1 /*- 2 * Copyright (c) 2002-2005, 2009 Jeffrey Roberson <jeff@FreeBSD.org> 3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 4 * Copyright (c) 2004-2006 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /* 30 * uma_core.c Implementation of the Universal Memory allocator 31 * 32 * This allocator is intended to replace the multitude of similar object caches 33 * in the standard FreeBSD kernel. The intent is to be flexible as well as 34 * effecient. A primary design goal is to return unused memory to the rest of 35 * the system. This will make the system as a whole more flexible due to the 36 * ability to move memory to subsystems which most need it instead of leaving 37 * pools of reserved memory unused. 38 * 39 * The basic ideas stem from similar slab/zone based allocators whose algorithms 40 * are well known. 41 * 42 */ 43 44 /* 45 * TODO: 46 * - Improve memory usage for large allocations 47 * - Investigate cache size adjustments 48 */ 49 50 #include <sys/cdefs.h> 51 __FBSDID("$FreeBSD$"); 52 53 /* I should really use ktr.. */ 54 /* 55 #define UMA_DEBUG 1 56 #define UMA_DEBUG_ALLOC 1 57 #define UMA_DEBUG_ALLOC_1 1 58 */ 59 60 #include "opt_ddb.h" 61 #include "opt_param.h" 62 #include "opt_vm.h" 63 64 #include <sys/param.h> 65 #include <sys/systm.h> 66 #include <sys/kernel.h> 67 #include <sys/types.h> 68 #include <sys/queue.h> 69 #include <sys/malloc.h> 70 #include <sys/ktr.h> 71 #include <sys/lock.h> 72 #include <sys/sysctl.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/rwlock.h> 76 #include <sys/sbuf.h> 77 #include <sys/smp.h> 78 #include <sys/vmmeter.h> 79 80 #include <vm/vm.h> 81 #include <vm/vm_object.h> 82 #include <vm/vm_page.h> 83 #include <vm/vm_pageout.h> 84 #include <vm/vm_param.h> 85 #include <vm/vm_map.h> 86 #include <vm/vm_kern.h> 87 #include <vm/vm_extern.h> 88 #include <vm/uma.h> 89 #include <vm/uma_int.h> 90 #include <vm/uma_dbg.h> 91 92 #include <ddb/ddb.h> 93 94 #ifdef DEBUG_MEMGUARD 95 #include <vm/memguard.h> 96 #endif 97 98 /* 99 * This is the zone and keg from which all zones are spawned. The idea is that 100 * even the zone & keg heads are allocated from the allocator, so we use the 101 * bss section to bootstrap us. 102 */ 103 static struct uma_keg masterkeg; 104 static struct uma_zone masterzone_k; 105 static struct uma_zone masterzone_z; 106 static uma_zone_t kegs = &masterzone_k; 107 static uma_zone_t zones = &masterzone_z; 108 109 /* This is the zone from which all of uma_slab_t's are allocated. */ 110 static uma_zone_t slabzone; 111 static uma_zone_t slabrefzone; /* With refcounters (for UMA_ZONE_REFCNT) */ 112 113 /* 114 * The initial hash tables come out of this zone so they can be allocated 115 * prior to malloc coming up. 116 */ 117 static uma_zone_t hashzone; 118 119 /* The boot-time adjusted value for cache line alignment. */ 120 int uma_align_cache = 64 - 1; 121 122 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 123 124 /* 125 * Are we allowed to allocate buckets? 126 */ 127 static int bucketdisable = 1; 128 129 /* Linked list of all kegs in the system */ 130 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 131 132 /* This mutex protects the keg list */ 133 static struct mtx uma_mtx; 134 135 /* Linked list of boot time pages */ 136 static LIST_HEAD(,uma_slab) uma_boot_pages = 137 LIST_HEAD_INITIALIZER(uma_boot_pages); 138 139 /* This mutex protects the boot time pages list */ 140 static struct mtx uma_boot_pages_mtx; 141 142 /* Is the VM done starting up? */ 143 static int booted = 0; 144 #define UMA_STARTUP 1 145 #define UMA_STARTUP2 2 146 147 /* Maximum number of allowed items-per-slab if the slab header is OFFPAGE */ 148 static u_int uma_max_ipers; 149 static u_int uma_max_ipers_ref; 150 151 /* 152 * This is the handle used to schedule events that need to happen 153 * outside of the allocation fast path. 154 */ 155 static struct callout uma_callout; 156 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 157 158 /* 159 * This structure is passed as the zone ctor arg so that I don't have to create 160 * a special allocation function just for zones. 161 */ 162 struct uma_zctor_args { 163 const char *name; 164 size_t size; 165 uma_ctor ctor; 166 uma_dtor dtor; 167 uma_init uminit; 168 uma_fini fini; 169 uma_keg_t keg; 170 int align; 171 uint32_t flags; 172 }; 173 174 struct uma_kctor_args { 175 uma_zone_t zone; 176 size_t size; 177 uma_init uminit; 178 uma_fini fini; 179 int align; 180 uint32_t flags; 181 }; 182 183 struct uma_bucket_zone { 184 uma_zone_t ubz_zone; 185 char *ubz_name; 186 int ubz_entries; 187 }; 188 189 #define BUCKET_MAX 128 190 191 struct uma_bucket_zone bucket_zones[] = { 192 { NULL, "16 Bucket", 16 }, 193 { NULL, "32 Bucket", 32 }, 194 { NULL, "64 Bucket", 64 }, 195 { NULL, "128 Bucket", 128 }, 196 { NULL, NULL, 0} 197 }; 198 199 #define BUCKET_SHIFT 4 200 #define BUCKET_ZONES ((BUCKET_MAX >> BUCKET_SHIFT) + 1) 201 202 /* 203 * bucket_size[] maps requested bucket sizes to zones that allocate a bucket 204 * of approximately the right size. 205 */ 206 static uint8_t bucket_size[BUCKET_ZONES]; 207 208 /* 209 * Flags and enumerations to be passed to internal functions. 210 */ 211 enum zfreeskip { SKIP_NONE, SKIP_DTOR, SKIP_FINI }; 212 213 #define ZFREE_STATFAIL 0x00000001 /* Update zone failure statistic. */ 214 #define ZFREE_STATFREE 0x00000002 /* Update zone free statistic. */ 215 216 /* Prototypes.. */ 217 218 static void *noobj_alloc(uma_zone_t, int, uint8_t *, int); 219 static void *page_alloc(uma_zone_t, int, uint8_t *, int); 220 static void *startup_alloc(uma_zone_t, int, uint8_t *, int); 221 static void page_free(void *, int, uint8_t); 222 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int); 223 static void cache_drain(uma_zone_t); 224 static void bucket_drain(uma_zone_t, uma_bucket_t); 225 static void bucket_cache_drain(uma_zone_t zone); 226 static int keg_ctor(void *, int, void *, int); 227 static void keg_dtor(void *, int, void *); 228 static int zone_ctor(void *, int, void *, int); 229 static void zone_dtor(void *, int, void *); 230 static int zero_init(void *, int, int); 231 static void keg_small_init(uma_keg_t keg); 232 static void keg_large_init(uma_keg_t keg); 233 static void zone_foreach(void (*zfunc)(uma_zone_t)); 234 static void zone_timeout(uma_zone_t zone); 235 static int hash_alloc(struct uma_hash *); 236 static int hash_expand(struct uma_hash *, struct uma_hash *); 237 static void hash_free(struct uma_hash *hash); 238 static void uma_timeout(void *); 239 static void uma_startup3(void); 240 static void *zone_alloc_item(uma_zone_t, void *, int); 241 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip, 242 int); 243 static void bucket_enable(void); 244 static void bucket_init(void); 245 static uma_bucket_t bucket_alloc(int, int); 246 static void bucket_free(uma_bucket_t); 247 static void bucket_zone_drain(void); 248 static int zone_alloc_bucket(uma_zone_t zone, int flags); 249 static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags); 250 static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags); 251 static void *slab_alloc_item(uma_zone_t zone, uma_slab_t slab); 252 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 253 uma_fini fini, int align, uint32_t flags); 254 static inline void zone_relock(uma_zone_t zone, uma_keg_t keg); 255 static inline void keg_relock(uma_keg_t keg, uma_zone_t zone); 256 257 void uma_print_zone(uma_zone_t); 258 void uma_print_stats(void); 259 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 260 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 261 262 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 263 264 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 265 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 266 267 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 268 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 269 270 static int zone_warnings = 1; 271 TUNABLE_INT("vm.zone_warnings", &zone_warnings); 272 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RW, &zone_warnings, 0, 273 "Warn when UMA zones becomes full"); 274 275 /* 276 * This routine checks to see whether or not it's safe to enable buckets. 277 */ 278 279 static void 280 bucket_enable(void) 281 { 282 bucketdisable = vm_page_count_min(); 283 } 284 285 /* 286 * Initialize bucket_zones, the array of zones of buckets of various sizes. 287 * 288 * For each zone, calculate the memory required for each bucket, consisting 289 * of the header and an array of pointers. Initialize bucket_size[] to point 290 * the range of appropriate bucket sizes at the zone. 291 */ 292 static void 293 bucket_init(void) 294 { 295 struct uma_bucket_zone *ubz; 296 int i; 297 int j; 298 299 for (i = 0, j = 0; bucket_zones[j].ubz_entries != 0; j++) { 300 int size; 301 302 ubz = &bucket_zones[j]; 303 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 304 size += sizeof(void *) * ubz->ubz_entries; 305 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 306 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 307 UMA_ZFLAG_INTERNAL | UMA_ZFLAG_BUCKET); 308 for (; i <= ubz->ubz_entries; i += (1 << BUCKET_SHIFT)) 309 bucket_size[i >> BUCKET_SHIFT] = j; 310 } 311 } 312 313 /* 314 * Given a desired number of entries for a bucket, return the zone from which 315 * to allocate the bucket. 316 */ 317 static struct uma_bucket_zone * 318 bucket_zone_lookup(int entries) 319 { 320 int idx; 321 322 idx = howmany(entries, 1 << BUCKET_SHIFT); 323 return (&bucket_zones[bucket_size[idx]]); 324 } 325 326 static uma_bucket_t 327 bucket_alloc(int entries, int bflags) 328 { 329 struct uma_bucket_zone *ubz; 330 uma_bucket_t bucket; 331 332 /* 333 * This is to stop us from allocating per cpu buckets while we're 334 * running out of vm.boot_pages. Otherwise, we would exhaust the 335 * boot pages. This also prevents us from allocating buckets in 336 * low memory situations. 337 */ 338 if (bucketdisable) 339 return (NULL); 340 341 ubz = bucket_zone_lookup(entries); 342 bucket = zone_alloc_item(ubz->ubz_zone, NULL, bflags); 343 if (bucket) { 344 #ifdef INVARIANTS 345 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 346 #endif 347 bucket->ub_cnt = 0; 348 bucket->ub_entries = ubz->ubz_entries; 349 } 350 351 return (bucket); 352 } 353 354 static void 355 bucket_free(uma_bucket_t bucket) 356 { 357 struct uma_bucket_zone *ubz; 358 359 ubz = bucket_zone_lookup(bucket->ub_entries); 360 zone_free_item(ubz->ubz_zone, bucket, NULL, SKIP_NONE, 361 ZFREE_STATFREE); 362 } 363 364 static void 365 bucket_zone_drain(void) 366 { 367 struct uma_bucket_zone *ubz; 368 369 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 370 zone_drain(ubz->ubz_zone); 371 } 372 373 static void 374 zone_log_warning(uma_zone_t zone) 375 { 376 static const struct timeval warninterval = { 300, 0 }; 377 378 if (!zone_warnings || zone->uz_warning == NULL) 379 return; 380 381 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 382 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 383 } 384 385 static inline uma_keg_t 386 zone_first_keg(uma_zone_t zone) 387 { 388 389 return (LIST_FIRST(&zone->uz_kegs)->kl_keg); 390 } 391 392 static void 393 zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t)) 394 { 395 uma_klink_t klink; 396 397 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) 398 kegfn(klink->kl_keg); 399 } 400 401 /* 402 * Routine called by timeout which is used to fire off some time interval 403 * based calculations. (stats, hash size, etc.) 404 * 405 * Arguments: 406 * arg Unused 407 * 408 * Returns: 409 * Nothing 410 */ 411 static void 412 uma_timeout(void *unused) 413 { 414 bucket_enable(); 415 zone_foreach(zone_timeout); 416 417 /* Reschedule this event */ 418 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 419 } 420 421 /* 422 * Routine to perform timeout driven calculations. This expands the 423 * hashes and does per cpu statistics aggregation. 424 * 425 * Returns nothing. 426 */ 427 static void 428 keg_timeout(uma_keg_t keg) 429 { 430 431 KEG_LOCK(keg); 432 /* 433 * Expand the keg hash table. 