1 /*- 2 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org> 3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 4 * Copyright (c) 2004-2006 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /* 30 * uma_core.c Implementation of the Universal Memory allocator 31 * 32 * This allocator is intended to replace the multitude of similar object caches 33 * in the standard FreeBSD kernel. The intent is to be flexible as well as 34 * efficient. A primary design goal is to return unused memory to the rest of 35 * the system. This will make the system as a whole more flexible due to the 36 * ability to move memory to subsystems which most need it instead of leaving 37 * pools of reserved memory unused. 38 * 39 * The basic ideas stem from similar slab/zone based allocators whose algorithms 40 * are well known. 41 * 42 */ 43 44 /* 45 * TODO: 46 * - Improve memory usage for large allocations 47 * - Investigate cache size adjustments 48 */ 49 50 #include <sys/cdefs.h> 51 __FBSDID("$FreeBSD$"); 52 53 #include "opt_ddb.h" 54 #include "opt_param.h" 55 #include "opt_vm.h" 56 57 #include <sys/param.h> 58 #include <sys/systm.h> 59 #include <sys/bitset.h> 60 #include <sys/eventhandler.h> 61 #include <sys/kernel.h> 62 #include <sys/types.h> 63 #include <sys/queue.h> 64 #include <sys/malloc.h> 65 #include <sys/ktr.h> 66 #include <sys/lock.h> 67 #include <sys/sysctl.h> 68 #include <sys/mutex.h> 69 #include <sys/proc.h> 70 #include <sys/random.h> 71 #include <sys/rwlock.h> 72 #include <sys/sbuf.h> 73 #include <sys/sched.h> 74 #include <sys/smp.h> 75 #include <sys/taskqueue.h> 76 #include <sys/vmmeter.h> 77 78 #include <vm/vm.h> 79 #include <vm/vm_object.h> 80 #include <vm/vm_page.h> 81 #include <vm/vm_pageout.h> 82 #include <vm/vm_param.h> 83 #include <vm/vm_map.h> 84 #include <vm/vm_kern.h> 85 #include <vm/vm_extern.h> 86 #include <vm/uma.h> 87 #include <vm/uma_int.h> 88 #include <vm/uma_dbg.h> 89 90 #include <ddb/ddb.h> 91 92 #ifdef DEBUG_MEMGUARD 93 #include <vm/memguard.h> 94 #endif 95 96 /* 97 * This is the zone and keg from which all zones are spawned. The idea is that 98 * even the zone & keg heads are allocated from the allocator, so we use the 99 * bss section to bootstrap us. 100 */ 101 static struct uma_keg masterkeg; 102 static struct uma_zone masterzone_k; 103 static struct uma_zone masterzone_z; 104 static uma_zone_t kegs = &masterzone_k; 105 static uma_zone_t zones = &masterzone_z; 106 107 /* This is the zone from which all of uma_slab_t's are allocated. */ 108 static uma_zone_t slabzone; 109 110 /* 111 * The initial hash tables come out of this zone so they can be allocated 112 * prior to malloc coming up. 113 */ 114 static uma_zone_t hashzone; 115 116 /* The boot-time adjusted value for cache line alignment. */ 117 int uma_align_cache = 64 - 1; 118 119 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 120 121 /* 122 * Are we allowed to allocate buckets? 123 */ 124 static int bucketdisable = 1; 125 126 /* Linked list of all kegs in the system */ 127 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 128 129 /* Linked list of all cache-only zones in the system */ 130 static LIST_HEAD(,uma_zone) uma_cachezones = 131 LIST_HEAD_INITIALIZER(uma_cachezones); 132 133 /* This RW lock protects the keg list */ 134 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 135 136 /* 137 * Pointer and counter to pool of pages, that is preallocated at 138 * startup to bootstrap UMA. Early zones continue to use the pool 139 * until it is depleted, so allocations may happen after boot, thus 140 * we need a mutex to protect it. 141 */ 142 static char *bootmem; 143 static int boot_pages; 144 static struct mtx uma_boot_pages_mtx; 145 146 static struct sx uma_drain_lock; 147 148 /* Is the VM done starting up? */ 149 static int booted = 0; 150 #define UMA_STARTUP 1 151 #define UMA_STARTUP2 2 152 153 /* 154 * This is the handle used to schedule events that need to happen 155 * outside of the allocation fast path. 156 */ 157 static struct callout uma_callout; 158 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 159 160 /* 161 * This structure is passed as the zone ctor arg so that I don't have to create 162 * a special allocation function just for zones. 163 */ 164 struct uma_zctor_args { 165 const char *name; 166 size_t size; 167 uma_ctor ctor; 168 uma_dtor dtor; 169 uma_init uminit; 170 uma_fini fini; 171 uma_import import; 172 uma_release release; 173 void *arg; 174 uma_keg_t keg; 175 int align; 176 uint32_t flags; 177 }; 178 179 struct uma_kctor_args { 180 uma_zone_t zone; 181 size_t size; 182 uma_init uminit; 183 uma_fini fini; 184 int align; 185 uint32_t flags; 186 }; 187 188 struct uma_bucket_zone { 189 uma_zone_t ubz_zone; 190 char *ubz_name; 191 int ubz_entries; /* Number of items it can hold. */ 192 int ubz_maxsize; /* Maximum allocation size per-item. */ 193 }; 194 195 /* 196 * Compute the actual number of bucket entries to pack them in power 197 * of two sizes for more efficient space utilization. 198 */ 199 #define BUCKET_SIZE(n) \ 200 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 201 202 #define BUCKET_MAX BUCKET_SIZE(256) 203 204 struct uma_bucket_zone bucket_zones[] = { 205 { NULL, "4 Bucket", BUCKET_SIZE(4), 4096 }, 206 { NULL, "6 Bucket", BUCKET_SIZE(6), 3072 }, 207 { NULL, "8 Bucket", BUCKET_SIZE(8), 2048 }, 208 { NULL, "12 Bucket", BUCKET_SIZE(12), 1536 }, 209 { NULL, "16 Bucket", BUCKET_SIZE(16), 1024 }, 210 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 211 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 212 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 213 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 214 { NULL, NULL, 0} 215 }; 216 217 /* 218 * Flags and enumerations to be passed to internal functions. 219 */ 220 enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI }; 221 222 /* Prototypes.. */ 223 224 static void *noobj_alloc(uma_zone_t, vm_size_t, uint8_t *, int); 225 static void *page_alloc(uma_zone_t, vm_size_t, uint8_t *, int); 226 static void *startup_alloc(uma_zone_t, vm_size_t, uint8_t *, int); 227 static void page_free(void *, vm_size_t, uint8_t); 228 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int); 229 static void cache_drain(uma_zone_t); 230 static void bucket_drain(uma_zone_t, uma_bucket_t); 231 static void bucket_cache_drain(uma_zone_t zone); 232 static int keg_ctor(void *, int, void *, int); 233 static void keg_dtor(void *, int, void *); 234 static int zone_ctor(void *, int, void *, int); 235 static void zone_dtor(void *, int, void *); 236 static int zero_init(void *, int, int); 237 static void keg_small_init(uma_keg_t keg); 238 static void keg_large_init(uma_keg_t keg); 239 static void zone_foreach(void (*zfunc)(uma_zone_t)); 240 static void zone_timeout(uma_zone_t zone); 241 static int hash_alloc(struct uma_hash *); 242 static int hash_expand(struct uma_hash *, struct uma_hash *); 243 static void hash_free(struct uma_hash *hash); 244 static void uma_timeout(void *); 245 static void uma_startup3(void); 246 static void *zone_alloc_item(uma_zone_t, void *, int); 247 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 248 static void bucket_enable(void); 249 static void bucket_init(void); 250 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 251 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 252 static void bucket_zone_drain(void); 253 static uma_bucket_t zone_alloc_bucket(uma_zone_t zone, void *, int flags); 254 static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags); 255 static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags); 256 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 257 static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item); 258 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 259 uma_fini fini, int align, uint32_t flags); 260 static int zone_import(uma_zone_t zone, void **bucket, int max, int flags); 261 static void zone_release(uma_zone_t zone, void **bucket, int cnt); 262 static void uma_zero_item(void *item, uma_zone_t zone); 263 264 void uma_print_zone(uma_zone_t); 265 void uma_print_stats(void); 266 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 267 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 268 269 #ifdef INVARIANTS 270 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 271 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 272 #endif 273 274 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 275 276 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 277 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 278 279 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 280 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 281 282 static int zone_warnings = 1; 283 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 284 "Warn when UMA zones becomes full"); 285 286 /* 287 * This routine checks to see whether or not it's safe to enable buckets. 288 */ 289 static void 290 bucket_enable(void) 291 { 292 bucketdisable = vm_page_count_min(); 293 } 294 295 /* 296 * Initialize bucket_zones, the array of zones of buckets of various sizes. 297 * 298 * For each zone, calculate the memory required for each bucket, consisting 299 * of the header and an array of pointers. 300 */ 301 static void 302 bucket_init(void) 303 { 304 struct uma_bucket_zone *ubz; 305 int size; 306 307 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 308 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 309 size += sizeof(void *) * ubz->ubz_entries; 310 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 311 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 312 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET); 313 } 314 } 315 316 /* 317 * Given a desired number of entries for a bucket, return the zone from which 318 * to allocate the bucket. 319 */ 320 static struct uma_bucket_zone * 321 bucket_zone_lookup(int entries) 322 { 323 struct uma_bucket_zone *ubz; 324 325 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 326 if (ubz->ubz_entries >= entries) 327 return (ubz); 328 ubz--; 329 return (ubz); 330 } 331 332 static int 333 bucket_select(int size) 334 { 335 struct uma_bucket_zone *ubz; 336 337 ubz = &bucket_zones[0]; 338 if (size > ubz->ubz_maxsize) 339 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 340 341 for (; ubz->ubz_entries != 0; ubz++) 342 if (ubz->ubz_maxsize < size) 343 break; 344 ubz--; 345 return (ubz->ubz_entries); 346 } 347 348 static uma_bucket_t 349 bucket_alloc(uma_zone_t zone, void *udata, int flags) 350 { 351 struct uma_bucket_zone *ubz; 352 uma_bucket_t bucket; 353 354 /* 355 * This is to stop us from allocating per cpu buckets while we're 356 * running out of vm.boot_pages. Otherwise, we would exhaust the 357 * boot pages. This also prevents us from allocating buckets in 358 * low memory situations. 359 */ 360 if (bucketdisable) 361 return (NULL); 362 /* 363 * To limit bucket recursion we store the original zone flags 364 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 365 * NOVM flag to persist even through deep recursions. We also 366 * store ZFLAG_BUCKET once we have recursed attempting to allocate 367 * a bucket for a bucket zone so we do not allow infinite bucket 368 * recursion. This cookie will even persist to frees of unused 369 * buckets via the allocation path or bucket allocations in the 370 * free path. 371 */ 372 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 373 udata = (void *)(uintptr_t)zone->uz_flags; 374 else { 375 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 376 return (NULL); 377 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 378 } 379 if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY) 380 flags |= M_NOVM; 381 ubz = bucket_zone_lookup(zone->uz_count); 382 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 383 ubz++; 384 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 385 if (bucket) { 386 #ifdef INVARIANTS 387 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 388 #endif 389 bucket->ub_cnt = 0; 390 bucket->ub_entries = ubz->ubz_entries; 391 } 392 393 return (bucket); 394 } 395 396 static void 397 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 398 { 399 struct uma_bucket_zone *ubz; 400 401 KASSERT(bucket->ub_cnt == 0, 402 ("bucket_free: Freeing a non free bucket.")); 403 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 404 udata = (void *)(uintptr_t)zone->uz_flags; 405 ubz = bucket_zone_lookup(bucket->ub_entries); 406 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 407 } 408 409 static void 410 bucket_zone_drain(void) 411 { 412 struct uma_bucket_zone *ubz; 413 414 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 415 zone_drain(ubz->ubz_zone); 416 } 417 418 static void 419 zone_log_warning(uma_zone_t zone) 420 { 421 static const struct timeval warninterval = { 300, 0 }; 422 423 if (!zone_warnings || zone->uz_warning == NULL) 424 return; 425 426 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 427 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 428 } 429 430 static inline void 431 zone_maxaction(uma_zone_t zone) 432 { 433 434 if (zone->uz_maxaction.ta_func != NULL) 435 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 436 } 437 438 static void 439 zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t)) 440 { 441 uma_klink_t klink; 442 443 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) 444 kegfn(klink->kl_keg); 445 } 446 447 /* 448 * Routine called by timeout which is used to fire off some time interval 449 * based calculations. (stats, hash size, etc.) 450 * 451 * Arguments: 452 * arg Unused 453 * 454 * Returns: 455 * Nothing 456 */ 457 static void 458 uma_timeout(void *unused) 459 { 460 bucket_enable(); 461 zone_foreach(zone_timeout); 462 463 /* Reschedule this event */ 464 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 465 } 466 467 /* 468 * Routine to perform timeout driven calculations. This expands the 469 * hashes and does per cpu statistics aggregation. 