1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/bitset.h> 62 #include <sys/eventhandler.h> 63 #include <sys/kernel.h> 64 #include <sys/types.h> 65 #include <sys/limits.h> 66 #include <sys/queue.h> 67 #include <sys/malloc.h> 68 #include <sys/ktr.h> 69 #include <sys/lock.h> 70 #include <sys/sysctl.h> 71 #include <sys/mutex.h> 72 #include <sys/proc.h> 73 #include <sys/random.h> 74 #include <sys/rwlock.h> 75 #include <sys/sbuf.h> 76 #include <sys/sched.h> 77 #include <sys/smp.h> 78 #include <sys/taskqueue.h> 79 #include <sys/vmmeter.h> 80 81 #include <vm/vm.h> 82 #include <vm/vm_object.h> 83 #include <vm/vm_page.h> 84 #include <vm/vm_pageout.h> 85 #include <vm/vm_param.h> 86 #include <vm/vm_phys.h> 87 #include <vm/vm_map.h> 88 #include <vm/vm_kern.h> 89 #include <vm/vm_extern.h> 90 #include <vm/uma.h> 91 #include <vm/uma_int.h> 92 #include <vm/uma_dbg.h> 93 94 #include <ddb/ddb.h> 95 96 #ifdef DEBUG_MEMGUARD 97 #include <vm/memguard.h> 98 #endif 99 100 /* 101 * This is the zone and keg from which all zones are spawned. 102 */ 103 static uma_zone_t kegs; 104 static uma_zone_t zones; 105 106 /* This is the zone from which all offpage uma_slab_ts are allocated. */ 107 static uma_zone_t slabzone; 108 109 /* 110 * The initial hash tables come out of this zone so they can be allocated 111 * prior to malloc coming up. 112 */ 113 static uma_zone_t hashzone; 114 115 /* The boot-time adjusted value for cache line alignment. */ 116 int uma_align_cache = 64 - 1; 117 118 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 119 120 /* 121 * Are we allowed to allocate buckets? 122 */ 123 static int bucketdisable = 1; 124 125 /* Linked list of all kegs in the system */ 126 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 127 128 /* Linked list of all cache-only zones in the system */ 129 static LIST_HEAD(,uma_zone) uma_cachezones = 130 LIST_HEAD_INITIALIZER(uma_cachezones); 131 132 /* This RW lock protects the keg list */ 133 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 134 135 /* 136 * Pointer and counter to pool of pages, that is preallocated at 137 * startup to bootstrap UMA. 138 */ 139 static char *bootmem; 140 static int boot_pages; 141 142 static struct sx uma_drain_lock; 143 144 /* kmem soft limit. */ 145 static unsigned long uma_kmem_limit = LONG_MAX; 146 static volatile unsigned long uma_kmem_total; 147 148 /* Is the VM done starting up? */ 149 static enum { BOOT_COLD = 0, BOOT_STRAPPED, BOOT_PAGEALLOC, BOOT_BUCKETS, 150 BOOT_RUNNING } booted = BOOT_COLD; 151 152 /* 153 * This is the handle used to schedule events that need to happen 154 * outside of the allocation fast path. 155 */ 156 static struct callout uma_callout; 157 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 158 159 /* 160 * This structure is passed as the zone ctor arg so that I don't have to create 161 * a special allocation function just for zones. 162 */ 163 struct uma_zctor_args { 164 const char *name; 165 size_t size; 166 uma_ctor ctor; 167 uma_dtor dtor; 168 uma_init uminit; 169 uma_fini fini; 170 uma_import import; 171 uma_release release; 172 void *arg; 173 uma_keg_t keg; 174 int align; 175 uint32_t flags; 176 }; 177 178 struct uma_kctor_args { 179 uma_zone_t zone; 180 size_t size; 181 uma_init uminit; 182 uma_fini fini; 183 int align; 184 uint32_t flags; 185 }; 186 187 struct uma_bucket_zone { 188 uma_zone_t ubz_zone; 189 char *ubz_name; 190 int ubz_entries; /* Number of items it can hold. */ 191 int ubz_maxsize; /* Maximum allocation size per-item. */ 192 }; 193 194 /* 195 * Compute the actual number of bucket entries to pack them in power 196 * of two sizes for more efficient space utilization. 197 */ 198 #define BUCKET_SIZE(n) \ 199 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 200 201 #define BUCKET_MAX BUCKET_SIZE(256) 202 203 struct uma_bucket_zone bucket_zones[] = { 204 { NULL, "4 Bucket", BUCKET_SIZE(4), 4096 }, 205 { NULL, "6 Bucket", BUCKET_SIZE(6), 3072 }, 206 { NULL, "8 Bucket", BUCKET_SIZE(8), 2048 }, 207 { NULL, "12 Bucket", BUCKET_SIZE(12), 1536 }, 208 { NULL, "16 Bucket", BUCKET_SIZE(16), 1024 }, 209 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 210 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 211 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 212 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 213 { NULL, NULL, 0} 214 }; 215 216 /* 217 * Flags and enumerations to be passed to internal functions. 218 */ 219 enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI }; 220 221 #define UMA_ANYDOMAIN -1 /* Special value for domain search. */ 222 223 /* Prototypes.. */ 224 225 int uma_startup_count(int); 226 void uma_startup(void *, int); 227 void uma_startup1(void); 228 void uma_startup2(void); 229 230 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 231 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 232 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 233 static void page_free(void *, vm_size_t, uint8_t); 234 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int); 235 static void cache_drain(uma_zone_t); 236 static void bucket_drain(uma_zone_t, uma_bucket_t); 237 static void bucket_cache_drain(uma_zone_t zone); 238 static int keg_ctor(void *, int, void *, int); 239 static void keg_dtor(void *, int, void *); 240 static int zone_ctor(void *, int, void *, int); 241 static void zone_dtor(void *, int, void *); 242 static int zero_init(void *, int, int); 243 static void keg_small_init(uma_keg_t keg); 244 static void keg_large_init(uma_keg_t keg); 245 static void zone_foreach(void (*zfunc)(uma_zone_t)); 246 static void zone_timeout(uma_zone_t zone); 247 static int hash_alloc(struct uma_hash *); 248 static int hash_expand(struct uma_hash *, struct uma_hash *); 249 static void hash_free(struct uma_hash *hash); 250 static void uma_timeout(void *); 251 static void uma_startup3(void); 252 static void *zone_alloc_item(uma_zone_t, void *, int, int); 253 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 254 static void bucket_enable(void); 255 static void bucket_init(void); 256 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 257 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 258 static void bucket_zone_drain(void); 259 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int); 260 static uma_slab_t zone_fetch_slab(uma_zone_t, uma_keg_t, int, int); 261 static uma_slab_t zone_fetch_slab_multi(uma_zone_t, uma_keg_t, int, int); 262 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 263 static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item); 264 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 265 uma_fini fini, int align, uint32_t flags); 266 static int zone_import(uma_zone_t, void **, int, int, int); 267 static void zone_release(uma_zone_t, void **, int); 268 static void uma_zero_item(void *, uma_zone_t); 269 270 void uma_print_zone(uma_zone_t); 271 void uma_print_stats(void); 272 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 273 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 274 275 #ifdef INVARIANTS 276 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 277 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 278 #endif 279 280 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 281 282 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 283 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 284 285 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 286 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 287 288 static int zone_warnings = 1; 289 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 290 "Warn when UMA zones becomes full"); 291 292 /* Adjust bytes under management by UMA. */ 293 static inline void 294 uma_total_dec(unsigned long size) 295 { 296 297 atomic_subtract_long(&uma_kmem_total, size); 298 } 299 300 static inline void 301 uma_total_inc(unsigned long size) 302 { 303 304 if (atomic_fetchadd_long(&uma_kmem_total, size) > uma_kmem_limit) 305 uma_reclaim_wakeup(); 306 } 307 308 /* 309 * This routine checks to see whether or not it's safe to enable buckets. 310 */ 311 static void 312 bucket_enable(void) 313 { 314 bucketdisable = vm_page_count_min(); 315 } 316 317 /* 318 * Initialize bucket_zones, the array of zones of buckets of various sizes. 319 * 320 * For each zone, calculate the memory required for each bucket, consisting 321 * of the header and an array of pointers. 322 */ 323 static void 324 bucket_init(void) 325 { 326 struct uma_bucket_zone *ubz; 327 int size; 328 329 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 330 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 331 size += sizeof(void *) * ubz->ubz_entries; 332 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 333 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 334 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | UMA_ZONE_NUMA); 335 } 336 } 337 338 /* 339 * Given a desired number of entries for a bucket, return the zone from which 340 * to allocate the bucket. 341 */ 342 static struct uma_bucket_zone * 343 bucket_zone_lookup(int entries) 344 { 345 struct uma_bucket_zone *ubz; 346 347 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 348 if (ubz->ubz_entries >= entries) 349 return (ubz); 350 ubz--; 351 return (ubz); 352 } 353 354 static int 355 bucket_select(int size) 356 { 357 struct uma_bucket_zone *ubz; 358 359 ubz = &bucket_zones[0]; 360 if (size > ubz->ubz_maxsize) 361 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 362 363 for (; ubz->ubz_entries != 0; ubz++) 364 if (ubz->ubz_maxsize < size) 365 break; 366 ubz--; 367 return (ubz->ubz_entries); 368 } 369 370 static uma_bucket_t 371 bucket_alloc(uma_zone_t zone, void *udata, int flags) 372 { 373 struct uma_bucket_zone *ubz; 374 uma_bucket_t bucket; 375 376 /* 377 * This is to stop us from allocating per cpu buckets while we're 378 * running out of vm.boot_pages. Otherwise, we would exhaust the 379 * boot pages. This also prevents us from allocating buckets in 380 * low memory situations. 381 */ 382 if (bucketdisable) 383 return (NULL); 384 /* 385 * To limit bucket recursion we store the original zone flags 386 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 387 * NOVM flag to persist even through deep recursions. We also 388 * store ZFLAG_BUCKET once we have recursed attempting to allocate 389 * a bucket for a bucket zone so we do not allow infinite bucket 390 * recursion. This cookie will even persist to frees of unused 391 * buckets via the allocation path or bucket allocations in the 392 * free path. 393 */ 394 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 395 udata = (void *)(uintptr_t)zone->uz_flags; 396 else { 397 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 398 return (NULL); 399 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 400 } 401 if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY) 402 flags |= M_NOVM; 403 ubz = bucket_zone_lookup(zone->uz_count); 404 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 405 ubz++; 406 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 407 if (bucket) { 408 #ifdef INVARIANTS 409 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 410 #endif 411 bucket->ub_cnt = 0; 412 bucket->ub_entries = ubz->ubz_entries; 413 } 414 415 return (bucket); 416 } 417 418 static void 419 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 420 { 421 struct uma_bucket_zone *ubz; 422 423 KASSERT(bucket->ub_cnt == 0, 424 ("bucket_free: Freeing a non free bucket.")); 425 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 426 udata = (void *)(uintptr_t)zone->uz_flags; 427 ubz = bucket_zone_lookup(bucket->ub_entries); 428 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 429 } 430 431 static void 432 bucket_zone_drain(void) 433 { 434 struct uma_bucket_zone *ubz; 435 436 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 437 zone_drain(ubz->ubz_zone); 438 } 439 440 static void 441 zone_log_warning(uma_zone_t zone) 442 { 443 static const struct timeval warninterval = { 300, 0 }; 444 445 if (!zone_warnings || zone->uz_warning == NULL) 446 return; 447 448 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 449 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 450 } 451 452 static inline void 453 zone_maxaction(uma_zone_t zone) 454 { 455 456 if (zone->uz_maxaction.ta_func != NULL) 457 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 458 } 459 460 static void 461 zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t)) 462 { 463 uma_klink_t klink; 464 465 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) 466 kegfn(klink->kl_keg); 467 } 468 469 /* 470 * Routine called by timeout which is used to fire off some time interval 471 * based calculations. (stats, hash size, etc.) 472 * 473 * Arguments: 474 * arg Unused 475 * 476 * Returns: 477 * Nothing 478 */ 479 static void 480 uma_timeout(void *unused) 481 { 482 bucket_enable(); 483 zone_foreach(zone_timeout); 484 485 /* Reschedule this event */ 486 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 487 } 488 489 /* 490 * Routine to perform timeout driven calculations. This expands the 491 * hashes and does per cpu statistics aggregation. 492 * 493 * Returns nothing. 494 */ 495 static void 496 keg_timeout(uma_keg_t keg) 497 { 498 499 KEG_LOCK(keg); 500 /* 501 * Expand the keg hash table. 502 * 503 * This is done if the number of slabs is larger than the hash size. 504 * What I'm trying to do here is completely reduce collisions. This 505 * may be a little aggressive. Should I allow for two collisions max? 506 */ 507 if (keg->uk_flags & UMA_ZONE_HASH && 508 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) { 509 struct uma_hash newhash; 510 struct uma_hash oldhash; 511 int ret; 512 513 /* 514 * This is so involved because allocating and freeing 515 * while the keg lock is held will lead to deadlock. 