bucket, ub_link); 2379 ZONE_UNLOCK(zone); 2380 cache->uc_freebucket = bucket; 2381 goto zfree_start; 2382 } 2383 /* We are no longer associated with this CPU. */ 2384 critical_exit(); 2385 2386 /* And the zone.. */ 2387 ZONE_UNLOCK(zone); 2388 2389 #ifdef UMA_DEBUG_ALLOC 2390 printf("uma_zfree: Allocating new free bucket.\n"); 2391 #endif 2392 bflags = M_NOWAIT; 2393 2394 if (keg->uk_flags & UMA_ZFLAG_CACHEONLY) 2395 bflags |= M_NOVM; 2396 bucket = bucket_alloc(zone->uz_count, bflags); 2397 if (bucket) { 2398 ZONE_LOCK(zone); 2399 LIST_INSERT_HEAD(&zone->uz_free_bucket, 2400 bucket, ub_link); 2401 ZONE_UNLOCK(zone); 2402 goto zfree_restart; 2403 } 2404 2405 /* 2406 * If nothing else caught this, we'll just do an internal free. 2407 */ 2408 zfree_internal: 2409 uma_zfree_internal(zone, item, udata, SKIP_DTOR, ZFREE_STATFREE); 2410 2411 return; 2412 } 2413 2414 /* 2415 * Frees an item to an INTERNAL zone or allocates a free bucket 2416 * 2417 * Arguments: 2418 * zone The zone to free to 2419 * item The item we're freeing 2420 * udata User supplied data for the dtor 2421 * skip Skip dtors and finis 2422 */ 2423 static void 2424 uma_zfree_internal(uma_zone_t zone, void *item, void *udata, 2425 enum zfreeskip skip, int flags) 2426 { 2427 uma_slab_t slab; 2428 uma_slabrefcnt_t slabref; 2429 uma_keg_t keg; 2430 u_int8_t *mem; 2431 u_int8_t freei; 2432 2433 keg = zone->uz_keg; 2434 2435 if (skip < SKIP_DTOR && zone->uz_dtor) 2436 zone->uz_dtor(item, keg->uk_size, udata); 2437 if (skip < SKIP_FINI && zone->uz_fini) 2438 zone->uz_fini(item, keg->uk_size); 2439 2440 ZONE_LOCK(zone); 2441 2442 if (flags & ZFREE_STATFAIL) 2443 zone->uz_fails++; 2444 if (flags & ZFREE_STATFREE) 2445 zone->uz_frees++; 2446 2447 if (!(keg->uk_flags & UMA_ZONE_MALLOC)) { 2448 mem = (u_int8_t *)((unsigned long)item & (~UMA_SLAB_MASK)); 2449 if (keg->uk_flags & UMA_ZONE_HASH) 2450 slab = hash_sfind(&keg->uk_hash, mem); 2451 else { 2452 mem += keg->uk_pgoff; 2453 slab = (uma_slab_t)mem; 2454 } 2455 } else { 2456 slab = (uma_slab_t)udata; 2457 } 2458 2459 /* Do we need to remove from any lists? */ 2460 if (slab->us_freecount+1 == keg->uk_ipers) { 2461 LIST_REMOVE(slab, us_link); 2462 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 2463 } else if (slab->us_freecount == 0) { 2464 LIST_REMOVE(slab, us_link); 2465 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2466 } 2467 2468 /* Slab management stuff */ 2469 freei = ((unsigned long)item - (unsigned long)slab->us_data) 2470 / keg->uk_rsize; 2471 2472 #ifdef INVARIANTS 2473 if (!skip) 2474 uma_dbg_free(zone, slab, item); 2475 #endif 2476 2477 if (keg->uk_flags & UMA_ZONE_REFCNT) { 2478 slabref = (uma_slabrefcnt_t)slab; 2479 slabref->us_freelist[freei].us_item = slab->us_firstfree; 2480 } else { 2481 slab->us_freelist[freei].us_item = slab->us_firstfree; 2482 } 2483 slab->us_firstfree = freei; 2484 slab->us_freecount++; 2485 2486 /* Zone statistics */ 2487 keg->uk_free++; 2488 2489 if (keg->uk_flags & UMA_ZFLAG_FULL) { 2490 if (keg->uk_pages < keg->uk_maxpages) 2491 keg->uk_flags &= ~UMA_ZFLAG_FULL; 2492 2493 /* 2494 * We can handle one more allocation. Since we're clearing ZFLAG_FULL, 2495 * wake up all procs blocked on pages. This should be uncommon, so 2496 * keeping this simple for now (rather than adding count of blocked 2497 * threads etc). 2498 */ 2499 wakeup(keg); 2500 } 2501 2502 ZONE_UNLOCK(zone); 2503 } 2504 2505 /* See uma.h */ 2506 void 2507 uma_zone_set_max(uma_zone_t zone, int nitems) 2508 { 2509 uma_keg_t keg; 2510 2511 keg = zone->uz_keg; 2512 ZONE_LOCK(zone); 2513 if (keg->uk_ppera > 1) 2514 keg->uk_maxpages = nitems * keg->uk_ppera; 2515 else 2516 keg->uk_maxpages = nitems / keg->uk_ipers; 2517 2518 if (keg->uk_maxpages * keg->uk_ipers < nitems) 2519 keg->uk_maxpages++; 2520 2521 ZONE_UNLOCK(zone); 2522 } 2523 2524 /* See uma.h */ 2525 void 2526 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 2527 { 2528 ZONE_LOCK(zone); 2529 KASSERT(zone->uz_keg->uk_pages == 0, 2530 ("uma_zone_set_init on non-empty keg")); 2531 zone->uz_keg->uk_init = uminit; 2532 ZONE_UNLOCK(zone); 2533 } 2534 2535 /* See uma.h */ 2536 void 2537 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 2538 { 2539 ZONE_LOCK(zone); 2540 KASSERT(zone->uz_keg->uk_pages == 0, 2541 ("uma_zone_set_fini on non-empty keg")); 2542 zone->uz_keg->uk_fini = fini; 2543 ZONE_UNLOCK(zone); 2544 } 2545 2546 /* See uma.h */ 2547 void 2548 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 2549 { 2550 ZONE_LOCK(zone); 2551 KASSERT(zone->uz_keg->uk_pages == 0, 2552 ("uma_zone_set_zinit on non-empty keg")); 2553 zone->uz_init = zinit; 2554 ZONE_UNLOCK(zone); 2555 } 2556 2557 /* See uma.h */ 2558 void 2559 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 2560 { 2561 ZONE_LOCK(zone); 2562 KASSERT(zone->uz_keg->uk_pages == 0, 2563 ("uma_zone_set_zfini on non-empty keg")); 2564 zone->uz_fini = zfini; 2565 ZONE_UNLOCK(zone); 2566 } 2567 2568 /* See uma.h */ 2569 /* XXX uk_freef is not actually used with the zone locked */ 2570 void 2571 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 2572 { 2573 ZONE_LOCK(zone); 2574 zone->uz_keg->uk_freef = freef; 2575 ZONE_UNLOCK(zone); 2576 } 2577 2578 /* See uma.h */ 2579 /* XXX uk_allocf is not actually used with the zone locked */ 2580 void 2581 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 2582 { 2583 ZONE_LOCK(zone); 2584 zone->uz_keg->uk_flags |= UMA_ZFLAG_PRIVALLOC; 2585 zone->uz_keg->uk_allocf = allocf; 2586 ZONE_UNLOCK(zone); 2587 } 2588 2589 /* See uma.h */ 2590 int 2591 uma_zone_set_obj(uma_zone_t zone, struct vm_object *obj, int count) 2592 { 2593 uma_keg_t keg; 2594 vm_offset_t kva; 2595 int pages; 2596 2597 keg = zone->uz_keg; 2598 pages = count / keg->uk_ipers; 