1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/bitset.h> 62 #include <sys/domainset.h> 63 #include <sys/eventhandler.h> 64 #include <sys/kernel.h> 65 #include <sys/types.h> 66 #include <sys/limits.h> 67 #include <sys/queue.h> 68 #include <sys/malloc.h> 69 #include <sys/ktr.h> 70 #include <sys/lock.h> 71 #include <sys/sysctl.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/random.h> 75 #include <sys/rwlock.h> 76 #include <sys/sbuf.h> 77 #include <sys/sched.h> 78 #include <sys/sleepqueue.h> 79 #include <sys/smp.h> 80 #include <sys/smr.h> 81 #include <sys/taskqueue.h> 82 #include <sys/vmmeter.h> 83 84 #include <vm/vm.h> 85 #include <vm/vm_domainset.h> 86 #include <vm/vm_object.h> 87 #include <vm/vm_page.h> 88 #include <vm/vm_pageout.h> 89 #include <vm/vm_param.h> 90 #include <vm/vm_phys.h> 91 #include <vm/vm_pagequeue.h> 92 #include <vm/vm_map.h> 93 #include <vm/vm_kern.h> 94 #include <vm/vm_extern.h> 95 #include <vm/uma.h> 96 #include <vm/uma_int.h> 97 #include <vm/uma_dbg.h> 98 99 #include <ddb/ddb.h> 100 101 #ifdef DEBUG_MEMGUARD 102 #include <vm/memguard.h> 103 #endif 104 105 #include <machine/md_var.h> 106 107 #ifdef INVARIANTS 108 #define UMA_ALWAYS_CTORDTOR 1 109 #else 110 #define UMA_ALWAYS_CTORDTOR 0 111 #endif 112 113 /* 114 * This is the zone and keg from which all zones are spawned. 115 */ 116 static uma_zone_t kegs; 117 static uma_zone_t zones; 118 119 /* 120 * These are the two zones from which all offpage uma_slab_ts are allocated. 121 * 122 * One zone is for slab headers that can represent a larger number of items, 123 * making the slabs themselves more efficient, and the other zone is for 124 * headers that are smaller and represent fewer items, making the headers more 125 * efficient. 126 */ 127 #define SLABZONE_SIZE(setsize) \ 128 (sizeof(struct uma_hash_slab) + BITSET_SIZE(setsize) * SLAB_BITSETS) 129 #define SLABZONE0_SETSIZE (PAGE_SIZE / 16) 130 #define SLABZONE1_SETSIZE SLAB_MAX_SETSIZE 131 #define SLABZONE0_SIZE SLABZONE_SIZE(SLABZONE0_SETSIZE) 132 #define SLABZONE1_SIZE SLABZONE_SIZE(SLABZONE1_SETSIZE) 133 static uma_zone_t slabzones[2]; 134 135 /* 136 * The initial hash tables come out of this zone so they can be allocated 137 * prior to malloc coming up. 138 */ 139 static uma_zone_t hashzone; 140 141 /* The boot-time adjusted value for cache line alignment. */ 142 int uma_align_cache = 64 - 1; 143 144 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 145 static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc"); 146 147 /* 148 * Are we allowed to allocate buckets? 149 */ 150 static int bucketdisable = 1; 151 152 /* Linked list of all kegs in the system */ 153 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 154 155 /* Linked list of all cache-only zones in the system */ 156 static LIST_HEAD(,uma_zone) uma_cachezones = 157 LIST_HEAD_INITIALIZER(uma_cachezones); 158 159 /* This RW lock protects the keg list */ 160 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 161 162 /* 163 * First available virual address for boot time allocations. 164 */ 165 static vm_offset_t bootstart; 166 static vm_offset_t bootmem; 167 168 static struct sx uma_reclaim_lock; 169 170 /* 171 * kmem soft limit, initialized by uma_set_limit(). Ensure that early 172 * allocations don't trigger a wakeup of the reclaim thread. 173 */ 174 unsigned long uma_kmem_limit = LONG_MAX; 175 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0, 176 "UMA kernel memory soft limit"); 177 unsigned long uma_kmem_total; 178 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0, 179 "UMA kernel memory usage"); 180 181 /* Is the VM done starting up? */ 182 static enum { 183 BOOT_COLD, 184 BOOT_KVA, 185 BOOT_RUNNING, 186 BOOT_SHUTDOWN, 187 } booted = BOOT_COLD; 188 189 /* 190 * This is the handle used to schedule events that need to happen 191 * outside of the allocation fast path. 192 */ 193 static struct callout uma_callout; 194 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 195 196 /* 197 * This structure is passed as the zone ctor arg so that I don't have to create 198 * a special allocation function just for zones. 199 */ 200 struct uma_zctor_args { 201 const char *name; 202 size_t size; 203 uma_ctor ctor; 204 uma_dtor dtor; 205 uma_init uminit; 206 uma_fini fini; 207 uma_import import; 208 uma_release release; 209 void *arg; 210 uma_keg_t keg; 211 int align; 212 uint32_t flags; 213 }; 214 215 struct uma_kctor_args { 216 uma_zone_t zone; 217 size_t size; 218 uma_init uminit; 219 uma_fini fini; 220 int align; 221 uint32_t flags; 222 }; 223 224 struct uma_bucket_zone { 225 uma_zone_t ubz_zone; 226 char *ubz_name; 227 int ubz_entries; /* Number of items it can hold. */ 228 int ubz_maxsize; /* Maximum allocation size per-item. */ 229 }; 230 231 /* 232 * Compute the actual number of bucket entries to pack them in power 233 * of two sizes for more efficient space utilization. 234 */ 235 #define BUCKET_SIZE(n) \ 236 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 237 238 #define BUCKET_MAX BUCKET_SIZE(256) 239 #define BUCKET_MIN BUCKET_SIZE(4) 240 241 struct uma_bucket_zone bucket_zones[] = { 242 #ifndef __ILP32__ 243 { NULL, "4 Bucket", BUCKET_SIZE(4), 4096 }, 244 #endif 245 { NULL, "6 Bucket", BUCKET_SIZE(6), 3072 }, 246 { NULL, "8 Bucket", BUCKET_SIZE(8), 2048 }, 247 { NULL, "12 Bucket", BUCKET_SIZE(12), 1536 }, 248 { NULL, "16 Bucket", BUCKET_SIZE(16), 1024 }, 249 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 250 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 251 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 252 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 253 { NULL, NULL, 0} 254 }; 255 256 /* 257 * Flags and enumerations to be passed to internal functions. 258 */ 259 enum zfreeskip { 260 SKIP_NONE = 0, 261 SKIP_CNT = 0x00000001, 262 SKIP_DTOR = 0x00010000, 263 SKIP_FINI = 0x00020000, 264 }; 265 266 /* Prototypes.. */ 267 268 void uma_startup1(vm_offset_t); 269 void uma_startup2(void); 270 271 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 272 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 273 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 274 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 275 static void page_free(void *, vm_size_t, uint8_t); 276 static void pcpu_page_free(void *, vm_size_t, uint8_t); 277 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int); 278 static void cache_drain(uma_zone_t); 279 static void bucket_drain(uma_zone_t, uma_bucket_t); 280 static void bucket_cache_reclaim(uma_zone_t zone, bool); 281 static int keg_ctor(void *, int, void *, int); 282 static void keg_dtor(void *, int, void *); 283 static int zone_ctor(void *, int, void *, int); 284 static void zone_dtor(void *, int, void *); 285 static inline void item_dtor(uma_zone_t zone, void *item, int size, 286 void *udata, enum zfreeskip skip); 287 static int zero_init(void *, int, int); 288 static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *); 289 static void zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *), void *); 290 static void zone_timeout(uma_zone_t zone, void *); 291 static int hash_alloc(struct uma_hash *, u_int); 292 static int hash_expand(struct uma_hash *, struct uma_hash *); 293 static void hash_free(struct uma_hash *hash); 294 static void uma_timeout(void *); 295 static void uma_startup3(void); 296 static void uma_shutdown(void); 297 static void *zone_alloc_item(uma_zone_t, void *, int, int); 298 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 299 static int zone_alloc_limit(uma_zone_t zone, int count, int flags); 300 static void zone_free_limit(uma_zone_t zone, int count); 301 static void bucket_enable(void); 302 static void bucket_init(void); 303 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 304 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 305 static void bucket_zone_drain(void); 306 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int); 307 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 308 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item); 309 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 310 uma_fini fini, int align, uint32_t flags); 311 static int zone_import(void *, void **, int, int, int); 312 static void zone_release(void *, void **, int); 313 static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int); 314 static bool cache_free(uma_zone_t, uma_cache_t, void *, void *, int); 315 316 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 317 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 318 static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS); 319 static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS); 320 static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS); 321 static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS); 322 static int sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS); 323 324 static uint64_t uma_zone_get_allocs(uma_zone_t zone); 325 326 #ifdef INVARIANTS 327 static uint64_t uma_keg_get_allocs(uma_keg_t zone); 328 static inline struct noslabbits *slab_dbg_bits(uma_slab_t slab, uma_keg_t keg); 329 330 static bool uma_dbg_kskip(uma_keg_t keg, void *mem); 331 static bool uma_dbg_zskip(uma_zone_t zone, void *mem); 332 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 333 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 334 335 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD, 0, 336 "Memory allocation debugging"); 337 338 static u_int dbg_divisor = 1; 339 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor, 340 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0, 341 "Debug & thrash every this item in memory allocator"); 342 343 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER; 344 static counter_u64_t uma_skip_cnt = EARLY_COUNTER; 345 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD, 346 &uma_dbg_cnt, "memory items debugged"); 347 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD, 348 &uma_skip_cnt, "memory items skipped, not debugged"); 349 #endif 350 351 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 352 353 SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW, 0, "Universal Memory Allocator"); 354 355 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_INT, 356 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 357 358 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_STRUCT, 359 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 360 361 static int zone_warnings = 1; 362 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 363 "Warn when UMA zones becomes full"); 364 365 /* 366 * Select the slab zone for an offpage slab with the given maximum item count. 367 */ 368 static inline uma_zone_t 369 slabzone(int ipers) 370 { 371 372 return (slabzones[ipers > SLABZONE0_SETSIZE]); 373 } 374 375 /* 376 * This routine checks to see whether or not it's safe to enable buckets. 377 */ 378 static void 379 bucket_enable(void) 380 { 381 382 KASSERT(booted >= BOOT_KVA, ("Bucket enable before init")); 383 bucketdisable = vm_page_count_min(); 384 } 385 386 /* 387 * Initialize bucket_zones, the array of zones of buckets of various sizes. 388 * 389 * For each zone, calculate the memory required for each bucket, consisting 390 * of the header and an array of pointers. 391 */ 392 static void 393 bucket_init(void) 394 { 395 struct uma_bucket_zone *ubz; 396 int size; 397 398 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 399 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 400 size += sizeof(void *) * ubz->ubz_entries; 401 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 402 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 403 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | 404 UMA_ZONE_FIRSTTOUCH); 405 } 406 } 407 408 /* 409 * Given a desired number of entries for a bucket, return the zone from which 410 * to allocate the bucket. 411 */ 412 static struct uma_bucket_zone * 413 bucket_zone_lookup(int entries) 414 { 415 struct uma_bucket_zone *ubz; 416 417 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 418 if (ubz->ubz_entries >= entries) 419 return (ubz); 420 ubz--; 421 return (ubz); 422 } 423 424 static struct uma_bucket_zone * 425 bucket_zone_max(uma_zone_t zone, int nitems) 426 { 427 struct uma_bucket_zone *ubz; 428 int bpcpu; 429 430 bpcpu = 2; 431 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 432 /* Count the cross-domain bucket. */ 433 bpcpu++; 434 435 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 436 if (ubz->ubz_entries * bpcpu * mp_ncpus > nitems) 437 break; 438 if (ubz == &bucket_zones[0]) 439 ubz = NULL; 440 else 441 ubz--; 442 return (ubz); 443 } 444 445 static int 446 bucket_select(int size) 447 { 448 struct uma_bucket_zone *ubz; 449 450 ubz = &bucket_zones[0]; 451 if (size > ubz->ubz_maxsize) 452 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 453 454 for (; ubz->ubz_entries != 0; ubz++) 455 if (ubz->ubz_maxsize < size) 456 break; 457 ubz--; 458 return (ubz->ubz_entries); 459 } 460 461 static uma_bucket_t 462 bucket_alloc(uma_zone_t zone, void *udata, int flags) 463 { 464 struct uma_bucket_zone *ubz; 465 uma_bucket_t bucket; 466 467 /* 468 * Don't allocate buckets early in boot. 469 */ 470 if (__predict_false(booted < BOOT_KVA)) 471 return (NULL); 472 473 /* 474 * To limit bucket recursion we store the original zone flags 475 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 476 * NOVM flag to persist even through deep recursions. We also 477 * store ZFLAG_BUCKET once we have recursed attempting to allocate 478 * a bucket for a bucket zone so we do not allow infinite bucket 479 * recursion. This cookie will even persist to frees of unused 480 * buckets via the allocation path or bucket allocations in the 481 * free path. 482 */ 483 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 484 udata = (void *)(uintptr_t)zone->uz_flags; 485 else { 486 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 487 return (NULL); 488 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 489 } 490 if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY) 491 flags |= M_NOVM; 492 ubz = bucket_zone_lookup(zone->uz_bucket_size); 493 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 494 ubz++; 495 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 496 if (bucket) { 497 #ifdef INVARIANTS 498 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 499 #endif 500 bucket->ub_cnt = 0; 501 bucket->ub_entries = ubz->ubz_entries; 502 bucket->ub_seq = SMR_SEQ_INVALID; 503 CTR3(KTR_UMA, "bucket_alloc: zone %s(%p) allocated bucket %p", 504 zone->uz_name, zone, bucket); 505 } 506 507 return (bucket); 508 } 509 510 static void 511 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 512 { 513 struct uma_bucket_zone *ubz; 514 515 KASSERT(bucket->ub_cnt == 0, 516 ("bucket_free: Freeing a non free bucket.")); 517 KASSERT(bucket->ub_seq == SMR_SEQ_INVALID, 518 ("bucket_free: Freeing an SMR bucket.")); 519 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 520 udata = (void *)(uintptr_t)zone->uz_flags; 521 ubz = bucket_zone_lookup(bucket->ub_entries); 522 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 523 } 524 525 static void 526 bucket_zone_drain(void) 527 { 528 struct uma_bucket_zone *ubz; 529 530 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 531 uma_zone_reclaim(ubz->ubz_zone, UMA_RECLAIM_DRAIN); 532 } 533 534 /* 535 * Attempt to satisfy an allocation by retrieving a full bucket from one of the 536 * zone's caches. If a bucket is found the zone is not locked on return. 537 */ 538 static uma_bucket_t 539 zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom) 540 { 541 uma_bucket_t bucket; 542 int i; 543 bool dtor = false; 544 545 ZONE_LOCK_ASSERT(zone); 546 547 if ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) == NULL) 548 return (NULL); 549 550 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 551 bucket->ub_seq != SMR_SEQ_INVALID) { 552 if (!smr_poll(zone->uz_smr, bucket->ub_seq, false)) 553 return (NULL); 554 bucket->ub_seq = SMR_SEQ_INVALID; 555 dtor = (zone->uz_dtor != NULL) | UMA_ALWAYS_CTORDTOR; 556 } 557 MPASS(zdom->uzd_nitems >= bucket->ub_cnt); 558 STAILQ_REMOVE_HEAD(&zdom->uzd_buckets, ub_link); 559 zdom->uzd_nitems -= bucket->ub_cnt; 560 if (zdom->uzd_imin > zdom->uzd_nitems) 561 zdom->uzd_imin = zdom->uzd_nitems; 562 zone->uz_bkt_count -= bucket->ub_cnt; 563 ZONE_UNLOCK(zone); 564 if (dtor) 565 for (i = 0; i < bucket->ub_cnt; i++) 566 item_dtor(zone, bucket->ub_bucket[i], zone->uz_size, 567 NULL, SKIP_NONE); 568 569 return (bucket); 570 } 571 572 /* 573 * Insert a full bucket into the specified cache. The "ws" parameter indicates 574 * whether the bucket's contents should be counted as part of the zone's working 575 * set. 576 */ 577 static void 578 zone_put_bucket(uma_zone_t zone, uma_zone_domain_t zdom, uma_bucket_t bucket, 579 const bool ws) 580 { 581 582 ZONE_LOCK_ASSERT(zone); 583 KASSERT(!ws || zone->uz_bkt_count < zone->uz_bkt_max, 584 ("%s: zone %p overflow", __func__, zone)); 585 586 STAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link); 587 zdom->uzd_nitems += bucket->ub_cnt; 588 if (ws && zdom->uzd_imax < zdom->uzd_nitems) 589 zdom->uzd_imax = zdom->uzd_nitems; 590 zone->uz_bkt_count += bucket->ub_cnt; 591 } 592 593 /* Pops an item out of a per-cpu cache bucket. */ 594 static inline void * 595 cache_bucket_pop(uma_cache_t cache, uma_cache_bucket_t bucket) 596 { 597 void *item; 598 599 CRITICAL_ASSERT(curthread); 600 601 bucket->ucb_cnt--; 602 item = bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt]; 603 #ifdef INVARIANTS 604 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = NULL; 605 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 606 #endif 607 cache->uc_allocs++; 608 609 return (item); 610 } 611 612 /* Pushes an item into a per-cpu cache bucket. */ 613 static inline void 614 cache_bucket_push(uma_cache_t cache, uma_cache_bucket_t bucket, void *item) 615 { 616 617 CRITICAL_ASSERT(curthread); 618 KASSERT(bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] == NULL, 619 ("uma_zfree: Freeing to non free bucket index.")); 620 621 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = item; 622 bucket->ucb_cnt++; 623 cache->uc_frees++; 624 } 625 626 /* 627 * Unload a UMA bucket from a per-cpu cache. 