434 * 435 * This is done if the number of slabs is larger than the hash size. 436 * What I'm trying to do here is completely reduce collisions. This 437 * may be a little aggressive. Should I allow for two collisions max? 438 */ 439 if (keg->uk_flags & UMA_ZONE_HASH && 440 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) { 441 struct uma_hash newhash; 442 struct uma_hash oldhash; 443 int ret; 444 445 /* 446 * This is so involved because allocating and freeing 447 * while the keg lock is held will lead to deadlock. 448 * I have to do everything in stages and check for 449 * races. 450 */ 451 newhash = keg->uk_hash; 452 KEG_UNLOCK(keg); 453 ret = hash_alloc(&newhash); 454 KEG_LOCK(keg); 455 if (ret) { 456 if (hash_expand(&keg->uk_hash, &newhash)) { 457 oldhash = keg->uk_hash; 458 keg->uk_hash = newhash; 459 } else 460 oldhash = newhash; 461 462 KEG_UNLOCK(keg); 463 hash_free(&oldhash); 464 KEG_LOCK(keg); 465 } 466 } 467 KEG_UNLOCK(keg); 468 } 469 470 static void 471 zone_timeout(uma_zone_t zone) 472 { 473 474 zone_foreach_keg(zone, &keg_timeout); 475 } 476 477 /* 478 * Allocate and zero fill the next sized hash table from the appropriate 479 * backing store. 480 * 481 * Arguments: 482 * hash A new hash structure with the old hash size in uh_hashsize 483 * 484 * Returns: 485 * 1 on sucess and 0 on failure. 486 */ 487 static int 488 hash_alloc(struct uma_hash *hash) 489 { 490 int oldsize; 491 int alloc; 492 493 oldsize = hash->uh_hashsize; 494 495 /* We're just going to go to a power of two greater */ 496 if (oldsize) { 497 hash->uh_hashsize = oldsize * 2; 498 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 499 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 500 M_UMAHASH, M_NOWAIT); 501 } else { 502 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 503 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 504 M_WAITOK); 505 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 506 } 507 if (hash->uh_slab_hash) { 508 bzero(hash->uh_slab_hash, alloc); 509 hash->uh_hashmask = hash->uh_hashsize - 1; 510 return (1); 511 } 512 513 return (0); 514 } 515 516 /* 517 * Expands the hash table for HASH zones. This is done from zone_timeout 518 * to reduce collisions. This must not be done in the regular allocation 519 * path, otherwise, we can recurse on the vm while allocating pages. 520 * 521 * Arguments: 522 * oldhash The hash you want to expand 523 * newhash The hash structure for the new table 524 * 525 * Returns: 526 * Nothing 527 * 528 * Discussion: 529 */ 530 static int 531 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 532 { 533 uma_slab_t slab; 534 int hval; 535 int i; 536 537 if (!newhash->uh_slab_hash) 538 return (0); 539 540 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 541 return (0); 542 543 /* 544 * I need to investigate hash algorithms for resizing without a 545 * full rehash. 546 */ 547 548 for (i = 0; i < oldhash->uh_hashsize; i++) 549 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) { 550 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]); 551 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink); 552 hval = UMA_HASH(newhash, slab->us_data); 553 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 554 slab, us_hlink); 555 } 556 557 return (1); 558 } 559 560 /* 561 * Free the hash bucket to the appropriate backing store. 562 * 563 * Arguments: 564 * slab_hash The hash bucket we're freeing 565 * hashsize The number of entries in that hash bucket 566 * 567 * Returns: 568 * Nothing 569 */ 570 static void 571 hash_free(struct uma_hash *hash) 572 { 573 if (hash->uh_slab_hash == NULL) 574 return; 575 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 576 zone_free_item(hashzone, 577 hash->uh_slab_hash, NULL, SKIP_NONE, ZFREE_STATFREE); 578 else 579 free(hash->uh_slab_hash, M_UMAHASH); 580 } 581 582 /* 583 * Frees all outstanding items in a bucket 584 * 585 * Arguments: 586 * zone The zone to free to, must be unlocked. 587 * bucket The free/alloc bucket with items, cpu queue must be locked. 588 * 589 * Returns: 590 * Nothing 591 */ 592 593 static void 594 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 595 { 596 void *item; 597 598 if (bucket == NULL) 599 return; 600 601 while (bucket->ub_cnt > 0) { 602 bucket->ub_cnt--; 603 item = bucket->ub_bucket[bucket->ub_cnt]; 604 #ifdef INVARIANTS 605 bucket->ub_bucket[bucket->ub_cnt] = NULL; 606 KASSERT(item != NULL, 607 ("bucket_drain: botched ptr, item is NULL")); 608 #endif 609 zone_free_item(zone, item, NULL, SKIP_DTOR, 0); 610 } 611 } 612 613 /* 614 * Drains the per cpu caches for a zone. 615 * 616 * NOTE: This may only be called while the zone is being turn down, and not 617 * during normal operation. This is necessary in order that we do not have 618 * to migrate CPUs to drain the per-CPU caches. 619 * 620 * Arguments: 621 * zone The zone to drain, must be unlocked. 622 * 623 * Returns: 624 * Nothing 625 */ 626 static void 627 cache_drain(uma_zone_t zone) 628 { 629 uma_cache_t cache; 630 int cpu; 631 632 /* 633 * XXX: It is safe to not lock the per-CPU caches, because we're 634 * tearing down the zone anyway. I.e., there will be no further use 635 * of the caches at this point. 636 * 637 * XXX: It would good to be able to assert that the zone is being 638 * torn down to prevent improper use of cache_drain(). 639 * 640 * XXX: We lock the zone before passing into bucket_cache_drain() as 641 * it is used elsewhere. Should the tear-down path be made special 642 * there in some form? 643 */ 644 CPU_FOREACH(cpu) { 645 cache = &zone->uz_cpu[cpu]; 646 bucket_drain(zone, cache->uc_allocbucket); 647 bucket_drain(zone, cache->uc_freebucket); 648 if (cache->uc_allocbucket != NULL) 649 bucket_free(cache->uc_allocbucket); 650 if (cache->uc_freebucket != NULL) 651 bucket_free(cache->uc_freebucket); 652 cache->uc_allocbucket = cache->uc_freebucket = NULL; 653 } 654 ZONE_LOCK(zone); 655 bucket_cache_drain(zone); 656 ZONE_UNLOCK(zone); 657 } 658 659 /* 660 * Drain the cached buckets from a zone. Expects a locked zone on entry. 661 */ 662 static void 663 bucket_cache_drain(uma_zone_t zone) 664 { 665 uma_bucket_t bucket; 666 667 /* 668 * Drain the bucket queues and free the buckets, we just keep two per 669 * cpu (alloc/free). 670 */ 671 while ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) { 672 LIST_REMOVE(bucket, ub_link); 673 ZONE_UNLOCK(zone); 674 bucket_drain(zone, bucket); 675 bucket_free(bucket); 676 ZONE_LOCK(zone); 677 } 678 679 /* Now we do the free queue.. */ 680 while ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) { 681 LIST_REMOVE(bucket, ub_link); 682 bucket_free(bucket); 683 } 684 } 685 686 /* 687 * Frees pages from a keg back to the system. This is done on demand from 688 * the pageout daemon. 689 * 690 * Returns nothing. 691 */ 692 static void 693 keg_drain(uma_keg_t keg) 694 { 695 struct slabhead freeslabs = { 0 }; 696 uma_slab_t slab; 697 uma_slab_t n; 698 uint8_t flags; 699 uint8_t *mem; 700 int i; 701 702 /* 703 * We don't want to take pages from statically allocated kegs at this 704 * time 705 */ 706 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 707 return; 708 709 #ifdef UMA_DEBUG 710 printf("%s free items: %u\n", keg->uk_name, keg->uk_free); 711 #endif 712 KEG_LOCK(keg); 713 if (keg->uk_free == 0) 714 goto finished; 715 716 slab = LIST_FIRST(&keg->uk_free_slab); 717 while (slab) { 718 n = LIST_NEXT(slab, us_link); 719 720 /* We have no where to free these to */ 721 if (slab->us_flags & UMA_SLAB_BOOT) { 722 slab = n; 723 continue; 724 } 725 726 LIST_REMOVE(slab, us_link); 727 keg->uk_pages -= keg->uk_ppera; 728 keg->uk_free -= keg->uk_ipers; 729 730 if (keg->uk_flags & UMA_ZONE_HASH) 731 UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data); 732 733 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 734 735 slab = n; 736 } 737 finished: 738 KEG_UNLOCK(keg); 739 740 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 741 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 742 if (keg->uk_fini) 743 for (i = 0; i < keg->uk_ipers; i++) 744 keg->uk_fini( 745 slab->us_data + (keg->uk_rsize * i), 746 keg->uk_size); 747 flags = slab->us_flags; 748 mem = slab->us_data; 749 750 if (keg->uk_flags & UMA_ZONE_VTOSLAB) { 751 vm_object_t obj; 752 753 if (flags & UMA_SLAB_KMEM) 754 obj = kmem_object; 755 else if (flags & UMA_SLAB_KERNEL) 756 obj = kernel_object; 757 else 758 obj = NULL; 759 for (i = 0; i < keg->uk_ppera; i++) 760 vsetobj((vm_offset_t)mem + (i * PAGE_SIZE), 761 obj); 762 } 763 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 764 zone_free_item(keg->uk_slabzone, slab, NULL, 765 SKIP_NONE, ZFREE_STATFREE); 766 #ifdef UMA_DEBUG 767 printf("%s: Returning %d bytes.\n", 768 keg->uk_name, PAGE_SIZE * keg->uk_ppera); 769 #endif 770 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 771 } 772 } 773 774 static void 775 zone_drain_wait(uma_zone_t zone, int waitok) 776 { 777 778 /* 779 * Set draining to interlock with zone_dtor() so we can release our 780 * locks as we go. Only dtor() should do a WAITOK call since it 781 * is the only call that knows the structure will still be available 782 * when it wakes up. 783 */ 784 ZONE_LOCK(zone); 785 while (zone->uz_flags & UMA_ZFLAG_DRAINING) { 786 if (waitok == M_NOWAIT) 787 goto out; 788 mtx_unlock(&uma_mtx); 789 msleep(zone, zone->uz_lock, PVM, "zonedrain", 1); 790 mtx_lock(&uma_mtx); 791 } 792 zone->uz_flags |= UMA_ZFLAG_DRAINING; 793 bucket_cache_drain(zone); 794 ZONE_UNLOCK(zone); 795 /* 796 * The DRAINING flag protects us from being freed while 797 * we're running. Normally the uma_mtx would protect us but we 798 * must be able to release and acquire the right lock for each keg. 799 */ 800 zone_foreach_keg(zone, &keg_drain); 801 ZONE_LOCK(zone); 802 zone->uz_flags &= ~UMA_ZFLAG_DRAINING; 803 wakeup(zone); 804 out: 805 ZONE_UNLOCK(zone); 806 } 807 808 void 809 zone_drain(uma_zone_t zone) 810 { 811 812 zone_drain_wait(zone, M_NOWAIT); 813 } 814 815 /* 816 * Allocate a new slab for a keg. This does not insert the slab onto a list. 817 * 818 * Arguments: 819 * wait Shall we wait? 820 * 821 * Returns: 822 * The slab that was allocated or NULL if there is no memory and the 823 * caller specified M_NOWAIT. 824 */ 825 static uma_slab_t 826 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait) 827 { 828 uma_slabrefcnt_t slabref; 829 uma_alloc allocf; 830 uma_slab_t slab; 831 uint8_t *mem; 832 uint8_t flags; 833 int i; 834 835 mtx_assert(&keg->uk_lock, MA_OWNED); 836 slab = NULL; 837 838 #ifdef UMA_DEBUG 839 printf("slab_zalloc: Allocating a new slab for %s\n", keg->uk_name); 840 #endif 841 allocf = keg->uk_allocf; 842 KEG_UNLOCK(keg); 843 844 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 845 slab = zone_alloc_item(keg->uk_slabzone, NULL, wait); 846 if (slab == NULL) { 847 KEG_LOCK(keg); 848 return NULL; 849 } 850 } 851 852 /* 853 * This reproduces the old vm_zone behavior of zero filling pages the 854 * first time they are added to a zone. 855 * 856 * Malloced items are zeroed in uma_zalloc. 