516 * I have to do everything in stages and check for 517 * races. 518 */ 519 newhash = keg->uk_hash; 520 KEG_UNLOCK(keg); 521 ret = hash_alloc(&newhash); 522 KEG_LOCK(keg); 523 if (ret) { 524 if (hash_expand(&keg->uk_hash, &newhash)) { 525 oldhash = keg->uk_hash; 526 keg->uk_hash = newhash; 527 } else 528 oldhash = newhash; 529 530 KEG_UNLOCK(keg); 531 hash_free(&oldhash); 532 return; 533 } 534 } 535 KEG_UNLOCK(keg); 536 } 537 538 static void 539 zone_timeout(uma_zone_t zone) 540 { 541 542 zone_foreach_keg(zone, &keg_timeout); 543 } 544 545 /* 546 * Allocate and zero fill the next sized hash table from the appropriate 547 * backing store. 548 * 549 * Arguments: 550 * hash A new hash structure with the old hash size in uh_hashsize 551 * 552 * Returns: 553 * 1 on success and 0 on failure. 554 */ 555 static int 556 hash_alloc(struct uma_hash *hash) 557 { 558 int oldsize; 559 int alloc; 560 561 oldsize = hash->uh_hashsize; 562 563 /* We're just going to go to a power of two greater */ 564 if (oldsize) { 565 hash->uh_hashsize = oldsize * 2; 566 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 567 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 568 M_UMAHASH, M_NOWAIT); 569 } else { 570 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 571 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 572 UMA_ANYDOMAIN, M_WAITOK); 573 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 574 } 575 if (hash->uh_slab_hash) { 576 bzero(hash->uh_slab_hash, alloc); 577 hash->uh_hashmask = hash->uh_hashsize - 1; 578 return (1); 579 } 580 581 return (0); 582 } 583 584 /* 585 * Expands the hash table for HASH zones. This is done from zone_timeout 586 * to reduce collisions. This must not be done in the regular allocation 587 * path, otherwise, we can recurse on the vm while allocating pages. 588 * 589 * Arguments: 590 * oldhash The hash you want to expand 591 * newhash The hash structure for the new table 592 * 593 * Returns: 594 * Nothing 595 * 596 * Discussion: 597 */ 598 static int 599 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 600 { 601 uma_slab_t slab; 602 int hval; 603 int i; 604 605 if (!newhash->uh_slab_hash) 606 return (0); 607 608 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 609 return (0); 610 611 /* 612 * I need to investigate hash algorithms for resizing without a 613 * full rehash. 614 */ 615 616 for (i = 0; i < oldhash->uh_hashsize; i++) 617 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) { 618 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]); 619 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink); 620 hval = UMA_HASH(newhash, slab->us_data); 621 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 622 slab, us_hlink); 623 } 624 625 return (1); 626 } 627 628 /* 629 * Free the hash bucket to the appropriate backing store. 630 * 631 * Arguments: 632 * slab_hash The hash bucket we're freeing 633 * hashsize The number of entries in that hash bucket 634 * 635 * Returns: 636 * Nothing 637 */ 638 static void 639 hash_free(struct uma_hash *hash) 640 { 641 if (hash->uh_slab_hash == NULL) 642 return; 643 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 644 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 645 else 646 free(hash->uh_slab_hash, M_UMAHASH); 647 } 648 649 /* 650 * Frees all outstanding items in a bucket 651 * 652 * Arguments: 653 * zone The zone to free to, must be unlocked. 654 * bucket The free/alloc bucket with items, cpu queue must be locked. 655 * 656 * Returns: 657 * Nothing 658 */ 659 660 static void 661 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 662 { 663 int i; 664 665 if (bucket == NULL) 666 return; 667 668 if (zone->uz_fini) 669 for (i = 0; i < bucket->ub_cnt; i++) 670 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 671 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 672 bucket->ub_cnt = 0; 673 } 674 675 /* 676 * Drains the per cpu caches for a zone. 677 * 678 * NOTE: This may only be called while the zone is being turn down, and not 679 * during normal operation. This is necessary in order that we do not have 680 * to migrate CPUs to drain the per-CPU caches. 681 * 682 * Arguments: 683 * zone The zone to drain, must be unlocked. 684 * 685 * Returns: 686 * Nothing 687 */ 688 static void 689 cache_drain(uma_zone_t zone) 690 { 691 uma_cache_t cache; 692 int cpu; 693 694 /* 695 * XXX: It is safe to not lock the per-CPU caches, because we're 696 * tearing down the zone anyway. I.e., there will be no further use 697 * of the caches at this point. 698 * 699 * XXX: It would good to be able to assert that the zone is being 700 * torn down to prevent improper use of cache_drain(). 701 * 702 * XXX: We lock the zone before passing into bucket_cache_drain() as 703 * it is used elsewhere. Should the tear-down path be made special 704 * there in some form? 705 */ 706 CPU_FOREACH(cpu) { 707 cache = &zone->uz_cpu[cpu]; 708 bucket_drain(zone, cache->uc_allocbucket); 709 bucket_drain(zone, cache->uc_freebucket); 710 if (cache->uc_allocbucket != NULL) 711 bucket_free(zone, cache->uc_allocbucket, NULL); 712 if (cache->uc_freebucket != NULL) 713 bucket_free(zone, cache->uc_freebucket, NULL); 714 cache->uc_allocbucket = cache->uc_freebucket = NULL; 715 } 716 ZONE_LOCK(zone); 717 bucket_cache_drain(zone); 718 ZONE_UNLOCK(zone); 719 } 720 721 static void 722 cache_shrink(uma_zone_t zone) 723 { 724 725 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 726 return; 727 728 ZONE_LOCK(zone); 729 zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2; 730 ZONE_UNLOCK(zone); 731 } 732 733 static void 734 cache_drain_safe_cpu(uma_zone_t zone) 735 { 736 uma_cache_t cache; 737 uma_bucket_t b1, b2; 738 int domain; 739 740 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 741 return; 742 743 b1 = b2 = NULL; 744 ZONE_LOCK(zone); 745 critical_enter(); 746 if (zone->uz_flags & UMA_ZONE_NUMA) 747 domain = PCPU_GET(domain); 748 else 749 domain = 0; 750 cache = &zone->uz_cpu[curcpu]; 751 if (cache->uc_allocbucket) { 752 if (cache->uc_allocbucket->ub_cnt != 0) 753 LIST_INSERT_HEAD(&zone->uz_domain[domain].uzd_buckets, 754 cache->uc_allocbucket, ub_link); 755 else 756 b1 = cache->uc_allocbucket; 757 cache->uc_allocbucket = NULL; 758 } 759 if (cache->uc_freebucket) { 760 if (cache->uc_freebucket->ub_cnt != 0) 761 LIST_INSERT_HEAD(&zone->uz_domain[domain].uzd_buckets, 762 cache->uc_freebucket, ub_link); 763 else 764 b2 = cache->uc_freebucket; 765 cache->uc_freebucket = NULL; 766 } 767 critical_exit(); 768 ZONE_UNLOCK(zone); 769 if (b1) 770 bucket_free(zone, b1, NULL); 771 if (b2) 772 bucket_free(zone, b2, NULL); 773 } 774 775 /* 776 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 777 * This is an expensive call because it needs to bind to all CPUs 778 * one by one and enter a critical section on each of them in order 779 * to safely access their cache buckets. 780 * Zone lock must not be held on call this function. 781 */ 782 static void 783 cache_drain_safe(uma_zone_t zone) 784 { 785 int cpu; 786 787 /* 788 * Polite bucket sizes shrinking was not enouth, shrink aggressively. 789 */ 790 if (zone) 791 cache_shrink(zone); 792 else 793 zone_foreach(cache_shrink); 794 795 CPU_FOREACH(cpu) { 796 thread_lock(curthread); 797 sched_bind(curthread, cpu); 798 thread_unlock(curthread); 799 800 if (zone) 801 cache_drain_safe_cpu(zone); 802 else 803 zone_foreach(cache_drain_safe_cpu); 804 } 805 thread_lock(curthread); 806 sched_unbind(curthread); 807 thread_unlock(curthread); 808 } 809 810 /* 811 * Drain the cached buckets from a zone. Expects a locked zone on entry. 812 */ 813 static void 814 bucket_cache_drain(uma_zone_t zone) 815 { 816 uma_zone_domain_t zdom; 817 uma_bucket_t bucket; 818 int i; 819 820 /* 821 * Drain the bucket queues and free the buckets. 822 */ 823 for (i = 0; i < vm_ndomains; i++) { 824 zdom = &zone->uz_domain[i]; 825 while ((bucket = LIST_FIRST(&zdom->uzd_buckets)) != NULL) { 826 LIST_REMOVE(bucket, ub_link); 827 ZONE_UNLOCK(zone); 828 bucket_drain(zone, bucket); 829 bucket_free(zone, bucket, NULL); 830 ZONE_LOCK(zone); 831 } 832 } 833 834 /* 835 * Shrink further bucket sizes. Price of single zone lock collision 836 * is probably lower then price of global cache drain. 837 */ 838 if (zone->uz_count > zone->uz_count_min) 839 zone->uz_count--; 840 } 841 842 static void 843 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 844 { 845 uint8_t *mem; 846 int i; 847 uint8_t flags; 848 849 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 850 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 851 852 mem = slab->us_data; 853 flags = slab->us_flags; 854 i = start; 855 if (keg->uk_fini != NULL) { 856 for (i--; i > -1; i--) 857 keg->uk_fini(slab->us_data + (keg->uk_rsize * i), 858 keg->uk_size); 859 } 860 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 861 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 862 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 863 uma_total_dec(PAGE_SIZE * keg->uk_ppera); 864 } 865 866 /* 867 * Frees pages from a keg back to the system. This is done on demand from 868 * the pageout daemon. 869 * 870 * Returns nothing. 871 */ 872 static void 873 keg_drain(uma_keg_t keg) 874 { 875 struct slabhead freeslabs = { 0 }; 876 uma_domain_t dom; 877 uma_slab_t slab, tmp; 878 int i; 879 880 /* 881 * We don't want to take pages from statically allocated kegs at this 882 * time 883 */ 884 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 885 return; 886 887 CTR3(KTR_UMA, "keg_drain %s(%p) free items: %u", 888 keg->uk_name, keg, keg->uk_free); 889 KEG_LOCK(keg); 890 if (keg->uk_free == 0) 891 goto finished; 892 893 for (i = 0; i < vm_ndomains; i++) { 894 dom = &keg->uk_domain[i]; 895 LIST_FOREACH_SAFE(slab, &dom->ud_free_slab, us_link, tmp) { 896 /* We have nowhere to free these to. */ 897 if (slab->us_flags & UMA_SLAB_BOOT) 898 continue; 899 900 LIST_REMOVE(slab, us_link); 901 keg->uk_pages -= keg->uk_ppera; 902 keg->uk_free -= keg->uk_ipers; 903 904 if (keg->uk_flags & UMA_ZONE_HASH) 905 UMA_HASH_REMOVE(&keg->uk_hash, slab, 906 slab->us_data); 907 908 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 909 } 910 } 911 912 finished: 913 KEG_UNLOCK(keg); 914 915 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 916 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 917 keg_free_slab(keg, slab, keg->uk_ipers); 918 } 919 } 920 921 static void 922 zone_drain_wait(uma_zone_t zone, int waitok) 923 { 924 925 /* 926 * Set draining to interlock with zone_dtor() so we can release our 927 * locks as we go. Only dtor() should do a WAITOK call since it 928 * is the only call that knows the structure will still be available 929 * when it wakes up. 930 */ 931 ZONE_LOCK(zone); 932 while (zone->uz_flags & UMA_ZFLAG_DRAINING) { 933 if (waitok == M_NOWAIT) 934 goto out; 935 msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1); 936 } 937 zone->uz_flags |= UMA_ZFLAG_DRAINING; 938 bucket_cache_drain(zone); 939 ZONE_UNLOCK(zone); 940 /* 941 * The DRAINING flag protects us from being freed while 942 * we're running. Normally the uma_rwlock would protect us but we 943 * must be able to release and acquire the right lock for each keg. 944 */ 945 zone_foreach_keg(zone, &keg_drain); 946 ZONE_LOCK(zone); 947 zone->uz_flags &= ~UMA_ZFLAG_DRAINING; 948 wakeup(zone); 949 out: 950 ZONE_UNLOCK(zone); 951 } 952 953 void 954 zone_drain(uma_zone_t zone) 955 { 956 957 zone_drain_wait(zone, M_NOWAIT); 958 } 959 960 /* 961 * Allocate a new slab for a keg. This does not insert the slab onto a list. 962 * 963 * Arguments: 964 * wait Shall we wait? 965 * 966 * Returns: 967 * The slab that was allocated or NULL if there is no memory and the 968 * caller specified M_NOWAIT. 969 */ 970 static uma_slab_t 971 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int wait) 972 { 973 uma_alloc allocf; 974 uma_slab_t slab; 975 unsigned long size; 976 uint8_t *mem; 977 uint8_t flags; 978 int i; 979 980 KASSERT(domain >= 0 && domain < vm_ndomains, 981 ("keg_alloc_slab: domain %d out of range", domain)); 982 mtx_assert(&keg->uk_lock, MA_OWNED); 983 slab = NULL; 984 mem = NULL; 985 986 allocf = keg->uk_allocf; 987 KEG_UNLOCK(keg); 988 size = keg->uk_ppera * PAGE_SIZE; 989 990 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 991 slab = zone_alloc_item(keg->uk_slabzone, NULL, domain, wait); 992 if (slab == NULL) 993 goto out; 994 } 995 996 /* 997 * This reproduces the old vm_zone behavior of zero filling pages the 998 * first time they are added to a zone. 999 * 1000 * Malloced items are zeroed in uma_zalloc. 1001 */ 1002 1003 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1004 wait |= M_ZERO; 1005 else 1006 wait &= ~M_ZERO; 1007 1008 if (keg->uk_flags & UMA_ZONE_NODUMP) 1009 wait |= M_NODUMP; 1010 1011 /* zone is passed for legacy reasons. */ 1012 mem = allocf(zone, size, domain, &flags, wait); 1013 if (mem == NULL) { 1014 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1015 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 1016 slab = NULL; 1017 goto out; 1018 } 1019 uma_total_inc(size); 1020 1021 /* Point the slab into the allocated memory */ 1022 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 1023 slab = (uma_slab_t )(mem + keg->uk_pgoff); 1024 1025 if (keg->uk_flags & UMA_ZONE_VTOSLAB) 1026 for (i = 0; i < keg->uk_ppera; i++) 1027 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 1028 1029 slab->us_keg = keg; 1030 slab->us_data = mem; 1031 slab->us_freecount = keg->uk_ipers; 1032 slab->us_flags = flags; 1033 slab->us_domain = domain; 1034 BIT_FILL(SLAB_SETSIZE, &slab->us_free); 1035 #ifdef INVARIANTS 1036 BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree); 1037 #endif 1038 1039 if (keg->uk_init != NULL) { 1040 for (i = 0; i < keg->uk_ipers; i++) 1041 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 1042 keg->uk_size, wait) != 0) 1043 break; 1044 if (i != keg->uk_ipers) { 1045 keg_free_slab(keg, slab, i); 1046 slab = NULL; 1047 goto out; 1048 } 1049 } 1050 out: 1051 KEG_LOCK(keg); 1052 1053 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1054 slab, keg->uk_name, keg); 1055 1056 if (slab != NULL) { 1057 if (keg->uk_flags & UMA_ZONE_HASH) 1058 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1059 1060 keg->uk_pages += keg->uk_ppera; 1061 keg->uk_free += keg->uk_ipers; 1062 } 1063 1064 return (slab); 1065 } 1066 1067 /* 1068 * This function is intended to be used early on in place of page_alloc() so 1069 * that we may use the boot time page cache to satisfy allocations before 1070 * the VM is ready. 