628 */ 629 static inline uma_bucket_t 630 cache_bucket_unload(uma_cache_bucket_t bucket) 631 { 632 uma_bucket_t b; 633 634 b = bucket->ucb_bucket; 635 if (b != NULL) { 636 MPASS(b->ub_entries == bucket->ucb_entries); 637 b->ub_cnt = bucket->ucb_cnt; 638 bucket->ucb_bucket = NULL; 639 bucket->ucb_entries = bucket->ucb_cnt = 0; 640 } 641 642 return (b); 643 } 644 645 static inline uma_bucket_t 646 cache_bucket_unload_alloc(uma_cache_t cache) 647 { 648 649 return (cache_bucket_unload(&cache->uc_allocbucket)); 650 } 651 652 static inline uma_bucket_t 653 cache_bucket_unload_free(uma_cache_t cache) 654 { 655 656 return (cache_bucket_unload(&cache->uc_freebucket)); 657 } 658 659 static inline uma_bucket_t 660 cache_bucket_unload_cross(uma_cache_t cache) 661 { 662 663 return (cache_bucket_unload(&cache->uc_crossbucket)); 664 } 665 666 /* 667 * Load a bucket into a per-cpu cache bucket. 668 */ 669 static inline void 670 cache_bucket_load(uma_cache_bucket_t bucket, uma_bucket_t b) 671 { 672 673 CRITICAL_ASSERT(curthread); 674 MPASS(bucket->ucb_bucket == NULL); 675 676 bucket->ucb_bucket = b; 677 bucket->ucb_cnt = b->ub_cnt; 678 bucket->ucb_entries = b->ub_entries; 679 } 680 681 static inline void 682 cache_bucket_load_alloc(uma_cache_t cache, uma_bucket_t b) 683 { 684 685 cache_bucket_load(&cache->uc_allocbucket, b); 686 } 687 688 static inline void 689 cache_bucket_load_free(uma_cache_t cache, uma_bucket_t b) 690 { 691 692 cache_bucket_load(&cache->uc_freebucket, b); 693 } 694 695 #ifdef NUMA 696 static inline void 697 cache_bucket_load_cross(uma_cache_t cache, uma_bucket_t b) 698 { 699 700 cache_bucket_load(&cache->uc_crossbucket, b); 701 } 702 #endif 703 704 /* 705 * Copy and preserve ucb_spare. 706 */ 707 static inline void 708 cache_bucket_copy(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 709 { 710 711 b1->ucb_bucket = b2->ucb_bucket; 712 b1->ucb_entries = b2->ucb_entries; 713 b1->ucb_cnt = b2->ucb_cnt; 714 } 715 716 /* 717 * Swap two cache buckets. 718 */ 719 static inline void 720 cache_bucket_swap(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 721 { 722 struct uma_cache_bucket b3; 723 724 CRITICAL_ASSERT(curthread); 725 726 cache_bucket_copy(&b3, b1); 727 cache_bucket_copy(b1, b2); 728 cache_bucket_copy(b2, &b3); 729 } 730 731 static void 732 zone_log_warning(uma_zone_t zone) 733 { 734 static const struct timeval warninterval = { 300, 0 }; 735 736 if (!zone_warnings || zone->uz_warning == NULL) 737 return; 738 739 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 740 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 741 } 742 743 static inline void 744 zone_maxaction(uma_zone_t zone) 745 { 746 747 if (zone->uz_maxaction.ta_func != NULL) 748 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 749 } 750 751 /* 752 * Routine called by timeout which is used to fire off some time interval 753 * based calculations. (stats, hash size, etc.) 754 * 755 * Arguments: 756 * arg Unused 757 * 758 * Returns: 759 * Nothing 760 */ 761 static void 762 uma_timeout(void *unused) 763 { 764 bucket_enable(); 765 zone_foreach(zone_timeout, NULL); 766 767 /* Reschedule this event */ 768 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 769 } 770 771 /* 772 * Update the working set size estimate for the zone's bucket cache. 773 * The constants chosen here are somewhat arbitrary. With an update period of 774 * 20s (UMA_TIMEOUT), this estimate is dominated by zone activity over the 775 * last 100s. 776 */ 777 static void 778 zone_domain_update_wss(uma_zone_domain_t zdom) 779 { 780 long wss; 781 782 MPASS(zdom->uzd_imax >= zdom->uzd_imin); 783 wss = zdom->uzd_imax - zdom->uzd_imin; 784 zdom->uzd_imax = zdom->uzd_imin = zdom->uzd_nitems; 785 zdom->uzd_wss = (4 * wss + zdom->uzd_wss) / 5; 786 } 787 788 /* 789 * Routine to perform timeout driven calculations. This expands the 790 * hashes and does per cpu statistics aggregation. 791 * 792 * Returns nothing. 793 */ 794 static void 795 zone_timeout(uma_zone_t zone, void *unused) 796 { 797 uma_keg_t keg; 798 u_int slabs, pages; 799 800 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 801 goto update_wss; 802 803 keg = zone->uz_keg; 804 805 /* 806 * Hash zones are non-numa by definition so the first domain 807 * is the only one present. 808 */ 809 KEG_LOCK(keg, 0); 810 pages = keg->uk_domain[0].ud_pages; 811 812 /* 813 * Expand the keg hash table. 814 * 815 * This is done if the number of slabs is larger than the hash size. 816 * What I'm trying to do here is completely reduce collisions. This 817 * may be a little aggressive. Should I allow for two collisions max? 818 */ 819 if ((slabs = pages / keg->uk_ppera) > keg->uk_hash.uh_hashsize) { 820 struct uma_hash newhash; 821 struct uma_hash oldhash; 822 int ret; 823 824 /* 825 * This is so involved because allocating and freeing 826 * while the keg lock is held will lead to deadlock. 827 * I have to do everything in stages and check for 828 * races. 829 */ 830 KEG_UNLOCK(keg, 0); 831 ret = hash_alloc(&newhash, 1 << fls(slabs)); 832 KEG_LOCK(keg, 0); 833 if (ret) { 834 if (hash_expand(&keg->uk_hash, &newhash)) { 835 oldhash = keg->uk_hash; 836 keg->uk_hash = newhash; 837 } else 838 oldhash = newhash; 839 840 KEG_UNLOCK(keg, 0); 841 hash_free(&oldhash); 842 goto update_wss; 843 } 844 } 845 KEG_UNLOCK(keg, 0); 846 847 update_wss: 848 ZONE_LOCK(zone); 849 for (int i = 0; i < vm_ndomains; i++) 850 zone_domain_update_wss(&zone->uz_domain[i]); 851 ZONE_UNLOCK(zone); 852 } 853 854 /* 855 * Allocate and zero fill the next sized hash table from the appropriate 856 * backing store. 857 * 858 * Arguments: 859 * hash A new hash structure with the old hash size in uh_hashsize 860 * 861 * Returns: 862 * 1 on success and 0 on failure. 863 */ 864 static int 865 hash_alloc(struct uma_hash *hash, u_int size) 866 { 867 size_t alloc; 868 869 KASSERT(powerof2(size), ("hash size must be power of 2")); 870 if (size > UMA_HASH_SIZE_INIT) { 871 hash->uh_hashsize = size; 872 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 873 hash->uh_slab_hash = malloc(alloc, M_UMAHASH, M_NOWAIT); 874 } else { 875 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 876 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 877 UMA_ANYDOMAIN, M_WAITOK); 878 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 879 } 880 if (hash->uh_slab_hash) { 881 bzero(hash->uh_slab_hash, alloc); 882 hash->uh_hashmask = hash->uh_hashsize - 1; 883 return (1); 884 } 885 886 return (0); 887 } 888 889 /* 890 * Expands the hash table for HASH zones. This is done from zone_timeout 891 * to reduce collisions. This must not be done in the regular allocation 892 * path, otherwise, we can recurse on the vm while allocating pages. 893 * 894 * Arguments: 895 * oldhash The hash you want to expand 896 * newhash The hash structure for the new table 897 * 898 * Returns: 899 * Nothing 900 * 901 * Discussion: 902 */ 903 static int 904 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 905 { 906 uma_hash_slab_t slab; 907 u_int hval; 908 u_int idx; 909 910 if (!newhash->uh_slab_hash) 911 return (0); 912 913 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 914 return (0); 915 916 /* 917 * I need to investigate hash algorithms for resizing without a 918 * full rehash. 919 */ 920 921 for (idx = 0; idx < oldhash->uh_hashsize; idx++) 922 while (!LIST_EMPTY(&oldhash->uh_slab_hash[idx])) { 923 slab = LIST_FIRST(&oldhash->uh_slab_hash[idx]); 924 LIST_REMOVE(slab, uhs_hlink); 925 hval = UMA_HASH(newhash, slab->uhs_data); 926 LIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 927 slab, uhs_hlink); 928 } 929 930 return (1); 931 } 932 933 /* 934 * Free the hash bucket to the appropriate backing store. 935 * 936 * Arguments: 937 * slab_hash The hash bucket we're freeing 938 * hashsize The number of entries in that hash bucket 939 * 940 * Returns: 941 * Nothing 942 */ 943 static void 944 hash_free(struct uma_hash *hash) 945 { 946 if (hash->uh_slab_hash == NULL) 947 return; 948 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 949 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 950 else 951 free(hash->uh_slab_hash, M_UMAHASH); 952 } 953 954 /* 955 * Frees all outstanding items in a bucket 956 * 957 * Arguments: 958 * zone The zone to free to, must be unlocked. 959 * bucket The free/alloc bucket with items. 960 * 961 * Returns: 962 * Nothing 963 */ 964 965 static void 966 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 967 { 968 int i; 969 970 if (bucket == NULL || bucket->ub_cnt == 0) 971 return; 972 973 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 974 bucket->ub_seq != SMR_SEQ_INVALID) { 975 smr_wait(zone->uz_smr, bucket->ub_seq); 976 for (i = 0; i < bucket->ub_cnt; i++) 977 item_dtor(zone, bucket->ub_bucket[i], 978 zone->uz_size, NULL, SKIP_NONE); 979 bucket->ub_seq = SMR_SEQ_INVALID; 980 } 981 if (zone->uz_fini) 982 for (i = 0; i < bucket->ub_cnt; i++) 983 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 984 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 985 if (zone->uz_max_items > 0) 986 zone_free_limit(zone, bucket->ub_cnt); 987 #ifdef INVARIANTS 988 bzero(bucket->ub_bucket, sizeof(void *) * bucket->ub_cnt); 989 #endif 990 bucket->ub_cnt = 0; 991 } 992 993 /* 994 * Drains the per cpu caches for a zone. 995 * 996 * NOTE: This may only be called while the zone is being torn down, and not 997 * during normal operation. This is necessary in order that we do not have 998 * to migrate CPUs to drain the per-CPU caches. 999 * 1000 * Arguments: 1001 * zone The zone to drain, must be unlocked. 1002 * 1003 * Returns: 1004 * Nothing 1005 */ 1006 static void 1007 cache_drain(uma_zone_t zone) 1008 { 1009 uma_cache_t cache; 1010 uma_bucket_t bucket; 1011 int cpu; 1012 1013 /* 1014 * XXX: It is safe to not lock the per-CPU caches, because we're 1015 * tearing down the zone anyway. I.e., there will be no further use 1016 * of the caches at this point. 1017 * 1018 * XXX: It would good to be able to assert that the zone is being 1019 * torn down to prevent improper use of cache_drain(). 1020 */ 1021 CPU_FOREACH(cpu) { 1022 cache = &zone->uz_cpu[cpu]; 1023 bucket = cache_bucket_unload_alloc(cache); 1024 if (bucket != NULL) { 1025 bucket_drain(zone, bucket); 1026 bucket_free(zone, bucket, NULL); 1027 } 1028 bucket = cache_bucket_unload_free(cache); 1029 if (bucket != NULL) { 1030 bucket_drain(zone, bucket); 1031 bucket_free(zone, bucket, NULL); 1032 } 1033 bucket = cache_bucket_unload_cross(cache); 1034 if (bucket != NULL) { 1035 bucket_drain(zone, bucket); 1036 bucket_free(zone, bucket, NULL); 1037 } 1038 } 1039 bucket_cache_reclaim(zone, true); 1040 } 1041 1042 static void 1043 cache_shrink(uma_zone_t zone, void *unused) 1044 { 1045 1046 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1047 return; 1048 1049 ZONE_LOCK(zone); 1050 zone->uz_bucket_size = 1051 (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2; 1052 ZONE_UNLOCK(zone); 1053 } 1054 1055 static void 1056 cache_drain_safe_cpu(uma_zone_t zone, void *unused) 1057 { 1058 uma_cache_t cache; 1059 uma_bucket_t b1, b2, b3; 1060 int domain; 1061 1062 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1063 return; 1064 1065 b1 = b2 = b3 = NULL; 1066 ZONE_LOCK(zone); 1067 critical_enter(); 1068 if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH) 1069 domain = PCPU_GET(domain); 1070 else 1071 domain = 0; 1072 cache = &zone->uz_cpu[curcpu]; 1073 b1 = cache_bucket_unload_alloc(cache); 1074 if (b1 != NULL && b1->ub_cnt != 0) { 1075 zone_put_bucket(zone, &zone->uz_domain[domain], b1, false); 1076 b1 = NULL; 1077 } 1078 1079 /* 1080 * Don't flush SMR zone buckets. This leaves the zone without a 1081 * bucket and forces every free to synchronize(). 1082 */ 1083 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 1084 goto out; 1085 b2 = cache_bucket_unload_free(cache); 1086 if (b2 != NULL && b2->ub_cnt != 0) { 1087 zone_put_bucket(zone, &zone->uz_domain[domain], b2, false); 1088 b2 = NULL; 1089 } 1090 b3 = cache_bucket_unload_cross(cache); 1091 1092 out: 1093 critical_exit(); 1094 ZONE_UNLOCK(zone); 1095 if (b1) 1096 bucket_free(zone, b1, NULL); 1097 if (b2) 1098 bucket_free(zone, b2, NULL); 1099 if (b3) { 1100 bucket_drain(zone, b3); 1101 bucket_free(zone, b3, NULL); 1102 } 1103 } 1104 1105 /* 1106 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 1107 * This is an expensive call because it needs to bind to all CPUs 1108 * one by one and enter a critical section on each of them in order 1109 * to safely access their cache buckets. 1110 * Zone lock must not be held on call this function. 1111 */ 1112 static void 1113 pcpu_cache_drain_safe(uma_zone_t zone) 1114 { 1115 int cpu; 1116 1117 /* 1118 * Polite bucket sizes shrinking was not enough, shrink aggressively. 1119 */ 1120 if (zone) 1121 cache_shrink(zone, NULL); 1122 else 1123 zone_foreach(cache_shrink, NULL); 1124 1125 CPU_FOREACH(cpu) { 1126 thread_lock(curthread); 1127 sched_bind(curthread, cpu); 1128 thread_unlock(curthread); 1129 1130 if (zone) 1131 cache_drain_safe_cpu(zone, NULL); 1132 else 1133 zone_foreach(cache_drain_safe_cpu, NULL); 1134 } 1135 thread_lock(curthread); 1136 sched_unbind(curthread); 1137 thread_unlock(curthread); 1138 } 1139 1140 /* 1141 * Reclaim cached buckets from a zone. All buckets are reclaimed if the caller 1142 * requested a drain, otherwise the per-domain caches are trimmed to either 1143 * estimated working set size. 1144 */ 1145 static void 1146 bucket_cache_reclaim(uma_zone_t zone, bool drain) 1147 { 1148 uma_zone_domain_t zdom; 1149 uma_bucket_t bucket; 1150 long target, tofree; 1151 int i; 1152 1153 for (i = 0; i < vm_ndomains; i++) { 1154 /* 1155 * The cross bucket is partially filled and not part of 1156 * the item count. Reclaim it individually here. 1157 */ 1158 zdom = &zone->uz_domain[i]; 1159 ZONE_CROSS_LOCK(zone); 1160 bucket = zdom->uzd_cross; 1161 zdom->uzd_cross = NULL; 1162 ZONE_CROSS_UNLOCK(zone); 1163 if (bucket != NULL) { 1164 bucket_drain(zone, bucket); 1165 bucket_free(zone, bucket, NULL); 1166 } 1167 1168 /* 1169 * Shrink the zone bucket size to ensure that the per-CPU caches 1170 * don't grow too large. 1171 */ 1172 ZONE_LOCK(zone); 1173 if (i == 0 && zone->uz_bucket_size > zone->uz_bucket_size_min) 1174 zone->uz_bucket_size--; 1175 1176 /* 1177 * If we were asked to drain the zone, we are done only once 1178 * this bucket cache is empty. Otherwise, we reclaim items in 1179 * excess of the zone's estimated working set size. If the 1180 * difference nitems - imin is larger than the WSS estimate, 1181 * then the estimate will grow at the end of this interval and 1182 * we ignore the historical average. 1183 */ 1184 target = drain ? 0 : lmax(zdom->uzd_wss, zdom->uzd_nitems - 1185 zdom->uzd_imin); 1186 while (zdom->uzd_nitems > target) { 1187 bucket = STAILQ_FIRST(&zdom->uzd_buckets); 1188 if (bucket == NULL) 1189 break; 1190 tofree = bucket->ub_cnt; 1191 STAILQ_REMOVE_HEAD(&zdom->uzd_buckets, ub_link); 1192 zdom->uzd_nitems -= tofree; 1193 1194 /* 1195 * Shift the bounds of the current WSS interval to avoid 1196 * perturbing the estimate. 1197 */ 1198 zdom->uzd_imax -= lmin(zdom->uzd_imax, tofree); 1199 zdom->uzd_imin -= lmin(zdom->uzd_imin, tofree); 1200 1201 ZONE_UNLOCK(zone); 1202 bucket_drain(zone, bucket); 1203 bucket_free(zone, bucket, NULL); 1204 ZONE_LOCK(zone); 1205 } 1206 ZONE_UNLOCK(zone); 1207 } 1208 } 1209 1210 static void 1211 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 1212 { 1213 uint8_t *mem; 1214 int i; 1215 uint8_t flags; 1216 1217 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 1218 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 1219 1220 mem = slab_data(slab, keg); 1221 flags = slab->us_flags; 1222 i = start; 1223 if (keg->uk_fini != NULL) { 1224 for (i--; i > -1; i--) 1225 #ifdef INVARIANTS 1226 /* 1227 * trash_fini implies that dtor was trash_dtor. trash_fini 1228 * would check that memory hasn't been modified since free, 1229 * which executed trash_dtor. 1230 * That's why we need to run uma_dbg_kskip() check here, 1231 * albeit we don't make skip check for other init/fini 1232 * invocations. 1233 */ 1234 if (!uma_dbg_kskip(keg, slab_item(slab, keg, i)) || 1235 keg->uk_fini != trash_fini) 1236 #endif 1237 keg->uk_fini(slab_item(slab, keg, i), keg->uk_size); 1238 } 1239 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) 1240 zone_free_item(slabzone(keg->uk_ipers), slab_tohashslab(slab), 1241 NULL, SKIP_NONE); 1242 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 1243 uma_total_dec(PAGE_SIZE * keg->uk_ppera); 1244 } 1245 1246 /* 1247 * Frees pages from a keg back to the system. This is done on demand from 1248 * the pageout daemon. 1249 * 1250 * Returns nothing. 