857 */ 858 859 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 860 wait |= M_ZERO; 861 else 862 wait &= ~M_ZERO; 863 864 if (keg->uk_flags & UMA_ZONE_NODUMP) 865 wait |= M_NODUMP; 866 867 /* zone is passed for legacy reasons. */ 868 mem = allocf(zone, keg->uk_ppera * PAGE_SIZE, &flags, wait); 869 if (mem == NULL) { 870 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 871 zone_free_item(keg->uk_slabzone, slab, NULL, 872 SKIP_NONE, ZFREE_STATFREE); 873 KEG_LOCK(keg); 874 return (NULL); 875 } 876 877 /* Point the slab into the allocated memory */ 878 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 879 slab = (uma_slab_t )(mem + keg->uk_pgoff); 880 881 if (keg->uk_flags & UMA_ZONE_VTOSLAB) 882 for (i = 0; i < keg->uk_ppera; i++) 883 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 884 885 slab->us_keg = keg; 886 slab->us_data = mem; 887 slab->us_freecount = keg->uk_ipers; 888 slab->us_firstfree = 0; 889 slab->us_flags = flags; 890 891 if (keg->uk_flags & UMA_ZONE_REFCNT) { 892 slabref = (uma_slabrefcnt_t)slab; 893 for (i = 0; i < keg->uk_ipers; i++) { 894 slabref->us_freelist[i].us_refcnt = 0; 895 slabref->us_freelist[i].us_item = i+1; 896 } 897 } else { 898 for (i = 0; i < keg->uk_ipers; i++) 899 slab->us_freelist[i].us_item = i+1; 900 } 901 902 if (keg->uk_init != NULL) { 903 for (i = 0; i < keg->uk_ipers; i++) 904 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 905 keg->uk_size, wait) != 0) 906 break; 907 if (i != keg->uk_ipers) { 908 if (keg->uk_fini != NULL) { 909 for (i--; i > -1; i--) 910 keg->uk_fini(slab->us_data + 911 (keg->uk_rsize * i), 912 keg->uk_size); 913 } 914 if (keg->uk_flags & UMA_ZONE_VTOSLAB) { 915 vm_object_t obj; 916 917 if (flags & UMA_SLAB_KMEM) 918 obj = kmem_object; 919 else if (flags & UMA_SLAB_KERNEL) 920 obj = kernel_object; 921 else 922 obj = NULL; 923 for (i = 0; i < keg->uk_ppera; i++) 924 vsetobj((vm_offset_t)mem + 925 (i * PAGE_SIZE), obj); 926 } 927 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 928 zone_free_item(keg->uk_slabzone, slab, 929 NULL, SKIP_NONE, ZFREE_STATFREE); 930 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, 931 flags); 932 KEG_LOCK(keg); 933 return (NULL); 934 } 935 } 936 KEG_LOCK(keg); 937 938 if (keg->uk_flags & UMA_ZONE_HASH) 939 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 940 941 keg->uk_pages += keg->uk_ppera; 942 keg->uk_free += keg->uk_ipers; 943 944 return (slab); 945 } 946 947 /* 948 * This function is intended to be used early on in place of page_alloc() so 949 * that we may use the boot time page cache to satisfy allocations before 950 * the VM is ready. 951 */ 952 static void * 953 startup_alloc(uma_zone_t zone, int bytes, uint8_t *pflag, int wait) 954 { 955 uma_keg_t keg; 956 uma_slab_t tmps; 957 int pages, check_pages; 958 959 keg = zone_first_keg(zone); 960 pages = howmany(bytes, PAGE_SIZE); 961 check_pages = pages - 1; 962 KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n")); 963 964 /* 965 * Check our small startup cache to see if it has pages remaining. 966 */ 967 mtx_lock(&uma_boot_pages_mtx); 968 969 /* First check if we have enough room. */ 970 tmps = LIST_FIRST(&uma_boot_pages); 971 while (tmps != NULL && check_pages-- > 0) 972 tmps = LIST_NEXT(tmps, us_link); 973 if (tmps != NULL) { 974 /* 975 * It's ok to lose tmps references. The last one will 976 * have tmps->us_data pointing to the start address of 977 * "pages" contiguous pages of memory. 978 */ 979 while (pages-- > 0) { 980 tmps = LIST_FIRST(&uma_boot_pages); 981 LIST_REMOVE(tmps, us_link); 982 } 983 mtx_unlock(&uma_boot_pages_mtx); 984 *pflag = tmps->us_flags; 985 return (tmps->us_data); 986 } 987 mtx_unlock(&uma_boot_pages_mtx); 988 if (booted < UMA_STARTUP2) 989 panic("UMA: Increase vm.boot_pages"); 990 /* 991 * Now that we've booted reset these users to their real allocator. 992 */ 993 #ifdef UMA_MD_SMALL_ALLOC 994 keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc; 995 #else 996 keg->uk_allocf = page_alloc; 997 #endif 998 return keg->uk_allocf(zone, bytes, pflag, wait); 999 } 1000 1001 /* 1002 * Allocates a number of pages from the system 1003 * 1004 * Arguments: 1005 * bytes The number of bytes requested 1006 * wait Shall we wait? 1007 * 1008 * Returns: 1009 * A pointer to the alloced memory or possibly 1010 * NULL if M_NOWAIT is set. 1011 */ 1012 static void * 1013 page_alloc(uma_zone_t zone, int bytes, uint8_t *pflag, int wait) 1014 { 1015 void *p; /* Returned page */ 1016 1017 *pflag = UMA_SLAB_KMEM; 1018 p = (void *) kmem_malloc(kmem_map, bytes, wait); 1019 1020 return (p); 1021 } 1022 1023 /* 1024 * Allocates a number of pages from within an object 1025 * 1026 * Arguments: 1027 * bytes The number of bytes requested 1028 * wait Shall we wait? 1029 * 1030 * Returns: 1031 * A pointer to the alloced memory or possibly 1032 * NULL if M_NOWAIT is set. 1033 */ 1034 static void * 1035 noobj_alloc(uma_zone_t zone, int bytes, uint8_t *flags, int wait) 1036 { 1037 TAILQ_HEAD(, vm_page) alloctail; 1038 u_long npages; 1039 vm_offset_t retkva, zkva; 1040 vm_page_t p, p_next; 1041 uma_keg_t keg; 1042 1043 TAILQ_INIT(&alloctail); 1044 keg = zone_first_keg(zone); 1045 1046 npages = howmany(bytes, PAGE_SIZE); 1047 while (npages > 0) { 1048 p = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT | 1049 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ); 1050 if (p != NULL) { 1051 /* 1052 * Since the page does not belong to an object, its 1053 * listq is unused. 1054 */ 1055 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1056 npages--; 1057 continue; 1058 } 1059 if (wait & M_WAITOK) { 1060 VM_WAIT; 1061 continue; 1062 } 1063 1064 /* 1065 * Page allocation failed, free intermediate pages and 1066 * exit. 1067 */ 1068 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1069 vm_page_unwire(p, 0); 1070 vm_page_free(p); 1071 } 1072 return (NULL); 1073 } 1074 *flags = UMA_SLAB_PRIV; 1075 zkva = keg->uk_kva + 1076 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1077 retkva = zkva; 1078 TAILQ_FOREACH(p, &alloctail, listq) { 1079 pmap_qenter(zkva, &p, 1); 1080 zkva += PAGE_SIZE; 1081 } 1082 1083 return ((void *)retkva); 1084 } 1085 1086 /* 1087 * Frees a number of pages to the system 1088 * 1089 * Arguments: 1090 * mem A pointer to the memory to be freed 1091 * size The size of the memory being freed 1092 * flags The original p->us_flags field 1093 * 1094 * Returns: 1095 * Nothing 1096 */ 1097 static void 1098 page_free(void *mem, int size, uint8_t flags) 1099 { 1100 vm_map_t map; 1101 1102 if (flags & UMA_SLAB_KMEM) 1103 map = kmem_map; 1104 else if (flags & UMA_SLAB_KERNEL) 1105 map = kernel_map; 1106 else 1107 panic("UMA: page_free used with invalid flags %d", flags); 1108 1109 kmem_free(map, (vm_offset_t)mem, size); 1110 } 1111 1112 /* 1113 * Zero fill initializer 1114 * 1115 * Arguments/Returns follow uma_init specifications 1116 */ 1117 static int 1118 zero_init(void *mem, int size, int flags) 1119 { 1120 bzero(mem, size); 1121 return (0); 1122 } 1123 1124 /* 1125 * Finish creating a small uma keg. This calculates ipers, and the keg size. 1126 * 1127 * Arguments 1128 * keg The zone we should initialize 1129 * 1130 * Returns 1131 * Nothing 1132 */ 1133 static void 1134 keg_small_init(uma_keg_t keg) 1135 { 1136 u_int rsize; 1137 u_int memused; 1138 u_int wastedspace; 1139 u_int shsize; 1140 1141 if (keg->uk_flags & UMA_ZONE_PCPU) { 1142 keg->uk_slabsize = sizeof(struct pcpu); 1143 keg->uk_ppera = howmany(mp_ncpus * sizeof(struct pcpu), 1144 PAGE_SIZE); 1145 } else { 1146 keg->uk_slabsize = UMA_SLAB_SIZE; 1147 keg->uk_ppera = 1; 1148 } 1149 1150 rsize = keg->uk_size; 1151 1152 if (rsize & keg->uk_align) 1153 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1154 if (rsize < keg->uk_slabsize / 256) 1155 rsize = keg->uk_slabsize / 256; 1156 1157 keg->uk_rsize = rsize; 1158 1159 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 1160 keg->uk_rsize < sizeof(struct pcpu), 1161 ("%s: size %u too large", __func__, keg->uk_rsize)); 1162 1163 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 1164 shsize = 0; 1165 } else if (keg->uk_flags & UMA_ZONE_REFCNT) { 1166 rsize += UMA_FRITMREF_SZ; /* linkage & refcnt */ 1167 shsize = sizeof(struct uma_slab_refcnt); 1168 } else { 1169 rsize += UMA_FRITM_SZ; /* Account for linkage */ 1170 shsize = sizeof(struct uma_slab); 1171 } 1172 1173 keg->uk_ipers = (keg->uk_slabsize - shsize) / rsize; 1174 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= 256, 1175 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1176 1177 memused = keg->uk_ipers * rsize + shsize; 1178 wastedspace = keg->uk_slabsize - memused; 1179 1180 /* 1181 * We can't do OFFPAGE if we're internal or if we've been 1182 * asked to not go to the VM for buckets. If we do this we 1183 * may end up going to the VM (kmem_map) for slabs which we 1184 * do not want to do if we're UMA_ZFLAG_CACHEONLY as a 1185 * result of UMA_ZONE_VM, which clearly forbids it. 1186 */ 1187 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1188 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1189 return; 1190 1191 if ((wastedspace >= keg->uk_slabsize / UMA_MAX_WASTE) && 1192 (keg->uk_ipers < (keg->uk_slabsize / keg->uk_rsize))) { 1193 keg->uk_ipers = keg->uk_slabsize / keg->uk_rsize; 1194 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= 256, 1195 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1196 #ifdef UMA_DEBUG 1197 printf("UMA decided we need offpage slab headers for " 1198 "keg: %s, calculated wastedspace = %d, " 1199 "maximum wasted space allowed = %d, " 1200 "calculated ipers = %d, " 1201 "new wasted space = %d\n", keg->uk_name, wastedspace, 1202 keg->uk_slabsize / UMA_MAX_WASTE, keg->uk_ipers, 1203 keg->uk_slabsize - keg->uk_ipers * keg->uk_rsize); 1204 #endif 1205 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1206 } 1207 1208 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1209 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1210 keg->uk_flags |= UMA_ZONE_HASH; 1211 } 1212 1213 /* 1214 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do 1215 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1216 * more complicated. 1217 * 1218 * Arguments 1219 * keg The keg we should initialize 1220 * 1221 * Returns 1222 * Nothing 1223 */ 1224 static void 1225 keg_large_init(uma_keg_t keg) 1226 { 1227 1228 KASSERT(keg != NULL, ("Keg is null in keg_large_init")); 1229 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0, 1230 ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg")); 1231 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1232 ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__)); 1233 1234 keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE); 1235 keg->uk_slabsize = keg->uk_ppera * PAGE_SIZE; 1236 keg->uk_ipers = 1; 1237 keg->uk_rsize = keg->uk_size; 1238 1239 /* We can't do OFFPAGE if we're internal, bail out here. */ 1240 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) 1241 return; 1242 1243 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1244 if ((keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1245 keg->uk_flags |= UMA_ZONE_HASH; 1246 } 1247 1248 static void 1249 keg_cachespread_init(uma_keg_t keg) 1250 { 1251 int alignsize; 1252 int trailer; 1253 int pages; 1254 int rsize; 1255 1256 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1257 ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__)); 1258 1259 alignsize = keg->uk_align + 1; 1260 rsize = keg->uk_size; 1261 /* 1262 * We want one item to start on every align boundary in a page. To 1263 * do this we will span pages. We will also extend the item by the 1264 * size of align if it is an even multiple of align. Otherwise, it 1265 * would fall on the same boundary every time. 1266 */ 1267 if (rsize & keg->uk_align) 1268 rsize = (rsize & ~keg->uk_align) + alignsize; 1269 if ((rsize & alignsize) == 0) 1270 rsize += alignsize; 1271 trailer = rsize - keg->uk_size; 1272 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE; 1273 pages = MIN(pages, (128 * 1024) / PAGE_SIZE); 1274 keg->uk_rsize = rsize; 1275 keg->uk_ppera = pages; 1276 keg->uk_slabsize = UMA_SLAB_SIZE; 1277 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize; 1278 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1279 KASSERT(keg->uk_ipers <= uma_max_ipers, 1280 ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__, 1281 keg->uk_ipers)); 1282 } 1283 1284 /* 1285 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1286 * the keg onto the global keg list. 1287 * 1288 * Arguments/Returns follow uma_ctor specifications 1289 * udata Actually uma_kctor_args 1290 */ 1291 static int 1292 keg_ctor(void *mem, int size, void *udata, int flags) 1293 { 1294 struct uma_kctor_args *arg = udata; 1295 uma_keg_t keg = mem; 1296 uma_zone_t zone; 1297 1298 bzero(keg, size); 1299 keg->uk_size = arg->size; 1300 keg->uk_init = arg->uminit; 1301 keg->uk_fini = arg->fini; 1302 keg->uk_align = arg->align; 1303 keg->uk_free = 0; 1304 keg->uk_pages = 0; 1305 keg->uk_flags = arg->flags; 1306 keg->uk_allocf = page_alloc; 1307 keg->uk_freef = page_free; 1308 keg->uk_recurse = 0; 1309 keg->uk_slabzone = NULL; 1310 1311 /* 1312 * The master zone is passed to us at keg-creation time. 1313 */ 1314 zone = arg->zone; 1315 keg->uk_name = zone->uz_name; 1316 1317 if (arg->flags & UMA_ZONE_VM) 1318 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1319 1320 if (arg->flags & UMA_ZONE_ZINIT) 1321 keg->uk_init = zero_init; 1322 1323 if (arg->flags & UMA_ZONE_REFCNT || arg->flags & UMA_ZONE_MALLOC) 1324 keg->uk_flags |= UMA_ZONE_VTOSLAB; 1325 1326 if (arg->flags & UMA_ZONE_PCPU) 1327 #ifdef SMP 1328 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1329 #else 1330 keg->uk_flags &= ~UMA_ZONE_PCPU; 1331 #endif 1332 1333 /* 1334 * The +UMA_FRITM_SZ added to uk_size is to account for the 1335 * linkage that is added to the size in keg_small_init(). If 1336 * we don't account for this here then we may end up in 1337 * keg_small_init() with a calculated 'ipers' of 0. 