2599 2600 if (pages * keg->uk_ipers < count) 2601 pages++; 2602 2603 kva = kmem_alloc_nofault(kernel_map, pages * UMA_SLAB_SIZE); 2604 2605 if (kva == 0) 2606 return (0); 2607 if (obj == NULL) { 2608 obj = vm_object_allocate(OBJT_DEFAULT, 2609 pages); 2610 } else { 2611 VM_OBJECT_LOCK_INIT(obj, "uma object"); 2612 _vm_object_allocate(OBJT_DEFAULT, 2613 pages, obj); 2614 } 2615 ZONE_LOCK(zone); 2616 keg->uk_kva = kva; 2617 keg->uk_obj = obj; 2618 keg->uk_maxpages = pages; 2619 keg->uk_allocf = obj_alloc; 2620 keg->uk_flags |= UMA_ZONE_NOFREE | UMA_ZFLAG_PRIVALLOC; 2621 ZONE_UNLOCK(zone); 2622 return (1); 2623 } 2624 2625 /* See uma.h */ 2626 void 2627 uma_prealloc(uma_zone_t zone, int items) 2628 { 2629 int slabs; 2630 uma_slab_t slab; 2631 uma_keg_t keg; 2632 2633 keg = zone->uz_keg; 2634 ZONE_LOCK(zone); 2635 slabs = items / keg->uk_ipers; 2636 if (slabs * keg->uk_ipers < items) 2637 slabs++; 2638 while (slabs > 0) { 2639 slab = slab_zalloc(zone, M_WAITOK); 2640 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 2641 slabs--; 2642 } 2643 ZONE_UNLOCK(zone); 2644 } 2645 2646 /* See uma.h */ 2647 u_int32_t * 2648 uma_find_refcnt(uma_zone_t zone, void *item) 2649 { 2650 uma_slabrefcnt_t slabref; 2651 uma_keg_t keg; 2652 u_int32_t *refcnt; 2653 int idx; 2654 2655 keg = zone->uz_keg; 2656 slabref = (uma_slabrefcnt_t)vtoslab((vm_offset_t)item & 2657 (~UMA_SLAB_MASK)); 2658 KASSERT(slabref != NULL && slabref->us_keg->uk_flags & UMA_ZONE_REFCNT, 2659 ("uma_find_refcnt(): zone possibly not UMA_ZONE_REFCNT")); 2660 idx = ((unsigned long)item - (unsigned long)slabref->us_data) 2661 / keg->uk_rsize; 2662 refcnt = &slabref->us_freelist[idx].us_refcnt; 2663 return refcnt; 2664 } 2665 2666 /* See uma.h */ 2667 void 2668 uma_reclaim(void) 2669 { 2670 #ifdef UMA_DEBUG 2671 printf("UMA: vm asked us to release pages!\n"); 2672 #endif 2673 bucket_enable(); 2674 zone_foreach(zone_drain); 2675 /* 2676 * Some slabs may have been freed but this zone will be visited early 2677 * we visit again so that we can free pages that are empty once other 2678 * zones are drained. We have to do the same for buckets. 2679 */ 2680 zone_drain(slabzone); 2681 zone_drain(slabrefzone); 2682 bucket_zone_drain(); 2683 } 2684 2685 /* See uma.h */ 2686 int 2687 uma_zone_exhausted(uma_zone_t zone) 2688 { 2689 int full; 2690 2691 ZONE_LOCK(zone); 2692 full = (zone->uz_keg->uk_flags & UMA_ZFLAG_FULL); 2693 ZONE_UNLOCK(zone); 2694 return (full); 2695 } 2696 2697 int 2698 uma_zone_exhausted_nolock(uma_zone_t zone) 2699 { 2700 return (zone->uz_keg->uk_flags & UMA_ZFLAG_FULL); 2701 } 2702 2703 void * 2704 uma_large_malloc(int size, int wait) 2705 { 2706 void *mem; 2707 uma_slab_t slab; 2708 u_int8_t flags; 2709 2710 slab = uma_zalloc_internal(slabzone, NULL, wait); 2711 if (slab == NULL) 2712 return (NULL); 2713 mem = page_alloc(NULL, size, &flags, wait); 