1251 */ 1252 static void 1253 keg_drain(uma_keg_t keg) 1254 { 1255 struct slabhead freeslabs = { 0 }; 1256 uma_domain_t dom; 1257 uma_slab_t slab, tmp; 1258 int i, n; 1259 1260 /* 1261 * We don't want to take pages from statically allocated kegs at this 1262 * time 1263 */ 1264 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 1265 return; 1266 1267 for (i = 0; i < vm_ndomains; i++) { 1268 CTR4(KTR_UMA, "keg_drain %s(%p) domain %d free items: %u", 1269 keg->uk_name, keg, i, dom->ud_free); 1270 n = 0; 1271 dom = &keg->uk_domain[i]; 1272 KEG_LOCK(keg, i); 1273 LIST_FOREACH_SAFE(slab, &dom->ud_free_slab, us_link, tmp) { 1274 if (keg->uk_flags & UMA_ZFLAG_HASH) 1275 UMA_HASH_REMOVE(&keg->uk_hash, slab); 1276 n++; 1277 LIST_REMOVE(slab, us_link); 1278 LIST_INSERT_HEAD(&freeslabs, slab, us_link); 1279 } 1280 dom->ud_pages -= n * keg->uk_ppera; 1281 dom->ud_free -= n * keg->uk_ipers; 1282 KEG_UNLOCK(keg, i); 1283 } 1284 1285 while ((slab = LIST_FIRST(&freeslabs)) != NULL) { 1286 LIST_REMOVE(slab, us_link); 1287 keg_free_slab(keg, slab, keg->uk_ipers); 1288 } 1289 } 1290 1291 static void 1292 zone_reclaim(uma_zone_t zone, int waitok, bool drain) 1293 { 1294 1295 /* 1296 * Set draining to interlock with zone_dtor() so we can release our 1297 * locks as we go. Only dtor() should do a WAITOK call since it 1298 * is the only call that knows the structure will still be available 1299 * when it wakes up. 1300 */ 1301 ZONE_LOCK(zone); 1302 while (zone->uz_flags & UMA_ZFLAG_RECLAIMING) { 1303 if (waitok == M_NOWAIT) 1304 goto out; 1305 msleep(zone, &zone->uz_lock, PVM, "zonedrain", 1); 1306 } 1307 zone->uz_flags |= UMA_ZFLAG_RECLAIMING; 1308 ZONE_UNLOCK(zone); 1309 bucket_cache_reclaim(zone, drain); 1310 1311 /* 1312 * The DRAINING flag protects us from being freed while 1313 * we're running. Normally the uma_rwlock would protect us but we 1314 * must be able to release and acquire the right lock for each keg. 1315 */ 1316 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) 1317 keg_drain(zone->uz_keg); 1318 ZONE_LOCK(zone); 1319 zone->uz_flags &= ~UMA_ZFLAG_RECLAIMING; 1320 wakeup(zone); 1321 out: 1322 ZONE_UNLOCK(zone); 1323 } 1324 1325 static void 1326 zone_drain(uma_zone_t zone, void *unused) 1327 { 1328 1329 zone_reclaim(zone, M_NOWAIT, true); 1330 } 1331 1332 static void 1333 zone_trim(uma_zone_t zone, void *unused) 1334 { 1335 1336 zone_reclaim(zone, M_NOWAIT, false); 1337 } 1338 1339 /* 1340 * Allocate a new slab for a keg and inserts it into the partial slab list. 1341 * The keg should be unlocked on entry. If the allocation succeeds it will 1342 * be locked on return. 1343 * 1344 * Arguments: 1345 * flags Wait flags for the item initialization routine 1346 * aflags Wait flags for the slab allocation 1347 * 1348 * Returns: 1349 * The slab that was allocated or NULL if there is no memory and the 1350 * caller specified M_NOWAIT. 1351 */ 1352 static uma_slab_t 1353 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags, 1354 int aflags) 1355 { 1356 uma_domain_t dom; 1357 uma_alloc allocf; 1358 uma_slab_t slab; 1359 unsigned long size; 1360 uint8_t *mem; 1361 uint8_t sflags; 1362 int i; 1363 1364 KASSERT(domain >= 0 && domain < vm_ndomains, 1365 ("keg_alloc_slab: domain %d out of range", domain)); 1366 1367 allocf = keg->uk_allocf; 1368 slab = NULL; 1369 mem = NULL; 1370 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) { 1371 uma_hash_slab_t hslab; 1372 hslab = zone_alloc_item(slabzone(keg->uk_ipers), NULL, 1373 domain, aflags); 1374 if (hslab == NULL) 1375 goto fail; 1376 slab = &hslab->uhs_slab; 1377 } 1378 1379 /* 1380 * This reproduces the old vm_zone behavior of zero filling pages the 1381 * first time they are added to a zone. 1382 * 1383 * Malloced items are zeroed in uma_zalloc. 1384 */ 1385 1386 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1387 aflags |= M_ZERO; 1388 else 1389 aflags &= ~M_ZERO; 1390 1391 if (keg->uk_flags & UMA_ZONE_NODUMP) 1392 aflags |= M_NODUMP; 1393 1394 /* zone is passed for legacy reasons. */ 1395 size = keg->uk_ppera * PAGE_SIZE; 1396 mem = allocf(zone, size, domain, &sflags, aflags); 1397 if (mem == NULL) { 1398 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) 1399 zone_free_item(slabzone(keg->uk_ipers), 1400 slab_tohashslab(slab), NULL, SKIP_NONE); 1401 goto fail; 1402 } 1403 uma_total_inc(size); 1404 1405 /* For HASH zones all pages go to the same uma_domain. */ 1406 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 1407 domain = 0; 1408 1409 /* Point the slab into the allocated memory */ 1410 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) 1411 slab = (uma_slab_t )(mem + keg->uk_pgoff); 1412 else 1413 slab_tohashslab(slab)->uhs_data = mem; 1414 1415 if (keg->uk_flags & UMA_ZFLAG_VTOSLAB) 1416 for (i = 0; i < keg->uk_ppera; i++) 1417 vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE), 1418 zone, slab); 1419 1420 slab->us_freecount = keg->uk_ipers; 1421 slab->us_flags = sflags; 1422 slab->us_domain = domain; 1423 1424 BIT_FILL(keg->uk_ipers, &slab->us_free); 1425 #ifdef INVARIANTS 1426 BIT_ZERO(keg->uk_ipers, slab_dbg_bits(slab, keg)); 1427 #endif 1428 1429 if (keg->uk_init != NULL) { 1430 for (i = 0; i < keg->uk_ipers; i++) 1431 if (keg->uk_init(slab_item(slab, keg, i), 1432 keg->uk_size, flags) != 0) 1433 break; 1434 if (i != keg->uk_ipers) { 1435 keg_free_slab(keg, slab, i); 1436 goto fail; 1437 } 1438 } 1439 KEG_LOCK(keg, domain); 1440 1441 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1442 slab, keg->uk_name, keg); 1443 1444 if (keg->uk_flags & UMA_ZFLAG_HASH) 1445 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1446 1447 /* 1448 * If we got a slab here it's safe to mark it partially used 1449 * and return. We assume that the caller is going to remove 1450 * at least one item. 1451 */ 1452 dom = &keg->uk_domain[domain]; 1453 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 1454 dom->ud_pages += keg->uk_ppera; 1455 dom->ud_free += keg->uk_ipers; 1456 1457 return (slab); 1458 1459 fail: 1460 return (NULL); 1461 } 1462 1463 /* 1464 * This function is intended to be used early on in place of page_alloc() so 1465 * that we may use the boot time page cache to satisfy allocations before 1466 * the VM is ready. 1467 */ 1468 static void * 1469 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1470 int wait) 1471 { 1472 vm_paddr_t pa; 1473 vm_page_t m; 1474 void *mem; 1475 int pages; 1476 int i; 1477 1478 pages = howmany(bytes, PAGE_SIZE); 1479 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1480 1481 *pflag = UMA_SLAB_BOOT; 1482 m = vm_page_alloc_contig_domain(NULL, 0, domain, 1483 malloc2vm_flags(wait) | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED, pages, 1484 (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT); 1485 if (m == NULL) 1486 return (NULL); 1487 1488 pa = VM_PAGE_TO_PHYS(m); 1489 for (i = 0; i < pages; i++, pa += PAGE_SIZE) { 1490 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 1491 defined(__riscv) || defined(__powerpc64__) 1492 if ((wait & M_NODUMP) == 0) 1493 dump_add_page(pa); 1494 #endif 1495 } 1496 /* Allocate KVA and indirectly advance bootmem. */ 1497 mem = (void *)pmap_map(&bootmem, m->phys_addr, 1498 m->phys_addr + (pages * PAGE_SIZE), VM_PROT_READ | VM_PROT_WRITE); 1499 if ((wait & M_ZERO) != 0) 1500 bzero(mem, pages * PAGE_SIZE); 1501 1502 return (mem); 1503 } 1504 1505 static void 1506 startup_free(void *mem, vm_size_t bytes) 1507 { 1508 vm_offset_t va; 1509 vm_page_t m; 1510 1511 va = (vm_offset_t)mem; 1512 m = PHYS_TO_VM_PAGE(pmap_kextract(va)); 1513 pmap_remove(kernel_pmap, va, va + bytes); 1514 for (; bytes != 0; bytes -= PAGE_SIZE, m++) { 1515 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 1516 defined(__riscv) || defined(__powerpc64__) 1517 dump_drop_page(VM_PAGE_TO_PHYS(m)); 1518 #endif 1519 vm_page_unwire_noq(m); 1520 vm_page_free(m); 1521 } 1522 } 1523 1524 /* 1525 * Allocates a number of pages from the system 1526 * 1527 * Arguments: 1528 * bytes The number of bytes requested 1529 * wait Shall we wait? 1530 * 1531 * Returns: 1532 * A pointer to the alloced memory or possibly 1533 * NULL if M_NOWAIT is set. 1534 */ 1535 static void * 1536 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1537 int wait) 1538 { 1539 void *p; /* Returned page */ 1540 1541 *pflag = UMA_SLAB_KERNEL; 1542 p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait); 1543 1544 return (p); 1545 } 1546 1547 static void * 1548 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1549 int wait) 1550 { 1551 struct pglist alloctail; 1552 vm_offset_t addr, zkva; 1553 int cpu, flags; 1554 vm_page_t p, p_next; 1555 #ifdef NUMA 1556 struct pcpu *pc; 1557 #endif 1558 1559 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE); 1560 1561 TAILQ_INIT(&alloctail); 1562 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1563 malloc2vm_flags(wait); 1564 *pflag = UMA_SLAB_KERNEL; 1565 for (cpu = 0; cpu <= mp_maxid; cpu++) { 1566 if (CPU_ABSENT(cpu)) { 1567 p = vm_page_alloc(NULL, 0, flags); 1568 } else { 1569 #ifndef NUMA 1570 p = vm_page_alloc(NULL, 0, flags); 1571 #else 1572 pc = pcpu_find(cpu); 1573 if (__predict_false(VM_DOMAIN_EMPTY(pc->pc_domain))) 1574 p = NULL; 1575 else 1576 p = vm_page_alloc_domain(NULL, 0, 1577 pc->pc_domain, flags); 1578 if (__predict_false(p == NULL)) 1579 p = vm_page_alloc(NULL, 0, flags); 1580 #endif 1581 } 1582 if (__predict_false(p == NULL)) 1583 goto fail; 1584 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1585 } 1586 if ((addr = kva_alloc(bytes)) == 0) 1587 goto fail; 1588 zkva = addr; 1589 TAILQ_FOREACH(p, &alloctail, listq) { 1590 pmap_qenter(zkva, &p, 1); 1591 zkva += PAGE_SIZE; 1592 } 1593 return ((void*)addr); 1594 fail: 1595 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1596 vm_page_unwire_noq(p); 1597 vm_page_free(p); 1598 } 1599 return (NULL); 1600 } 1601 1602 /* 1603 * Allocates a number of pages from within an object 1604 * 1605 * Arguments: 1606 * bytes The number of bytes requested 1607 * wait Shall we wait? 1608 * 1609 * Returns: 1610 * A pointer to the alloced memory or possibly 1611 * NULL if M_NOWAIT is set. 1612 */ 1613 static void * 1614 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 1615 int wait) 1616 { 1617 TAILQ_HEAD(, vm_page) alloctail; 1618 u_long npages; 1619 vm_offset_t retkva, zkva; 1620 vm_page_t p, p_next; 1621 uma_keg_t keg; 1622 1623 TAILQ_INIT(&alloctail); 1624 keg = zone->uz_keg; 1625 1626 npages = howmany(bytes, PAGE_SIZE); 1627 while (npages > 0) { 1628 p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT | 1629 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1630 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK : 1631 VM_ALLOC_NOWAIT)); 1632 if (p != NULL) { 1633 /* 1634 * Since the page does not belong to an object, its 1635 * listq is unused. 1636 */ 1637 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1638 npages--; 1639 continue; 1640 } 1641 /* 1642 * Page allocation failed, free intermediate pages and 1643 * exit. 1644 */ 1645 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1646 vm_page_unwire_noq(p); 1647 vm_page_free(p); 1648 } 1649 return (NULL); 1650 } 1651 *flags = UMA_SLAB_PRIV; 1652 zkva = keg->uk_kva + 1653 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1654 retkva = zkva; 1655 TAILQ_FOREACH(p, &alloctail, listq) { 1656 pmap_qenter(zkva, &p, 1); 1657 zkva += PAGE_SIZE; 1658 } 1659 1660 return ((void *)retkva); 1661 } 1662 1663 /* 1664 * Frees a number of pages to the system 1665 * 1666 * Arguments: 1667 * mem A pointer to the memory to be freed 1668 * size The size of the memory being freed 1669 * flags The original p->us_flags field 1670 * 1671 * Returns: 1672 * Nothing 1673 */ 1674 static void 1675 page_free(void *mem, vm_size_t size, uint8_t flags) 1676 { 1677 1678 if ((flags & UMA_SLAB_BOOT) != 0) { 1679 startup_free(mem, size); 1680 return; 1681 } 1682 1683 if ((flags & UMA_SLAB_KERNEL) == 0) 1684 panic("UMA: page_free used with invalid flags %x", flags); 1685 1686 kmem_free((vm_offset_t)mem, size); 1687 } 1688 1689 /* 1690 * Frees pcpu zone allocations 1691 * 1692 * Arguments: 1693 * mem A pointer to the memory to be freed 1694 * size The size of the memory being freed 1695 * flags The original p->us_flags field 1696 * 1697 * Returns: 1698 * Nothing 1699 */ 1700 static void 1701 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags) 1702 { 1703 vm_offset_t sva, curva; 1704 vm_paddr_t paddr; 1705 vm_page_t m; 1706 1707 MPASS(size == (mp_maxid+1)*PAGE_SIZE); 1708 sva = (vm_offset_t)mem; 1709 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) { 1710 paddr = pmap_kextract(curva); 1711 m = PHYS_TO_VM_PAGE(paddr); 1712 vm_page_unwire_noq(m); 1713 vm_page_free(m); 1714 } 1715 pmap_qremove(sva, size >> PAGE_SHIFT); 1716 kva_free(sva, size); 1717 } 1718 1719 1720 /* 1721 * Zero fill initializer 1722 * 1723 * Arguments/Returns follow uma_init specifications 1724 */ 1725 static int 1726 zero_init(void *mem, int size, int flags) 1727 { 1728 bzero(mem, size); 1729 return (0); 1730 } 1731 1732 #ifdef INVARIANTS 1733 struct noslabbits * 1734 slab_dbg_bits(uma_slab_t slab, uma_keg_t keg) 1735 { 1736 1737 return ((void *)((char *)&slab->us_free + BITSET_SIZE(keg->uk_ipers))); 1738 } 1739 #endif 1740 1741 /* 1742 * Actual size of embedded struct slab (!OFFPAGE). 1743 */ 1744 size_t 1745 slab_sizeof(int nitems) 1746 { 1747 size_t s; 1748 1749 s = sizeof(struct uma_slab) + BITSET_SIZE(nitems) * SLAB_BITSETS; 1750 return (roundup(s, UMA_ALIGN_PTR + 1)); 1751 } 1752 1753 /* 1754 * Size of memory for embedded slabs (!OFFPAGE). 1755 */ 1756 size_t 1757 slab_space(int nitems) 1758 { 1759 return (UMA_SLAB_SIZE - slab_sizeof(nitems)); 1760 } 1761 1762 #define UMA_FIXPT_SHIFT 31 1763 #define UMA_FRAC_FIXPT(n, d) \ 1764 ((uint32_t)(((uint64_t)(n) << UMA_FIXPT_SHIFT) / (d))) 1765 #define UMA_FIXPT_PCT(f) \ 1766 ((u_int)(((uint64_t)100 * (f)) >> UMA_FIXPT_SHIFT)) 1767 #define UMA_PCT_FIXPT(pct) UMA_FRAC_FIXPT((pct), 100) 1768 #define UMA_MIN_EFF UMA_PCT_FIXPT(100 - UMA_MAX_WASTE) 1769 1770 /* 1771 * Compute the number of items that will fit in a slab. If hdr is true, the 1772 * item count may be limited to provide space in the slab for an inline slab 1773 * header. Otherwise, all slab space will be provided for item storage. 1774 */ 1775 static u_int 1776 slab_ipers_hdr(u_int size, u_int rsize, u_int slabsize, bool hdr) 1777 { 1778 u_int ipers; 1779 u_int padpi; 1780 1781 /* The padding between items is not needed after the last item. */ 1782 padpi = rsize - size; 1783 1784 if (hdr) { 1785 /* 1786 * Start with the maximum item count and remove items until 1787 * the slab header first alongside the allocatable memory. 1788 */ 1789 for (ipers = MIN(SLAB_MAX_SETSIZE, 1790 (slabsize + padpi - slab_sizeof(1)) / rsize); 1791 ipers > 0 && 1792 ipers * rsize - padpi + slab_sizeof(ipers) > slabsize; 1793 ipers--) 1794 continue; 1795 } else { 1796 ipers = MIN((slabsize + padpi) / rsize, SLAB_MAX_SETSIZE); 1797 } 1798 1799 return (ipers); 1800 } 1801 1802 /* 1803 * Compute the number of items that will fit in a slab for a startup zone. 1804 */ 1805 int 1806 slab_ipers(size_t size, int align) 1807 { 1808 int rsize; 1809 1810 rsize = roundup(size, align + 1); /* Assume no CACHESPREAD */ 1811 return (slab_ipers_hdr(size, rsize, UMA_SLAB_SIZE, true)); 1812 } 1813 1814 /* 1815 * Determine the format of a uma keg. This determines where the slab header 1816 * will be placed (inline or offpage) and calculates ipers, rsize, and ppera. 1817 * 1818 * Arguments 1819 * keg The zone we should initialize 1820 * 1821 * Returns 1822 * Nothing 1823 */ 1824 static void 1825 keg_layout(uma_keg_t keg) 1826 { 1827 u_int alignsize; 1828 u_int eff; 1829 u_int eff_offpage; 1830 u_int format; 1831 u_int ipers; 1832 u_int ipers_offpage; 1833 u_int pages; 1834 u_int rsize; 1835 u_int slabsize; 1836 1837 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 1838 (keg->uk_size <= UMA_PCPU_ALLOC_SIZE && 1839 (keg->uk_flags & UMA_ZONE_CACHESPREAD) == 0), 1840 ("%s: cannot configure for PCPU: keg=%s, size=%u, flags=0x%b", 1841 __func__, keg->uk_name, keg->uk_size, keg->uk_flags, 1842 PRINT_UMA_ZFLAGS)); 1843 KASSERT((keg->uk_flags & 1844 (UMA_ZFLAG_INTERNAL | UMA_ZFLAG_CACHEONLY)) == 0 || 1845 (keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0, 1846 ("%s: incompatible flags 0x%b", __func__, keg->uk_flags, 1847 PRINT_UMA_ZFLAGS)); 1848 1849 alignsize = keg->uk_align + 1; 1850 format = 0; 1851 ipers = 0; 1852 1853 /* 1854 * Calculate the size of each allocation (rsize) according to 1855 * alignment. If the requested size is smaller than we have 1856 * allocation bits for we round it up. 1857 */ 1858 rsize = MAX(keg->uk_size, UMA_SMALLEST_UNIT); 1859 rsize = roundup2(rsize, alignsize); 1860 1861 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) { 1862 slabsize = UMA_PCPU_ALLOC_SIZE; 1863 pages = mp_maxid + 1; 1864 } else if ((keg->uk_flags & UMA_ZONE_CACHESPREAD) != 0) { 1865 /* 1866 * We want one item to start on every align boundary in a page. 1867 * To do this we will span pages. We will also extend the item 1868 * by the size of align if it is an even multiple of align. 1869 * Otherwise, it would fall on the same boundary every time. 1870 */ 1871 if ((rsize & alignsize) == 0) 1872 rsize += alignsize; 1873 slabsize = rsize * (PAGE_SIZE / alignsize); 1874 slabsize = MIN(slabsize, rsize * SLAB_MAX_SETSIZE); 1875 slabsize = MIN(slabsize, UMA_CACHESPREAD_MAX_SIZE); 1876 pages = howmany(slabsize, PAGE_SIZE); 1877 slabsize = ptoa(pages); 1878 } else { 1879 /* 1880 * Choose a slab size of as many pages as it takes to represent 1881 * a single item. We will then try to fit as many additional 1882 * items into the slab as possible. At some point, we may want 1883 * to increase the slab size for awkward item sizes in order to 1884 * increase efficiency. 