1338 */ 1339 if (keg->uk_flags & UMA_ZONE_REFCNT) { 1340 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) 1341 keg_cachespread_init(keg); 1342 else if ((keg->uk_size+UMA_FRITMREF_SZ) > 1343 (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt))) 1344 keg_large_init(keg); 1345 else 1346 keg_small_init(keg); 1347 } else { 1348 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) 1349 keg_cachespread_init(keg); 1350 else if ((keg->uk_size+UMA_FRITM_SZ) > 1351 (UMA_SLAB_SIZE - sizeof(struct uma_slab))) 1352 keg_large_init(keg); 1353 else 1354 keg_small_init(keg); 1355 } 1356 1357 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 1358 if (keg->uk_flags & UMA_ZONE_REFCNT) 1359 keg->uk_slabzone = slabrefzone; 1360 else 1361 keg->uk_slabzone = slabzone; 1362 } 1363 1364 /* 1365 * If we haven't booted yet we need allocations to go through the 1366 * startup cache until the vm is ready. 1367 */ 1368 if (keg->uk_ppera == 1) { 1369 #ifdef UMA_MD_SMALL_ALLOC 1370 keg->uk_allocf = uma_small_alloc; 1371 keg->uk_freef = uma_small_free; 1372 1373 if (booted < UMA_STARTUP) 1374 keg->uk_allocf = startup_alloc; 1375 #else 1376 if (booted < UMA_STARTUP2) 1377 keg->uk_allocf = startup_alloc; 1378 #endif 1379 } else if (booted < UMA_STARTUP2 && 1380 (keg->uk_flags & UMA_ZFLAG_INTERNAL)) 1381 keg->uk_allocf = startup_alloc; 1382 1383 /* 1384 * Initialize keg's lock (shared among zones). 1385 */ 1386 if (arg->flags & UMA_ZONE_MTXCLASS) 1387 KEG_LOCK_INIT(keg, 1); 1388 else 1389 KEG_LOCK_INIT(keg, 0); 1390 1391 /* 1392 * If we're putting the slab header in the actual page we need to 1393 * figure out where in each page it goes. This calculates a right 1394 * justified offset into the memory on an ALIGN_PTR boundary. 1395 */ 1396 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1397 u_int totsize; 1398 1399 /* Size of the slab struct and free list */ 1400 if (keg->uk_flags & UMA_ZONE_REFCNT) 1401 totsize = sizeof(struct uma_slab_refcnt) + 1402 keg->uk_ipers * UMA_FRITMREF_SZ; 1403 else 1404 totsize = sizeof(struct uma_slab) + 1405 keg->uk_ipers * UMA_FRITM_SZ; 1406 1407 if (totsize & UMA_ALIGN_PTR) 1408 totsize = (totsize & ~UMA_ALIGN_PTR) + 1409 (UMA_ALIGN_PTR + 1); 1410 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize; 1411 1412 if (keg->uk_flags & UMA_ZONE_REFCNT) 1413 totsize = keg->uk_pgoff + sizeof(struct uma_slab_refcnt) 1414 + keg->uk_ipers * UMA_FRITMREF_SZ; 1415 else 1416 totsize = keg->uk_pgoff + sizeof(struct uma_slab) 1417 + keg->uk_ipers * UMA_FRITM_SZ; 1418 1419 /* 1420 * The only way the following is possible is if with our 1421 * UMA_ALIGN_PTR adjustments we are now bigger than 1422 * UMA_SLAB_SIZE. I haven't checked whether this is 1423 * mathematically possible for all cases, so we make 1424 * sure here anyway. 1425 */ 1426 if (totsize > PAGE_SIZE * keg->uk_ppera) { 1427 printf("zone %s ipers %d rsize %d size %d\n", 1428 zone->uz_name, keg->uk_ipers, keg->uk_rsize, 1429 keg->uk_size); 1430 panic("UMA slab won't fit."); 1431 } 1432 } 1433 1434 if (keg->uk_flags & UMA_ZONE_HASH) 1435 hash_alloc(&keg->uk_hash); 1436 1437 #ifdef UMA_DEBUG 1438 printf("UMA: %s(%p) size %d(%d) flags %#x ipers %d ppera %d out %d free %d\n", 1439 zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags, 1440 keg->uk_ipers, keg->uk_ppera, 1441 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free); 1442 #endif 1443 1444 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1445 1446 mtx_lock(&uma_mtx); 1447 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1448 mtx_unlock(&uma_mtx); 1449 return (0); 1450 } 1451 1452 /* 1453 * Zone header ctor. This initializes all fields, locks, etc. 1454 * 1455 * Arguments/Returns follow uma_ctor specifications 1456 * udata Actually uma_zctor_args 1457 */ 1458 static int 1459 zone_ctor(void *mem, int size, void *udata, int flags) 1460 { 1461 struct uma_zctor_args *arg = udata; 1462 uma_zone_t zone = mem; 1463 uma_zone_t z; 1464 uma_keg_t keg; 1465 1466 bzero(zone, size); 1467 zone->uz_name = arg->name; 1468 zone->uz_ctor = arg->ctor; 1469 zone->uz_dtor = arg->dtor; 1470 zone->uz_slab = zone_fetch_slab; 1471 zone->uz_init = NULL; 1472 zone->uz_fini = NULL; 1473 zone->uz_allocs = 0; 1474 zone->uz_frees = 0; 1475 zone->uz_fails = 0; 1476 zone->uz_sleeps = 0; 1477 zone->uz_fills = zone->uz_count = 0; 1478 zone->uz_flags = 0; 1479 zone->uz_warning = NULL; 1480 timevalclear(&zone->uz_ratecheck); 1481 keg = arg->keg; 1482 1483 if (arg->flags & UMA_ZONE_SECONDARY) { 1484 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 1485 zone->uz_init = arg->uminit; 1486 zone->uz_fini = arg->fini; 1487 zone->uz_lock = &keg->uk_lock; 1488 zone->uz_flags |= UMA_ZONE_SECONDARY; 1489 mtx_lock(&uma_mtx); 1490 ZONE_LOCK(zone); 1491 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 1492 if (LIST_NEXT(z, uz_link) == NULL) { 1493 LIST_INSERT_AFTER(z, zone, uz_link); 1494 break; 1495 } 1496 } 1497 ZONE_UNLOCK(zone); 1498 mtx_unlock(&uma_mtx); 1499 } else if (keg == NULL) { 1500 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 1501 arg->align, arg->flags)) == NULL) 1502 return (ENOMEM); 1503 } else { 1504 struct uma_kctor_args karg; 1505 int error; 1506 1507 /* We should only be here from uma_startup() */ 1508 karg.size = arg->size; 1509 karg.uminit = arg->uminit; 1510 karg.fini = arg->fini; 1511 karg.align = arg->align; 1512 karg.flags = arg->flags; 1513 karg.zone = zone; 1514 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 1515 flags); 1516 if (error) 1517 return (error); 1518 } 1519 /* 1520 * Link in the first keg. 1521 */ 1522 zone->uz_klink.kl_keg = keg; 1523 LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link); 1524 zone->uz_lock = &keg->uk_lock; 1525 zone->uz_size = keg->uk_size; 1526 zone->uz_flags |= (keg->uk_flags & 1527 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 1528 1529 /* 1530 * Some internal zones don't have room allocated for the per cpu 1531 * caches. If we're internal, bail out here. 1532 */ 1533 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { 1534 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 1535 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 1536 return (0); 1537 } 1538 1539 if (keg->uk_flags & UMA_ZONE_MAXBUCKET) 1540 zone->uz_count = BUCKET_MAX; 1541 else if (keg->uk_ipers <= BUCKET_MAX) 1542 zone->uz_count = keg->uk_ipers; 1543 else 1544 zone->uz_count = BUCKET_MAX; 1545 return (0); 1546 } 1547 1548 /* 1549 * Keg header dtor. This frees all data, destroys locks, frees the hash 1550 * table and removes the keg from the global list. 1551 * 1552 * Arguments/Returns follow uma_dtor specifications 1553 * udata unused 1554 */ 1555 static void 1556 keg_dtor(void *arg, int size, void *udata) 1557 { 1558 uma_keg_t keg; 1559 1560 keg = (uma_keg_t)arg; 1561 KEG_LOCK(keg); 1562 if (keg->uk_free != 0) { 1563 printf("Freed UMA keg was not empty (%d items). " 1564 " Lost %d pages of memory.\n", 1565 keg->uk_free, keg->uk_pages); 1566 } 1567 KEG_UNLOCK(keg); 1568 1569 hash_free(&keg->uk_hash); 1570 1571 KEG_LOCK_FINI(keg); 1572 } 1573 1574 /* 1575 * Zone header dtor. 1576 * 1577 * Arguments/Returns follow uma_dtor specifications 1578 * udata unused 1579 */ 1580 static void 1581 zone_dtor(void *arg, int size, void *udata) 1582 { 1583 uma_klink_t klink; 1584 uma_zone_t zone; 1585 uma_keg_t keg; 1586 1587 zone = (uma_zone_t)arg; 1588 keg = zone_first_keg(zone); 1589 1590 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 1591 cache_drain(zone); 1592 1593 mtx_lock(&uma_mtx); 1594 LIST_REMOVE(zone, uz_link); 1595 mtx_unlock(&uma_mtx); 1596 /* 1597 * XXX there are some races here where 1598 * the zone can be drained but zone lock 1599 * released and then refilled before we 1600 * remove it... we dont care for now 1601 */ 1602 zone_drain_wait(zone, M_WAITOK); 1603 /* 1604 * Unlink all of our kegs. 1605 */ 1606 while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) { 1607 klink->kl_keg = NULL; 1608 LIST_REMOVE(klink, kl_link); 1609 if (klink == &zone->uz_klink) 1610 continue; 1611 free(klink, M_TEMP); 1612 } 1613 /* 1614 * We only destroy kegs from non secondary zones. 1615 */ 1616 if ((zone->uz_flags & UMA_ZONE_SECONDARY) == 0) { 1617 mtx_lock(&uma_mtx); 1618 LIST_REMOVE(keg, uk_link); 1619 mtx_unlock(&uma_mtx); 1620 zone_free_item(kegs, keg, NULL, SKIP_NONE, 1621 ZFREE_STATFREE); 1622 } 1623 } 1624 1625 /* 1626 * Traverses every zone in the system and calls a callback 1627 * 1628 * Arguments: 1629 * zfunc A pointer to a function which accepts a zone 1630 * as an argument. 1631 * 1632 * Returns: 1633 * Nothing 1634 */ 1635 static void 1636 zone_foreach(void (*zfunc)(uma_zone_t)) 1637 { 1638 uma_keg_t keg; 1639 uma_zone_t zone; 1640 1641 mtx_lock(&uma_mtx); 1642 LIST_FOREACH(keg, &uma_kegs, uk_link) { 1643 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 1644 zfunc(zone); 1645 } 1646 mtx_unlock(&uma_mtx); 1647 } 1648 1649 /* Public functions */ 1650 /* See uma.h */ 1651 void 1652 uma_startup(void *bootmem, int boot_pages) 1653 { 1654 struct uma_zctor_args args; 1655 uma_slab_t slab; 1656 u_int slabsize; 1657 u_int objsize, totsize, wsize; 1658 int i; 1659 1660 #ifdef UMA_DEBUG 1661 printf("Creating uma keg headers zone and keg.\n"); 1662 #endif 1663 mtx_init(&uma_mtx, "UMA lock", NULL, MTX_DEF); 1664 1665 /* 1666 * Figure out the maximum number of items-per-slab we'll have if 1667 * we're using the OFFPAGE slab header to track free items, given 1668 * all possible object sizes and the maximum desired wastage 1669 * (UMA_MAX_WASTE). 1670 * 1671 * We iterate until we find an object size for 1672 * which the calculated wastage in keg_small_init() will be 1673 * enough to warrant OFFPAGE. Since wastedspace versus objsize 1674 * is an overall increasing see-saw function, we find the smallest 1675 * objsize such that the wastage is always acceptable for objects 1676 * with that objsize or smaller. Since a smaller objsize always 1677 * generates a larger possible uma_max_ipers, we use this computed 1678 * objsize to calculate the largest ipers possible. Since the 1679 * ipers calculated for OFFPAGE slab headers is always larger than 1680 * the ipers initially calculated in keg_small_init(), we use 1681 * the former's equation (UMA_SLAB_SIZE / keg->uk_rsize) to 1682 * obtain the maximum ipers possible for offpage slab headers. 1683 * 1684 * It should be noted that ipers versus objsize is an inversly 1685 * proportional function which drops off rather quickly so as 1686 * long as our UMA_MAX_WASTE is such that the objsize we calculate 1687 * falls into the portion of the inverse relation AFTER the steep 1688 * falloff, then uma_max_ipers shouldn't be too high (~10 on i386). 