1071 */ 1072 static void * 1073 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1074 int wait) 1075 { 1076 uma_keg_t keg; 1077 void *mem; 1078 int pages; 1079 1080 keg = zone_first_keg(zone); 1081 1082 /* 1083 * If we are in BOOT_BUCKETS or higher, than switch to real 1084 * allocator. Zones with page sized slabs switch at BOOT_PAGEALLOC. 1085 */ 1086 switch (booted) { 1087 case BOOT_COLD: 1088 case BOOT_STRAPPED: 1089 break; 1090 case BOOT_PAGEALLOC: 1091 if (keg->uk_ppera > 1) 1092 break; 1093 case BOOT_BUCKETS: 1094 case BOOT_RUNNING: 1095 #ifdef UMA_MD_SMALL_ALLOC 1096 keg->uk_allocf = (keg->uk_ppera > 1) ? 1097 page_alloc : uma_small_alloc; 1098 #else 1099 keg->uk_allocf = page_alloc; 1100 #endif 1101 return keg->uk_allocf(zone, bytes, domain, pflag, wait); 1102 } 1103 1104 /* 1105 * Check our small startup cache to see if it has pages remaining. 1106 */ 1107 pages = howmany(bytes, PAGE_SIZE); 1108 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1109 if (pages > boot_pages) 1110 panic("UMA zone \"%s\": Increase vm.boot_pages", zone->uz_name); 1111 #ifdef DIAGNOSTIC 1112 printf("%s from \"%s\", %d boot pages left\n", __func__, zone->uz_name, 1113 boot_pages); 1114 #endif 1115 mem = bootmem; 1116 boot_pages -= pages; 1117 bootmem += pages * PAGE_SIZE; 1118 *pflag = UMA_SLAB_BOOT; 1119 1120 return (mem); 1121 } 1122 1123 /* 1124 * Allocates a number of pages from the system 1125 * 1126 * Arguments: 1127 * bytes The number of bytes requested 1128 * wait Shall we wait? 1129 * 1130 * Returns: 1131 * A pointer to the alloced memory or possibly 1132 * NULL if M_NOWAIT is set. 1133 */ 1134 static void * 1135 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1136 int wait) 1137 { 1138 void *p; /* Returned page */ 1139 1140 *pflag = UMA_SLAB_KERNEL; 1141 p = (void *) kmem_malloc_domain(domain, bytes, wait); 1142 1143 return (p); 1144 } 1145 1146 /* 1147 * Allocates a number of pages from within an object 1148 * 1149 * Arguments: 1150 * bytes The number of bytes requested 1151 * wait Shall we wait? 1152 * 1153 * Returns: 1154 * A pointer to the alloced memory or possibly 1155 * NULL if M_NOWAIT is set. 1156 */ 1157 static void * 1158 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 1159 int wait) 1160 { 1161 TAILQ_HEAD(, vm_page) alloctail; 1162 u_long npages; 1163 vm_offset_t retkva, zkva; 1164 vm_page_t p, p_next; 1165 uma_keg_t keg; 1166 1167 TAILQ_INIT(&alloctail); 1168 keg = zone_first_keg(zone); 1169 1170 npages = howmany(bytes, PAGE_SIZE); 1171 while (npages > 0) { 1172 p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT | 1173 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1174 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK : 1175 VM_ALLOC_NOWAIT)); 1176 if (p != NULL) { 1177 /* 1178 * Since the page does not belong to an object, its 1179 * listq is unused. 1180 */ 1181 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1182 npages--; 1183 continue; 1184 } 1185 /* 1186 * Page allocation failed, free intermediate pages and 1187 * exit. 1188 */ 1189 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1190 vm_page_unwire(p, PQ_NONE); 1191 vm_page_free(p); 1192 } 1193 return (NULL); 1194 } 1195 *flags = UMA_SLAB_PRIV; 1196 zkva = keg->uk_kva + 1197 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1198 retkva = zkva; 1199 TAILQ_FOREACH(p, &alloctail, listq) { 1200 pmap_qenter(zkva, &p, 1); 1201 zkva += PAGE_SIZE; 1202 } 1203 1204 return ((void *)retkva); 1205 } 1206 1207 /* 1208 * Frees a number of pages to the system 1209 * 1210 * Arguments: 1211 * mem A pointer to the memory to be freed 1212 * size The size of the memory being freed 1213 * flags The original p->us_flags field 1214 * 1215 * Returns: 1216 * Nothing 1217 */ 1218 static void 1219 page_free(void *mem, vm_size_t size, uint8_t flags) 1220 { 1221 struct vmem *vmem; 1222 1223 if (flags & UMA_SLAB_KERNEL) 1224 vmem = kernel_arena; 1225 else 1226 panic("UMA: page_free used with invalid flags %x", flags); 1227 1228 kmem_free(vmem, (vm_offset_t)mem, size); 1229 } 1230 1231 /* 1232 * Zero fill initializer 1233 * 1234 * Arguments/Returns follow uma_init specifications 1235 */ 1236 static int 1237 zero_init(void *mem, int size, int flags) 1238 { 1239 bzero(mem, size); 1240 return (0); 1241 } 1242 1243 /* 1244 * Finish creating a small uma keg. This calculates ipers, and the keg size. 1245 * 1246 * Arguments 1247 * keg The zone we should initialize 1248 * 1249 * Returns 1250 * Nothing 1251 */ 1252 static void 1253 keg_small_init(uma_keg_t keg) 1254 { 1255 u_int rsize; 1256 u_int memused; 1257 u_int wastedspace; 1258 u_int shsize; 1259 u_int slabsize; 1260 1261 if (keg->uk_flags & UMA_ZONE_PCPU) { 1262 u_int ncpus = (mp_maxid + 1) ? (mp_maxid + 1) : MAXCPU; 1263 1264 slabsize = sizeof(struct pcpu); 1265 keg->uk_ppera = howmany(ncpus * sizeof(struct pcpu), 1266 PAGE_SIZE); 1267 } else { 1268 slabsize = UMA_SLAB_SIZE; 1269 keg->uk_ppera = 1; 1270 } 1271 1272 /* 1273 * Calculate the size of each allocation (rsize) according to 1274 * alignment. If the requested size is smaller than we have 1275 * allocation bits for we round it up. 1276 */ 1277 rsize = keg->uk_size; 1278 if (rsize < slabsize / SLAB_SETSIZE) 1279 rsize = slabsize / SLAB_SETSIZE; 1280 if (rsize & keg->uk_align) 1281 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1282 keg->uk_rsize = rsize; 1283 1284 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 1285 keg->uk_rsize < sizeof(struct pcpu), 1286 ("%s: size %u too large", __func__, keg->uk_rsize)); 1287 1288 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1289 shsize = 0; 1290 else 1291 shsize = sizeof(struct uma_slab); 1292 1293 if (rsize <= slabsize - shsize) 1294 keg->uk_ipers = (slabsize - shsize) / rsize; 1295 else { 1296 /* Handle special case when we have 1 item per slab, so 1297 * alignment requirement can be relaxed. */ 1298 KASSERT(keg->uk_size <= slabsize - shsize, 1299 ("%s: size %u greater than slab", __func__, keg->uk_size)); 1300 keg->uk_ipers = 1; 1301 } 1302 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1303 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1304 1305 memused = keg->uk_ipers * rsize + shsize; 1306 wastedspace = slabsize - memused; 1307 1308 /* 1309 * We can't do OFFPAGE if we're internal or if we've been 1310 * asked to not go to the VM for buckets. If we do this we 1311 * may end up going to the VM for slabs which we do not 1312 * want to do if we're UMA_ZFLAG_CACHEONLY as a result 1313 * of UMA_ZONE_VM, which clearly forbids it. 1314 */ 1315 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1316 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1317 return; 1318 1319 /* 1320 * See if using an OFFPAGE slab will limit our waste. Only do 1321 * this if it permits more items per-slab. 1322 * 1323 * XXX We could try growing slabsize to limit max waste as well. 1324 * Historically this was not done because the VM could not 1325 * efficiently handle contiguous allocations. 1326 */ 1327 if ((wastedspace >= slabsize / UMA_MAX_WASTE) && 1328 (keg->uk_ipers < (slabsize / keg->uk_rsize))) { 1329 keg->uk_ipers = slabsize / keg->uk_rsize; 1330 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1331 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1332 CTR6(KTR_UMA, "UMA decided we need offpage slab headers for " 1333 "keg: %s(%p), calculated wastedspace = %d, " 1334 "maximum wasted space allowed = %d, " 1335 "calculated ipers = %d, " 1336 "new wasted space = %d\n", keg->uk_name, keg, wastedspace, 1337 slabsize / UMA_MAX_WASTE, keg->uk_ipers, 1338 slabsize - keg->uk_ipers * keg->uk_rsize); 1339 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1340 } 1341 1342 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1343 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1344 keg->uk_flags |= UMA_ZONE_HASH; 1345 } 1346 1347 /* 1348 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do 1349 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1350 * more complicated. 1351 * 1352 * Arguments 1353 * keg The keg we should initialize 1354 * 1355 * Returns 1356 * Nothing 1357 */ 1358 static void 1359 keg_large_init(uma_keg_t keg) 1360 { 1361 u_int shsize; 1362 1363 KASSERT(keg != NULL, ("Keg is null in keg_large_init")); 1364 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0, 1365 ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg")); 1366 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1367 ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__)); 1368 1369 keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE); 1370 keg->uk_ipers = 1; 1371 keg->uk_rsize = keg->uk_size; 1372 1373 /* Check whether we have enough space to not do OFFPAGE. */ 1374 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) { 1375 shsize = sizeof(struct uma_slab); 1376 if (shsize & UMA_ALIGN_PTR) 1377 shsize = (shsize & ~UMA_ALIGN_PTR) + 1378 (UMA_ALIGN_PTR + 1); 1379 1380 if (PAGE_SIZE * keg->uk_ppera - keg->uk_rsize < shsize) { 1381 /* 1382 * We can't do OFFPAGE if we're internal, in which case 1383 * we need an extra page per allocation to contain the 1384 * slab header. 1385 */ 1386 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) == 0) 1387 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1388 else 1389 keg->uk_ppera++; 1390 } 1391 } 1392 1393 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1394 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1395 keg->uk_flags |= UMA_ZONE_HASH; 1396 } 1397 1398 static void 1399 keg_cachespread_init(uma_keg_t keg) 1400 { 1401 int alignsize; 1402 int trailer; 1403 int pages; 1404 int rsize; 1405 1406 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1407 ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__)); 1408 1409 alignsize = keg->uk_align + 1; 1410 rsize = keg->uk_size; 1411 /* 1412 * We want one item to start on every align boundary in a page. To 1413 * do this we will span pages. We will also extend the item by the 1414 * size of align if it is an even multiple of align. Otherwise, it 1415 * would fall on the same boundary every time. 1416 */ 1417 if (rsize & keg->uk_align) 1418 rsize = (rsize & ~keg->uk_align) + alignsize; 1419 if ((rsize & alignsize) == 0) 1420 rsize += alignsize; 1421 trailer = rsize - keg->uk_size; 1422 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE; 1423 pages = MIN(pages, (128 * 1024) / PAGE_SIZE); 1424 keg->uk_rsize = rsize; 1425 keg->uk_ppera = pages; 1426 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize; 1427 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1428 KASSERT(keg->uk_ipers <= SLAB_SETSIZE, 1429 ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__, 1430 keg->uk_ipers)); 1431 } 1432 1433 /* 1434 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1435 * the keg onto the global keg list. 1436 * 1437 * Arguments/Returns follow uma_ctor specifications 1438 * udata Actually uma_kctor_args 1439 */ 1440 static int 1441 keg_ctor(void *mem, int size, void *udata, int flags) 1442 { 1443 struct uma_kctor_args *arg = udata; 1444 uma_keg_t keg = mem; 1445 uma_zone_t zone; 1446 1447 bzero(keg, size); 1448 keg->uk_size = arg->size; 1449 keg->uk_init = arg->uminit; 1450 keg->uk_fini = arg->fini; 1451 keg->uk_align = arg->align; 1452 keg->uk_cursor = 0; 1453 keg->uk_free = 0; 1454 keg->uk_reserve = 0; 1455 keg->uk_pages = 0; 1456 keg->uk_flags = arg->flags; 1457 keg->uk_slabzone = NULL; 1458 1459 /* 1460 * The master zone is passed to us at keg-creation time. 1461 */ 1462 zone = arg->zone; 1463 keg->uk_name = zone->uz_name; 1464 1465 if (arg->flags & UMA_ZONE_VM) 1466 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1467 1468 if (arg->flags & UMA_ZONE_ZINIT) 1469 keg->uk_init = zero_init; 1470 1471 if (arg->flags & UMA_ZONE_MALLOC) 1472 keg->uk_flags |= UMA_ZONE_VTOSLAB; 1473 1474 if (arg->flags & UMA_ZONE_PCPU) 1475 #ifdef SMP 1476 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1477 #else 1478 keg->uk_flags &= ~UMA_ZONE_PCPU; 1479 #endif 1480 1481 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) { 1482 keg_cachespread_init(keg); 1483 } else { 1484 if (keg->uk_size > UMA_SLAB_SPACE) 1485 keg_large_init(keg); 1486 else 1487 keg_small_init(keg); 1488 } 1489 1490 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1491 keg->uk_slabzone = slabzone; 1492 1493 /* 1494 * If we haven't booted yet we need allocations to go through the 1495 * startup cache until the vm is ready. 1496 */ 1497 if (booted < BOOT_PAGEALLOC) 1498 keg->uk_allocf = startup_alloc; 1499 #ifdef UMA_MD_SMALL_ALLOC 1500 else if (keg->uk_ppera == 1) 1501 keg->uk_allocf = uma_small_alloc; 1502 #endif 1503 else 1504 keg->uk_allocf = page_alloc; 1505 #ifdef UMA_MD_SMALL_ALLOC 1506 if (keg->uk_ppera == 1) 1507 keg->uk_freef = uma_small_free; 1508 else 1509 #endif 1510 keg->uk_freef = page_free; 1511 1512 /* 1513 * Initialize keg's lock 1514 */ 1515 KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS)); 1516 1517 /* 1518 * If we're putting the slab header in the actual page we need to 1519 * figure out where in each page it goes. This calculates a right 1520 * justified offset into the memory on an ALIGN_PTR boundary. 