1885 */ 1886 pages = howmany(keg->uk_size, PAGE_SIZE); 1887 slabsize = ptoa(pages); 1888 } 1889 1890 /* Evaluate an inline slab layout. */ 1891 if ((keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0) 1892 ipers = slab_ipers_hdr(keg->uk_size, rsize, slabsize, true); 1893 1894 /* TODO: vm_page-embedded slab. */ 1895 1896 /* 1897 * We can't do OFFPAGE if we're internal or if we've been 1898 * asked to not go to the VM for buckets. If we do this we 1899 * may end up going to the VM for slabs which we do not 1900 * want to do if we're UMA_ZFLAG_CACHEONLY as a result 1901 * of UMA_ZONE_VM, which clearly forbids it. 1902 */ 1903 if ((keg->uk_flags & 1904 (UMA_ZFLAG_INTERNAL | UMA_ZFLAG_CACHEONLY)) != 0) { 1905 if (ipers == 0) { 1906 /* We need an extra page for the slab header. */ 1907 pages++; 1908 slabsize = ptoa(pages); 1909 ipers = slab_ipers_hdr(keg->uk_size, rsize, slabsize, 1910 true); 1911 } 1912 goto out; 1913 } 1914 1915 /* 1916 * See if using an OFFPAGE slab will improve our efficiency. 1917 * Only do this if we are below our efficiency threshold. 1918 * 1919 * XXX We could try growing slabsize to limit max waste as well. 1920 * Historically this was not done because the VM could not 1921 * efficiently handle contiguous allocations. 1922 */ 1923 eff = UMA_FRAC_FIXPT(ipers * rsize, slabsize); 1924 ipers_offpage = slab_ipers_hdr(keg->uk_size, rsize, slabsize, false); 1925 eff_offpage = UMA_FRAC_FIXPT(ipers_offpage * rsize, 1926 slabsize + slabzone(ipers_offpage)->uz_keg->uk_rsize); 1927 if (ipers == 0 || (eff < UMA_MIN_EFF && eff < eff_offpage)) { 1928 CTR5(KTR_UMA, "UMA decided we need offpage slab headers for " 1929 "keg: %s(%p), minimum efficiency allowed = %u%%, " 1930 "old efficiency = %u%%, offpage efficiency = %u%%", 1931 keg->uk_name, keg, UMA_FIXPT_PCT(UMA_MIN_EFF), 1932 UMA_FIXPT_PCT(eff), UMA_FIXPT_PCT(eff_offpage)); 1933 format = UMA_ZFLAG_OFFPAGE; 1934 ipers = ipers_offpage; 1935 } 1936 1937 out: 1938 /* 1939 * How do we find the slab header if it is offpage or if not all item 1940 * start addresses are in the same page? We could solve the latter 1941 * case with vaddr alignment, but we don't. 1942 */ 1943 if ((format & UMA_ZFLAG_OFFPAGE) != 0 || 1944 (ipers - 1) * rsize >= PAGE_SIZE) { 1945 if ((keg->uk_flags & UMA_ZONE_NOTPAGE) != 0) 1946 format |= UMA_ZFLAG_HASH; 1947 else 1948 format |= UMA_ZFLAG_VTOSLAB; 1949 } 1950 keg->uk_ipers = ipers; 1951 keg->uk_rsize = rsize; 1952 keg->uk_flags |= format; 1953 keg->uk_ppera = pages; 1954 CTR6(KTR_UMA, "%s: keg=%s, flags=%#x, rsize=%u, ipers=%u, ppera=%u", 1955 __func__, keg->uk_name, keg->uk_flags, rsize, ipers, pages); 1956 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE, 1957 ("%s: keg=%s, flags=0x%b, rsize=%u, ipers=%u, ppera=%u", __func__, 1958 keg->uk_name, keg->uk_flags, PRINT_UMA_ZFLAGS, rsize, ipers, 1959 pages)); 1960 } 1961 1962 /* 1963 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1964 * the keg onto the global keg list. 1965 * 1966 * Arguments/Returns follow uma_ctor specifications 1967 * udata Actually uma_kctor_args 1968 */ 1969 static int 1970 keg_ctor(void *mem, int size, void *udata, int flags) 1971 { 1972 struct uma_kctor_args *arg = udata; 1973 uma_keg_t keg = mem; 1974 uma_zone_t zone; 1975 int i; 1976 1977 bzero(keg, size); 1978 keg->uk_size = arg->size; 1979 keg->uk_init = arg->uminit; 1980 keg->uk_fini = arg->fini; 1981 keg->uk_align = arg->align; 1982 keg->uk_reserve = 0; 1983 keg->uk_flags = arg->flags; 1984 1985 /* 1986 * We use a global round-robin policy by default. Zones with 1987 * UMA_ZONE_FIRSTTOUCH set will use first-touch instead, in which 1988 * case the iterator is never run. 1989 */ 1990 keg->uk_dr.dr_policy = DOMAINSET_RR(); 1991 keg->uk_dr.dr_iter = 0; 1992 1993 /* 1994 * The master zone is passed to us at keg-creation time. 1995 */ 1996 zone = arg->zone; 1997 keg->uk_name = zone->uz_name; 1998 1999 if (arg->flags & UMA_ZONE_VM) 2000 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 2001 2002 if (arg->flags & UMA_ZONE_ZINIT) 2003 keg->uk_init = zero_init; 2004 2005 if (arg->flags & UMA_ZONE_MALLOC) 2006 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2007 2008 #ifndef SMP 2009 keg->uk_flags &= ~UMA_ZONE_PCPU; 2010 #endif 2011 2012 keg_layout(keg); 2013 2014 /* 2015 * Use a first-touch NUMA policy for all kegs that pmap_extract() 2016 * will work on with the exception of critical VM structures 2017 * necessary for paging. 2018 * 2019 * Zones may override the default by specifying either. 2020 */ 2021 #ifdef NUMA 2022 if ((keg->uk_flags & 2023 (UMA_ZFLAG_HASH | UMA_ZONE_VM | UMA_ZONE_ROUNDROBIN)) == 0) 2024 keg->uk_flags |= UMA_ZONE_FIRSTTOUCH; 2025 else if ((keg->uk_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2026 keg->uk_flags |= UMA_ZONE_ROUNDROBIN; 2027 #endif 2028 2029 /* 2030 * If we haven't booted yet we need allocations to go through the 2031 * startup cache until the vm is ready. 2032 */ 2033 #ifdef UMA_MD_SMALL_ALLOC 2034 if (keg->uk_ppera == 1) 2035 keg->uk_allocf = uma_small_alloc; 2036 else 2037 #endif 2038 if (booted < BOOT_KVA) 2039 keg->uk_allocf = startup_alloc; 2040 else if (keg->uk_flags & UMA_ZONE_PCPU) 2041 keg->uk_allocf = pcpu_page_alloc; 2042 else 2043 keg->uk_allocf = page_alloc; 2044 #ifdef UMA_MD_SMALL_ALLOC 2045 if (keg->uk_ppera == 1) 2046 keg->uk_freef = uma_small_free; 2047 else 2048 #endif 2049 if (keg->uk_flags & UMA_ZONE_PCPU) 2050 keg->uk_freef = pcpu_page_free; 2051 else 2052 keg->uk_freef = page_free; 2053 2054 /* 2055 * Initialize keg's locks. 2056 */ 2057 for (i = 0; i < vm_ndomains; i++) 2058 KEG_LOCK_INIT(keg, i, (arg->flags & UMA_ZONE_MTXCLASS)); 2059 2060 /* 2061 * If we're putting the slab header in the actual page we need to 2062 * figure out where in each page it goes. See slab_sizeof 2063 * definition. 2064 */ 2065 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) { 2066 size_t shsize; 2067 2068 shsize = slab_sizeof(keg->uk_ipers); 2069 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize; 2070 /* 2071 * The only way the following is possible is if with our 2072 * UMA_ALIGN_PTR adjustments we are now bigger than 2073 * UMA_SLAB_SIZE. I haven't checked whether this is 2074 * mathematically possible for all cases, so we make 2075 * sure here anyway. 2076 */ 2077 KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera, 2078 ("zone %s ipers %d rsize %d size %d slab won't fit", 2079 zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size)); 2080 } 2081 2082 if (keg->uk_flags & UMA_ZFLAG_HASH) 2083 hash_alloc(&keg->uk_hash, 0); 2084 2085 CTR3(KTR_UMA, "keg_ctor %p zone %s(%p)", keg, zone->uz_name, zone); 2086 2087 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 2088 2089 rw_wlock(&uma_rwlock); 2090 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 2091 rw_wunlock(&uma_rwlock); 2092 return (0); 2093 } 2094 2095 static void 2096 zone_kva_available(uma_zone_t zone, void *unused) 2097 { 2098 uma_keg_t keg; 2099 2100 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 2101 return; 2102 KEG_GET(zone, keg); 2103 if (keg->uk_flags & UMA_ZONE_PCPU) 2104 keg->uk_allocf = pcpu_page_alloc; 2105 else if (keg->uk_allocf == startup_alloc) 2106 keg->uk_allocf = page_alloc; 2107 } 2108 2109 static void 2110 zone_alloc_counters(uma_zone_t zone, void *unused) 2111 { 2112 2113 zone->uz_allocs = counter_u64_alloc(M_WAITOK); 2114 zone->uz_frees = counter_u64_alloc(M_WAITOK); 2115 zone->uz_fails = counter_u64_alloc(M_WAITOK); 2116 } 2117 2118 static void 2119 zone_alloc_sysctl(uma_zone_t zone, void *unused) 2120 { 2121 uma_zone_domain_t zdom; 2122 uma_domain_t dom; 2123 uma_keg_t keg; 2124 struct sysctl_oid *oid, *domainoid; 2125 int domains, i, cnt; 2126 static const char *nokeg = "cache zone"; 2127 char *c; 2128 2129 /* 2130 * Make a sysctl safe copy of the zone name by removing 2131 * any special characters and handling dups by appending 2132 * an index. 2133 */ 2134 if (zone->uz_namecnt != 0) { 2135 /* Count the number of decimal digits and '_' separator. */ 2136 for (i = 1, cnt = zone->uz_namecnt; cnt != 0; i++) 2137 cnt /= 10; 2138 zone->uz_ctlname = malloc(strlen(zone->uz_name) + i + 1, 2139 M_UMA, M_WAITOK); 2140 sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name, 2141 zone->uz_namecnt); 2142 } else 2143 zone->uz_ctlname = strdup(zone->uz_name, M_UMA); 2144 for (c = zone->uz_ctlname; *c != '\0'; c++) 2145 if (strchr("./\\ -", *c) != NULL) 2146 *c = '_'; 2147 2148 /* 2149 * Basic parameters at the root. 2150 */ 2151 zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma), 2152 OID_AUTO, zone->uz_ctlname, CTLFLAG_RD, NULL, ""); 2153 oid = zone->uz_oid; 2154 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2155 "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size"); 2156 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2157 "flags", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE, 2158 zone, 0, sysctl_handle_uma_zone_flags, "A", 2159 "Allocator configuration flags"); 2160 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2161 "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0, 2162 "Desired per-cpu cache size"); 2163 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2164 "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0, 2165 "Maximum allowed per-cpu cache size"); 2166 2167 /* 2168 * keg if present. 2169 */ 2170 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 2171 domains = vm_ndomains; 2172 else 2173 domains = 1; 2174 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2175 "keg", CTLFLAG_RD, NULL, ""); 2176 keg = zone->uz_keg; 2177 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) { 2178 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2179 "name", CTLFLAG_RD, keg->uk_name, "Keg name"); 2180 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2181 "rsize", CTLFLAG_RD, &keg->uk_rsize, 0, 2182 "Real object size with alignment"); 2183 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2184 "ppera", CTLFLAG_RD, &keg->uk_ppera, 0, 2185 "pages per-slab allocation"); 2186 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2187 "ipers", CTLFLAG_RD, &keg->uk_ipers, 0, 2188 "items available per-slab"); 2189 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2190 "align", CTLFLAG_RD, &keg->uk_align, 0, 2191 "item alignment mask"); 2192 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2193 "efficiency", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2194 keg, 0, sysctl_handle_uma_slab_efficiency, "I", 2195 "Slab utilization (100 - internal fragmentation %)"); 2196 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(oid), 2197 OID_AUTO, "domain", CTLFLAG_RD, NULL, ""); 2198 for (i = 0; i < domains; i++) { 2199 dom = &keg->uk_domain[i]; 2200 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2201 OID_AUTO, VM_DOMAIN(i)->vmd_name, CTLFLAG_RD, 2202 NULL, ""); 2203 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2204 "pages", CTLFLAG_RD, &dom->ud_pages, 0, 2205 "Total pages currently allocated from VM"); 2206 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2207 "free", CTLFLAG_RD, &dom->ud_free, 0, 2208 "items free in the slab layer"); 2209 } 2210 } else 2211 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2212 "name", CTLFLAG_RD, nokeg, "Keg name"); 2213 2214 /* 2215 * Information about zone limits. 2216 */ 2217 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2218 "limit", CTLFLAG_RD, NULL, ""); 2219 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2220 "items", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2221 zone, 0, sysctl_handle_uma_zone_items, "QU", 2222 "current number of allocated items if limit is set"); 2223 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2224 "max_items", CTLFLAG_RD, &zone->uz_max_items, 0, 2225 "Maximum number of cached items"); 2226 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2227 "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0, 2228 "Number of threads sleeping at limit"); 2229 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2230 "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0, 2231 "Total zone limit sleeps"); 2232 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2233 "bucket_max", CTLFLAG_RD, &zone->uz_bkt_max, 0, 2234 "Maximum number of items in the bucket cache"); 2235 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2236 "bucket_cnt", CTLFLAG_RD, &zone->uz_bkt_count, 0, 2237 "Number of items in the bucket cache"); 2238 2239 /* 2240 * Per-domain zone information. 2241 */ 2242 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), 2243 OID_AUTO, "domain", CTLFLAG_RD, NULL, ""); 2244 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2245 domains = 1; 2246 for (i = 0; i < domains; i++) { 2247 zdom = &zone->uz_domain[i]; 2248 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2249 OID_AUTO, VM_DOMAIN(i)->vmd_name, CTLFLAG_RD, NULL, ""); 2250 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2251 "nitems", CTLFLAG_RD, &zdom->uzd_nitems, 2252 "number of items in this domain"); 2253 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2254 "imax", CTLFLAG_RD, &zdom->uzd_imax, 2255 "maximum item count in this period"); 2256 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2257 "imin", CTLFLAG_RD, &zdom->uzd_imin, 2258 "minimum item count in this period"); 2259 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2260 "wss", CTLFLAG_RD, &zdom->uzd_wss, 2261 "Working set size"); 2262 } 2263 2264 /* 2265 * General statistics. 2266 */ 2267 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2268 "stats", CTLFLAG_RD, NULL, ""); 2269 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2270 "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2271 zone, 1, sysctl_handle_uma_zone_cur, "I", 2272 "Current number of allocated items"); 2273 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2274 "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2275 zone, 0, sysctl_handle_uma_zone_allocs, "QU", 2276 "Total allocation calls"); 2277 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2278 "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2279 zone, 0, sysctl_handle_uma_zone_frees, "QU", 2280 "Total free calls"); 2281 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2282 "fails", CTLFLAG_RD, &zone->uz_fails, 2283 "Number of allocation failures"); 2284 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2285 "xdomain", CTLFLAG_RD, &zone->uz_xdomain, 0, 2286 "Free calls from the wrong domain"); 2287 } 2288 2289 struct uma_zone_count { 2290 const char *name; 2291 int count; 2292 }; 2293 2294 static void 2295 zone_count(uma_zone_t zone, void *arg) 2296 { 2297 struct uma_zone_count *cnt; 2298 2299 cnt = arg; 2300 /* 2301 * Some zones are rapidly created with identical names and 2302 * destroyed out of order. This can lead to gaps in the count. 2303 * Use one greater than the maximum observed for this name. 2304 */ 2305 if (strcmp(zone->uz_name, cnt->name) == 0) 2306 cnt->count = MAX(cnt->count, 2307 zone->uz_namecnt + 1); 2308 } 2309 2310 static void 2311 zone_update_caches(uma_zone_t zone) 2312 { 2313 int i; 2314 2315 for (i = 0; i <= mp_maxid; i++) { 2316 cache_set_uz_size(&zone->uz_cpu[i], zone->uz_size); 2317 cache_set_uz_flags(&zone->uz_cpu[i], zone->uz_flags); 2318 } 2319 } 2320 2321 /* 2322 * Zone header ctor. This initializes all fields, locks, etc. 2323 * 2324 * Arguments/Returns follow uma_ctor specifications 2325 * udata Actually uma_zctor_args 2326 */ 2327 static int 2328 zone_ctor(void *mem, int size, void *udata, int flags) 2329 { 2330 struct uma_zone_count cnt; 2331 struct uma_zctor_args *arg = udata; 2332 uma_zone_t zone = mem; 2333 uma_zone_t z; 2334 uma_keg_t keg; 2335 int i; 2336 2337 bzero(zone, size); 2338 zone->uz_name = arg->name; 2339 zone->uz_ctor = arg->ctor; 2340 zone->uz_dtor = arg->dtor; 2341 zone->uz_init = NULL; 2342 zone->uz_fini = NULL; 2343 zone->uz_sleeps = 0; 2344 zone->uz_xdomain = 0; 2345 zone->uz_bucket_size = 0; 2346 zone->uz_bucket_size_min = 0; 2347 zone->uz_bucket_size_max = BUCKET_MAX; 2348 zone->uz_flags = (arg->flags & UMA_ZONE_SMR); 2349 zone->uz_warning = NULL; 2350 /* The domain structures follow the cpu structures. */ 2351 zone->uz_domain = 2352 (struct uma_zone_domain *)&zone->uz_cpu[mp_maxid + 1]; 2353 zone->uz_bkt_max = ULONG_MAX; 2354 timevalclear(&zone->uz_ratecheck); 2355 2356 /* Count the number of duplicate names. */ 2357 cnt.name = arg->name; 2358 cnt.count = 0; 2359 zone_foreach(zone_count, &cnt); 2360 zone->uz_namecnt = cnt.count; 2361 ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS)); 2362 ZONE_CROSS_LOCK_INIT(zone); 2363 2364 for (i = 0; i < vm_ndomains; i++) 2365 STAILQ_INIT(&zone->uz_domain[i].uzd_buckets); 2366 2367 #ifdef INVARIANTS 2368 if (arg->uminit == trash_init && arg->fini == trash_fini) 2369 zone->uz_flags |= UMA_ZFLAG_TRASH | UMA_ZFLAG_CTORDTOR; 2370 #endif 2371 2372 /* 2373 * This is a pure cache zone, no kegs. 2374 */ 2375 if (arg->import) { 2376 KASSERT((arg->flags & UMA_ZFLAG_CACHE) != 0, 2377 ("zone_ctor: Import specified for non-cache zone.")); 2378 if (arg->flags & UMA_ZONE_VM) 2379 arg->flags |= UMA_ZFLAG_CACHEONLY; 2380 zone->uz_flags = arg->flags; 2381 zone->uz_size = arg->size; 2382 zone->uz_import = arg->import; 2383 zone->uz_release = arg->release; 2384 zone->uz_arg = arg->arg; 2385 rw_wlock(&uma_rwlock); 2386 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 2387 rw_wunlock(&uma_rwlock); 2388 goto out; 2389 } 2390 2391 /* 2392 * Use the regular zone/keg/slab allocator. 