1689 * 1690 * Note that we have 8-bits (1 byte) to use as a freelist index 1691 * inside the actual slab header itself and this is enough to 1692 * accomodate us. In the worst case, a UMA_SMALLEST_UNIT sized 1693 * object with offpage slab header would have ipers = 1694 * UMA_SLAB_SIZE / UMA_SMALLEST_UNIT (currently = 256), which is 1695 * 1 greater than what our byte-integer freelist index can 1696 * accomodate, but we know that this situation never occurs as 1697 * for UMA_SMALLEST_UNIT-sized objects, we will never calculate 1698 * that we need to go to offpage slab headers. Or, if we do, 1699 * then we trap that condition below and panic in the INVARIANTS case. 1700 */ 1701 wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab) - 1702 (UMA_SLAB_SIZE / UMA_MAX_WASTE); 1703 totsize = wsize; 1704 objsize = UMA_SMALLEST_UNIT; 1705 while (totsize >= wsize) { 1706 totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab)) / 1707 (objsize + UMA_FRITM_SZ); 1708 totsize *= (UMA_FRITM_SZ + objsize); 1709 objsize++; 1710 } 1711 if (objsize > UMA_SMALLEST_UNIT) 1712 objsize--; 1713 uma_max_ipers = MAX(UMA_SLAB_SIZE / objsize, 64); 1714 1715 wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt) - 1716 (UMA_SLAB_SIZE / UMA_MAX_WASTE); 1717 totsize = wsize; 1718 objsize = UMA_SMALLEST_UNIT; 1719 while (totsize >= wsize) { 1720 totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt)) / 1721 (objsize + UMA_FRITMREF_SZ); 1722 totsize *= (UMA_FRITMREF_SZ + objsize); 1723 objsize++; 1724 } 1725 if (objsize > UMA_SMALLEST_UNIT) 1726 objsize--; 1727 uma_max_ipers_ref = MAX(UMA_SLAB_SIZE / objsize, 64); 1728 1729 KASSERT((uma_max_ipers_ref <= 256) && (uma_max_ipers <= 256), 1730 ("uma_startup: calculated uma_max_ipers values too large!")); 1731 1732 #ifdef UMA_DEBUG 1733 printf("Calculated uma_max_ipers (for OFFPAGE) is %d\n", uma_max_ipers); 1734 printf("Calculated uma_max_ipers_ref (for OFFPAGE) is %d\n", 1735 uma_max_ipers_ref); 1736 #endif 1737 1738 /* "manually" create the initial zone */ 1739 args.name = "UMA Kegs"; 1740 args.size = sizeof(struct uma_keg); 1741 args.ctor = keg_ctor; 1742 args.dtor = keg_dtor; 1743 args.uminit = zero_init; 1744 args.fini = NULL; 1745 args.keg = &masterkeg; 1746 args.align = 32 - 1; 1747 args.flags = UMA_ZFLAG_INTERNAL; 1748 /* The initial zone has no Per cpu queues so it's smaller */ 1749 zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK); 1750 1751 #ifdef UMA_DEBUG 1752 printf("Filling boot free list.\n"); 1753 #endif 1754 for (i = 0; i < boot_pages; i++) { 1755 slab = (uma_slab_t)((uint8_t *)bootmem + (i * UMA_SLAB_SIZE)); 1756 slab->us_data = (uint8_t *)slab; 1757 slab->us_flags = UMA_SLAB_BOOT; 1758 LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link); 1759 } 1760 mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF); 1761 1762 #ifdef UMA_DEBUG 1763 printf("Creating uma zone headers zone and keg.\n"); 1764 #endif 1765 args.name = "UMA Zones"; 1766 args.size = sizeof(struct uma_zone) + 1767 (sizeof(struct uma_cache) * (mp_maxid + 1)); 1768 args.ctor = zone_ctor; 1769 args.dtor = zone_dtor; 1770 args.uminit = zero_init; 1771 args.fini = NULL; 1772 args.keg = NULL; 1773 args.align = 32 - 1; 1774 args.flags = UMA_ZFLAG_INTERNAL; 1775 /* The initial zone has no Per cpu queues so it's smaller */ 1776 zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK); 1777 1778 #ifdef UMA_DEBUG 1779 printf("Initializing pcpu cache locks.\n"); 1780 #endif 1781 #ifdef UMA_DEBUG 1782 printf("Creating slab and hash zones.\n"); 1783 #endif 1784 1785 /* 1786 * This is the max number of free list items we'll have with 1787 * offpage slabs. 1788 */ 1789 slabsize = uma_max_ipers * UMA_FRITM_SZ; 1790 slabsize += sizeof(struct uma_slab); 1791 1792 /* Now make a zone for slab headers */ 1793 slabzone = uma_zcreate("UMA Slabs", 1794 slabsize, 1795 NULL, NULL, NULL, NULL, 1796 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1797 1798 /* 1799 * We also create a zone for the bigger slabs with reference 1800 * counts in them, to accomodate UMA_ZONE_REFCNT zones. 1801 */ 1802 slabsize = uma_max_ipers_ref * UMA_FRITMREF_SZ; 1803 slabsize += sizeof(struct uma_slab_refcnt); 1804 slabrefzone = uma_zcreate("UMA RCntSlabs", 1805 slabsize, 1806 NULL, NULL, NULL, NULL, 1807 UMA_ALIGN_PTR, 1808 UMA_ZFLAG_INTERNAL); 1809 1810 hashzone = uma_zcreate("UMA Hash", 1811 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 1812 NULL, NULL, NULL, NULL, 1813 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1814 1815 bucket_init(); 1816 1817 booted = UMA_STARTUP; 1818 1819 #ifdef UMA_DEBUG 1820 printf("UMA startup complete.\n"); 1821 #endif 1822 } 1823 1824 /* see uma.h */ 1825 void 1826 uma_startup2(void) 1827 { 1828 booted = UMA_STARTUP2; 1829 bucket_enable(); 1830 #ifdef UMA_DEBUG 1831 printf("UMA startup2 complete.\n"); 1832 #endif 1833 } 1834 1835 /* 1836 * Initialize our callout handle 1837 * 1838 */ 1839 1840 static void 1841 uma_startup3(void) 1842 { 1843 #ifdef UMA_DEBUG 1844 printf("Starting callout.\n"); 1845 #endif 1846 callout_init(&uma_callout, CALLOUT_MPSAFE); 1847 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 1848 #ifdef UMA_DEBUG 1849 printf("UMA startup3 complete.\n"); 1850 #endif 1851 } 1852 1853 static uma_keg_t 1854 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 1855 int align, uint32_t flags) 1856 { 1857 struct uma_kctor_args args; 1858 1859 args.size = size; 1860 args.uminit = uminit; 1861 args.fini = fini; 1862 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 1863 args.flags = flags; 1864 args.zone = zone; 1865 return (zone_alloc_item(kegs, &args, M_WAITOK)); 1866 } 1867 1868 /* See uma.h */ 1869 void 1870 uma_set_align(int align) 1871 { 1872 1873 if (align != UMA_ALIGN_CACHE) 1874 uma_align_cache = align; 1875 } 1876 1877 /* See uma.h */ 1878 uma_zone_t 1879 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 1880 uma_init uminit, uma_fini fini, int align, uint32_t flags) 1881 1882 { 1883 struct uma_zctor_args args; 1884 1885 /* This stuff is essential for the zone ctor */ 1886 args.name = name; 1887 args.size = size; 1888 args.ctor = ctor; 1889 args.dtor = dtor; 1890 args.uminit = uminit; 1891 args.fini = fini; 1892 args.align = align; 1893 args.flags = flags; 1894 args.keg = NULL; 1895 1896 return (zone_alloc_item(zones, &args, M_WAITOK)); 1897 } 1898 1899 /* See uma.h */ 1900 uma_zone_t 1901 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 1902 uma_init zinit, uma_fini zfini, uma_zone_t master) 1903 { 1904 struct uma_zctor_args args; 1905 uma_keg_t keg; 1906 1907 keg = zone_first_keg(master); 1908 args.name = name; 1909 args.size = keg->uk_size; 1910 args.ctor = ctor; 1911 args.dtor = dtor; 1912 args.uminit = zinit; 1913 args.fini = zfini; 1914 args.align = keg->uk_align; 1915 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 1916 args.keg = keg; 1917 1918 /* XXX Attaches only one keg of potentially many. */ 1919 return (zone_alloc_item(zones, &args, M_WAITOK)); 1920 } 1921 1922 static void 1923 zone_lock_pair(uma_zone_t a, uma_zone_t b) 1924 { 1925 if (a < b) { 1926 ZONE_LOCK(a); 1927 mtx_lock_flags(b->uz_lock, MTX_DUPOK); 1928 } else { 1929 ZONE_LOCK(b); 1930 mtx_lock_flags(a->uz_lock, MTX_DUPOK); 1931 } 1932 } 1933 1934 static void 1935 zone_unlock_pair(uma_zone_t a, uma_zone_t b) 1936 { 1937 1938 ZONE_UNLOCK(a); 1939 ZONE_UNLOCK(b); 1940 } 1941 1942 int 1943 uma_zsecond_add(uma_zone_t zone, uma_zone_t master) 1944 { 1945 uma_klink_t klink; 1946 uma_klink_t kl; 1947 int error; 1948 1949 error = 0; 1950 klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO); 1951 1952 zone_lock_pair(zone, master); 1953 /* 1954 * zone must use vtoslab() to resolve objects and must already be 1955 * a secondary. 1956 */ 1957 if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) 1958 != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) { 1959 error = EINVAL; 1960 goto out; 1961 } 1962 /* 1963 * The new master must also use vtoslab(). 1964 */ 1965 if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) { 1966 error = EINVAL; 1967 goto out; 1968 } 1969 /* 1970 * Both must either be refcnt, or not be refcnt. 1971 */ 1972 if ((zone->uz_flags & UMA_ZONE_REFCNT) != 1973 (master->uz_flags & UMA_ZONE_REFCNT)) { 1974 error = EINVAL; 1975 goto out; 1976 } 1977 /* 1978 * The underlying object must be the same size. rsize 1979 * may be different. 1980 */ 1981 if (master->uz_size != zone->uz_size) { 1982 error = E2BIG; 1983 goto out; 1984 } 1985 /* 1986 * Put it at the end of the list. 1987 */ 1988 klink->kl_keg = zone_first_keg(master); 1989 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) { 1990 if (LIST_NEXT(kl, kl_link) == NULL) { 1991 LIST_INSERT_AFTER(kl, klink, kl_link); 1992 break; 1993 } 1994 } 1995 klink = NULL; 1996 zone->uz_flags |= UMA_ZFLAG_MULTI; 1997 zone->uz_slab = zone_fetch_slab_multi; 1998 1999 out: 2000 zone_unlock_pair(zone, master); 2001 if (klink != NULL) 2002 free(klink, M_TEMP); 2003 2004 return (error); 2005 } 2006 2007 2008 /* See uma.h */ 2009 void 2010 uma_zdestroy(uma_zone_t zone) 2011 { 2012 2013 zone_free_item(zones, zone, NULL, SKIP_NONE, ZFREE_STATFREE); 2014 } 2015 2016 /* See uma.h */ 2017 void * 2018 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 2019 { 2020 void *item; 2021 uma_cache_t cache; 2022 uma_bucket_t bucket; 2023 int cpu; 2024 2025 /* This is the fast path allocation */ 2026 #ifdef UMA_DEBUG_ALLOC_1 2027 printf("Allocating one item from %s(%p)\n", zone->uz_name, zone); 2028 #endif 2029 CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread, 2030 zone->uz_name, flags); 2031 2032 if (flags & M_WAITOK) { 2033 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2034 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 2035 } 2036 #ifdef DEBUG_MEMGUARD 2037 if (memguard_cmp_zone(zone)) { 2038 item = memguard_alloc(zone->uz_size, flags); 2039 if (item != NULL) { 2040 /* 2041 * Avoid conflict with the use-after-free 2042 * protecting infrastructure from INVARIANTS. 2043 */ 2044 if (zone->uz_init != NULL && 2045 zone->uz_init != mtrash_init && 2046 zone->uz_init(item, zone->uz_size, flags) != 0) 2047 return (NULL); 2048 if (zone->uz_ctor != NULL && 2049 zone->uz_ctor != mtrash_ctor && 2050 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2051 zone->uz_fini(item, zone->uz_size); 2052 return (NULL); 2053 } 2054 return (item); 2055 } 2056 /* This is unfortunate but should not be fatal. */ 2057 } 2058 #endif 2059 /* 2060 * If possible, allocate from the per-CPU cache. There are two 2061 * requirements for safe access to the per-CPU cache: (1) the thread 2062 * accessing the cache must not be preempted or yield during access, 2063 * and (2) the thread must not migrate CPUs without switching which 2064 * cache it accesses. We rely on a critical section to prevent 2065 * preemption and migration. We release the critical section in 2066 * order to acquire the zone mutex if we are unable to allocate from 2067 * the current cache; when we re-acquire the critical section, we 2068 * must detect and handle migration if it has occurred. 2069 */ 2070 zalloc_restart: 2071 critical_enter(); 2072 cpu = curcpu; 2073 cache = &zone->uz_cpu[cpu]; 2074 2075 zalloc_start: 2076 bucket = cache->uc_allocbucket; 2077 2078 if (bucket) { 2079 if (bucket->ub_cnt > 0) { 2080 bucket->ub_cnt--; 2081 item = bucket->ub_bucket[bucket->ub_cnt]; 2082 #ifdef INVARIANTS 2083 bucket->ub_bucket[bucket->ub_cnt] = NULL; 2084 #endif 2085 KASSERT(item != NULL, 2086 ("uma_zalloc: Bucket pointer mangled.")); 2087 cache->uc_allocs++; 2088 critical_exit(); 2089 #ifdef INVARIANTS 2090 ZONE_LOCK(zone); 2091 uma_dbg_alloc(zone, NULL, item); 2092 ZONE_UNLOCK(zone); 2093 #endif 2094 if (zone->uz_ctor != NULL) { 2095 if (zone->uz_ctor(item, zone->uz_size, 2096 udata, flags) != 0) { 2097 zone_free_item(zone, item, udata, 2098 SKIP_DTOR, ZFREE_STATFAIL | 2099 ZFREE_STATFREE); 2100 return (NULL); 2101 } 2102 } 2103 if (flags & M_ZERO) 2104 bzero(item, zone->uz_size); 2105 return (item); 2106 } else if (cache->uc_freebucket) { 2107 /* 2108 * We have run out of items in our allocbucket. 2109 * See if we can switch with our free bucket. 2110 */ 2111 if (cache->uc_freebucket->ub_cnt > 0) { 2112 #ifdef UMA_DEBUG_ALLOC 2113 printf("uma_zalloc: Swapping empty with" 2114 " alloc.\n"); 2115 #endif 2116 bucket = cache->uc_freebucket; 2117 cache->uc_freebucket = cache->uc_allocbucket; 2118 cache->uc_allocbucket = bucket; 2119 2120 goto zalloc_start; 2121 } 2122 } 2123 } 2124 /* 2125 * Attempt to retrieve the item from the per-CPU cache has failed, so 2126 * we must go back to the zone. This requires the zone lock, so we 2127 * must drop the critical section, then re-acquire it when we go back 2128 * to the cache. Since the critical section is released, we may be 2129 * preempted or migrate. As such, make sure not to maintain any 2130 * thread-local state specific to the cache from prior to releasing 2131 * the critical section. 