1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/bitset.h> 62 #include <sys/domainset.h> 63 #include <sys/eventhandler.h> 64 #include <sys/kernel.h> 65 #include <sys/types.h> 66 #include <sys/limits.h> 67 #include <sys/queue.h> 68 #include <sys/malloc.h> 69 #include <sys/ktr.h> 70 #include <sys/lock.h> 71 #include <sys/sysctl.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/random.h> 75 #include <sys/rwlock.h> 76 #include <sys/sbuf.h> 77 #include <sys/sched.h> 78 #include <sys/sleepqueue.h> 79 #include <sys/smp.h> 80 #include <sys/smr.h> 81 #include <sys/taskqueue.h> 82 #include <sys/vmmeter.h> 83 84 #include <vm/vm.h> 85 #include <vm/vm_domainset.h> 86 #include <vm/vm_object.h> 87 #include <vm/vm_page.h> 88 #include <vm/vm_pageout.h> 89 #include <vm/vm_param.h> 90 #include <vm/vm_phys.h> 91 #include <vm/vm_pagequeue.h> 92 #include <vm/vm_map.h> 93 #include <vm/vm_kern.h> 94 #include <vm/vm_extern.h> 95 #include <vm/uma.h> 96 #include <vm/uma_int.h> 97 #include <vm/uma_dbg.h> 98 99 #include <ddb/ddb.h> 100 101 #ifdef DEBUG_MEMGUARD 102 #include <vm/memguard.h> 103 #endif 104 105 #include <machine/md_var.h> 106 107 #ifdef INVARIANTS 108 #define UMA_ALWAYS_CTORDTOR 1 109 #else 110 #define UMA_ALWAYS_CTORDTOR 0 111 #endif 112 113 /* 114 * This is the zone and keg from which all zones are spawned. 115 */ 116 static uma_zone_t kegs; 117 static uma_zone_t zones; 118 119 /* 120 * On INVARIANTS builds, the slab contains a second bitset of the same size, 121 * "dbg_bits", which is laid out immediately after us_free. 122 */ 123 #ifdef INVARIANTS 124 #define SLAB_BITSETS 2 125 #else 126 #define SLAB_BITSETS 1 127 #endif 128 129 /* 130 * These are the two zones from which all offpage uma_slab_ts are allocated. 131 * 132 * One zone is for slab headers that can represent a larger number of items, 133 * making the slabs themselves more efficient, and the other zone is for 134 * headers that are smaller and represent fewer items, making the headers more 135 * efficient. 136 */ 137 #define SLABZONE_SIZE(setsize) \ 138 (sizeof(struct uma_hash_slab) + BITSET_SIZE(setsize) * SLAB_BITSETS) 139 #define SLABZONE0_SETSIZE (PAGE_SIZE / 16) 140 #define SLABZONE1_SETSIZE SLAB_MAX_SETSIZE 141 #define SLABZONE0_SIZE SLABZONE_SIZE(SLABZONE0_SETSIZE) 142 #define SLABZONE1_SIZE SLABZONE_SIZE(SLABZONE1_SETSIZE) 143 static uma_zone_t slabzones[2]; 144 145 /* 146 * The initial hash tables come out of this zone so they can be allocated 147 * prior to malloc coming up. 148 */ 149 static uma_zone_t hashzone; 150 151 /* The boot-time adjusted value for cache line alignment. */ 152 int uma_align_cache = 64 - 1; 153 154 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 155 static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc"); 156 157 /* 158 * Are we allowed to allocate buckets? 159 */ 160 static int bucketdisable = 1; 161 162 /* Linked list of all kegs in the system */ 163 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 164 165 /* Linked list of all cache-only zones in the system */ 166 static LIST_HEAD(,uma_zone) uma_cachezones = 167 LIST_HEAD_INITIALIZER(uma_cachezones); 168 169 /* This RW lock protects the keg list */ 170 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 171 172 /* 173 * First available virual address for boot time allocations. 174 */ 175 static vm_offset_t bootstart; 176 static vm_offset_t bootmem; 177 178 static struct sx uma_reclaim_lock; 179 180 /* 181 * kmem soft limit, initialized by uma_set_limit(). Ensure that early 182 * allocations don't trigger a wakeup of the reclaim thread. 183 */ 184 unsigned long uma_kmem_limit = LONG_MAX; 185 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0, 186 "UMA kernel memory soft limit"); 187 unsigned long uma_kmem_total; 188 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0, 189 "UMA kernel memory usage"); 190 191 /* Is the VM done starting up? */ 192 static enum { 193 BOOT_COLD, 194 BOOT_KVA, 195 BOOT_PCPU, 196 BOOT_RUNNING, 197 BOOT_SHUTDOWN, 198 } booted = BOOT_COLD; 199 200 /* 201 * This is the handle used to schedule events that need to happen 202 * outside of the allocation fast path. 203 */ 204 static struct callout uma_callout; 205 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 206 207 /* 208 * This structure is passed as the zone ctor arg so that I don't have to create 209 * a special allocation function just for zones. 210 */ 211 struct uma_zctor_args { 212 const char *name; 213 size_t size; 214 uma_ctor ctor; 215 uma_dtor dtor; 216 uma_init uminit; 217 uma_fini fini; 218 uma_import import; 219 uma_release release; 220 void *arg; 221 uma_keg_t keg; 222 int align; 223 uint32_t flags; 224 }; 225 226 struct uma_kctor_args { 227 uma_zone_t zone; 228 size_t size; 229 uma_init uminit; 230 uma_fini fini; 231 int align; 232 uint32_t flags; 233 }; 234 235 struct uma_bucket_zone { 236 uma_zone_t ubz_zone; 237 const char *ubz_name; 238 int ubz_entries; /* Number of items it can hold. */ 239 int ubz_maxsize; /* Maximum allocation size per-item. */ 240 }; 241 242 /* 243 * Compute the actual number of bucket entries to pack them in power 244 * of two sizes for more efficient space utilization. 245 */ 246 #define BUCKET_SIZE(n) \ 247 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 248 249 #define BUCKET_MAX BUCKET_SIZE(256) 250 #define BUCKET_MIN 2 251 252 struct uma_bucket_zone bucket_zones[] = { 253 /* Literal bucket sizes. */ 254 { NULL, "2 Bucket", 2, 4096 }, 255 { NULL, "4 Bucket", 4, 3072 }, 256 { NULL, "8 Bucket", 8, 2048 }, 257 { NULL, "16 Bucket", 16, 1024 }, 258 /* Rounded down power of 2 sizes for efficiency. */ 259 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 260 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 261 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 262 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 263 { NULL, NULL, 0} 264 }; 265 266 /* 267 * Flags and enumerations to be passed to internal functions. 268 */ 269 enum zfreeskip { 270 SKIP_NONE = 0, 271 SKIP_CNT = 0x00000001, 272 SKIP_DTOR = 0x00010000, 273 SKIP_FINI = 0x00020000, 274 }; 275 276 /* Prototypes.. */ 277 278 void uma_startup1(vm_offset_t); 279 void uma_startup2(void); 280 281 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 282 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 283 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 284 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 285 static void *contig_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 286 static void page_free(void *, vm_size_t, uint8_t); 287 static void pcpu_page_free(void *, vm_size_t, uint8_t); 288 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int); 289 static void cache_drain(uma_zone_t); 290 static void bucket_drain(uma_zone_t, uma_bucket_t); 291 static void bucket_cache_reclaim(uma_zone_t zone, bool); 292 static int keg_ctor(void *, int, void *, int); 293 static void keg_dtor(void *, int, void *); 294 static int zone_ctor(void *, int, void *, int); 295 static void zone_dtor(void *, int, void *); 296 static inline void item_dtor(uma_zone_t zone, void *item, int size, 297 void *udata, enum zfreeskip skip); 298 static int zero_init(void *, int, int); 299 static void zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 300 int itemdomain, bool ws); 301 static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *); 302 static void zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *), void *); 303 static void zone_timeout(uma_zone_t zone, void *); 304 static int hash_alloc(struct uma_hash *, u_int); 305 static int hash_expand(struct uma_hash *, struct uma_hash *); 306 static void hash_free(struct uma_hash *hash); 307 static void uma_timeout(void *); 308 static void uma_shutdown(void); 309 static void *zone_alloc_item(uma_zone_t, void *, int, int); 310 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 311 static int zone_alloc_limit(uma_zone_t zone, int count, int flags); 312 static void zone_free_limit(uma_zone_t zone, int count); 313 static void bucket_enable(void); 314 static void bucket_init(void); 315 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 316 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 317 static void bucket_zone_drain(void); 318 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int); 319 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 320 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item); 321 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 322 uma_fini fini, int align, uint32_t flags); 323 static int zone_import(void *, void **, int, int, int); 324 static void zone_release(void *, void **, int); 325 static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int); 326 static bool cache_free(uma_zone_t, uma_cache_t, void *, void *, int); 327 328 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 329 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 330 static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS); 331 static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS); 332 static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS); 333 static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS); 334 static int sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS); 335 336 static uint64_t uma_zone_get_allocs(uma_zone_t zone); 337 338 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 339 "Memory allocation debugging"); 340 341 #ifdef INVARIANTS 342 static uint64_t uma_keg_get_allocs(uma_keg_t zone); 343 static inline struct noslabbits *slab_dbg_bits(uma_slab_t slab, uma_keg_t keg); 344 345 static bool uma_dbg_kskip(uma_keg_t keg, void *mem); 346 static bool uma_dbg_zskip(uma_zone_t zone, void *mem); 347 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 348 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 349 350 static u_int dbg_divisor = 1; 351 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor, 352 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0, 353 "Debug & thrash every this item in memory allocator"); 354 355 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER; 356 static counter_u64_t uma_skip_cnt = EARLY_COUNTER; 357 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD, 358 &uma_dbg_cnt, "memory items debugged"); 359 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD, 360 &uma_skip_cnt, "memory items skipped, not debugged"); 361 #endif 362 363 SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 364 "Universal Memory Allocator"); 365 366 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_INT, 367 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 368 369 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_STRUCT, 370 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 371 372 static int zone_warnings = 1; 373 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 374 "Warn when UMA zones becomes full"); 375 376 static int multipage_slabs = 1; 377 TUNABLE_INT("vm.debug.uma_multipage_slabs", &multipage_slabs); 378 SYSCTL_INT(_vm_debug, OID_AUTO, uma_multipage_slabs, 379 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &multipage_slabs, 0, 380 "UMA may choose larger slab sizes for better efficiency"); 381 382 /* 383 * Select the slab zone for an offpage slab with the given maximum item count. 384 */ 385 static inline uma_zone_t 386 slabzone(int ipers) 387 { 388 389 return (slabzones[ipers > SLABZONE0_SETSIZE]); 390 } 391 392 /* 393 * This routine checks to see whether or not it's safe to enable buckets. 394 */ 395 static void 396 bucket_enable(void) 397 { 398 399 KASSERT(booted >= BOOT_KVA, ("Bucket enable before init")); 400 bucketdisable = vm_page_count_min(); 401 } 402 403 /* 404 * Initialize bucket_zones, the array of zones of buckets of various sizes. 405 * 406 * For each zone, calculate the memory required for each bucket, consisting 407 * of the header and an array of pointers. 408 */ 409 static void 410 bucket_init(void) 411 { 412 struct uma_bucket_zone *ubz; 413 int size; 414 415 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 416 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 417 size += sizeof(void *) * ubz->ubz_entries; 418 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 419 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 420 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | 421 UMA_ZONE_FIRSTTOUCH); 422 } 423 } 424 425 /* 426 * Given a desired number of entries for a bucket, return the zone from which 427 * to allocate the bucket. 428 */ 429 static struct uma_bucket_zone * 430 bucket_zone_lookup(int entries) 431 { 432 struct uma_bucket_zone *ubz; 433 434 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 435 if (ubz->ubz_entries >= entries) 436 return (ubz); 437 ubz--; 438 return (ubz); 439 } 440 441 static struct uma_bucket_zone * 442 bucket_zone_max(uma_zone_t zone, int nitems) 443 { 444 struct uma_bucket_zone *ubz; 445 int bpcpu; 446 447 bpcpu = 2; 448 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 449 /* Count the cross-domain bucket. */ 450 bpcpu++; 451 452 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 453 if (ubz->ubz_entries * bpcpu * mp_ncpus > nitems) 454 break; 455 if (ubz == &bucket_zones[0]) 456 ubz = NULL; 457 else 458 ubz--; 459 return (ubz); 460 } 461 462 static int 463 bucket_select(int size) 464 { 465 struct uma_bucket_zone *ubz; 466 467 ubz = &bucket_zones[0]; 468 if (size > ubz->ubz_maxsize) 469 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 470 471 for (; ubz->ubz_entries != 0; ubz++) 472 if (ubz->ubz_maxsize < size) 473 break; 474 ubz--; 475 return (ubz->ubz_entries); 476 } 477 478 static uma_bucket_t 479 bucket_alloc(uma_zone_t zone, void *udata, int flags) 480 { 481 struct uma_bucket_zone *ubz; 482 uma_bucket_t bucket; 483 484 /* 485 * Don't allocate buckets early in boot. 486 */ 487 if (__predict_false(booted < BOOT_KVA)) 488 return (NULL); 489 490 /* 491 * To limit bucket recursion we store the original zone flags 492 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 493 * NOVM flag to persist even through deep recursions. We also 494 * store ZFLAG_BUCKET once we have recursed attempting to allocate 495 * a bucket for a bucket zone so we do not allow infinite bucket 496 * recursion. This cookie will even persist to frees of unused 497 * buckets via the allocation path or bucket allocations in the 498 * free path. 499 */ 500 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 501 udata = (void *)(uintptr_t)zone->uz_flags; 502 else { 503 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 504 return (NULL); 505 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 506 } 507 if (((uintptr_t)udata & UMA_ZONE_VM) != 0) 508 flags |= M_NOVM; 509 ubz = bucket_zone_lookup(zone->uz_bucket_size); 510 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 511 ubz++; 512 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 513 if (bucket) { 514 #ifdef INVARIANTS 515 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 516 #endif 517 bucket->ub_cnt = 0; 518 bucket->ub_entries = ubz->ubz_entries; 519 bucket->ub_seq = SMR_SEQ_INVALID; 520 CTR3(KTR_UMA, "bucket_alloc: zone %s(%p) allocated bucket %p", 521 zone->uz_name, zone, bucket); 522 } 523 524 return (bucket); 525 } 526 527 static void 528 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 529 { 530 struct uma_bucket_zone *ubz; 531 532 if (bucket->ub_cnt != 0) 533 bucket_drain(zone, bucket); 534 535 KASSERT(bucket->ub_cnt == 0, 536 ("bucket_free: Freeing a non free bucket.")); 537 KASSERT(bucket->ub_seq == SMR_SEQ_INVALID, 538 ("bucket_free: Freeing an SMR bucket.")); 539 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 540 udata = (void *)(uintptr_t)zone->uz_flags; 541 ubz = bucket_zone_lookup(bucket->ub_entries); 542 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 543 } 544 545 static void 546 bucket_zone_drain(void) 547 { 548 struct uma_bucket_zone *ubz; 549 550 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 551 uma_zone_reclaim(ubz->ubz_zone, UMA_RECLAIM_DRAIN); 552 } 553 554 /* 555 * Acquire the domain lock and record contention. 556 */ 557 static uma_zone_domain_t 558 zone_domain_lock(uma_zone_t zone, int domain) 559 { 560 uma_zone_domain_t zdom; 561 bool lockfail; 562 563 zdom = ZDOM_GET(zone, domain); 564 lockfail = false; 565 if (ZDOM_OWNED(zdom)) 566 lockfail = true; 567 ZDOM_LOCK(zdom); 568 /* This is unsynchronized. The counter does not need to be precise. */ 569 if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max) 570 zone->uz_bucket_size++; 571 return (zdom); 572 } 573 574 /* 575 * Search for the domain with the least cached items and return it if it 576 * is out of balance with the preferred domain. 577 */ 578 static __noinline int 579 zone_domain_lowest(uma_zone_t zone, int pref) 580 { 581 long least, nitems, prefitems; 582 int domain; 583 int i; 584 585 prefitems = least = LONG_MAX; 586 domain = 0; 587 for (i = 0; i < vm_ndomains; i++) { 588 nitems = ZDOM_GET(zone, i)->uzd_nitems; 589 if (nitems < least) { 590 domain = i; 591 least = nitems; 592 } 593 if (domain == pref) 594 prefitems = nitems; 595 } 596 if (prefitems < least * 2) 597 return (pref); 598 599 return (domain); 600 } 601 602 /* 603 * Search for the domain with the most cached items and return it or the 604 * preferred domain if it has enough to proceed. 605 */ 606 static __noinline int 607 zone_domain_highest(uma_zone_t zone, int pref) 608 { 609 long most, nitems; 610 int domain; 611 int i; 612 613 if (ZDOM_GET(zone, pref)->uzd_nitems > BUCKET_MAX) 614 return (pref); 615 616 most = 0; 617 domain = 0; 618 for (i = 0; i < vm_ndomains; i++) { 619 nitems = ZDOM_GET(zone, i)->uzd_nitems; 620 if (nitems > most) { 621 domain = i; 622 most = nitems; 623 } 624 } 625 626 return (domain); 627 } 628 629 /* 630 * Safely subtract cnt from imax. 631 */ 632 static void 633 zone_domain_imax_sub(uma_zone_domain_t zdom, int cnt) 634 { 635 long new; 636 long old; 637 638 old = zdom->uzd_imax; 639 do { 640 if (old <= cnt) 641 new = 0; 642 else 643 new = old - cnt; 644 } while (atomic_fcmpset_long(&zdom->uzd_imax, &old, new) == 0); 645 } 646 647 /* 648 * Set the maximum imax value. 649 */ 650 static void 651 zone_domain_imax_set(uma_zone_domain_t zdom, int nitems) 652 { 653 long old; 654 655 old = zdom->uzd_imax; 656 do { 657 if (old >= nitems) 658 break; 659 } while (atomic_fcmpset_long(&zdom->uzd_imax, &old, nitems) == 0); 660 } 661 662 /* 663 * Attempt to satisfy an allocation by retrieving a full bucket from one of the 664 * zone's caches. If a bucket is found the zone is not locked on return. 665 */ 666 static uma_bucket_t 667 zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom, bool reclaim) 668 { 669 uma_bucket_t bucket; 670 int i; 671 bool dtor = false; 672 673 ZDOM_LOCK_ASSERT(zdom); 674 675 if ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) == NULL) 676 return (NULL); 677 678 /* SMR Buckets can not be re-used until readers expire. */ 679 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 680 bucket->ub_seq != SMR_SEQ_INVALID) { 681 if (!smr_poll(zone->uz_smr, bucket->ub_seq, false)) 682 return (NULL); 683 bucket->ub_seq = SMR_SEQ_INVALID; 684 dtor = (zone->uz_dtor != NULL) || UMA_ALWAYS_CTORDTOR; 685 if (STAILQ_NEXT(bucket, ub_link) != NULL) 686 zdom->uzd_seq = STAILQ_NEXT(bucket, ub_link)->ub_seq; 687 } 688 MPASS(zdom->uzd_nitems >= bucket->ub_cnt); 689 STAILQ_REMOVE_HEAD(&zdom->uzd_buckets, ub_link); 690 zdom->uzd_nitems -= bucket->ub_cnt; 691 692 /* 693 * Shift the bounds of the current WSS interval to avoid 694 * perturbing the estimate. 