470 * 471 * Returns nothing. 472 */ 473 static void 474 keg_timeout(uma_keg_t keg) 475 { 476 477 KEG_LOCK(keg); 478 /* 479 * Expand the keg hash table. 480 * 481 * This is done if the number of slabs is larger than the hash size. 482 * What I'm trying to do here is completely reduce collisions. This 483 * may be a little aggressive. Should I allow for two collisions max? 484 */ 485 if (keg->uk_flags & UMA_ZONE_HASH && 486 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) { 487 struct uma_hash newhash; 488 struct uma_hash oldhash; 489 int ret; 490 491 /* 492 * This is so involved because allocating and freeing 493 * while the keg lock is held will lead to deadlock. 494 * I have to do everything in stages and check for 495 * races. 496 */ 497 newhash = keg->uk_hash; 498 KEG_UNLOCK(keg); 499 ret = hash_alloc(&newhash); 500 KEG_LOCK(keg); 501 if (ret) { 502 if (hash_expand(&keg->uk_hash, &newhash)) { 503 oldhash = keg->uk_hash; 504 keg->uk_hash = newhash; 505 } else 506 oldhash = newhash; 507 508 KEG_UNLOCK(keg); 509 hash_free(&oldhash); 510 return; 511 } 512 } 513 KEG_UNLOCK(keg); 514 } 515 516 static void 517 zone_timeout(uma_zone_t zone) 518 { 519 520 zone_foreach_keg(zone, &keg_timeout); 521 } 522 523 /* 524 * Allocate and zero fill the next sized hash table from the appropriate 525 * backing store. 526 * 527 * Arguments: 528 * hash A new hash structure with the old hash size in uh_hashsize 529 * 530 * Returns: 531 * 1 on success and 0 on failure. 532 */ 533 static int 534 hash_alloc(struct uma_hash *hash) 535 { 536 int oldsize; 537 int alloc; 538 539 oldsize = hash->uh_hashsize; 540 541 /* We're just going to go to a power of two greater */ 542 if (oldsize) { 543 hash->uh_hashsize = oldsize * 2; 544 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 545 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 546 M_UMAHASH, M_NOWAIT); 547 } else { 548 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 549 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 550 M_WAITOK); 551 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 552 } 553 if (hash->uh_slab_hash) { 554 bzero(hash->uh_slab_hash, alloc); 555 hash->uh_hashmask = hash->uh_hashsize - 1; 556 return (1); 557 } 558 559 return (0); 560 } 561 562 /* 563 * Expands the hash table for HASH zones. This is done from zone_timeout 564 * to reduce collisions. This must not be done in the regular allocation 565 * path, otherwise, we can recurse on the vm while allocating pages. 566 * 567 * Arguments: 568 * oldhash The hash you want to expand 569 * newhash The hash structure for the new table 570 * 571 * Returns: 572 * Nothing 573 * 574 * Discussion: 575 */ 576 static int 577 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 578 { 579 uma_slab_t slab; 580 int hval; 581 int i; 582 583 if (!newhash->uh_slab_hash) 584 return (0); 585 586 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 587 return (0); 588 589 /* 590 * I need to investigate hash algorithms for resizing without a 591 * full rehash. 592 */ 593 594 for (i = 0; i < oldhash->uh_hashsize; i++) 595 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) { 596 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]); 597 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink); 598 hval = UMA_HASH(newhash, slab->us_data); 599 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 600 slab, us_hlink); 601 } 602 603 return (1); 604 } 605 606 /* 607 * Free the hash bucket to the appropriate backing store. 608 * 609 * Arguments: 610 * slab_hash The hash bucket we're freeing 611 * hashsize The number of entries in that hash bucket 612 * 613 * Returns: 614 * Nothing 615 */ 616 static void 617 hash_free(struct uma_hash *hash) 618 { 619 if (hash->uh_slab_hash == NULL) 620 return; 621 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 622 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 623 else 624 free(hash->uh_slab_hash, M_UMAHASH); 625 } 626 627 /* 628 * Frees all outstanding items in a bucket 629 * 630 * Arguments: 631 * zone The zone to free to, must be unlocked. 632 * bucket The free/alloc bucket with items, cpu queue must be locked. 633 * 634 * Returns: 635 * Nothing 636 */ 637 638 static void 639 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 640 { 641 int i; 642 643 if (bucket == NULL) 644 return; 645 646 if (zone->uz_fini) 647 for (i = 0; i < bucket->ub_cnt; i++) 648 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 649 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 650 bucket->ub_cnt = 0; 651 } 652 653 /* 654 * Drains the per cpu caches for a zone. 655 * 656 * NOTE: This may only be called while the zone is being turn down, and not 657 * during normal operation. This is necessary in order that we do not have 658 * to migrate CPUs to drain the per-CPU caches. 659 * 660 * Arguments: 661 * zone The zone to drain, must be unlocked. 662 * 663 * Returns: 664 * Nothing 665 */ 666 static void 667 cache_drain(uma_zone_t zone) 668 { 669 uma_cache_t cache; 670 int cpu; 671 672 /* 673 * XXX: It is safe to not lock the per-CPU caches, because we're 674 * tearing down the zone anyway. I.e., there will be no further use 675 * of the caches at this point. 676 * 677 * XXX: It would good to be able to assert that the zone is being 678 * torn down to prevent improper use of cache_drain(). 679 * 680 * XXX: We lock the zone before passing into bucket_cache_drain() as 681 * it is used elsewhere. Should the tear-down path be made special 682 * there in some form? 683 */ 684 CPU_FOREACH(cpu) { 685 cache = &zone->uz_cpu[cpu]; 686 bucket_drain(zone, cache->uc_allocbucket); 687 bucket_drain(zone, cache->uc_freebucket); 688 if (cache->uc_allocbucket != NULL) 689 bucket_free(zone, cache->uc_allocbucket, NULL); 690 if (cache->uc_freebucket != NULL) 691 bucket_free(zone, cache->uc_freebucket, NULL); 692 cache->uc_allocbucket = cache->uc_freebucket = NULL; 693 } 694 ZONE_LOCK(zone); 695 bucket_cache_drain(zone); 696 ZONE_UNLOCK(zone); 697 } 698 699 static void 700 cache_shrink(uma_zone_t zone) 701 { 702 703 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 704 return; 705 706 ZONE_LOCK(zone); 707 zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2; 708 ZONE_UNLOCK(zone); 709 } 710 711 static void 712 cache_drain_safe_cpu(uma_zone_t zone) 713 { 714 uma_cache_t cache; 715 uma_bucket_t b1, b2; 716 717 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 718 return; 719 720 b1 = b2 = NULL; 721 ZONE_LOCK(zone); 722 critical_enter(); 723 cache = &zone->uz_cpu[curcpu]; 724 if (cache->uc_allocbucket) { 725 if (cache->uc_allocbucket->ub_cnt != 0) 726 LIST_INSERT_HEAD(&zone->uz_buckets, 727 cache->uc_allocbucket, ub_link); 728 else 729 b1 = cache->uc_allocbucket; 730 cache->uc_allocbucket = NULL; 731 } 732 if (cache->uc_freebucket) { 733 if (cache->uc_freebucket->ub_cnt != 0) 734 LIST_INSERT_HEAD(&zone->uz_buckets, 735 cache->uc_freebucket, ub_link); 736 else 737 b2 = cache->uc_freebucket; 738 cache->uc_freebucket = NULL; 739 } 740 critical_exit(); 741 ZONE_UNLOCK(zone); 742 if (b1) 743 bucket_free(zone, b1, NULL); 744 if (b2) 745 bucket_free(zone, b2, NULL); 746 } 747 748 /* 749 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 750 * This is an expensive call because it needs to bind to all CPUs 751 * one by one and enter a critical section on each of them in order 752 * to safely access their cache buckets. 753 * Zone lock must not be held on call this function. 754 */ 755 static void 756 cache_drain_safe(uma_zone_t zone) 757 { 758 int cpu; 759 760 /* 761 * Polite bucket sizes shrinking was not enouth, shrink aggressively. 762 */ 763 if (zone) 764 cache_shrink(zone); 765 else 766 zone_foreach(cache_shrink); 767 768 CPU_FOREACH(cpu) { 769 thread_lock(curthread); 770 sched_bind(curthread, cpu); 771 thread_unlock(curthread); 772 773 if (zone) 774 cache_drain_safe_cpu(zone); 775 else 776 zone_foreach(cache_drain_safe_cpu); 777 } 778 thread_lock(curthread); 779 sched_unbind(curthread); 780 thread_unlock(curthread); 781 } 782 783 /* 784 * Drain the cached buckets from a zone. Expects a locked zone on entry. 785 */ 786 static void 787 bucket_cache_drain(uma_zone_t zone) 788 { 789 uma_bucket_t bucket; 790 791 /* 792 * Drain the bucket queues and free the buckets, we just keep two per 793 * cpu (alloc/free). 794 */ 795 while ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) { 796 LIST_REMOVE(bucket, ub_link); 797 ZONE_UNLOCK(zone); 798 bucket_drain(zone, bucket); 799 bucket_free(zone, bucket, NULL); 800 ZONE_LOCK(zone); 801 } 802 803 /* 804 * Shrink further bucket sizes. Price of single zone lock collision 805 * is probably lower then price of global cache drain. 806 */ 807 if (zone->uz_count > zone->uz_count_min) 808 zone->uz_count--; 809 } 810 811 static void 812 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 813 { 814 uint8_t *mem; 815 int i; 816 uint8_t flags; 817 818 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 819 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 820 821 mem = slab->us_data; 822 flags = slab->us_flags; 823 i = start; 824 if (keg->uk_fini != NULL) { 825 for (i--; i > -1; i--) 826 keg->uk_fini(slab->us_data + (keg->uk_rsize * i), 827 keg->uk_size); 828 } 829 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 830 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 831 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 832 } 833 834 /* 835 * Frees pages from a keg back to the system. This is done on demand from 836 * the pageout daemon. 837 * 838 * Returns nothing. 839 */ 840 static void 841 keg_drain(uma_keg_t keg) 842 { 843 struct slabhead freeslabs = { 0 }; 844 uma_slab_t slab, tmp; 845 846 /* 847 * We don't want to take pages from statically allocated kegs at this 848 * time 849 */ 850 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 851 return; 852 853 CTR3(KTR_UMA, "keg_drain %s(%p) free items: %u", 854 keg->uk_name, keg, keg->uk_free); 855 KEG_LOCK(keg); 856 if (keg->uk_free == 0) 857 goto finished; 858 859 LIST_FOREACH_SAFE(slab, &keg->uk_free_slab, us_link, tmp) { 860 /* We have nowhere to free these to. */ 861 if (slab->us_flags & UMA_SLAB_BOOT) 862 continue; 863 864 LIST_REMOVE(slab, us_link); 865 keg->uk_pages -= keg->uk_ppera; 866 keg->uk_free -= keg->uk_ipers; 867 868 if (keg->uk_flags & UMA_ZONE_HASH) 869 UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data); 870 871 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 872 } 873 finished: 874 KEG_UNLOCK(keg); 875 876 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 877 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 878 keg_free_slab(keg, slab, keg->uk_ipers); 879 } 880 } 881 882 static void 883 zone_drain_wait(uma_zone_t zone, int waitok) 884 { 885 886 /* 887 * Set draining to interlock with zone_dtor() so we can release our 888 * locks as we go. Only dtor() should do a WAITOK call since it 889 * is the only call that knows the structure will still be available 890 * when it wakes up. 891 */ 892 ZONE_LOCK(zone); 893 while (zone->uz_flags & UMA_ZFLAG_DRAINING) { 894 if (waitok == M_NOWAIT) 895 goto out; 896 msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1); 897 } 898 zone->uz_flags |= UMA_ZFLAG_DRAINING; 899 bucket_cache_drain(zone); 900 ZONE_UNLOCK(zone); 901 /* 902 * The DRAINING flag protects us from being freed while 903 * we're running. Normally the uma_rwlock would protect us but we 904 * must be able to release and acquire the right lock for each keg. 905 */ 906 zone_foreach_keg(zone, &keg_drain); 907 ZONE_LOCK(zone); 908 zone->uz_flags &= ~UMA_ZFLAG_DRAINING; 909 wakeup(zone); 910 out: 911 ZONE_UNLOCK(zone); 912 } 913 914 void 915 zone_drain(uma_zone_t zone) 916 { 917 918 zone_drain_wait(zone, M_NOWAIT); 919 } 920 921 /* 922 * Allocate a new slab for a keg. This does not insert the slab onto a list. 923 * 924 * Arguments: 925 * wait Shall we wait? 926 * 927 * Returns: 928 * The slab that was allocated or NULL if there is no memory and the 929 * caller specified M_NOWAIT. 