2393 */ 2394 zone->uz_import = zone_import; 2395 zone->uz_release = zone_release; 2396 zone->uz_arg = zone; 2397 keg = arg->keg; 2398 2399 if (arg->flags & UMA_ZONE_SECONDARY) { 2400 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 2401 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 2402 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 2403 zone->uz_init = arg->uminit; 2404 zone->uz_fini = arg->fini; 2405 zone->uz_flags |= UMA_ZONE_SECONDARY; 2406 rw_wlock(&uma_rwlock); 2407 ZONE_LOCK(zone); 2408 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 2409 if (LIST_NEXT(z, uz_link) == NULL) { 2410 LIST_INSERT_AFTER(z, zone, uz_link); 2411 break; 2412 } 2413 } 2414 ZONE_UNLOCK(zone); 2415 rw_wunlock(&uma_rwlock); 2416 } else if (keg == NULL) { 2417 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 2418 arg->align, arg->flags)) == NULL) 2419 return (ENOMEM); 2420 } else { 2421 struct uma_kctor_args karg; 2422 int error; 2423 2424 /* We should only be here from uma_startup() */ 2425 karg.size = arg->size; 2426 karg.uminit = arg->uminit; 2427 karg.fini = arg->fini; 2428 karg.align = arg->align; 2429 karg.flags = (arg->flags & ~UMA_ZONE_SMR); 2430 karg.zone = zone; 2431 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 2432 flags); 2433 if (error) 2434 return (error); 2435 } 2436 2437 /* Inherit properties from the keg. */ 2438 zone->uz_keg = keg; 2439 zone->uz_size = keg->uk_size; 2440 zone->uz_flags |= (keg->uk_flags & 2441 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 2442 2443 out: 2444 if (__predict_true(booted >= BOOT_RUNNING)) { 2445 zone_alloc_counters(zone, NULL); 2446 zone_alloc_sysctl(zone, NULL); 2447 } else { 2448 zone->uz_allocs = EARLY_COUNTER; 2449 zone->uz_frees = EARLY_COUNTER; 2450 zone->uz_fails = EARLY_COUNTER; 2451 } 2452 2453 /* Caller requests a private SMR context. */ 2454 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 2455 zone->uz_smr = smr_create(zone->uz_name); 2456 2457 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != 2458 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), 2459 ("Invalid zone flag combination")); 2460 if (arg->flags & UMA_ZFLAG_INTERNAL) 2461 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 2462 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) 2463 zone->uz_bucket_size = BUCKET_MAX; 2464 else if ((arg->flags & UMA_ZONE_MINBUCKET) != 0) 2465 zone->uz_bucket_size_max = zone->uz_bucket_size = BUCKET_MIN; 2466 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) 2467 zone->uz_bucket_size = 0; 2468 else 2469 zone->uz_bucket_size = bucket_select(zone->uz_size); 2470 zone->uz_bucket_size_min = zone->uz_bucket_size; 2471 if (zone->uz_dtor != NULL || zone->uz_ctor != NULL) 2472 zone->uz_flags |= UMA_ZFLAG_CTORDTOR; 2473 zone_update_caches(zone); 2474 2475 return (0); 2476 } 2477 2478 /* 2479 * Keg header dtor. This frees all data, destroys locks, frees the hash 2480 * table and removes the keg from the global list. 2481 * 2482 * Arguments/Returns follow uma_dtor specifications 2483 * udata unused 2484 */ 2485 static void 2486 keg_dtor(void *arg, int size, void *udata) 2487 { 2488 uma_keg_t keg; 2489 uint32_t free, pages; 2490 int i; 2491 2492 keg = (uma_keg_t)arg; 2493 free = pages = 0; 2494 for (i = 0; i < vm_ndomains; i++) { 2495 free += keg->uk_domain[i].ud_free; 2496 pages += keg->uk_domain[i].ud_pages; 2497 KEG_LOCK_FINI(keg, i); 2498 } 2499 if (pages != 0) 2500 printf("Freed UMA keg (%s) was not empty (%u items). " 2501 " Lost %u pages of memory.\n", 2502 keg->uk_name ? keg->uk_name : "", 2503 pages / keg->uk_ppera * keg->uk_ipers - free, pages); 2504 2505 hash_free(&keg->uk_hash); 2506 } 2507 2508 /* 2509 * Zone header dtor. 2510 * 2511 * Arguments/Returns follow uma_dtor specifications 2512 * udata unused 2513 */ 2514 static void 2515 zone_dtor(void *arg, int size, void *udata) 2516 { 2517 uma_zone_t zone; 2518 uma_keg_t keg; 2519 2520 zone = (uma_zone_t)arg; 2521 2522 sysctl_remove_oid(zone->uz_oid, 1, 1); 2523 2524 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 2525 cache_drain(zone); 2526 2527 rw_wlock(&uma_rwlock); 2528 LIST_REMOVE(zone, uz_link); 2529 rw_wunlock(&uma_rwlock); 2530 /* 2531 * XXX there are some races here where 2532 * the zone can be drained but zone lock 2533 * released and then refilled before we 2534 * remove it... we dont care for now 2535 */ 2536 zone_reclaim(zone, M_WAITOK, true); 2537 /* 2538 * We only destroy kegs from non secondary/non cache zones. 2539 */ 2540 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { 2541 keg = zone->uz_keg; 2542 rw_wlock(&uma_rwlock); 2543 LIST_REMOVE(keg, uk_link); 2544 rw_wunlock(&uma_rwlock); 2545 zone_free_item(kegs, keg, NULL, SKIP_NONE); 2546 } 2547 counter_u64_free(zone->uz_allocs); 2548 counter_u64_free(zone->uz_frees); 2549 counter_u64_free(zone->uz_fails); 2550 free(zone->uz_ctlname, M_UMA); 2551 ZONE_LOCK_FINI(zone); 2552 ZONE_CROSS_LOCK_FINI(zone); 2553 } 2554 2555 static void 2556 zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *arg), void *arg) 2557 { 2558 uma_keg_t keg; 2559 uma_zone_t zone; 2560 2561 LIST_FOREACH(keg, &uma_kegs, uk_link) { 2562 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 2563 zfunc(zone, arg); 2564 } 2565 LIST_FOREACH(zone, &uma_cachezones, uz_link) 2566 zfunc(zone, arg); 2567 } 2568 2569 /* 2570 * Traverses every zone in the system and calls a callback 2571 * 2572 * Arguments: 2573 * zfunc A pointer to a function which accepts a zone 2574 * as an argument. 2575 * 2576 * Returns: 2577 * Nothing 2578 */ 2579 static void 2580 zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg) 2581 { 2582 2583 rw_rlock(&uma_rwlock); 2584 zone_foreach_unlocked(zfunc, arg); 2585 rw_runlock(&uma_rwlock); 2586 } 2587 2588 /* 2589 * Initialize the kernel memory allocator. This is done after pages can be 2590 * allocated but before general KVA is available. 2591 */ 2592 void 2593 uma_startup1(vm_offset_t virtual_avail) 2594 { 2595 struct uma_zctor_args args; 2596 size_t ksize, zsize, size; 2597 uma_keg_t masterkeg; 2598 uintptr_t m; 2599 uint8_t pflag; 2600 2601 bootstart = bootmem = virtual_avail; 2602 2603 rw_init(&uma_rwlock, "UMA lock"); 2604 sx_init(&uma_reclaim_lock, "umareclaim"); 2605 2606 ksize = sizeof(struct uma_keg) + 2607 (sizeof(struct uma_domain) * vm_ndomains); 2608 ksize = roundup(ksize, UMA_SUPER_ALIGN); 2609 zsize = sizeof(struct uma_zone) + 2610 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 2611 (sizeof(struct uma_zone_domain) * vm_ndomains); 2612 zsize = roundup(zsize, UMA_SUPER_ALIGN); 2613 2614 /* Allocate the zone of zones, zone of kegs, and zone of zones keg. */ 2615 size = (zsize * 2) + ksize; 2616 m = (uintptr_t)startup_alloc(NULL, size, 0, &pflag, M_NOWAIT | M_ZERO); 2617 zones = (uma_zone_t)m; 2618 m += zsize; 2619 kegs = (uma_zone_t)m; 2620 m += zsize; 2621 masterkeg = (uma_keg_t)m; 2622 2623 /* "manually" create the initial zone */ 2624 memset(&args, 0, sizeof(args)); 2625 args.name = "UMA Kegs"; 2626 args.size = ksize; 2627 args.ctor = keg_ctor; 2628 args.dtor = keg_dtor; 2629 args.uminit = zero_init; 2630 args.fini = NULL; 2631 args.keg = masterkeg; 2632 args.align = UMA_SUPER_ALIGN - 1; 2633 args.flags = UMA_ZFLAG_INTERNAL; 2634 zone_ctor(kegs, zsize, &args, M_WAITOK); 2635 2636 args.name = "UMA Zones"; 2637 args.size = zsize; 2638 args.ctor = zone_ctor; 2639 args.dtor = zone_dtor; 2640 args.uminit = zero_init; 2641 args.fini = NULL; 2642 args.keg = NULL; 2643 args.align = UMA_SUPER_ALIGN - 1; 2644 args.flags = UMA_ZFLAG_INTERNAL; 2645 zone_ctor(zones, zsize, &args, M_WAITOK); 2646 2647 /* Now make zones for slab headers */ 2648 slabzones[0] = uma_zcreate("UMA Slabs 0", SLABZONE0_SIZE, 2649 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2650 slabzones[1] = uma_zcreate("UMA Slabs 1", SLABZONE1_SIZE, 2651 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2652 2653 hashzone = uma_zcreate("UMA Hash", 2654 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 2655 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2656 2657 bucket_init(); 2658 smr_init(); 2659 } 2660 2661 #ifndef UMA_MD_SMALL_ALLOC 2662 extern void vm_radix_reserve_kva(void); 2663 #endif 2664 2665 /* 2666 * Advertise the availability of normal kva allocations and switch to 2667 * the default back-end allocator. Marks the KVA we consumed on startup 2668 * as used in the map. 2669 */ 2670 void 2671 uma_startup2(void) 2672 { 2673 2674 if (bootstart != bootmem) { 2675 vm_map_lock(kernel_map); 2676 (void)vm_map_insert(kernel_map, NULL, 0, bootstart, bootmem, 2677 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT); 2678 vm_map_unlock(kernel_map); 2679 } 2680 2681 #ifndef UMA_MD_SMALL_ALLOC 2682 /* Set up radix zone to use noobj_alloc. */ 2683 vm_radix_reserve_kva(); 2684 #endif 2685 2686 booted = BOOT_KVA; 2687 zone_foreach_unlocked(zone_kva_available, NULL); 2688 bucket_enable(); 2689 } 2690 2691 /* 2692 * Finish our initialization steps. 2693 */ 2694 static void 2695 uma_startup3(void) 2696 { 2697 2698 #ifdef INVARIANTS 2699 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor); 2700 uma_dbg_cnt = counter_u64_alloc(M_WAITOK); 2701 uma_skip_cnt = counter_u64_alloc(M_WAITOK); 2702 #endif 2703 zone_foreach_unlocked(zone_alloc_counters, NULL); 2704 zone_foreach_unlocked(zone_alloc_sysctl, NULL); 2705 callout_init(&uma_callout, 1); 2706 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 2707 booted = BOOT_RUNNING; 2708 2709 EVENTHANDLER_REGISTER(shutdown_post_sync, uma_shutdown, NULL, 2710 EVENTHANDLER_PRI_FIRST); 2711 } 2712 2713 static void 2714 uma_shutdown(void) 2715 { 2716 2717 booted = BOOT_SHUTDOWN; 2718 } 2719 2720 static uma_keg_t 2721 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 2722 int align, uint32_t flags) 2723 { 2724 struct uma_kctor_args args; 2725 2726 args.size = size; 2727 args.uminit = uminit; 2728 args.fini = fini; 2729 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 2730 args.flags = flags; 2731 args.zone = zone; 2732 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 2733 } 2734 2735 /* Public functions */ 2736 /* See uma.h */ 2737 void 2738 uma_set_align(int align) 2739 { 2740 2741 if (align != UMA_ALIGN_CACHE) 2742 uma_align_cache = align; 2743 } 2744 2745 /* See uma.h */ 2746 uma_zone_t 2747 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 2748 uma_init uminit, uma_fini fini, int align, uint32_t flags) 2749 2750 { 2751 struct uma_zctor_args args; 2752 uma_zone_t res; 2753 2754 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 2755 align, name)); 2756 2757 /* This stuff is essential for the zone ctor */ 2758 memset(&args, 0, sizeof(args)); 2759 args.name = name; 2760 args.size = size; 2761 args.ctor = ctor; 2762 args.dtor = dtor; 2763 args.uminit = uminit; 2764 args.fini = fini; 2765 #ifdef INVARIANTS 2766 /* 2767 * Inject procedures which check for memory use after free if we are 2768 * allowed to scramble the memory while it is not allocated. This 2769 * requires that: UMA is actually able to access the memory, no init 2770 * or fini procedures, no dependency on the initial value of the 2771 * memory, and no (legitimate) use of the memory after free. Note, 2772 * the ctor and dtor do not need to be empty. 2773 */ 2774 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOTOUCH | 2775 UMA_ZONE_NOFREE))) && uminit == NULL && fini == NULL) { 2776 args.uminit = trash_init; 2777 args.fini = trash_fini; 2778 } 2779 #endif 2780 args.align = align; 2781 args.flags = flags; 2782 args.keg = NULL; 2783 2784 sx_slock(&uma_reclaim_lock); 2785 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2786 sx_sunlock(&uma_reclaim_lock); 2787 2788 return (res); 2789 } 2790 2791 /* See uma.h */ 2792 uma_zone_t 2793 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 2794 uma_init zinit, uma_fini zfini, uma_zone_t master) 2795 { 2796 struct uma_zctor_args args; 2797 uma_keg_t keg; 2798 uma_zone_t res; 2799 2800 keg = master->uz_keg; 2801 memset(&args, 0, sizeof(args)); 2802 args.name = name; 2803 args.size = keg->uk_size; 2804 args.ctor = ctor; 2805 args.dtor = dtor; 2806 args.uminit = zinit; 2807 args.fini = zfini; 2808 args.align = keg->uk_align; 2809 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 2810 args.keg = keg; 2811 2812 sx_slock(&uma_reclaim_lock); 2813 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2814 sx_sunlock(&uma_reclaim_lock); 2815 2816 return (res); 2817 } 2818 2819 /* See uma.h */ 2820 uma_zone_t 2821 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor, 2822 uma_init zinit, uma_fini zfini, uma_import zimport, 2823 uma_release zrelease, void *arg, int flags) 2824 { 2825 struct uma_zctor_args args; 2826 2827 memset(&args, 0, sizeof(args)); 2828 args.name = name; 2829 args.size = size; 2830 args.ctor = ctor; 2831 args.dtor = dtor; 2832 args.uminit = zinit; 2833 args.fini = zfini; 2834 args.import = zimport; 2835 args.release = zrelease; 2836 args.arg = arg; 2837 args.align = 0; 2838 args.flags = flags | UMA_ZFLAG_CACHE; 2839 2840 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 2841 } 2842 2843 /* See uma.h */ 2844 void 2845 uma_zdestroy(uma_zone_t zone) 2846 { 2847 2848 /* 2849 * Large slabs are expensive to reclaim, so don't bother doing 2850 * unnecessary work if we're shutting down. 2851 */ 2852 if (booted == BOOT_SHUTDOWN && 2853 zone->uz_fini == NULL && zone->uz_release == zone_release) 2854 return; 2855 sx_slock(&uma_reclaim_lock); 2856 zone_free_item(zones, zone, NULL, SKIP_NONE); 2857 sx_sunlock(&uma_reclaim_lock); 2858 } 2859 2860 void 2861 uma_zwait(uma_zone_t zone) 2862 { 2863 void *item; 2864 2865 item = uma_zalloc_arg(zone, NULL, M_WAITOK); 2866 uma_zfree(zone, item); 2867 } 2868 2869 void * 2870 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags) 2871 { 2872 void *item; 2873 #ifdef SMP 2874 int i; 2875 2876 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 2877 #endif 2878 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO); 2879 if (item != NULL && (flags & M_ZERO)) { 2880 #ifdef SMP 2881 for (i = 0; i <= mp_maxid; i++) 2882 bzero(zpcpu_get_cpu(item, i), zone->uz_size); 2883 #else 2884 bzero(item, zone->uz_size); 2885 #endif 2886 } 2887 return (item); 2888 } 2889 2890 /* 2891 * A stub while both regular and pcpu cases are identical. 2892 */ 2893 void 2894 uma_zfree_pcpu_arg(uma_zone_t zone, void *item, void *udata) 2895 { 2896 2897 #ifdef SMP 2898 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 2899 #endif 2900 uma_zfree_arg(zone, item, udata); 2901 } 2902 2903 static inline void * 2904 item_ctor(uma_zone_t zone, int uz_flags, int size, void *udata, int flags, 2905 void *item) 2906 { 2907 #ifdef INVARIANTS 2908 bool skipdbg; 2909 2910 skipdbg = uma_dbg_zskip(zone, item); 2911 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 2912 zone->uz_ctor != trash_ctor) 2913 trash_ctor(item, size, udata, flags); 2914 #endif 2915 /* Check flags before loading ctor pointer. */ 2916 if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0) && 2917 __predict_false(zone->uz_ctor != NULL) && 2918 zone->uz_ctor(item, size, udata, flags) != 0) { 2919 counter_u64_add(zone->uz_fails, 1); 2920 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT); 2921 return (NULL); 2922 } 2923 #ifdef INVARIANTS 2924 if (!skipdbg) 2925 uma_dbg_alloc(zone, NULL, item); 2926 #endif 2927 if (flags & M_ZERO) 2928 bzero(item, size); 2929 2930 return (item); 2931 } 2932 2933 static inline void 2934 item_dtor(uma_zone_t zone, void *item, int size, void *udata, 2935 enum zfreeskip skip) 2936 { 2937 #ifdef INVARIANTS 2938 bool skipdbg; 2939 2940 skipdbg = uma_dbg_zskip(zone, item); 2941 if (skip == SKIP_NONE && !skipdbg) { 2942 if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0) 2943 uma_dbg_free(zone, udata, item); 2944 else 2945 uma_dbg_free(zone, NULL, item); 2946 } 2947 #endif 2948 if (__predict_true(skip < SKIP_DTOR)) { 2949 if (zone->uz_dtor != NULL) 2950 zone->uz_dtor(item, size, udata); 2951 #ifdef INVARIANTS 2952 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 2953 zone->uz_dtor != trash_dtor) 2954 trash_dtor(item, size, udata); 2955 #endif 2956 } 2957 } 2958 2959 #if defined(INVARIANTS) || defined(DEBUG_MEMGUARD) || defined(WITNESS) 2960 #define UMA_ZALLOC_DEBUG 2961 static int 2962 uma_zalloc_debug(uma_zone_t zone, void **itemp, void *udata, int flags) 2963 { 2964 int error; 2965 2966 error = 0; 2967 #ifdef WITNESS 2968 if (flags & M_WAITOK) { 2969 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2970 "uma_zalloc_debug: zone \"%s\"", zone->uz_name); 2971 } 2972 #endif 2973 2974 #ifdef INVARIANTS 2975 KASSERT((flags & M_EXEC) == 0, 2976 ("uma_zalloc_debug: called with M_EXEC")); 2977 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2978 ("uma_zalloc_debug: called within spinlock or critical section")); 2979 KASSERT((zone->uz_flags & UMA_ZONE_PCPU) == 0 || (flags & M_ZERO) == 0, 2980 ("uma_zalloc_debug: allocating from a pcpu zone with M_ZERO")); 2981 #endif 2982 2983 #ifdef DEBUG_MEMGUARD 2984 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && memguard_cmp_zone(zone)) { 2985 void *item; 2986 item = memguard_alloc(zone->uz_size, flags); 2987 if (item != NULL) { 2988 error = EJUSTRETURN; 2989 if (zone->uz_init != NULL && 2990 zone->uz_init(item, zone->uz_size, flags) != 0) { 2991 *itemp = NULL; 2992 return (error); 2993 } 2994 if (zone->uz_ctor != NULL && 2995 zone->uz_ctor(item, zone->uz_size, udata, 2996 flags) != 0) { 2997 counter_u64_add(zone->uz_fails, 1); 2998 zone->uz_fini(item, zone->uz_size); 2999 *itemp = NULL; 3000 return (error); 3001 } 3002 *itemp = item; 3003 return (error); 3004 } 3005 /* This is unfortunate but should not be fatal. */ 3006 } 3007 #endif 3008 return (error); 3009 } 3010 3011 static int 3012 uma_zfree_debug(uma_zone_t zone, void *item, void *udata) 3013 { 3014 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3015 ("uma_zfree_debug: called with spinlock or critical section held")); 3016 3017 #ifdef DEBUG_MEMGUARD 3018 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && is_memguard_addr(item)) { 3019 if (zone->uz_dtor != NULL) 3020 zone->uz_dtor(item, zone->uz_size, udata); 3021 if (zone->uz_fini != NULL) 3022 zone->uz_fini(item, zone->uz_size); 3023 memguard_free(item); 3024 return (EJUSTRETURN); 3025 } 3026 #endif 3027 return (0); 3028 } 3029 #endif 3030 3031 static __noinline void * 3032 uma_zalloc_single(uma_zone_t zone, void *udata, int flags) 3033 { 3034 int domain; 3035 3036 /* 3037 * We can not get a bucket so try to return a single item. 3038 */ 3039 if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH) 3040 domain = PCPU_GET(domain); 3041 else 3042 domain = UMA_ANYDOMAIN; 3043 return (zone_alloc_item(zone, udata, domain, flags)); 3044 } 3045 3046 /* See uma.h */ 3047 void * 3048 uma_zalloc_smr(uma_zone_t zone, int flags) 3049 { 3050 uma_cache_bucket_t bucket; 3051 uma_cache_t cache; 3052 void *item; 3053 int size, uz_flags; 3054 3055 #ifdef UMA_ZALLOC_DEBUG 3056 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 3057 ("uma_zalloc_arg: called with non-SMR zone.