695 */ 696 if (reclaim) { 697 zdom->uzd_imin -= lmin(zdom->uzd_imin, bucket->ub_cnt); 698 zone_domain_imax_sub(zdom, bucket->ub_cnt); 699 } else if (zdom->uzd_imin > zdom->uzd_nitems) 700 zdom->uzd_imin = zdom->uzd_nitems; 701 702 ZDOM_UNLOCK(zdom); 703 if (dtor) 704 for (i = 0; i < bucket->ub_cnt; i++) 705 item_dtor(zone, bucket->ub_bucket[i], zone->uz_size, 706 NULL, SKIP_NONE); 707 708 return (bucket); 709 } 710 711 /* 712 * Insert a full bucket into the specified cache. The "ws" parameter indicates 713 * whether the bucket's contents should be counted as part of the zone's working 714 * set. The bucket may be freed if it exceeds the bucket limit. 715 */ 716 static void 717 zone_put_bucket(uma_zone_t zone, int domain, uma_bucket_t bucket, void *udata, 718 const bool ws) 719 { 720 uma_zone_domain_t zdom; 721 722 /* We don't cache empty buckets. This can happen after a reclaim. */ 723 if (bucket->ub_cnt == 0) 724 goto out; 725 zdom = zone_domain_lock(zone, domain); 726 727 /* 728 * Conditionally set the maximum number of items. 729 */ 730 zdom->uzd_nitems += bucket->ub_cnt; 731 if (__predict_true(zdom->uzd_nitems < zone->uz_bucket_max)) { 732 if (ws) 733 zone_domain_imax_set(zdom, zdom->uzd_nitems); 734 if (STAILQ_EMPTY(&zdom->uzd_buckets)) 735 zdom->uzd_seq = bucket->ub_seq; 736 STAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link); 737 ZDOM_UNLOCK(zdom); 738 return; 739 } 740 zdom->uzd_nitems -= bucket->ub_cnt; 741 ZDOM_UNLOCK(zdom); 742 out: 743 bucket_free(zone, bucket, udata); 744 } 745 746 /* Pops an item out of a per-cpu cache bucket. */ 747 static inline void * 748 cache_bucket_pop(uma_cache_t cache, uma_cache_bucket_t bucket) 749 { 750 void *item; 751 752 CRITICAL_ASSERT(curthread); 753 754 bucket->ucb_cnt--; 755 item = bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt]; 756 #ifdef INVARIANTS 757 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = NULL; 758 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 759 #endif 760 cache->uc_allocs++; 761 762 return (item); 763 } 764 765 /* Pushes an item into a per-cpu cache bucket. */ 766 static inline void 767 cache_bucket_push(uma_cache_t cache, uma_cache_bucket_t bucket, void *item) 768 { 769 770 CRITICAL_ASSERT(curthread); 771 KASSERT(bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] == NULL, 772 ("uma_zfree: Freeing to non free bucket index.")); 773 774 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = item; 775 bucket->ucb_cnt++; 776 cache->uc_frees++; 777 } 778 779 /* 780 * Unload a UMA bucket from a per-cpu cache. 781 */ 782 static inline uma_bucket_t 783 cache_bucket_unload(uma_cache_bucket_t bucket) 784 { 785 uma_bucket_t b; 786 787 b = bucket->ucb_bucket; 788 if (b != NULL) { 789 MPASS(b->ub_entries == bucket->ucb_entries); 790 b->ub_cnt = bucket->ucb_cnt; 791 bucket->ucb_bucket = NULL; 792 bucket->ucb_entries = bucket->ucb_cnt = 0; 793 } 794 795 return (b); 796 } 797 798 static inline uma_bucket_t 799 cache_bucket_unload_alloc(uma_cache_t cache) 800 { 801 802 return (cache_bucket_unload(&cache->uc_allocbucket)); 803 } 804 805 static inline uma_bucket_t 806 cache_bucket_unload_free(uma_cache_t cache) 807 { 808 809 return (cache_bucket_unload(&cache->uc_freebucket)); 810 } 811 812 static inline uma_bucket_t 813 cache_bucket_unload_cross(uma_cache_t cache) 814 { 815 816 return (cache_bucket_unload(&cache->uc_crossbucket)); 817 } 818 819 /* 820 * Load a bucket into a per-cpu cache bucket. 821 */ 822 static inline void 823 cache_bucket_load(uma_cache_bucket_t bucket, uma_bucket_t b) 824 { 825 826 CRITICAL_ASSERT(curthread); 827 MPASS(bucket->ucb_bucket == NULL); 828 MPASS(b->ub_seq == SMR_SEQ_INVALID); 829 830 bucket->ucb_bucket = b; 831 bucket->ucb_cnt = b->ub_cnt; 832 bucket->ucb_entries = b->ub_entries; 833 } 834 835 static inline void 836 cache_bucket_load_alloc(uma_cache_t cache, uma_bucket_t b) 837 { 838 839 cache_bucket_load(&cache->uc_allocbucket, b); 840 } 841 842 static inline void 843 cache_bucket_load_free(uma_cache_t cache, uma_bucket_t b) 844 { 845 846 cache_bucket_load(&cache->uc_freebucket, b); 847 } 848 849 #ifdef NUMA 850 static inline void 851 cache_bucket_load_cross(uma_cache_t cache, uma_bucket_t b) 852 { 853 854 cache_bucket_load(&cache->uc_crossbucket, b); 855 } 856 #endif 857 858 /* 859 * Copy and preserve ucb_spare. 860 */ 861 static inline void 862 cache_bucket_copy(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 863 { 864 865 b1->ucb_bucket = b2->ucb_bucket; 866 b1->ucb_entries = b2->ucb_entries; 867 b1->ucb_cnt = b2->ucb_cnt; 868 } 869 870 /* 871 * Swap two cache buckets. 872 */ 873 static inline void 874 cache_bucket_swap(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 875 { 876 struct uma_cache_bucket b3; 877 878 CRITICAL_ASSERT(curthread); 879 880 cache_bucket_copy(&b3, b1); 881 cache_bucket_copy(b1, b2); 882 cache_bucket_copy(b2, &b3); 883 } 884 885 /* 886 * Attempt to fetch a bucket from a zone on behalf of the current cpu cache. 887 */ 888 static uma_bucket_t 889 cache_fetch_bucket(uma_zone_t zone, uma_cache_t cache, int domain) 890 { 891 uma_zone_domain_t zdom; 892 uma_bucket_t bucket; 893 894 /* 895 * Avoid the lock if possible. 896 */ 897 zdom = ZDOM_GET(zone, domain); 898 if (zdom->uzd_nitems == 0) 899 return (NULL); 900 901 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) != 0 && 902 !smr_poll(zone->uz_smr, zdom->uzd_seq, false)) 903 return (NULL); 904 905 /* 906 * Check the zone's cache of buckets. 907 */ 908 zdom = zone_domain_lock(zone, domain); 909 if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) { 910 KASSERT(bucket->ub_cnt != 0, 911 ("cache_fetch_bucket: Returning an empty bucket.")); 912 return (bucket); 913 } 914 ZDOM_UNLOCK(zdom); 915 916 return (NULL); 917 } 918 919 static void 920 zone_log_warning(uma_zone_t zone) 921 { 922 static const struct timeval warninterval = { 300, 0 }; 923 924 if (!zone_warnings || zone->uz_warning == NULL) 925 return; 926 927 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 928 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 929 } 930 931 static inline void 932 zone_maxaction(uma_zone_t zone) 933 { 934 935 if (zone->uz_maxaction.ta_func != NULL) 936 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 937 } 938 939 /* 940 * Routine called by timeout which is used to fire off some time interval 941 * based calculations. (stats, hash size, etc.) 942 * 943 * Arguments: 944 * arg Unused 945 * 946 * Returns: 947 * Nothing 948 */ 949 static void 950 uma_timeout(void *unused) 951 { 952 bucket_enable(); 953 zone_foreach(zone_timeout, NULL); 954 955 /* Reschedule this event */ 956 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 957 } 958 959 /* 960 * Update the working set size estimate for the zone's bucket cache. 961 * The constants chosen here are somewhat arbitrary. With an update period of 962 * 20s (UMA_TIMEOUT), this estimate is dominated by zone activity over the 963 * last 100s. 964 */ 965 static void 966 zone_domain_update_wss(uma_zone_domain_t zdom) 967 { 968 long wss; 969 970 ZDOM_LOCK(zdom); 971 MPASS(zdom->uzd_imax >= zdom->uzd_imin); 972 wss = zdom->uzd_imax - zdom->uzd_imin; 973 zdom->uzd_imax = zdom->uzd_imin = zdom->uzd_nitems; 974 zdom->uzd_wss = (4 * wss + zdom->uzd_wss) / 5; 975 ZDOM_UNLOCK(zdom); 976 } 977 978 /* 979 * Routine to perform timeout driven calculations. This expands the 980 * hashes and does per cpu statistics aggregation. 981 * 982 * Returns nothing. 983 */ 984 static void 985 zone_timeout(uma_zone_t zone, void *unused) 986 { 987 uma_keg_t keg; 988 u_int slabs, pages; 989 990 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 991 goto update_wss; 992 993 keg = zone->uz_keg; 994 995 /* 996 * Hash zones are non-numa by definition so the first domain 997 * is the only one present. 998 */ 999 KEG_LOCK(keg, 0); 1000 pages = keg->uk_domain[0].ud_pages; 1001 1002 /* 1003 * Expand the keg hash table. 1004 * 1005 * This is done if the number of slabs is larger than the hash size. 1006 * What I'm trying to do here is completely reduce collisions. This 1007 * may be a little aggressive. Should I allow for two collisions max? 1008 */ 1009 if ((slabs = pages / keg->uk_ppera) > keg->uk_hash.uh_hashsize) { 1010 struct uma_hash newhash; 1011 struct uma_hash oldhash; 1012 int ret; 1013 1014 /* 1015 * This is so involved because allocating and freeing 1016 * while the keg lock is held will lead to deadlock. 1017 * I have to do everything in stages and check for 1018 * races. 1019 */ 1020 KEG_UNLOCK(keg, 0); 1021 ret = hash_alloc(&newhash, 1 << fls(slabs)); 1022 KEG_LOCK(keg, 0); 1023 if (ret) { 1024 if (hash_expand(&keg->uk_hash, &newhash)) { 1025 oldhash = keg->uk_hash; 1026 keg->uk_hash = newhash; 1027 } else 1028 oldhash = newhash; 1029 1030 KEG_UNLOCK(keg, 0); 1031 hash_free(&oldhash); 1032 goto update_wss; 1033 } 1034 } 1035 KEG_UNLOCK(keg, 0); 1036 1037 update_wss: 1038 for (int i = 0; i < vm_ndomains; i++) 1039 zone_domain_update_wss(ZDOM_GET(zone, i)); 1040 } 1041 1042 /* 1043 * Allocate and zero fill the next sized hash table from the appropriate 1044 * backing store. 1045 * 1046 * Arguments: 1047 * hash A new hash structure with the old hash size in uh_hashsize 1048 * 1049 * Returns: 1050 * 1 on success and 0 on failure. 1051 */ 1052 static int 1053 hash_alloc(struct uma_hash *hash, u_int size) 1054 { 1055 size_t alloc; 1056 1057 KASSERT(powerof2(size), ("hash size must be power of 2")); 1058 if (size > UMA_HASH_SIZE_INIT) { 1059 hash->uh_hashsize = size; 1060 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 1061 hash->uh_slab_hash = malloc(alloc, M_UMAHASH, M_NOWAIT); 1062 } else { 1063 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 1064 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 1065 UMA_ANYDOMAIN, M_WAITOK); 1066 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 1067 } 1068 if (hash->uh_slab_hash) { 1069 bzero(hash->uh_slab_hash, alloc); 1070 hash->uh_hashmask = hash->uh_hashsize - 1; 1071 return (1); 1072 } 1073 1074 return (0); 1075 } 1076 1077 /* 1078 * Expands the hash table for HASH zones. This is done from zone_timeout 1079 * to reduce collisions. This must not be done in the regular allocation 1080 * path, otherwise, we can recurse on the vm while allocating pages. 1081 * 1082 * Arguments: 1083 * oldhash The hash you want to expand 1084 * newhash The hash structure for the new table 1085 * 1086 * Returns: 1087 * Nothing 1088 * 1089 * Discussion: 1090 */ 1091 static int 1092 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 1093 { 1094 uma_hash_slab_t slab; 1095 u_int hval; 1096 u_int idx; 1097 1098 if (!newhash->uh_slab_hash) 1099 return (0); 1100 1101 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 1102 return (0); 1103 1104 /* 1105 * I need to investigate hash algorithms for resizing without a 1106 * full rehash. 1107 */ 1108 1109 for (idx = 0; idx < oldhash->uh_hashsize; idx++) 1110 while (!LIST_EMPTY(&oldhash->uh_slab_hash[idx])) { 1111 slab = LIST_FIRST(&oldhash->uh_slab_hash[idx]); 1112 LIST_REMOVE(slab, uhs_hlink); 1113 hval = UMA_HASH(newhash, slab->uhs_data); 1114 LIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 1115 slab, uhs_hlink); 1116 } 1117 1118 return (1); 1119 } 1120 1121 /* 1122 * Free the hash bucket to the appropriate backing store. 1123 * 1124 * Arguments: 1125 * slab_hash The hash bucket we're freeing 1126 * hashsize The number of entries in that hash bucket 1127 * 1128 * Returns: 1129 * Nothing 1130 */ 1131 static void 1132 hash_free(struct uma_hash *hash) 1133 { 1134 if (hash->uh_slab_hash == NULL) 1135 return; 1136 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 1137 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 1138 else 1139 free(hash->uh_slab_hash, M_UMAHASH); 1140 } 1141 1142 /* 1143 * Frees all outstanding items in a bucket 1144 * 1145 * Arguments: 1146 * zone The zone to free to, must be unlocked. 1147 * bucket The free/alloc bucket with items. 1148 * 1149 * Returns: 1150 * Nothing 1151 */ 1152 static void 1153 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 1154 { 1155 int i; 1156 1157 if (bucket->ub_cnt == 0) 1158 return; 1159 1160 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 1161 bucket->ub_seq != SMR_SEQ_INVALID) { 1162 smr_wait(zone->uz_smr, bucket->ub_seq); 1163 bucket->ub_seq = SMR_SEQ_INVALID; 1164 for (i = 0; i < bucket->ub_cnt; i++) 1165 item_dtor(zone, bucket->ub_bucket[i], 1166 zone->uz_size, NULL, SKIP_NONE); 1167 } 1168 if (zone->uz_fini) 1169 for (i = 0; i < bucket->ub_cnt; i++) 1170 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 1171 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 1172 if (zone->uz_max_items > 0) 1173 zone_free_limit(zone, bucket->ub_cnt); 1174 #ifdef INVARIANTS 1175 bzero(bucket->ub_bucket, sizeof(void *) * bucket->ub_cnt); 1176 #endif 1177 bucket->ub_cnt = 0; 1178 } 1179 1180 /* 1181 * Drains the per cpu caches for a zone. 1182 * 1183 * NOTE: This may only be called while the zone is being torn down, and not 1184 * during normal operation. This is necessary in order that we do not have 1185 * to migrate CPUs to drain the per-CPU caches. 1186 * 1187 * Arguments: 1188 * zone The zone to drain, must be unlocked. 1189 * 1190 * Returns: 1191 * Nothing 1192 */ 1193 static void 1194 cache_drain(uma_zone_t zone) 1195 { 1196 uma_cache_t cache; 1197 uma_bucket_t bucket; 1198 smr_seq_t seq; 1199 int cpu; 1200 1201 /* 1202 * XXX: It is safe to not lock the per-CPU caches, because we're 1203 * tearing down the zone anyway. I.e., there will be no further use 1204 * of the caches at this point. 1205 * 1206 * XXX: It would good to be able to assert that the zone is being 1207 * torn down to prevent improper use of cache_drain(). 1208 */ 1209 seq = SMR_SEQ_INVALID; 1210 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 1211 seq = smr_advance(zone->uz_smr); 1212 CPU_FOREACH(cpu) { 1213 cache = &zone->uz_cpu[cpu]; 1214 bucket = cache_bucket_unload_alloc(cache); 1215 if (bucket != NULL) 1216 bucket_free(zone, bucket, NULL); 1217 bucket = cache_bucket_unload_free(cache); 1218 if (bucket != NULL) { 1219 bucket->ub_seq = seq; 1220 bucket_free(zone, bucket, NULL); 1221 } 1222 bucket = cache_bucket_unload_cross(cache); 1223 if (bucket != NULL) { 1224 bucket->ub_seq = seq; 1225 bucket_free(zone, bucket, NULL); 1226 } 1227 } 1228 bucket_cache_reclaim(zone, true); 1229 } 1230 1231 static void 1232 cache_shrink(uma_zone_t zone, void *unused) 1233 { 1234 1235 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1236 return; 1237 1238 zone->uz_bucket_size = 1239 (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2; 1240 } 1241 1242 static void 1243 cache_drain_safe_cpu(uma_zone_t zone, void *unused) 1244 { 1245 uma_cache_t cache; 1246 uma_bucket_t b1, b2, b3; 1247 int domain; 1248 1249 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1250 return; 1251 1252 b1 = b2 = b3 = NULL; 1253 critical_enter(); 1254 cache = &zone->uz_cpu[curcpu]; 1255 domain = PCPU_GET(domain); 1256 b1 = cache_bucket_unload_alloc(cache); 1257 1258 /* 1259 * Don't flush SMR zone buckets. This leaves the zone without a 1260 * bucket and forces every free to synchronize(). 1261 */ 1262 if ((zone->uz_flags & UMA_ZONE_SMR) == 0) { 1263 b2 = cache_bucket_unload_free(cache); 1264 b3 = cache_bucket_unload_cross(cache); 1265 } 1266 critical_exit(); 1267 1268 if (b1 != NULL) 1269 zone_free_bucket(zone, b1, NULL, domain, false); 1270 if (b2 != NULL) 1271 zone_free_bucket(zone, b2, NULL, domain, false); 1272 if (b3 != NULL) { 1273 /* Adjust the domain so it goes to zone_free_cross. */ 1274 domain = (domain + 1) % vm_ndomains; 1275 zone_free_bucket(zone, b3, NULL, domain, false); 1276 } 1277 } 1278 1279 /* 1280 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 1281 * This is an expensive call because it needs to bind to all CPUs 1282 * one by one and enter a critical section on each of them in order 1283 * to safely access their cache buckets. 1284 * Zone lock must not be held on call this function. 1285 */ 1286 static void 1287 pcpu_cache_drain_safe(uma_zone_t zone) 1288 { 1289 int cpu; 1290 1291 /* 1292 * Polite bucket sizes shrinking was not enough, shrink aggressively. 1293 */ 1294 if (zone) 1295 cache_shrink(zone, NULL); 1296 else 1297 zone_foreach(cache_shrink, NULL); 1298 1299 CPU_FOREACH(cpu) { 1300 thread_lock(curthread); 1301 sched_bind(curthread, cpu); 1302 thread_unlock(curthread); 1303 1304 if (zone) 1305 cache_drain_safe_cpu(zone, NULL); 1306 else 1307 zone_foreach(cache_drain_safe_cpu, NULL); 1308 } 1309 thread_lock(curthread); 1310 sched_unbind(curthread); 1311 thread_unlock(curthread); 1312 } 1313 1314 /* 1315 * Reclaim cached buckets from a zone. All buckets are reclaimed if the caller 1316 * requested a drain, otherwise the per-domain caches are trimmed to either 1317 * estimated working set size. 1318 */ 1319 static void 1320 bucket_cache_reclaim(uma_zone_t zone, bool drain) 1321 { 1322 uma_zone_domain_t zdom; 1323 uma_bucket_t bucket; 1324 long target; 1325 int i; 1326 1327 /* 1328 * Shrink the zone bucket size to ensure that the per-CPU caches 1329 * don't grow too large. 1330 */ 1331 if (zone->uz_bucket_size > zone->uz_bucket_size_min) 1332 zone->uz_bucket_size--; 1333 1334 for (i = 0; i < vm_ndomains; i++) { 1335 /* 1336 * The cross bucket is partially filled and not part of 1337 * the item count. Reclaim it individually here. 1338 */ 1339 zdom = ZDOM_GET(zone, i); 1340 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 || drain) { 1341 ZONE_CROSS_LOCK(zone); 1342 bucket = zdom->uzd_cross; 1343 zdom->uzd_cross = NULL; 1344 ZONE_CROSS_UNLOCK(zone); 1345 if (bucket != NULL) 1346 bucket_free(zone, bucket, NULL); 1347 } 1348 1349 /* 1350 * If we were asked to drain the zone, we are done only once 1351 * this bucket cache is empty. Otherwise, we reclaim items in 1352 * excess of the zone's estimated working set size. If the 1353 * difference nitems - imin is larger than the WSS estimate, 1354 * then the estimate will grow at the end of this interval and 1355 * we ignore the historical average. 1356 */ 1357 ZDOM_LOCK(zdom); 1358 target = drain ? 0 : lmax(zdom->uzd_wss, zdom->uzd_nitems - 1359 zdom->uzd_imin); 1360 while (zdom->uzd_nitems > target) { 1361 bucket = zone_fetch_bucket(zone, zdom, true); 1362 if (bucket == NULL) 1363 break; 1364 bucket_free(zone, bucket, NULL); 1365 ZDOM_LOCK(zdom); 1366 } 1367 ZDOM_UNLOCK(zdom); 1368 } 1369 } 1370 1371 static void 1372 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 1373 { 1374 uint8_t *mem; 1375 int i; 1376 uint8_t flags; 1377 1378 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 1379 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 1380 1381 mem = slab_data(slab, keg); 1382 flags = slab->us_flags; 1383 i = start; 1384 if (keg->uk_fini != NULL) { 1385 for (i--; i > -1; i--) 1386 #ifdef INVARIANTS 1387 /* 1388 * trash_fini implies that dtor was trash_dtor. trash_fini 1389 * would check that memory hasn't been modified since free, 1390 * which executed trash_dtor. 1391 * That's why we need to run uma_dbg_kskip() check here, 1392 * albeit we don't make skip check for other init/fini 1393 * invocations. 1394 */ 1395 if (!uma_dbg_kskip(keg, slab_item(slab, keg, i)) || 1396 keg->uk_fini != trash_fini) 1397 #endif 1398 keg->uk_fini(slab_item(slab, keg, i), keg->uk_size); 1399 } 1400 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) 1401 zone_free_item(slabzone(keg->uk_ipers), slab_tohashslab(slab), 1402 NULL, SKIP_NONE); 1403 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 1404 uma_total_dec(PAGE_SIZE * keg->uk_ppera); 1405 } 1406 1407 /* 1408 * Frees pages from a keg back to the system. This is done on demand from 1409 * the pageout daemon. 1410 * 1411 * Returns nothing. 