930 */ 931 static uma_slab_t 932 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait) 933 { 934 uma_alloc allocf; 935 uma_slab_t slab; 936 uint8_t *mem; 937 uint8_t flags; 938 int i; 939 940 mtx_assert(&keg->uk_lock, MA_OWNED); 941 slab = NULL; 942 mem = NULL; 943 944 allocf = keg->uk_allocf; 945 KEG_UNLOCK(keg); 946 947 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 948 slab = zone_alloc_item(keg->uk_slabzone, NULL, wait); 949 if (slab == NULL) 950 goto out; 951 } 952 953 /* 954 * This reproduces the old vm_zone behavior of zero filling pages the 955 * first time they are added to a zone. 956 * 957 * Malloced items are zeroed in uma_zalloc. 958 */ 959 960 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 961 wait |= M_ZERO; 962 else 963 wait &= ~M_ZERO; 964 965 if (keg->uk_flags & UMA_ZONE_NODUMP) 966 wait |= M_NODUMP; 967 968 /* zone is passed for legacy reasons. */ 969 mem = allocf(zone, keg->uk_ppera * PAGE_SIZE, &flags, wait); 970 if (mem == NULL) { 971 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 972 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 973 slab = NULL; 974 goto out; 975 } 976 977 /* Point the slab into the allocated memory */ 978 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 979 slab = (uma_slab_t )(mem + keg->uk_pgoff); 980 981 if (keg->uk_flags & UMA_ZONE_VTOSLAB) 982 for (i = 0; i < keg->uk_ppera; i++) 983 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 984 985 slab->us_keg = keg; 986 slab->us_data = mem; 987 slab->us_freecount = keg->uk_ipers; 988 slab->us_flags = flags; 989 BIT_FILL(SLAB_SETSIZE, &slab->us_free); 990 #ifdef INVARIANTS 991 BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree); 992 #endif 993 994 if (keg->uk_init != NULL) { 995 for (i = 0; i < keg->uk_ipers; i++) 996 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 997 keg->uk_size, wait) != 0) 998 break; 999 if (i != keg->uk_ipers) { 1000 keg_free_slab(keg, slab, i); 1001 slab = NULL; 1002 goto out; 1003 } 1004 } 1005 out: 1006 KEG_LOCK(keg); 1007 1008 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1009 slab, keg->uk_name, keg); 1010 1011 if (slab != NULL) { 1012 if (keg->uk_flags & UMA_ZONE_HASH) 1013 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1014 1015 keg->uk_pages += keg->uk_ppera; 1016 keg->uk_free += keg->uk_ipers; 1017 } 1018 1019 return (slab); 1020 } 1021 1022 /* 1023 * This function is intended to be used early on in place of page_alloc() so 1024 * that we may use the boot time page cache to satisfy allocations before 1025 * the VM is ready. 1026 */ 1027 static void * 1028 startup_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait) 1029 { 1030 uma_keg_t keg; 1031 void *mem; 1032 int pages; 1033 1034 keg = zone_first_keg(zone); 1035 pages = howmany(bytes, PAGE_SIZE); 1036 KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n")); 1037 1038 /* 1039 * Check our small startup cache to see if it has pages remaining. 1040 */ 1041 mtx_lock(&uma_boot_pages_mtx); 1042 if (pages <= boot_pages) { 1043 mem = bootmem; 1044 boot_pages -= pages; 1045 bootmem += pages * PAGE_SIZE; 1046 mtx_unlock(&uma_boot_pages_mtx); 1047 *pflag = UMA_SLAB_BOOT; 1048 return (mem); 1049 } 1050 mtx_unlock(&uma_boot_pages_mtx); 1051 if (booted < UMA_STARTUP2) 1052 panic("UMA: Increase vm.boot_pages"); 1053 /* 1054 * Now that we've booted reset these users to their real allocator. 1055 */ 1056 #ifdef UMA_MD_SMALL_ALLOC 1057 keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc; 1058 #else 1059 keg->uk_allocf = page_alloc; 1060 #endif 1061 return keg->uk_allocf(zone, bytes, pflag, wait); 1062 } 1063 1064 /* 1065 * Allocates a number of pages from the system 1066 * 1067 * Arguments: 1068 * bytes The number of bytes requested 1069 * wait Shall we wait? 1070 * 1071 * Returns: 1072 * A pointer to the alloced memory or possibly 1073 * NULL if M_NOWAIT is set. 1074 */ 1075 static void * 1076 page_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait) 1077 { 1078 void *p; /* Returned page */ 1079 1080 *pflag = UMA_SLAB_KMEM; 1081 p = (void *) kmem_malloc(kmem_arena, bytes, wait); 1082 1083 return (p); 1084 } 1085 1086 /* 1087 * Allocates a number of pages from within an object 1088 * 1089 * Arguments: 1090 * bytes The number of bytes requested 1091 * wait Shall we wait? 1092 * 1093 * Returns: 1094 * A pointer to the alloced memory or possibly 1095 * NULL if M_NOWAIT is set. 1096 */ 1097 static void * 1098 noobj_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *flags, int wait) 1099 { 1100 TAILQ_HEAD(, vm_page) alloctail; 1101 u_long npages; 1102 vm_offset_t retkva, zkva; 1103 vm_page_t p, p_next; 1104 uma_keg_t keg; 1105 1106 TAILQ_INIT(&alloctail); 1107 keg = zone_first_keg(zone); 1108 1109 npages = howmany(bytes, PAGE_SIZE); 1110 while (npages > 0) { 1111 p = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT | 1112 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1113 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK : 1114 VM_ALLOC_NOWAIT)); 1115 if (p != NULL) { 1116 /* 1117 * Since the page does not belong to an object, its 1118 * listq is unused. 1119 */ 1120 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1121 npages--; 1122 continue; 1123 } 1124 /* 1125 * Page allocation failed, free intermediate pages and 1126 * exit. 1127 */ 1128 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1129 vm_page_unwire(p, PQ_NONE); 1130 vm_page_free(p); 1131 } 1132 return (NULL); 1133 } 1134 *flags = UMA_SLAB_PRIV; 1135 zkva = keg->uk_kva + 1136 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1137 retkva = zkva; 1138 TAILQ_FOREACH(p, &alloctail, listq) { 1139 pmap_qenter(zkva, &p, 1); 1140 zkva += PAGE_SIZE; 1141 } 1142 1143 return ((void *)retkva); 1144 } 1145 1146 /* 1147 * Frees a number of pages to the system 1148 * 1149 * Arguments: 1150 * mem A pointer to the memory to be freed 1151 * size The size of the memory being freed 1152 * flags The original p->us_flags field 1153 * 1154 * Returns: 1155 * Nothing 1156 */ 1157 static void 1158 page_free(void *mem, vm_size_t size, uint8_t flags) 1159 { 1160 struct vmem *vmem; 1161 1162 if (flags & UMA_SLAB_KMEM) 1163 vmem = kmem_arena; 1164 else if (flags & UMA_SLAB_KERNEL) 1165 vmem = kernel_arena; 1166 else 1167 panic("UMA: page_free used with invalid flags %x", flags); 1168 1169 kmem_free(vmem, (vm_offset_t)mem, size); 1170 } 1171 1172 /* 1173 * Zero fill initializer 1174 * 1175 * Arguments/Returns follow uma_init specifications 1176 */ 1177 static int 1178 zero_init(void *mem, int size, int flags) 1179 { 1180 bzero(mem, size); 1181 return (0); 1182 } 1183 1184 /* 1185 * Finish creating a small uma keg. This calculates ipers, and the keg size. 1186 * 1187 * Arguments 1188 * keg The zone we should initialize 1189 * 1190 * Returns 1191 * Nothing 1192 */ 1193 static void 1194 keg_small_init(uma_keg_t keg) 1195 { 1196 u_int rsize; 1197 u_int memused; 1198 u_int wastedspace; 1199 u_int shsize; 1200 u_int slabsize; 1201 1202 if (keg->uk_flags & UMA_ZONE_PCPU) { 1203 u_int ncpus = (mp_maxid + 1) ? (mp_maxid + 1) : MAXCPU; 1204 1205 slabsize = sizeof(struct pcpu); 1206 keg->uk_ppera = howmany(ncpus * sizeof(struct pcpu), 1207 PAGE_SIZE); 1208 } else { 1209 slabsize = UMA_SLAB_SIZE; 1210 keg->uk_ppera = 1; 1211 } 1212 1213 /* 1214 * Calculate the size of each allocation (rsize) according to 1215 * alignment. If the requested size is smaller than we have 1216 * allocation bits for we round it up. 1217 */ 1218 rsize = keg->uk_size; 1219 if (rsize < slabsize / SLAB_SETSIZE) 1220 rsize = slabsize / SLAB_SETSIZE; 1221 if (rsize & keg->uk_align) 1222 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1223 keg->uk_rsize = rsize; 1224 1225 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 1226 keg->uk_rsize < sizeof(struct pcpu), 1227 ("%s: size %u too large", __func__, keg->uk_rsize)); 1228 1229 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1230 shsize = 0; 1231 else 1232 shsize = sizeof(struct uma_slab); 1233 1234 keg->uk_ipers = (slabsize - shsize) / rsize; 1235 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1236 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1237 1238 memused = keg->uk_ipers * rsize + shsize; 1239 wastedspace = slabsize - memused; 1240 1241 /* 1242 * We can't do OFFPAGE if we're internal or if we've been 1243 * asked to not go to the VM for buckets. If we do this we 1244 * may end up going to the VM for slabs which we do not 1245 * want to do if we're UMA_ZFLAG_CACHEONLY as a result 1246 * of UMA_ZONE_VM, which clearly forbids it. 1247 */ 1248 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1249 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1250 return; 1251 1252 /* 1253 * See if using an OFFPAGE slab will limit our waste. Only do 1254 * this if it permits more items per-slab. 1255 * 1256 * XXX We could try growing slabsize to limit max waste as well. 1257 * Historically this was not done because the VM could not 1258 * efficiently handle contiguous allocations. 1259 */ 1260 if ((wastedspace >= slabsize / UMA_MAX_WASTE) && 1261 (keg->uk_ipers < (slabsize / keg->uk_rsize))) { 1262 keg->uk_ipers = slabsize / keg->uk_rsize; 1263 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1264 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1265 CTR6(KTR_UMA, "UMA decided we need offpage slab headers for " 1266 "keg: %s(%p), calculated wastedspace = %d, " 1267 "maximum wasted space allowed = %d, " 1268 "calculated ipers = %d, " 1269 "new wasted space = %d\n", keg->uk_name, keg, wastedspace, 1270 slabsize / UMA_MAX_WASTE, keg->uk_ipers, 1271 slabsize - keg->uk_ipers * keg->uk_rsize); 1272 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1273 } 1274 1275 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1276 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1277 keg->uk_flags |= UMA_ZONE_HASH; 1278 } 1279 1280 /* 1281 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do 1282 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1283 * more complicated. 1284 * 1285 * Arguments 1286 * keg The keg we should initialize 1287 * 1288 * Returns 1289 * Nothing 1290 */ 1291 static void 1292 keg_large_init(uma_keg_t keg) 1293 { 1294 u_int shsize; 1295 1296 KASSERT(keg != NULL, ("Keg is null in keg_large_init")); 1297 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0, 1298 ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg")); 1299 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1300 ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__)); 1301 1302 keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE); 1303 keg->uk_ipers = 1; 1304 keg->uk_rsize = keg->uk_size; 1305 1306 /* Check whether we have enough space to not do OFFPAGE. */ 1307 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) { 1308 shsize = sizeof(struct uma_slab); 1309 if (shsize & UMA_ALIGN_PTR) 1310 shsize = (shsize & ~UMA_ALIGN_PTR) + 1311 (UMA_ALIGN_PTR + 1); 1312 1313 if (PAGE_SIZE * keg->uk_ppera - keg->uk_rsize < shsize) { 1314 /* 1315 * We can't do OFFPAGE if we're internal, in which case 1316 * we need an extra page per allocation to contain the 1317 * slab header. 