2132 */ 2133 critical_exit(); 2134 ZONE_LOCK(zone); 2135 critical_enter(); 2136 cpu = curcpu; 2137 cache = &zone->uz_cpu[cpu]; 2138 bucket = cache->uc_allocbucket; 2139 if (bucket != NULL) { 2140 if (bucket->ub_cnt > 0) { 2141 ZONE_UNLOCK(zone); 2142 goto zalloc_start; 2143 } 2144 bucket = cache->uc_freebucket; 2145 if (bucket != NULL && bucket->ub_cnt > 0) { 2146 ZONE_UNLOCK(zone); 2147 goto zalloc_start; 2148 } 2149 } 2150 2151 /* Since we have locked the zone we may as well send back our stats */ 2152 zone->uz_allocs += cache->uc_allocs; 2153 cache->uc_allocs = 0; 2154 zone->uz_frees += cache->uc_frees; 2155 cache->uc_frees = 0; 2156 2157 /* Our old one is now a free bucket */ 2158 if (cache->uc_allocbucket) { 2159 KASSERT(cache->uc_allocbucket->ub_cnt == 0, 2160 ("uma_zalloc_arg: Freeing a non free bucket.")); 2161 LIST_INSERT_HEAD(&zone->uz_free_bucket, 2162 cache->uc_allocbucket, ub_link); 2163 cache->uc_allocbucket = NULL; 2164 } 2165 2166 /* Check the free list for a new alloc bucket */ 2167 if ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) { 2168 KASSERT(bucket->ub_cnt != 0, 2169 ("uma_zalloc_arg: Returning an empty bucket.")); 2170 2171 LIST_REMOVE(bucket, ub_link); 2172 cache->uc_allocbucket = bucket; 2173 ZONE_UNLOCK(zone); 2174 goto zalloc_start; 2175 } 2176 /* We are no longer associated with this CPU. */ 2177 critical_exit(); 2178 2179 /* Bump up our uz_count so we get here less */ 2180 if (zone->uz_count < BUCKET_MAX) 2181 zone->uz_count++; 2182 2183 /* 2184 * Now lets just fill a bucket and put it on the free list. If that 2185 * works we'll restart the allocation from the begining. 2186 */ 2187 if (zone_alloc_bucket(zone, flags)) { 2188 ZONE_UNLOCK(zone); 2189 goto zalloc_restart; 2190 } 2191 ZONE_UNLOCK(zone); 2192 /* 2193 * We may not be able to get a bucket so return an actual item. 2194 */ 2195 #ifdef UMA_DEBUG 2196 printf("uma_zalloc_arg: Bucketzone returned NULL\n"); 2197 #endif 2198 2199 item = zone_alloc_item(zone, udata, flags); 2200 return (item); 2201 } 2202 2203 static uma_slab_t 2204 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags) 2205 { 2206 uma_slab_t slab; 2207 2208 mtx_assert(&keg->uk_lock, MA_OWNED); 2209 slab = NULL; 2210 2211 for (;;) { 2212 /* 2213 * Find a slab with some space. Prefer slabs that are partially 2214 * used over those that are totally full. This helps to reduce 2215 * fragmentation. 2216 */ 2217 if (keg->uk_free != 0) { 2218 if (!LIST_EMPTY(&keg->uk_part_slab)) { 2219 slab = LIST_FIRST(&keg->uk_part_slab); 2220 } else { 2221 slab = LIST_FIRST(&keg->uk_free_slab); 2222 LIST_REMOVE(slab, us_link); 2223 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, 2224 us_link); 2225 } 2226 MPASS(slab->us_keg == keg); 2227 return (slab); 2228 } 2229 2230 /* 2231 * M_NOVM means don't ask at all! 2232 */ 2233 if (flags & M_NOVM) 2234 break; 2235 2236 if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) { 2237 keg->uk_flags |= UMA_ZFLAG_FULL; 2238 /* 2239 * If this is not a multi-zone, set the FULL bit. 2240 * Otherwise slab_multi() takes care of it. 2241 */ 2242 if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) { 2243 zone->uz_flags |= UMA_ZFLAG_FULL; 2244 zone_log_warning(zone); 2245 } 2246 if (flags & M_NOWAIT) 2247 break; 2248 zone->uz_sleeps++; 2249 msleep(keg, &keg->uk_lock, PVM, "keglimit", 0); 2250 continue; 2251 } 2252 keg->uk_recurse++; 2253 slab = keg_alloc_slab(keg, zone, flags); 2254 keg->uk_recurse--; 2255 /* 2256 * If we got a slab here it's safe to mark it partially used 2257 * and return. We assume that the caller is going to remove 2258 * at least one item. 2259 */ 2260 if (slab) { 2261 MPASS(slab->us_keg == keg); 2262 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2263 return (slab); 2264 } 2265 /* 2266 * We might not have been able to get a slab but another cpu 2267 * could have while we were unlocked. Check again before we 2268 * fail. 2269 */ 2270 flags |= M_NOVM; 2271 } 2272 return (slab); 2273 } 2274 2275 static inline void 2276 zone_relock(uma_zone_t zone, uma_keg_t keg) 2277 { 2278 if (zone->uz_lock != &keg->uk_lock) { 2279 KEG_UNLOCK(keg); 2280 ZONE_LOCK(zone); 2281 } 2282 } 2283 2284 static inline void 2285 keg_relock(uma_keg_t keg, uma_zone_t zone) 2286 { 2287 if (zone->uz_lock != &keg->uk_lock) { 2288 ZONE_UNLOCK(zone); 2289 KEG_LOCK(keg); 2290 } 2291 } 2292 2293 static uma_slab_t 2294 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags) 2295 { 2296 uma_slab_t slab; 2297 2298 if (keg == NULL) 2299 keg = zone_first_keg(zone); 2300 /* 2301 * This is to prevent us from recursively trying to allocate 2302 * buckets. The problem is that if an allocation forces us to 2303 * grab a new bucket we will call page_alloc, which will go off 2304 * and cause the vm to allocate vm_map_entries. If we need new 2305 * buckets there too we will recurse in kmem_alloc and bad 2306 * things happen. So instead we return a NULL bucket, and make 2307 * the code that allocates buckets smart enough to deal with it 2308 */ 2309 if (keg->uk_flags & UMA_ZFLAG_BUCKET && keg->uk_recurse != 0) 2310 return (NULL); 2311 2312 for (;;) { 2313 slab = keg_fetch_slab(keg, zone, flags); 2314 if (slab) 2315 return (slab); 2316 if (flags & (M_NOWAIT | M_NOVM)) 2317 break; 2318 } 2319 return (NULL); 2320 } 2321 2322 /* 2323 * uma_zone_fetch_slab_multi: Fetches a slab from one available keg. Returns 2324 * with the keg locked. Caller must call zone_relock() afterwards if the 2325 * zone lock is required. On NULL the zone lock is held. 2326 * 2327 * The last pointer is used to seed the search. It is not required. 2328 */ 2329 static uma_slab_t 2330 zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags) 2331 { 2332 uma_klink_t klink; 2333 uma_slab_t slab; 2334 uma_keg_t keg; 2335 int flags; 2336 int empty; 2337 int full; 2338 2339 /* 2340 * Don't wait on the first pass. This will skip limit tests 2341 * as well. We don't want to block if we can find a provider 2342 * without blocking. 2343 */ 2344 flags = (rflags & ~M_WAITOK) | M_NOWAIT; 2345 /* 2346 * Use the last slab allocated as a hint for where to start 2347 * the search. 2348 */ 2349 if (last) { 2350 slab = keg_fetch_slab(last, zone, flags); 2351 if (slab) 2352 return (slab); 2353 zone_relock(zone, last); 2354 last = NULL; 2355 } 2356 /* 2357 * Loop until we have a slab incase of transient failures 2358 * while M_WAITOK is specified. I'm not sure this is 100% 2359 * required but we've done it for so long now. 2360 */ 2361 for (;;) { 2362 empty = 0; 2363 full = 0; 2364 /* 2365 * Search the available kegs for slabs. Be careful to hold the 2366 * correct lock while calling into the keg layer. 2367 */ 2368 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) { 2369 keg = klink->kl_keg; 2370 keg_relock(keg, zone); 2371 if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) { 2372 slab = keg_fetch_slab(keg, zone, flags); 2373 if (slab) 2374 return (slab); 2375 } 2376 if (keg->uk_flags & UMA_ZFLAG_FULL) 2377 full++; 2378 else 2379 empty++; 2380 zone_relock(zone, keg); 2381 } 2382 if (rflags & (M_NOWAIT | M_NOVM)) 2383 break; 2384 flags = rflags; 2385 /* 2386 * All kegs are full. XXX We can't atomically check all kegs 2387 * and sleep so just sleep for a short period and retry. 2388 */ 2389 if (full && !empty) { 2390 zone->uz_flags |= UMA_ZFLAG_FULL; 2391 zone->uz_sleeps++; 2392 zone_log_warning(zone); 2393 msleep(zone, zone->uz_lock, PVM, "zonelimit", hz/100); 2394 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2395 continue; 2396 } 2397 } 2398 return (NULL); 2399 } 2400 2401 static void * 2402 slab_alloc_item(uma_zone_t zone, uma_slab_t slab) 2403 { 2404 uma_keg_t keg; 2405 uma_slabrefcnt_t slabref; 2406 void *item; 2407 uint8_t freei; 2408 2409 keg = slab->us_keg; 2410 mtx_assert(&keg->uk_lock, MA_OWNED); 2411 2412 freei = slab->us_firstfree; 2413 if (keg->uk_flags & UMA_ZONE_REFCNT) { 2414 slabref = (uma_slabrefcnt_t)slab; 2415 slab->us_firstfree = slabref->us_freelist[freei].us_item; 2416 } else { 2417 slab->us_firstfree = slab->us_freelist[freei].us_item; 2418 } 2419 item = slab->us_data + (keg->uk_rsize * freei); 2420 2421 slab->us_freecount--; 2422 keg->uk_free--; 2423 #ifdef INVARIANTS 2424 uma_dbg_alloc(zone, slab, item); 2425 #endif 2426 /* Move this slab to the full list */ 2427 if (slab->us_freecount == 0) { 2428 LIST_REMOVE(slab, us_link); 2429 LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link); 2430 } 2431 2432 return (item); 2433 } 2434 2435 static int 2436 zone_alloc_bucket(uma_zone_t zone, int flags) 2437 { 2438 uma_bucket_t bucket; 2439 uma_slab_t slab; 2440 uma_keg_t keg; 2441 int16_t saved; 2442 int max, origflags = flags; 2443 2444 /* 2445 * Try this zone's free list first so we don't allocate extra buckets. 2446 */ 2447 if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) { 2448 KASSERT(bucket->ub_cnt == 0, 2449 ("zone_alloc_bucket: Bucket on free list is not empty.")); 2450 LIST_REMOVE(bucket, ub_link); 2451 } else { 2452 int bflags; 2453 2454 bflags = (flags & ~M_ZERO); 2455 if (zone->uz_flags & UMA_ZFLAG_CACHEONLY) 2456 bflags |= M_NOVM; 2457 2458 ZONE_UNLOCK(zone); 2459 bucket = bucket_alloc(zone->uz_count, bflags); 2460 ZONE_LOCK(zone); 2461 } 2462 2463 if (bucket == NULL) { 2464 return (0); 2465 } 2466 2467 #ifdef SMP 2468 /* 2469 * This code is here to limit the number of simultaneous bucket fills 2470 * for any given zone to the number of per cpu caches in this zone. This 2471 * is done so that we don't allocate more memory than we really need. 2472 */ 2473 if (zone->uz_fills >= mp_ncpus) 2474 goto done; 2475 2476 #endif 2477 zone->uz_fills++; 2478 2479 max = MIN(bucket->ub_entries, zone->uz_count); 2480 /* Try to keep the buckets totally full */ 2481 saved = bucket->ub_cnt; 2482 slab = NULL; 2483 keg = NULL; 2484 while (bucket->ub_cnt < max && 2485 (slab = zone->uz_slab(zone, keg, flags)) != NULL) { 2486 keg = slab->us_keg; 2487 while (slab->us_freecount && bucket->ub_cnt < max) { 2488 bucket->ub_bucket[bucket->ub_cnt++] = 2489 slab_alloc_item(zone, slab); 2490 } 2491 2492 /* Don't block on the next fill */ 2493 flags |= M_NOWAIT; 2494 } 2495 if (slab) 2496 zone_relock(zone, keg); 2497 2498 /* 2499 * We unlock here because we need to call the zone's init. 2500 * It should be safe to unlock because the slab dealt with 2501 * above is already on the appropriate list within the keg 2502 * and the bucket we filled is not yet on any list, so we 2503 * own it. 2504 */ 2505 if (zone->uz_init != NULL) { 2506 int i; 2507 2508 ZONE_UNLOCK(zone); 2509 for (i = saved; i < bucket->ub_cnt; i++) 2510 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 2511 origflags) != 0) 2512 break; 2513 /* 2514 * If we couldn't initialize the whole bucket, put the 2515 * rest back onto the freelist. 2516 */ 2517 if (i != bucket->ub_cnt) { 2518 int j; 2519 2520 for (j = i; j < bucket->ub_cnt; j++) { 2521 zone_free_item(zone, bucket->ub_bucket[j], 2522 NULL, SKIP_FINI, 0); 2523 #ifdef INVARIANTS 2524 bucket->ub_bucket[j] = NULL; 2525 #endif 2526 } 2527 bucket->ub_cnt = i; 2528 } 2529 ZONE_LOCK(zone); 2530 } 2531 2532 zone->uz_fills--; 2533 if (bucket->ub_cnt != 0) { 2534 LIST_INSERT_HEAD(&zone->uz_full_bucket, 2535 bucket, ub_link); 2536 return (1); 2537 } 2538 #ifdef SMP 2539 done: 2540 #endif 2541 bucket_free(bucket); 2542 2543 return (0); 2544 } 2545 /* 2546 * Allocates an item for an internal zone 2547 * 2548 * Arguments 2549 * zone The zone to alloc for. 2550 * udata The data to be passed to the constructor. 