1412 */ 1413 static void 1414 keg_drain(uma_keg_t keg) 1415 { 1416 struct slabhead freeslabs; 1417 uma_domain_t dom; 1418 uma_slab_t slab, tmp; 1419 int i, n; 1420 1421 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 1422 return; 1423 1424 for (i = 0; i < vm_ndomains; i++) { 1425 CTR4(KTR_UMA, "keg_drain %s(%p) domain %d free items: %u", 1426 keg->uk_name, keg, i, dom->ud_free_items); 1427 dom = &keg->uk_domain[i]; 1428 LIST_INIT(&freeslabs); 1429 1430 KEG_LOCK(keg, i); 1431 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) { 1432 LIST_FOREACH(slab, &dom->ud_free_slab, us_link) 1433 UMA_HASH_REMOVE(&keg->uk_hash, slab); 1434 } 1435 n = dom->ud_free_slabs; 1436 LIST_SWAP(&freeslabs, &dom->ud_free_slab, uma_slab, us_link); 1437 dom->ud_free_slabs = 0; 1438 dom->ud_free_items -= n * keg->uk_ipers; 1439 dom->ud_pages -= n * keg->uk_ppera; 1440 KEG_UNLOCK(keg, i); 1441 1442 LIST_FOREACH_SAFE(slab, &freeslabs, us_link, tmp) 1443 keg_free_slab(keg, slab, keg->uk_ipers); 1444 } 1445 } 1446 1447 static void 1448 zone_reclaim(uma_zone_t zone, int waitok, bool drain) 1449 { 1450 1451 /* 1452 * Set draining to interlock with zone_dtor() so we can release our 1453 * locks as we go. Only dtor() should do a WAITOK call since it 1454 * is the only call that knows the structure will still be available 1455 * when it wakes up. 1456 */ 1457 ZONE_LOCK(zone); 1458 while (zone->uz_flags & UMA_ZFLAG_RECLAIMING) { 1459 if (waitok == M_NOWAIT) 1460 goto out; 1461 msleep(zone, &ZDOM_GET(zone, 0)->uzd_lock, PVM, "zonedrain", 1462 1); 1463 } 1464 zone->uz_flags |= UMA_ZFLAG_RECLAIMING; 1465 ZONE_UNLOCK(zone); 1466 bucket_cache_reclaim(zone, drain); 1467 1468 /* 1469 * The DRAINING flag protects us from being freed while 1470 * we're running. Normally the uma_rwlock would protect us but we 1471 * must be able to release and acquire the right lock for each keg. 1472 */ 1473 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) 1474 keg_drain(zone->uz_keg); 1475 ZONE_LOCK(zone); 1476 zone->uz_flags &= ~UMA_ZFLAG_RECLAIMING; 1477 wakeup(zone); 1478 out: 1479 ZONE_UNLOCK(zone); 1480 } 1481 1482 static void 1483 zone_drain(uma_zone_t zone, void *unused) 1484 { 1485 1486 zone_reclaim(zone, M_NOWAIT, true); 1487 } 1488 1489 static void 1490 zone_trim(uma_zone_t zone, void *unused) 1491 { 1492 1493 zone_reclaim(zone, M_NOWAIT, false); 1494 } 1495 1496 /* 1497 * Allocate a new slab for a keg and inserts it into the partial slab list. 1498 * The keg should be unlocked on entry. If the allocation succeeds it will 1499 * be locked on return. 1500 * 1501 * Arguments: 1502 * flags Wait flags for the item initialization routine 1503 * aflags Wait flags for the slab allocation 1504 * 1505 * Returns: 1506 * The slab that was allocated or NULL if there is no memory and the 1507 * caller specified M_NOWAIT. 1508 */ 1509 static uma_slab_t 1510 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags, 1511 int aflags) 1512 { 1513 uma_domain_t dom; 1514 uma_alloc allocf; 1515 uma_slab_t slab; 1516 unsigned long size; 1517 uint8_t *mem; 1518 uint8_t sflags; 1519 int i; 1520 1521 KASSERT(domain >= 0 && domain < vm_ndomains, 1522 ("keg_alloc_slab: domain %d out of range", domain)); 1523 1524 allocf = keg->uk_allocf; 1525 slab = NULL; 1526 mem = NULL; 1527 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) { 1528 uma_hash_slab_t hslab; 1529 hslab = zone_alloc_item(slabzone(keg->uk_ipers), NULL, 1530 domain, aflags); 1531 if (hslab == NULL) 1532 goto fail; 1533 slab = &hslab->uhs_slab; 1534 } 1535 1536 /* 1537 * This reproduces the old vm_zone behavior of zero filling pages the 1538 * first time they are added to a zone. 1539 * 1540 * Malloced items are zeroed in uma_zalloc. 1541 */ 1542 1543 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1544 aflags |= M_ZERO; 1545 else 1546 aflags &= ~M_ZERO; 1547 1548 if (keg->uk_flags & UMA_ZONE_NODUMP) 1549 aflags |= M_NODUMP; 1550 1551 /* zone is passed for legacy reasons. */ 1552 size = keg->uk_ppera * PAGE_SIZE; 1553 mem = allocf(zone, size, domain, &sflags, aflags); 1554 if (mem == NULL) { 1555 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) 1556 zone_free_item(slabzone(keg->uk_ipers), 1557 slab_tohashslab(slab), NULL, SKIP_NONE); 1558 goto fail; 1559 } 1560 uma_total_inc(size); 1561 1562 /* For HASH zones all pages go to the same uma_domain. */ 1563 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 1564 domain = 0; 1565 1566 /* Point the slab into the allocated memory */ 1567 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) 1568 slab = (uma_slab_t )(mem + keg->uk_pgoff); 1569 else 1570 slab_tohashslab(slab)->uhs_data = mem; 1571 1572 if (keg->uk_flags & UMA_ZFLAG_VTOSLAB) 1573 for (i = 0; i < keg->uk_ppera; i++) 1574 vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE), 1575 zone, slab); 1576 1577 slab->us_freecount = keg->uk_ipers; 1578 slab->us_flags = sflags; 1579 slab->us_domain = domain; 1580 1581 BIT_FILL(keg->uk_ipers, &slab->us_free); 1582 #ifdef INVARIANTS 1583 BIT_ZERO(keg->uk_ipers, slab_dbg_bits(slab, keg)); 1584 #endif 1585 1586 if (keg->uk_init != NULL) { 1587 for (i = 0; i < keg->uk_ipers; i++) 1588 if (keg->uk_init(slab_item(slab, keg, i), 1589 keg->uk_size, flags) != 0) 1590 break; 1591 if (i != keg->uk_ipers) { 1592 keg_free_slab(keg, slab, i); 1593 goto fail; 1594 } 1595 } 1596 KEG_LOCK(keg, domain); 1597 1598 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1599 slab, keg->uk_name, keg); 1600 1601 if (keg->uk_flags & UMA_ZFLAG_HASH) 1602 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1603 1604 /* 1605 * If we got a slab here it's safe to mark it partially used 1606 * and return. We assume that the caller is going to remove 1607 * at least one item. 1608 */ 1609 dom = &keg->uk_domain[domain]; 1610 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 1611 dom->ud_pages += keg->uk_ppera; 1612 dom->ud_free_items += keg->uk_ipers; 1613 1614 return (slab); 1615 1616 fail: 1617 return (NULL); 1618 } 1619 1620 /* 1621 * This function is intended to be used early on in place of page_alloc() so 1622 * that we may use the boot time page cache to satisfy allocations before 1623 * the VM is ready. 1624 */ 1625 static void * 1626 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1627 int wait) 1628 { 1629 vm_paddr_t pa; 1630 vm_page_t m; 1631 void *mem; 1632 int pages; 1633 int i; 1634 1635 pages = howmany(bytes, PAGE_SIZE); 1636 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1637 1638 *pflag = UMA_SLAB_BOOT; 1639 m = vm_page_alloc_contig_domain(NULL, 0, domain, 1640 malloc2vm_flags(wait) | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED, pages, 1641 (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT); 1642 if (m == NULL) 1643 return (NULL); 1644 1645 pa = VM_PAGE_TO_PHYS(m); 1646 for (i = 0; i < pages; i++, pa += PAGE_SIZE) { 1647 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 1648 defined(__riscv) || defined(__powerpc64__) 1649 if ((wait & M_NODUMP) == 0) 1650 dump_add_page(pa); 1651 #endif 1652 } 1653 /* Allocate KVA and indirectly advance bootmem. */ 1654 mem = (void *)pmap_map(&bootmem, m->phys_addr, 1655 m->phys_addr + (pages * PAGE_SIZE), VM_PROT_READ | VM_PROT_WRITE); 1656 if ((wait & M_ZERO) != 0) 1657 bzero(mem, pages * PAGE_SIZE); 1658 1659 return (mem); 1660 } 1661 1662 static void 1663 startup_free(void *mem, vm_size_t bytes) 1664 { 1665 vm_offset_t va; 1666 vm_page_t m; 1667 1668 va = (vm_offset_t)mem; 1669 m = PHYS_TO_VM_PAGE(pmap_kextract(va)); 1670 pmap_remove(kernel_pmap, va, va + bytes); 1671 for (; bytes != 0; bytes -= PAGE_SIZE, m++) { 1672 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 1673 defined(__riscv) || defined(__powerpc64__) 1674 dump_drop_page(VM_PAGE_TO_PHYS(m)); 1675 #endif 1676 vm_page_unwire_noq(m); 1677 vm_page_free(m); 1678 } 1679 } 1680 1681 /* 1682 * Allocates a number of pages from the system 1683 * 1684 * Arguments: 1685 * bytes The number of bytes requested 1686 * wait Shall we wait? 1687 * 1688 * Returns: 1689 * A pointer to the alloced memory or possibly 1690 * NULL if M_NOWAIT is set. 1691 */ 1692 static void * 1693 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1694 int wait) 1695 { 1696 void *p; /* Returned page */ 1697 1698 *pflag = UMA_SLAB_KERNEL; 1699 p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait); 1700 1701 return (p); 1702 } 1703 1704 static void * 1705 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1706 int wait) 1707 { 1708 struct pglist alloctail; 1709 vm_offset_t addr, zkva; 1710 int cpu, flags; 1711 vm_page_t p, p_next; 1712 #ifdef NUMA 1713 struct pcpu *pc; 1714 #endif 1715 1716 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE); 1717 1718 TAILQ_INIT(&alloctail); 1719 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1720 malloc2vm_flags(wait); 1721 *pflag = UMA_SLAB_KERNEL; 1722 for (cpu = 0; cpu <= mp_maxid; cpu++) { 1723 if (CPU_ABSENT(cpu)) { 1724 p = vm_page_alloc(NULL, 0, flags); 1725 } else { 1726 #ifndef NUMA 1727 p = vm_page_alloc(NULL, 0, flags); 1728 #else 1729 pc = pcpu_find(cpu); 1730 if (__predict_false(VM_DOMAIN_EMPTY(pc->pc_domain))) 1731 p = NULL; 1732 else 1733 p = vm_page_alloc_domain(NULL, 0, 1734 pc->pc_domain, flags); 1735 if (__predict_false(p == NULL)) 1736 p = vm_page_alloc(NULL, 0, flags); 1737 #endif 1738 } 1739 if (__predict_false(p == NULL)) 1740 goto fail; 1741 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1742 } 1743 if ((addr = kva_alloc(bytes)) == 0) 1744 goto fail; 1745 zkva = addr; 1746 TAILQ_FOREACH(p, &alloctail, listq) { 1747 pmap_qenter(zkva, &p, 1); 1748 zkva += PAGE_SIZE; 1749 } 1750 return ((void*)addr); 1751 fail: 1752 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1753 vm_page_unwire_noq(p); 1754 vm_page_free(p); 1755 } 1756 return (NULL); 1757 } 1758 1759 /* 1760 * Allocates a number of pages from within an object 1761 * 1762 * Arguments: 1763 * bytes The number of bytes requested 1764 * wait Shall we wait? 1765 * 1766 * Returns: 1767 * A pointer to the alloced memory or possibly 1768 * NULL if M_NOWAIT is set. 1769 */ 1770 static void * 1771 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 1772 int wait) 1773 { 1774 TAILQ_HEAD(, vm_page) alloctail; 1775 u_long npages; 1776 vm_offset_t retkva, zkva; 1777 vm_page_t p, p_next; 1778 uma_keg_t keg; 1779 1780 TAILQ_INIT(&alloctail); 1781 keg = zone->uz_keg; 1782 1783 npages = howmany(bytes, PAGE_SIZE); 1784 while (npages > 0) { 1785 p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT | 1786 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1787 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK : 1788 VM_ALLOC_NOWAIT)); 1789 if (p != NULL) { 1790 /* 1791 * Since the page does not belong to an object, its 1792 * listq is unused. 1793 */ 1794 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1795 npages--; 1796 continue; 1797 } 1798 /* 1799 * Page allocation failed, free intermediate pages and 1800 * exit. 1801 */ 1802 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1803 vm_page_unwire_noq(p); 1804 vm_page_free(p); 1805 } 1806 return (NULL); 1807 } 1808 *flags = UMA_SLAB_PRIV; 1809 zkva = keg->uk_kva + 1810 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1811 retkva = zkva; 1812 TAILQ_FOREACH(p, &alloctail, listq) { 1813 pmap_qenter(zkva, &p, 1); 1814 zkva += PAGE_SIZE; 1815 } 1816 1817 return ((void *)retkva); 1818 } 1819 1820 /* 1821 * Allocate physically contiguous pages. 1822 */ 1823 static void * 1824 contig_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1825 int wait) 1826 { 1827 1828 *pflag = UMA_SLAB_KERNEL; 1829 return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain), 1830 bytes, wait, 0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT)); 1831 } 1832 1833 /* 1834 * Frees a number of pages to the system 1835 * 1836 * Arguments: 1837 * mem A pointer to the memory to be freed 1838 * size The size of the memory being freed 1839 * flags The original p->us_flags field 1840 * 1841 * Returns: 1842 * Nothing 1843 */ 1844 static void 1845 page_free(void *mem, vm_size_t size, uint8_t flags) 1846 { 1847 1848 if ((flags & UMA_SLAB_BOOT) != 0) { 1849 startup_free(mem, size); 1850 return; 1851 } 1852 1853 KASSERT((flags & UMA_SLAB_KERNEL) != 0, 1854 ("UMA: page_free used with invalid flags %x", flags)); 1855 1856 kmem_free((vm_offset_t)mem, size); 1857 } 1858 1859 /* 1860 * Frees pcpu zone allocations 1861 * 1862 * Arguments: 1863 * mem A pointer to the memory to be freed 1864 * size The size of the memory being freed 1865 * flags The original p->us_flags field 1866 * 1867 * Returns: 1868 * Nothing 1869 */ 1870 static void 1871 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags) 1872 { 1873 vm_offset_t sva, curva; 1874 vm_paddr_t paddr; 1875 vm_page_t m; 1876 1877 MPASS(size == (mp_maxid+1)*PAGE_SIZE); 1878 1879 if ((flags & UMA_SLAB_BOOT) != 0) { 1880 startup_free(mem, size); 1881 return; 1882 } 1883 1884 sva = (vm_offset_t)mem; 1885 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) { 1886 paddr = pmap_kextract(curva); 1887 m = PHYS_TO_VM_PAGE(paddr); 1888 vm_page_unwire_noq(m); 1889 vm_page_free(m); 1890 } 1891 pmap_qremove(sva, size >> PAGE_SHIFT); 1892 kva_free(sva, size); 1893 } 1894 1895 1896 /* 1897 * Zero fill initializer 1898 * 1899 * Arguments/Returns follow uma_init specifications 1900 */ 1901 static int 1902 zero_init(void *mem, int size, int flags) 1903 { 1904 bzero(mem, size); 1905 return (0); 1906 } 1907 1908 #ifdef INVARIANTS 1909 static struct noslabbits * 1910 slab_dbg_bits(uma_slab_t slab, uma_keg_t keg) 1911 { 1912 1913 return ((void *)((char *)&slab->us_free + BITSET_SIZE(keg->uk_ipers))); 1914 } 1915 #endif 1916 1917 /* 1918 * Actual size of embedded struct slab (!OFFPAGE). 1919 */ 1920 static size_t 1921 slab_sizeof(int nitems) 1922 { 1923 size_t s; 1924 1925 s = sizeof(struct uma_slab) + BITSET_SIZE(nitems) * SLAB_BITSETS; 1926 return (roundup(s, UMA_ALIGN_PTR + 1)); 1927 } 1928 1929 #define UMA_FIXPT_SHIFT 31 1930 #define UMA_FRAC_FIXPT(n, d) \ 1931 ((uint32_t)(((uint64_t)(n) << UMA_FIXPT_SHIFT) / (d))) 1932 #define UMA_FIXPT_PCT(f) \ 1933 ((u_int)(((uint64_t)100 * (f)) >> UMA_FIXPT_SHIFT)) 1934 #define UMA_PCT_FIXPT(pct) UMA_FRAC_FIXPT((pct), 100) 1935 #define UMA_MIN_EFF UMA_PCT_FIXPT(100 - UMA_MAX_WASTE) 1936 1937 /* 1938 * Compute the number of items that will fit in a slab. If hdr is true, the 1939 * item count may be limited to provide space in the slab for an inline slab 1940 * header. Otherwise, all slab space will be provided for item storage. 1941 */ 1942 static u_int 1943 slab_ipers_hdr(u_int size, u_int rsize, u_int slabsize, bool hdr) 1944 { 1945 u_int ipers; 1946 u_int padpi; 1947 1948 /* The padding between items is not needed after the last item. */ 1949 padpi = rsize - size; 1950 1951 if (hdr) { 1952 /* 1953 * Start with the maximum item count and remove items until 1954 * the slab header first alongside the allocatable memory. 1955 */ 1956 for (ipers = MIN(SLAB_MAX_SETSIZE, 1957 (slabsize + padpi - slab_sizeof(1)) / rsize); 1958 ipers > 0 && 1959 ipers * rsize - padpi + slab_sizeof(ipers) > slabsize; 1960 ipers--) 1961 continue; 1962 } else { 1963 ipers = MIN((slabsize + padpi) / rsize, SLAB_MAX_SETSIZE); 1964 } 1965 1966 return (ipers); 1967 } 1968 1969 struct keg_layout_result { 1970 u_int format; 1971 u_int slabsize; 1972 u_int ipers; 1973 u_int eff; 1974 }; 1975 1976 static void 1977 keg_layout_one(uma_keg_t keg, u_int rsize, u_int slabsize, u_int fmt, 1978 struct keg_layout_result *kl) 1979 { 1980 u_int total; 1981 1982 kl->format = fmt; 1983 kl->slabsize = slabsize; 1984 1985 /* Handle INTERNAL as inline with an extra page. */ 1986 if ((fmt & UMA_ZFLAG_INTERNAL) != 0) { 1987 kl->format &= ~UMA_ZFLAG_INTERNAL; 1988 kl->slabsize += PAGE_SIZE; 1989 } 1990 1991 kl->ipers = slab_ipers_hdr(keg->uk_size, rsize, kl->slabsize, 1992 (fmt & UMA_ZFLAG_OFFPAGE) == 0); 1993 1994 /* Account for memory used by an offpage slab header. */ 1995 total = kl->slabsize; 1996 if ((fmt & UMA_ZFLAG_OFFPAGE) != 0) 1997 total += slabzone(kl->ipers)->uz_keg->uk_rsize; 1998 1999 kl->eff = UMA_FRAC_FIXPT(kl->ipers * rsize, total); 2000 } 2001 2002 /* 2003 * Determine the format of a uma keg. This determines where the slab header 2004 * will be placed (inline or offpage) and calculates ipers, rsize, and ppera. 2005 * 2006 * Arguments 2007 * keg The zone we should initialize 2008 * 2009 * Returns 2010 * Nothing 2011 */ 2012 static void 2013 keg_layout(uma_keg_t keg) 2014 { 2015 struct keg_layout_result kl = {}, kl_tmp; 2016 u_int fmts[2]; 2017 u_int alignsize; 2018 u_int nfmt; 2019 u_int pages; 2020 u_int rsize; 2021 u_int slabsize; 2022 u_int i, j; 2023 2024 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 2025 (keg->uk_size <= UMA_PCPU_ALLOC_SIZE && 2026 (keg->uk_flags & UMA_ZONE_CACHESPREAD) == 0), 2027 ("%s: cannot configure for PCPU: keg=%s, size=%u, flags=0x%b", 2028 __func__, keg->uk_name, keg->uk_size, keg->uk_flags, 2029 PRINT_UMA_ZFLAGS)); 2030 KASSERT((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) == 0 || 2031 (keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0, 2032 ("%s: incompatible flags 0x%b", __func__, keg->uk_flags, 2033 PRINT_UMA_ZFLAGS)); 2034 2035 alignsize = keg->uk_align + 1; 2036 2037 /* 2038 * Calculate the size of each allocation (rsize) according to 2039 * alignment. If the requested size is smaller than we have 2040 * allocation bits for we round it up. 2041 */ 2042 rsize = MAX(keg->uk_size, UMA_SMALLEST_UNIT); 2043 rsize = roundup2(rsize, alignsize); 2044 2045 if ((keg->uk_flags & UMA_ZONE_CACHESPREAD) != 0) { 2046 /* 2047 * We want one item to start on every align boundary in a page. 2048 * To do this we will span pages. We will also extend the item 2049 * by the size of align if it is an even multiple of align. 2050 * Otherwise, it would fall on the same boundary every time. 2051 */ 2052 if ((rsize & alignsize) == 0) 2053 rsize += alignsize; 2054 slabsize = rsize * (PAGE_SIZE / alignsize); 2055 slabsize = MIN(slabsize, rsize * SLAB_MAX_SETSIZE); 2056 slabsize = MIN(slabsize, UMA_CACHESPREAD_MAX_SIZE); 2057 slabsize = round_page(slabsize); 2058 } else { 2059 /* 2060 * Start with a slab size of as many pages as it takes to 2061 * represent a single item. We will try to fit as many 2062 * additional items into the slab as possible. 2063 */ 2064 slabsize = round_page(keg->uk_size); 2065 } 2066 2067 /* Build a list of all of the available formats for this keg. */ 2068 nfmt = 0; 2069 2070 /* Evaluate an inline slab layout. */ 2071 if ((keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0) 2072 fmts[nfmt++] = 0; 2073 2074 /* TODO: vm_page-embedded slab. */ 2075 2076 /* 2077 * We can't do OFFPAGE if we're internal or if we've been 2078 * asked to not go to the VM for buckets. If we do this we 2079 * may end up going to the VM for slabs which we do not want 2080 * to do if we're UMA_ZONE_VM, which clearly forbids it. 2081 * In those cases, evaluate a pseudo-format called INTERNAL 2082 * which has an inline slab header and one extra page to 2083 * guarantee that it fits. 2084 * 2085 * Otherwise, see if using an OFFPAGE slab will improve our 2086 * efficiency. 2087 */ 2088 if ((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) != 0) 2089 fmts[nfmt++] = UMA_ZFLAG_INTERNAL; 2090 else 2091 fmts[nfmt++] = UMA_ZFLAG_OFFPAGE; 2092 2093 /* 2094 * Choose a slab size and format which satisfy the minimum efficiency. 2095 * Prefer the smallest slab size that meets the constraints. 