\n")); 3058 if (uma_zalloc_debug(zone, &item, NULL, flags) == EJUSTRETURN) 3059 return (item); 3060 #endif 3061 3062 critical_enter(); 3063 do { 3064 cache = &zone->uz_cpu[curcpu]; 3065 bucket = &cache->uc_allocbucket; 3066 size = cache_uz_size(cache); 3067 uz_flags = cache_uz_flags(cache); 3068 if (__predict_true(bucket->ucb_cnt != 0)) { 3069 item = cache_bucket_pop(cache, bucket); 3070 critical_exit(); 3071 return (item_ctor(zone, uz_flags, size, NULL, flags, 3072 item)); 3073 } 3074 } while (cache_alloc(zone, cache, NULL, flags)); 3075 critical_exit(); 3076 3077 return (uma_zalloc_single(zone, NULL, flags)); 3078 } 3079 3080 /* See uma.h */ 3081 void * 3082 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 3083 { 3084 uma_cache_bucket_t bucket; 3085 uma_cache_t cache; 3086 void *item; 3087 int size, uz_flags; 3088 3089 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3090 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3091 3092 /* This is the fast path allocation */ 3093 CTR3(KTR_UMA, "uma_zalloc_arg zone %s(%p) flags %d", zone->uz_name, 3094 zone, flags); 3095 3096 #ifdef UMA_ZALLOC_DEBUG 3097 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 3098 ("uma_zalloc_arg: called with SMR zone.\n")); 3099 if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN) 3100 return (item); 3101 #endif 3102 3103 /* 3104 * If possible, allocate from the per-CPU cache. There are two 3105 * requirements for safe access to the per-CPU cache: (1) the thread 3106 * accessing the cache must not be preempted or yield during access, 3107 * and (2) the thread must not migrate CPUs without switching which 3108 * cache it accesses. We rely on a critical section to prevent 3109 * preemption and migration. We release the critical section in 3110 * order to acquire the zone mutex if we are unable to allocate from 3111 * the current cache; when we re-acquire the critical section, we 3112 * must detect and handle migration if it has occurred. 3113 */ 3114 critical_enter(); 3115 do { 3116 cache = &zone->uz_cpu[curcpu]; 3117 bucket = &cache->uc_allocbucket; 3118 size = cache_uz_size(cache); 3119 uz_flags = cache_uz_flags(cache); 3120 if (__predict_true(bucket->ucb_cnt != 0)) { 3121 item = cache_bucket_pop(cache, bucket); 3122 critical_exit(); 3123 return (item_ctor(zone, uz_flags, size, udata, flags, 3124 item)); 3125 } 3126 } while (cache_alloc(zone, cache, udata, flags)); 3127 critical_exit(); 3128 3129 return (uma_zalloc_single(zone, udata, flags)); 3130 } 3131 3132 /* 3133 * Replenish an alloc bucket and possibly restore an old one. Called in 3134 * a critical section. Returns in a critical section. 3135 * 3136 * A false return value indicates an allocation failure. 3137 * A true return value indicates success and the caller should retry. 3138 */ 3139 static __noinline bool 3140 cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3141 { 3142 uma_zone_domain_t zdom; 3143 uma_bucket_t bucket; 3144 int domain; 3145 bool lockfail; 3146 3147 CRITICAL_ASSERT(curthread); 3148 3149 /* 3150 * If we have run out of items in our alloc bucket see 3151 * if we can switch with the free bucket. 3152 * 3153 * SMR Zones can't re-use the free bucket until the sequence has 3154 * expired. 3155 */ 3156 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && 3157 cache->uc_freebucket.ucb_cnt != 0) { 3158 cache_bucket_swap(&cache->uc_freebucket, 3159 &cache->uc_allocbucket); 3160 return (true); 3161 } 3162 3163 /* 3164 * Discard any empty allocation bucket while we hold no locks. 3165 */ 3166 bucket = cache_bucket_unload_alloc(cache); 3167 critical_exit(); 3168 if (bucket != NULL) 3169 bucket_free(zone, bucket, udata); 3170 3171 /* Short-circuit for zones without buckets and low memory. */ 3172 if (zone->uz_bucket_size == 0 || bucketdisable) { 3173 critical_enter(); 3174 return (false); 3175 } 3176 3177 /* 3178 * Attempt to retrieve the item from the per-CPU cache has failed, so 3179 * we must go back to the zone. This requires the zone lock, so we 3180 * must drop the critical section, then re-acquire it when we go back 3181 * to the cache. Since the critical section is released, we may be 3182 * preempted or migrate. As such, make sure not to maintain any 3183 * thread-local state specific to the cache from prior to releasing 3184 * the critical section. 3185 */ 3186 lockfail = 0; 3187 if (ZONE_TRYLOCK(zone) == 0) { 3188 /* Record contention to size the buckets. */ 3189 ZONE_LOCK(zone); 3190 lockfail = 1; 3191 } 3192 3193 /* See if we lost the race to fill the cache. */ 3194 critical_enter(); 3195 cache = &zone->uz_cpu[curcpu]; 3196 if (cache->uc_allocbucket.ucb_bucket != NULL) { 3197 ZONE_UNLOCK(zone); 3198 return (true); 3199 } 3200 3201 /* 3202 * Check the zone's cache of buckets. 3203 */ 3204 if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH) { 3205 domain = PCPU_GET(domain); 3206 zdom = &zone->uz_domain[domain]; 3207 } else { 3208 domain = UMA_ANYDOMAIN; 3209 zdom = &zone->uz_domain[0]; 3210 } 3211 3212 if ((bucket = zone_fetch_bucket(zone, zdom)) != NULL) { 3213 KASSERT(bucket->ub_cnt != 0, 3214 ("uma_zalloc_arg: Returning an empty bucket.")); 3215 cache_bucket_load_alloc(cache, bucket); 3216 return (true); 3217 } 3218 /* We are no longer associated with this CPU. */ 3219 critical_exit(); 3220 3221 /* 3222 * We bump the uz count when the cache size is insufficient to 3223 * handle the working set. 3224 */ 3225 if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max) 3226 zone->uz_bucket_size++; 3227 ZONE_UNLOCK(zone); 3228 3229 /* 3230 * Fill a bucket and attempt to use it as the alloc bucket. 3231 */ 3232 bucket = zone_alloc_bucket(zone, udata, domain, flags); 3233 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 3234 zone->uz_name, zone, bucket); 3235 if (bucket == NULL) { 3236 critical_enter(); 3237 return (false); 3238 } 3239 3240 /* 3241 * See if we lost the race or were migrated. Cache the 3242 * initialized bucket to make this less likely or claim 3243 * the memory directly. 3244 */ 3245 ZONE_LOCK(zone); 3246 critical_enter(); 3247 cache = &zone->uz_cpu[curcpu]; 3248 if (cache->uc_allocbucket.ucb_bucket == NULL && 3249 ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0 || 3250 domain == PCPU_GET(domain))) { 3251 cache_bucket_load_alloc(cache, bucket); 3252 zdom->uzd_imax += bucket->ub_cnt; 3253 } else if (zone->uz_bkt_count >= zone->uz_bkt_max) { 3254 critical_exit(); 3255 ZONE_UNLOCK(zone); 3256 bucket_drain(zone, bucket); 3257 bucket_free(zone, bucket, udata); 3258 critical_enter(); 3259 return (true); 3260 } else 3261 zone_put_bucket(zone, zdom, bucket, false); 3262 ZONE_UNLOCK(zone); 3263 return (true); 3264 } 3265 3266 void * 3267 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 3268 { 3269 3270 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3271 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3272 3273 /* This is the fast path allocation */ 3274 CTR4(KTR_UMA, "uma_zalloc_domain zone %s(%p) domain %d flags %d", 3275 zone->uz_name, zone, domain, flags); 3276 3277 if (flags & M_WAITOK) { 3278 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3279 "uma_zalloc_domain: zone \"%s\"", zone->uz_name); 3280 } 3281 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3282 ("uma_zalloc_domain: called with spinlock or critical section held")); 3283 3284 return (zone_alloc_item(zone, udata, domain, flags)); 3285 } 3286 3287 /* 3288 * Find a slab with some space. Prefer slabs that are partially used over those 3289 * that are totally full. This helps to reduce fragmentation. 3290 * 3291 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 3292 * only 'domain'. 3293 */ 3294 static uma_slab_t 3295 keg_first_slab(uma_keg_t keg, int domain, bool rr) 3296 { 3297 uma_domain_t dom; 3298 uma_slab_t slab; 3299 int start; 3300 3301 KASSERT(domain >= 0 && domain < vm_ndomains, 3302 ("keg_first_slab: domain %d out of range", domain)); 3303 KEG_LOCK_ASSERT(keg, domain); 3304 3305 slab = NULL; 3306 start = domain; 3307 do { 3308 dom = &keg->uk_domain[domain]; 3309 if (!LIST_EMPTY(&dom->ud_part_slab)) 3310 return (LIST_FIRST(&dom->ud_part_slab)); 3311 if (!LIST_EMPTY(&dom->ud_free_slab)) { 3312 slab = LIST_FIRST(&dom->ud_free_slab); 3313 LIST_REMOVE(slab, us_link); 3314 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3315 return (slab); 3316 } 3317 if (rr) 3318 domain = (domain + 1) % vm_ndomains; 3319 } while (domain != start); 3320 3321 return (NULL); 3322 } 3323 3324 /* 3325 * Fetch an existing slab from a free or partial list. Returns with the 3326 * keg domain lock held if a slab was found or unlocked if not. 3327 */ 3328 static uma_slab_t 3329 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags) 3330 { 3331 uma_slab_t slab; 3332 uint32_t reserve; 3333 3334 /* HASH has a single free list. */ 3335 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 3336 domain = 0; 3337 3338 KEG_LOCK(keg, domain); 3339 reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve; 3340 if (keg->uk_domain[domain].ud_free <= reserve || 3341 (slab = keg_first_slab(keg, domain, rr)) == NULL) { 3342 KEG_UNLOCK(keg, domain); 3343 return (NULL); 3344 } 3345 return (slab); 3346 } 3347 3348 static uma_slab_t 3349 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags) 3350 { 3351 struct vm_domainset_iter di; 3352 uma_slab_t slab; 3353 int aflags, domain; 3354 bool rr; 3355 3356 restart: 3357 /* 3358 * Use the keg's policy if upper layers haven't already specified a 3359 * domain (as happens with first-touch zones). 3360 * 3361 * To avoid races we run the iterator with the keg lock held, but that 3362 * means that we cannot allow the vm_domainset layer to sleep. Thus, 3363 * clear M_WAITOK and handle low memory conditions locally. 3364 */ 3365 rr = rdomain == UMA_ANYDOMAIN; 3366 if (rr) { 3367 aflags = (flags & ~M_WAITOK) | M_NOWAIT; 3368 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 3369 &aflags); 3370 } else { 3371 aflags = flags; 3372 domain = rdomain; 3373 } 3374 3375 for (;;) { 3376 slab = keg_fetch_free_slab(keg, domain, rr, flags); 3377 if (slab != NULL) 3378 return (slab); 3379 3380 /* 3381 * M_NOVM means don't ask at all! 3382 */ 3383 if (flags & M_NOVM) 3384 break; 3385 3386 slab = keg_alloc_slab(keg, zone, domain, flags, aflags); 3387 if (slab != NULL) 3388 return (slab); 3389 if (!rr && (flags & M_WAITOK) == 0) 3390 break; 3391 if (rr && vm_domainset_iter_policy(&di, &domain) != 0) { 3392 if ((flags & M_WAITOK) != 0) { 3393 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask); 3394 goto restart; 3395 } 3396 break; 3397 } 3398 } 3399 3400 /* 3401 * We might not have been able to get a slab but another cpu 3402 * could have while we were unlocked. Check again before we 3403 * fail. 3404 */ 3405 if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL) 3406 return (slab); 3407 3408 return (NULL); 3409 } 3410 3411 static void * 3412 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 3413 { 3414 uma_domain_t dom; 3415 void *item; 3416 int freei; 3417 3418 KEG_LOCK_ASSERT(keg, slab->us_domain); 3419 3420 dom = &keg->uk_domain[slab->us_domain]; 3421 freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1; 3422 BIT_CLR(keg->uk_ipers, freei, &slab->us_free); 3423 item = slab_item(slab, keg, freei); 3424 slab->us_freecount--; 3425 dom->ud_free--; 3426 3427 /* Move this slab to the full list */ 3428 if (slab->us_freecount == 0) { 3429 LIST_REMOVE(slab, us_link); 3430 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 3431 } 3432 3433 return (item); 3434 } 3435 3436 static int 3437 zone_import(void *arg, void **bucket, int max, int domain, int flags) 3438 { 3439 uma_domain_t dom; 3440 uma_zone_t zone; 3441 uma_slab_t slab; 3442 uma_keg_t keg; 3443 #ifdef NUMA 3444 int stripe; 3445 #endif 3446 int i; 3447 3448 zone = arg; 3449 slab = NULL; 3450 keg = zone->uz_keg; 3451 /* Try to keep the buckets totally full */ 3452 for (i = 0; i < max; ) { 3453 if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL) 3454 break; 3455 #ifdef NUMA 3456 stripe = howmany(max, vm_ndomains); 3457 #endif 3458 dom = &keg->uk_domain[slab->us_domain]; 3459 while (slab->us_freecount && i < max) { 3460 bucket[i++] = slab_alloc_item(keg, slab); 3461 if (dom->ud_free <= keg->uk_reserve) 3462 break; 3463 #ifdef NUMA 3464 /* 3465 * If the zone is striped we pick a new slab for every 3466 * N allocations. Eliminating this conditional will 3467 * instead pick a new domain for each bucket rather 3468 * than stripe within each bucket. The current option 3469 * produces more fragmentation and requires more cpu 3470 * time but yields better distribution. 3471 */ 3472 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0 && 3473 vm_ndomains > 1 && --stripe == 0) 3474 break; 3475 #endif 3476 } 3477 KEG_UNLOCK(keg, slab->us_domain); 3478 /* Don't block if we allocated any successfully. */ 3479 flags &= ~M_WAITOK; 3480 flags |= M_NOWAIT; 3481 } 3482 3483 return i; 3484 } 3485 3486 static int 3487 zone_alloc_limit_hard(uma_zone_t zone, int count, int flags) 3488 { 3489 uint64_t old, new, total, max; 3490 3491 /* 3492 * The hard case. We're going to sleep because there were existing 3493 * sleepers or because we ran out of items. This routine enforces 3494 * fairness by keeping fifo order. 3495 * 3496 * First release our ill gotten gains and make some noise. 3497 */ 3498 for (;;) { 3499 zone_free_limit(zone, count); 3500 zone_log_warning(zone); 3501 zone_maxaction(zone); 3502 if (flags & M_NOWAIT) 3503 return (0); 3504 3505 /* 3506 * We need to allocate an item or set ourself as a sleeper 3507 * while the sleepq lock is held to avoid wakeup races. This 3508 * is essentially a home rolled semaphore. 3509 */ 3510 sleepq_lock(&zone->uz_max_items); 3511 old = zone->uz_items; 3512 do { 3513 MPASS(UZ_ITEMS_SLEEPERS(old) < UZ_ITEMS_SLEEPERS_MAX); 3514 /* Cache the max since we will evaluate twice. */ 3515 max = zone->uz_max_items; 3516 if (UZ_ITEMS_SLEEPERS(old) != 0 || 3517 UZ_ITEMS_COUNT(old) >= max) 3518 new = old + UZ_ITEMS_SLEEPER; 3519 else 3520 new = old + MIN(count, max - old); 3521 } while (atomic_fcmpset_64(&zone->uz_items, &old, new) == 0); 3522 3523 /* We may have successfully allocated under the sleepq lock. */ 3524 if (UZ_ITEMS_SLEEPERS(new) == 0) { 3525 sleepq_release(&zone->uz_max_items); 3526 return (new - old); 3527 } 3528 3529 /* 3530 * This is in a different cacheline from uz_items so that we 3531 * don't constantly invalidate the fastpath cacheline when we 3532 * adjust item counts. This could be limited to toggling on 3533 * transitions. 3534 */ 3535 atomic_add_32(&zone->uz_sleepers, 1); 3536 atomic_add_64(&zone->uz_sleeps, 1); 3537 3538 /* 3539 * We have added ourselves as a sleeper. The sleepq lock 3540 * protects us from wakeup races. Sleep now and then retry. 3541 */ 3542 sleepq_add(&zone->uz_max_items, NULL, "zonelimit", 0, 0); 3543 sleepq_wait(&zone->uz_max_items, PVM); 3544 3545 /* 3546 * After wakeup, remove ourselves as a sleeper and try 3547 * again. We no longer have the sleepq lock for protection. 3548 * 3549 * Subract ourselves as a sleeper while attempting to add 3550 * our count. 3551 */ 3552 atomic_subtract_32(&zone->uz_sleepers, 1); 3553 old = atomic_fetchadd_64(&zone->uz_items, 3554 -(UZ_ITEMS_SLEEPER - count)); 3555 /* We're no longer a sleeper. */ 3556 old -= UZ_ITEMS_SLEEPER; 3557 3558 /* 3559 * If we're still at the limit, restart. Notably do not 3560 * block on other sleepers. Cache the max value to protect 3561 * against changes via sysctl. 3562 */ 3563 total = UZ_ITEMS_COUNT(old); 3564 max = zone->uz_max_items; 3565 if (total >= max) 3566 continue; 3567 /* Truncate if necessary, otherwise wake other sleepers. */ 3568 if (total + count > max) { 3569 zone_free_limit(zone, total + count - max); 3570 count = max - total; 3571 } else if (total + count < max && UZ_ITEMS_SLEEPERS(old) != 0) 3572 wakeup_one(&zone->uz_max_items); 3573 3574 return (count); 3575 } 3576 } 3577 3578 /* 3579 * Allocate 'count' items from our max_items limit. Returns the number 3580 * available. If M_NOWAIT is not specified it will sleep until at least 3581 * one item can be allocated. 3582 */ 3583 static int 3584 zone_alloc_limit(uma_zone_t zone, int count, int flags) 3585 { 3586 uint64_t old; 3587 uint64_t max; 3588 3589 max = zone->uz_max_items; 3590 MPASS(max > 0); 3591 3592 /* 3593 * We expect normal allocations to succeed with a simple 3594 * fetchadd. 