1521 */ 1522 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1523 u_int totsize; 1524 1525 /* Size of the slab struct and free list */ 1526 totsize = sizeof(struct uma_slab); 1527 1528 if (totsize & UMA_ALIGN_PTR) 1529 totsize = (totsize & ~UMA_ALIGN_PTR) + 1530 (UMA_ALIGN_PTR + 1); 1531 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize; 1532 1533 /* 1534 * The only way the following is possible is if with our 1535 * UMA_ALIGN_PTR adjustments we are now bigger than 1536 * UMA_SLAB_SIZE. I haven't checked whether this is 1537 * mathematically possible for all cases, so we make 1538 * sure here anyway. 1539 */ 1540 totsize = keg->uk_pgoff + sizeof(struct uma_slab); 1541 if (totsize > PAGE_SIZE * keg->uk_ppera) { 1542 printf("zone %s ipers %d rsize %d size %d\n", 1543 zone->uz_name, keg->uk_ipers, keg->uk_rsize, 1544 keg->uk_size); 1545 panic("UMA slab won't fit."); 1546 } 1547 } 1548 1549 if (keg->uk_flags & UMA_ZONE_HASH) 1550 hash_alloc(&keg->uk_hash); 1551 1552 CTR5(KTR_UMA, "keg_ctor %p zone %s(%p) out %d free %d\n", 1553 keg, zone->uz_name, zone, 1554 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 1555 keg->uk_free); 1556 1557 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1558 1559 rw_wlock(&uma_rwlock); 1560 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1561 rw_wunlock(&uma_rwlock); 1562 return (0); 1563 } 1564 1565 /* 1566 * Zone header ctor. This initializes all fields, locks, etc. 1567 * 1568 * Arguments/Returns follow uma_ctor specifications 1569 * udata Actually uma_zctor_args 1570 */ 1571 static int 1572 zone_ctor(void *mem, int size, void *udata, int flags) 1573 { 1574 struct uma_zctor_args *arg = udata; 1575 uma_zone_t zone = mem; 1576 uma_zone_t z; 1577 uma_keg_t keg; 1578 1579 bzero(zone, size); 1580 zone->uz_name = arg->name; 1581 zone->uz_ctor = arg->ctor; 1582 zone->uz_dtor = arg->dtor; 1583 zone->uz_slab = zone_fetch_slab; 1584 zone->uz_init = NULL; 1585 zone->uz_fini = NULL; 1586 zone->uz_allocs = 0; 1587 zone->uz_frees = 0; 1588 zone->uz_fails = 0; 1589 zone->uz_sleeps = 0; 1590 zone->uz_count = 0; 1591 zone->uz_count_min = 0; 1592 zone->uz_flags = 0; 1593 zone->uz_warning = NULL; 1594 /* The domain structures follow the cpu structures. */ 1595 zone->uz_domain = (struct uma_zone_domain *)&zone->uz_cpu[mp_ncpus]; 1596 timevalclear(&zone->uz_ratecheck); 1597 keg = arg->keg; 1598 1599 ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS)); 1600 1601 /* 1602 * This is a pure cache zone, no kegs. 1603 */ 1604 if (arg->import) { 1605 if (arg->flags & UMA_ZONE_VM) 1606 arg->flags |= UMA_ZFLAG_CACHEONLY; 1607 zone->uz_flags = arg->flags; 1608 zone->uz_size = arg->size; 1609 zone->uz_import = arg->import; 1610 zone->uz_release = arg->release; 1611 zone->uz_arg = arg->arg; 1612 zone->uz_lockptr = &zone->uz_lock; 1613 rw_wlock(&uma_rwlock); 1614 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 1615 rw_wunlock(&uma_rwlock); 1616 goto out; 1617 } 1618 1619 /* 1620 * Use the regular zone/keg/slab allocator. 1621 */ 1622 zone->uz_import = (uma_import)zone_import; 1623 zone->uz_release = (uma_release)zone_release; 1624 zone->uz_arg = zone; 1625 1626 if (arg->flags & UMA_ZONE_SECONDARY) { 1627 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 1628 zone->uz_init = arg->uminit; 1629 zone->uz_fini = arg->fini; 1630 zone->uz_lockptr = &keg->uk_lock; 1631 zone->uz_flags |= UMA_ZONE_SECONDARY; 1632 rw_wlock(&uma_rwlock); 1633 ZONE_LOCK(zone); 1634 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 1635 if (LIST_NEXT(z, uz_link) == NULL) { 1636 LIST_INSERT_AFTER(z, zone, uz_link); 1637 break; 1638 } 1639 } 1640 ZONE_UNLOCK(zone); 1641 rw_wunlock(&uma_rwlock); 1642 } else if (keg == NULL) { 1643 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 1644 arg->align, arg->flags)) == NULL) 1645 return (ENOMEM); 1646 } else { 1647 struct uma_kctor_args karg; 1648 int error; 1649 1650 /* We should only be here from uma_startup() */ 1651 karg.size = arg->size; 1652 karg.uminit = arg->uminit; 1653 karg.fini = arg->fini; 1654 karg.align = arg->align; 1655 karg.flags = arg->flags; 1656 karg.zone = zone; 1657 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 1658 flags); 1659 if (error) 1660 return (error); 1661 } 1662 1663 /* 1664 * Link in the first keg. 1665 */ 1666 zone->uz_klink.kl_keg = keg; 1667 LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link); 1668 zone->uz_lockptr = &keg->uk_lock; 1669 zone->uz_size = keg->uk_size; 1670 zone->uz_flags |= (keg->uk_flags & 1671 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 1672 1673 /* 1674 * Some internal zones don't have room allocated for the per cpu 1675 * caches. If we're internal, bail out here. 1676 */ 1677 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { 1678 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 1679 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 1680 return (0); 1681 } 1682 1683 out: 1684 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != 1685 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), 1686 ("Invalid zone flag combination")); 1687 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) 1688 zone->uz_count = BUCKET_MAX; 1689 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) 1690 zone->uz_count = 0; 1691 else 1692 zone->uz_count = bucket_select(zone->uz_size); 1693 zone->uz_count_min = zone->uz_count; 1694 1695 return (0); 1696 } 1697 1698 /* 1699 * Keg header dtor. This frees all data, destroys locks, frees the hash 1700 * table and removes the keg from the global list. 1701 * 1702 * Arguments/Returns follow uma_dtor specifications 1703 * udata unused 1704 */ 1705 static void 1706 keg_dtor(void *arg, int size, void *udata) 1707 { 1708 uma_keg_t keg; 1709 1710 keg = (uma_keg_t)arg; 1711 KEG_LOCK(keg); 1712 if (keg->uk_free != 0) { 1713 printf("Freed UMA keg (%s) was not empty (%d items). " 1714 " Lost %d pages of memory.\n", 1715 keg->uk_name ? keg->uk_name : "", 1716 keg->uk_free, keg->uk_pages); 1717 } 1718 KEG_UNLOCK(keg); 1719 1720 hash_free(&keg->uk_hash); 1721 1722 KEG_LOCK_FINI(keg); 1723 } 1724 1725 /* 1726 * Zone header dtor. 1727 * 1728 * Arguments/Returns follow uma_dtor specifications 1729 * udata unused 1730 */ 1731 static void 1732 zone_dtor(void *arg, int size, void *udata) 1733 { 1734 uma_klink_t klink; 1735 uma_zone_t zone; 1736 uma_keg_t keg; 1737 1738 zone = (uma_zone_t)arg; 1739 keg = zone_first_keg(zone); 1740 1741 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 1742 cache_drain(zone); 1743 1744 rw_wlock(&uma_rwlock); 1745 LIST_REMOVE(zone, uz_link); 1746 rw_wunlock(&uma_rwlock); 1747 /* 1748 * XXX there are some races here where 1749 * the zone can be drained but zone lock 1750 * released and then refilled before we 1751 * remove it... we dont care for now 1752 */ 1753 zone_drain_wait(zone, M_WAITOK); 1754 /* 1755 * Unlink all of our kegs. 1756 */ 1757 while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) { 1758 klink->kl_keg = NULL; 1759 LIST_REMOVE(klink, kl_link); 1760 if (klink == &zone->uz_klink) 1761 continue; 1762 free(klink, M_TEMP); 1763 } 1764 /* 1765 * We only destroy kegs from non secondary zones. 1766 */ 1767 if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0) { 1768 rw_wlock(&uma_rwlock); 1769 LIST_REMOVE(keg, uk_link); 1770 rw_wunlock(&uma_rwlock); 1771 zone_free_item(kegs, keg, NULL, SKIP_NONE); 1772 } 1773 ZONE_LOCK_FINI(zone); 1774 } 1775 1776 /* 1777 * Traverses every zone in the system and calls a callback 1778 * 1779 * Arguments: 1780 * zfunc A pointer to a function which accepts a zone 1781 * as an argument. 1782 * 1783 * Returns: 1784 * Nothing 1785 */ 1786 static void 1787 zone_foreach(void (*zfunc)(uma_zone_t)) 1788 { 1789 uma_keg_t keg; 1790 uma_zone_t zone; 1791 1792 rw_rlock(&uma_rwlock); 1793 LIST_FOREACH(keg, &uma_kegs, uk_link) { 1794 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 1795 zfunc(zone); 1796 } 1797 rw_runlock(&uma_rwlock); 1798 } 1799 1800 /* 1801 * Count how many pages do we need to bootstrap. VM supplies 1802 * its need in early zones in the argument, we add up our zones, 1803 * which consist of: UMA Slabs, UMA Hash and 9 Bucket zones. The 1804 * zone of zones and zone of kegs are accounted separately. 1805 */ 1806 #define UMA_BOOT_ZONES 11 1807 /* Zone of zones and zone of kegs have arbitrary alignment. */ 1808 #define UMA_BOOT_ALIGN 32 1809 static int zsize, ksize; 1810 int 1811 uma_startup_count(int vm_zones) 1812 { 1813 int zones, pages; 1814 1815 ksize = sizeof(struct uma_keg) + 1816 (sizeof(struct uma_domain) * vm_ndomains); 1817 zsize = sizeof(struct uma_zone) + 1818 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 1819 (sizeof(struct uma_zone_domain) * vm_ndomains); 1820 1821 /* 1822 * Memory for the zone of kegs and its keg, 1823 * and for zone of zones. 1824 */ 1825 pages = howmany(roundup(zsize, CACHE_LINE_SIZE) * 2 + 1826 roundup(ksize, CACHE_LINE_SIZE), PAGE_SIZE); 1827 1828 #ifdef UMA_MD_SMALL_ALLOC 1829 zones = UMA_BOOT_ZONES; 1830 #else 1831 zones = UMA_BOOT_ZONES + vm_zones; 1832 vm_zones = 0; 1833 #endif 1834 1835 /* Memory for the rest of startup zones, UMA and VM, ... */ 1836 if (zsize > UMA_SLAB_SPACE) 1837 pages += (zones + vm_zones) * 1838 howmany(roundup2(zsize, UMA_BOOT_ALIGN), UMA_SLAB_SIZE); 1839 else if (roundup2(zsize, UMA_BOOT_ALIGN) > UMA_SLAB_SPACE) 1840 pages += zones; 1841 else 1842 pages += howmany(zones, 1843 UMA_SLAB_SPACE / roundup2(zsize, UMA_BOOT_ALIGN)); 1844 1845 /* ... and their kegs. Note that zone of zones allocates a keg! */ 1846 pages += howmany(zones + 1, 1847 UMA_SLAB_SPACE / roundup2(ksize, UMA_BOOT_ALIGN)); 1848 1849 /* 1850 * Most of startup zones are not going to be offpages, that's 1851 * why we use UMA_SLAB_SPACE instead of UMA_SLAB_SIZE in all 1852 * calculations. Some large bucket zones will be offpage, and 1853 * thus will allocate hashes. We take conservative approach 1854 * and assume that all zones may allocate hash. This may give 1855 * us some positive inaccuracy, usually an extra single page. 1856 */ 1857 pages += howmany(zones, UMA_SLAB_SPACE / 1858 (sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT)); 1859 1860 return (pages); 1861 } 1862 1863 void 1864 uma_startup(void *mem, int npages) 1865 { 1866 struct uma_zctor_args args; 1867 uma_keg_t masterkeg; 1868 uintptr_t m; 1869 1870 #ifdef DIAGNOSTIC 1871 printf("Entering %s with %d boot pages configured\n", __func__, npages); 1872 #endif 1873 1874 rw_init(&uma_rwlock, "UMA lock"); 1875 1876 /* Use bootpages memory for the zone of zones and zone of kegs. */ 1877 m = (uintptr_t)mem; 1878 zones = (uma_zone_t)m; 1879 m += roundup(zsize, CACHE_LINE_SIZE); 1880 kegs = (uma_zone_t)m; 1881 m += roundup(zsize, CACHE_LINE_SIZE); 1882 masterkeg = (uma_keg_t)m; 1883 m += roundup(ksize, CACHE_LINE_SIZE); 1884 m = roundup(m, PAGE_SIZE); 1885 npages -= (m - (uintptr_t)mem) / PAGE_SIZE; 1886 mem = (void *)m; 1887 1888 /* "manually" create the initial zone */ 1889 memset(&args, 0, sizeof(args)); 1890 args.name = "UMA Kegs"; 1891 args.size = ksize; 1892 args.ctor = keg_ctor; 1893 args.dtor = keg_dtor; 1894 args.uminit = zero_init; 1895 args.fini = NULL; 1896 args.keg = masterkeg; 1897 args.align = UMA_BOOT_ALIGN - 1; 1898 args.flags = UMA_ZFLAG_INTERNAL; 1899 zone_ctor(kegs, zsize, &args, M_WAITOK); 1900 1901 bootmem = mem; 1902 boot_pages = npages; 1903 1904 args.name = "UMA Zones"; 1905 args.size = zsize; 1906 args.ctor = zone_ctor; 1907 args.dtor = zone_dtor; 1908 args.uminit = zero_init; 1909 args.fini = NULL; 1910 args.keg = NULL; 1911 args.align = UMA_BOOT_ALIGN - 1; 1912 args.flags = UMA_ZFLAG_INTERNAL; 1913 zone_ctor(zones, zsize, &args, M_WAITOK); 1914 1915 /* Now make a zone for slab headers */ 1916 slabzone = uma_zcreate("UMA Slabs", 1917 sizeof(struct uma_slab), 1918 NULL, NULL, NULL, NULL, 1919 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1920 1921 hashzone = uma_zcreate("UMA Hash", 1922 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 1923 NULL, NULL, NULL, NULL, 1924 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1925 1926 bucket_init(); 1927 1928 booted = BOOT_STRAPPED; 1929 } 1930 1931 void 1932 uma_startup1(void) 1933 { 1934 1935 #ifdef DIAGNOSTIC 1936 printf("Entering %s with %d boot pages left\n", __func__, boot_pages); 1937 #endif 1938 booted = BOOT_PAGEALLOC; 1939 } 1940 1941 void 1942 uma_startup2(void) 1943 { 1944 1945 #ifdef DIAGNOSTIC 1946 printf("Entering %s with %d boot pages left\n", __func__, boot_pages); 1947 #endif 1948 booted = BOOT_BUCKETS; 1949 sx_init(&uma_drain_lock, "umadrain"); 1950 bucket_enable(); 1951 } 1952 1953 /* 1954 * Initialize our callout handle 1955 * 1956 */ 1957 static void 1958 uma_startup3(void) 1959 { 1960 1961 booted = BOOT_RUNNING; 1962 callout_init(&uma_callout, 1); 1963 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 1964 } 1965 1966 static uma_keg_t 1967 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 1968 int align, uint32_t flags) 1969 { 1970 struct uma_kctor_args args; 1971 1972 args.size = size; 1973 args.uminit = uminit; 1974 args.fini = fini; 1975 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 1976 args.flags = flags; 1977 args.zone = zone; 1978 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 1979 } 1980 1981 /* Public functions */ 1982 /* See uma.h */ 1983 void 1984 uma_set_align(int align) 1985 { 1986 1987 if (align != UMA_ALIGN_CACHE) 1988 uma_align_cache = align; 1989 } 1990 1991 /* See uma.h */ 1992 uma_zone_t 1993 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 1994 uma_init uminit, uma_fini fini, int align, uint32_t flags) 1995 1996 { 1997 struct uma_zctor_args args; 1998 uma_zone_t res; 1999 bool locked; 2000 2001 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 2002 align, name)); 