1318 */ 1319 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) == 0) 1320 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1321 else 1322 keg->uk_ppera++; 1323 } 1324 } 1325 1326 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1327 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1328 keg->uk_flags |= UMA_ZONE_HASH; 1329 } 1330 1331 static void 1332 keg_cachespread_init(uma_keg_t keg) 1333 { 1334 int alignsize; 1335 int trailer; 1336 int pages; 1337 int rsize; 1338 1339 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1340 ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__)); 1341 1342 alignsize = keg->uk_align + 1; 1343 rsize = keg->uk_size; 1344 /* 1345 * We want one item to start on every align boundary in a page. To 1346 * do this we will span pages. We will also extend the item by the 1347 * size of align if it is an even multiple of align. Otherwise, it 1348 * would fall on the same boundary every time. 1349 */ 1350 if (rsize & keg->uk_align) 1351 rsize = (rsize & ~keg->uk_align) + alignsize; 1352 if ((rsize & alignsize) == 0) 1353 rsize += alignsize; 1354 trailer = rsize - keg->uk_size; 1355 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE; 1356 pages = MIN(pages, (128 * 1024) / PAGE_SIZE); 1357 keg->uk_rsize = rsize; 1358 keg->uk_ppera = pages; 1359 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize; 1360 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1361 KASSERT(keg->uk_ipers <= SLAB_SETSIZE, 1362 ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__, 1363 keg->uk_ipers)); 1364 } 1365 1366 /* 1367 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1368 * the keg onto the global keg list. 1369 * 1370 * Arguments/Returns follow uma_ctor specifications 1371 * udata Actually uma_kctor_args 1372 */ 1373 static int 1374 keg_ctor(void *mem, int size, void *udata, int flags) 1375 { 1376 struct uma_kctor_args *arg = udata; 1377 uma_keg_t keg = mem; 1378 uma_zone_t zone; 1379 1380 bzero(keg, size); 1381 keg->uk_size = arg->size; 1382 keg->uk_init = arg->uminit; 1383 keg->uk_fini = arg->fini; 1384 keg->uk_align = arg->align; 1385 keg->uk_free = 0; 1386 keg->uk_reserve = 0; 1387 keg->uk_pages = 0; 1388 keg->uk_flags = arg->flags; 1389 keg->uk_slabzone = NULL; 1390 1391 /* 1392 * The master zone is passed to us at keg-creation time. 1393 */ 1394 zone = arg->zone; 1395 keg->uk_name = zone->uz_name; 1396 1397 if (arg->flags & UMA_ZONE_VM) 1398 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1399 1400 if (arg->flags & UMA_ZONE_ZINIT) 1401 keg->uk_init = zero_init; 1402 1403 if (arg->flags & UMA_ZONE_MALLOC) 1404 keg->uk_flags |= UMA_ZONE_VTOSLAB; 1405 1406 if (arg->flags & UMA_ZONE_PCPU) 1407 #ifdef SMP 1408 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1409 #else 1410 keg->uk_flags &= ~UMA_ZONE_PCPU; 1411 #endif 1412 1413 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) { 1414 keg_cachespread_init(keg); 1415 } else { 1416 if (keg->uk_size > (UMA_SLAB_SIZE - sizeof(struct uma_slab))) 1417 keg_large_init(keg); 1418 else 1419 keg_small_init(keg); 1420 } 1421 1422 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1423 keg->uk_slabzone = slabzone; 1424 1425 /* 1426 * If we haven't booted yet we need allocations to go through the 1427 * startup cache until the vm is ready. 1428 */ 1429 if (booted < UMA_STARTUP2) 1430 keg->uk_allocf = startup_alloc; 1431 #ifdef UMA_MD_SMALL_ALLOC 1432 else if (keg->uk_ppera == 1) 1433 keg->uk_allocf = uma_small_alloc; 1434 #endif 1435 else 1436 keg->uk_allocf = page_alloc; 1437 #ifdef UMA_MD_SMALL_ALLOC 1438 if (keg->uk_ppera == 1) 1439 keg->uk_freef = uma_small_free; 1440 else 1441 #endif 1442 keg->uk_freef = page_free; 1443 1444 /* 1445 * Initialize keg's lock 1446 */ 1447 KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS)); 1448 1449 /* 1450 * If we're putting the slab header in the actual page we need to 1451 * figure out where in each page it goes. This calculates a right 1452 * justified offset into the memory on an ALIGN_PTR boundary. 1453 */ 1454 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1455 u_int totsize; 1456 1457 /* Size of the slab struct and free list */ 1458 totsize = sizeof(struct uma_slab); 1459 1460 if (totsize & UMA_ALIGN_PTR) 1461 totsize = (totsize & ~UMA_ALIGN_PTR) + 1462 (UMA_ALIGN_PTR + 1); 1463 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize; 1464 1465 /* 1466 * The only way the following is possible is if with our 1467 * UMA_ALIGN_PTR adjustments we are now bigger than 1468 * UMA_SLAB_SIZE. I haven't checked whether this is 1469 * mathematically possible for all cases, so we make 1470 * sure here anyway. 1471 */ 1472 totsize = keg->uk_pgoff + sizeof(struct uma_slab); 1473 if (totsize > PAGE_SIZE * keg->uk_ppera) { 1474 printf("zone %s ipers %d rsize %d size %d\n", 1475 zone->uz_name, keg->uk_ipers, keg->uk_rsize, 1476 keg->uk_size); 1477 panic("UMA slab won't fit."); 1478 } 1479 } 1480 1481 if (keg->uk_flags & UMA_ZONE_HASH) 1482 hash_alloc(&keg->uk_hash); 1483 1484 CTR5(KTR_UMA, "keg_ctor %p zone %s(%p) out %d free %d\n", 1485 keg, zone->uz_name, zone, 1486 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 1487 keg->uk_free); 1488 1489 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1490 1491 rw_wlock(&uma_rwlock); 1492 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1493 rw_wunlock(&uma_rwlock); 1494 return (0); 1495 } 1496 1497 /* 1498 * Zone header ctor. This initializes all fields, locks, etc. 1499 * 1500 * Arguments/Returns follow uma_ctor specifications 1501 * udata Actually uma_zctor_args 1502 */ 1503 static int 1504 zone_ctor(void *mem, int size, void *udata, int flags) 1505 { 1506 struct uma_zctor_args *arg = udata; 1507 uma_zone_t zone = mem; 1508 uma_zone_t z; 1509 uma_keg_t keg; 1510 1511 bzero(zone, size); 1512 zone->uz_name = arg->name; 1513 zone->uz_ctor = arg->ctor; 1514 zone->uz_dtor = arg->dtor; 1515 zone->uz_slab = zone_fetch_slab; 1516 zone->uz_init = NULL; 1517 zone->uz_fini = NULL; 1518 zone->uz_allocs = 0; 1519 zone->uz_frees = 0; 1520 zone->uz_fails = 0; 1521 zone->uz_sleeps = 0; 1522 zone->uz_count = 0; 1523 zone->uz_count_min = 0; 1524 zone->uz_flags = 0; 1525 zone->uz_warning = NULL; 1526 timevalclear(&zone->uz_ratecheck); 1527 keg = arg->keg; 1528 1529 ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS)); 1530 1531 /* 1532 * This is a pure cache zone, no kegs. 1533 */ 1534 if (arg->import) { 1535 if (arg->flags & UMA_ZONE_VM) 1536 arg->flags |= UMA_ZFLAG_CACHEONLY; 1537 zone->uz_flags = arg->flags; 1538 zone->uz_size = arg->size; 1539 zone->uz_import = arg->import; 1540 zone->uz_release = arg->release; 1541 zone->uz_arg = arg->arg; 1542 zone->uz_lockptr = &zone->uz_lock; 1543 rw_wlock(&uma_rwlock); 1544 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 1545 rw_wunlock(&uma_rwlock); 1546 goto out; 1547 } 1548 1549 /* 1550 * Use the regular zone/keg/slab allocator. 1551 */ 1552 zone->uz_import = (uma_import)zone_import; 1553 zone->uz_release = (uma_release)zone_release; 1554 zone->uz_arg = zone; 1555 1556 if (arg->flags & UMA_ZONE_SECONDARY) { 1557 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 1558 zone->uz_init = arg->uminit; 1559 zone->uz_fini = arg->fini; 1560 zone->uz_lockptr = &keg->uk_lock; 1561 zone->uz_flags |= UMA_ZONE_SECONDARY; 1562 rw_wlock(&uma_rwlock); 1563 ZONE_LOCK(zone); 1564 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 1565 if (LIST_NEXT(z, uz_link) == NULL) { 1566 LIST_INSERT_AFTER(z, zone, uz_link); 1567 break; 1568 } 1569 } 1570 ZONE_UNLOCK(zone); 1571 rw_wunlock(&uma_rwlock); 1572 } else if (keg == NULL) { 1573 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 1574 arg->align, arg->flags)) == NULL) 1575 return (ENOMEM); 1576 } else { 1577 struct uma_kctor_args karg; 1578 int error; 1579 1580 /* We should only be here from uma_startup() */ 1581 karg.size = arg->size; 1582 karg.uminit = arg->uminit; 1583 karg.fini = arg->fini; 1584 karg.align = arg->align; 1585 karg.flags = arg->flags; 1586 karg.zone = zone; 1587 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 1588 flags); 1589 if (error) 1590 return (error); 1591 } 1592 1593 /* 1594 * Link in the first keg. 1595 */ 1596 zone->uz_klink.kl_keg = keg; 1597 LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link); 1598 zone->uz_lockptr = &keg->uk_lock; 1599 zone->uz_size = keg->uk_size; 1600 zone->uz_flags |= (keg->uk_flags & 1601 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 1602 1603 /* 1604 * Some internal zones don't have room allocated for the per cpu 1605 * caches. If we're internal, bail out here. 1606 */ 1607 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { 1608 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 1609 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 1610 return (0); 1611 } 1612 1613 out: 1614 if ((arg->flags & UMA_ZONE_MAXBUCKET) == 0) 1615 zone->uz_count = bucket_select(zone->uz_size); 1616 else 1617 zone->uz_count = BUCKET_MAX; 1618 zone->uz_count_min = zone->uz_count; 1619 1620 return (0); 1621 } 1622 1623 /* 1624 * Keg header dtor. This frees all data, destroys locks, frees the hash 1625 * table and removes the keg from the global list. 1626 * 1627 * Arguments/Returns follow uma_dtor specifications 1628 * udata unused 1629 */ 1630 static void 1631 keg_dtor(void *arg, int size, void *udata) 1632 { 1633 uma_keg_t keg; 1634 1635 keg = (uma_keg_t)arg; 1636 KEG_LOCK(keg); 1637 if (keg->uk_free != 0) { 1638 printf("Freed UMA keg (%s) was not empty (%d items). " 1639 " Lost %d pages of memory.\n", 1640 keg->uk_name ? keg->uk_name : "", 1641 keg->uk_free, keg->uk_pages); 1642 } 1643 KEG_UNLOCK(keg); 1644 1645 hash_free(&keg->uk_hash); 1646 1647 KEG_LOCK_FINI(keg); 1648 } 1649 1650 /* 1651 * Zone header dtor. 1652 * 1653 * Arguments/Returns follow uma_dtor specifications 1654 * udata unused 1655 */ 1656 static void 1657 zone_dtor(void *arg, int size, void *udata) 1658 { 1659 uma_klink_t klink; 1660 uma_zone_t zone; 1661 uma_keg_t keg; 1662 1663 zone = (uma_zone_t)arg; 1664 keg = zone_first_keg(zone); 1665 1666 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 1667 cache_drain(zone); 1668 1669 rw_wlock(&uma_rwlock); 1670 LIST_REMOVE(zone, uz_link); 1671 rw_wunlock(&uma_rwlock); 1672 /* 1673 * XXX there are some races here where 1674 * the zone can be drained but zone lock 1675 * released and then refilled before we 1676 * remove it... we dont care for now 1677 */ 1678 zone_drain_wait(zone, M_WAITOK); 1679 /* 1680 * Unlink all of our kegs. 1681 */ 1682 while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) { 1683 klink->kl_keg = NULL; 1684 LIST_REMOVE(klink, kl_link); 1685 if (klink == &zone->uz_klink) 1686 continue; 1687 free(klink, M_TEMP); 1688 } 1689 /* 1690 * We only destroy kegs from non secondary zones. 1691 */ 1692 if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0) { 1693 rw_wlock(&uma_rwlock); 1694 LIST_REMOVE(keg, uk_link); 1695 rw_wunlock(&uma_rwlock); 1696 zone_free_item(kegs, keg, NULL, SKIP_NONE); 1697 } 1698 ZONE_LOCK_FINI(zone); 1699 } 1700 1701 /* 1702 * Traverses every zone in the system and calls a callback 1703 * 1704 * Arguments: 1705 * zfunc A pointer to a function which accepts a zone 1706 * as an argument. 1707 * 1708 * Returns: 1709 * Nothing 1710 */ 1711 static void 1712 zone_foreach(void (*zfunc)(uma_zone_t)) 1713 { 1714 uma_keg_t keg; 1715 uma_zone_t zone; 1716 1717 rw_rlock(&uma_rwlock); 1718 LIST_FOREACH(keg, &uma_kegs, uk_link) { 1719 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 1720 zfunc(zone); 1721 } 1722 rw_runlock(&uma_rwlock); 1723 } 1724 1725 /* Public functions */ 1726 /* See uma.h */ 1727 void 1728 uma_startup(void *mem, int npages) 1729 { 1730 struct uma_zctor_args args; 1731 1732 rw_init(&uma_rwlock, "UMA lock"); 1733 1734 /* "manually" create the initial zone */ 1735 memset(&args, 0, sizeof(args)); 1736 args.name = "UMA Kegs"; 1737 args.size = sizeof(struct uma_keg); 1738 args.ctor = keg_ctor; 1739 args.dtor = keg_dtor; 1740 args.uminit = zero_init; 1741 args.fini = NULL; 1742 args.keg = &masterkeg; 1743 args.align = 32 - 1; 1744 args.flags = UMA_ZFLAG_INTERNAL; 1745 /* The initial zone has no Per cpu queues so it's smaller */ 1746 zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK); 1747 1748 mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF); 1749 bootmem = mem; 1750 boot_pages = npages; 1751 1752 args.name = "UMA Zones"; 1753 args.size = sizeof(struct uma_zone) + 1754 (sizeof(struct uma_cache) * (mp_maxid + 1)); 1755 args.ctor = zone_ctor; 1756 args.dtor = zone_dtor; 1757 args.uminit = zero_init; 1758 args.fini = NULL; 1759 args.keg = NULL; 1760 args.align = 32 - 1; 1761 args.flags = UMA_ZFLAG_INTERNAL; 1762 /* The initial zone has no Per cpu queues so it's smaller */ 1763 zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK); 1764 1765 /* Now make a zone for slab headers */ 1766 slabzone = uma_zcreate("UMA Slabs", 1767 sizeof(struct uma_slab), 1768 NULL, NULL, NULL, NULL, 1769 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1770 1771 hashzone = uma_zcreate("UMA Hash", 1772 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 1773 NULL, NULL, NULL, NULL, 1774 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1775 