3595 */ 3596 old = atomic_fetchadd_64(&zone->uz_items, count); 3597 if (__predict_true(old + count <= max)) 3598 return (count); 3599 3600 /* 3601 * If we had some items and no sleepers just return the 3602 * truncated value. We have to release the excess space 3603 * though because that may wake sleepers who weren't woken 3604 * because we were temporarily over the limit. 3605 */ 3606 if (old < max) { 3607 zone_free_limit(zone, (old + count) - max); 3608 return (max - old); 3609 } 3610 return (zone_alloc_limit_hard(zone, count, flags)); 3611 } 3612 3613 /* 3614 * Free a number of items back to the limit. 3615 */ 3616 static void 3617 zone_free_limit(uma_zone_t zone, int count) 3618 { 3619 uint64_t old; 3620 3621 MPASS(count > 0); 3622 3623 /* 3624 * In the common case we either have no sleepers or 3625 * are still over the limit and can just return. 3626 */ 3627 old = atomic_fetchadd_64(&zone->uz_items, -count); 3628 if (__predict_true(UZ_ITEMS_SLEEPERS(old) == 0 || 3629 UZ_ITEMS_COUNT(old) - count >= zone->uz_max_items)) 3630 return; 3631 3632 /* 3633 * Moderate the rate of wakeups. Sleepers will continue 3634 * to generate wakeups if necessary. 3635 */ 3636 wakeup_one(&zone->uz_max_items); 3637 } 3638 3639 static uma_bucket_t 3640 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags) 3641 { 3642 uma_bucket_t bucket; 3643 int maxbucket, cnt; 3644 3645 CTR3(KTR_UMA, "zone_alloc_bucket zone %s(%p) domain %d", zone->uz_name, 3646 zone, domain); 3647 3648 /* Avoid allocs targeting empty domains. */ 3649 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 3650 domain = UMA_ANYDOMAIN; 3651 3652 if (zone->uz_max_items > 0) 3653 maxbucket = zone_alloc_limit(zone, zone->uz_bucket_size, 3654 M_NOWAIT); 3655 else 3656 maxbucket = zone->uz_bucket_size; 3657 if (maxbucket == 0) 3658 return (false); 3659 3660 /* Don't wait for buckets, preserve caller's NOVM setting. */ 3661 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 3662 if (bucket == NULL) { 3663 cnt = 0; 3664 goto out; 3665 } 3666 3667 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 3668 MIN(maxbucket, bucket->ub_entries), domain, flags); 3669 3670 /* 3671 * Initialize the memory if necessary. 3672 */ 3673 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 3674 int i; 3675 3676 for (i = 0; i < bucket->ub_cnt; i++) 3677 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 3678 flags) != 0) 3679 break; 3680 /* 3681 * If we couldn't initialize the whole bucket, put the 3682 * rest back onto the freelist. 3683 */ 3684 if (i != bucket->ub_cnt) { 3685 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 3686 bucket->ub_cnt - i); 3687 #ifdef INVARIANTS 3688 bzero(&bucket->ub_bucket[i], 3689 sizeof(void *) * (bucket->ub_cnt - i)); 3690 #endif 3691 bucket->ub_cnt = i; 3692 } 3693 } 3694 3695 cnt = bucket->ub_cnt; 3696 if (bucket->ub_cnt == 0) { 3697 bucket_free(zone, bucket, udata); 3698 counter_u64_add(zone->uz_fails, 1); 3699 bucket = NULL; 3700 } 3701 out: 3702 if (zone->uz_max_items > 0 && cnt < maxbucket) 3703 zone_free_limit(zone, maxbucket - cnt); 3704 3705 return (bucket); 3706 } 3707 3708 /* 3709 * Allocates a single item from a zone. 3710 * 3711 * Arguments 3712 * zone The zone to alloc for. 3713 * udata The data to be passed to the constructor. 3714 * domain The domain to allocate from or UMA_ANYDOMAIN. 3715 * flags M_WAITOK, M_NOWAIT, M_ZERO. 3716 * 3717 * Returns 3718 * NULL if there is no memory and M_NOWAIT is set 3719 * An item if successful 3720 */ 3721 3722 static void * 3723 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 3724 { 3725 void *item; 3726 3727 if (zone->uz_max_items > 0 && zone_alloc_limit(zone, 1, flags) == 0) 3728 return (NULL); 3729 3730 /* Avoid allocs targeting empty domains. */ 3731 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 3732 domain = UMA_ANYDOMAIN; 3733 3734 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 3735 goto fail_cnt; 3736 3737 /* 3738 * We have to call both the zone's init (not the keg's init) 3739 * and the zone's ctor. This is because the item is going from 3740 * a keg slab directly to the user, and the user is expecting it 3741 * to be both zone-init'd as well as zone-ctor'd. 3742 */ 3743 if (zone->uz_init != NULL) { 3744 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 3745 zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT); 3746 goto fail_cnt; 3747 } 3748 } 3749 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, flags, 3750 item); 3751 if (item == NULL) 3752 goto fail; 3753 3754 counter_u64_add(zone->uz_allocs, 1); 3755 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 3756 zone->uz_name, zone); 3757 3758 return (item); 3759 3760 fail_cnt: 3761 counter_u64_add(zone->uz_fails, 1); 3762 fail: 3763 if (zone->uz_max_items > 0) 3764 zone_free_limit(zone, 1); 3765 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 3766 zone->uz_name, zone); 3767 3768 return (NULL); 3769 } 3770 3771 /* See uma.h */ 3772 void 3773 uma_zfree_smr(uma_zone_t zone, void *item) 3774 { 3775 uma_cache_t cache; 3776 uma_cache_bucket_t bucket; 3777 int domain, itemdomain, uz_flags; 3778 3779 #ifdef UMA_ZALLOC_DEBUG 3780 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 3781 ("uma_zfree_smr: called with non-SMR zone.\n")); 3782 KASSERT(item != NULL, ("uma_zfree_smr: Called with NULL pointer.")); 3783 if (uma_zfree_debug(zone, item, NULL) == EJUSTRETURN) 3784 return; 3785 #endif 3786 cache = &zone->uz_cpu[curcpu]; 3787 uz_flags = cache_uz_flags(cache); 3788 domain = itemdomain = 0; 3789 #ifdef NUMA 3790 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 3791 itemdomain = _vm_phys_domain(pmap_kextract((vm_offset_t)item)); 3792 #endif 3793 critical_enter(); 3794 do { 3795 cache = &zone->uz_cpu[curcpu]; 3796 /* SMR Zones must free to the free bucket. */ 3797 bucket = &cache->uc_freebucket; 3798 #ifdef NUMA 3799 domain = PCPU_GET(domain); 3800 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 3801 domain != itemdomain) { 3802 bucket = &cache->uc_crossbucket; 3803 } 3804 #endif 3805 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 3806 cache_bucket_push(cache, bucket, item); 3807 critical_exit(); 3808 return; 3809 } 3810 } while (cache_free(zone, cache, NULL, item, itemdomain)); 3811 critical_exit(); 3812 3813 /* 3814 * If nothing else caught this, we'll just do an internal free. 3815 */ 3816 zone_free_item(zone, item, NULL, SKIP_NONE); 3817 } 3818 3819 /* See uma.h */ 3820 void 3821 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 3822 { 3823 uma_cache_t cache; 3824 uma_cache_bucket_t bucket; 3825 int domain, itemdomain, uz_flags; 3826 3827 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3828 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3829 3830 CTR2(KTR_UMA, "uma_zfree_arg zone %s(%p)", zone->uz_name, zone); 3831 3832 #ifdef UMA_ZALLOC_DEBUG 3833 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 3834 ("uma_zfree_arg: called with SMR zone.\n")); 3835 if (uma_zfree_debug(zone, item, udata) == EJUSTRETURN) 3836 return; 3837 #endif 3838 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 3839 if (item == NULL) 3840 return; 3841 3842 /* 3843 * We are accessing the per-cpu cache without a critical section to 3844 * fetch size and flags. This is acceptable, if we are preempted we 3845 * will simply read another cpu's line. 3846 */ 3847 cache = &zone->uz_cpu[curcpu]; 3848 uz_flags = cache_uz_flags(cache); 3849 if (UMA_ALWAYS_CTORDTOR || 3850 __predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0)) 3851 item_dtor(zone, item, cache_uz_size(cache), udata, SKIP_NONE); 3852 3853 /* 3854 * The race here is acceptable. If we miss it we'll just have to wait 3855 * a little longer for the limits to be reset. 3856 */ 3857 if (__predict_false(uz_flags & UMA_ZFLAG_LIMIT)) { 3858 if (zone->uz_sleepers > 0) 3859 goto zfree_item; 3860 } 3861 3862 /* 3863 * If possible, free to the per-CPU cache. There are two 3864 * requirements for safe access to the per-CPU cache: (1) the thread 3865 * accessing the cache must not be preempted or yield during access, 3866 * and (2) the thread must not migrate CPUs without switching which 3867 * cache it accesses. We rely on a critical section to prevent 3868 * preemption and migration. We release the critical section in 3869 * order to acquire the zone mutex if we are unable to free to the 3870 * current cache; when we re-acquire the critical section, we must 3871 * detect and handle migration if it has occurred. 3872 */ 3873 domain = itemdomain = 0; 3874 #ifdef NUMA 3875 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 3876 itemdomain = _vm_phys_domain(pmap_kextract((vm_offset_t)item)); 3877 #endif 3878 critical_enter(); 3879 do { 3880 cache = &zone->uz_cpu[curcpu]; 3881 /* 3882 * Try to free into the allocbucket first to give LIFO 3883 * ordering for cache-hot datastructures. Spill over 3884 * into the freebucket if necessary. Alloc will swap 3885 * them if one runs dry. 3886 */ 3887 bucket = &cache->uc_allocbucket; 3888 #ifdef NUMA 3889 domain = PCPU_GET(domain); 3890 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 3891 domain != itemdomain) { 3892 bucket = &cache->uc_crossbucket; 3893 } else 3894 #endif 3895 if (bucket->ucb_cnt >= bucket->ucb_entries) 3896 bucket = &cache->uc_freebucket; 3897 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 3898 cache_bucket_push(cache, bucket, item); 3899 critical_exit(); 3900 return; 3901 } 3902 } while (cache_free(zone, cache, udata, item, itemdomain)); 3903 critical_exit(); 3904 3905 /* 3906 * If nothing else caught this, we'll just do an internal free. 3907 */ 3908 zfree_item: 3909 zone_free_item(zone, item, udata, SKIP_DTOR); 3910 } 3911 3912 #ifdef NUMA 3913 /* 3914 * sort crossdomain free buckets to domain correct buckets and cache 3915 * them. 3916 */ 3917 static void 3918 zone_free_cross(uma_zone_t zone, uma_bucket_t bucket, void *udata) 3919 { 3920 struct uma_bucketlist fullbuckets; 3921 uma_zone_domain_t zdom; 3922 uma_bucket_t b; 3923 void *item; 3924 int domain; 3925 3926 CTR3(KTR_UMA, 3927 "uma_zfree: zone %s(%p) draining cross bucket %p", 3928 zone->uz_name, zone, bucket); 3929 3930 STAILQ_INIT(&fullbuckets); 3931 3932 /* 3933 * To avoid having ndomain * ndomain buckets for sorting we have a 3934 * lock on the current crossfree bucket. A full matrix with 3935 * per-domain locking could be used if necessary. 3936 */ 3937 ZONE_CROSS_LOCK(zone); 3938 while (bucket->ub_cnt > 0) { 3939 item = bucket->ub_bucket[bucket->ub_cnt - 1]; 3940 domain = _vm_phys_domain(pmap_kextract((vm_offset_t)item)); 3941 zdom = &zone->uz_domain[domain]; 3942 if (zdom->uzd_cross == NULL) { 3943 zdom->uzd_cross = bucket_alloc(zone, udata, M_NOWAIT); 3944 if (zdom->uzd_cross == NULL) 3945 break; 3946 } 3947 zdom->uzd_cross->ub_bucket[zdom->uzd_cross->ub_cnt++] = item; 3948 if (zdom->uzd_cross->ub_cnt == zdom->uzd_cross->ub_entries) { 3949 STAILQ_INSERT_HEAD(&fullbuckets, zdom->uzd_cross, 3950 ub_link); 3951 zdom->uzd_cross = NULL; 3952 } 3953 bucket->ub_cnt--; 3954 } 3955 ZONE_CROSS_UNLOCK(zone); 3956 if (!STAILQ_EMPTY(&fullbuckets)) { 3957 ZONE_LOCK(zone); 3958 while ((b = STAILQ_FIRST(&fullbuckets)) != NULL) { 3959 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 3960 bucket->ub_seq = smr_current(zone->uz_smr); 3961 STAILQ_REMOVE_HEAD(&fullbuckets, ub_link); 3962 if (zone->uz_bkt_count >= zone->uz_bkt_max) { 3963 ZONE_UNLOCK(zone); 3964 bucket_drain(zone, b); 3965 bucket_free(zone, b, udata); 3966 ZONE_LOCK(zone); 3967 } else { 3968 domain = _vm_phys_domain( 3969 pmap_kextract( 3970 (vm_offset_t)b->ub_bucket[0])); 3971 zdom = &zone->uz_domain[domain]; 3972 zone_put_bucket(zone, zdom, b, true); 3973 } 3974 } 3975 ZONE_UNLOCK(zone); 3976 } 3977 if (bucket->ub_cnt != 0) 3978 bucket_drain(zone, bucket); 3979 bucket->ub_seq = SMR_SEQ_INVALID; 3980 bucket_free(zone, bucket, udata); 3981 } 3982 #endif 3983 3984 static void 3985 zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 3986 int domain, int itemdomain) 3987 { 3988 uma_zone_domain_t zdom; 3989 3990 #ifdef NUMA 3991 /* 3992 * Buckets coming from the wrong domain will be entirely for the 3993 * only other domain on two domain systems. In this case we can 3994 * simply cache them. Otherwise we need to sort them back to 3995 * correct domains. 3996 */ 3997 if (domain != itemdomain && vm_ndomains > 2) { 3998 zone_free_cross(zone, bucket, udata); 3999 return; 4000 } 4001 #endif 4002 4003 /* 4004 * Attempt to save the bucket in the zone's domain bucket cache. 4005 * 4006 * We bump the uz count when the cache size is insufficient to 4007 * handle the working set. 4008 */ 4009 if (ZONE_TRYLOCK(zone) == 0) { 4010 /* Record contention to size the buckets. */ 4011 ZONE_LOCK(zone); 4012 if (zone->uz_bucket_size < zone->uz_bucket_size_max) 4013 zone->uz_bucket_size++; 4014 } 4015 4016 CTR3(KTR_UMA, 4017 "uma_zfree: zone %s(%p) putting bucket %p on free list", 4018 zone->uz_name, zone, bucket); 4019 /* ub_cnt is pointing to the last free item */ 4020 KASSERT(bucket->ub_cnt == bucket->ub_entries, 4021 ("uma_zfree: Attempting to insert partial bucket onto the full list.\n")); 4022 if (zone->uz_bkt_count >= zone->uz_bkt_max) { 4023 ZONE_UNLOCK(zone); 4024 bucket_drain(zone, bucket); 4025 bucket_free(zone, bucket, udata); 4026 } else { 4027 zdom = &zone->uz_domain[itemdomain]; 4028 zone_put_bucket(zone, zdom, bucket, true); 4029 ZONE_UNLOCK(zone); 4030 } 4031 } 4032 4033 /* 4034 * Populate a free or cross bucket for the current cpu cache. Free any 4035 * existing full bucket either to the zone cache or back to the slab layer. 4036 * 4037 * Enters and returns in a critical section. false return indicates that 4038 * we can not satisfy this free in the cache layer. true indicates that 4039 * the caller should retry. 4040 */ 4041 static __noinline bool 4042 cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, void *item, 4043 int itemdomain) 4044 { 4045 uma_cache_bucket_t cbucket; 4046 uma_bucket_t newbucket, bucket; 4047 int domain; 4048 4049 CRITICAL_ASSERT(curthread); 4050 4051 if (zone->uz_bucket_size == 0) 4052 return false; 4053 4054 cache = &zone->uz_cpu[curcpu]; 4055 newbucket = NULL; 4056 4057 /* 4058 * FIRSTTOUCH domains need to free to the correct zdom. When 4059 * enabled this is the zdom of the item. The bucket is the 4060 * cross bucket if the current domain and itemdomain do not match. 4061 */ 4062 cbucket = &cache->uc_freebucket; 4063 #ifdef NUMA 4064 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) { 4065 domain = PCPU_GET(domain); 4066 if (domain != itemdomain) { 4067 cbucket = &cache->uc_crossbucket; 4068 if (cbucket->ucb_cnt != 0) 4069 atomic_add_64(&zone->uz_xdomain, 4070 cbucket->ucb_cnt); 4071 } 4072 } else 4073 #endif 4074 itemdomain = domain = 0; 4075 bucket = cache_bucket_unload(cbucket); 4076 4077 /* We are no longer associated with this CPU. */ 4078 critical_exit(); 4079 4080 /* 4081 * Don't let SMR zones operate without a free bucket. Force 4082 * a synchronize and re-use this one. We will only degrade 4083 * to a synchronize every bucket_size items rather than every 4084 * item if we fail to allocate a bucket. 4085 */ 4086 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) { 4087 if (bucket != NULL) 4088 bucket->ub_seq = smr_advance(zone->uz_smr); 4089 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4090 if (newbucket == NULL && bucket != NULL) { 4091 bucket_drain(zone, bucket); 4092 newbucket = bucket; 4093 bucket = NULL; 4094 } 4095 } else if (!bucketdisable) 4096 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4097 4098 if (bucket != NULL) 4099 zone_free_bucket(zone, bucket, udata, domain, itemdomain); 4100 4101 critical_enter(); 4102 if ((bucket = newbucket) == NULL) 4103 return (false); 4104 cache = &zone->uz_cpu[curcpu]; 4105 #ifdef NUMA 4106 /* 4107 * Check to see if we should be populating the cross bucket. If it 4108 * is already populated we will fall through and attempt to populate 4109 * the free bucket. 