2003 2004 /* This stuff is essential for the zone ctor */ 2005 memset(&args, 0, sizeof(args)); 2006 args.name = name; 2007 args.size = size; 2008 args.ctor = ctor; 2009 args.dtor = dtor; 2010 args.uminit = uminit; 2011 args.fini = fini; 2012 #ifdef INVARIANTS 2013 /* 2014 * If a zone is being created with an empty constructor and 2015 * destructor, pass UMA constructor/destructor which checks for 2016 * memory use after free. 2017 */ 2018 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOFREE))) && 2019 ctor == NULL && dtor == NULL && uminit == NULL && fini == NULL) { 2020 args.ctor = trash_ctor; 2021 args.dtor = trash_dtor; 2022 args.uminit = trash_init; 2023 args.fini = trash_fini; 2024 } 2025 #endif 2026 args.align = align; 2027 args.flags = flags; 2028 args.keg = NULL; 2029 2030 if (booted < BOOT_BUCKETS) { 2031 locked = false; 2032 } else { 2033 sx_slock(&uma_drain_lock); 2034 locked = true; 2035 } 2036 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2037 if (locked) 2038 sx_sunlock(&uma_drain_lock); 2039 return (res); 2040 } 2041 2042 /* See uma.h */ 2043 uma_zone_t 2044 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 2045 uma_init zinit, uma_fini zfini, uma_zone_t master) 2046 { 2047 struct uma_zctor_args args; 2048 uma_keg_t keg; 2049 uma_zone_t res; 2050 bool locked; 2051 2052 keg = zone_first_keg(master); 2053 memset(&args, 0, sizeof(args)); 2054 args.name = name; 2055 args.size = keg->uk_size; 2056 args.ctor = ctor; 2057 args.dtor = dtor; 2058 args.uminit = zinit; 2059 args.fini = zfini; 2060 args.align = keg->uk_align; 2061 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 2062 args.keg = keg; 2063 2064 if (booted < BOOT_BUCKETS) { 2065 locked = false; 2066 } else { 2067 sx_slock(&uma_drain_lock); 2068 locked = true; 2069 } 2070 /* XXX Attaches only one keg of potentially many. */ 2071 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2072 if (locked) 2073 sx_sunlock(&uma_drain_lock); 2074 return (res); 2075 } 2076 2077 /* See uma.h */ 2078 uma_zone_t 2079 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor, 2080 uma_init zinit, uma_fini zfini, uma_import zimport, 2081 uma_release zrelease, void *arg, int flags) 2082 { 2083 struct uma_zctor_args args; 2084 2085 memset(&args, 0, sizeof(args)); 2086 args.name = name; 2087 args.size = size; 2088 args.ctor = ctor; 2089 args.dtor = dtor; 2090 args.uminit = zinit; 2091 args.fini = zfini; 2092 args.import = zimport; 2093 args.release = zrelease; 2094 args.arg = arg; 2095 args.align = 0; 2096 args.flags = flags; 2097 2098 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 2099 } 2100 2101 static void 2102 zone_lock_pair(uma_zone_t a, uma_zone_t b) 2103 { 2104 if (a < b) { 2105 ZONE_LOCK(a); 2106 mtx_lock_flags(b->uz_lockptr, MTX_DUPOK); 2107 } else { 2108 ZONE_LOCK(b); 2109 mtx_lock_flags(a->uz_lockptr, MTX_DUPOK); 2110 } 2111 } 2112 2113 static void 2114 zone_unlock_pair(uma_zone_t a, uma_zone_t b) 2115 { 2116 2117 ZONE_UNLOCK(a); 2118 ZONE_UNLOCK(b); 2119 } 2120 2121 int 2122 uma_zsecond_add(uma_zone_t zone, uma_zone_t master) 2123 { 2124 uma_klink_t klink; 2125 uma_klink_t kl; 2126 int error; 2127 2128 error = 0; 2129 klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO); 2130 2131 zone_lock_pair(zone, master); 2132 /* 2133 * zone must use vtoslab() to resolve objects and must already be 2134 * a secondary. 2135 */ 2136 if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) 2137 != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) { 2138 error = EINVAL; 2139 goto out; 2140 } 2141 /* 2142 * The new master must also use vtoslab(). 2143 */ 2144 if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) { 2145 error = EINVAL; 2146 goto out; 2147 } 2148 2149 /* 2150 * The underlying object must be the same size. rsize 2151 * may be different. 2152 */ 2153 if (master->uz_size != zone->uz_size) { 2154 error = E2BIG; 2155 goto out; 2156 } 2157 /* 2158 * Put it at the end of the list. 2159 */ 2160 klink->kl_keg = zone_first_keg(master); 2161 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) { 2162 if (LIST_NEXT(kl, kl_link) == NULL) { 2163 LIST_INSERT_AFTER(kl, klink, kl_link); 2164 break; 2165 } 2166 } 2167 klink = NULL; 2168 zone->uz_flags |= UMA_ZFLAG_MULTI; 2169 zone->uz_slab = zone_fetch_slab_multi; 2170 2171 out: 2172 zone_unlock_pair(zone, master); 2173 if (klink != NULL) 2174 free(klink, M_TEMP); 2175 2176 return (error); 2177 } 2178 2179 2180 /* See uma.h */ 2181 void 2182 uma_zdestroy(uma_zone_t zone) 2183 { 2184 2185 sx_slock(&uma_drain_lock); 2186 zone_free_item(zones, zone, NULL, SKIP_NONE); 2187 sx_sunlock(&uma_drain_lock); 2188 } 2189 2190 void 2191 uma_zwait(uma_zone_t zone) 2192 { 2193 void *item; 2194 2195 item = uma_zalloc_arg(zone, NULL, M_WAITOK); 2196 uma_zfree(zone, item); 2197 } 2198 2199 /* See uma.h */ 2200 void * 2201 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 2202 { 2203 uma_zone_domain_t zdom; 2204 uma_bucket_t bucket; 2205 uma_cache_t cache; 2206 void *item; 2207 int cpu, domain, lockfail; 2208 2209 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2210 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 2211 2212 /* This is the fast path allocation */ 2213 CTR4(KTR_UMA, "uma_zalloc_arg thread %x zone %s(%p) flags %d", 2214 curthread, zone->uz_name, zone, flags); 2215 2216 if (flags & M_WAITOK) { 2217 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2218 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 2219 } 2220 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2221 ("uma_zalloc_arg: called with spinlock or critical section held")); 2222 2223 #ifdef DEBUG_MEMGUARD 2224 if (memguard_cmp_zone(zone)) { 2225 item = memguard_alloc(zone->uz_size, flags); 2226 if (item != NULL) { 2227 if (zone->uz_init != NULL && 2228 zone->uz_init(item, zone->uz_size, flags) != 0) 2229 return (NULL); 2230 if (zone->uz_ctor != NULL && 2231 zone->uz_ctor(item, zone->uz_size, udata, 2232 flags) != 0) { 2233 zone->uz_fini(item, zone->uz_size); 2234 return (NULL); 2235 } 2236 return (item); 2237 } 2238 /* This is unfortunate but should not be fatal. */ 2239 } 2240 #endif 2241 /* 2242 * If possible, allocate from the per-CPU cache. There are two 2243 * requirements for safe access to the per-CPU cache: (1) the thread 2244 * accessing the cache must not be preempted or yield during access, 2245 * and (2) the thread must not migrate CPUs without switching which 2246 * cache it accesses. We rely on a critical section to prevent 2247 * preemption and migration. We release the critical section in 2248 * order to acquire the zone mutex if we are unable to allocate from 2249 * the current cache; when we re-acquire the critical section, we 2250 * must detect and handle migration if it has occurred. 2251 */ 2252 critical_enter(); 2253 cpu = curcpu; 2254 cache = &zone->uz_cpu[cpu]; 2255 2256 zalloc_start: 2257 bucket = cache->uc_allocbucket; 2258 if (bucket != NULL && bucket->ub_cnt > 0) { 2259 bucket->ub_cnt--; 2260 item = bucket->ub_bucket[bucket->ub_cnt]; 2261 #ifdef INVARIANTS 2262 bucket->ub_bucket[bucket->ub_cnt] = NULL; 2263 #endif 2264 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 2265 cache->uc_allocs++; 2266 critical_exit(); 2267 if (zone->uz_ctor != NULL && 2268 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2269 atomic_add_long(&zone->uz_fails, 1); 2270 zone_free_item(zone, item, udata, SKIP_DTOR); 2271 return (NULL); 2272 } 2273 #ifdef INVARIANTS 2274 uma_dbg_alloc(zone, NULL, item); 2275 #endif 2276 if (flags & M_ZERO) 2277 uma_zero_item(item, zone); 2278 return (item); 2279 } 2280 2281 /* 2282 * We have run out of items in our alloc bucket. 2283 * See if we can switch with our free bucket. 2284 */ 2285 bucket = cache->uc_freebucket; 2286 if (bucket != NULL && bucket->ub_cnt > 0) { 2287 CTR2(KTR_UMA, 2288 "uma_zalloc: zone %s(%p) swapping empty with alloc", 2289 zone->uz_name, zone); 2290 cache->uc_freebucket = cache->uc_allocbucket; 2291 cache->uc_allocbucket = bucket; 2292 goto zalloc_start; 2293 } 2294 2295 /* 2296 * Discard any empty allocation bucket while we hold no locks. 2297 */ 2298 bucket = cache->uc_allocbucket; 2299 cache->uc_allocbucket = NULL; 2300 critical_exit(); 2301 if (bucket != NULL) 2302 bucket_free(zone, bucket, udata); 2303 2304 if (zone->uz_flags & UMA_ZONE_NUMA) 2305 domain = PCPU_GET(domain); 2306 else 2307 domain = UMA_ANYDOMAIN; 2308 2309 /* Short-circuit for zones without buckets and low memory. */ 2310 if (zone->uz_count == 0 || bucketdisable) 2311 goto zalloc_item; 2312 2313 /* 2314 * Attempt to retrieve the item from the per-CPU cache has failed, so 2315 * we must go back to the zone. This requires the zone lock, so we 2316 * must drop the critical section, then re-acquire it when we go back 2317 * to the cache. Since the critical section is released, we may be 2318 * preempted or migrate. As such, make sure not to maintain any 2319 * thread-local state specific to the cache from prior to releasing 2320 * the critical section. 2321 */ 2322 lockfail = 0; 2323 if (ZONE_TRYLOCK(zone) == 0) { 2324 /* Record contention to size the buckets. */ 2325 ZONE_LOCK(zone); 2326 lockfail = 1; 2327 } 2328 critical_enter(); 2329 cpu = curcpu; 2330 cache = &zone->uz_cpu[cpu]; 2331 2332 /* See if we lost the race to fill the cache. */ 2333 if (cache->uc_allocbucket != NULL) { 2334 ZONE_UNLOCK(zone); 2335 goto zalloc_start; 2336 } 2337 2338 /* 2339 * Check the zone's cache of buckets. 2340 */ 2341 if (domain == UMA_ANYDOMAIN) 2342 zdom = &zone->uz_domain[0]; 2343 else 2344 zdom = &zone->uz_domain[domain]; 2345 if ((bucket = LIST_FIRST(&zdom->uzd_buckets)) != NULL) { 2346 KASSERT(bucket->ub_cnt != 0, 2347 ("uma_zalloc_arg: Returning an empty bucket.")); 2348 2349 LIST_REMOVE(bucket, ub_link); 2350 cache->uc_allocbucket = bucket; 2351 ZONE_UNLOCK(zone); 2352 goto zalloc_start; 2353 } 2354 /* We are no longer associated with this CPU. */ 2355 critical_exit(); 2356 2357 /* 2358 * We bump the uz count when the cache size is insufficient to 2359 * handle the working set. 2360 */ 2361 if (lockfail && zone->uz_count < BUCKET_MAX) 2362 zone->uz_count++; 2363 ZONE_UNLOCK(zone); 2364 2365 /* 2366 * Now lets just fill a bucket and put it on the free list. If that 2367 * works we'll restart the allocation from the beginning and it 2368 * will use the just filled bucket. 2369 */ 2370 bucket = zone_alloc_bucket(zone, udata, domain, flags); 2371 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 2372 zone->uz_name, zone, bucket); 2373 if (bucket != NULL) { 2374 ZONE_LOCK(zone); 2375 critical_enter(); 2376 cpu = curcpu; 2377 cache = &zone->uz_cpu[cpu]; 2378 /* 2379 * See if we lost the race or were migrated. Cache the 2380 * initialized bucket to make this less likely or claim 2381 * the memory directly. 2382 */ 2383 if (cache->uc_allocbucket != NULL || 2384 (zone->uz_flags & UMA_ZONE_NUMA && 2385 domain != PCPU_GET(domain))) 2386 LIST_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); 2387 else 2388 cache->uc_allocbucket = bucket; 2389 ZONE_UNLOCK(zone); 2390 goto zalloc_start; 2391 } 2392 2393 /* 2394 * We may not be able to get a bucket so return an actual item. 2395 */ 2396 zalloc_item: 2397 item = zone_alloc_item(zone, udata, domain, flags); 2398 2399 return (item); 2400 } 2401 2402 void * 2403 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 2404 { 2405 2406 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2407 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 2408 2409 /* This is the fast path allocation */ 2410 CTR5(KTR_UMA, 2411 "uma_zalloc_domain thread %x zone %s(%p) domain %d flags %d", 2412 curthread, zone->uz_name, zone, domain, flags); 2413 2414 if (flags & M_WAITOK) { 2415 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2416 "uma_zalloc_domain: zone \"%s\"", zone->uz_name); 2417 } 2418 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2419 ("uma_zalloc_domain: called with spinlock or critical section held")); 2420 2421 return (zone_alloc_item(zone, udata, domain, flags)); 2422 } 2423 2424 /* 2425 * Find a slab with some space. Prefer slabs that are partially used over those 2426 * that are totally full. This helps to reduce fragmentation. 2427 * 2428 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 2429 * only 'domain'. 2430 */ 2431 static uma_slab_t 2432 keg_first_slab(uma_keg_t keg, int domain, int rr) 2433 { 2434 uma_domain_t dom; 2435 uma_slab_t slab; 2436 int start; 2437 2438 KASSERT(domain >= 0 && domain < vm_ndomains, 2439 ("keg_first_slab: domain %d out of range", domain)); 2440 2441 slab = NULL; 2442 start = domain; 2443 do { 2444 dom = &keg->uk_domain[domain]; 2445 if (!LIST_EMPTY(&dom->ud_part_slab)) 2446 return (LIST_FIRST(&dom->ud_part_slab)); 2447 if (!LIST_EMPTY(&dom->ud_free_slab)) { 2448 slab = LIST_FIRST(&dom->ud_free_slab); 2449 LIST_REMOVE(slab, us_link); 2450 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 2451 return (slab); 2452 } 2453 if (rr) 2454 domain = (domain + 1) % vm_ndomains; 2455 } while (domain != start); 2456 2457 return (NULL); 2458 } 2459 2460 static uma_slab_t 2461 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, int flags) 2462 { 2463 uma_domain_t dom; 2464 uma_slab_t slab; 2465 int allocflags, domain, reserve, rr, start; 2466 2467 mtx_assert(&keg->uk_lock, MA_OWNED); 2468 slab = NULL; 2469 reserve = 0; 2470 allocflags = flags; 2471 if ((flags & M_USE_RESERVE) == 0) 2472 reserve = keg->uk_reserve; 2473 2474 /* 2475 * Round-robin for non first-touch zones when there is more than one 2476 * domain. 