1776 bucket_init(); 1777 1778 booted = UMA_STARTUP; 1779 } 1780 1781 /* see uma.h */ 1782 void 1783 uma_startup2(void) 1784 { 1785 booted = UMA_STARTUP2; 1786 bucket_enable(); 1787 sx_init(&uma_drain_lock, "umadrain"); 1788 } 1789 1790 /* 1791 * Initialize our callout handle 1792 * 1793 */ 1794 1795 static void 1796 uma_startup3(void) 1797 { 1798 1799 callout_init(&uma_callout, 1); 1800 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 1801 } 1802 1803 static uma_keg_t 1804 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 1805 int align, uint32_t flags) 1806 { 1807 struct uma_kctor_args args; 1808 1809 args.size = size; 1810 args.uminit = uminit; 1811 args.fini = fini; 1812 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 1813 args.flags = flags; 1814 args.zone = zone; 1815 return (zone_alloc_item(kegs, &args, M_WAITOK)); 1816 } 1817 1818 /* See uma.h */ 1819 void 1820 uma_set_align(int align) 1821 { 1822 1823 if (align != UMA_ALIGN_CACHE) 1824 uma_align_cache = align; 1825 } 1826 1827 /* See uma.h */ 1828 uma_zone_t 1829 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 1830 uma_init uminit, uma_fini fini, int align, uint32_t flags) 1831 1832 { 1833 struct uma_zctor_args args; 1834 uma_zone_t res; 1835 bool locked; 1836 1837 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 1838 align, name)); 1839 1840 /* This stuff is essential for the zone ctor */ 1841 memset(&args, 0, sizeof(args)); 1842 args.name = name; 1843 args.size = size; 1844 args.ctor = ctor; 1845 args.dtor = dtor; 1846 args.uminit = uminit; 1847 args.fini = fini; 1848 #ifdef INVARIANTS 1849 /* 1850 * If a zone is being created with an empty constructor and 1851 * destructor, pass UMA constructor/destructor which checks for 1852 * memory use after free. 1853 */ 1854 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOFREE))) && 1855 ctor == NULL && dtor == NULL && uminit == NULL && fini == NULL) { 1856 args.ctor = trash_ctor; 1857 args.dtor = trash_dtor; 1858 args.uminit = trash_init; 1859 args.fini = trash_fini; 1860 } 1861 #endif 1862 args.align = align; 1863 args.flags = flags; 1864 args.keg = NULL; 1865 1866 if (booted < UMA_STARTUP2) { 1867 locked = false; 1868 } else { 1869 sx_slock(&uma_drain_lock); 1870 locked = true; 1871 } 1872 res = zone_alloc_item(zones, &args, M_WAITOK); 1873 if (locked) 1874 sx_sunlock(&uma_drain_lock); 1875 return (res); 1876 } 1877 1878 /* See uma.h */ 1879 uma_zone_t 1880 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 1881 uma_init zinit, uma_fini zfini, uma_zone_t master) 1882 { 1883 struct uma_zctor_args args; 1884 uma_keg_t keg; 1885 uma_zone_t res; 1886 bool locked; 1887 1888 keg = zone_first_keg(master); 1889 memset(&args, 0, sizeof(args)); 1890 args.name = name; 1891 args.size = keg->uk_size; 1892 args.ctor = ctor; 1893 args.dtor = dtor; 1894 args.uminit = zinit; 1895 args.fini = zfini; 1896 args.align = keg->uk_align; 1897 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 1898 args.keg = keg; 1899 1900 if (booted < UMA_STARTUP2) { 1901 locked = false; 1902 } else { 1903 sx_slock(&uma_drain_lock); 1904 locked = true; 1905 } 1906 /* XXX Attaches only one keg of potentially many. */ 1907 res = zone_alloc_item(zones, &args, M_WAITOK); 1908 if (locked) 1909 sx_sunlock(&uma_drain_lock); 1910 return (res); 1911 } 1912 1913 /* See uma.h */ 1914 uma_zone_t 1915 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor, 1916 uma_init zinit, uma_fini zfini, uma_import zimport, 1917 uma_release zrelease, void *arg, int flags) 1918 { 1919 struct uma_zctor_args args; 1920 1921 memset(&args, 0, sizeof(args)); 1922 args.name = name; 1923 args.size = size; 1924 args.ctor = ctor; 1925 args.dtor = dtor; 1926 args.uminit = zinit; 1927 args.fini = zfini; 1928 args.import = zimport; 1929 args.release = zrelease; 1930 args.arg = arg; 1931 args.align = 0; 1932 args.flags = flags; 1933 1934 return (zone_alloc_item(zones, &args, M_WAITOK)); 1935 } 1936 1937 static void 1938 zone_lock_pair(uma_zone_t a, uma_zone_t b) 1939 { 1940 if (a < b) { 1941 ZONE_LOCK(a); 1942 mtx_lock_flags(b->uz_lockptr, MTX_DUPOK); 1943 } else { 1944 ZONE_LOCK(b); 1945 mtx_lock_flags(a->uz_lockptr, MTX_DUPOK); 1946 } 1947 } 1948 1949 static void 1950 zone_unlock_pair(uma_zone_t a, uma_zone_t b) 1951 { 1952 1953 ZONE_UNLOCK(a); 1954 ZONE_UNLOCK(b); 1955 } 1956 1957 int 1958 uma_zsecond_add(uma_zone_t zone, uma_zone_t master) 1959 { 1960 uma_klink_t klink; 1961 uma_klink_t kl; 1962 int error; 1963 1964 error = 0; 1965 klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO); 1966 1967 zone_lock_pair(zone, master); 1968 /* 1969 * zone must use vtoslab() to resolve objects and must already be 1970 * a secondary. 1971 */ 1972 if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) 1973 != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) { 1974 error = EINVAL; 1975 goto out; 1976 } 1977 /* 1978 * The new master must also use vtoslab(). 1979 */ 1980 if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) { 1981 error = EINVAL; 1982 goto out; 1983 } 1984 1985 /* 1986 * The underlying object must be the same size. rsize 1987 * may be different. 1988 */ 1989 if (master->uz_size != zone->uz_size) { 1990 error = E2BIG; 1991 goto out; 1992 } 1993 /* 1994 * Put it at the end of the list. 1995 */ 1996 klink->kl_keg = zone_first_keg(master); 1997 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) { 1998 if (LIST_NEXT(kl, kl_link) == NULL) { 1999 LIST_INSERT_AFTER(kl, klink, kl_link); 2000 break; 2001 } 2002 } 2003 klink = NULL; 2004 zone->uz_flags |= UMA_ZFLAG_MULTI; 2005 zone->uz_slab = zone_fetch_slab_multi; 2006 2007 out: 2008 zone_unlock_pair(zone, master); 2009 if (klink != NULL) 2010 free(klink, M_TEMP); 2011 2012 return (error); 2013 } 2014 2015 2016 /* See uma.h */ 2017 void 2018 uma_zdestroy(uma_zone_t zone) 2019 { 2020 2021 sx_slock(&uma_drain_lock); 2022 zone_free_item(zones, zone, NULL, SKIP_NONE); 2023 sx_sunlock(&uma_drain_lock); 2024 } 2025 2026 void 2027 uma_zwait(uma_zone_t zone) 2028 { 2029 void *item; 2030 2031 item = uma_zalloc_arg(zone, NULL, M_WAITOK); 2032 uma_zfree(zone, item); 2033 } 2034 2035 /* See uma.h */ 2036 void * 2037 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 2038 { 2039 void *item; 2040 uma_cache_t cache; 2041 uma_bucket_t bucket; 2042 int lockfail; 2043 int cpu; 2044 2045 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2046 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 2047 2048 /* This is the fast path allocation */ 2049 CTR4(KTR_UMA, "uma_zalloc_arg thread %x zone %s(%p) flags %d", 2050 curthread, zone->uz_name, zone, flags); 2051 2052 if (flags & M_WAITOK) { 2053 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2054 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 2055 } 2056 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2057 ("uma_zalloc_arg: called with spinlock or critical section held")); 2058 2059 #ifdef DEBUG_MEMGUARD 2060 if (memguard_cmp_zone(zone)) { 2061 item = memguard_alloc(zone->uz_size, flags); 2062 if (item != NULL) { 2063 if (zone->uz_init != NULL && 2064 zone->uz_init(item, zone->uz_size, flags) != 0) 2065 return (NULL); 2066 if (zone->uz_ctor != NULL && 2067 zone->uz_ctor(item, zone->uz_size, udata, 2068 flags) != 0) { 2069 zone->uz_fini(item, zone->uz_size); 2070 return (NULL); 2071 } 2072 return (item); 2073 } 2074 /* This is unfortunate but should not be fatal. */ 2075 } 2076 #endif 2077 /* 2078 * If possible, allocate from the per-CPU cache. There are two 2079 * requirements for safe access to the per-CPU cache: (1) the thread 2080 * accessing the cache must not be preempted or yield during access, 2081 * and (2) the thread must not migrate CPUs without switching which 2082 * cache it accesses. We rely on a critical section to prevent 2083 * preemption and migration. We release the critical section in 2084 * order to acquire the zone mutex if we are unable to allocate from 2085 * the current cache; when we re-acquire the critical section, we 2086 * must detect and handle migration if it has occurred. 2087 */ 2088 critical_enter(); 2089 cpu = curcpu; 2090 cache = &zone->uz_cpu[cpu]; 2091 2092 zalloc_start: 2093 bucket = cache->uc_allocbucket; 2094 if (bucket != NULL && bucket->ub_cnt > 0) { 2095 bucket->ub_cnt--; 2096 item = bucket->ub_bucket[bucket->ub_cnt]; 2097 #ifdef INVARIANTS 2098 bucket->ub_bucket[bucket->ub_cnt] = NULL; 2099 #endif 2100 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 2101 cache->uc_allocs++; 2102 critical_exit(); 2103 if (zone->uz_ctor != NULL && 2104 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2105 atomic_add_long(&zone->uz_fails, 1); 2106 zone_free_item(zone, item, udata, SKIP_DTOR); 2107 return (NULL); 2108 } 2109 #ifdef INVARIANTS 2110 uma_dbg_alloc(zone, NULL, item); 2111 #endif 2112 if (flags & M_ZERO) 2113 uma_zero_item(item, zone); 2114 return (item); 2115 } 2116 2117 /* 2118 * We have run out of items in our alloc bucket. 2119 * See if we can switch with our free bucket. 2120 */ 2121 bucket = cache->uc_freebucket; 2122 if (bucket != NULL && bucket->ub_cnt > 0) { 2123 CTR2(KTR_UMA, 2124 "uma_zalloc: zone %s(%p) swapping empty with alloc", 2125 zone->uz_name, zone); 2126 cache->uc_freebucket = cache->uc_allocbucket; 2127 cache->uc_allocbucket = bucket; 2128 goto zalloc_start; 2129 } 2130 2131 /* 2132 * Discard any empty allocation bucket while we hold no locks. 2133 */ 2134 bucket = cache->uc_allocbucket; 2135 cache->uc_allocbucket = NULL; 2136 critical_exit(); 2137 if (bucket != NULL) 2138 bucket_free(zone, bucket, udata); 2139 2140 /* Short-circuit for zones without buckets and low memory. */ 2141 if (zone->uz_count == 0 || bucketdisable) 2142 goto zalloc_item; 2143 2144 /* 2145 * Attempt to retrieve the item from the per-CPU cache has failed, so 2146 * we must go back to the zone. This requires the zone lock, so we 2147 * must drop the critical section, then re-acquire it when we go back 2148 * to the cache. Since the critical section is released, we may be 2149 * preempted or migrate. As such, make sure not to maintain any 2150 * thread-local state specific to the cache from prior to releasing 2151 * the critical section. 2152 */ 2153 lockfail = 0; 2154 if (ZONE_TRYLOCK(zone) == 0) { 2155 /* Record contention to size the buckets. */ 2156 ZONE_LOCK(zone); 2157 lockfail = 1; 2158 } 2159 critical_enter(); 2160 cpu = curcpu; 2161 cache = &zone->uz_cpu[cpu]; 2162 2163 /* 2164 * Since we have locked the zone we may as well send back our stats. 2165 */ 2166 atomic_add_long(&zone->uz_allocs, cache->uc_allocs); 2167 atomic_add_long(&zone->uz_frees, cache->uc_frees); 2168 cache->uc_allocs = 0; 2169 cache->uc_frees = 0; 2170 2171 /* See if we lost the race to fill the cache. */ 2172 if (cache->uc_allocbucket != NULL) { 2173 ZONE_UNLOCK(zone); 2174 goto zalloc_start; 2175 } 2176 2177 /* 2178 * Check the zone's cache of buckets. 2179 */ 2180 if ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) { 2181 KASSERT(bucket->ub_cnt != 0, 2182 ("uma_zalloc_arg: Returning an empty bucket.")); 2183 2184 LIST_REMOVE(bucket, ub_link); 2185 cache->uc_allocbucket = bucket; 2186 ZONE_UNLOCK(zone); 2187 goto zalloc_start; 2188 } 2189 /* We are no longer associated with this CPU. */ 2190 critical_exit(); 2191 2192 /* 2193 * We bump the uz count when the cache size is insufficient to 2194 * handle the working set. 2195 */ 2196 if (lockfail && zone->uz_count < BUCKET_MAX) 2197 zone->uz_count++; 2198 ZONE_UNLOCK(zone); 2199 2200 /* 2201 * Now lets just fill a bucket and put it on the free list. If that 2202 * works we'll restart the allocation from the beginning and it 2203 * will use the just filled bucket. 2204 */ 2205 bucket = zone_alloc_bucket(zone, udata, flags); 2206 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 2207 zone->uz_name, zone, bucket); 2208 if (bucket != NULL) { 2209 ZONE_LOCK(zone); 2210 critical_enter(); 2211 cpu = curcpu; 2212 cache = &zone->uz_cpu[cpu]; 2213 /* 2214 * See if we lost the race or were migrated. Cache the 2215 * initialized bucket to make this less likely or claim 2216 * the memory directly. 2217 */ 2218 if (cache->uc_allocbucket == NULL) 2219 cache->uc_allocbucket = bucket; 2220 else 2221 LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link); 2222 ZONE_UNLOCK(zone); 2223 goto zalloc_start; 2224 } 2225 2226 /* 2227 * We may not be able to get a bucket so return an actual item. 2228 */ 2229 zalloc_item: 2230 item = zone_alloc_item(zone, udata, flags); 2231 2232 return (item); 2233 } 2234 2235 static uma_slab_t 2236 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags) 2237 { 2238 uma_slab_t slab; 2239 int reserve; 2240 2241 mtx_assert(&keg->uk_lock, MA_OWNED); 2242 slab = NULL; 2243 reserve = 0; 2244 if ((flags & M_USE_RESERVE) == 0) 2245 reserve = keg->uk_reserve; 2246 2247 for (;;) { 2248 /* 2249 * Find a slab with some space. Prefer slabs that are partially 2250 * used over those that are totally full. This helps to reduce 2251 * fragmentation. 