2096 * 2097 * Start with a minimum slab size, to accommodate CACHESPREAD. Then, 2098 * for small items (up to PAGE_SIZE), the iteration increment is one 2099 * page; and for large items, the increment is one item. 2100 */ 2101 i = (slabsize + rsize - keg->uk_size) / MAX(PAGE_SIZE, rsize); 2102 KASSERT(i >= 1, ("keg %s(%p) flags=0x%b slabsize=%u, rsize=%u, i=%u", 2103 keg->uk_name, keg, keg->uk_flags, PRINT_UMA_ZFLAGS, slabsize, 2104 rsize, i)); 2105 for ( ; ; i++) { 2106 slabsize = (rsize <= PAGE_SIZE) ? ptoa(i) : 2107 round_page(rsize * (i - 1) + keg->uk_size); 2108 2109 for (j = 0; j < nfmt; j++) { 2110 /* Only if we have no viable format yet. */ 2111 if ((fmts[j] & UMA_ZFLAG_INTERNAL) != 0 && 2112 kl.ipers > 0) 2113 continue; 2114 2115 keg_layout_one(keg, rsize, slabsize, fmts[j], &kl_tmp); 2116 if (kl_tmp.eff <= kl.eff) 2117 continue; 2118 2119 kl = kl_tmp; 2120 2121 CTR6(KTR_UMA, "keg %s layout: format %#x " 2122 "(ipers %u * rsize %u) / slabsize %#x = %u%% eff", 2123 keg->uk_name, kl.format, kl.ipers, rsize, 2124 kl.slabsize, UMA_FIXPT_PCT(kl.eff)); 2125 2126 /* Stop when we reach the minimum efficiency. */ 2127 if (kl.eff >= UMA_MIN_EFF) 2128 break; 2129 } 2130 2131 if (kl.eff >= UMA_MIN_EFF || !multipage_slabs || 2132 slabsize >= SLAB_MAX_SETSIZE * rsize || 2133 (keg->uk_flags & (UMA_ZONE_PCPU | UMA_ZONE_CONTIG)) != 0) 2134 break; 2135 } 2136 2137 pages = atop(kl.slabsize); 2138 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 2139 pages *= mp_maxid + 1; 2140 2141 keg->uk_rsize = rsize; 2142 keg->uk_ipers = kl.ipers; 2143 keg->uk_ppera = pages; 2144 keg->uk_flags |= kl.format; 2145 2146 /* 2147 * How do we find the slab header if it is offpage or if not all item 2148 * start addresses are in the same page? We could solve the latter 2149 * case with vaddr alignment, but we don't. 2150 */ 2151 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0 || 2152 (keg->uk_ipers - 1) * rsize >= PAGE_SIZE) { 2153 if ((keg->uk_flags & UMA_ZONE_NOTPAGE) != 0) 2154 keg->uk_flags |= UMA_ZFLAG_HASH; 2155 else 2156 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2157 } 2158 2159 CTR6(KTR_UMA, "%s: keg=%s, flags=%#x, rsize=%u, ipers=%u, ppera=%u", 2160 __func__, keg->uk_name, keg->uk_flags, rsize, keg->uk_ipers, 2161 pages); 2162 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE, 2163 ("%s: keg=%s, flags=0x%b, rsize=%u, ipers=%u, ppera=%u", __func__, 2164 keg->uk_name, keg->uk_flags, PRINT_UMA_ZFLAGS, rsize, 2165 keg->uk_ipers, pages)); 2166 } 2167 2168 /* 2169 * Keg header ctor. This initializes all fields, locks, etc. And inserts 2170 * the keg onto the global keg list. 2171 * 2172 * Arguments/Returns follow uma_ctor specifications 2173 * udata Actually uma_kctor_args 2174 */ 2175 static int 2176 keg_ctor(void *mem, int size, void *udata, int flags) 2177 { 2178 struct uma_kctor_args *arg = udata; 2179 uma_keg_t keg = mem; 2180 uma_zone_t zone; 2181 int i; 2182 2183 bzero(keg, size); 2184 keg->uk_size = arg->size; 2185 keg->uk_init = arg->uminit; 2186 keg->uk_fini = arg->fini; 2187 keg->uk_align = arg->align; 2188 keg->uk_reserve = 0; 2189 keg->uk_flags = arg->flags; 2190 2191 /* 2192 * We use a global round-robin policy by default. Zones with 2193 * UMA_ZONE_FIRSTTOUCH set will use first-touch instead, in which 2194 * case the iterator is never run. 2195 */ 2196 keg->uk_dr.dr_policy = DOMAINSET_RR(); 2197 keg->uk_dr.dr_iter = 0; 2198 2199 /* 2200 * The primary zone is passed to us at keg-creation time. 2201 */ 2202 zone = arg->zone; 2203 keg->uk_name = zone->uz_name; 2204 2205 if (arg->flags & UMA_ZONE_ZINIT) 2206 keg->uk_init = zero_init; 2207 2208 if (arg->flags & UMA_ZONE_MALLOC) 2209 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2210 2211 #ifndef SMP 2212 keg->uk_flags &= ~UMA_ZONE_PCPU; 2213 #endif 2214 2215 keg_layout(keg); 2216 2217 /* 2218 * Use a first-touch NUMA policy for kegs that pmap_extract() will 2219 * work on. Use round-robin for everything else. 2220 * 2221 * Zones may override the default by specifying either. 2222 */ 2223 #ifdef NUMA 2224 if ((keg->uk_flags & 2225 (UMA_ZONE_ROUNDROBIN | UMA_ZFLAG_CACHE | UMA_ZONE_NOTPAGE)) == 0) 2226 keg->uk_flags |= UMA_ZONE_FIRSTTOUCH; 2227 else if ((keg->uk_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2228 keg->uk_flags |= UMA_ZONE_ROUNDROBIN; 2229 #endif 2230 2231 /* 2232 * If we haven't booted yet we need allocations to go through the 2233 * startup cache until the vm is ready. 2234 */ 2235 #ifdef UMA_MD_SMALL_ALLOC 2236 if (keg->uk_ppera == 1) 2237 keg->uk_allocf = uma_small_alloc; 2238 else 2239 #endif 2240 if (booted < BOOT_KVA) 2241 keg->uk_allocf = startup_alloc; 2242 else if (keg->uk_flags & UMA_ZONE_PCPU) 2243 keg->uk_allocf = pcpu_page_alloc; 2244 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && keg->uk_ppera > 1) 2245 keg->uk_allocf = contig_alloc; 2246 else 2247 keg->uk_allocf = page_alloc; 2248 #ifdef UMA_MD_SMALL_ALLOC 2249 if (keg->uk_ppera == 1) 2250 keg->uk_freef = uma_small_free; 2251 else 2252 #endif 2253 if (keg->uk_flags & UMA_ZONE_PCPU) 2254 keg->uk_freef = pcpu_page_free; 2255 else 2256 keg->uk_freef = page_free; 2257 2258 /* 2259 * Initialize keg's locks. 2260 */ 2261 for (i = 0; i < vm_ndomains; i++) 2262 KEG_LOCK_INIT(keg, i, (arg->flags & UMA_ZONE_MTXCLASS)); 2263 2264 /* 2265 * If we're putting the slab header in the actual page we need to 2266 * figure out where in each page it goes. See slab_sizeof 2267 * definition. 2268 */ 2269 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) { 2270 size_t shsize; 2271 2272 shsize = slab_sizeof(keg->uk_ipers); 2273 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize; 2274 /* 2275 * The only way the following is possible is if with our 2276 * UMA_ALIGN_PTR adjustments we are now bigger than 2277 * UMA_SLAB_SIZE. I haven't checked whether this is 2278 * mathematically possible for all cases, so we make 2279 * sure here anyway. 2280 */ 2281 KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera, 2282 ("zone %s ipers %d rsize %d size %d slab won't fit", 2283 zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size)); 2284 } 2285 2286 if (keg->uk_flags & UMA_ZFLAG_HASH) 2287 hash_alloc(&keg->uk_hash, 0); 2288 2289 CTR3(KTR_UMA, "keg_ctor %p zone %s(%p)", keg, zone->uz_name, zone); 2290 2291 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 2292 2293 rw_wlock(&uma_rwlock); 2294 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 2295 rw_wunlock(&uma_rwlock); 2296 return (0); 2297 } 2298 2299 static void 2300 zone_kva_available(uma_zone_t zone, void *unused) 2301 { 2302 uma_keg_t keg; 2303 2304 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 2305 return; 2306 KEG_GET(zone, keg); 2307 2308 if (keg->uk_allocf == startup_alloc) { 2309 /* Switch to the real allocator. */ 2310 if (keg->uk_flags & UMA_ZONE_PCPU) 2311 keg->uk_allocf = pcpu_page_alloc; 2312 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && 2313 keg->uk_ppera > 1) 2314 keg->uk_allocf = contig_alloc; 2315 else 2316 keg->uk_allocf = page_alloc; 2317 } 2318 } 2319 2320 static void 2321 zone_alloc_counters(uma_zone_t zone, void *unused) 2322 { 2323 2324 zone->uz_allocs = counter_u64_alloc(M_WAITOK); 2325 zone->uz_frees = counter_u64_alloc(M_WAITOK); 2326 zone->uz_fails = counter_u64_alloc(M_WAITOK); 2327 zone->uz_xdomain = counter_u64_alloc(M_WAITOK); 2328 } 2329 2330 static void 2331 zone_alloc_sysctl(uma_zone_t zone, void *unused) 2332 { 2333 uma_zone_domain_t zdom; 2334 uma_domain_t dom; 2335 uma_keg_t keg; 2336 struct sysctl_oid *oid, *domainoid; 2337 int domains, i, cnt; 2338 static const char *nokeg = "cache zone"; 2339 char *c; 2340 2341 /* 2342 * Make a sysctl safe copy of the zone name by removing 2343 * any special characters and handling dups by appending 2344 * an index. 2345 */ 2346 if (zone->uz_namecnt != 0) { 2347 /* Count the number of decimal digits and '_' separator. */ 2348 for (i = 1, cnt = zone->uz_namecnt; cnt != 0; i++) 2349 cnt /= 10; 2350 zone->uz_ctlname = malloc(strlen(zone->uz_name) + i + 1, 2351 M_UMA, M_WAITOK); 2352 sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name, 2353 zone->uz_namecnt); 2354 } else 2355 zone->uz_ctlname = strdup(zone->uz_name, M_UMA); 2356 for (c = zone->uz_ctlname; *c != '\0'; c++) 2357 if (strchr("./\\ -", *c) != NULL) 2358 *c = '_'; 2359 2360 /* 2361 * Basic parameters at the root. 2362 */ 2363 zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma), 2364 OID_AUTO, zone->uz_ctlname, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2365 oid = zone->uz_oid; 2366 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2367 "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size"); 2368 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2369 "flags", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE, 2370 zone, 0, sysctl_handle_uma_zone_flags, "A", 2371 "Allocator configuration flags"); 2372 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2373 "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0, 2374 "Desired per-cpu cache size"); 2375 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2376 "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0, 2377 "Maximum allowed per-cpu cache size"); 2378 2379 /* 2380 * keg if present. 2381 */ 2382 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 2383 domains = vm_ndomains; 2384 else 2385 domains = 1; 2386 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2387 "keg", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2388 keg = zone->uz_keg; 2389 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) { 2390 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2391 "name", CTLFLAG_RD, keg->uk_name, "Keg name"); 2392 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2393 "rsize", CTLFLAG_RD, &keg->uk_rsize, 0, 2394 "Real object size with alignment"); 2395 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2396 "ppera", CTLFLAG_RD, &keg->uk_ppera, 0, 2397 "pages per-slab allocation"); 2398 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2399 "ipers", CTLFLAG_RD, &keg->uk_ipers, 0, 2400 "items available per-slab"); 2401 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2402 "align", CTLFLAG_RD, &keg->uk_align, 0, 2403 "item alignment mask"); 2404 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2405 "efficiency", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2406 keg, 0, sysctl_handle_uma_slab_efficiency, "I", 2407 "Slab utilization (100 - internal fragmentation %)"); 2408 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(oid), 2409 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2410 for (i = 0; i < domains; i++) { 2411 dom = &keg->uk_domain[i]; 2412 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2413 OID_AUTO, VM_DOMAIN(i)->vmd_name, 2414 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2415 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2416 "pages", CTLFLAG_RD, &dom->ud_pages, 0, 2417 "Total pages currently allocated from VM"); 2418 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2419 "free_items", CTLFLAG_RD, &dom->ud_free_items, 0, 2420 "items free in the slab layer"); 2421 } 2422 } else 2423 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2424 "name", CTLFLAG_RD, nokeg, "Keg name"); 2425 2426 /* 2427 * Information about zone limits. 2428 */ 2429 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2430 "limit", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2431 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2432 "items", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2433 zone, 0, sysctl_handle_uma_zone_items, "QU", 2434 "current number of allocated items if limit is set"); 2435 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2436 "max_items", CTLFLAG_RD, &zone->uz_max_items, 0, 2437 "Maximum number of cached items"); 2438 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2439 "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0, 2440 "Number of threads sleeping at limit"); 2441 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2442 "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0, 2443 "Total zone limit sleeps"); 2444 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2445 "bucket_max", CTLFLAG_RD, &zone->uz_bucket_max, 0, 2446 "Maximum number of items in each domain's bucket cache"); 2447 2448 /* 2449 * Per-domain zone information. 2450 */ 2451 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), 2452 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2453 for (i = 0; i < domains; i++) { 2454 zdom = ZDOM_GET(zone, i); 2455 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2456 OID_AUTO, VM_DOMAIN(i)->vmd_name, 2457 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2458 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2459 "nitems", CTLFLAG_RD, &zdom->uzd_nitems, 2460 "number of items in this domain"); 2461 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2462 "imax", CTLFLAG_RD, &zdom->uzd_imax, 2463 "maximum item count in this period"); 2464 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2465 "imin", CTLFLAG_RD, &zdom->uzd_imin, 2466 "minimum item count in this period"); 2467 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2468 "wss", CTLFLAG_RD, &zdom->uzd_wss, 2469 "Working set size"); 2470 } 2471 2472 /* 2473 * General statistics. 2474 */ 2475 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2476 "stats", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2477 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2478 "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2479 zone, 1, sysctl_handle_uma_zone_cur, "I", 2480 "Current number of allocated items"); 2481 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2482 "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2483 zone, 0, sysctl_handle_uma_zone_allocs, "QU", 2484 "Total allocation calls"); 2485 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2486 "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2487 zone, 0, sysctl_handle_uma_zone_frees, "QU", 2488 "Total free calls"); 2489 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2490 "fails", CTLFLAG_RD, &zone->uz_fails, 2491 "Number of allocation failures"); 2492 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2493 "xdomain", CTLFLAG_RD, &zone->uz_xdomain, 2494 "Free calls from the wrong domain"); 2495 } 2496 2497 struct uma_zone_count { 2498 const char *name; 2499 int count; 2500 }; 2501 2502 static void 2503 zone_count(uma_zone_t zone, void *arg) 2504 { 2505 struct uma_zone_count *cnt; 2506 2507 cnt = arg; 2508 /* 2509 * Some zones are rapidly created with identical names and 2510 * destroyed out of order. This can lead to gaps in the count. 2511 * Use one greater than the maximum observed for this name. 2512 */ 2513 if (strcmp(zone->uz_name, cnt->name) == 0) 2514 cnt->count = MAX(cnt->count, 2515 zone->uz_namecnt + 1); 2516 } 2517 2518 static void 2519 zone_update_caches(uma_zone_t zone) 2520 { 2521 int i; 2522 2523 for (i = 0; i <= mp_maxid; i++) { 2524 cache_set_uz_size(&zone->uz_cpu[i], zone->uz_size); 2525 cache_set_uz_flags(&zone->uz_cpu[i], zone->uz_flags); 2526 } 2527 } 2528 2529 /* 2530 * Zone header ctor. This initializes all fields, locks, etc. 2531 * 2532 * Arguments/Returns follow uma_ctor specifications 2533 * udata Actually uma_zctor_args 2534 */ 2535 static int 2536 zone_ctor(void *mem, int size, void *udata, int flags) 2537 { 2538 struct uma_zone_count cnt; 2539 struct uma_zctor_args *arg = udata; 2540 uma_zone_domain_t zdom; 2541 uma_zone_t zone = mem; 2542 uma_zone_t z; 2543 uma_keg_t keg; 2544 int i; 2545 2546 bzero(zone, size); 2547 zone->uz_name = arg->name; 2548 zone->uz_ctor = arg->ctor; 2549 zone->uz_dtor = arg->dtor; 2550 zone->uz_init = NULL; 2551 zone->uz_fini = NULL; 2552 zone->uz_sleeps = 0; 2553 zone->uz_bucket_size = 0; 2554 zone->uz_bucket_size_min = 0; 2555 zone->uz_bucket_size_max = BUCKET_MAX; 2556 zone->uz_flags = (arg->flags & UMA_ZONE_SMR); 2557 zone->uz_warning = NULL; 2558 /* The domain structures follow the cpu structures. */ 2559 zone->uz_bucket_max = ULONG_MAX; 2560 timevalclear(&zone->uz_ratecheck); 2561 2562 /* Count the number of duplicate names. */ 2563 cnt.name = arg->name; 2564 cnt.count = 0; 2565 zone_foreach(zone_count, &cnt); 2566 zone->uz_namecnt = cnt.count; 2567 ZONE_CROSS_LOCK_INIT(zone); 2568 2569 for (i = 0; i < vm_ndomains; i++) { 2570 zdom = ZDOM_GET(zone, i); 2571 ZDOM_LOCK_INIT(zone, zdom, (arg->flags & UMA_ZONE_MTXCLASS)); 2572 STAILQ_INIT(&zdom->uzd_buckets); 2573 } 2574 2575 #ifdef INVARIANTS 2576 if (arg->uminit == trash_init && arg->fini == trash_fini) 2577 zone->uz_flags |= UMA_ZFLAG_TRASH | UMA_ZFLAG_CTORDTOR; 2578 #endif 2579 2580 /* 2581 * This is a pure cache zone, no kegs. 2582 */ 2583 if (arg->import) { 2584 KASSERT((arg->flags & UMA_ZFLAG_CACHE) != 0, 2585 ("zone_ctor: Import specified for non-cache zone.")); 2586 zone->uz_flags = arg->flags; 2587 zone->uz_size = arg->size; 2588 zone->uz_import = arg->import; 2589 zone->uz_release = arg->release; 2590 zone->uz_arg = arg->arg; 2591 #ifdef NUMA 2592 /* 2593 * Cache zones are round-robin unless a policy is 2594 * specified because they may have incompatible 2595 * constraints. 2596 */ 2597 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2598 zone->uz_flags |= UMA_ZONE_ROUNDROBIN; 2599 #endif 2600 rw_wlock(&uma_rwlock); 2601 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 2602 rw_wunlock(&uma_rwlock); 2603 goto out; 2604 } 2605 2606 /* 2607 * Use the regular zone/keg/slab allocator. 2608 */ 2609 zone->uz_import = zone_import; 2610 zone->uz_release = zone_release; 2611 zone->uz_arg = zone; 2612 keg = arg->keg; 2613 2614 if (arg->flags & UMA_ZONE_SECONDARY) { 2615 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 2616 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 2617 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 2618 zone->uz_init = arg->uminit; 2619 zone->uz_fini = arg->fini; 2620 zone->uz_flags |= UMA_ZONE_SECONDARY; 2621 rw_wlock(&uma_rwlock); 2622 ZONE_LOCK(zone); 2623 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 2624 if (LIST_NEXT(z, uz_link) == NULL) { 2625 LIST_INSERT_AFTER(z, zone, uz_link); 2626 break; 2627 } 2628 } 2629 ZONE_UNLOCK(zone); 2630 rw_wunlock(&uma_rwlock); 2631 } else if (keg == NULL) { 2632 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 2633 arg->align, arg->flags)) == NULL) 2634 return (ENOMEM); 2635 } else { 2636 struct uma_kctor_args karg; 2637 int error; 2638 2639 /* We should only be here from uma_startup() */ 2640 karg.size = arg->size; 2641 karg.uminit = arg->uminit; 2642 karg.fini = arg->fini; 2643 karg.align = arg->align; 2644 karg.flags = (arg->flags & ~UMA_ZONE_SMR); 2645 karg.zone = zone; 2646 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 2647 flags); 2648 if (error) 2649 return (error); 2650 } 2651 2652 /* Inherit properties from the keg. */ 2653 zone->uz_keg = keg; 2654 zone->uz_size = keg->uk_size; 2655 zone->uz_flags |= (keg->uk_flags & 2656 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 2657 2658 out: 2659 if (booted >= BOOT_PCPU) { 2660 zone_alloc_counters(zone, NULL); 2661 if (booted >= BOOT_RUNNING) 2662 zone_alloc_sysctl(zone, NULL); 2663 } else { 2664 zone->uz_allocs = EARLY_COUNTER; 2665 zone->uz_frees = EARLY_COUNTER; 2666 zone->uz_fails = EARLY_COUNTER; 2667 } 2668 2669 /* Caller requests a private SMR context. */ 2670 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 2671 zone->uz_smr = smr_create(zone->uz_name, 0, 0); 2672 2673 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != 2674 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), 2675 ("Invalid zone flag combination")); 2676 if (arg->flags & UMA_ZFLAG_INTERNAL) 2677 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 2678 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) 2679 zone->uz_bucket_size = BUCKET_MAX; 2680 else if ((arg->flags & UMA_ZONE_MINBUCKET) != 0) 2681 zone->uz_bucket_size_max = zone->uz_bucket_size = BUCKET_MIN; 2682 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) 2683 zone->uz_bucket_size = 0; 2684 else 2685 zone->uz_bucket_size = bucket_select(zone->uz_size); 2686 zone->uz_bucket_size_min = zone->uz_bucket_size; 2687 if (zone->uz_dtor != NULL || zone->uz_ctor != NULL) 2688 zone->uz_flags |= UMA_ZFLAG_CTORDTOR; 2689 zone_update_caches(zone); 2690 2691 return (0); 2692 } 2693 2694 /* 2695 * Keg header dtor. This frees all data, destroys locks, frees the hash 2696 * table and removes the keg from the global list. 2697 * 2698 * Arguments/Returns follow uma_dtor specifications 2699 * udata unused 2700 */ 2701 static void 2702 keg_dtor(void *arg, int size, void *udata) 2703 { 2704 uma_keg_t keg; 2705 uint32_t free, pages; 2706 int i; 2707 2708 keg = (uma_keg_t)arg; 2709 free = pages = 0; 2710 for (i = 0; i < vm_ndomains; i++) { 2711 free += keg->uk_domain[i].ud_free_items; 2712 pages += keg->uk_domain[i].ud_pages; 2713 KEG_LOCK_FINI(keg, i); 2714 } 2715 if (pages != 0) 2716 printf("Freed UMA keg (%s) was not empty (%u items). " 2717 " Lost %u pages of memory.