2551 * flags M_WAITOK, M_NOWAIT, M_ZERO. 2552 * 2553 * Returns 2554 * NULL if there is no memory and M_NOWAIT is set 2555 * An item if successful 2556 */ 2557 2558 static void * 2559 zone_alloc_item(uma_zone_t zone, void *udata, int flags) 2560 { 2561 uma_slab_t slab; 2562 void *item; 2563 2564 item = NULL; 2565 2566 #ifdef UMA_DEBUG_ALLOC 2567 printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone); 2568 #endif 2569 ZONE_LOCK(zone); 2570 2571 slab = zone->uz_slab(zone, NULL, flags); 2572 if (slab == NULL) { 2573 zone->uz_fails++; 2574 ZONE_UNLOCK(zone); 2575 return (NULL); 2576 } 2577 2578 item = slab_alloc_item(zone, slab); 2579 2580 zone_relock(zone, slab->us_keg); 2581 zone->uz_allocs++; 2582 ZONE_UNLOCK(zone); 2583 2584 /* 2585 * We have to call both the zone's init (not the keg's init) 2586 * and the zone's ctor. This is because the item is going from 2587 * a keg slab directly to the user, and the user is expecting it 2588 * to be both zone-init'd as well as zone-ctor'd. 2589 */ 2590 if (zone->uz_init != NULL) { 2591 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 2592 zone_free_item(zone, item, udata, SKIP_FINI, 2593 ZFREE_STATFAIL | ZFREE_STATFREE); 2594 return (NULL); 2595 } 2596 } 2597 if (zone->uz_ctor != NULL) { 2598 if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2599 zone_free_item(zone, item, udata, SKIP_DTOR, 2600 ZFREE_STATFAIL | ZFREE_STATFREE); 2601 return (NULL); 2602 } 2603 } 2604 if (flags & M_ZERO) 2605 bzero(item, zone->uz_size); 2606 2607 return (item); 2608 } 2609 2610 /* See uma.h */ 2611 void 2612 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 2613 { 2614 uma_cache_t cache; 2615 uma_bucket_t bucket; 2616 int bflags; 2617 int cpu; 2618 2619 #ifdef UMA_DEBUG_ALLOC_1 2620 printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone); 2621 #endif 2622 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 2623 zone->uz_name); 2624 2625 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 2626 if (item == NULL) 2627 return; 2628 #ifdef DEBUG_MEMGUARD 2629 if (is_memguard_addr(item)) { 2630 if (zone->uz_dtor != NULL && zone->uz_dtor != mtrash_dtor) 2631 zone->uz_dtor(item, zone->uz_size, udata); 2632 if (zone->uz_fini != NULL && zone->uz_fini != mtrash_fini) 2633 zone->uz_fini(item, zone->uz_size); 2634 memguard_free(item); 2635 return; 2636 } 2637 #endif 2638 if (zone->uz_dtor) 2639 zone->uz_dtor(item, zone->uz_size, udata); 2640 2641 #ifdef INVARIANTS 2642 ZONE_LOCK(zone); 2643 if (zone->uz_flags & UMA_ZONE_MALLOC) 2644 uma_dbg_free(zone, udata, item); 2645 else 2646 uma_dbg_free(zone, NULL, item); 2647 ZONE_UNLOCK(zone); 2648 #endif 2649 /* 2650 * The race here is acceptable. If we miss it we'll just have to wait 2651 * a little longer for the limits to be reset. 2652 */ 2653 if (zone->uz_flags & UMA_ZFLAG_FULL) 2654 goto zfree_internal; 2655 2656 /* 2657 * If possible, free to the per-CPU cache. There are two 2658 * requirements for safe access to the per-CPU cache: (1) the thread 2659 * accessing the cache must not be preempted or yield during access, 2660 * and (2) the thread must not migrate CPUs without switching which 2661 * cache it accesses. We rely on a critical section to prevent 2662 * preemption and migration. We release the critical section in 2663 * order to acquire the zone mutex if we are unable to free to the 2664 * current cache; when we re-acquire the critical section, we must 2665 * detect and handle migration if it has occurred. 2666 */ 2667 zfree_restart: 2668 critical_enter(); 2669 cpu = curcpu; 2670 cache = &zone->uz_cpu[cpu]; 2671 2672 zfree_start: 2673 bucket = cache->uc_freebucket; 2674 2675 if (bucket) { 2676 /* 2677 * Do we have room in our bucket? It is OK for this uz count 2678 * check to be slightly out of sync. 2679 */ 2680 2681 if (bucket->ub_cnt < bucket->ub_entries) { 2682 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 2683 ("uma_zfree: Freeing to non free bucket index.")); 2684 bucket->ub_bucket[bucket->ub_cnt] = item; 2685 bucket->ub_cnt++; 2686 cache->uc_frees++; 2687 critical_exit(); 2688 return; 2689 } else if (cache->uc_allocbucket) { 2690 #ifdef UMA_DEBUG_ALLOC 2691 printf("uma_zfree: Swapping buckets.\n"); 2692 #endif 2693 /* 2694 * We have run out of space in our freebucket. 2695 * See if we can switch with our alloc bucket. 2696 */ 2697 if (cache->uc_allocbucket->ub_cnt < 2698 cache->uc_freebucket->ub_cnt) { 2699 bucket = cache->uc_freebucket; 2700 cache->uc_freebucket = cache->uc_allocbucket; 2701 cache->uc_allocbucket = bucket; 2702 goto zfree_start; 2703 } 2704 } 2705 } 2706 /* 2707 * We can get here for two reasons: 2708 * 2709 * 1) The buckets are NULL 2710 * 2) The alloc and free buckets are both somewhat full. 2711 * 2712 * We must go back the zone, which requires acquiring the zone lock, 2713 * which in turn means we must release and re-acquire the critical 2714 * section. Since the critical section is released, we may be 2715 * preempted or migrate. As such, make sure not to maintain any 2716 * thread-local state specific to the cache from prior to releasing 2717 * the critical section. 2718 */ 2719 critical_exit(); 2720 ZONE_LOCK(zone); 2721 critical_enter(); 2722 cpu = curcpu; 2723 cache = &zone->uz_cpu[cpu]; 2724 if (cache->uc_freebucket != NULL) { 2725 if (cache->uc_freebucket->ub_cnt < 2726 cache->uc_freebucket->ub_entries) { 2727 ZONE_UNLOCK(zone); 2728 goto zfree_start; 2729 } 2730 if (cache->uc_allocbucket != NULL && 2731 (cache->uc_allocbucket->ub_cnt < 2732 cache->uc_freebucket->ub_cnt)) { 2733 ZONE_UNLOCK(zone); 2734 goto zfree_start; 2735 } 2736 } 2737 2738 /* Since we have locked the zone we may as well send back our stats */ 2739 zone->uz_allocs += cache->uc_allocs; 2740 cache->uc_allocs = 0; 2741 zone->uz_frees += cache->uc_frees; 2742 cache->uc_frees = 0; 2743 2744 bucket = cache->uc_freebucket; 2745 cache->uc_freebucket = NULL; 2746 2747 /* Can we throw this on the zone full list? */ 2748 if (bucket != NULL) { 2749 #ifdef UMA_DEBUG_ALLOC 2750 printf("uma_zfree: Putting old bucket on the free list.\n"); 2751 #endif 2752 /* ub_cnt is pointing to the last free item */ 2753 KASSERT(bucket->ub_cnt != 0, 2754 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n")); 2755 LIST_INSERT_HEAD(&zone->uz_full_bucket, 2756 bucket, ub_link); 2757 } 2758 if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) { 2759 LIST_REMOVE(bucket, ub_link); 2760 ZONE_UNLOCK(zone); 2761 cache->uc_freebucket = bucket; 2762 goto zfree_start; 2763 } 2764 /* We are no longer associated with this CPU. */ 2765 critical_exit(); 2766 2767 /* And the zone.. */ 2768 ZONE_UNLOCK(zone); 2769 2770 #ifdef UMA_DEBUG_ALLOC 2771 printf("uma_zfree: Allocating new free bucket.\n"); 2772 #endif 2773 bflags = M_NOWAIT; 2774 2775 if (zone->uz_flags & UMA_ZFLAG_CACHEONLY) 2776 bflags |= M_NOVM; 2777 bucket = bucket_alloc(zone->uz_count, bflags); 2778 if (bucket) { 2779 ZONE_LOCK(zone); 2780 LIST_INSERT_HEAD(&zone->uz_free_bucket, 2781 bucket, ub_link); 2782 ZONE_UNLOCK(zone); 2783 goto zfree_restart; 2784 } 2785 2786 /* 2787 * If nothing else caught this, we'll just do an internal free. 2788 */ 2789 zfree_internal: 2790 zone_free_item(zone, item, udata, SKIP_DTOR, ZFREE_STATFREE); 2791 2792 return; 2793 } 2794 2795 /* 2796 * Frees an item to an INTERNAL zone or allocates a free bucket 2797 * 2798 * Arguments: 2799 * zone The zone to free to 2800 * item The item we're freeing 2801 * udata User supplied data for the dtor 2802 * skip Skip dtors and finis 2803 */ 2804 static void 2805 zone_free_item(uma_zone_t zone, void *item, void *udata, 2806 enum zfreeskip skip, int flags) 2807 { 2808 uma_slab_t slab; 2809 uma_slabrefcnt_t slabref; 2810 uma_keg_t keg; 2811 uint8_t *mem; 2812 uint8_t freei; 2813 int clearfull; 2814 2815 if (skip < SKIP_DTOR && zone->uz_dtor) 2816 zone->uz_dtor(item, zone->uz_size, udata); 2817 2818 if (skip < SKIP_FINI && zone->uz_fini) 2819 zone->uz_fini(item, zone->uz_size); 2820 2821 ZONE_LOCK(zone); 2822 2823 if (flags & ZFREE_STATFAIL) 2824 zone->uz_fails++; 2825 if (flags & ZFREE_STATFREE) 2826 zone->uz_frees++; 2827 2828 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) { 2829 mem = (uint8_t *)((unsigned long)item & (~UMA_SLAB_MASK)); 2830 keg = zone_first_keg(zone); /* Must only be one. */ 2831 if (zone->uz_flags & UMA_ZONE_HASH) { 2832 slab = hash_sfind(&keg->uk_hash, mem); 2833 } else { 2834 mem += keg->uk_pgoff; 2835 slab = (uma_slab_t)mem; 2836 } 2837 } else { 2838 /* This prevents redundant lookups via free(). */ 2839 if ((zone->uz_flags & UMA_ZONE_MALLOC) && udata != NULL) 2840 slab = (uma_slab_t)udata; 2841 else 2842 slab = vtoslab((vm_offset_t)item); 2843 keg = slab->us_keg; 2844 keg_relock(keg, zone); 2845 } 2846 MPASS(keg == slab->us_keg); 2847 2848 /* Do we need to remove from any lists? */ 2849 if (slab->us_freecount+1 == keg->uk_ipers) { 2850 LIST_REMOVE(slab, us_link); 2851 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 2852 } else if (slab->us_freecount == 0) { 2853 LIST_REMOVE(slab, us_link); 2854 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2855 } 2856 2857 /* Slab management stuff */ 2858 freei = ((unsigned long)item - (unsigned long)slab->us_data) 2859 / keg->uk_rsize; 2860 2861 #ifdef INVARIANTS 2862 if (!skip) 2863 uma_dbg_free(zone, slab, item); 2864 #endif 2865 2866 if (keg->uk_flags & UMA_ZONE_REFCNT) { 2867 slabref = (uma_slabrefcnt_t)slab; 2868 slabref->us_freelist[freei].us_item = slab->us_firstfree; 2869 } else { 2870 slab->us_freelist[freei].us_item = slab->us_firstfree; 2871 } 2872 slab->us_firstfree = freei; 2873 slab->us_freecount++; 2874 2875 /* Zone statistics */ 2876 keg->uk_free++; 2877 2878 clearfull = 0; 2879 if (keg->uk_flags & UMA_ZFLAG_FULL) { 2880 if (keg->uk_pages < keg->uk_maxpages) { 2881 keg->uk_flags &= ~UMA_ZFLAG_FULL; 2882 clearfull = 1; 2883 } 2884 2885 /* 2886 * We can handle one more allocation. Since we're clearing ZFLAG_FULL, 2887 * wake up all procs blocked on pages. This should be uncommon, so 2888 * keeping this simple for now (rather than adding count of blocked 2889 * threads etc). 2890 */ 2891 wakeup(keg); 2892 } 2893 if (clearfull) { 2894 zone_relock(zone, keg); 2895 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2896 wakeup(zone); 2897 ZONE_UNLOCK(zone); 2898 } else 2899 KEG_UNLOCK(keg); 2900 } 2901 2902 /* See uma.h */ 2903 int 2904 uma_zone_set_max(uma_zone_t zone, int nitems) 2905 { 2906 uma_keg_t keg; 2907 2908 ZONE_LOCK(zone); 2909 keg = zone_first_keg(zone); 2910 keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera; 2911 if (keg->uk_maxpages * keg->uk_ipers < nitems) 2912 keg->uk_maxpages += keg->uk_ppera; 2913 nitems = keg->uk_maxpages * keg->uk_ipers; 2914 ZONE_UNLOCK(zone); 2915 2916 return (nitems); 2917 } 2918 2919 /* See uma.h */ 2920 int 2921 uma_zone_get_max(uma_zone_t zone) 2922 { 2923 int nitems; 2924 uma_keg_t keg; 2925 2926 ZONE_LOCK(zone); 2927 keg = zone_first_keg(zone); 2928 nitems = keg->uk_maxpages * keg->uk_ipers; 2929 ZONE_UNLOCK(zone); 2930 2931 return (nitems); 2932 } 2933 2934 /* See uma.h */ 2935 void 2936 uma_zone_set_warning(uma_zone_t zone, const char *warning) 2937 { 2938 2939 ZONE_LOCK(zone); 2940 zone->uz_warning = warning; 2941 ZONE_UNLOCK(zone); 2942 } 2943 2944 /* See uma.h */ 2945 int 2946 uma_zone_get_cur(uma_zone_t zone) 2947 { 2948 int64_t nitems; 2949 u_int i; 2950 2951 ZONE_LOCK(zone); 2952 nitems = zone->uz_allocs - zone->uz_frees; 2953 CPU_FOREACH(i) { 2954 /* 2955 * See the comment in sysctl_vm_zone_stats() regarding the 2956 * safety of accessing the per-cpu caches. With the zone lock 2957 * held, it is safe, but can potentially result in stale data. 2958 */ 2959 nitems += zone->uz_cpu[i].uc_allocs - 2960 zone->uz_cpu[i].uc_frees; 2961 } 2962 ZONE_UNLOCK(zone); 2963 2964 return (nitems < 0 ? 