2252 */ 2253 if (keg->uk_free > reserve) { 2254 if (!LIST_EMPTY(&keg->uk_part_slab)) { 2255 slab = LIST_FIRST(&keg->uk_part_slab); 2256 } else { 2257 slab = LIST_FIRST(&keg->uk_free_slab); 2258 LIST_REMOVE(slab, us_link); 2259 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, 2260 us_link); 2261 } 2262 MPASS(slab->us_keg == keg); 2263 return (slab); 2264 } 2265 2266 /* 2267 * M_NOVM means don't ask at all! 2268 */ 2269 if (flags & M_NOVM) 2270 break; 2271 2272 if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) { 2273 keg->uk_flags |= UMA_ZFLAG_FULL; 2274 /* 2275 * If this is not a multi-zone, set the FULL bit. 2276 * Otherwise slab_multi() takes care of it. 2277 */ 2278 if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) { 2279 zone->uz_flags |= UMA_ZFLAG_FULL; 2280 zone_log_warning(zone); 2281 zone_maxaction(zone); 2282 } 2283 if (flags & M_NOWAIT) 2284 break; 2285 zone->uz_sleeps++; 2286 msleep(keg, &keg->uk_lock, PVM, "keglimit", 0); 2287 continue; 2288 } 2289 slab = keg_alloc_slab(keg, zone, flags); 2290 /* 2291 * If we got a slab here it's safe to mark it partially used 2292 * and return. We assume that the caller is going to remove 2293 * at least one item. 2294 */ 2295 if (slab) { 2296 MPASS(slab->us_keg == keg); 2297 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2298 return (slab); 2299 } 2300 /* 2301 * We might not have been able to get a slab but another cpu 2302 * could have while we were unlocked. Check again before we 2303 * fail. 2304 */ 2305 flags |= M_NOVM; 2306 } 2307 return (slab); 2308 } 2309 2310 static uma_slab_t 2311 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags) 2312 { 2313 uma_slab_t slab; 2314 2315 if (keg == NULL) { 2316 keg = zone_first_keg(zone); 2317 KEG_LOCK(keg); 2318 } 2319 2320 for (;;) { 2321 slab = keg_fetch_slab(keg, zone, flags); 2322 if (slab) 2323 return (slab); 2324 if (flags & (M_NOWAIT | M_NOVM)) 2325 break; 2326 } 2327 KEG_UNLOCK(keg); 2328 return (NULL); 2329 } 2330 2331 /* 2332 * uma_zone_fetch_slab_multi: Fetches a slab from one available keg. Returns 2333 * with the keg locked. On NULL no lock is held. 2334 * 2335 * The last pointer is used to seed the search. It is not required. 2336 */ 2337 static uma_slab_t 2338 zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags) 2339 { 2340 uma_klink_t klink; 2341 uma_slab_t slab; 2342 uma_keg_t keg; 2343 int flags; 2344 int empty; 2345 int full; 2346 2347 /* 2348 * Don't wait on the first pass. This will skip limit tests 2349 * as well. We don't want to block if we can find a provider 2350 * without blocking. 2351 */ 2352 flags = (rflags & ~M_WAITOK) | M_NOWAIT; 2353 /* 2354 * Use the last slab allocated as a hint for where to start 2355 * the search. 2356 */ 2357 if (last != NULL) { 2358 slab = keg_fetch_slab(last, zone, flags); 2359 if (slab) 2360 return (slab); 2361 KEG_UNLOCK(last); 2362 } 2363 /* 2364 * Loop until we have a slab incase of transient failures 2365 * while M_WAITOK is specified. I'm not sure this is 100% 2366 * required but we've done it for so long now. 2367 */ 2368 for (;;) { 2369 empty = 0; 2370 full = 0; 2371 /* 2372 * Search the available kegs for slabs. Be careful to hold the 2373 * correct lock while calling into the keg layer. 2374 */ 2375 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) { 2376 keg = klink->kl_keg; 2377 KEG_LOCK(keg); 2378 if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) { 2379 slab = keg_fetch_slab(keg, zone, flags); 2380 if (slab) 2381 return (slab); 2382 } 2383 if (keg->uk_flags & UMA_ZFLAG_FULL) 2384 full++; 2385 else 2386 empty++; 2387 KEG_UNLOCK(keg); 2388 } 2389 if (rflags & (M_NOWAIT | M_NOVM)) 2390 break; 2391 flags = rflags; 2392 /* 2393 * All kegs are full. XXX We can't atomically check all kegs 2394 * and sleep so just sleep for a short period and retry. 2395 */ 2396 if (full && !empty) { 2397 ZONE_LOCK(zone); 2398 zone->uz_flags |= UMA_ZFLAG_FULL; 2399 zone->uz_sleeps++; 2400 zone_log_warning(zone); 2401 zone_maxaction(zone); 2402 msleep(zone, zone->uz_lockptr, PVM, 2403 "zonelimit", hz/100); 2404 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2405 ZONE_UNLOCK(zone); 2406 continue; 2407 } 2408 } 2409 return (NULL); 2410 } 2411 2412 static void * 2413 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 2414 { 2415 void *item; 2416 uint8_t freei; 2417 2418 MPASS(keg == slab->us_keg); 2419 mtx_assert(&keg->uk_lock, MA_OWNED); 2420 2421 freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1; 2422 BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free); 2423 item = slab->us_data + (keg->uk_rsize * freei); 2424 slab->us_freecount--; 2425 keg->uk_free--; 2426 2427 /* Move this slab to the full list */ 2428 if (slab->us_freecount == 0) { 2429 LIST_REMOVE(slab, us_link); 2430 LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link); 2431 } 2432 2433 return (item); 2434 } 2435 2436 static int 2437 zone_import(uma_zone_t zone, void **bucket, int max, int flags) 2438 { 2439 uma_slab_t slab; 2440 uma_keg_t keg; 2441 int i; 2442 2443 slab = NULL; 2444 keg = NULL; 2445 /* Try to keep the buckets totally full */ 2446 for (i = 0; i < max; ) { 2447 if ((slab = zone->uz_slab(zone, keg, flags)) == NULL) 2448 break; 2449 keg = slab->us_keg; 2450 while (slab->us_freecount && i < max) { 2451 bucket[i++] = slab_alloc_item(keg, slab); 2452 if (keg->uk_free <= keg->uk_reserve) 2453 break; 2454 } 2455 /* Don't grab more than one slab at a time. */ 2456 flags &= ~M_WAITOK; 2457 flags |= M_NOWAIT; 2458 } 2459 if (slab != NULL) 2460 KEG_UNLOCK(keg); 2461 2462 return i; 2463 } 2464 2465 static uma_bucket_t 2466 zone_alloc_bucket(uma_zone_t zone, void *udata, int flags) 2467 { 2468 uma_bucket_t bucket; 2469 int max; 2470 2471 /* Don't wait for buckets, preserve caller's NOVM setting. */ 2472 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 2473 if (bucket == NULL) 2474 return (NULL); 2475 2476 max = MIN(bucket->ub_entries, zone->uz_count); 2477 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 2478 max, flags); 2479 2480 /* 2481 * Initialize the memory if necessary. 2482 */ 2483 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 2484 int i; 2485 2486 for (i = 0; i < bucket->ub_cnt; i++) 2487 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 2488 flags) != 0) 2489 break; 2490 /* 2491 * If we couldn't initialize the whole bucket, put the 2492 * rest back onto the freelist. 2493 */ 2494 if (i != bucket->ub_cnt) { 2495 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 2496 bucket->ub_cnt - i); 2497 #ifdef INVARIANTS 2498 bzero(&bucket->ub_bucket[i], 2499 sizeof(void *) * (bucket->ub_cnt - i)); 2500 #endif 2501 bucket->ub_cnt = i; 2502 } 2503 } 2504 2505 if (bucket->ub_cnt == 0) { 2506 bucket_free(zone, bucket, udata); 2507 atomic_add_long(&zone->uz_fails, 1); 2508 return (NULL); 2509 } 2510 2511 return (bucket); 2512 } 2513 2514 /* 2515 * Allocates a single item from a zone. 2516 * 2517 * Arguments 2518 * zone The zone to alloc for. 2519 * udata The data to be passed to the constructor. 2520 * flags M_WAITOK, M_NOWAIT, M_ZERO. 2521 * 2522 * Returns 2523 * NULL if there is no memory and M_NOWAIT is set 2524 * An item if successful 2525 */ 2526 2527 static void * 2528 zone_alloc_item(uma_zone_t zone, void *udata, int flags) 2529 { 2530 void *item; 2531 2532 item = NULL; 2533 2534 if (zone->uz_import(zone->uz_arg, &item, 1, flags) != 1) 2535 goto fail; 2536 atomic_add_long(&zone->uz_allocs, 1); 2537 2538 /* 2539 * We have to call both the zone's init (not the keg's init) 2540 * and the zone's ctor. This is because the item is going from 2541 * a keg slab directly to the user, and the user is expecting it 2542 * to be both zone-init'd as well as zone-ctor'd. 2543 */ 2544 if (zone->uz_init != NULL) { 2545 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 2546 zone_free_item(zone, item, udata, SKIP_FINI); 2547 goto fail; 2548 } 2549 } 2550 if (zone->uz_ctor != NULL) { 2551 if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2552 zone_free_item(zone, item, udata, SKIP_DTOR); 2553 goto fail; 2554 } 2555 } 2556 #ifdef INVARIANTS 2557 uma_dbg_alloc(zone, NULL, item); 2558 #endif 2559 if (flags & M_ZERO) 2560 uma_zero_item(item, zone); 2561 2562 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 2563 zone->uz_name, zone); 2564 2565 return (item); 2566 2567 fail: 2568 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 2569 zone->uz_name, zone); 2570 atomic_add_long(&zone->uz_fails, 1); 2571 return (NULL); 2572 } 2573 2574 /* See uma.h */ 2575 void 2576 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 2577 { 2578 uma_cache_t cache; 2579 uma_bucket_t bucket; 2580 int lockfail; 2581 int cpu; 2582 2583 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2584 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 2585 2586 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 2587 zone->uz_name); 2588 2589 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2590 ("uma_zfree_arg: called with spinlock or critical section held")); 2591 2592 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 2593 if (item == NULL) 2594 return; 2595 #ifdef DEBUG_MEMGUARD 2596 if (is_memguard_addr(item)) { 2597 if (zone->uz_dtor != NULL) 2598 zone->uz_dtor(item, zone->uz_size, udata); 2599 if (zone->uz_fini != NULL) 2600 zone->uz_fini(item, zone->uz_size); 2601 memguard_free(item); 2602 return; 2603 } 2604 #endif 2605 #ifdef INVARIANTS 2606 if (zone->uz_flags & UMA_ZONE_MALLOC) 2607 uma_dbg_free(zone, udata, item); 2608 else 2609 uma_dbg_free(zone, NULL, item); 2610 #endif 2611 if (zone->uz_dtor != NULL) 2612 zone->uz_dtor(item, zone->uz_size, udata); 2613 2614 /* 2615 * The race here is acceptable. If we miss it we'll just have to wait 2616 * a little longer for the limits to be reset. 2617 */ 2618 if (zone->uz_flags & UMA_ZFLAG_FULL) 2619 goto zfree_item; 2620 2621 /* 2622 * If possible, free to the per-CPU cache. There are two 2623 * requirements for safe access to the per-CPU cache: (1) the thread 2624 * accessing the cache must not be preempted or yield during access, 2625 * and (2) the thread must not migrate CPUs without switching which 2626 * cache it accesses. We rely on a critical section to prevent 2627 * preemption and migration. We release the critical section in 2628 * order to acquire the zone mutex if we are unable to free to the 2629 * current cache; when we re-acquire the critical section, we must 2630 * detect and handle migration if it has occurred. 2631 */ 2632 zfree_restart: 2633 critical_enter(); 2634 cpu = curcpu; 2635 cache = &zone->uz_cpu[cpu]; 2636 2637 zfree_start: 2638 /* 2639 * Try to free into the allocbucket first to give LIFO ordering 2640 * for cache-hot datastructures. Spill over into the freebucket 2641 * if necessary. Alloc will swap them if one runs dry. 2642 */ 2643 bucket = cache->uc_allocbucket; 2644 if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries) 2645 bucket = cache->uc_freebucket; 2646 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 2647 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 2648 ("uma_zfree: Freeing to non free bucket index.")); 2649 bucket->ub_bucket[bucket->ub_cnt] = item; 2650 bucket->ub_cnt++; 2651 cache->uc_frees++; 2652 critical_exit(); 2653 return; 2654 } 2655 2656 /* 2657 * We must go back the zone, which requires acquiring the zone lock, 2658 * which in turn means we must release and re-acquire the critical 2659 * section. Since the critical section is released, we may be 2660 * preempted or migrate. As such, make sure not to maintain any 2661 * thread-local state specific to the cache from prior to releasing 2662 * the critical section. 2663 */ 2664 critical_exit(); 2665 if (zone->uz_count == 0 || bucketdisable) 2666 goto zfree_item; 2667 2668 lockfail = 0; 2669 if (ZONE_TRYLOCK(zone) == 0) { 2670 /* Record contention to size the buckets. */ 2671 ZONE_LOCK(zone); 2672 lockfail = 1; 2673 } 2674 critical_enter(); 2675 cpu = curcpu; 2676 cache = &zone->uz_cpu[cpu]; 2677 2678 /* 2679 * Since we have locked the zone we may as well send back our stats. 