\n", 2718 keg->uk_name ? keg->uk_name : "", 2719 pages / keg->uk_ppera * keg->uk_ipers - free, pages); 2720 2721 hash_free(&keg->uk_hash); 2722 } 2723 2724 /* 2725 * Zone header dtor. 2726 * 2727 * Arguments/Returns follow uma_dtor specifications 2728 * udata unused 2729 */ 2730 static void 2731 zone_dtor(void *arg, int size, void *udata) 2732 { 2733 uma_zone_t zone; 2734 uma_keg_t keg; 2735 int i; 2736 2737 zone = (uma_zone_t)arg; 2738 2739 sysctl_remove_oid(zone->uz_oid, 1, 1); 2740 2741 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 2742 cache_drain(zone); 2743 2744 rw_wlock(&uma_rwlock); 2745 LIST_REMOVE(zone, uz_link); 2746 rw_wunlock(&uma_rwlock); 2747 zone_reclaim(zone, M_WAITOK, true); 2748 2749 /* 2750 * We only destroy kegs from non secondary/non cache zones. 2751 */ 2752 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { 2753 keg = zone->uz_keg; 2754 rw_wlock(&uma_rwlock); 2755 LIST_REMOVE(keg, uk_link); 2756 rw_wunlock(&uma_rwlock); 2757 zone_free_item(kegs, keg, NULL, SKIP_NONE); 2758 } 2759 counter_u64_free(zone->uz_allocs); 2760 counter_u64_free(zone->uz_frees); 2761 counter_u64_free(zone->uz_fails); 2762 counter_u64_free(zone->uz_xdomain); 2763 free(zone->uz_ctlname, M_UMA); 2764 for (i = 0; i < vm_ndomains; i++) 2765 ZDOM_LOCK_FINI(ZDOM_GET(zone, i)); 2766 ZONE_CROSS_LOCK_FINI(zone); 2767 } 2768 2769 static void 2770 zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *arg), void *arg) 2771 { 2772 uma_keg_t keg; 2773 uma_zone_t zone; 2774 2775 LIST_FOREACH(keg, &uma_kegs, uk_link) { 2776 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 2777 zfunc(zone, arg); 2778 } 2779 LIST_FOREACH(zone, &uma_cachezones, uz_link) 2780 zfunc(zone, arg); 2781 } 2782 2783 /* 2784 * Traverses every zone in the system and calls a callback 2785 * 2786 * Arguments: 2787 * zfunc A pointer to a function which accepts a zone 2788 * as an argument. 2789 * 2790 * Returns: 2791 * Nothing 2792 */ 2793 static void 2794 zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg) 2795 { 2796 2797 rw_rlock(&uma_rwlock); 2798 zone_foreach_unlocked(zfunc, arg); 2799 rw_runlock(&uma_rwlock); 2800 } 2801 2802 /* 2803 * Initialize the kernel memory allocator. This is done after pages can be 2804 * allocated but before general KVA is available. 2805 */ 2806 void 2807 uma_startup1(vm_offset_t virtual_avail) 2808 { 2809 struct uma_zctor_args args; 2810 size_t ksize, zsize, size; 2811 uma_keg_t primarykeg; 2812 uintptr_t m; 2813 int domain; 2814 uint8_t pflag; 2815 2816 bootstart = bootmem = virtual_avail; 2817 2818 rw_init(&uma_rwlock, "UMA lock"); 2819 sx_init(&uma_reclaim_lock, "umareclaim"); 2820 2821 ksize = sizeof(struct uma_keg) + 2822 (sizeof(struct uma_domain) * vm_ndomains); 2823 ksize = roundup(ksize, UMA_SUPER_ALIGN); 2824 zsize = sizeof(struct uma_zone) + 2825 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 2826 (sizeof(struct uma_zone_domain) * vm_ndomains); 2827 zsize = roundup(zsize, UMA_SUPER_ALIGN); 2828 2829 /* Allocate the zone of zones, zone of kegs, and zone of zones keg. */ 2830 size = (zsize * 2) + ksize; 2831 for (domain = 0; domain < vm_ndomains; domain++) { 2832 m = (uintptr_t)startup_alloc(NULL, size, domain, &pflag, 2833 M_NOWAIT | M_ZERO); 2834 if (m != 0) 2835 break; 2836 } 2837 zones = (uma_zone_t)m; 2838 m += zsize; 2839 kegs = (uma_zone_t)m; 2840 m += zsize; 2841 primarykeg = (uma_keg_t)m; 2842 2843 /* "manually" create the initial zone */ 2844 memset(&args, 0, sizeof(args)); 2845 args.name = "UMA Kegs"; 2846 args.size = ksize; 2847 args.ctor = keg_ctor; 2848 args.dtor = keg_dtor; 2849 args.uminit = zero_init; 2850 args.fini = NULL; 2851 args.keg = primarykeg; 2852 args.align = UMA_SUPER_ALIGN - 1; 2853 args.flags = UMA_ZFLAG_INTERNAL; 2854 zone_ctor(kegs, zsize, &args, M_WAITOK); 2855 2856 args.name = "UMA Zones"; 2857 args.size = zsize; 2858 args.ctor = zone_ctor; 2859 args.dtor = zone_dtor; 2860 args.uminit = zero_init; 2861 args.fini = NULL; 2862 args.keg = NULL; 2863 args.align = UMA_SUPER_ALIGN - 1; 2864 args.flags = UMA_ZFLAG_INTERNAL; 2865 zone_ctor(zones, zsize, &args, M_WAITOK); 2866 2867 /* Now make zones for slab headers */ 2868 slabzones[0] = uma_zcreate("UMA Slabs 0", SLABZONE0_SIZE, 2869 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2870 slabzones[1] = uma_zcreate("UMA Slabs 1", SLABZONE1_SIZE, 2871 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2872 2873 hashzone = uma_zcreate("UMA Hash", 2874 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 2875 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2876 2877 bucket_init(); 2878 smr_init(); 2879 } 2880 2881 #ifndef UMA_MD_SMALL_ALLOC 2882 extern void vm_radix_reserve_kva(void); 2883 #endif 2884 2885 /* 2886 * Advertise the availability of normal kva allocations and switch to 2887 * the default back-end allocator. Marks the KVA we consumed on startup 2888 * as used in the map. 2889 */ 2890 void 2891 uma_startup2(void) 2892 { 2893 2894 if (bootstart != bootmem) { 2895 vm_map_lock(kernel_map); 2896 (void)vm_map_insert(kernel_map, NULL, 0, bootstart, bootmem, 2897 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT); 2898 vm_map_unlock(kernel_map); 2899 } 2900 2901 #ifndef UMA_MD_SMALL_ALLOC 2902 /* Set up radix zone to use noobj_alloc. */ 2903 vm_radix_reserve_kva(); 2904 #endif 2905 2906 booted = BOOT_KVA; 2907 zone_foreach_unlocked(zone_kva_available, NULL); 2908 bucket_enable(); 2909 } 2910 2911 /* 2912 * Allocate counters as early as possible so that boot-time allocations are 2913 * accounted more precisely. 2914 */ 2915 static void 2916 uma_startup_pcpu(void *arg __unused) 2917 { 2918 2919 zone_foreach_unlocked(zone_alloc_counters, NULL); 2920 booted = BOOT_PCPU; 2921 } 2922 SYSINIT(uma_startup_pcpu, SI_SUB_COUNTER, SI_ORDER_ANY, uma_startup_pcpu, NULL); 2923 2924 /* 2925 * Finish our initialization steps. 2926 */ 2927 static void 2928 uma_startup3(void *arg __unused) 2929 { 2930 2931 #ifdef INVARIANTS 2932 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor); 2933 uma_dbg_cnt = counter_u64_alloc(M_WAITOK); 2934 uma_skip_cnt = counter_u64_alloc(M_WAITOK); 2935 #endif 2936 zone_foreach_unlocked(zone_alloc_sysctl, NULL); 2937 callout_init(&uma_callout, 1); 2938 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 2939 booted = BOOT_RUNNING; 2940 2941 EVENTHANDLER_REGISTER(shutdown_post_sync, uma_shutdown, NULL, 2942 EVENTHANDLER_PRI_FIRST); 2943 } 2944 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 2945 2946 static void 2947 uma_shutdown(void) 2948 { 2949 2950 booted = BOOT_SHUTDOWN; 2951 } 2952 2953 static uma_keg_t 2954 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 2955 int align, uint32_t flags) 2956 { 2957 struct uma_kctor_args args; 2958 2959 args.size = size; 2960 args.uminit = uminit; 2961 args.fini = fini; 2962 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 2963 args.flags = flags; 2964 args.zone = zone; 2965 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 2966 } 2967 2968 /* Public functions */ 2969 /* See uma.h */ 2970 void 2971 uma_set_align(int align) 2972 { 2973 2974 if (align != UMA_ALIGN_CACHE) 2975 uma_align_cache = align; 2976 } 2977 2978 /* See uma.h */ 2979 uma_zone_t 2980 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 2981 uma_init uminit, uma_fini fini, int align, uint32_t flags) 2982 2983 { 2984 struct uma_zctor_args args; 2985 uma_zone_t res; 2986 2987 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 2988 align, name)); 2989 2990 /* This stuff is essential for the zone ctor */ 2991 memset(&args, 0, sizeof(args)); 2992 args.name = name; 2993 args.size = size; 2994 args.ctor = ctor; 2995 args.dtor = dtor; 2996 args.uminit = uminit; 2997 args.fini = fini; 2998 #ifdef INVARIANTS 2999 /* 3000 * Inject procedures which check for memory use after free if we are 3001 * allowed to scramble the memory while it is not allocated. This 3002 * requires that: UMA is actually able to access the memory, no init 3003 * or fini procedures, no dependency on the initial value of the 3004 * memory, and no (legitimate) use of the memory after free. Note, 3005 * the ctor and dtor do not need to be empty. 3006 */ 3007 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOTOUCH | 3008 UMA_ZONE_NOFREE))) && uminit == NULL && fini == NULL) { 3009 args.uminit = trash_init; 3010 args.fini = trash_fini; 3011 } 3012 #endif 3013 args.align = align; 3014 args.flags = flags; 3015 args.keg = NULL; 3016 3017 sx_slock(&uma_reclaim_lock); 3018 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 3019 sx_sunlock(&uma_reclaim_lock); 3020 3021 return (res); 3022 } 3023 3024 /* See uma.h */ 3025 uma_zone_t 3026 uma_zsecond_create(const char *name, uma_ctor ctor, uma_dtor dtor, 3027 uma_init zinit, uma_fini zfini, uma_zone_t primary) 3028 { 3029 struct uma_zctor_args args; 3030 uma_keg_t keg; 3031 uma_zone_t res; 3032 3033 keg = primary->uz_keg; 3034 memset(&args, 0, sizeof(args)); 3035 args.name = name; 3036 args.size = keg->uk_size; 3037 args.ctor = ctor; 3038 args.dtor = dtor; 3039 args.uminit = zinit; 3040 args.fini = zfini; 3041 args.align = keg->uk_align; 3042 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 3043 args.keg = keg; 3044 3045 sx_slock(&uma_reclaim_lock); 3046 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 3047 sx_sunlock(&uma_reclaim_lock); 3048 3049 return (res); 3050 } 3051 3052 /* See uma.h */ 3053 uma_zone_t 3054 uma_zcache_create(const char *name, int size, uma_ctor ctor, uma_dtor dtor, 3055 uma_init zinit, uma_fini zfini, uma_import zimport, uma_release zrelease, 3056 void *arg, int flags) 3057 { 3058 struct uma_zctor_args args; 3059 3060 memset(&args, 0, sizeof(args)); 3061 args.name = name; 3062 args.size = size; 3063 args.ctor = ctor; 3064 args.dtor = dtor; 3065 args.uminit = zinit; 3066 args.fini = zfini; 3067 args.import = zimport; 3068 args.release = zrelease; 3069 args.arg = arg; 3070 args.align = 0; 3071 args.flags = flags | UMA_ZFLAG_CACHE; 3072 3073 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 3074 } 3075 3076 /* See uma.h */ 3077 void 3078 uma_zdestroy(uma_zone_t zone) 3079 { 3080 3081 /* 3082 * Large slabs are expensive to reclaim, so don't bother doing 3083 * unnecessary work if we're shutting down. 3084 */ 3085 if (booted == BOOT_SHUTDOWN && 3086 zone->uz_fini == NULL && zone->uz_release == zone_release) 3087 return; 3088 sx_slock(&uma_reclaim_lock); 3089 zone_free_item(zones, zone, NULL, SKIP_NONE); 3090 sx_sunlock(&uma_reclaim_lock); 3091 } 3092 3093 void 3094 uma_zwait(uma_zone_t zone) 3095 { 3096 3097 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 3098 uma_zfree_smr(zone, uma_zalloc_smr(zone, M_WAITOK)); 3099 else if ((zone->uz_flags & UMA_ZONE_PCPU) != 0) 3100 uma_zfree_pcpu(zone, uma_zalloc_pcpu(zone, M_WAITOK)); 3101 else 3102 uma_zfree(zone, uma_zalloc(zone, M_WAITOK)); 3103 } 3104 3105 void * 3106 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags) 3107 { 3108 void *item, *pcpu_item; 3109 #ifdef SMP 3110 int i; 3111 3112 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 3113 #endif 3114 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO); 3115 if (item == NULL) 3116 return (NULL); 3117 pcpu_item = zpcpu_base_to_offset(item); 3118 if (flags & M_ZERO) { 3119 #ifdef SMP 3120 for (i = 0; i <= mp_maxid; i++) 3121 bzero(zpcpu_get_cpu(pcpu_item, i), zone->uz_size); 3122 #else 3123 bzero(item, zone->uz_size); 3124 #endif 3125 } 3126 return (pcpu_item); 3127 } 3128 3129 /* 3130 * A stub while both regular and pcpu cases are identical. 3131 */ 3132 void 3133 uma_zfree_pcpu_arg(uma_zone_t zone, void *pcpu_item, void *udata) 3134 { 3135 void *item; 3136 3137 #ifdef SMP 3138 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 3139 #endif 3140 item = zpcpu_offset_to_base(pcpu_item); 3141 uma_zfree_arg(zone, item, udata); 3142 } 3143 3144 static inline void * 3145 item_ctor(uma_zone_t zone, int uz_flags, int size, void *udata, int flags, 3146 void *item) 3147 { 3148 #ifdef INVARIANTS 3149 bool skipdbg; 3150 3151 skipdbg = uma_dbg_zskip(zone, item); 3152 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 3153 zone->uz_ctor != trash_ctor) 3154 trash_ctor(item, size, udata, flags); 3155 #endif 3156 /* Check flags before loading ctor pointer. */ 3157 if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0) && 3158 __predict_false(zone->uz_ctor != NULL) && 3159 zone->uz_ctor(item, size, udata, flags) != 0) { 3160 counter_u64_add(zone->uz_fails, 1); 3161 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT); 3162 return (NULL); 3163 } 3164 #ifdef INVARIANTS 3165 if (!skipdbg) 3166 uma_dbg_alloc(zone, NULL, item); 3167 #endif 3168 if (__predict_false(flags & M_ZERO)) 3169 return (memset(item, 0, size)); 3170 3171 return (item); 3172 } 3173 3174 static inline void 3175 item_dtor(uma_zone_t zone, void *item, int size, void *udata, 3176 enum zfreeskip skip) 3177 { 3178 #ifdef INVARIANTS 3179 bool skipdbg; 3180 3181 skipdbg = uma_dbg_zskip(zone, item); 3182 if (skip == SKIP_NONE && !skipdbg) { 3183 if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0) 3184 uma_dbg_free(zone, udata, item); 3185 else 3186 uma_dbg_free(zone, NULL, item); 3187 } 3188 #endif 3189 if (__predict_true(skip < SKIP_DTOR)) { 3190 if (zone->uz_dtor != NULL) 3191 zone->uz_dtor(item, size, udata); 3192 #ifdef INVARIANTS 3193 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 3194 zone->uz_dtor != trash_dtor) 3195 trash_dtor(item, size, udata); 3196 #endif 3197 } 3198 } 3199 3200 #ifdef NUMA 3201 static int 3202 item_domain(void *item) 3203 { 3204 int domain; 3205 3206 domain = _vm_phys_domain(vtophys(item)); 3207 KASSERT(domain >= 0 && domain < vm_ndomains, 3208 ("%s: unknown domain for item %p", __func__, item)); 3209 return (domain); 3210 } 3211 #endif 3212 3213 #if defined(INVARIANTS) || defined(DEBUG_MEMGUARD) || defined(WITNESS) 3214 #define UMA_ZALLOC_DEBUG 3215 static int 3216 uma_zalloc_debug(uma_zone_t zone, void **itemp, void *udata, int flags) 3217 { 3218 int error; 3219 3220 error = 0; 3221 #ifdef WITNESS 3222 if (flags & M_WAITOK) { 3223 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3224 "uma_zalloc_debug: zone \"%s\"", zone->uz_name); 3225 } 3226 #endif 3227 3228 #ifdef INVARIANTS 3229 KASSERT((flags & M_EXEC) == 0, 3230 ("uma_zalloc_debug: called with M_EXEC")); 3231 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3232 ("uma_zalloc_debug: called within spinlock or critical section")); 3233 KASSERT((zone->uz_flags & UMA_ZONE_PCPU) == 0 || (flags & M_ZERO) == 0, 3234 ("uma_zalloc_debug: allocating from a pcpu zone with M_ZERO")); 3235 #endif 3236 3237 #ifdef DEBUG_MEMGUARD 3238 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && memguard_cmp_zone(zone)) { 3239 void *item; 3240 item = memguard_alloc(zone->uz_size, flags); 3241 if (item != NULL) { 3242 error = EJUSTRETURN; 3243 if (zone->uz_init != NULL && 3244 zone->uz_init(item, zone->uz_size, flags) != 0) { 3245 *itemp = NULL; 3246 return (error); 3247 } 3248 if (zone->uz_ctor != NULL && 3249 zone->uz_ctor(item, zone->uz_size, udata, 3250 flags) != 0) { 3251 counter_u64_add(zone->uz_fails, 1); 3252 zone->uz_fini(item, zone->uz_size); 3253 *itemp = NULL; 3254 return (error); 3255 } 3256 *itemp = item; 3257 return (error); 3258 } 3259 /* This is unfortunate but should not be fatal. */ 3260 } 3261 #endif 3262 return (error); 3263 } 3264 3265 static int 3266 uma_zfree_debug(uma_zone_t zone, void *item, void *udata) 3267 { 3268 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3269 ("uma_zfree_debug: called with spinlock or critical section held")); 3270 3271 #ifdef DEBUG_MEMGUARD 3272 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && is_memguard_addr(item)) { 3273 if (zone->uz_dtor != NULL) 3274 zone->uz_dtor(item, zone->uz_size, udata); 3275 if (zone->uz_fini != NULL) 3276 zone->uz_fini(item, zone->uz_size); 3277 memguard_free(item); 3278 return (EJUSTRETURN); 3279 } 3280 #endif 3281 return (0); 3282 } 3283 #endif 3284 3285 static inline void * 3286 cache_alloc_item(uma_zone_t zone, uma_cache_t cache, uma_cache_bucket_t bucket, 3287 void *udata, int flags) 3288 { 3289 void *item; 3290 int size, uz_flags; 3291 3292 item = cache_bucket_pop(cache, bucket); 3293 size = cache_uz_size(cache); 3294 uz_flags = cache_uz_flags(cache); 3295 critical_exit(); 3296 return (item_ctor(zone, uz_flags, size, udata, flags, item)); 3297 } 3298 3299 static __noinline void * 3300 cache_alloc_retry(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3301 { 3302 uma_cache_bucket_t bucket; 3303 int domain; 3304 3305 while (cache_alloc(zone, cache, udata, flags)) { 3306 cache = &zone->uz_cpu[curcpu]; 3307 bucket = &cache->uc_allocbucket; 3308 if (__predict_false(bucket->ucb_cnt == 0)) 3309 continue; 3310 return (cache_alloc_item(zone, cache, bucket, udata, flags)); 3311 } 3312 critical_exit(); 3313 3314 /* 3315 * We can not get a bucket so try to return a single item. 3316 */ 3317 if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH) 3318 domain = PCPU_GET(domain); 3319 else 3320 domain = UMA_ANYDOMAIN; 3321 return (zone_alloc_item(zone, udata, domain, flags)); 3322 } 3323 3324 /* See uma.h */ 3325 void * 3326 uma_zalloc_smr(uma_zone_t zone, int flags) 3327 { 3328 uma_cache_bucket_t bucket; 3329 uma_cache_t cache; 3330 3331 #ifdef UMA_ZALLOC_DEBUG 3332 void *item; 3333 3334 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 3335 ("uma_zalloc_arg: called with non-SMR zone.\n")); 3336 if (uma_zalloc_debug(zone, &item, NULL, flags) == EJUSTRETURN) 3337 return (item); 3338 #endif 3339 3340 critical_enter(); 3341 cache = &zone->uz_cpu[curcpu]; 3342 bucket = &cache->uc_allocbucket; 3343 if (__predict_false(bucket->ucb_cnt == 0)) 3344 return (cache_alloc_retry(zone, cache, NULL, flags)); 3345 return (cache_alloc_item(zone, cache, bucket, NULL, flags)); 3346 } 3347 3348 /* See uma.h */ 3349 void * 3350 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 3351 { 3352 uma_cache_bucket_t bucket; 3353 uma_cache_t cache; 3354 3355 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3356 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3357 3358 /* This is the fast path allocation */ 3359 CTR3(KTR_UMA, "uma_zalloc_arg zone %s(%p) flags %d", zone->uz_name, 3360 zone, flags); 3361 3362 #ifdef UMA_ZALLOC_DEBUG 3363 void *item; 3364 3365 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 3366 ("uma_zalloc_arg: called with SMR zone.\n")); 3367 if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN) 3368 return (item); 3369 #endif 3370 3371 /* 3372 * If possible, allocate from the per-CPU cache. There are two 3373 * requirements for safe access to the per-CPU cache: (1) the thread 3374 * accessing the cache must not be preempted or yield during access, 3375 * and (2) the thread must not migrate CPUs without switching which 3376 * cache it accesses. We rely on a critical section to prevent 3377 * preemption and migration. We release the critical section in 3378 * order to acquire the zone mutex if we are unable to allocate from 3379 * the current cache; when we re-acquire the critical section, we 3380 * must detect and handle migration if it has occurred. 