2477 */ 2478 if (vm_ndomains == 1) 2479 rdomain = 0; 2480 rr = rdomain == UMA_ANYDOMAIN; 2481 if (rr) { 2482 keg->uk_cursor = (keg->uk_cursor + 1) % vm_ndomains; 2483 domain = start = keg->uk_cursor; 2484 /* Only block on the second pass. */ 2485 if ((flags & (M_WAITOK | M_NOVM)) == M_WAITOK) 2486 allocflags = (allocflags & ~M_WAITOK) | M_NOWAIT; 2487 } else 2488 domain = start = rdomain; 2489 2490 again: 2491 do { 2492 if (keg->uk_free > reserve && 2493 (slab = keg_first_slab(keg, domain, rr)) != NULL) { 2494 MPASS(slab->us_keg == keg); 2495 return (slab); 2496 } 2497 2498 /* 2499 * M_NOVM means don't ask at all! 2500 */ 2501 if (flags & M_NOVM) 2502 break; 2503 2504 if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) { 2505 keg->uk_flags |= UMA_ZFLAG_FULL; 2506 /* 2507 * If this is not a multi-zone, set the FULL bit. 2508 * Otherwise slab_multi() takes care of it. 2509 */ 2510 if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) { 2511 zone->uz_flags |= UMA_ZFLAG_FULL; 2512 zone_log_warning(zone); 2513 zone_maxaction(zone); 2514 } 2515 if (flags & M_NOWAIT) 2516 return (NULL); 2517 zone->uz_sleeps++; 2518 msleep(keg, &keg->uk_lock, PVM, "keglimit", 0); 2519 continue; 2520 } 2521 slab = keg_alloc_slab(keg, zone, domain, allocflags); 2522 /* 2523 * If we got a slab here it's safe to mark it partially used 2524 * and return. We assume that the caller is going to remove 2525 * at least one item. 2526 */ 2527 if (slab) { 2528 MPASS(slab->us_keg == keg); 2529 dom = &keg->uk_domain[slab->us_domain]; 2530 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 2531 return (slab); 2532 } 2533 if (rr) { 2534 keg->uk_cursor = (keg->uk_cursor + 1) % vm_ndomains; 2535 domain = keg->uk_cursor; 2536 } 2537 } while (domain != start); 2538 2539 /* Retry domain scan with blocking. */ 2540 if (allocflags != flags) { 2541 allocflags = flags; 2542 goto again; 2543 } 2544 2545 /* 2546 * We might not have been able to get a slab but another cpu 2547 * could have while we were unlocked. Check again before we 2548 * fail. 2549 */ 2550 if (keg->uk_free > reserve && 2551 (slab = keg_first_slab(keg, domain, rr)) != NULL) { 2552 MPASS(slab->us_keg == keg); 2553 return (slab); 2554 } 2555 return (NULL); 2556 } 2557 2558 static uma_slab_t 2559 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int domain, int flags) 2560 { 2561 uma_slab_t slab; 2562 2563 if (keg == NULL) { 2564 keg = zone_first_keg(zone); 2565 KEG_LOCK(keg); 2566 } 2567 2568 for (;;) { 2569 slab = keg_fetch_slab(keg, zone, domain, flags); 2570 if (slab) 2571 return (slab); 2572 if (flags & (M_NOWAIT | M_NOVM)) 2573 break; 2574 } 2575 KEG_UNLOCK(keg); 2576 return (NULL); 2577 } 2578 2579 /* 2580 * uma_zone_fetch_slab_multi: Fetches a slab from one available keg. Returns 2581 * with the keg locked. On NULL no lock is held. 2582 * 2583 * The last pointer is used to seed the search. It is not required. 2584 */ 2585 static uma_slab_t 2586 zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int domain, int rflags) 2587 { 2588 uma_klink_t klink; 2589 uma_slab_t slab; 2590 uma_keg_t keg; 2591 int flags; 2592 int empty; 2593 int full; 2594 2595 /* 2596 * Don't wait on the first pass. This will skip limit tests 2597 * as well. We don't want to block if we can find a provider 2598 * without blocking. 2599 */ 2600 flags = (rflags & ~M_WAITOK) | M_NOWAIT; 2601 /* 2602 * Use the last slab allocated as a hint for where to start 2603 * the search. 2604 */ 2605 if (last != NULL) { 2606 slab = keg_fetch_slab(last, zone, domain, flags); 2607 if (slab) 2608 return (slab); 2609 KEG_UNLOCK(last); 2610 } 2611 /* 2612 * Loop until we have a slab incase of transient failures 2613 * while M_WAITOK is specified. I'm not sure this is 100% 2614 * required but we've done it for so long now. 2615 */ 2616 for (;;) { 2617 empty = 0; 2618 full = 0; 2619 /* 2620 * Search the available kegs for slabs. Be careful to hold the 2621 * correct lock while calling into the keg layer. 2622 */ 2623 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) { 2624 keg = klink->kl_keg; 2625 KEG_LOCK(keg); 2626 if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) { 2627 slab = keg_fetch_slab(keg, zone, domain, flags); 2628 if (slab) 2629 return (slab); 2630 } 2631 if (keg->uk_flags & UMA_ZFLAG_FULL) 2632 full++; 2633 else 2634 empty++; 2635 KEG_UNLOCK(keg); 2636 } 2637 if (rflags & (M_NOWAIT | M_NOVM)) 2638 break; 2639 flags = rflags; 2640 /* 2641 * All kegs are full. XXX We can't atomically check all kegs 2642 * and sleep so just sleep for a short period and retry. 2643 */ 2644 if (full && !empty) { 2645 ZONE_LOCK(zone); 2646 zone->uz_flags |= UMA_ZFLAG_FULL; 2647 zone->uz_sleeps++; 2648 zone_log_warning(zone); 2649 zone_maxaction(zone); 2650 msleep(zone, zone->uz_lockptr, PVM, 2651 "zonelimit", hz/100); 2652 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2653 ZONE_UNLOCK(zone); 2654 continue; 2655 } 2656 } 2657 return (NULL); 2658 } 2659 2660 static void * 2661 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 2662 { 2663 uma_domain_t dom; 2664 void *item; 2665 uint8_t freei; 2666 2667 MPASS(keg == slab->us_keg); 2668 mtx_assert(&keg->uk_lock, MA_OWNED); 2669 2670 freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1; 2671 BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free); 2672 item = slab->us_data + (keg->uk_rsize * freei); 2673 slab->us_freecount--; 2674 keg->uk_free--; 2675 2676 /* Move this slab to the full list */ 2677 if (slab->us_freecount == 0) { 2678 LIST_REMOVE(slab, us_link); 2679 dom = &keg->uk_domain[slab->us_domain]; 2680 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 2681 } 2682 2683 return (item); 2684 } 2685 2686 static int 2687 zone_import(uma_zone_t zone, void **bucket, int max, int domain, int flags) 2688 { 2689 uma_slab_t slab; 2690 uma_keg_t keg; 2691 int stripe; 2692 int i; 2693 2694 slab = NULL; 2695 keg = NULL; 2696 /* Try to keep the buckets totally full */ 2697 for (i = 0; i < max; ) { 2698 if ((slab = zone->uz_slab(zone, keg, domain, flags)) == NULL) 2699 break; 2700 keg = slab->us_keg; 2701 stripe = howmany(max, vm_ndomains); 2702 while (slab->us_freecount && i < max) { 2703 bucket[i++] = slab_alloc_item(keg, slab); 2704 if (keg->uk_free <= keg->uk_reserve) 2705 break; 2706 #ifdef NUMA 2707 /* 2708 * If the zone is striped we pick a new slab for every 2709 * N allocations. Eliminating this conditional will 2710 * instead pick a new domain for each bucket rather 2711 * than stripe within each bucket. The current option 2712 * produces more fragmentation and requires more cpu 2713 * time but yields better distribution. 2714 */ 2715 if ((zone->uz_flags & UMA_ZONE_NUMA) == 0 && 2716 vm_ndomains > 1 && --stripe == 0) 2717 break; 2718 #endif 2719 } 2720 /* Don't block if we allocated any successfully. */ 2721 flags &= ~M_WAITOK; 2722 flags |= M_NOWAIT; 2723 } 2724 if (slab != NULL) 2725 KEG_UNLOCK(keg); 2726 2727 return i; 2728 } 2729 2730 static uma_bucket_t 2731 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags) 2732 { 2733 uma_bucket_t bucket; 2734 int max; 2735 2736 /* Don't wait for buckets, preserve caller's NOVM setting. */ 2737 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 2738 if (bucket == NULL) 2739 return (NULL); 2740 2741 max = MIN(bucket->ub_entries, zone->uz_count); 2742 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 2743 max, domain, flags); 2744 2745 /* 2746 * Initialize the memory if necessary. 2747 */ 2748 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 2749 int i; 2750 2751 for (i = 0; i < bucket->ub_cnt; i++) 2752 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 2753 flags) != 0) 2754 break; 2755 /* 2756 * If we couldn't initialize the whole bucket, put the 2757 * rest back onto the freelist. 2758 */ 2759 if (i != bucket->ub_cnt) { 2760 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 2761 bucket->ub_cnt - i); 2762 #ifdef INVARIANTS 2763 bzero(&bucket->ub_bucket[i], 2764 sizeof(void *) * (bucket->ub_cnt - i)); 2765 #endif 2766 bucket->ub_cnt = i; 2767 } 2768 } 2769 2770 if (bucket->ub_cnt == 0) { 2771 bucket_free(zone, bucket, udata); 2772 atomic_add_long(&zone->uz_fails, 1); 2773 return (NULL); 2774 } 2775 2776 return (bucket); 2777 } 2778 2779 /* 2780 * Allocates a single item from a zone. 2781 * 2782 * Arguments 2783 * zone The zone to alloc for. 2784 * udata The data to be passed to the constructor. 2785 * domain The domain to allocate from or UMA_ANYDOMAIN. 2786 * flags M_WAITOK, M_NOWAIT, M_ZERO. 2787 * 2788 * Returns 2789 * NULL if there is no memory and M_NOWAIT is set 2790 * An item if successful 2791 */ 2792 2793 static void * 2794 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 2795 { 2796 void *item; 2797 2798 item = NULL; 2799 2800 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 2801 goto fail; 2802 atomic_add_long(&zone->uz_allocs, 1); 2803 2804 /* 2805 * We have to call both the zone's init (not the keg's init) 2806 * and the zone's ctor. This is because the item is going from 2807 * a keg slab directly to the user, and the user is expecting it 2808 * to be both zone-init'd as well as zone-ctor'd. 2809 */ 2810 if (zone->uz_init != NULL) { 2811 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 2812 zone_free_item(zone, item, udata, SKIP_FINI); 2813 goto fail; 2814 } 2815 } 2816 if (zone->uz_ctor != NULL) { 2817 if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2818 zone_free_item(zone, item, udata, SKIP_DTOR); 2819 goto fail; 2820 } 2821 } 2822 #ifdef INVARIANTS 2823 uma_dbg_alloc(zone, NULL, item); 2824 #endif 2825 if (flags & M_ZERO) 2826 uma_zero_item(item, zone); 2827 2828 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 2829 zone->uz_name, zone); 2830 2831 return (item); 2832 2833 fail: 2834 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 2835 zone->uz_name, zone); 2836 atomic_add_long(&zone->uz_fails, 1); 2837 return (NULL); 2838 } 2839 2840 /* See uma.h */ 2841 void 2842 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 2843 { 2844 uma_cache_t cache; 2845 uma_bucket_t bucket; 2846 uma_zone_domain_t zdom; 2847 int cpu, domain, lockfail; 2848 2849 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2850 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 2851 2852 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 2853 zone->uz_name); 2854 2855 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2856 ("uma_zfree_arg: called with spinlock or critical section held")); 2857 2858 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 2859 if (item == NULL) 2860 return; 2861 #ifdef DEBUG_MEMGUARD 2862 if (is_memguard_addr(item)) { 2863 if (zone->uz_dtor != NULL) 2864 zone->uz_dtor(item, zone->uz_size, udata); 2865 if (zone->uz_fini != NULL) 2866 zone->uz_fini(item, zone->uz_size); 2867 memguard_free(item); 2868 return; 2869 } 2870 #endif 2871 #ifdef INVARIANTS 2872 if (zone->uz_flags & UMA_ZONE_MALLOC) 2873 uma_dbg_free(zone, udata, item); 2874 else 2875 uma_dbg_free(zone, NULL, item); 2876 #endif 2877 if (zone->uz_dtor != NULL) 2878 zone->uz_dtor(item, zone->uz_size, udata); 2879 2880 /* 2881 * The race here is acceptable. If we miss it we'll just have to wait 2882 * a little longer for the limits to be reset. 2883 */ 2884 if (zone->uz_flags & UMA_ZFLAG_FULL) 2885 goto zfree_item; 2886 2887 /* 2888 * If possible, free to the per-CPU cache. There are two 2889 * requirements for safe access to the per-CPU cache: (1) the thread 2890 * accessing the cache must not be preempted or yield during access, 2891 * and (2) the thread must not migrate CPUs without switching which 2892 * cache it accesses. We rely on a critical section to prevent 2893 * preemption and migration. We release the critical section in 2894 * order to acquire the zone mutex if we are unable to free to the 2895 * current cache; when we re-acquire the critical section, we must 2896 * detect and handle migration if it has occurred. 2897 */ 2898 zfree_restart: 2899 critical_enter(); 2900 cpu = curcpu; 2901 cache = &zone->uz_cpu[cpu]; 2902 2903 zfree_start: 2904 /* 2905 * Try to free into the allocbucket first to give LIFO ordering 2906 * for cache-hot datastructures. Spill over into the freebucket 2907 * if necessary. Alloc will swap them if one runs dry. 2908 */ 2909 bucket = cache->uc_allocbucket; 2910 if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries) 2911 bucket = cache->uc_freebucket; 2912 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 2913 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 2914 ("uma_zfree: Freeing to non free bucket index.")); 2915 bucket->ub_bucket[bucket->ub_cnt] = item; 2916 bucket->ub_cnt++; 2917 cache->uc_frees++; 2918 critical_exit(); 2919 return; 2920 } 2921 2922 /* 2923 * We must go back the zone, which requires acquiring the zone lock, 2924 * which in turn means we must release and re-acquire the critical 2925 * section. Since the critical section is released, we may be 2926 * preempted or migrate. As such, make sure not to maintain any 2927 * thread-local state specific to the cache from prior to releasing 2928 * the critical section. 2929 */ 2930 critical_exit(); 2931 if (zone->uz_count == 0 || bucketdisable) 2932 goto zfree_item; 2933 2934 lockfail = 0; 2935 if (ZONE_TRYLOCK(zone) == 0) { 2936 /* Record contention to size the buckets. */ 2937 ZONE_LOCK(zone); 2938 lockfail = 1; 2939 } 2940 critical_enter(); 2941 cpu = curcpu; 2942 cache = &zone->uz_cpu[cpu]; 2943 2944 /* 2945 * Since we have locked the zone we may as well send back our stats. 