2680 */ 2681 atomic_add_long(&zone->uz_allocs, cache->uc_allocs); 2682 atomic_add_long(&zone->uz_frees, cache->uc_frees); 2683 cache->uc_allocs = 0; 2684 cache->uc_frees = 0; 2685 2686 bucket = cache->uc_freebucket; 2687 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 2688 ZONE_UNLOCK(zone); 2689 goto zfree_start; 2690 } 2691 cache->uc_freebucket = NULL; 2692 /* We are no longer associated with this CPU. */ 2693 critical_exit(); 2694 2695 /* Can we throw this on the zone full list? */ 2696 if (bucket != NULL) { 2697 CTR3(KTR_UMA, 2698 "uma_zfree: zone %s(%p) putting bucket %p on free list", 2699 zone->uz_name, zone, bucket); 2700 /* ub_cnt is pointing to the last free item */ 2701 KASSERT(bucket->ub_cnt != 0, 2702 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n")); 2703 LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link); 2704 } 2705 2706 /* 2707 * We bump the uz count when the cache size is insufficient to 2708 * handle the working set. 2709 */ 2710 if (lockfail && zone->uz_count < BUCKET_MAX) 2711 zone->uz_count++; 2712 ZONE_UNLOCK(zone); 2713 2714 bucket = bucket_alloc(zone, udata, M_NOWAIT); 2715 CTR3(KTR_UMA, "uma_zfree: zone %s(%p) allocated bucket %p", 2716 zone->uz_name, zone, bucket); 2717 if (bucket) { 2718 critical_enter(); 2719 cpu = curcpu; 2720 cache = &zone->uz_cpu[cpu]; 2721 if (cache->uc_freebucket == NULL) { 2722 cache->uc_freebucket = bucket; 2723 goto zfree_start; 2724 } 2725 /* 2726 * We lost the race, start over. We have to drop our 2727 * critical section to free the bucket. 2728 */ 2729 critical_exit(); 2730 bucket_free(zone, bucket, udata); 2731 goto zfree_restart; 2732 } 2733 2734 /* 2735 * If nothing else caught this, we'll just do an internal free. 2736 */ 2737 zfree_item: 2738 zone_free_item(zone, item, udata, SKIP_DTOR); 2739 2740 return; 2741 } 2742 2743 static void 2744 slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item) 2745 { 2746 uint8_t freei; 2747 2748 mtx_assert(&keg->uk_lock, MA_OWNED); 2749 MPASS(keg == slab->us_keg); 2750 2751 /* Do we need to remove from any lists? */ 2752 if (slab->us_freecount+1 == keg->uk_ipers) { 2753 LIST_REMOVE(slab, us_link); 2754 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 2755 } else if (slab->us_freecount == 0) { 2756 LIST_REMOVE(slab, us_link); 2757 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2758 } 2759 2760 /* Slab management. */ 2761 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 2762 BIT_SET(SLAB_SETSIZE, freei, &slab->us_free); 2763 slab->us_freecount++; 2764 2765 /* Keg statistics. */ 2766 keg->uk_free++; 2767 } 2768 2769 static void 2770 zone_release(uma_zone_t zone, void **bucket, int cnt) 2771 { 2772 void *item; 2773 uma_slab_t slab; 2774 uma_keg_t keg; 2775 uint8_t *mem; 2776 int clearfull; 2777 int i; 2778 2779 clearfull = 0; 2780 keg = zone_first_keg(zone); 2781 KEG_LOCK(keg); 2782 for (i = 0; i < cnt; i++) { 2783 item = bucket[i]; 2784 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) { 2785 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 2786 if (zone->uz_flags & UMA_ZONE_HASH) { 2787 slab = hash_sfind(&keg->uk_hash, mem); 2788 } else { 2789 mem += keg->uk_pgoff; 2790 slab = (uma_slab_t)mem; 2791 } 2792 } else { 2793 slab = vtoslab((vm_offset_t)item); 2794 if (slab->us_keg != keg) { 2795 KEG_UNLOCK(keg); 2796 keg = slab->us_keg; 2797 KEG_LOCK(keg); 2798 } 2799 } 2800 slab_free_item(keg, slab, item); 2801 if (keg->uk_flags & UMA_ZFLAG_FULL) { 2802 if (keg->uk_pages < keg->uk_maxpages) { 2803 keg->uk_flags &= ~UMA_ZFLAG_FULL; 2804 clearfull = 1; 2805 } 2806 2807 /* 2808 * We can handle one more allocation. Since we're 2809 * clearing ZFLAG_FULL, wake up all procs blocked 2810 * on pages. This should be uncommon, so keeping this 2811 * simple for now (rather than adding count of blocked 2812 * threads etc). 2813 */ 2814 wakeup(keg); 2815 } 2816 } 2817 KEG_UNLOCK(keg); 2818 if (clearfull) { 2819 ZONE_LOCK(zone); 2820 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2821 wakeup(zone); 2822 ZONE_UNLOCK(zone); 2823 } 2824 2825 } 2826 2827 /* 2828 * Frees a single item to any zone. 2829 * 2830 * Arguments: 2831 * zone The zone to free to 2832 * item The item we're freeing 2833 * udata User supplied data for the dtor 2834 * skip Skip dtors and finis 2835 */ 2836 static void 2837 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 2838 { 2839 2840 #ifdef INVARIANTS 2841 if (skip == SKIP_NONE) { 2842 if (zone->uz_flags & UMA_ZONE_MALLOC) 2843 uma_dbg_free(zone, udata, item); 2844 else 2845 uma_dbg_free(zone, NULL, item); 2846 } 2847 #endif 2848 if (skip < SKIP_DTOR && zone->uz_dtor) 2849 zone->uz_dtor(item, zone->uz_size, udata); 2850 2851 if (skip < SKIP_FINI && zone->uz_fini) 2852 zone->uz_fini(item, zone->uz_size); 2853 2854 atomic_add_long(&zone->uz_frees, 1); 2855 zone->uz_release(zone->uz_arg, &item, 1); 2856 } 2857 2858 /* See uma.h */ 2859 int 2860 uma_zone_set_max(uma_zone_t zone, int nitems) 2861 { 2862 uma_keg_t keg; 2863 2864 keg = zone_first_keg(zone); 2865 if (keg == NULL) 2866 return (0); 2867 KEG_LOCK(keg); 2868 keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera; 2869 if (keg->uk_maxpages * keg->uk_ipers < nitems) 2870 keg->uk_maxpages += keg->uk_ppera; 2871 nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers; 2872 KEG_UNLOCK(keg); 2873 2874 return (nitems); 2875 } 2876 2877 /* See uma.h */ 2878 int 2879 uma_zone_get_max(uma_zone_t zone) 2880 { 2881 int nitems; 2882 uma_keg_t keg; 2883 2884 keg = zone_first_keg(zone); 2885 if (keg == NULL) 2886 return (0); 2887 KEG_LOCK(keg); 2888 nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers; 2889 KEG_UNLOCK(keg); 2890 2891 return (nitems); 2892 } 2893 2894 /* See uma.h */ 2895 void 2896 uma_zone_set_warning(uma_zone_t zone, const char *warning) 2897 { 2898 2899 ZONE_LOCK(zone); 2900 zone->uz_warning = warning; 2901 ZONE_UNLOCK(zone); 2902 } 2903 2904 /* See uma.h */ 2905 void 2906 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 2907 { 2908 2909 ZONE_LOCK(zone); 2910 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 2911 ZONE_UNLOCK(zone); 2912 } 2913 2914 /* See uma.h */ 2915 int 2916 uma_zone_get_cur(uma_zone_t zone) 2917 { 2918 int64_t nitems; 2919 u_int i; 2920 2921 ZONE_LOCK(zone); 2922 nitems = zone->uz_allocs - zone->uz_frees; 2923 CPU_FOREACH(i) { 2924 /* 2925 * See the comment in sysctl_vm_zone_stats() regarding the 2926 * safety of accessing the per-cpu caches. With the zone lock 2927 * held, it is safe, but can potentially result in stale data. 2928 */ 2929 nitems += zone->uz_cpu[i].uc_allocs - 2930 zone->uz_cpu[i].uc_frees; 2931 } 2932 ZONE_UNLOCK(zone); 2933 2934 return (nitems < 0 ? 0 : nitems); 2935 } 2936 2937 /* See uma.h */ 2938 void 2939 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 2940 { 2941 uma_keg_t keg; 2942 2943 keg = zone_first_keg(zone); 2944 KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type")); 2945 KEG_LOCK(keg); 2946 KASSERT(keg->uk_pages == 0, 2947 ("uma_zone_set_init on non-empty keg")); 2948 keg->uk_init = uminit; 2949 KEG_UNLOCK(keg); 2950 } 2951 2952 /* See uma.h */ 2953 void 2954 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 2955 { 2956 uma_keg_t keg; 2957 2958 keg = zone_first_keg(zone); 2959 KASSERT(keg != NULL, ("uma_zone_set_fini: Invalid zone type")); 2960 KEG_LOCK(keg); 2961 KASSERT(keg->uk_pages == 0, 2962 ("uma_zone_set_fini on non-empty keg")); 2963 keg->uk_fini = fini; 2964 KEG_UNLOCK(keg); 2965 } 2966 2967 /* See uma.h */ 2968 void 2969 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 2970 { 2971 2972 ZONE_LOCK(zone); 2973 KASSERT(zone_first_keg(zone)->uk_pages == 0, 2974 ("uma_zone_set_zinit on non-empty keg")); 2975 zone->uz_init = zinit; 2976 ZONE_UNLOCK(zone); 2977 } 2978 2979 /* See uma.h */ 2980 void 2981 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 2982 { 2983 2984 ZONE_LOCK(zone); 2985 KASSERT(zone_first_keg(zone)->uk_pages == 0, 2986 ("uma_zone_set_zfini on non-empty keg")); 2987 zone->uz_fini = zfini; 2988 ZONE_UNLOCK(zone); 2989 } 2990 2991 /* See uma.h */ 2992 /* XXX uk_freef is not actually used with the zone locked */ 2993 void 2994 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 2995 { 2996 uma_keg_t keg; 2997 2998 keg = zone_first_keg(zone); 2999 KASSERT(keg != NULL, ("uma_zone_set_freef: Invalid zone type")); 3000 KEG_LOCK(keg); 3001 keg->uk_freef = freef; 3002 KEG_UNLOCK(keg); 3003 } 3004 3005 /* See uma.h */ 3006 /* XXX uk_allocf is not actually used with the zone locked */ 3007 void 3008 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 3009 { 3010 uma_keg_t keg; 3011 3012 keg = zone_first_keg(zone); 3013 KEG_LOCK(keg); 3014 keg->uk_allocf = allocf; 3015 KEG_UNLOCK(keg); 3016 } 3017 3018 /* See uma.h */ 3019 void 3020 uma_zone_reserve(uma_zone_t zone, int items) 3021 { 3022 uma_keg_t keg; 3023 3024 keg = zone_first_keg(zone); 3025 if (keg == NULL) 3026 return; 3027 KEG_LOCK(keg); 3028 keg->uk_reserve = items; 3029 KEG_UNLOCK(keg); 3030 3031 return; 3032 } 3033 3034 /* See uma.h */ 3035 int 3036 uma_zone_reserve_kva(uma_zone_t zone, int count) 3037 { 3038 uma_keg_t keg; 3039 vm_offset_t kva; 3040 u_int pages; 3041 3042 keg = zone_first_keg(zone); 3043 if (keg == NULL) 3044 return (0); 3045 pages = count / keg->uk_ipers; 3046 3047 if (pages * keg->uk_ipers < count) 3048 pages++; 3049 pages *= keg->uk_ppera; 3050 3051 #ifdef UMA_MD_SMALL_ALLOC 3052 if (keg->uk_ppera > 1) { 3053 #else 3054 if (1) { 3055 #endif 3056 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 3057 if (kva == 0) 3058 return (0); 3059 } else 3060 kva = 0; 3061 KEG_LOCK(keg); 3062 keg->uk_kva = kva; 3063 keg->uk_offset = 0; 3064 keg->uk_maxpages = pages; 3065 #ifdef UMA_MD_SMALL_ALLOC 3066 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 3067 #else 3068 keg->uk_allocf = noobj_alloc; 3069 #endif 3070 keg->uk_flags |= UMA_ZONE_NOFREE; 3071 KEG_UNLOCK(keg); 3072 3073 return (1); 3074 } 3075 3076 /* See uma.h */ 3077 void 3078 uma_prealloc(uma_zone_t zone, int items) 3079 { 3080 int slabs; 3081 uma_slab_t slab; 3082 uma_keg_t keg; 3083 3084 keg = zone_first_keg(zone); 3085 if (keg == NULL) 3086 return; 3087 KEG_LOCK(keg); 3088 slabs = items / keg->uk_ipers; 3089 if (slabs * keg->uk_ipers < items) 3090 slabs++; 3091 while (slabs > 0) { 3092 slab = keg_alloc_slab(keg, zone, M_WAITOK); 3093 if (slab == NULL) 3094 break; 3095 MPASS(slab->us_keg == keg); 3096 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 3097 slabs--; 3098 } 3099 KEG_UNLOCK(keg); 3100 } 3101 3102 /* See uma.h */ 3103 static void 3104 uma_reclaim_locked(bool kmem_danger) 3105 { 3106 3107 CTR0(KTR_UMA, "UMA: vm asked us to release pages!"); 3108 sx_assert(&uma_drain_lock, SA_XLOCKED); 3109 bucket_enable(); 3110 zone_foreach(zone_drain); 3111 if (vm_page_count_min() || kmem_danger) { 3112 cache_drain_safe(NULL); 3113 zone_foreach(zone_drain); 3114 } 3115 /* 3116 * Some slabs may have been freed but this zone will be visited early 3117 * we visit again so that we can free pages that are empty once other 3118 * zones are drained. We have to do the same for buckets. 