3381 */ 3382 critical_enter(); 3383 cache = &zone->uz_cpu[curcpu]; 3384 bucket = &cache->uc_allocbucket; 3385 if (__predict_false(bucket->ucb_cnt == 0)) 3386 return (cache_alloc_retry(zone, cache, udata, flags)); 3387 return (cache_alloc_item(zone, cache, bucket, udata, flags)); 3388 } 3389 3390 /* 3391 * Replenish an alloc bucket and possibly restore an old one. Called in 3392 * a critical section. Returns in a critical section. 3393 * 3394 * A false return value indicates an allocation failure. 3395 * A true return value indicates success and the caller should retry. 3396 */ 3397 static __noinline bool 3398 cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3399 { 3400 uma_bucket_t bucket; 3401 int curdomain, domain; 3402 bool new; 3403 3404 CRITICAL_ASSERT(curthread); 3405 3406 /* 3407 * If we have run out of items in our alloc bucket see 3408 * if we can switch with the free bucket. 3409 * 3410 * SMR Zones can't re-use the free bucket until the sequence has 3411 * expired. 3412 */ 3413 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) == 0 && 3414 cache->uc_freebucket.ucb_cnt != 0) { 3415 cache_bucket_swap(&cache->uc_freebucket, 3416 &cache->uc_allocbucket); 3417 return (true); 3418 } 3419 3420 /* 3421 * Discard any empty allocation bucket while we hold no locks. 3422 */ 3423 bucket = cache_bucket_unload_alloc(cache); 3424 critical_exit(); 3425 3426 if (bucket != NULL) { 3427 KASSERT(bucket->ub_cnt == 0, 3428 ("cache_alloc: Entered with non-empty alloc bucket.")); 3429 bucket_free(zone, bucket, udata); 3430 } 3431 3432 /* Short-circuit for zones without buckets and low memory. */ 3433 if (zone->uz_bucket_size == 0 || bucketdisable) { 3434 critical_enter(); 3435 return (false); 3436 } 3437 3438 /* 3439 * Attempt to retrieve the item from the per-CPU cache has failed, so 3440 * we must go back to the zone. This requires the zdom lock, so we 3441 * must drop the critical section, then re-acquire it when we go back 3442 * to the cache. Since the critical section is released, we may be 3443 * preempted or migrate. As such, make sure not to maintain any 3444 * thread-local state specific to the cache from prior to releasing 3445 * the critical section. 3446 */ 3447 domain = PCPU_GET(domain); 3448 if ((cache_uz_flags(cache) & UMA_ZONE_ROUNDROBIN) != 0 || 3449 VM_DOMAIN_EMPTY(domain)) 3450 domain = zone_domain_highest(zone, domain); 3451 bucket = cache_fetch_bucket(zone, cache, domain); 3452 if (bucket == NULL) { 3453 bucket = zone_alloc_bucket(zone, udata, domain, flags); 3454 new = true; 3455 } else 3456 new = false; 3457 3458 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 3459 zone->uz_name, zone, bucket); 3460 if (bucket == NULL) { 3461 critical_enter(); 3462 return (false); 3463 } 3464 3465 /* 3466 * See if we lost the race or were migrated. Cache the 3467 * initialized bucket to make this less likely or claim 3468 * the memory directly. 3469 */ 3470 critical_enter(); 3471 cache = &zone->uz_cpu[curcpu]; 3472 if (cache->uc_allocbucket.ucb_bucket == NULL && 3473 ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) == 0 || 3474 (curdomain = PCPU_GET(domain)) == domain || 3475 VM_DOMAIN_EMPTY(curdomain))) { 3476 if (new) 3477 atomic_add_long(&ZDOM_GET(zone, domain)->uzd_imax, 3478 bucket->ub_cnt); 3479 cache_bucket_load_alloc(cache, bucket); 3480 return (true); 3481 } 3482 3483 /* 3484 * We lost the race, release this bucket and start over. 3485 */ 3486 critical_exit(); 3487 zone_put_bucket(zone, domain, bucket, udata, false); 3488 critical_enter(); 3489 3490 return (true); 3491 } 3492 3493 void * 3494 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 3495 { 3496 3497 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3498 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3499 3500 /* This is the fast path allocation */ 3501 CTR4(KTR_UMA, "uma_zalloc_domain zone %s(%p) domain %d flags %d", 3502 zone->uz_name, zone, domain, flags); 3503 3504 if (flags & M_WAITOK) { 3505 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3506 "uma_zalloc_domain: zone \"%s\"", zone->uz_name); 3507 } 3508 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3509 ("uma_zalloc_domain: called with spinlock or critical section held")); 3510 3511 return (zone_alloc_item(zone, udata, domain, flags)); 3512 } 3513 3514 /* 3515 * Find a slab with some space. Prefer slabs that are partially used over those 3516 * that are totally full. This helps to reduce fragmentation. 3517 * 3518 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 3519 * only 'domain'. 3520 */ 3521 static uma_slab_t 3522 keg_first_slab(uma_keg_t keg, int domain, bool rr) 3523 { 3524 uma_domain_t dom; 3525 uma_slab_t slab; 3526 int start; 3527 3528 KASSERT(domain >= 0 && domain < vm_ndomains, 3529 ("keg_first_slab: domain %d out of range", domain)); 3530 KEG_LOCK_ASSERT(keg, domain); 3531 3532 slab = NULL; 3533 start = domain; 3534 do { 3535 dom = &keg->uk_domain[domain]; 3536 if ((slab = LIST_FIRST(&dom->ud_part_slab)) != NULL) 3537 return (slab); 3538 if ((slab = LIST_FIRST(&dom->ud_free_slab)) != NULL) { 3539 LIST_REMOVE(slab, us_link); 3540 dom->ud_free_slabs--; 3541 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3542 return (slab); 3543 } 3544 if (rr) 3545 domain = (domain + 1) % vm_ndomains; 3546 } while (domain != start); 3547 3548 return (NULL); 3549 } 3550 3551 /* 3552 * Fetch an existing slab from a free or partial list. Returns with the 3553 * keg domain lock held if a slab was found or unlocked if not. 3554 */ 3555 static uma_slab_t 3556 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags) 3557 { 3558 uma_slab_t slab; 3559 uint32_t reserve; 3560 3561 /* HASH has a single free list. */ 3562 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 3563 domain = 0; 3564 3565 KEG_LOCK(keg, domain); 3566 reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve; 3567 if (keg->uk_domain[domain].ud_free_items <= reserve || 3568 (slab = keg_first_slab(keg, domain, rr)) == NULL) { 3569 KEG_UNLOCK(keg, domain); 3570 return (NULL); 3571 } 3572 return (slab); 3573 } 3574 3575 static uma_slab_t 3576 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags) 3577 { 3578 struct vm_domainset_iter di; 3579 uma_slab_t slab; 3580 int aflags, domain; 3581 bool rr; 3582 3583 restart: 3584 /* 3585 * Use the keg's policy if upper layers haven't already specified a 3586 * domain (as happens with first-touch zones). 3587 * 3588 * To avoid races we run the iterator with the keg lock held, but that 3589 * means that we cannot allow the vm_domainset layer to sleep. Thus, 3590 * clear M_WAITOK and handle low memory conditions locally. 3591 */ 3592 rr = rdomain == UMA_ANYDOMAIN; 3593 if (rr) { 3594 aflags = (flags & ~M_WAITOK) | M_NOWAIT; 3595 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 3596 &aflags); 3597 } else { 3598 aflags = flags; 3599 domain = rdomain; 3600 } 3601 3602 for (;;) { 3603 slab = keg_fetch_free_slab(keg, domain, rr, flags); 3604 if (slab != NULL) 3605 return (slab); 3606 3607 /* 3608 * M_NOVM means don't ask at all! 3609 */ 3610 if (flags & M_NOVM) 3611 break; 3612 3613 slab = keg_alloc_slab(keg, zone, domain, flags, aflags); 3614 if (slab != NULL) 3615 return (slab); 3616 if (!rr && (flags & M_WAITOK) == 0) 3617 break; 3618 if (rr && vm_domainset_iter_policy(&di, &domain) != 0) { 3619 if ((flags & M_WAITOK) != 0) { 3620 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask); 3621 goto restart; 3622 } 3623 break; 3624 } 3625 } 3626 3627 /* 3628 * We might not have been able to get a slab but another cpu 3629 * could have while we were unlocked. Check again before we 3630 * fail. 3631 */ 3632 if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL) 3633 return (slab); 3634 3635 return (NULL); 3636 } 3637 3638 static void * 3639 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 3640 { 3641 uma_domain_t dom; 3642 void *item; 3643 int freei; 3644 3645 KEG_LOCK_ASSERT(keg, slab->us_domain); 3646 3647 dom = &keg->uk_domain[slab->us_domain]; 3648 freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1; 3649 BIT_CLR(keg->uk_ipers, freei, &slab->us_free); 3650 item = slab_item(slab, keg, freei); 3651 slab->us_freecount--; 3652 dom->ud_free_items--; 3653 3654 /* 3655 * Move this slab to the full list. It must be on the partial list, so 3656 * we do not need to update the free slab count. In particular, 3657 * keg_fetch_slab() always returns slabs on the partial list. 3658 */ 3659 if (slab->us_freecount == 0) { 3660 LIST_REMOVE(slab, us_link); 3661 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 3662 } 3663 3664 return (item); 3665 } 3666 3667 static int 3668 zone_import(void *arg, void **bucket, int max, int domain, int flags) 3669 { 3670 uma_domain_t dom; 3671 uma_zone_t zone; 3672 uma_slab_t slab; 3673 uma_keg_t keg; 3674 #ifdef NUMA 3675 int stripe; 3676 #endif 3677 int i; 3678 3679 zone = arg; 3680 slab = NULL; 3681 keg = zone->uz_keg; 3682 /* Try to keep the buckets totally full */ 3683 for (i = 0; i < max; ) { 3684 if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL) 3685 break; 3686 #ifdef NUMA 3687 stripe = howmany(max, vm_ndomains); 3688 #endif 3689 dom = &keg->uk_domain[slab->us_domain]; 3690 while (slab->us_freecount && i < max) { 3691 bucket[i++] = slab_alloc_item(keg, slab); 3692 if (dom->ud_free_items <= keg->uk_reserve) 3693 break; 3694 #ifdef NUMA 3695 /* 3696 * If the zone is striped we pick a new slab for every 3697 * N allocations. Eliminating this conditional will 3698 * instead pick a new domain for each bucket rather 3699 * than stripe within each bucket. The current option 3700 * produces more fragmentation and requires more cpu 3701 * time but yields better distribution. 3702 */ 3703 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0 && 3704 vm_ndomains > 1 && --stripe == 0) 3705 break; 3706 #endif 3707 } 3708 KEG_UNLOCK(keg, slab->us_domain); 3709 /* Don't block if we allocated any successfully. */ 3710 flags &= ~M_WAITOK; 3711 flags |= M_NOWAIT; 3712 } 3713 3714 return i; 3715 } 3716 3717 static int 3718 zone_alloc_limit_hard(uma_zone_t zone, int count, int flags) 3719 { 3720 uint64_t old, new, total, max; 3721 3722 /* 3723 * The hard case. We're going to sleep because there were existing 3724 * sleepers or because we ran out of items. This routine enforces 3725 * fairness by keeping fifo order. 3726 * 3727 * First release our ill gotten gains and make some noise. 3728 */ 3729 for (;;) { 3730 zone_free_limit(zone, count); 3731 zone_log_warning(zone); 3732 zone_maxaction(zone); 3733 if (flags & M_NOWAIT) 3734 return (0); 3735 3736 /* 3737 * We need to allocate an item or set ourself as a sleeper 3738 * while the sleepq lock is held to avoid wakeup races. This 3739 * is essentially a home rolled semaphore. 3740 */ 3741 sleepq_lock(&zone->uz_max_items); 3742 old = zone->uz_items; 3743 do { 3744 MPASS(UZ_ITEMS_SLEEPERS(old) < UZ_ITEMS_SLEEPERS_MAX); 3745 /* Cache the max since we will evaluate twice. */ 3746 max = zone->uz_max_items; 3747 if (UZ_ITEMS_SLEEPERS(old) != 0 || 3748 UZ_ITEMS_COUNT(old) >= max) 3749 new = old + UZ_ITEMS_SLEEPER; 3750 else 3751 new = old + MIN(count, max - old); 3752 } while (atomic_fcmpset_64(&zone->uz_items, &old, new) == 0); 3753 3754 /* We may have successfully allocated under the sleepq lock. */ 3755 if (UZ_ITEMS_SLEEPERS(new) == 0) { 3756 sleepq_release(&zone->uz_max_items); 3757 return (new - old); 3758 } 3759 3760 /* 3761 * This is in a different cacheline from uz_items so that we 3762 * don't constantly invalidate the fastpath cacheline when we 3763 * adjust item counts. This could be limited to toggling on 3764 * transitions. 3765 */ 3766 atomic_add_32(&zone->uz_sleepers, 1); 3767 atomic_add_64(&zone->uz_sleeps, 1); 3768 3769 /* 3770 * We have added ourselves as a sleeper. The sleepq lock 3771 * protects us from wakeup races. Sleep now and then retry. 3772 */ 3773 sleepq_add(&zone->uz_max_items, NULL, "zonelimit", 0, 0); 3774 sleepq_wait(&zone->uz_max_items, PVM); 3775 3776 /* 3777 * After wakeup, remove ourselves as a sleeper and try 3778 * again. We no longer have the sleepq lock for protection. 3779 * 3780 * Subract ourselves as a sleeper while attempting to add 3781 * our count. 3782 */ 3783 atomic_subtract_32(&zone->uz_sleepers, 1); 3784 old = atomic_fetchadd_64(&zone->uz_items, 3785 -(UZ_ITEMS_SLEEPER - count)); 3786 /* We're no longer a sleeper. */ 3787 old -= UZ_ITEMS_SLEEPER; 3788 3789 /* 3790 * If we're still at the limit, restart. Notably do not 3791 * block on other sleepers. Cache the max value to protect 3792 * against changes via sysctl. 3793 */ 3794 total = UZ_ITEMS_COUNT(old); 3795 max = zone->uz_max_items; 3796 if (total >= max) 3797 continue; 3798 /* Truncate if necessary, otherwise wake other sleepers. */ 3799 if (total + count > max) { 3800 zone_free_limit(zone, total + count - max); 3801 count = max - total; 3802 } else if (total + count < max && UZ_ITEMS_SLEEPERS(old) != 0) 3803 wakeup_one(&zone->uz_max_items); 3804 3805 return (count); 3806 } 3807 } 3808 3809 /* 3810 * Allocate 'count' items from our max_items limit. Returns the number 3811 * available. If M_NOWAIT is not specified it will sleep until at least 3812 * one item can be allocated. 3813 */ 3814 static int 3815 zone_alloc_limit(uma_zone_t zone, int count, int flags) 3816 { 3817 uint64_t old; 3818 uint64_t max; 3819 3820 max = zone->uz_max_items; 3821 MPASS(max > 0); 3822 3823 /* 3824 * We expect normal allocations to succeed with a simple 3825 * fetchadd. 3826 */ 3827 old = atomic_fetchadd_64(&zone->uz_items, count); 3828 if (__predict_true(old + count <= max)) 3829 return (count); 3830 3831 /* 3832 * If we had some items and no sleepers just return the 3833 * truncated value. We have to release the excess space 3834 * though because that may wake sleepers who weren't woken 3835 * because we were temporarily over the limit. 3836 */ 3837 if (old < max) { 3838 zone_free_limit(zone, (old + count) - max); 3839 return (max - old); 3840 } 3841 return (zone_alloc_limit_hard(zone, count, flags)); 3842 } 3843 3844 /* 3845 * Free a number of items back to the limit. 3846 */ 3847 static void 3848 zone_free_limit(uma_zone_t zone, int count) 3849 { 3850 uint64_t old; 3851 3852 MPASS(count > 0); 3853 3854 /* 3855 * In the common case we either have no sleepers or 3856 * are still over the limit and can just return. 3857 */ 3858 old = atomic_fetchadd_64(&zone->uz_items, -count); 3859 if (__predict_true(UZ_ITEMS_SLEEPERS(old) == 0 || 3860 UZ_ITEMS_COUNT(old) - count >= zone->uz_max_items)) 3861 return; 3862 3863 /* 3864 * Moderate the rate of wakeups. Sleepers will continue 3865 * to generate wakeups if necessary. 3866 */ 3867 wakeup_one(&zone->uz_max_items); 3868 } 3869 3870 static uma_bucket_t 3871 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags) 3872 { 3873 uma_bucket_t bucket; 3874 int maxbucket, cnt; 3875 3876 CTR3(KTR_UMA, "zone_alloc_bucket zone %s(%p) domain %d", zone->uz_name, 3877 zone, domain); 3878 3879 /* Avoid allocs targeting empty domains. */ 3880 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 3881 domain = UMA_ANYDOMAIN; 3882 else if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) 3883 domain = UMA_ANYDOMAIN; 3884 3885 if (zone->uz_max_items > 0) 3886 maxbucket = zone_alloc_limit(zone, zone->uz_bucket_size, 3887 M_NOWAIT); 3888 else 3889 maxbucket = zone->uz_bucket_size; 3890 if (maxbucket == 0) 3891 return (false); 3892 3893 /* Don't wait for buckets, preserve caller's NOVM setting. */ 3894 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 3895 if (bucket == NULL) { 3896 cnt = 0; 3897 goto out; 3898 } 3899 3900 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 3901 MIN(maxbucket, bucket->ub_entries), domain, flags); 3902 3903 /* 3904 * Initialize the memory if necessary. 3905 */ 3906 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 3907 int i; 3908 3909 for (i = 0; i < bucket->ub_cnt; i++) 3910 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 3911 flags) != 0) 3912 break; 3913 /* 3914 * If we couldn't initialize the whole bucket, put the 3915 * rest back onto the freelist. 3916 */ 3917 if (i != bucket->ub_cnt) { 3918 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 3919 bucket->ub_cnt - i); 3920 #ifdef INVARIANTS 3921 bzero(&bucket->ub_bucket[i], 3922 sizeof(void *) * (bucket->ub_cnt - i)); 3923 #endif 3924 bucket->ub_cnt = i; 3925 } 3926 } 3927 3928 cnt = bucket->ub_cnt; 3929 if (bucket->ub_cnt == 0) { 3930 bucket_free(zone, bucket, udata); 3931 counter_u64_add(zone->uz_fails, 1); 3932 bucket = NULL; 3933 } 3934 out: 3935 if (zone->uz_max_items > 0 && cnt < maxbucket) 3936 zone_free_limit(zone, maxbucket - cnt); 3937 3938 return (bucket); 3939 } 3940 3941 /* 3942 * Allocates a single item from a zone. 3943 * 3944 * Arguments 3945 * zone The zone to alloc for. 3946 * udata The data to be passed to the constructor. 3947 * domain The domain to allocate from or UMA_ANYDOMAIN. 3948 * flags M_WAITOK, M_NOWAIT, M_ZERO. 3949 * 3950 * Returns 3951 * NULL if there is no memory and M_NOWAIT is set 3952 * An item if successful 3953 */ 3954 3955 static void * 3956 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 3957 { 3958 void *item; 3959 3960 if (zone->uz_max_items > 0 && zone_alloc_limit(zone, 1, flags) == 0) 3961 return (NULL); 3962 3963 /* Avoid allocs targeting empty domains. */ 3964 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 3965 domain = UMA_ANYDOMAIN; 3966 3967 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 3968 goto fail_cnt; 3969 3970 /* 3971 * We have to call both the zone's init (not the keg's init) 3972 * and the zone's ctor. This is because the item is going from 3973 * a keg slab directly to the user, and the user is expecting it 3974 * to be both zone-init'd as well as zone-ctor'd. 3975 */ 3976 if (zone->uz_init != NULL) { 3977 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 3978 zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT); 3979 goto fail_cnt; 3980 } 3981 } 3982 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, flags, 3983 item); 3984 if (item == NULL) 3985 goto fail; 3986 3987 counter_u64_add(zone->uz_allocs, 1); 3988 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 3989 zone->uz_name, zone); 3990 3991 return (item); 3992 3993 fail_cnt: 3994 counter_u64_add(zone->uz_fails, 1); 3995 fail: 3996 if (zone->uz_max_items > 0) 3997 zone_free_limit(zone, 1); 3998 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 3999 zone->uz_name, zone); 4000 4001 return (NULL); 4002 } 4003 4004 /* See uma.h */ 4005 void 4006 uma_zfree_smr(uma_zone_t zone, void *item) 4007 { 4008 uma_cache_t cache; 4009 uma_cache_bucket_t bucket; 4010 int itemdomain, uz_flags; 4011 4012 #ifdef UMA_ZALLOC_DEBUG 4013 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 4014 ("uma_zfree_smr: called with non-SMR zone.\n")); 4015 KASSERT(item != NULL, ("uma_zfree_smr: Called with NULL pointer.")); 4016 SMR_ASSERT_NOT_ENTERED(zone->uz_smr); 4017 if (uma_zfree_debug(zone, item, NULL) == EJUSTRETURN) 4018 return; 4019 #endif 4020 cache = &zone->uz_cpu[curcpu]; 4021 uz_flags = cache_uz_flags(cache); 4022 itemdomain = 0; 4023 #ifdef NUMA 4024 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4025 itemdomain = item_domain(item); 4026 #endif 4027 critical_enter(); 4028 do { 4029 cache = &zone->uz_cpu[curcpu]; 4030 /* SMR Zones must free to the free bucket. */ 4031 bucket = &cache->uc_freebucket; 4032 #ifdef NUMA 4033 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4034 PCPU_GET(domain) != itemdomain) { 4035 bucket = &cache->uc_crossbucket; 4036 } 4037 #endif 4038 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 4039 cache_bucket_push(cache, bucket, item); 4040 critical_exit(); 4041 return; 4042 } 4043 } while (cache_free(zone, cache, NULL, item, itemdomain)); 4044 critical_exit(); 4045 4046 /* 4047 * If nothing else caught this, we'll just do an internal free. 4048 */ 4049 zone_free_item(zone, item, NULL, SKIP_NONE); 4050 } 4051 4052 /* See uma.h */ 4053 void 4054 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 4055 { 4056 uma_cache_t cache; 4057 uma_cache_bucket_t bucket; 4058 int itemdomain, uz_flags; 4059 4060 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 4061 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 4062 4063 CTR2(KTR_UMA, "uma_zfree_arg zone %s(%p)", zone->uz_name, zone); 4064 4065 #ifdef UMA_ZALLOC_DEBUG 4066 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 4067 ("uma_zfree_arg: called with SMR zone.