2946 */ 2947 atomic_add_long(&zone->uz_allocs, cache->uc_allocs); 2948 atomic_add_long(&zone->uz_frees, cache->uc_frees); 2949 cache->uc_allocs = 0; 2950 cache->uc_frees = 0; 2951 2952 bucket = cache->uc_freebucket; 2953 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 2954 ZONE_UNLOCK(zone); 2955 goto zfree_start; 2956 } 2957 cache->uc_freebucket = NULL; 2958 /* We are no longer associated with this CPU. */ 2959 critical_exit(); 2960 2961 if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) 2962 domain = PCPU_GET(domain); 2963 else 2964 domain = 0; 2965 zdom = &zone->uz_domain[0]; 2966 2967 /* Can we throw this on the zone full list? */ 2968 if (bucket != NULL) { 2969 CTR3(KTR_UMA, 2970 "uma_zfree: zone %s(%p) putting bucket %p on free list", 2971 zone->uz_name, zone, bucket); 2972 /* ub_cnt is pointing to the last free item */ 2973 KASSERT(bucket->ub_cnt != 0, 2974 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n")); 2975 if ((zone->uz_flags & UMA_ZONE_NOBUCKETCACHE) != 0) { 2976 ZONE_UNLOCK(zone); 2977 bucket_drain(zone, bucket); 2978 bucket_free(zone, bucket, udata); 2979 goto zfree_restart; 2980 } else 2981 LIST_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); 2982 } 2983 2984 /* 2985 * We bump the uz count when the cache size is insufficient to 2986 * handle the working set. 2987 */ 2988 if (lockfail && zone->uz_count < BUCKET_MAX) 2989 zone->uz_count++; 2990 ZONE_UNLOCK(zone); 2991 2992 bucket = bucket_alloc(zone, udata, M_NOWAIT); 2993 CTR3(KTR_UMA, "uma_zfree: zone %s(%p) allocated bucket %p", 2994 zone->uz_name, zone, bucket); 2995 if (bucket) { 2996 critical_enter(); 2997 cpu = curcpu; 2998 cache = &zone->uz_cpu[cpu]; 2999 if (cache->uc_freebucket == NULL && 3000 ((zone->uz_flags & UMA_ZONE_NUMA) == 0 || 3001 domain == PCPU_GET(domain))) { 3002 cache->uc_freebucket = bucket; 3003 goto zfree_start; 3004 } 3005 /* 3006 * We lost the race, start over. We have to drop our 3007 * critical section to free the bucket. 3008 */ 3009 critical_exit(); 3010 bucket_free(zone, bucket, udata); 3011 goto zfree_restart; 3012 } 3013 3014 /* 3015 * If nothing else caught this, we'll just do an internal free. 3016 */ 3017 zfree_item: 3018 zone_free_item(zone, item, udata, SKIP_DTOR); 3019 3020 return; 3021 } 3022 3023 void 3024 uma_zfree_domain(uma_zone_t zone, void *item, void *udata) 3025 { 3026 3027 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3028 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 3029 3030 CTR2(KTR_UMA, "uma_zfree_domain thread %x zone %s", curthread, 3031 zone->uz_name); 3032 3033 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3034 ("uma_zfree_domain: called with spinlock or critical section held")); 3035 3036 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 3037 if (item == NULL) 3038 return; 3039 zone_free_item(zone, item, udata, SKIP_NONE); 3040 } 3041 3042 static void 3043 slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item) 3044 { 3045 uma_domain_t dom; 3046 uint8_t freei; 3047 3048 mtx_assert(&keg->uk_lock, MA_OWNED); 3049 MPASS(keg == slab->us_keg); 3050 3051 dom = &keg->uk_domain[slab->us_domain]; 3052 3053 /* Do we need to remove from any lists? */ 3054 if (slab->us_freecount+1 == keg->uk_ipers) { 3055 LIST_REMOVE(slab, us_link); 3056 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 3057 } else if (slab->us_freecount == 0) { 3058 LIST_REMOVE(slab, us_link); 3059 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3060 } 3061 3062 /* Slab management. */ 3063 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3064 BIT_SET(SLAB_SETSIZE, freei, &slab->us_free); 3065 slab->us_freecount++; 3066 3067 /* Keg statistics. */ 3068 keg->uk_free++; 3069 } 3070 3071 static void 3072 zone_release(uma_zone_t zone, void **bucket, int cnt) 3073 { 3074 void *item; 3075 uma_slab_t slab; 3076 uma_keg_t keg; 3077 uint8_t *mem; 3078 int clearfull; 3079 int i; 3080 3081 clearfull = 0; 3082 keg = zone_first_keg(zone); 3083 KEG_LOCK(keg); 3084 for (i = 0; i < cnt; i++) { 3085 item = bucket[i]; 3086 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) { 3087 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 3088 if (zone->uz_flags & UMA_ZONE_HASH) { 3089 slab = hash_sfind(&keg->uk_hash, mem); 3090 } else { 3091 mem += keg->uk_pgoff; 3092 slab = (uma_slab_t)mem; 3093 } 3094 } else { 3095 slab = vtoslab((vm_offset_t)item); 3096 if (slab->us_keg != keg) { 3097 KEG_UNLOCK(keg); 3098 keg = slab->us_keg; 3099 KEG_LOCK(keg); 3100 } 3101 } 3102 slab_free_item(keg, slab, item); 3103 if (keg->uk_flags & UMA_ZFLAG_FULL) { 3104 if (keg->uk_pages < keg->uk_maxpages) { 3105 keg->uk_flags &= ~UMA_ZFLAG_FULL; 3106 clearfull = 1; 3107 } 3108 3109 /* 3110 * We can handle one more allocation. Since we're 3111 * clearing ZFLAG_FULL, wake up all procs blocked 3112 * on pages. This should be uncommon, so keeping this 3113 * simple for now (rather than adding count of blocked 3114 * threads etc). 3115 */ 3116 wakeup(keg); 3117 } 3118 } 3119 KEG_UNLOCK(keg); 3120 if (clearfull) { 3121 ZONE_LOCK(zone); 3122 zone->uz_flags &= ~UMA_ZFLAG_FULL; 3123 wakeup(zone); 3124 ZONE_UNLOCK(zone); 3125 } 3126 3127 } 3128 3129 /* 3130 * Frees a single item to any zone. 3131 * 3132 * Arguments: 3133 * zone The zone to free to 3134 * item The item we're freeing 3135 * udata User supplied data for the dtor 3136 * skip Skip dtors and finis 3137 */ 3138 static void 3139 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 3140 { 3141 3142 #ifdef INVARIANTS 3143 if (skip == SKIP_NONE) { 3144 if (zone->uz_flags & UMA_ZONE_MALLOC) 3145 uma_dbg_free(zone, udata, item); 3146 else 3147 uma_dbg_free(zone, NULL, item); 3148 } 3149 #endif 3150 if (skip < SKIP_DTOR && zone->uz_dtor) 3151 zone->uz_dtor(item, zone->uz_size, udata); 3152 3153 if (skip < SKIP_FINI && zone->uz_fini) 3154 zone->uz_fini(item, zone->uz_size); 3155 3156 atomic_add_long(&zone->uz_frees, 1); 3157 zone->uz_release(zone->uz_arg, &item, 1); 3158 } 3159 3160 /* See uma.h */ 3161 int 3162 uma_zone_set_max(uma_zone_t zone, int nitems) 3163 { 3164 uma_keg_t keg; 3165 3166 keg = zone_first_keg(zone); 3167 if (keg == NULL) 3168 return (0); 3169 KEG_LOCK(keg); 3170 keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera; 3171 if (keg->uk_maxpages * keg->uk_ipers < nitems) 3172 keg->uk_maxpages += keg->uk_ppera; 3173 nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers; 3174 KEG_UNLOCK(keg); 3175 3176 return (nitems); 3177 } 3178 3179 /* See uma.h */ 3180 int 3181 uma_zone_get_max(uma_zone_t zone) 3182 { 3183 int nitems; 3184 uma_keg_t keg; 3185 3186 keg = zone_first_keg(zone); 3187 if (keg == NULL) 3188 return (0); 3189 KEG_LOCK(keg); 3190 nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers; 3191 KEG_UNLOCK(keg); 3192 3193 return (nitems); 3194 } 3195 3196 /* See uma.h */ 3197 void 3198 uma_zone_set_warning(uma_zone_t zone, const char *warning) 3199 { 3200 3201 ZONE_LOCK(zone); 3202 zone->uz_warning = warning; 3203 ZONE_UNLOCK(zone); 3204 } 3205 3206 /* See uma.h */ 3207 void 3208 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 3209 { 3210 3211 ZONE_LOCK(zone); 3212 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 3213 ZONE_UNLOCK(zone); 3214 } 3215 3216 /* See uma.h */ 3217 int 3218 uma_zone_get_cur(uma_zone_t zone) 3219 { 3220 int64_t nitems; 3221 u_int i; 3222 3223 ZONE_LOCK(zone); 3224 nitems = zone->uz_allocs - zone->uz_frees; 3225 CPU_FOREACH(i) { 3226 /* 3227 * See the comment in sysctl_vm_zone_stats() regarding the 3228 * safety of accessing the per-cpu caches. With the zone lock 3229 * held, it is safe, but can potentially result in stale data. 3230 */ 3231 nitems += zone->uz_cpu[i].uc_allocs - 3232 zone->uz_cpu[i].uc_frees; 3233 } 3234 ZONE_UNLOCK(zone); 3235 3236 return (nitems < 0 ? 0 : nitems); 3237 } 3238 3239 /* See uma.h */ 3240 void 3241 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 3242 { 3243 uma_keg_t keg; 3244 3245 keg = zone_first_keg(zone); 3246 KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type")); 3247 KEG_LOCK(keg); 3248 KASSERT(keg->uk_pages == 0, 3249 ("uma_zone_set_init on non-empty keg")); 3250 keg->uk_init = uminit; 3251 KEG_UNLOCK(keg); 3252 } 3253 3254 /* See uma.h */ 3255 void 3256 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 3257 { 3258 uma_keg_t keg; 3259 3260 keg = zone_first_keg(zone); 3261 KASSERT(keg != NULL, ("uma_zone_set_fini: Invalid zone type")); 3262 KEG_LOCK(keg); 3263 KASSERT(keg->uk_pages == 0, 3264 ("uma_zone_set_fini on non-empty keg")); 3265 keg->uk_fini = fini; 3266 KEG_UNLOCK(keg); 3267 } 3268 3269 /* See uma.h */ 3270 void 3271 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 3272 { 3273 3274 ZONE_LOCK(zone); 3275 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3276 ("uma_zone_set_zinit on non-empty keg")); 3277 zone->uz_init = zinit; 3278 ZONE_UNLOCK(zone); 3279 } 3280 3281 /* See uma.h */ 3282 void 3283 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 3284 { 3285 3286 ZONE_LOCK(zone); 3287 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3288 ("uma_zone_set_zfini on non-empty keg")); 3289 zone->uz_fini = zfini; 3290 ZONE_UNLOCK(zone); 3291 } 3292 3293 /* See uma.h */ 3294 /* XXX uk_freef is not actually used with the zone locked */ 3295 void 3296 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 3297 { 3298 uma_keg_t keg; 3299 3300 keg = zone_first_keg(zone); 3301 KASSERT(keg != NULL, ("uma_zone_set_freef: Invalid zone type")); 3302 KEG_LOCK(keg); 3303 keg->uk_freef = freef; 3304 KEG_UNLOCK(keg); 3305 } 3306 3307 /* See uma.h */ 3308 /* XXX uk_allocf is not actually used with the zone locked */ 3309 void 3310 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 3311 { 3312 uma_keg_t keg; 3313 3314 keg = zone_first_keg(zone); 3315 KEG_LOCK(keg); 3316 keg->uk_allocf = allocf; 3317 KEG_UNLOCK(keg); 3318 } 3319 3320 /* See uma.h */ 3321 void 3322 uma_zone_reserve(uma_zone_t zone, int items) 3323 { 3324 uma_keg_t keg; 3325 3326 keg = zone_first_keg(zone); 3327 if (keg == NULL) 3328 return; 3329 KEG_LOCK(keg); 3330 keg->uk_reserve = items; 3331 KEG_UNLOCK(keg); 3332 3333 return; 3334 } 3335 3336 /* See uma.h */ 3337 int 3338 uma_zone_reserve_kva(uma_zone_t zone, int count) 3339 { 3340 uma_keg_t keg; 3341 vm_offset_t kva; 3342 u_int pages; 3343 3344 keg = zone_first_keg(zone); 3345 if (keg == NULL) 3346 return (0); 3347 pages = count / keg->uk_ipers; 3348 3349 if (pages * keg->uk_ipers < count) 3350 pages++; 3351 pages *= keg->uk_ppera; 3352 3353 #ifdef UMA_MD_SMALL_ALLOC 3354 if (keg->uk_ppera > 1) { 3355 #else 3356 if (1) { 3357 #endif 3358 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 3359 if (kva == 0) 3360 return (0); 3361 } else 3362 kva = 0; 3363 KEG_LOCK(keg); 3364 keg->uk_kva = kva; 3365 keg->uk_offset = 0; 3366 keg->uk_maxpages = pages; 3367 #ifdef UMA_MD_SMALL_ALLOC 3368 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 3369 #else 3370 keg->uk_allocf = noobj_alloc; 3371 #endif 3372 keg->uk_flags |= UMA_ZONE_NOFREE; 3373 KEG_UNLOCK(keg); 3374 3375 return (1); 3376 } 3377 3378 /* See uma.h */ 3379 void 3380 uma_prealloc(uma_zone_t zone, int items) 3381 { 3382 uma_domain_t dom; 3383 uma_slab_t slab; 3384 uma_keg_t keg; 3385 int domain, slabs; 3386 3387 keg = zone_first_keg(zone); 3388 if (keg == NULL) 3389 return; 3390 KEG_LOCK(keg); 3391 slabs = items / keg->uk_ipers; 3392 domain = 0; 3393 if (slabs * keg->uk_ipers < items) 3394 slabs++; 3395 while (slabs > 0) { 3396 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK); 3397 if (slab == NULL) 3398 break; 3399 MPASS(slab->us_keg == keg); 3400 dom = &keg->uk_domain[slab->us_domain]; 3401 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 3402 slabs--; 3403 domain = (domain + 1) % vm_ndomains; 3404 } 3405 KEG_UNLOCK(keg); 3406 } 3407 3408 /* See uma.h */ 3409 static void 3410 uma_reclaim_locked(bool kmem_danger) 3411 { 3412 3413 CTR0(KTR_UMA, "UMA: vm asked us to release pages!"); 3414 sx_assert(&uma_drain_lock, SA_XLOCKED); 3415 bucket_enable(); 3416 zone_foreach(zone_drain); 3417 if (vm_page_count_min() || kmem_danger) { 3418 cache_drain_safe(NULL); 3419 zone_foreach(zone_drain); 3420 } 3421 /* 3422 * Some slabs may have been freed but this zone will be visited early 3423 * we visit again so that we can free pages that are empty once other 3424 * zones are drained. We have to do the same for buckets. 