0 : nitems); 2965 } 2966 2967 /* See uma.h */ 2968 void 2969 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 2970 { 2971 uma_keg_t keg; 2972 2973 ZONE_LOCK(zone); 2974 keg = zone_first_keg(zone); 2975 KASSERT(keg->uk_pages == 0, 2976 ("uma_zone_set_init on non-empty keg")); 2977 keg->uk_init = uminit; 2978 ZONE_UNLOCK(zone); 2979 } 2980 2981 /* See uma.h */ 2982 void 2983 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 2984 { 2985 uma_keg_t keg; 2986 2987 ZONE_LOCK(zone); 2988 keg = zone_first_keg(zone); 2989 KASSERT(keg->uk_pages == 0, 2990 ("uma_zone_set_fini on non-empty keg")); 2991 keg->uk_fini = fini; 2992 ZONE_UNLOCK(zone); 2993 } 2994 2995 /* See uma.h */ 2996 void 2997 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 2998 { 2999 ZONE_LOCK(zone); 3000 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3001 ("uma_zone_set_zinit on non-empty keg")); 3002 zone->uz_init = zinit; 3003 ZONE_UNLOCK(zone); 3004 } 3005 3006 /* See uma.h */ 3007 void 3008 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 3009 { 3010 ZONE_LOCK(zone); 3011 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3012 ("uma_zone_set_zfini on non-empty keg")); 3013 zone->uz_fini = zfini; 3014 ZONE_UNLOCK(zone); 3015 } 3016 3017 /* See uma.h */ 3018 /* XXX uk_freef is not actually used with the zone locked */ 3019 void 3020 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 3021 { 3022 3023 ZONE_LOCK(zone); 3024 zone_first_keg(zone)->uk_freef = freef; 3025 ZONE_UNLOCK(zone); 3026 } 3027 3028 /* See uma.h */ 3029 /* XXX uk_allocf is not actually used with the zone locked */ 3030 void 3031 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 3032 { 3033 uma_keg_t keg; 3034 3035 ZONE_LOCK(zone); 3036 keg = zone_first_keg(zone); 3037 keg->uk_flags |= UMA_ZFLAG_PRIVALLOC; 3038 keg->uk_allocf = allocf; 3039 ZONE_UNLOCK(zone); 3040 } 3041 3042 /* See uma.h */ 3043 int 3044 uma_zone_reserve_kva(uma_zone_t zone, int count) 3045 { 3046 uma_keg_t keg; 3047 vm_offset_t kva; 3048 int pages; 3049 3050 keg = zone_first_keg(zone); 3051 pages = count / keg->uk_ipers; 3052 3053 if (pages * keg->uk_ipers < count) 3054 pages++; 3055 3056 #ifdef UMA_MD_SMALL_ALLOC 3057 if (keg->uk_ppera > 1) { 3058 #else 3059 if (1) { 3060 #endif 3061 kva = kmem_alloc_nofault(kernel_map, pages * UMA_SLAB_SIZE); 3062 if (kva == 0) 3063 return (0); 3064 } else 3065 kva = 0; 3066 ZONE_LOCK(zone); 3067 keg->uk_kva = kva; 3068 keg->uk_offset = 0; 3069 keg->uk_maxpages = pages; 3070 #ifdef UMA_MD_SMALL_ALLOC 3071 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 3072 #else 3073 keg->uk_allocf = noobj_alloc; 3074 #endif 3075 keg->uk_flags |= UMA_ZONE_NOFREE | UMA_ZFLAG_PRIVALLOC; 3076 ZONE_UNLOCK(zone); 3077 return (1); 3078 } 3079 3080 /* See uma.h */ 3081 void 3082 uma_prealloc(uma_zone_t zone, int items) 3083 { 3084 int slabs; 3085 uma_slab_t slab; 3086 uma_keg_t keg; 3087 3088 keg = zone_first_keg(zone); 3089 ZONE_LOCK(zone); 3090 slabs = items / keg->uk_ipers; 3091 if (slabs * keg->uk_ipers < items) 3092 slabs++; 3093 while (slabs > 0) { 3094 slab = keg_alloc_slab(keg, zone, M_WAITOK); 3095 if (slab == NULL) 3096 break; 3097 MPASS(slab->us_keg == keg); 3098 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 3099 slabs--; 3100 } 3101 ZONE_UNLOCK(zone); 3102 } 3103 3104 /* See uma.h */ 3105 uint32_t * 3106 uma_find_refcnt(uma_zone_t zone, void *item) 3107 { 3108 uma_slabrefcnt_t slabref; 3109 uma_keg_t keg; 3110 uint32_t *refcnt; 3111 int idx; 3112 3113 slabref = (uma_slabrefcnt_t)vtoslab((vm_offset_t)item & 3114 (~UMA_SLAB_MASK)); 3115 keg = slabref->us_keg; 3116 KASSERT(slabref != NULL && slabref->us_keg->uk_flags & UMA_ZONE_REFCNT, 3117 ("uma_find_refcnt(): zone possibly not UMA_ZONE_REFCNT")); 3118 idx = ((unsigned long)item - (unsigned long)slabref->us_data) 3119 / keg->uk_rsize; 3120 refcnt = &slabref->us_freelist[idx].us_refcnt; 3121 return refcnt; 3122 } 3123 3124 /* See uma.h */ 3125 void 3126 uma_reclaim(void) 3127 { 3128 #ifdef UMA_DEBUG 3129 printf("UMA: vm asked us to release pages!\n"); 3130 #endif 3131 bucket_enable(); 3132 zone_foreach(zone_drain); 3133 /* 3134 * Some slabs may have been freed but this zone will be visited early 3135 * we visit again so that we can free pages that are empty once other 3136 * zones are drained. We have to do the same for buckets. 3137 */ 3138 zone_drain(slabzone); 3139 zone_drain(slabrefzone); 3140 bucket_zone_drain(); 3141 } 3142 3143 /* See uma.h */ 3144 int 3145 uma_zone_exhausted(uma_zone_t zone) 3146 { 3147 int full; 3148 3149 ZONE_LOCK(zone); 3150 full = (zone->uz_flags & UMA_ZFLAG_FULL); 3151 ZONE_UNLOCK(zone); 3152 return (full); 3153 } 3154 3155 int 3156 uma_zone_exhausted_nolock(uma_zone_t zone) 3157 { 3158 return (zone->uz_flags & UMA_ZFLAG_FULL); 3159 } 3160 3161 void * 3162 uma_large_malloc(int size, int wait) 3163 { 3164 void *mem; 3165 uma_slab_t slab; 3166 uint8_t flags; 3167 3168 slab = zone_alloc_item(slabzone, NULL, wait); 3169 if (slab == NULL) 3170 return (NULL); 3171 mem = page_alloc(NULL, size, &flags, wait); 3172 if (mem) { 3173 vsetslab((vm_offset_t)mem, slab); 3174 slab->us_data = mem; 3175 slab->us_flags = flags | UMA_SLAB_MALLOC; 3176 slab->us_size = size; 3177 } else { 3178 zone_free_item(slabzone, slab, NULL, SKIP_NONE, 3179 ZFREE_STATFAIL | ZFREE_STATFREE); 3180 } 3181 3182 return (mem); 3183 } 3184 3185 void 3186 uma_large_free(uma_slab_t slab) 3187 { 3188 vsetobj((vm_offset_t)slab->us_data, kmem_object); 3189 page_free(slab->us_data, slab->us_size, slab->us_flags); 3190 zone_free_item(slabzone, slab, NULL, SKIP_NONE, ZFREE_STATFREE); 3191 } 3192 3193 void 3194 uma_print_stats(void) 3195 { 3196 zone_foreach(uma_print_zone); 3197 } 3198 3199 static void 3200 slab_print(uma_slab_t slab) 3201 { 3202 printf("slab: keg %p, data %p, freecount %d, firstfree %d\n", 3203 slab->us_keg, slab->us_data, slab->us_freecount, 3204 slab->us_firstfree); 3205 } 3206 3207 static void 3208 cache_print(uma_cache_t cache) 3209 { 3210 printf("alloc: %p(%d), free: %p(%d)\n", 3211 cache->uc_allocbucket, 3212 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, 3213 cache->uc_freebucket, 3214 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0); 3215 } 3216 3217 static void 3218 uma_print_keg(uma_keg_t keg) 3219 { 3220 uma_slab_t slab; 3221 3222 printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d " 3223 "out %d free %d limit %d\n", 3224 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags, 3225 keg->uk_ipers, keg->uk_ppera, 3226 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free, 3227 (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers); 3228 printf("Part slabs:\n"); 3229 LIST_FOREACH(slab, &keg->uk_part_slab, us_link) 3230 slab_print(slab); 3231 printf("Free slabs:\n"); 3232 LIST_FOREACH(slab, &keg->uk_free_slab, us_link) 3233 slab_print(slab); 3234 printf("Full slabs:\n"); 3235 LIST_FOREACH(slab, &keg->uk_full_slab, us_link) 3236 slab_print(slab); 3237 } 3238 3239 void 3240 uma_print_zone(uma_zone_t zone) 3241 { 3242 uma_cache_t cache; 3243 uma_klink_t kl; 3244 int i; 3245 3246 printf("zone: %s(%p) size %d flags %#x\n", 3247 zone->uz_name, zone, zone->uz_size, zone->uz_flags); 3248 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) 3249 uma_print_keg(kl->kl_keg); 3250 CPU_FOREACH(i) { 3251 cache = &zone->uz_cpu[i]; 3252 printf("CPU %d Cache:\n", i); 3253 cache_print(cache); 3254 } 3255 } 3256 3257 #ifdef DDB 3258 /* 3259 * Generate statistics across both the zone and its per-cpu cache's. Return 3260 * desired statistics if the pointer is non-NULL for that statistic. 3261 * 3262 * Note: does not update the zone statistics, as it can't safely clear the 3263 * per-CPU cache statistic. 3264 * 3265 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't 3266 * safe from off-CPU; we should modify the caches to track this information 3267 * directly so that we don't have to. 3268 */ 3269 static void 3270 uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp, 3271 uint64_t *freesp, uint64_t *sleepsp) 3272 { 3273 uma_cache_t cache; 3274 uint64_t allocs, frees, sleeps; 3275 int cachefree, cpu; 3276 3277 allocs = frees = sleeps = 0; 3278 cachefree = 0; 3279 CPU_FOREACH(cpu) { 3280 cache = &z->uz_cpu[cpu]; 3281 if (cache->uc_allocbucket != NULL) 3282 cachefree += cache->uc_allocbucket->ub_cnt; 3283 if (cache->uc_freebucket != NULL) 3284 cachefree += cache->uc_freebucket->ub_cnt; 3285 allocs += cache->uc_allocs; 3286 frees += cache->uc_frees; 3287 } 3288 allocs += z->uz_allocs; 3289 frees += z->uz_frees; 3290 sleeps += z->uz_sleeps; 3291 if (cachefreep != NULL) 3292 *cachefreep = cachefree; 3293 if (allocsp != NULL) 3294 *allocsp = allocs; 3295 if (freesp != NULL) 3296 *freesp = frees; 3297 if (sleepsp != NULL) 3298 *sleepsp = sleeps; 3299 } 3300 #endif /* DDB */ 3301 3302 static int 3303 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 3304 { 3305 uma_keg_t kz; 3306 uma_zone_t z; 3307 int count; 3308 3309 count = 0; 3310 mtx_lock(&uma_mtx); 3311 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3312 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3313 count++; 3314 } 3315 mtx_unlock(&uma_mtx); 3316 return (sysctl_handle_int(oidp, &count, 0, req)); 3317 } 3318 3319 static int 3320 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 3321 { 3322 struct uma_stream_header ush; 3323 struct uma_type_header uth; 3324 struct uma_percpu_stat ups; 3325 uma_bucket_t bucket; 3326 struct sbuf sbuf; 3327 uma_cache_t cache; 3328 uma_klink_t kl; 3329 uma_keg_t kz; 3330 uma_zone_t z; 3331 uma_keg_t k; 3332 int count, error, i; 3333 3334 error = sysctl_wire_old_buffer(req, 0); 3335 if (error != 0) 3336 return (error); 3337 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 3338 3339 count = 0; 3340 mtx_lock(&uma_mtx); 3341 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3342 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3343 count++; 3344 } 3345 3346 /* 3347 * Insert stream header. 3348 */ 3349 bzero(&ush, sizeof(ush)); 3350 ush.ush_version = UMA_STREAM_VERSION; 3351 ush.ush_maxcpus = (mp_maxid + 1); 3352 ush.ush_count = count; 3353 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 3354 3355 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3356 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3357 bzero(&uth, sizeof(uth)); 3358 ZONE_LOCK(z); 3359 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 3360 uth.uth_align = kz->uk_align; 3361 uth.uth_size = kz->uk_size; 3362 uth.uth_rsize = kz->uk_rsize; 3363 LIST_FOREACH(kl, &z->uz_kegs, kl_link) { 3364 k = kl->kl_keg; 3365 uth.uth_maxpages += k->uk_maxpages; 3366 uth.uth_pages += k->uk_pages; 3367 uth.uth_keg_free += k->uk_free; 3368 uth.uth_limit = (k->uk_maxpages / k->uk_ppera) 3369 * k->uk_ipers; 3370 } 3371 3372 /* 3373 * A zone is secondary is it is not the first entry 3374 * on the keg's zone list. 3375 */ 3376 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 3377 (LIST_FIRST(&kz->uk_zones) != z)) 3378 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 3379 3380 LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link) 3381 uth.uth_zone_free += bucket->ub_cnt; 3382 uth.uth_allocs = z->uz_allocs; 3383 uth.uth_frees = z->uz_frees; 3384 uth.uth_fails = z->uz_fails; 3385 uth.uth_sleeps = z->uz_sleeps; 3386 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 3387 /* 3388 * While it is not normally safe to access the cache 3389 * bucket pointers while not on the CPU that owns the 3390 * cache, we only allow the pointers to be exchanged 3391 * without the zone lock held, not invalidated, so 3392 * accept the possible race associated with bucket 3393 * exchange during monitoring. 3394 */ 3395 for (i = 0; i < (mp_maxid + 1); i++) { 3396 bzero(&ups, sizeof(ups)); 3397 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) 3398 goto skip; 3399 if (CPU_ABSENT(i)) 3400 goto skip; 3401 cache = &z->uz_cpu[i]; 3402 if (cache->uc_allocbucket != NULL) 3403 ups.ups_cache_free += 3404 cache->uc_allocbucket->ub_cnt; 3405 if (cache->uc_freebucket != NULL) 3406 ups.ups_cache_free += 3407 cache->uc_freebucket->ub_cnt; 3408 ups.ups_allocs = cache->uc_allocs; 3409 ups.ups_frees = cache->uc_frees; 3410 skip: 3411 (void)sbuf_bcat(&sbuf, &ups, sizeof(ups)); 3412 } 3413 ZONE_UNLOCK(z); 3414 } 3415 } 3416 mtx_unlock(&uma_mtx); 3417 error = sbuf_finish(&sbuf); 3418 sbuf_delete(&sbuf); 3419 return (error); 3420 } 3421 3422 #ifdef DDB 3423 DB_SHOW_COMMAND(uma, db_show_uma) 3424 { 3425 uint64_t allocs, frees, sleeps; 3426 uma_bucket_t bucket; 3427 uma_keg_t kz; 3428 uma_zone_t z; 3429 int cachefree; 3430 3431 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 3432 "Requests", "Sleeps"); 3433 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3434 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3435 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 3436 allocs = z->uz_allocs; 3437 frees = z->uz_frees; 3438 sleeps = z->uz_sleeps; 3439 cachefree = 0; 3440 } else 3441 uma_zone_sumstat(z, &cachefree, &allocs, 3442 &frees, &sleeps); 3443 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 3444 (LIST_FIRST(&kz->uk_zones) != z))) 3445 cachefree += kz->uk_free; 3446 LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link) 3447 cachefree += bucket->ub_cnt; 3448 db_printf("%18s %8ju %8jd %8d %12ju %8ju\n", z->uz_name, 3449 (uintmax_t)kz->uk_size, 3450 (intmax_t)(allocs - frees), cachefree, 3451 (uintmax_t)allocs, sleeps); 3452 if (db_pager_quit) 3453 return; 3454 } 3455 } 3456 } 3457 #endif 3458