\n")); 4068 if (uma_zfree_debug(zone, item, udata) == EJUSTRETURN) 4069 return; 4070 #endif 4071 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 4072 if (item == NULL) 4073 return; 4074 4075 /* 4076 * We are accessing the per-cpu cache without a critical section to 4077 * fetch size and flags. This is acceptable, if we are preempted we 4078 * will simply read another cpu's line. 4079 */ 4080 cache = &zone->uz_cpu[curcpu]; 4081 uz_flags = cache_uz_flags(cache); 4082 if (UMA_ALWAYS_CTORDTOR || 4083 __predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0)) 4084 item_dtor(zone, item, cache_uz_size(cache), udata, SKIP_NONE); 4085 4086 /* 4087 * The race here is acceptable. If we miss it we'll just have to wait 4088 * a little longer for the limits to be reset. 4089 */ 4090 if (__predict_false(uz_flags & UMA_ZFLAG_LIMIT)) { 4091 if (zone->uz_sleepers > 0) 4092 goto zfree_item; 4093 } 4094 4095 /* 4096 * If possible, free to the per-CPU cache. There are two 4097 * requirements for safe access to the per-CPU cache: (1) the thread 4098 * accessing the cache must not be preempted or yield during access, 4099 * and (2) the thread must not migrate CPUs without switching which 4100 * cache it accesses. We rely on a critical section to prevent 4101 * preemption and migration. We release the critical section in 4102 * order to acquire the zone mutex if we are unable to free to the 4103 * current cache; when we re-acquire the critical section, we must 4104 * detect and handle migration if it has occurred. 4105 */ 4106 itemdomain = 0; 4107 #ifdef NUMA 4108 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4109 itemdomain = item_domain(item); 4110 #endif 4111 critical_enter(); 4112 do { 4113 cache = &zone->uz_cpu[curcpu]; 4114 /* 4115 * Try to free into the allocbucket first to give LIFO 4116 * ordering for cache-hot datastructures. Spill over 4117 * into the freebucket if necessary. Alloc will swap 4118 * them if one runs dry. 4119 */ 4120 bucket = &cache->uc_allocbucket; 4121 #ifdef NUMA 4122 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4123 PCPU_GET(domain) != itemdomain) { 4124 bucket = &cache->uc_crossbucket; 4125 } else 4126 #endif 4127 if (bucket->ucb_cnt == bucket->ucb_entries && 4128 cache->uc_freebucket.ucb_cnt < 4129 cache->uc_freebucket.ucb_entries) 4130 cache_bucket_swap(&cache->uc_freebucket, 4131 &cache->uc_allocbucket); 4132 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 4133 cache_bucket_push(cache, bucket, item); 4134 critical_exit(); 4135 return; 4136 } 4137 } while (cache_free(zone, cache, udata, item, itemdomain)); 4138 critical_exit(); 4139 4140 /* 4141 * If nothing else caught this, we'll just do an internal free. 4142 */ 4143 zfree_item: 4144 zone_free_item(zone, item, udata, SKIP_DTOR); 4145 } 4146 4147 #ifdef NUMA 4148 /* 4149 * sort crossdomain free buckets to domain correct buckets and cache 4150 * them. 4151 */ 4152 static void 4153 zone_free_cross(uma_zone_t zone, uma_bucket_t bucket, void *udata) 4154 { 4155 struct uma_bucketlist fullbuckets; 4156 uma_zone_domain_t zdom; 4157 uma_bucket_t b; 4158 smr_seq_t seq; 4159 void *item; 4160 int domain; 4161 4162 CTR3(KTR_UMA, 4163 "uma_zfree: zone %s(%p) draining cross bucket %p", 4164 zone->uz_name, zone, bucket); 4165 4166 /* 4167 * It is possible for buckets to arrive here out of order so we fetch 4168 * the current smr seq rather than accepting the bucket's. 4169 */ 4170 seq = SMR_SEQ_INVALID; 4171 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 4172 seq = smr_advance(zone->uz_smr); 4173 4174 /* 4175 * To avoid having ndomain * ndomain buckets for sorting we have a 4176 * lock on the current crossfree bucket. A full matrix with 4177 * per-domain locking could be used if necessary. 4178 */ 4179 STAILQ_INIT(&fullbuckets); 4180 ZONE_CROSS_LOCK(zone); 4181 while (bucket->ub_cnt > 0) { 4182 item = bucket->ub_bucket[bucket->ub_cnt - 1]; 4183 domain = item_domain(item); 4184 zdom = ZDOM_GET(zone, domain); 4185 if (zdom->uzd_cross == NULL) { 4186 zdom->uzd_cross = bucket_alloc(zone, udata, M_NOWAIT); 4187 if (zdom->uzd_cross == NULL) 4188 break; 4189 } 4190 b = zdom->uzd_cross; 4191 b->ub_bucket[b->ub_cnt++] = item; 4192 b->ub_seq = seq; 4193 if (b->ub_cnt == b->ub_entries) { 4194 STAILQ_INSERT_HEAD(&fullbuckets, b, ub_link); 4195 zdom->uzd_cross = NULL; 4196 } 4197 bucket->ub_cnt--; 4198 } 4199 ZONE_CROSS_UNLOCK(zone); 4200 if (bucket->ub_cnt == 0) 4201 bucket->ub_seq = SMR_SEQ_INVALID; 4202 bucket_free(zone, bucket, udata); 4203 4204 while ((b = STAILQ_FIRST(&fullbuckets)) != NULL) { 4205 STAILQ_REMOVE_HEAD(&fullbuckets, ub_link); 4206 domain = item_domain(b->ub_bucket[0]); 4207 zone_put_bucket(zone, domain, b, udata, true); 4208 } 4209 } 4210 #endif 4211 4212 static void 4213 zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 4214 int itemdomain, bool ws) 4215 { 4216 4217 #ifdef NUMA 4218 /* 4219 * Buckets coming from the wrong domain will be entirely for the 4220 * only other domain on two domain systems. In this case we can 4221 * simply cache them. Otherwise we need to sort them back to 4222 * correct domains. 4223 */ 4224 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4225 vm_ndomains > 2 && PCPU_GET(domain) != itemdomain) { 4226 zone_free_cross(zone, bucket, udata); 4227 return; 4228 } 4229 #endif 4230 4231 /* 4232 * Attempt to save the bucket in the zone's domain bucket cache. 4233 */ 4234 CTR3(KTR_UMA, 4235 "uma_zfree: zone %s(%p) putting bucket %p on free list", 4236 zone->uz_name, zone, bucket); 4237 /* ub_cnt is pointing to the last free item */ 4238 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) 4239 itemdomain = zone_domain_lowest(zone, itemdomain); 4240 zone_put_bucket(zone, itemdomain, bucket, udata, ws); 4241 } 4242 4243 /* 4244 * Populate a free or cross bucket for the current cpu cache. Free any 4245 * existing full bucket either to the zone cache or back to the slab layer. 4246 * 4247 * Enters and returns in a critical section. false return indicates that 4248 * we can not satisfy this free in the cache layer. true indicates that 4249 * the caller should retry. 4250 */ 4251 static __noinline bool 4252 cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, void *item, 4253 int itemdomain) 4254 { 4255 uma_cache_bucket_t cbucket; 4256 uma_bucket_t newbucket, bucket; 4257 4258 CRITICAL_ASSERT(curthread); 4259 4260 if (zone->uz_bucket_size == 0) 4261 return false; 4262 4263 cache = &zone->uz_cpu[curcpu]; 4264 newbucket = NULL; 4265 4266 /* 4267 * FIRSTTOUCH domains need to free to the correct zdom. When 4268 * enabled this is the zdom of the item. The bucket is the 4269 * cross bucket if the current domain and itemdomain do not match. 4270 */ 4271 cbucket = &cache->uc_freebucket; 4272 #ifdef NUMA 4273 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { 4274 if (PCPU_GET(domain) != itemdomain) { 4275 cbucket = &cache->uc_crossbucket; 4276 if (cbucket->ucb_cnt != 0) 4277 counter_u64_add(zone->uz_xdomain, 4278 cbucket->ucb_cnt); 4279 } 4280 } 4281 #endif 4282 bucket = cache_bucket_unload(cbucket); 4283 KASSERT(bucket == NULL || bucket->ub_cnt == bucket->ub_entries, 4284 ("cache_free: Entered with non-full free bucket.")); 4285 4286 /* We are no longer associated with this CPU. */ 4287 critical_exit(); 4288 4289 /* 4290 * Don't let SMR zones operate without a free bucket. Force 4291 * a synchronize and re-use this one. We will only degrade 4292 * to a synchronize every bucket_size items rather than every 4293 * item if we fail to allocate a bucket. 4294 */ 4295 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) { 4296 if (bucket != NULL) 4297 bucket->ub_seq = smr_advance(zone->uz_smr); 4298 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4299 if (newbucket == NULL && bucket != NULL) { 4300 bucket_drain(zone, bucket); 4301 newbucket = bucket; 4302 bucket = NULL; 4303 } 4304 } else if (!bucketdisable) 4305 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4306 4307 if (bucket != NULL) 4308 zone_free_bucket(zone, bucket, udata, itemdomain, true); 4309 4310 critical_enter(); 4311 if ((bucket = newbucket) == NULL) 4312 return (false); 4313 cache = &zone->uz_cpu[curcpu]; 4314 #ifdef NUMA 4315 /* 4316 * Check to see if we should be populating the cross bucket. If it 4317 * is already populated we will fall through and attempt to populate 4318 * the free bucket. 4319 */ 4320 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { 4321 if (PCPU_GET(domain) != itemdomain && 4322 cache->uc_crossbucket.ucb_bucket == NULL) { 4323 cache_bucket_load_cross(cache, bucket); 4324 return (true); 4325 } 4326 } 4327 #endif 4328 /* 4329 * We may have lost the race to fill the bucket or switched CPUs. 4330 */ 4331 if (cache->uc_freebucket.ucb_bucket != NULL) { 4332 critical_exit(); 4333 bucket_free(zone, bucket, udata); 4334 critical_enter(); 4335 } else 4336 cache_bucket_load_free(cache, bucket); 4337 4338 return (true); 4339 } 4340 4341 void 4342 uma_zfree_domain(uma_zone_t zone, void *item, void *udata) 4343 { 4344 4345 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 4346 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 4347 4348 CTR2(KTR_UMA, "uma_zfree_domain zone %s(%p)", zone->uz_name, zone); 4349 4350 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 4351 ("uma_zfree_domain: called with spinlock or critical section held")); 4352 4353 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 4354 if (item == NULL) 4355 return; 4356 zone_free_item(zone, item, udata, SKIP_NONE); 4357 } 4358 4359 static void 4360 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item) 4361 { 4362 uma_keg_t keg; 4363 uma_domain_t dom; 4364 int freei; 4365 4366 keg = zone->uz_keg; 4367 KEG_LOCK_ASSERT(keg, slab->us_domain); 4368 4369 /* Do we need to remove from any lists? */ 4370 dom = &keg->uk_domain[slab->us_domain]; 4371 if (slab->us_freecount + 1 == keg->uk_ipers) { 4372 LIST_REMOVE(slab, us_link); 4373 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 4374 dom->ud_free_slabs++; 4375 } else if (slab->us_freecount == 0) { 4376 LIST_REMOVE(slab, us_link); 4377 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 4378 } 4379 4380 /* Slab management. */ 4381 freei = slab_item_index(slab, keg, item); 4382 BIT_SET(keg->uk_ipers, freei, &slab->us_free); 4383 slab->us_freecount++; 4384 4385 /* Keg statistics. */ 4386 dom->ud_free_items++; 4387 } 4388 4389 static void 4390 zone_release(void *arg, void **bucket, int cnt) 4391 { 4392 struct mtx *lock; 4393 uma_zone_t zone; 4394 uma_slab_t slab; 4395 uma_keg_t keg; 4396 uint8_t *mem; 4397 void *item; 4398 int i; 4399 4400 zone = arg; 4401 keg = zone->uz_keg; 4402 lock = NULL; 4403 if (__predict_false((zone->uz_flags & UMA_ZFLAG_HASH) != 0)) 4404 lock = KEG_LOCK(keg, 0); 4405 for (i = 0; i < cnt; i++) { 4406 item = bucket[i]; 4407 if (__predict_true((zone->uz_flags & UMA_ZFLAG_VTOSLAB) != 0)) { 4408 slab = vtoslab((vm_offset_t)item); 4409 } else { 4410 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 4411 if ((zone->uz_flags & UMA_ZFLAG_HASH) != 0) 4412 slab = hash_sfind(&keg->uk_hash, mem); 4413 else 4414 slab = (uma_slab_t)(mem + keg->uk_pgoff); 4415 } 4416 if (lock != KEG_LOCKPTR(keg, slab->us_domain)) { 4417 if (lock != NULL) 4418 mtx_unlock(lock); 4419 lock = KEG_LOCK(keg, slab->us_domain); 4420 } 4421 slab_free_item(zone, slab, item); 4422 } 4423 if (lock != NULL) 4424 mtx_unlock(lock); 4425 } 4426 4427 /* 4428 * Frees a single item to any zone. 4429 * 4430 * Arguments: 4431 * zone The zone to free to 4432 * item The item we're freeing 4433 * udata User supplied data for the dtor 4434 * skip Skip dtors and finis 4435 */ 4436 static __noinline void 4437 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 4438 { 4439 4440 /* 4441 * If a free is sent directly to an SMR zone we have to 4442 * synchronize immediately because the item can instantly 4443 * be reallocated. This should only happen in degenerate 4444 * cases when no memory is available for per-cpu caches. 4445 */ 4446 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && skip == SKIP_NONE) 4447 smr_synchronize(zone->uz_smr); 4448 4449 item_dtor(zone, item, zone->uz_size, udata, skip); 4450 4451 if (skip < SKIP_FINI && zone->uz_fini) 4452 zone->uz_fini(item, zone->uz_size); 4453 4454 zone->uz_release(zone->uz_arg, &item, 1); 4455 4456 if (skip & SKIP_CNT) 4457 return; 4458 4459 counter_u64_add(zone->uz_frees, 1); 4460 4461 if (zone->uz_max_items > 0) 4462 zone_free_limit(zone, 1); 4463 } 4464 4465 /* See uma.h */ 4466 int 4467 uma_zone_set_max(uma_zone_t zone, int nitems) 4468 { 4469 struct uma_bucket_zone *ubz; 4470 int count; 4471 4472 /* 4473 * XXX This can misbehave if the zone has any allocations with 4474 * no limit and a limit is imposed. There is currently no 4475 * way to clear a limit. 4476 */ 4477 ZONE_LOCK(zone); 4478 ubz = bucket_zone_max(zone, nitems); 4479 count = ubz != NULL ? ubz->ubz_entries : 0; 4480 zone->uz_bucket_size_max = zone->uz_bucket_size = count; 4481 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 4482 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 4483 zone->uz_max_items = nitems; 4484 zone->uz_flags |= UMA_ZFLAG_LIMIT; 4485 zone_update_caches(zone); 4486 /* We may need to wake waiters. */ 4487 wakeup(&zone->uz_max_items); 4488 ZONE_UNLOCK(zone); 4489 4490 return (nitems); 4491 } 4492 4493 /* See uma.h */ 4494 void 4495 uma_zone_set_maxcache(uma_zone_t zone, int nitems) 4496 { 4497 struct uma_bucket_zone *ubz; 4498 int bpcpu; 4499 4500 ZONE_LOCK(zone); 4501 ubz = bucket_zone_max(zone, nitems); 4502 if (ubz != NULL) { 4503 bpcpu = 2; 4504 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4505 /* Count the cross-domain bucket. */ 4506 bpcpu++; 4507 nitems -= ubz->ubz_entries * bpcpu * mp_ncpus; 4508 zone->uz_bucket_size_max = ubz->ubz_entries; 4509 } else { 4510 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 4511 } 4512 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 4513 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 4514 zone->uz_bucket_max = nitems / vm_ndomains; 4515 ZONE_UNLOCK(zone); 4516 } 4517 4518 /* See uma.h */ 4519 int 4520 uma_zone_get_max(uma_zone_t zone) 4521 { 4522 int nitems; 4523 4524 nitems = atomic_load_64(&zone->uz_max_items); 4525 4526 return (nitems); 4527 } 4528 4529 /* See uma.h */ 4530 void 4531 uma_zone_set_warning(uma_zone_t zone, const char *warning) 4532 { 4533 4534 ZONE_ASSERT_COLD(zone); 4535 zone->uz_warning = warning; 4536 } 4537 4538 /* See uma.h */ 4539 void 4540 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 4541 { 4542 4543 ZONE_ASSERT_COLD(zone); 4544 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 4545 } 4546 4547 /* See uma.h */ 4548 int 4549 uma_zone_get_cur(uma_zone_t zone) 4550 { 4551 int64_t nitems; 4552 u_int i; 4553 4554 nitems = 0; 4555 if (zone->uz_allocs != EARLY_COUNTER && zone->uz_frees != EARLY_COUNTER) 4556 nitems = counter_u64_fetch(zone->uz_allocs) - 4557 counter_u64_fetch(zone->uz_frees); 4558 CPU_FOREACH(i) 4559 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs) - 4560 atomic_load_64(&zone->uz_cpu[i].uc_frees); 4561 4562 return (nitems < 0 ? 0 : nitems); 4563 } 4564 4565 static uint64_t 4566 uma_zone_get_allocs(uma_zone_t zone) 4567 { 4568 uint64_t nitems; 4569 u_int i; 4570 4571 nitems = 0; 4572 if (zone->uz_allocs != EARLY_COUNTER) 4573 nitems = counter_u64_fetch(zone->uz_allocs); 4574 CPU_FOREACH(i) 4575 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs); 4576 4577 return (nitems); 4578 } 4579 4580 static uint64_t 4581 uma_zone_get_frees(uma_zone_t zone) 4582 { 4583 uint64_t nitems; 4584 u_int i; 4585 4586 nitems = 0; 4587 if (zone->uz_frees != EARLY_COUNTER) 4588 nitems = counter_u64_fetch(zone->uz_frees); 4589 CPU_FOREACH(i) 4590 nitems += atomic_load_64(&zone->uz_cpu[i].uc_frees); 4591 4592 return (nitems); 4593 } 4594 4595 #ifdef INVARIANTS 4596 /* Used only for KEG_ASSERT_COLD(). */ 4597 static uint64_t 4598 uma_keg_get_allocs(uma_keg_t keg) 4599 { 4600 uma_zone_t z; 4601 uint64_t nitems; 4602 4603 nitems = 0; 4604 LIST_FOREACH(z, &keg->uk_zones, uz_link) 4605 nitems += uma_zone_get_allocs(z); 4606 4607 return (nitems); 4608 } 4609 #endif 4610 4611 /* See uma.h */ 4612 void 4613 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 4614 { 4615 uma_keg_t keg; 4616 4617 KEG_GET(zone, keg); 4618 KEG_ASSERT_COLD(keg); 4619 keg->uk_init = uminit; 4620 } 4621 4622 /* See uma.h */ 4623 void 4624 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 4625 { 4626 uma_keg_t keg; 4627 4628 KEG_GET(zone, keg); 4629 KEG_ASSERT_COLD(keg); 4630 keg->uk_fini = fini; 4631 } 4632 4633 /* See uma.h */ 4634 void 4635 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 4636 { 4637 4638 ZONE_ASSERT_COLD(zone); 4639 zone->uz_init = zinit; 4640 } 4641 4642 /* See uma.h */ 4643 void 4644 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 4645 { 4646 4647 ZONE_ASSERT_COLD(zone); 4648 zone->uz_fini = zfini; 4649 } 4650 4651 /* See uma.h */ 4652 void 4653 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 4654 { 4655 uma_keg_t keg; 4656 4657 KEG_GET(zone, keg); 4658 KEG_ASSERT_COLD(keg); 4659 keg->uk_freef = freef; 4660 } 4661 4662 /* See uma.h */ 4663 void 4664 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 4665 { 4666 uma_keg_t keg; 4667 4668 KEG_GET(zone, keg); 4669 KEG_ASSERT_COLD(keg); 4670 keg->uk_allocf = allocf; 4671 } 4672 4673 /* See uma.h */ 4674 void 4675 uma_zone_set_smr(uma_zone_t zone, smr_t smr) 4676 { 4677 4678 ZONE_ASSERT_COLD(zone); 4679 4680 KASSERT(smr != NULL, ("Got NULL smr")); 4681 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 4682 ("zone %p (%s) already uses SMR", zone, zone->uz_name)); 4683 zone->uz_flags |= UMA_ZONE_SMR; 4684 zone->uz_smr = smr; 4685 zone_update_caches(zone); 4686 } 4687 4688 smr_t 4689 uma_zone_get_smr(uma_zone_t zone) 4690 { 4691 4692 return (zone->uz_smr); 4693 } 4694 4695 /* See uma.h */ 4696 void 4697 uma_zone_reserve(uma_zone_t zone, int items) 4698 { 4699 uma_keg_t keg; 4700 4701 KEG_GET(zone, keg); 4702 KEG_ASSERT_COLD(keg); 4703 keg->uk_reserve = items; 4704 } 4705 4706 /* See uma.h */ 4707 int 4708 uma_zone_reserve_kva(uma_zone_t zone, int count) 4709 { 4710 uma_keg_t keg; 4711 vm_offset_t kva; 4712 u_int pages; 4713 4714 KEG_GET(zone, keg); 4715 KEG_ASSERT_COLD(keg); 4716 ZONE_ASSERT_COLD(zone); 4717 4718 pages = howmany(count, keg->uk_ipers) * keg->uk_ppera; 4719 4720 #ifdef UMA_MD_SMALL_ALLOC 4721 if (keg->uk_ppera > 1) { 4722 #else 4723 if (1) { 4724 #endif 4725 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 4726 if (kva == 0) 4727 return (0); 4728 } else 4729 kva = 0; 4730 4731 MPASS(keg->uk_kva == 0); 4732 keg->uk_kva = kva; 4733 keg->uk_offset = 0; 4734 zone->uz_max_items = pages * keg->uk_ipers; 4735 #ifdef UMA_MD_SMALL_ALLOC 4736 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 4737 #else 4738 keg->uk_allocf = noobj_alloc; 4739 #endif 4740 keg->uk_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 4741 zone->uz_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 4742 zone_update_caches(zone); 4743 4744 return (1); 4745 } 4746 4747 /* See uma.h */ 4748 void 4749 uma_prealloc(uma_zone_t zone, int items) 4750 { 4751 struct vm_domainset_iter di; 4752 uma_domain_t dom; 4753 uma_slab_t slab; 4754 uma_keg_t keg; 4755 int aflags, domain, slabs; 4756 4757 KEG_GET(zone, keg); 4758 slabs = howmany(items, keg->uk_ipers); 4759 while (slabs-- > 0) { 4760 aflags = M_NOWAIT; 4761 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 4762 &aflags); 4763 for (;;) { 4764 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK, 4765 aflags); 4766 if (slab != NULL) { 4767 dom = &keg->uk_domain[slab->us_domain]; 4768 /* 4769 * keg_alloc_slab() always returns a slab on the 4770 * partial list. 4771 */ 4772 LIST_REMOVE(slab, us_link); 4773 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, 4774 us_link); 4775 dom->ud_free_slabs++; 4776 KEG_UNLOCK(keg, slab->us_domain); 4777 break; 4778 } 4779 if (vm_domainset_iter_policy(&di, &domain) != 0) 4780 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask); 4781 } 4782 } 4783 } 4784 4785 /* 4786 * Returns a snapshot of memory consumption in bytes. 