3425 */ 3426 zone_drain(slabzone); 3427 bucket_zone_drain(); 3428 } 3429 3430 void 3431 uma_reclaim(void) 3432 { 3433 3434 sx_xlock(&uma_drain_lock); 3435 uma_reclaim_locked(false); 3436 sx_xunlock(&uma_drain_lock); 3437 } 3438 3439 static volatile int uma_reclaim_needed; 3440 3441 void 3442 uma_reclaim_wakeup(void) 3443 { 3444 3445 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 3446 wakeup(uma_reclaim); 3447 } 3448 3449 void 3450 uma_reclaim_worker(void *arg __unused) 3451 { 3452 3453 for (;;) { 3454 sx_xlock(&uma_drain_lock); 3455 while (atomic_load_int(&uma_reclaim_needed) == 0) 3456 sx_sleep(uma_reclaim, &uma_drain_lock, PVM, "umarcl", 3457 hz); 3458 sx_xunlock(&uma_drain_lock); 3459 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 3460 sx_xlock(&uma_drain_lock); 3461 uma_reclaim_locked(true); 3462 atomic_store_int(&uma_reclaim_needed, 0); 3463 sx_xunlock(&uma_drain_lock); 3464 /* Don't fire more than once per-second. */ 3465 pause("umarclslp", hz); 3466 } 3467 } 3468 3469 /* See uma.h */ 3470 int 3471 uma_zone_exhausted(uma_zone_t zone) 3472 { 3473 int full; 3474 3475 ZONE_LOCK(zone); 3476 full = (zone->uz_flags & UMA_ZFLAG_FULL); 3477 ZONE_UNLOCK(zone); 3478 return (full); 3479 } 3480 3481 int 3482 uma_zone_exhausted_nolock(uma_zone_t zone) 3483 { 3484 return (zone->uz_flags & UMA_ZFLAG_FULL); 3485 } 3486 3487 void * 3488 uma_large_malloc_domain(vm_size_t size, int domain, int wait) 3489 { 3490 vm_offset_t addr; 3491 uma_slab_t slab; 3492 3493 slab = zone_alloc_item(slabzone, NULL, domain, wait); 3494 if (slab == NULL) 3495 return (NULL); 3496 if (domain == UMA_ANYDOMAIN) 3497 addr = kmem_malloc(kernel_arena, size, wait); 3498 else 3499 addr = kmem_malloc_domain(domain, size, wait); 3500 if (addr != 0) { 3501 vsetslab(addr, slab); 3502 slab->us_data = (void *)addr; 3503 slab->us_flags = UMA_SLAB_KERNEL | UMA_SLAB_MALLOC; 3504 slab->us_size = size; 3505 slab->us_domain = vm_phys_domain(PHYS_TO_VM_PAGE( 3506 pmap_kextract(addr))); 3507 uma_total_inc(size); 3508 } else { 3509 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3510 } 3511 3512 return ((void *)addr); 3513 } 3514 3515 void * 3516 uma_large_malloc(vm_size_t size, int wait) 3517 { 3518 3519 return uma_large_malloc_domain(size, UMA_ANYDOMAIN, wait); 3520 } 3521 3522 void 3523 uma_large_free(uma_slab_t slab) 3524 { 3525 3526 KASSERT((slab->us_flags & UMA_SLAB_KERNEL) != 0, 3527 ("uma_large_free: Memory not allocated with uma_large_malloc.")); 3528 kmem_free(kernel_arena, (vm_offset_t)slab->us_data, slab->us_size); 3529 uma_total_dec(slab->us_size); 3530 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3531 } 3532 3533 static void 3534 uma_zero_item(void *item, uma_zone_t zone) 3535 { 3536 int i; 3537 3538 if (zone->uz_flags & UMA_ZONE_PCPU) { 3539 CPU_FOREACH(i) 3540 bzero(zpcpu_get_cpu(item, i), zone->uz_size); 3541 } else 3542 bzero(item, zone->uz_size); 3543 } 3544 3545 unsigned long 3546 uma_limit(void) 3547 { 3548 3549 return (uma_kmem_limit); 3550 } 3551 3552 void 3553 uma_set_limit(unsigned long limit) 3554 { 3555 3556 uma_kmem_limit = limit; 3557 } 3558 3559 unsigned long 3560 uma_size(void) 3561 { 3562 3563 return (uma_kmem_total); 3564 } 3565 3566 long 3567 uma_avail(void) 3568 { 3569 3570 return (uma_kmem_limit - uma_kmem_total); 3571 } 3572 3573 void 3574 uma_print_stats(void) 3575 { 3576 zone_foreach(uma_print_zone); 3577 } 3578 3579 static void 3580 slab_print(uma_slab_t slab) 3581 { 3582 printf("slab: keg %p, data %p, freecount %d\n", 3583 slab->us_keg, slab->us_data, slab->us_freecount); 3584 } 3585 3586 static void 3587 cache_print(uma_cache_t cache) 3588 { 3589 printf("alloc: %p(%d), free: %p(%d)\n", 3590 cache->uc_allocbucket, 3591 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, 3592 cache->uc_freebucket, 3593 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0); 3594 } 3595 3596 static void 3597 uma_print_keg(uma_keg_t keg) 3598 { 3599 uma_domain_t dom; 3600 uma_slab_t slab; 3601 int i; 3602 3603 printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d " 3604 "out %d free %d limit %d\n", 3605 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags, 3606 keg->uk_ipers, keg->uk_ppera, 3607 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 3608 keg->uk_free, (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers); 3609 for (i = 0; i < vm_ndomains; i++) { 3610 dom = &keg->uk_domain[i]; 3611 printf("Part slabs:\n"); 3612 LIST_FOREACH(slab, &dom->ud_part_slab, us_link) 3613 slab_print(slab); 3614 printf("Free slabs:\n"); 3615 LIST_FOREACH(slab, &dom->ud_free_slab, us_link) 3616 slab_print(slab); 3617 printf("Full slabs:\n"); 3618 LIST_FOREACH(slab, &dom->ud_full_slab, us_link) 3619 slab_print(slab); 3620 } 3621 } 3622 3623 void 3624 uma_print_zone(uma_zone_t zone) 3625 { 3626 uma_cache_t cache; 3627 uma_klink_t kl; 3628 int i; 3629 3630 printf("zone: %s(%p) size %d flags %#x\n", 3631 zone->uz_name, zone, zone->uz_size, zone->uz_flags); 3632 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) 3633 uma_print_keg(kl->kl_keg); 3634 CPU_FOREACH(i) { 3635 cache = &zone->uz_cpu[i]; 3636 printf("CPU %d Cache:\n", i); 3637 cache_print(cache); 3638 } 3639 } 3640 3641 #ifdef DDB 3642 /* 3643 * Generate statistics across both the zone and its per-cpu cache's. Return 3644 * desired statistics if the pointer is non-NULL for that statistic. 3645 * 3646 * Note: does not update the zone statistics, as it can't safely clear the 3647 * per-CPU cache statistic. 3648 * 3649 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't 3650 * safe from off-CPU; we should modify the caches to track this information 3651 * directly so that we don't have to. 3652 */ 3653 static void 3654 uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp, 3655 uint64_t *freesp, uint64_t *sleepsp) 3656 { 3657 uma_cache_t cache; 3658 uint64_t allocs, frees, sleeps; 3659 int cachefree, cpu; 3660 3661 allocs = frees = sleeps = 0; 3662 cachefree = 0; 3663 CPU_FOREACH(cpu) { 3664 cache = &z->uz_cpu[cpu]; 3665 if (cache->uc_allocbucket != NULL) 3666 cachefree += cache->uc_allocbucket->ub_cnt; 3667 if (cache->uc_freebucket != NULL) 3668 cachefree += cache->uc_freebucket->ub_cnt; 3669 allocs += cache->uc_allocs; 3670 frees += cache->uc_frees; 3671 } 3672 allocs += z->uz_allocs; 3673 frees += z->uz_frees; 3674 sleeps += z->uz_sleeps; 3675 if (cachefreep != NULL) 3676 *cachefreep = cachefree; 3677 if (allocsp != NULL) 3678 *allocsp = allocs; 3679 if (freesp != NULL) 3680 *freesp = frees; 3681 if (sleepsp != NULL) 3682 *sleepsp = sleeps; 3683 } 3684 #endif /* DDB */ 3685 3686 static int 3687 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 3688 { 3689 uma_keg_t kz; 3690 uma_zone_t z; 3691 int count; 3692 3693 count = 0; 3694 rw_rlock(&uma_rwlock); 3695 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3696 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3697 count++; 3698 } 3699 rw_runlock(&uma_rwlock); 3700 return (sysctl_handle_int(oidp, &count, 0, req)); 3701 } 3702 3703 static int 3704 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 3705 { 3706 struct uma_stream_header ush; 3707 struct uma_type_header uth; 3708 struct uma_percpu_stat *ups; 3709 uma_bucket_t bucket; 3710 uma_zone_domain_t zdom; 3711 struct sbuf sbuf; 3712 uma_cache_t cache; 3713 uma_klink_t kl; 3714 uma_keg_t kz; 3715 uma_zone_t z; 3716 uma_keg_t k; 3717 int count, error, i; 3718 3719 error = sysctl_wire_old_buffer(req, 0); 3720 if (error != 0) 3721 return (error); 3722 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 3723 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 3724 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 3725 3726 count = 0; 3727 rw_rlock(&uma_rwlock); 3728 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3729 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3730 count++; 3731 } 3732 3733 /* 3734 * Insert stream header. 3735 */ 3736 bzero(&ush, sizeof(ush)); 3737 ush.ush_version = UMA_STREAM_VERSION; 3738 ush.ush_maxcpus = (mp_maxid + 1); 3739 ush.ush_count = count; 3740 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 3741 3742 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3743 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3744 bzero(&uth, sizeof(uth)); 3745 ZONE_LOCK(z); 3746 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 3747 uth.uth_align = kz->uk_align; 3748 uth.uth_size = kz->uk_size; 3749 uth.uth_rsize = kz->uk_rsize; 3750 LIST_FOREACH(kl, &z->uz_kegs, kl_link) { 3751 k = kl->kl_keg; 3752 uth.uth_maxpages += k->uk_maxpages; 3753 uth.uth_pages += k->uk_pages; 3754 uth.uth_keg_free += k->uk_free; 3755 uth.uth_limit = (k->uk_maxpages / k->uk_ppera) 3756 * k->uk_ipers; 3757 } 3758 3759 /* 3760 * A zone is secondary is it is not the first entry 3761 * on the keg's zone list. 3762 */ 3763 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 3764 (LIST_FIRST(&kz->uk_zones) != z)) 3765 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 3766 3767 for (i = 0; i < vm_ndomains; i++) { 3768 zdom = &z->uz_domain[i]; 3769 LIST_FOREACH(bucket, &zdom->uzd_buckets, 3770 ub_link) 3771 uth.uth_zone_free += bucket->ub_cnt; 3772 } 3773 uth.uth_allocs = z->uz_allocs; 3774 uth.uth_frees = z->uz_frees; 3775 uth.uth_fails = z->uz_fails; 3776 uth.uth_sleeps = z->uz_sleeps; 3777 /* 3778 * While it is not normally safe to access the cache 3779 * bucket pointers while not on the CPU that owns the 3780 * cache, we only allow the pointers to be exchanged 3781 * without the zone lock held, not invalidated, so 3782 * accept the possible race associated with bucket 3783 * exchange during monitoring. 3784 */ 3785 for (i = 0; i < mp_maxid + 1; i++) { 3786 bzero(&ups[i], sizeof(*ups)); 3787 if (kz->uk_flags & UMA_ZFLAG_INTERNAL || 3788 CPU_ABSENT(i)) 3789 continue; 3790 cache = &z->uz_cpu[i]; 3791 if (cache->uc_allocbucket != NULL) 3792 ups[i].ups_cache_free += 3793 cache->uc_allocbucket->ub_cnt; 3794 if (cache->uc_freebucket != NULL) 3795 ups[i].ups_cache_free += 3796 cache->uc_freebucket->ub_cnt; 3797 ups[i].ups_allocs = cache->uc_allocs; 3798 ups[i].ups_frees = cache->uc_frees; 3799 } 3800 ZONE_UNLOCK(z); 3801 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 3802 for (i = 0; i < mp_maxid + 1; i++) 3803 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 3804 } 3805 } 3806 rw_runlock(&uma_rwlock); 3807 error = sbuf_finish(&sbuf); 3808 sbuf_delete(&sbuf); 3809 free(ups, M_TEMP); 3810 return (error); 3811 } 3812 3813 int 3814 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 3815 { 3816 uma_zone_t zone = *(uma_zone_t *)arg1; 3817 int error, max; 3818 3819 max = uma_zone_get_max(zone); 3820 error = sysctl_handle_int(oidp, &max, 0, req); 3821 if (error || !req->newptr) 3822 return (error); 3823 3824 uma_zone_set_max(zone, max); 3825 3826 return (0); 3827 } 3828 3829 int 3830 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 3831 { 3832 uma_zone_t zone = *(uma_zone_t *)arg1; 3833 int cur; 3834 3835 cur = uma_zone_get_cur(zone); 3836 return (sysctl_handle_int(oidp, &cur, 0, req)); 3837 } 3838 3839 #ifdef INVARIANTS 3840 static uma_slab_t 3841 uma_dbg_getslab(uma_zone_t zone, void *item) 3842 { 3843 uma_slab_t slab; 3844 uma_keg_t keg; 3845 uint8_t *mem; 3846 3847 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 3848 if (zone->uz_flags & UMA_ZONE_VTOSLAB) { 3849 slab = vtoslab((vm_offset_t)mem); 3850 } else { 3851 /* 3852 * It is safe to return the slab here even though the 3853 * zone is unlocked because the item's allocation state 3854 * essentially holds a reference. 3855 */ 3856 ZONE_LOCK(zone); 3857 keg = LIST_FIRST(&zone->uz_kegs)->kl_keg; 3858 if (keg->uk_flags & UMA_ZONE_HASH) 3859 slab = hash_sfind(&keg->uk_hash, mem); 3860 else 3861 slab = (uma_slab_t)(mem + keg->uk_pgoff); 3862 ZONE_UNLOCK(zone); 3863 } 3864 3865 return (slab); 3866 } 3867 3868 /* 3869 * Set up the slab's freei data such that uma_dbg_free can function. 3870 * 3871 */ 3872 static void 3873 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 3874 { 3875 uma_keg_t keg; 3876 int freei; 3877 3878 if (zone_first_keg(zone) == NULL) 3879 return; 3880 if (slab == NULL) { 3881 slab = uma_dbg_getslab(zone, item); 3882 if (slab == NULL) 3883 panic("uma: item %p did not belong to zone %s\n", 3884 item, zone->uz_name); 3885 } 3886 keg = slab->us_keg; 3887 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3888 3889 if (BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 3890 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n", 3891 item, zone, zone->uz_name, slab, freei); 3892 BIT_SET_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 3893 3894 return; 3895 } 3896 3897 /* 3898 * Verifies freed addresses. Checks for alignment, valid slab membership 3899 * and duplicate frees. 3900 * 3901 */ 3902 static void 3903 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 3904 { 3905 uma_keg_t keg; 3906 int freei; 3907 3908 if (zone_first_keg(zone) == NULL) 3909 return; 3910 if (slab == NULL) { 3911 slab = uma_dbg_getslab(zone, item); 3912 if (slab == NULL) 3913 panic("uma: Freed item %p did not belong to zone %s\n", 3914 item, zone->uz_name); 3915 } 3916 keg = slab->us_keg; 3917 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3918 3919 if (freei >= keg->uk_ipers) 3920 panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n", 3921 item, zone, zone->uz_name, slab, freei); 3922 3923 if (((freei * keg->uk_rsize) + slab->us_data) != item) 3924 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n", 3925 item, zone, zone->uz_name, slab, freei); 3926 3927 if (!BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 3928 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n", 3929 item, zone, zone->uz_name, slab, freei); 3930 3931 BIT_CLR_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 3932 } 3933 #endif /* INVARIANTS */ 3934 3935 #ifdef DDB 3936 DB_SHOW_COMMAND(uma, db_show_uma) 3937 { 3938 uma_bucket_t bucket; 3939 uma_keg_t kz; 3940 uma_zone_t z; 3941 uma_zone_domain_t zdom; 3942 uint64_t allocs, frees, sleeps; 3943 int cachefree, i; 3944 3945 db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used", 3946 "Free", "Requests", "Sleeps", "Bucket"); 3947 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3948 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3949 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 3950 allocs = z->uz_allocs; 3951 frees = z->uz_frees; 3952 sleeps = z->uz_sleeps; 3953 cachefree = 0; 3954 } else 3955 uma_zone_sumstat(z, &cachefree, &allocs, 3956 &frees, &sleeps); 3957 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 3958 (LIST_FIRST(&kz->uk_zones) != z))) 3959 cachefree += kz->uk_free; 3960 for (i = 0; i < vm_ndomains; i++) { 3961 zdom = &z->uz_domain[i]; 3962 LIST_FOREACH(bucket, &zdom->uzd_buckets, 3963 ub_link) 3964 cachefree += bucket->ub_cnt; 3965 } 3966 db_printf("%18s %8ju %8jd %8d %12ju %8ju %8u\n", 3967 z->uz_name, (uintmax_t)kz->uk_size, 3968 (intmax_t)(allocs - frees), cachefree, 3969 (uintmax_t)allocs, sleeps, z->uz_count); 3970 if (db_pager_quit) 3971 return; 3972 } 3973 } 3974 } 3975 3976 DB_SHOW_COMMAND(umacache, db_show_umacache) 3977 { 3978 uma_bucket_t bucket; 3979 uma_zone_t z; 3980 uma_zone_domain_t zdom; 3981 uint64_t allocs, frees; 3982 int cachefree, i; 3983 3984 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 3985 "Requests", "Bucket"); 3986 LIST_FOREACH(z, &uma_cachezones, uz_link) { 3987 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL); 3988 for (i = 0; i < vm_ndomains; i++) { 3989 zdom = &z->uz_domain[i]; 3990 LIST_FOREACH(bucket, &zdom->uzd_buckets, ub_link) 3991 cachefree += bucket->ub_cnt; 3992 } 3993 db_printf("%18s %8ju %8jd %8d %12ju %8u\n", 3994 z->uz_name, (uintmax_t)z->uz_size, 3995 (intmax_t)(allocs - frees), cachefree, 3996 (uintmax_t)allocs, z->uz_count); 3997 if (db_pager_quit) 3998 return; 3999 } 4000 } 4001 #endif /* DDB */ 4002