3119 */ 3120 zone_drain(slabzone); 3121 bucket_zone_drain(); 3122 } 3123 3124 void 3125 uma_reclaim(void) 3126 { 3127 3128 sx_xlock(&uma_drain_lock); 3129 uma_reclaim_locked(false); 3130 sx_xunlock(&uma_drain_lock); 3131 } 3132 3133 static int uma_reclaim_needed; 3134 3135 void 3136 uma_reclaim_wakeup(void) 3137 { 3138 3139 uma_reclaim_needed = 1; 3140 wakeup(&uma_reclaim_needed); 3141 } 3142 3143 void 3144 uma_reclaim_worker(void *arg __unused) 3145 { 3146 3147 sx_xlock(&uma_drain_lock); 3148 for (;;) { 3149 sx_sleep(&uma_reclaim_needed, &uma_drain_lock, PVM, 3150 "umarcl", 0); 3151 if (uma_reclaim_needed) { 3152 uma_reclaim_needed = 0; 3153 sx_xunlock(&uma_drain_lock); 3154 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 3155 sx_xlock(&uma_drain_lock); 3156 uma_reclaim_locked(true); 3157 } 3158 } 3159 } 3160 3161 /* See uma.h */ 3162 int 3163 uma_zone_exhausted(uma_zone_t zone) 3164 { 3165 int full; 3166 3167 ZONE_LOCK(zone); 3168 full = (zone->uz_flags & UMA_ZFLAG_FULL); 3169 ZONE_UNLOCK(zone); 3170 return (full); 3171 } 3172 3173 int 3174 uma_zone_exhausted_nolock(uma_zone_t zone) 3175 { 3176 return (zone->uz_flags & UMA_ZFLAG_FULL); 3177 } 3178 3179 void * 3180 uma_large_malloc(vm_size_t size, int wait) 3181 { 3182 void *mem; 3183 uma_slab_t slab; 3184 uint8_t flags; 3185 3186 slab = zone_alloc_item(slabzone, NULL, wait); 3187 if (slab == NULL) 3188 return (NULL); 3189 mem = page_alloc(NULL, size, &flags, wait); 3190 if (mem) { 3191 vsetslab((vm_offset_t)mem, slab); 3192 slab->us_data = mem; 3193 slab->us_flags = flags | UMA_SLAB_MALLOC; 3194 slab->us_size = size; 3195 } else { 3196 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3197 } 3198 3199 return (mem); 3200 } 3201 3202 void 3203 uma_large_free(uma_slab_t slab) 3204 { 3205 3206 page_free(slab->us_data, slab->us_size, slab->us_flags); 3207 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3208 } 3209 3210 static void 3211 uma_zero_item(void *item, uma_zone_t zone) 3212 { 3213 int i; 3214 3215 if (zone->uz_flags & UMA_ZONE_PCPU) { 3216 CPU_FOREACH(i) 3217 bzero(zpcpu_get_cpu(item, i), zone->uz_size); 3218 } else 3219 bzero(item, zone->uz_size); 3220 } 3221 3222 void 3223 uma_print_stats(void) 3224 { 3225 zone_foreach(uma_print_zone); 3226 } 3227 3228 static void 3229 slab_print(uma_slab_t slab) 3230 { 3231 printf("slab: keg %p, data %p, freecount %d\n", 3232 slab->us_keg, slab->us_data, slab->us_freecount); 3233 } 3234 3235 static void 3236 cache_print(uma_cache_t cache) 3237 { 3238 printf("alloc: %p(%d), free: %p(%d)\n", 3239 cache->uc_allocbucket, 3240 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, 3241 cache->uc_freebucket, 3242 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0); 3243 } 3244 3245 static void 3246 uma_print_keg(uma_keg_t keg) 3247 { 3248 uma_slab_t slab; 3249 3250 printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d " 3251 "out %d free %d limit %d\n", 3252 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags, 3253 keg->uk_ipers, keg->uk_ppera, 3254 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 3255 keg->uk_free, (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers); 3256 printf("Part slabs:\n"); 3257 LIST_FOREACH(slab, &keg->uk_part_slab, us_link) 3258 slab_print(slab); 3259 printf("Free slabs:\n"); 3260 LIST_FOREACH(slab, &keg->uk_free_slab, us_link) 3261 slab_print(slab); 3262 printf("Full slabs:\n"); 3263 LIST_FOREACH(slab, &keg->uk_full_slab, us_link) 3264 slab_print(slab); 3265 } 3266 3267 void 3268 uma_print_zone(uma_zone_t zone) 3269 { 3270 uma_cache_t cache; 3271 uma_klink_t kl; 3272 int i; 3273 3274 printf("zone: %s(%p) size %d flags %#x\n", 3275 zone->uz_name, zone, zone->uz_size, zone->uz_flags); 3276 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) 3277 uma_print_keg(kl->kl_keg); 3278 CPU_FOREACH(i) { 3279 cache = &zone->uz_cpu[i]; 3280 printf("CPU %d Cache:\n", i); 3281 cache_print(cache); 3282 } 3283 } 3284 3285 #ifdef DDB 3286 /* 3287 * Generate statistics across both the zone and its per-cpu cache's. Return 3288 * desired statistics if the pointer is non-NULL for that statistic. 3289 * 3290 * Note: does not update the zone statistics, as it can't safely clear the 3291 * per-CPU cache statistic. 3292 * 3293 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't 3294 * safe from off-CPU; we should modify the caches to track this information 3295 * directly so that we don't have to. 3296 */ 3297 static void 3298 uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp, 3299 uint64_t *freesp, uint64_t *sleepsp) 3300 { 3301 uma_cache_t cache; 3302 uint64_t allocs, frees, sleeps; 3303 int cachefree, cpu; 3304 3305 allocs = frees = sleeps = 0; 3306 cachefree = 0; 3307 CPU_FOREACH(cpu) { 3308 cache = &z->uz_cpu[cpu]; 3309 if (cache->uc_allocbucket != NULL) 3310 cachefree += cache->uc_allocbucket->ub_cnt; 3311 if (cache->uc_freebucket != NULL) 3312 cachefree += cache->uc_freebucket->ub_cnt; 3313 allocs += cache->uc_allocs; 3314 frees += cache->uc_frees; 3315 } 3316 allocs += z->uz_allocs; 3317 frees += z->uz_frees; 3318 sleeps += z->uz_sleeps; 3319 if (cachefreep != NULL) 3320 *cachefreep = cachefree; 3321 if (allocsp != NULL) 3322 *allocsp = allocs; 3323 if (freesp != NULL) 3324 *freesp = frees; 3325 if (sleepsp != NULL) 3326 *sleepsp = sleeps; 3327 } 3328 #endif /* DDB */ 3329 3330 static int 3331 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 3332 { 3333 uma_keg_t kz; 3334 uma_zone_t z; 3335 int count; 3336 3337 count = 0; 3338 rw_rlock(&uma_rwlock); 3339 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3340 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3341 count++; 3342 } 3343 rw_runlock(&uma_rwlock); 3344 return (sysctl_handle_int(oidp, &count, 0, req)); 3345 } 3346 3347 static int 3348 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 3349 { 3350 struct uma_stream_header ush; 3351 struct uma_type_header uth; 3352 struct uma_percpu_stat ups; 3353 uma_bucket_t bucket; 3354 struct sbuf sbuf; 3355 uma_cache_t cache; 3356 uma_klink_t kl; 3357 uma_keg_t kz; 3358 uma_zone_t z; 3359 uma_keg_t k; 3360 int count, error, i; 3361 3362 error = sysctl_wire_old_buffer(req, 0); 3363 if (error != 0) 3364 return (error); 3365 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 3366 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 3367 3368 count = 0; 3369 rw_rlock(&uma_rwlock); 3370 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3371 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3372 count++; 3373 } 3374 3375 /* 3376 * Insert stream header. 3377 */ 3378 bzero(&ush, sizeof(ush)); 3379 ush.ush_version = UMA_STREAM_VERSION; 3380 ush.ush_maxcpus = (mp_maxid + 1); 3381 ush.ush_count = count; 3382 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 3383 3384 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3385 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3386 bzero(&uth, sizeof(uth)); 3387 ZONE_LOCK(z); 3388 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 3389 uth.uth_align = kz->uk_align; 3390 uth.uth_size = kz->uk_size; 3391 uth.uth_rsize = kz->uk_rsize; 3392 LIST_FOREACH(kl, &z->uz_kegs, kl_link) { 3393 k = kl->kl_keg; 3394 uth.uth_maxpages += k->uk_maxpages; 3395 uth.uth_pages += k->uk_pages; 3396 uth.uth_keg_free += k->uk_free; 3397 uth.uth_limit = (k->uk_maxpages / k->uk_ppera) 3398 * k->uk_ipers; 3399 } 3400 3401 /* 3402 * A zone is secondary is it is not the first entry 3403 * on the keg's zone list. 3404 */ 3405 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 3406 (LIST_FIRST(&kz->uk_zones) != z)) 3407 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 3408 3409 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3410 uth.uth_zone_free += bucket->ub_cnt; 3411 uth.uth_allocs = z->uz_allocs; 3412 uth.uth_frees = z->uz_frees; 3413 uth.uth_fails = z->uz_fails; 3414 uth.uth_sleeps = z->uz_sleeps; 3415 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 3416 /* 3417 * While it is not normally safe to access the cache 3418 * bucket pointers while not on the CPU that owns the 3419 * cache, we only allow the pointers to be exchanged 3420 * without the zone lock held, not invalidated, so 3421 * accept the possible race associated with bucket 3422 * exchange during monitoring. 3423 */ 3424 for (i = 0; i < (mp_maxid + 1); i++) { 3425 bzero(&ups, sizeof(ups)); 3426 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) 3427 goto skip; 3428 if (CPU_ABSENT(i)) 3429 goto skip; 3430 cache = &z->uz_cpu[i]; 3431 if (cache->uc_allocbucket != NULL) 3432 ups.ups_cache_free += 3433 cache->uc_allocbucket->ub_cnt; 3434 if (cache->uc_freebucket != NULL) 3435 ups.ups_cache_free += 3436 cache->uc_freebucket->ub_cnt; 3437 ups.ups_allocs = cache->uc_allocs; 3438 ups.ups_frees = cache->uc_frees; 3439 skip: 3440 (void)sbuf_bcat(&sbuf, &ups, sizeof(ups)); 3441 } 3442 ZONE_UNLOCK(z); 3443 } 3444 } 3445 rw_runlock(&uma_rwlock); 3446 error = sbuf_finish(&sbuf); 3447 sbuf_delete(&sbuf); 3448 return (error); 3449 } 3450 3451 int 3452 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 3453 { 3454 uma_zone_t zone = *(uma_zone_t *)arg1; 3455 int error, max; 3456 3457 max = uma_zone_get_max(zone); 3458 error = sysctl_handle_int(oidp, &max, 0, req); 3459 if (error || !req->newptr) 3460 return (error); 3461 3462 uma_zone_set_max(zone, max); 3463 3464 return (0); 3465 } 3466 3467 int 3468 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 3469 { 3470 uma_zone_t zone = *(uma_zone_t *)arg1; 3471 int cur; 3472 3473 cur = uma_zone_get_cur(zone); 3474 return (sysctl_handle_int(oidp, &cur, 0, req)); 3475 } 3476 3477 #ifdef INVARIANTS 3478 static uma_slab_t 3479 uma_dbg_getslab(uma_zone_t zone, void *item) 3480 { 3481 uma_slab_t slab; 3482 uma_keg_t keg; 3483 uint8_t *mem; 3484 3485 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 3486 if (zone->uz_flags & UMA_ZONE_VTOSLAB) { 3487 slab = vtoslab((vm_offset_t)mem); 3488 } else { 3489 /* 3490 * It is safe to return the slab here even though the 3491 * zone is unlocked because the item's allocation state 3492 * essentially holds a reference. 3493 */ 3494 ZONE_LOCK(zone); 3495 keg = LIST_FIRST(&zone->uz_kegs)->kl_keg; 3496 if (keg->uk_flags & UMA_ZONE_HASH) 3497 slab = hash_sfind(&keg->uk_hash, mem); 3498 else 3499 slab = (uma_slab_t)(mem + keg->uk_pgoff); 3500 ZONE_UNLOCK(zone); 3501 } 3502 3503 return (slab); 3504 } 3505 3506 /* 3507 * Set up the slab's freei data such that uma_dbg_free can function. 3508 * 3509 */ 3510 static void 3511 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 3512 { 3513 uma_keg_t keg; 3514 int freei; 3515 3516 if (zone_first_keg(zone) == NULL) 3517 return; 3518 if (slab == NULL) { 3519 slab = uma_dbg_getslab(zone, item); 3520 if (slab == NULL) 3521 panic("uma: item %p did not belong to zone %s\n", 3522 item, zone->uz_name); 3523 } 3524 keg = slab->us_keg; 3525 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3526 3527 if (BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 3528 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n", 3529 item, zone, zone->uz_name, slab, freei); 3530 BIT_SET_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 3531 3532 return; 3533 } 3534 3535 /* 3536 * Verifies freed addresses. Checks for alignment, valid slab membership 3537 * and duplicate frees. 3538 * 3539 */ 3540 static void 3541 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 3542 { 3543 uma_keg_t keg; 3544 int freei; 3545 3546 if (zone_first_keg(zone) == NULL) 3547 return; 3548 if (slab == NULL) { 3549 slab = uma_dbg_getslab(zone, item); 3550 if (slab == NULL) 3551 panic("uma: Freed item %p did not belong to zone %s\n", 3552 item, zone->uz_name); 3553 } 3554 keg = slab->us_keg; 3555 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3556 3557 if (freei >= keg->uk_ipers) 3558 panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n", 3559 item, zone, zone->uz_name, slab, freei); 3560 3561 if (((freei * keg->uk_rsize) + slab->us_data) != item) 3562 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n", 3563 item, zone, zone->uz_name, slab, freei); 3564 3565 if (!BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 3566 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n", 3567 item, zone, zone->uz_name, slab, freei); 3568 3569 BIT_CLR_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 3570 } 3571 #endif /* INVARIANTS */ 3572 3573 #ifdef DDB 3574 DB_SHOW_COMMAND(uma, db_show_uma) 3575 { 3576 uint64_t allocs, frees, sleeps; 3577 uma_bucket_t bucket; 3578 uma_keg_t kz; 3579 uma_zone_t z; 3580 int cachefree; 3581 3582 db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used", 3583 "Free", "Requests", "Sleeps", "Bucket"); 3584 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3585 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3586 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 3587 allocs = z->uz_allocs; 3588 frees = z->uz_frees; 3589 sleeps = z->uz_sleeps; 3590 cachefree = 0; 3591 } else 3592 uma_zone_sumstat(z, &cachefree, &allocs, 3593 &frees, &sleeps); 3594 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 3595 (LIST_FIRST(&kz->uk_zones) != z))) 3596 cachefree += kz->uk_free; 3597 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3598 cachefree += bucket->ub_cnt; 3599 db_printf("%18s %8ju %8jd %8d %12ju %8ju %8u\n", 3600 z->uz_name, (uintmax_t)kz->uk_size, 3601 (intmax_t)(allocs - frees), cachefree, 3602 (uintmax_t)allocs, sleeps, z->uz_count); 3603 if (db_pager_quit) 3604 return; 3605 } 3606 } 3607 } 3608 3609 DB_SHOW_COMMAND(umacache, db_show_umacache) 3610 { 3611 uint64_t allocs, frees; 3612 uma_bucket_t bucket; 3613 uma_zone_t z; 3614 int cachefree; 3615 3616 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 3617 "Requests", "Bucket"); 3618 LIST_FOREACH(z, &uma_cachezones, uz_link) { 3619 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL); 3620 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3621 cachefree += bucket->ub_cnt; 3622 db_printf("%18s %8ju %8jd %8d %12ju %8u\n", 3623 z->uz_name, (uintmax_t)z->uz_size, 3624 (intmax_t)(allocs - frees), cachefree, 3625 (uintmax_t)allocs, z->uz_count); 3626 if (db_pager_quit) 3627 return; 3628 } 3629 } 3630 #endif /* DDB */ 3631