4787 */ 4788 size_t 4789 uma_zone_memory(uma_zone_t zone) 4790 { 4791 size_t sz; 4792 int i; 4793 4794 sz = 0; 4795 if (zone->uz_flags & UMA_ZFLAG_CACHE) { 4796 for (i = 0; i < vm_ndomains; i++) 4797 sz += ZDOM_GET(zone, i)->uzd_nitems; 4798 return (sz * zone->uz_size); 4799 } 4800 for (i = 0; i < vm_ndomains; i++) 4801 sz += zone->uz_keg->uk_domain[i].ud_pages; 4802 4803 return (sz * PAGE_SIZE); 4804 } 4805 4806 /* See uma.h */ 4807 void 4808 uma_reclaim(int req) 4809 { 4810 4811 CTR0(KTR_UMA, "UMA: vm asked us to release pages!"); 4812 sx_xlock(&uma_reclaim_lock); 4813 bucket_enable(); 4814 4815 switch (req) { 4816 case UMA_RECLAIM_TRIM: 4817 zone_foreach(zone_trim, NULL); 4818 break; 4819 case UMA_RECLAIM_DRAIN: 4820 case UMA_RECLAIM_DRAIN_CPU: 4821 zone_foreach(zone_drain, NULL); 4822 if (req == UMA_RECLAIM_DRAIN_CPU) { 4823 pcpu_cache_drain_safe(NULL); 4824 zone_foreach(zone_drain, NULL); 4825 } 4826 break; 4827 default: 4828 panic("unhandled reclamation request %d", req); 4829 } 4830 4831 /* 4832 * Some slabs may have been freed but this zone will be visited early 4833 * we visit again so that we can free pages that are empty once other 4834 * zones are drained. We have to do the same for buckets. 4835 */ 4836 zone_drain(slabzones[0], NULL); 4837 zone_drain(slabzones[1], NULL); 4838 bucket_zone_drain(); 4839 sx_xunlock(&uma_reclaim_lock); 4840 } 4841 4842 static volatile int uma_reclaim_needed; 4843 4844 void 4845 uma_reclaim_wakeup(void) 4846 { 4847 4848 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 4849 wakeup(uma_reclaim); 4850 } 4851 4852 void 4853 uma_reclaim_worker(void *arg __unused) 4854 { 4855 4856 for (;;) { 4857 sx_xlock(&uma_reclaim_lock); 4858 while (atomic_load_int(&uma_reclaim_needed) == 0) 4859 sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl", 4860 hz); 4861 sx_xunlock(&uma_reclaim_lock); 4862 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 4863 uma_reclaim(UMA_RECLAIM_DRAIN_CPU); 4864 atomic_store_int(&uma_reclaim_needed, 0); 4865 /* Don't fire more than once per-second. */ 4866 pause("umarclslp", hz); 4867 } 4868 } 4869 4870 /* See uma.h */ 4871 void 4872 uma_zone_reclaim(uma_zone_t zone, int req) 4873 { 4874 4875 switch (req) { 4876 case UMA_RECLAIM_TRIM: 4877 zone_trim(zone, NULL); 4878 break; 4879 case UMA_RECLAIM_DRAIN: 4880 zone_drain(zone, NULL); 4881 break; 4882 case UMA_RECLAIM_DRAIN_CPU: 4883 pcpu_cache_drain_safe(zone); 4884 zone_drain(zone, NULL); 4885 break; 4886 default: 4887 panic("unhandled reclamation request %d", req); 4888 } 4889 } 4890 4891 /* See uma.h */ 4892 int 4893 uma_zone_exhausted(uma_zone_t zone) 4894 { 4895 4896 return (atomic_load_32(&zone->uz_sleepers) > 0); 4897 } 4898 4899 unsigned long 4900 uma_limit(void) 4901 { 4902 4903 return (uma_kmem_limit); 4904 } 4905 4906 void 4907 uma_set_limit(unsigned long limit) 4908 { 4909 4910 uma_kmem_limit = limit; 4911 } 4912 4913 unsigned long 4914 uma_size(void) 4915 { 4916 4917 return (atomic_load_long(&uma_kmem_total)); 4918 } 4919 4920 long 4921 uma_avail(void) 4922 { 4923 4924 return (uma_kmem_limit - uma_size()); 4925 } 4926 4927 #ifdef DDB 4928 /* 4929 * Generate statistics across both the zone and its per-cpu cache's. Return 4930 * desired statistics if the pointer is non-NULL for that statistic. 4931 * 4932 * Note: does not update the zone statistics, as it can't safely clear the 4933 * per-CPU cache statistic. 4934 * 4935 */ 4936 static void 4937 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp, 4938 uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp) 4939 { 4940 uma_cache_t cache; 4941 uint64_t allocs, frees, sleeps, xdomain; 4942 int cachefree, cpu; 4943 4944 allocs = frees = sleeps = xdomain = 0; 4945 cachefree = 0; 4946 CPU_FOREACH(cpu) { 4947 cache = &z->uz_cpu[cpu]; 4948 cachefree += cache->uc_allocbucket.ucb_cnt; 4949 cachefree += cache->uc_freebucket.ucb_cnt; 4950 xdomain += cache->uc_crossbucket.ucb_cnt; 4951 cachefree += cache->uc_crossbucket.ucb_cnt; 4952 allocs += cache->uc_allocs; 4953 frees += cache->uc_frees; 4954 } 4955 allocs += counter_u64_fetch(z->uz_allocs); 4956 frees += counter_u64_fetch(z->uz_frees); 4957 xdomain += counter_u64_fetch(z->uz_xdomain); 4958 sleeps += z->uz_sleeps; 4959 if (cachefreep != NULL) 4960 *cachefreep = cachefree; 4961 if (allocsp != NULL) 4962 *allocsp = allocs; 4963 if (freesp != NULL) 4964 *freesp = frees; 4965 if (sleepsp != NULL) 4966 *sleepsp = sleeps; 4967 if (xdomainp != NULL) 4968 *xdomainp = xdomain; 4969 } 4970 #endif /* DDB */ 4971 4972 static int 4973 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 4974 { 4975 uma_keg_t kz; 4976 uma_zone_t z; 4977 int count; 4978 4979 count = 0; 4980 rw_rlock(&uma_rwlock); 4981 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4982 LIST_FOREACH(z, &kz->uk_zones, uz_link) 4983 count++; 4984 } 4985 LIST_FOREACH(z, &uma_cachezones, uz_link) 4986 count++; 4987 4988 rw_runlock(&uma_rwlock); 4989 return (sysctl_handle_int(oidp, &count, 0, req)); 4990 } 4991 4992 static void 4993 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf, 4994 struct uma_percpu_stat *ups, bool internal) 4995 { 4996 uma_zone_domain_t zdom; 4997 uma_cache_t cache; 4998 int i; 4999 5000 5001 for (i = 0; i < vm_ndomains; i++) { 5002 zdom = ZDOM_GET(z, i); 5003 uth->uth_zone_free += zdom->uzd_nitems; 5004 } 5005 uth->uth_allocs = counter_u64_fetch(z->uz_allocs); 5006 uth->uth_frees = counter_u64_fetch(z->uz_frees); 5007 uth->uth_fails = counter_u64_fetch(z->uz_fails); 5008 uth->uth_xdomain = counter_u64_fetch(z->uz_xdomain); 5009 uth->uth_sleeps = z->uz_sleeps; 5010 5011 for (i = 0; i < mp_maxid + 1; i++) { 5012 bzero(&ups[i], sizeof(*ups)); 5013 if (internal || CPU_ABSENT(i)) 5014 continue; 5015 cache = &z->uz_cpu[i]; 5016 ups[i].ups_cache_free += cache->uc_allocbucket.ucb_cnt; 5017 ups[i].ups_cache_free += cache->uc_freebucket.ucb_cnt; 5018 ups[i].ups_cache_free += cache->uc_crossbucket.ucb_cnt; 5019 ups[i].ups_allocs = cache->uc_allocs; 5020 ups[i].ups_frees = cache->uc_frees; 5021 } 5022 } 5023 5024 static int 5025 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 5026 { 5027 struct uma_stream_header ush; 5028 struct uma_type_header uth; 5029 struct uma_percpu_stat *ups; 5030 struct sbuf sbuf; 5031 uma_keg_t kz; 5032 uma_zone_t z; 5033 uint64_t items; 5034 uint32_t kfree, pages; 5035 int count, error, i; 5036 5037 error = sysctl_wire_old_buffer(req, 0); 5038 if (error != 0) 5039 return (error); 5040 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 5041 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 5042 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 5043 5044 count = 0; 5045 rw_rlock(&uma_rwlock); 5046 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5047 LIST_FOREACH(z, &kz->uk_zones, uz_link) 5048 count++; 5049 } 5050 5051 LIST_FOREACH(z, &uma_cachezones, uz_link) 5052 count++; 5053 5054 /* 5055 * Insert stream header. 5056 */ 5057 bzero(&ush, sizeof(ush)); 5058 ush.ush_version = UMA_STREAM_VERSION; 5059 ush.ush_maxcpus = (mp_maxid + 1); 5060 ush.ush_count = count; 5061 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 5062 5063 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5064 kfree = pages = 0; 5065 for (i = 0; i < vm_ndomains; i++) { 5066 kfree += kz->uk_domain[i].ud_free_items; 5067 pages += kz->uk_domain[i].ud_pages; 5068 } 5069 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5070 bzero(&uth, sizeof(uth)); 5071 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 5072 uth.uth_align = kz->uk_align; 5073 uth.uth_size = kz->uk_size; 5074 uth.uth_rsize = kz->uk_rsize; 5075 if (z->uz_max_items > 0) { 5076 items = UZ_ITEMS_COUNT(z->uz_items); 5077 uth.uth_pages = (items / kz->uk_ipers) * 5078 kz->uk_ppera; 5079 } else 5080 uth.uth_pages = pages; 5081 uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) * 5082 kz->uk_ppera; 5083 uth.uth_limit = z->uz_max_items; 5084 uth.uth_keg_free = kfree; 5085 5086 /* 5087 * A zone is secondary is it is not the first entry 5088 * on the keg's zone list. 5089 */ 5090 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 5091 (LIST_FIRST(&kz->uk_zones) != z)) 5092 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 5093 uma_vm_zone_stats(&uth, z, &sbuf, ups, 5094 kz->uk_flags & UMA_ZFLAG_INTERNAL); 5095 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 5096 for (i = 0; i < mp_maxid + 1; i++) 5097 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 5098 } 5099 } 5100 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5101 bzero(&uth, sizeof(uth)); 5102 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 5103 uth.uth_size = z->uz_size; 5104 uma_vm_zone_stats(&uth, z, &sbuf, ups, false); 5105 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 5106 for (i = 0; i < mp_maxid + 1; i++) 5107 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 5108 } 5109 5110 rw_runlock(&uma_rwlock); 5111 error = sbuf_finish(&sbuf); 5112 sbuf_delete(&sbuf); 5113 free(ups, M_TEMP); 5114 return (error); 5115 } 5116 5117 int 5118 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 5119 { 5120 uma_zone_t zone = *(uma_zone_t *)arg1; 5121 int error, max; 5122 5123 max = uma_zone_get_max(zone); 5124 error = sysctl_handle_int(oidp, &max, 0, req); 5125 if (error || !req->newptr) 5126 return (error); 5127 5128 uma_zone_set_max(zone, max); 5129 5130 return (0); 5131 } 5132 5133 int 5134 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 5135 { 5136 uma_zone_t zone; 5137 int cur; 5138 5139 /* 5140 * Some callers want to add sysctls for global zones that 5141 * may not yet exist so they pass a pointer to a pointer. 5142 */ 5143 if (arg2 == 0) 5144 zone = *(uma_zone_t *)arg1; 5145 else 5146 zone = arg1; 5147 cur = uma_zone_get_cur(zone); 5148 return (sysctl_handle_int(oidp, &cur, 0, req)); 5149 } 5150 5151 static int 5152 sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS) 5153 { 5154 uma_zone_t zone = arg1; 5155 uint64_t cur; 5156 5157 cur = uma_zone_get_allocs(zone); 5158 return (sysctl_handle_64(oidp, &cur, 0, req)); 5159 } 5160 5161 static int 5162 sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS) 5163 { 5164 uma_zone_t zone = arg1; 5165 uint64_t cur; 5166 5167 cur = uma_zone_get_frees(zone); 5168 return (sysctl_handle_64(oidp, &cur, 0, req)); 5169 } 5170 5171 static int 5172 sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS) 5173 { 5174 struct sbuf sbuf; 5175 uma_zone_t zone = arg1; 5176 int error; 5177 5178 sbuf_new_for_sysctl(&sbuf, NULL, 0, req); 5179 if (zone->uz_flags != 0) 5180 sbuf_printf(&sbuf, "0x%b", zone->uz_flags, PRINT_UMA_ZFLAGS); 5181 else 5182 sbuf_printf(&sbuf, "0"); 5183 error = sbuf_finish(&sbuf); 5184 sbuf_delete(&sbuf); 5185 5186 return (error); 5187 } 5188 5189 static int 5190 sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS) 5191 { 5192 uma_keg_t keg = arg1; 5193 int avail, effpct, total; 5194 5195 total = keg->uk_ppera * PAGE_SIZE; 5196 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0) 5197 total += slabzone(keg->uk_ipers)->uz_keg->uk_rsize; 5198 /* 5199 * We consider the client's requested size and alignment here, not the 5200 * real size determination uk_rsize, because we also adjust the real 5201 * size for internal implementation reasons (max bitset size). 5202 */ 5203 avail = keg->uk_ipers * roundup2(keg->uk_size, keg->uk_align + 1); 5204 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 5205 avail *= mp_maxid + 1; 5206 effpct = 100 * avail / total; 5207 return (sysctl_handle_int(oidp, &effpct, 0, req)); 5208 } 5209 5210 static int 5211 sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS) 5212 { 5213 uma_zone_t zone = arg1; 5214 uint64_t cur; 5215 5216 cur = UZ_ITEMS_COUNT(atomic_load_64(&zone->uz_items)); 5217 return (sysctl_handle_64(oidp, &cur, 0, req)); 5218 } 5219 5220 #ifdef INVARIANTS 5221 static uma_slab_t 5222 uma_dbg_getslab(uma_zone_t zone, void *item) 5223 { 5224 uma_slab_t slab; 5225 uma_keg_t keg; 5226 uint8_t *mem; 5227 5228 /* 5229 * It is safe to return the slab here even though the 5230 * zone is unlocked because the item's allocation state 5231 * essentially holds a reference. 5232 */ 5233 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 5234 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5235 return (NULL); 5236 if (zone->uz_flags & UMA_ZFLAG_VTOSLAB) 5237 return (vtoslab((vm_offset_t)mem)); 5238 keg = zone->uz_keg; 5239 if ((keg->uk_flags & UMA_ZFLAG_HASH) == 0) 5240 return ((uma_slab_t)(mem + keg->uk_pgoff)); 5241 KEG_LOCK(keg, 0); 5242 slab = hash_sfind(&keg->uk_hash, mem); 5243 KEG_UNLOCK(keg, 0); 5244 5245 return (slab); 5246 } 5247 5248 static bool 5249 uma_dbg_zskip(uma_zone_t zone, void *mem) 5250 { 5251 5252 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5253 return (true); 5254 5255 return (uma_dbg_kskip(zone->uz_keg, mem)); 5256 } 5257 5258 static bool 5259 uma_dbg_kskip(uma_keg_t keg, void *mem) 5260 { 5261 uintptr_t idx; 5262 5263 if (dbg_divisor == 0) 5264 return (true); 5265 5266 if (dbg_divisor == 1) 5267 return (false); 5268 5269 idx = (uintptr_t)mem >> PAGE_SHIFT; 5270 if (keg->uk_ipers > 1) { 5271 idx *= keg->uk_ipers; 5272 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize; 5273 } 5274 5275 if ((idx / dbg_divisor) * dbg_divisor != idx) { 5276 counter_u64_add(uma_skip_cnt, 1); 5277 return (true); 5278 } 5279 counter_u64_add(uma_dbg_cnt, 1); 5280 5281 return (false); 5282 } 5283 5284 /* 5285 * Set up the slab's freei data such that uma_dbg_free can function. 5286 * 5287 */ 5288 static void 5289 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 5290 { 5291 uma_keg_t keg; 5292 int freei; 5293 5294 if (slab == NULL) { 5295 slab = uma_dbg_getslab(zone, item); 5296 if (slab == NULL) 5297 panic("uma: item %p did not belong to zone %s\n", 5298 item, zone->uz_name); 5299 } 5300 keg = zone->uz_keg; 5301 freei = slab_item_index(slab, keg, item); 5302 5303 if (BIT_ISSET(keg->uk_ipers, freei, slab_dbg_bits(slab, keg))) 5304 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n", 5305 item, zone, zone->uz_name, slab, freei); 5306 BIT_SET_ATOMIC(keg->uk_ipers, freei, slab_dbg_bits(slab, keg)); 5307 } 5308 5309 /* 5310 * Verifies freed addresses. Checks for alignment, valid slab membership 5311 * and duplicate frees. 5312 * 5313 */ 5314 static void 5315 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 5316 { 5317 uma_keg_t keg; 5318 int freei; 5319 5320 if (slab == NULL) { 5321 slab = uma_dbg_getslab(zone, item); 5322 if (slab == NULL) 5323 panic("uma: Freed item %p did not belong to zone %s\n", 5324 item, zone->uz_name); 5325 } 5326 keg = zone->uz_keg; 5327 freei = slab_item_index(slab, keg, item); 5328 5329 if (freei >= keg->uk_ipers) 5330 panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n", 5331 item, zone, zone->uz_name, slab, freei); 5332 5333 if (slab_item(slab, keg, freei) != item) 5334 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n", 5335 item, zone, zone->uz_name, slab, freei); 5336 5337 if (!BIT_ISSET(keg->uk_ipers, freei, slab_dbg_bits(slab, keg))) 5338 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n", 5339 item, zone, zone->uz_name, slab, freei); 5340 5341 BIT_CLR_ATOMIC(keg->uk_ipers, freei, slab_dbg_bits(slab, keg)); 5342 } 5343 #endif /* INVARIANTS */ 5344 5345 #ifdef DDB 5346 static int64_t 5347 get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used, 5348 uint64_t *sleeps, long *cachefree, uint64_t *xdomain) 5349 { 5350 uint64_t frees; 5351 int i; 5352 5353 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 5354 *allocs = counter_u64_fetch(z->uz_allocs); 5355 frees = counter_u64_fetch(z->uz_frees); 5356 *sleeps = z->uz_sleeps; 5357 *cachefree = 0; 5358 *xdomain = 0; 5359 } else 5360 uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps, 5361 xdomain); 5362 for (i = 0; i < vm_ndomains; i++) { 5363 *cachefree += ZDOM_GET(z, i)->uzd_nitems; 5364 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 5365 (LIST_FIRST(&kz->uk_zones) != z))) 5366 *cachefree += kz->uk_domain[i].ud_free_items; 5367 } 5368 *used = *allocs - frees; 5369 return (((int64_t)*used + *cachefree) * kz->uk_size); 5370 } 5371 5372 DB_SHOW_COMMAND(uma, db_show_uma) 5373 { 5374 const char *fmt_hdr, *fmt_entry; 5375 uma_keg_t kz; 5376 uma_zone_t z; 5377 uint64_t allocs, used, sleeps, xdomain; 5378 long cachefree; 5379 /* variables for sorting */ 5380 uma_keg_t cur_keg; 5381 uma_zone_t cur_zone, last_zone; 5382 int64_t cur_size, last_size, size; 5383 int ties; 5384 5385 /* /i option produces machine-parseable CSV output */ 5386 if (modif[0] == 'i') { 5387 fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n"; 5388 fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n"; 5389 } else { 5390 fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n"; 5391 fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n"; 5392 } 5393 5394 db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests", 5395 "Sleeps", "Bucket", "Total Mem", "XFree"); 5396 5397 /* Sort the zones with largest size first. */ 5398 last_zone = NULL; 5399 last_size = INT64_MAX; 5400 for (;;) { 5401 cur_zone = NULL; 5402 cur_size = -1; 5403 ties = 0; 5404 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5405 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5406 /* 5407 * In the case of size ties, print out zones 5408 * in the order they are encountered. That is, 5409 * when we encounter the most recently output 5410 * zone, we have already printed all preceding 5411 * ties, and we must print all following ties. 5412 */ 5413 if (z == last_zone) { 5414 ties = 1; 5415 continue; 5416 } 5417 size = get_uma_stats(kz, z, &allocs, &used, 5418 &sleeps, &cachefree, &xdomain); 5419 if (size > cur_size && size < last_size + ties) 5420 { 5421 cur_size = size; 5422 cur_zone = z; 5423 cur_keg = kz; 5424 } 5425 } 5426 } 5427 if (cur_zone == NULL) 5428 break; 5429 5430 size = get_uma_stats(cur_keg, cur_zone, &allocs, &used, 5431 &sleeps, &cachefree, &xdomain); 5432 db_printf(fmt_entry, cur_zone->uz_name, 5433 (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree, 5434 (uintmax_t)allocs, (uintmax_t)sleeps, 5435 (unsigned)cur_zone->uz_bucket_size, (intmax_t)size, 5436 xdomain); 5437 5438 if (db_pager_quit) 5439 return; 5440 last_zone = cur_zone; 5441 last_size = cur_size; 5442 } 5443 } 5444 5445 DB_SHOW_COMMAND(umacache, db_show_umacache) 5446 { 5447 uma_zone_t z; 5448 uint64_t allocs, frees; 5449 long cachefree; 5450 int i; 5451 5452 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 5453 "Requests", "Bucket"); 5454 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5455 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL); 5456 for (i = 0; i < vm_ndomains; i++) 5457 cachefree += ZDOM_GET(z, i)->uzd_nitems; 5458 db_printf("%18s %8ju %8jd %8ld %12ju %8u\n", 5459 z->uz_name, (uintmax_t)z->uz_size, 5460 (intmax_t)(allocs - frees), cachefree, 5461 (uintmax_t)allocs, z->uz_bucket_size); 5462 if (db_pager_quit) 5463 return; 5464 } 5465 } 5466 #endif /* DDB */ 5467