2714 if (mem) { 2715 vsetslab((vm_offset_t)mem, slab); 2716 slab->us_data = mem; 2717 slab->us_flags = flags | UMA_SLAB_MALLOC; 2718 slab->us_size = size; 2719 } else { 2720 uma_zfree_internal(slabzone, slab, NULL, SKIP_NONE, 2721 ZFREE_STATFAIL | ZFREE_STATFREE); 2722 } 2723 2724 return (mem); 2725 } 2726 2727 void 2728 uma_large_free(uma_slab_t slab) 2729 { 2730 vsetobj((vm_offset_t)slab->us_data, kmem_object); 2731 page_free(slab->us_data, slab->us_size, slab->us_flags); 2732 uma_zfree_internal(slabzone, slab, NULL, SKIP_NONE, ZFREE_STATFREE); 2733 } 2734 2735 void 2736 uma_print_stats(void) 2737 { 2738 zone_foreach(uma_print_zone); 2739 } 2740 2741 static void 2742 slab_print(uma_slab_t slab) 2743 { 2744 printf("slab: keg %p, data %p, freecount %d, firstfree %d\n", 2745 slab->us_keg, slab->us_data, slab->us_freecount, 2746 slab->us_firstfree); 2747 } 2748 2749 static void 2750 cache_print(uma_cache_t cache) 2751 { 2752 printf("alloc: %p(%d), free: %p(%d)\n", 2753 cache->uc_allocbucket, 2754 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, 2755 cache->uc_freebucket, 2756 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0); 2757 } 2758 2759 void 2760 uma_print_zone(uma_zone_t zone) 2761 { 2762 uma_cache_t cache; 2763 uma_keg_t keg; 2764 uma_slab_t slab; 2765 int i; 2766 2767 keg = zone->uz_keg; 2768 printf("%s(%p) size %d(%d) flags %d ipers %d ppera %d out %d free %d\n", 2769 zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags, 2770 keg->uk_ipers, keg->uk_ppera, 2771 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free); 2772 printf("Part slabs:\n"); 2773 LIST_FOREACH(slab, &keg->uk_part_slab, us_link) 2774 slab_print(slab); 2775 printf("Free slabs:\n"); 2776 LIST_FOREACH(slab, &keg->uk_free_slab, us_link) 2777 slab_print(slab); 2778 printf("Full slabs:\n"); 2779 LIST_FOREACH(slab, &keg->uk_full_slab, us_link) 2780 slab_print(slab); 2781 for (i = 0; i <= mp_maxid; i++) { 2782 if (CPU_ABSENT(i)) 2783 continue; 2784 cache = &zone->uz_cpu[i]; 2785 printf("CPU %d Cache:\n", i); 2786 cache_print(cache); 2787 } 2788 } 2789 2790 #ifdef DDB 2791 /* 2792 * Generate statistics across both the zone and its per-cpu cache's. Return 2793 * desired statistics if the pointer is non-NULL for that statistic. 2794 * 2795 * Note: does not update the zone statistics, as it can't safely clear the 2796 * per-CPU cache statistic. 2797 * 2798 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't 2799 * safe from off-CPU; we should modify the caches to track this information 2800 * directly so that we don't have to. 2801 */ 2802 static void 2803 uma_zone_sumstat(uma_zone_t z, int *cachefreep, u_int64_t *allocsp, 2804 u_int64_t *freesp) 2805 { 2806 uma_cache_t cache; 2807 u_int64_t allocs, frees; 2808 int cachefree, cpu; 2809 2810 allocs = frees = 0; 2811 cachefree = 0; 2812 for (cpu = 0; cpu <= mp_maxid; cpu++) { 2813 if (CPU_ABSENT(cpu)) 2814 continue; 2815 cache = &z->uz_cpu[cpu]; 2816 if (cache->uc_allocbucket != NULL) 2817 cachefree += cache->uc_allocbucket->ub_cnt; 2818 if (cache->uc_freebucket != NULL) 2819 cachefree += cache->uc_freebucket->ub_cnt; 2820 allocs += cache->uc_allocs; 2821 frees += cache->uc_frees; 2822 } 2823 allocs += z->uz_allocs; 2824 frees += z->uz_frees; 2825 if (cachefreep != NULL) 2826 *cachefreep = cachefree; 2827 if (allocsp != NULL) 2828 *allocsp = allocs; 2829 if (freesp != NULL) 2830 *freesp = frees; 2831 } 2832 #endif /* DDB */ 2833 2834 static int 2835 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 2836 { 2837 uma_keg_t kz; 2838 uma_zone_t z; 2839 int count; 2840 2841 count = 0; 2842 mtx_lock(&uma_mtx); 2843 LIST_FOREACH(kz, &uma_kegs, uk_link) { 2844 LIST_FOREACH(z, &kz->uk_zones, uz_link) 2845 count++; 2846 } 2847 mtx_unlock(&uma_mtx); 2848 return (sysctl_handle_int(oidp, &count, 0, req)); 2849 } 2850 2851 static int 2852 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 2853 { 2854 struct uma_stream_header ush; 2855 struct uma_type_header uth; 2856 struct uma_percpu_stat ups; 2857 uma_bucket_t bucket; 2858 struct sbuf sbuf; 2859 uma_cache_t cache; 2860 uma_keg_t kz; 2861 uma_zone_t z; 2862 char *buffer; 2863 int buflen, count, error, i; 2864 2865 mtx_lock(&uma_mtx); 2866 restart: 2867 mtx_assert(&uma_mtx, MA_OWNED); 2868 count = 0; 2869 LIST_FOREACH(kz, &uma_kegs, uk_link) { 2870 LIST_FOREACH(z, &kz->uk_zones, uz_link) 2871 count++; 2872 } 2873 mtx_unlock(&uma_mtx); 2874 2875 buflen = sizeof(ush) + count * (sizeof(uth) + sizeof(ups) * 2876 (mp_maxid + 1)) + 1; 2877 buffer = malloc(buflen, M_TEMP, M_WAITOK | M_ZERO); 2878 2879 mtx_lock(&uma_mtx); 2880 i = 0; 2881 LIST_FOREACH(kz, &uma_kegs, uk_link) { 2882 LIST_FOREACH(z, &kz->uk_zones, uz_link) 2883 i++; 2884 } 2885 if (i > count) { 2886 free(buffer, M_TEMP); 2887 goto restart; 2888 } 2889 count = i; 2890 2891 sbuf_new(&sbuf, buffer, buflen, SBUF_FIXEDLEN); 2892 2893 /* 2894 * Insert stream header. 2895 */ 2896 bzero(&ush, sizeof(ush)); 2897 ush.ush_version = UMA_STREAM_VERSION; 2898 ush.ush_maxcpus = (mp_maxid + 1); 2899 ush.ush_count = count; 2900 if (sbuf_bcat(&sbuf, &ush, sizeof(ush)) < 0) { 2901 mtx_unlock(&uma_mtx); 2902 error = ENOMEM; 2903 goto out; 2904 } 2905 2906 LIST_FOREACH(kz, &uma_kegs, uk_link) { 2907 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 2908 bzero(&uth, sizeof(uth)); 2909 ZONE_LOCK(z); 2910 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 2911 uth.uth_align = kz->uk_align; 2912 uth.uth_pages = kz->uk_pages; 2913 uth.uth_keg_free = kz->uk_free; 2914 uth.uth_size = kz->uk_size; 2915 uth.uth_rsize = kz->uk_rsize; 2916 uth.uth_maxpages = kz->uk_maxpages; 2917 if (kz->uk_ppera > 1) 2918 uth.uth_limit = kz->uk_maxpages / 2919 kz->uk_ppera; 2920 else 2921 uth.uth_limit = kz->uk_maxpages * 2922 kz->uk_ipers; 2923 2924 /* 2925 * A zone is secondary is it is not the first entry 2926 * on the keg's zone list. 2927 */ 2928 if ((kz->uk_flags & UMA_ZONE_SECONDARY) && 2929 (LIST_FIRST(&kz->uk_zones) != z)) 2930 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 2931 2932 LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link) 2933 uth.uth_zone_free += bucket->ub_cnt; 2934 uth.uth_allocs = z->uz_allocs; 2935 uth.uth_frees = z->uz_frees; 2936 uth.uth_fails = z->uz_fails; 2937 if (sbuf_bcat(&sbuf, &uth, sizeof(uth)) < 0) { 2938 ZONE_UNLOCK(z); 2939 mtx_unlock(&uma_mtx); 2940 error = ENOMEM; 2941 goto out; 2942 } 2943 /* 2944 * While it is not normally safe to access the cache 2945 * bucket pointers while not on the CPU that owns the 2946 * cache, we only allow the pointers to be exchanged 2947 * without the zone lock held, not invalidated, so 2948 * accept the possible race associated with bucket 2949 * exchange during monitoring. 2950 */ 2951 for (i = 0; i < (mp_maxid + 1); i++) { 2952 bzero(&ups, sizeof(ups)); 2953 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) 2954 goto skip; 2955 if (CPU_ABSENT(i)) 2956 goto skip; 2957 cache = &z->uz_cpu[i]; 2958 if (cache->uc_allocbucket != NULL) 2959 ups.ups_cache_free += 2960 cache->uc_allocbucket->ub_cnt; 2961 if (cache->uc_freebucket != NULL) 2962 ups.ups_cache_free += 2963 cache->uc_freebucket->ub_cnt; 2964 ups.ups_allocs = cache->uc_allocs; 2965 ups.ups_frees = cache->uc_frees; 2966 skip: 2967 if (sbuf_bcat(&sbuf, &ups, sizeof(ups)) < 0) { 2968 ZONE_UNLOCK(z); 2969 mtx_unlock(&uma_mtx); 2970 error = ENOMEM; 2971 goto out; 2972 } 2973 } 2974 ZONE_UNLOCK(z); 2975 } 2976 } 2977 mtx_unlock(&uma_mtx); 2978 sbuf_finish(&sbuf); 2979 error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf)); 2980 out: 2981 free(buffer, M_TEMP); 2982 return (error); 2983 } 2984 2985 #ifdef DDB 2986 DB_SHOW_COMMAND(uma, db_show_uma) 2987 { 2988 u_int64_t allocs, frees; 2989 uma_bucket_t bucket; 2990 uma_keg_t kz; 2991 uma_zone_t z; 2992 int cachefree; 2993 2994 db_printf("%18s %8s %8s %8s %12s\n", "Zone", "Size", "Used", "Free", 2995 "Requests"); 2996 LIST_FOREACH(kz, &uma_kegs, uk_link) { 2997 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 2998 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 2999 allocs = z->uz_allocs; 3000 frees = z->uz_frees; 3001 cachefree = 0; 3002 } else 3003 uma_zone_sumstat(z, &cachefree, &allocs, 3004 &frees); 3005 if (!((kz->uk_flags & UMA_ZONE_SECONDARY) && 3006 (LIST_FIRST(&kz->uk_zones) != z))) 3007 cachefree += kz->uk_free; 3008 LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link) 3009 cachefree += bucket->ub_cnt; 3010 db_printf("%18s %8ju %8jd %8d %12ju\n", z->uz_name, 3011 (uintmax_t)kz->uk_size, 3012 (intmax_t)(allocs - frees), cachefree, 3013 (uintmax_t)allocs); 3014 } 3015 } 3016 } 3017 #endif 3018