4110 */ 4111 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) { 4112 domain = PCPU_GET(domain); 4113 if (domain != itemdomain && 4114 cache->uc_crossbucket.ucb_bucket == NULL) { 4115 cache_bucket_load_cross(cache, bucket); 4116 return (true); 4117 } 4118 } 4119 #endif 4120 /* 4121 * We may have lost the race to fill the bucket or switched CPUs. 4122 */ 4123 if (cache->uc_freebucket.ucb_bucket != NULL) { 4124 critical_exit(); 4125 bucket_free(zone, bucket, udata); 4126 critical_enter(); 4127 } else 4128 cache_bucket_load_free(cache, bucket); 4129 4130 return (true); 4131 } 4132 4133 void 4134 uma_zfree_domain(uma_zone_t zone, void *item, void *udata) 4135 { 4136 4137 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 4138 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 4139 4140 CTR2(KTR_UMA, "uma_zfree_domain zone %s(%p)", zone->uz_name, zone); 4141 4142 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 4143 ("uma_zfree_domain: called with spinlock or critical section held")); 4144 4145 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 4146 if (item == NULL) 4147 return; 4148 zone_free_item(zone, item, udata, SKIP_NONE); 4149 } 4150 4151 static void 4152 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item) 4153 { 4154 uma_keg_t keg; 4155 uma_domain_t dom; 4156 int freei; 4157 4158 keg = zone->uz_keg; 4159 KEG_LOCK_ASSERT(keg, slab->us_domain); 4160 4161 /* Do we need to remove from any lists? */ 4162 dom = &keg->uk_domain[slab->us_domain]; 4163 if (slab->us_freecount+1 == keg->uk_ipers) { 4164 LIST_REMOVE(slab, us_link); 4165 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 4166 } else if (slab->us_freecount == 0) { 4167 LIST_REMOVE(slab, us_link); 4168 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 4169 } 4170 4171 /* Slab management. */ 4172 freei = slab_item_index(slab, keg, item); 4173 BIT_SET(keg->uk_ipers, freei, &slab->us_free); 4174 slab->us_freecount++; 4175 4176 /* Keg statistics. */ 4177 dom->ud_free++; 4178 } 4179 4180 static void 4181 zone_release(void *arg, void **bucket, int cnt) 4182 { 4183 struct mtx *lock; 4184 uma_zone_t zone; 4185 uma_slab_t slab; 4186 uma_keg_t keg; 4187 uint8_t *mem; 4188 void *item; 4189 int i; 4190 4191 zone = arg; 4192 keg = zone->uz_keg; 4193 lock = NULL; 4194 if (__predict_false((zone->uz_flags & UMA_ZFLAG_HASH) != 0)) 4195 lock = KEG_LOCK(keg, 0); 4196 for (i = 0; i < cnt; i++) { 4197 item = bucket[i]; 4198 if (__predict_true((zone->uz_flags & UMA_ZFLAG_VTOSLAB) != 0)) { 4199 slab = vtoslab((vm_offset_t)item); 4200 } else { 4201 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 4202 if ((zone->uz_flags & UMA_ZFLAG_HASH) != 0) 4203 slab = hash_sfind(&keg->uk_hash, mem); 4204 else 4205 slab = (uma_slab_t)(mem + keg->uk_pgoff); 4206 } 4207 if (lock != KEG_LOCKPTR(keg, slab->us_domain)) { 4208 if (lock != NULL) 4209 mtx_unlock(lock); 4210 lock = KEG_LOCK(keg, slab->us_domain); 4211 } 4212 slab_free_item(zone, slab, item); 4213 } 4214 if (lock != NULL) 4215 mtx_unlock(lock); 4216 } 4217 4218 /* 4219 * Frees a single item to any zone. 4220 * 4221 * Arguments: 4222 * zone The zone to free to 4223 * item The item we're freeing 4224 * udata User supplied data for the dtor 4225 * skip Skip dtors and finis 4226 */ 4227 static void 4228 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 4229 { 4230 4231 /* 4232 * If a free is sent directly to an SMR zone we have to 4233 * synchronize immediately because the item can instantly 4234 * be reallocated. This should only happen in degenerate 4235 * cases when no memory is available for per-cpu caches. 4236 */ 4237 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && skip == SKIP_NONE) 4238 smr_synchronize(zone->uz_smr); 4239 4240 item_dtor(zone, item, zone->uz_size, udata, skip); 4241 4242 if (skip < SKIP_FINI && zone->uz_fini) 4243 zone->uz_fini(item, zone->uz_size); 4244 4245 zone->uz_release(zone->uz_arg, &item, 1); 4246 4247 if (skip & SKIP_CNT) 4248 return; 4249 4250 counter_u64_add(zone->uz_frees, 1); 4251 4252 if (zone->uz_max_items > 0) 4253 zone_free_limit(zone, 1); 4254 } 4255 4256 /* See uma.h */ 4257 int 4258 uma_zone_set_max(uma_zone_t zone, int nitems) 4259 { 4260 struct uma_bucket_zone *ubz; 4261 int count; 4262 4263 /* 4264 * XXX This can misbehave if the zone has any allocations with 4265 * no limit and a limit is imposed. There is currently no 4266 * way to clear a limit. 4267 */ 4268 ZONE_LOCK(zone); 4269 ubz = bucket_zone_max(zone, nitems); 4270 count = ubz != NULL ? ubz->ubz_entries : 0; 4271 zone->uz_bucket_size_max = zone->uz_bucket_size = count; 4272 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 4273 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 4274 zone->uz_max_items = nitems; 4275 zone->uz_flags |= UMA_ZFLAG_LIMIT; 4276 zone_update_caches(zone); 4277 /* We may need to wake waiters. */ 4278 wakeup(&zone->uz_max_items); 4279 ZONE_UNLOCK(zone); 4280 4281 return (nitems); 4282 } 4283 4284 /* See uma.h */ 4285 void 4286 uma_zone_set_maxcache(uma_zone_t zone, int nitems) 4287 { 4288 struct uma_bucket_zone *ubz; 4289 int bpcpu; 4290 4291 ZONE_LOCK(zone); 4292 ubz = bucket_zone_max(zone, nitems); 4293 if (ubz != NULL) { 4294 bpcpu = 2; 4295 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4296 /* Count the cross-domain bucket. */ 4297 bpcpu++; 4298 nitems -= ubz->ubz_entries * bpcpu * mp_ncpus; 4299 zone->uz_bucket_size_max = ubz->ubz_entries; 4300 } else { 4301 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 4302 } 4303 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 4304 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 4305 zone->uz_bkt_max = nitems; 4306 ZONE_UNLOCK(zone); 4307 } 4308 4309 /* See uma.h */ 4310 int 4311 uma_zone_get_max(uma_zone_t zone) 4312 { 4313 int nitems; 4314 4315 nitems = atomic_load_64(&zone->uz_max_items); 4316 4317 return (nitems); 4318 } 4319 4320 /* See uma.h */ 4321 void 4322 uma_zone_set_warning(uma_zone_t zone, const char *warning) 4323 { 4324 4325 ZONE_ASSERT_COLD(zone); 4326 zone->uz_warning = warning; 4327 } 4328 4329 /* See uma.h */ 4330 void 4331 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 4332 { 4333 4334 ZONE_ASSERT_COLD(zone); 4335 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 4336 } 4337 4338 /* See uma.h */ 4339 int 4340 uma_zone_get_cur(uma_zone_t zone) 4341 { 4342 int64_t nitems; 4343 u_int i; 4344 4345 nitems = 0; 4346 if (zone->uz_allocs != EARLY_COUNTER && zone->uz_frees != EARLY_COUNTER) 4347 nitems = counter_u64_fetch(zone->uz_allocs) - 4348 counter_u64_fetch(zone->uz_frees); 4349 CPU_FOREACH(i) 4350 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs) - 4351 atomic_load_64(&zone->uz_cpu[i].uc_frees); 4352 4353 return (nitems < 0 ? 0 : nitems); 4354 } 4355 4356 static uint64_t 4357 uma_zone_get_allocs(uma_zone_t zone) 4358 { 4359 uint64_t nitems; 4360 u_int i; 4361 4362 nitems = 0; 4363 if (zone->uz_allocs != EARLY_COUNTER) 4364 nitems = counter_u64_fetch(zone->uz_allocs); 4365 CPU_FOREACH(i) 4366 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs); 4367 4368 return (nitems); 4369 } 4370 4371 static uint64_t 4372 uma_zone_get_frees(uma_zone_t zone) 4373 { 4374 uint64_t nitems; 4375 u_int i; 4376 4377 nitems = 0; 4378 if (zone->uz_frees != EARLY_COUNTER) 4379 nitems = counter_u64_fetch(zone->uz_frees); 4380 CPU_FOREACH(i) 4381 nitems += atomic_load_64(&zone->uz_cpu[i].uc_frees); 4382 4383 return (nitems); 4384 } 4385 4386 #ifdef INVARIANTS 4387 /* Used only for KEG_ASSERT_COLD(). */ 4388 static uint64_t 4389 uma_keg_get_allocs(uma_keg_t keg) 4390 { 4391 uma_zone_t z; 4392 uint64_t nitems; 4393 4394 nitems = 0; 4395 LIST_FOREACH(z, &keg->uk_zones, uz_link) 4396 nitems += uma_zone_get_allocs(z); 4397 4398 return (nitems); 4399 } 4400 #endif 4401 4402 /* See uma.h */ 4403 void 4404 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 4405 { 4406 uma_keg_t keg; 4407 4408 KEG_GET(zone, keg); 4409 KEG_ASSERT_COLD(keg); 4410 keg->uk_init = uminit; 4411 } 4412 4413 /* See uma.h */ 4414 void 4415 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 4416 { 4417 uma_keg_t keg; 4418 4419 KEG_GET(zone, keg); 4420 KEG_ASSERT_COLD(keg); 4421 keg->uk_fini = fini; 4422 } 4423 4424 /* See uma.h */ 4425 void 4426 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 4427 { 4428 4429 ZONE_ASSERT_COLD(zone); 4430 zone->uz_init = zinit; 4431 } 4432 4433 /* See uma.h */ 4434 void 4435 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 4436 { 4437 4438 ZONE_ASSERT_COLD(zone); 4439 zone->uz_fini = zfini; 4440 } 4441 4442 /* See uma.h */ 4443 void 4444 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 4445 { 4446 uma_keg_t keg; 4447 4448 KEG_GET(zone, keg); 4449 KEG_ASSERT_COLD(keg); 4450 keg->uk_freef = freef; 4451 } 4452 4453 /* See uma.h */ 4454 void 4455 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 4456 { 4457 uma_keg_t keg; 4458 4459 KEG_GET(zone, keg); 4460 KEG_ASSERT_COLD(keg); 4461 keg->uk_allocf = allocf; 4462 } 4463 4464 /* See uma.h */ 4465 void 4466 uma_zone_set_smr(uma_zone_t zone, smr_t smr) 4467 { 4468 4469 ZONE_ASSERT_COLD(zone); 4470 4471 zone->uz_flags |= UMA_ZONE_SMR; 4472 zone->uz_smr = smr; 4473 zone_update_caches(zone); 4474 } 4475 4476 smr_t 4477 uma_zone_get_smr(uma_zone_t zone) 4478 { 4479 4480 return (zone->uz_smr); 4481 } 4482 4483 /* See uma.h */ 4484 void 4485 uma_zone_reserve(uma_zone_t zone, int items) 4486 { 4487 uma_keg_t keg; 4488 4489 KEG_GET(zone, keg); 4490 KEG_ASSERT_COLD(keg); 4491 keg->uk_reserve = items; 4492 } 4493 4494 /* See uma.h */ 4495 int 4496 uma_zone_reserve_kva(uma_zone_t zone, int count) 4497 { 4498 uma_keg_t keg; 4499 vm_offset_t kva; 4500 u_int pages; 4501 4502 KEG_GET(zone, keg); 4503 KEG_ASSERT_COLD(keg); 4504 ZONE_ASSERT_COLD(zone); 4505 4506 pages = howmany(count, keg->uk_ipers) * keg->uk_ppera; 4507 4508 #ifdef UMA_MD_SMALL_ALLOC 4509 if (keg->uk_ppera > 1) { 4510 #else 4511 if (1) { 4512 #endif 4513 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 4514 if (kva == 0) 4515 return (0); 4516 } else 4517 kva = 0; 4518 4519 ZONE_LOCK(zone); 4520 MPASS(keg->uk_kva == 0); 4521 keg->uk_kva = kva; 4522 keg->uk_offset = 0; 4523 zone->uz_max_items = pages * keg->uk_ipers; 4524 #ifdef UMA_MD_SMALL_ALLOC 4525 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 4526 #else 4527 keg->uk_allocf = noobj_alloc; 4528 #endif 4529 keg->uk_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 4530 zone->uz_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 4531 zone_update_caches(zone); 4532 ZONE_UNLOCK(zone); 4533 4534 return (1); 4535 } 4536 4537 /* See uma.h */ 4538 void 4539 uma_prealloc(uma_zone_t zone, int items) 4540 { 4541 struct vm_domainset_iter di; 4542 uma_domain_t dom; 4543 uma_slab_t slab; 4544 uma_keg_t keg; 4545 int aflags, domain, slabs; 4546 4547 KEG_GET(zone, keg); 4548 slabs = howmany(items, keg->uk_ipers); 4549 while (slabs-- > 0) { 4550 aflags = M_NOWAIT; 4551 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 4552 &aflags); 4553 for (;;) { 4554 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK, 4555 aflags); 4556 if (slab != NULL) { 4557 dom = &keg->uk_domain[slab->us_domain]; 4558 LIST_REMOVE(slab, us_link); 4559 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, 4560 us_link); 4561 KEG_UNLOCK(keg, slab->us_domain); 4562 break; 4563 } 4564 if (vm_domainset_iter_policy(&di, &domain) != 0) 4565 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask); 4566 } 4567 } 4568 } 4569 4570 /* See uma.h */ 4571 void 4572 uma_reclaim(int req) 4573 { 4574 4575 CTR0(KTR_UMA, "UMA: vm asked us to release pages!"); 4576 sx_xlock(&uma_reclaim_lock); 4577 bucket_enable(); 4578 4579 switch (req) { 4580 case UMA_RECLAIM_TRIM: 4581 zone_foreach(zone_trim, NULL); 4582 break; 4583 case UMA_RECLAIM_DRAIN: 4584 case UMA_RECLAIM_DRAIN_CPU: 4585 zone_foreach(zone_drain, NULL); 4586 if (req == UMA_RECLAIM_DRAIN_CPU) { 4587 pcpu_cache_drain_safe(NULL); 4588 zone_foreach(zone_drain, NULL); 4589 } 4590 break; 4591 default: 4592 panic("unhandled reclamation request %d", req); 4593 } 4594 4595 /* 4596 * Some slabs may have been freed but this zone will be visited early 4597 * we visit again so that we can free pages that are empty once other 4598 * zones are drained. We have to do the same for buckets. 4599 */ 4600 zone_drain(slabzones[0], NULL); 4601 zone_drain(slabzones[1], NULL); 4602 bucket_zone_drain(); 4603 sx_xunlock(&uma_reclaim_lock); 4604 } 4605 4606 static volatile int uma_reclaim_needed; 4607 4608 void 4609 uma_reclaim_wakeup(void) 4610 { 4611 4612 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 4613 wakeup(uma_reclaim); 4614 } 4615 4616 void 4617 uma_reclaim_worker(void *arg __unused) 4618 { 4619 4620 for (;;) { 4621 sx_xlock(&uma_reclaim_lock); 4622 while (atomic_load_int(&uma_reclaim_needed) == 0) 4623 sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl", 4624 hz); 4625 sx_xunlock(&uma_reclaim_lock); 4626 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 4627 uma_reclaim(UMA_RECLAIM_DRAIN_CPU); 4628 atomic_store_int(&uma_reclaim_needed, 0); 4629 /* Don't fire more than once per-second. */ 4630 pause("umarclslp", hz); 4631 } 4632 } 4633 4634 /* See uma.h */ 4635 void 4636 uma_zone_reclaim(uma_zone_t zone, int req) 4637 { 4638 4639 switch (req) { 4640 case UMA_RECLAIM_TRIM: 4641 zone_trim(zone, NULL); 4642 break; 4643 case UMA_RECLAIM_DRAIN: 4644 zone_drain(zone, NULL); 4645 break; 4646 case UMA_RECLAIM_DRAIN_CPU: 4647 pcpu_cache_drain_safe(zone); 4648 zone_drain(zone, NULL); 4649 break; 4650 default: 4651 panic("unhandled reclamation request %d", req); 4652 } 4653 } 4654 4655 /* See uma.h */ 4656 int 4657 uma_zone_exhausted(uma_zone_t zone) 4658 { 4659 4660 return (atomic_load_32(&zone->uz_sleepers) > 0); 4661 } 4662 4663 unsigned long 4664 uma_limit(void) 4665 { 4666 4667 return (uma_kmem_limit); 4668 } 4669 4670 void 4671 uma_set_limit(unsigned long limit) 4672 { 4673 4674 uma_kmem_limit = limit; 4675 } 4676 4677 unsigned long 4678 uma_size(void) 4679 { 4680 4681 return (atomic_load_long(&uma_kmem_total)); 4682 } 4683 4684 long 4685 uma_avail(void) 4686 { 4687 4688 return (uma_kmem_limit - uma_size()); 4689 } 4690 4691 #ifdef DDB 4692 /* 4693 * Generate statistics across both the zone and its per-cpu cache's. Return 4694 * desired statistics if the pointer is non-NULL for that statistic. 4695 * 4696 * Note: does not update the zone statistics, as it can't safely clear the 4697 * per-CPU cache statistic. 4698 * 4699 */ 4700 static void 4701 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp, 4702 uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp) 4703 { 4704 uma_cache_t cache; 4705 uint64_t allocs, frees, sleeps, xdomain; 4706 int cachefree, cpu; 4707 4708 allocs = frees = sleeps = xdomain = 0; 4709 cachefree = 0; 4710 CPU_FOREACH(cpu) { 4711 cache = &z->uz_cpu[cpu]; 4712 cachefree += cache->uc_allocbucket.ucb_cnt; 4713 cachefree += cache->uc_freebucket.ucb_cnt; 4714 xdomain += cache->uc_crossbucket.ucb_cnt; 4715 cachefree += cache->uc_crossbucket.ucb_cnt; 4716 allocs += cache->uc_allocs; 4717 frees += cache->uc_frees; 4718 } 4719 allocs += counter_u64_fetch(z->uz_allocs); 4720 frees += counter_u64_fetch(z->uz_frees); 4721 sleeps += z->uz_sleeps; 4722 xdomain += z->uz_xdomain; 4723 if (cachefreep != NULL) 4724 *cachefreep = cachefree; 4725 if (allocsp != NULL) 4726 *allocsp = allocs; 4727 if (freesp != NULL) 4728 *freesp = frees; 4729 if (sleepsp != NULL) 4730 *sleepsp = sleeps; 4731 if (xdomainp != NULL) 4732 *xdomainp = xdomain; 4733 } 4734 #endif /* DDB */ 4735 4736 static int 4737 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 4738 { 4739 uma_keg_t kz; 4740 uma_zone_t z; 4741 int count; 4742 4743 count = 0; 4744 rw_rlock(&uma_rwlock); 4745 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4746 LIST_FOREACH(z, &kz->uk_zones, uz_link) 4747 count++; 4748 } 4749 LIST_FOREACH(z, &uma_cachezones, uz_link) 4750 count++; 4751 4752 rw_runlock(&uma_rwlock); 4753 return (sysctl_handle_int(oidp, &count, 0, req)); 4754 } 4755 4756 static void 4757 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf, 4758 struct uma_percpu_stat *ups, bool internal) 4759 { 4760 uma_zone_domain_t zdom; 4761 uma_cache_t cache; 4762 int i; 4763 4764 4765 for (i = 0; i < vm_ndomains; i++) { 4766 zdom = &z->uz_domain[i]; 4767 uth->uth_zone_free += zdom->uzd_nitems; 4768 } 4769 uth->uth_allocs = counter_u64_fetch(z->uz_allocs); 4770 uth->uth_frees = counter_u64_fetch(z->uz_frees); 4771 uth->uth_fails = counter_u64_fetch(z->uz_fails); 4772 uth->uth_sleeps = z->uz_sleeps; 4773 uth->uth_xdomain = z->uz_xdomain; 4774 4775 /* 4776 * While it is not normally safe to access the cache bucket pointers 4777 * while not on the CPU that owns the cache, we only allow the pointers 4778 * to be exchanged without the zone lock held, not invalidated, so 4779 * accept the possible race associated with bucket exchange during 4780 * monitoring. Use atomic_load_ptr() to ensure that the bucket pointers 4781 * are loaded only once. 4782 */ 4783 for (i = 0; i < mp_maxid + 1; i++) { 4784 bzero(&ups[i], sizeof(*ups)); 4785 if (internal || CPU_ABSENT(i)) 4786 continue; 4787 cache = &z->uz_cpu[i]; 4788 ups[i].ups_cache_free += cache->uc_allocbucket.ucb_cnt; 4789 ups[i].ups_cache_free += cache->uc_freebucket.ucb_cnt; 4790 ups[i].ups_cache_free += cache->uc_crossbucket.ucb_cnt; 4791 ups[i].ups_allocs = cache->uc_allocs; 4792 ups[i].ups_frees = cache->uc_frees; 4793 } 4794 } 4795 4796 static int 4797 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 4798 { 4799 struct uma_stream_header ush; 4800 struct uma_type_header uth; 4801 struct uma_percpu_stat *ups; 4802 struct sbuf sbuf; 4803 uma_keg_t kz; 4804 uma_zone_t z; 4805 uint64_t items; 4806 uint32_t kfree, pages; 4807 int count, error, i; 4808 4809 error = sysctl_wire_old_buffer(req, 0); 4810 if (error != 0) 4811 return (error); 4812 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 4813 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 4814 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 4815 4816 count = 0; 4817 rw_rlock(&uma_rwlock); 4818 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4819 LIST_FOREACH(z, &kz->uk_zones, uz_link) 4820 count++; 4821 } 4822 4823 LIST_FOREACH(z, &uma_cachezones, uz_link) 4824 count++; 4825 4826 /* 4827 * Insert stream header. 4828 */ 4829 bzero(&ush, sizeof(ush)); 4830 ush.ush_version = UMA_STREAM_VERSION; 4831 ush.ush_maxcpus = (mp_maxid + 1); 4832 ush.ush_count = count; 4833 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 4834 4835 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4836 kfree = pages = 0; 4837 for (i = 0; i < vm_ndomains; i++) { 4838 kfree += kz->uk_domain[i].ud_free; 4839 pages += kz->uk_domain[i].ud_pages; 4840 } 4841 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 4842 bzero(&uth, sizeof(uth)); 4843 ZONE_LOCK(z); 4844 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 4845 uth.uth_align = kz->uk_align; 4846 uth.uth_size = kz->uk_size; 4847 uth.uth_rsize = kz->uk_rsize; 4848 if (z->uz_max_items > 0) { 4849 items = UZ_ITEMS_COUNT(z->uz_items); 4850 uth.uth_pages = (items / kz->uk_ipers) * 4851 kz->uk_ppera; 4852 } else 4853 uth.uth_pages = pages; 4854 uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) * 4855 kz->uk_ppera; 4856 uth.uth_limit = z->uz_max_items; 4857 uth.uth_keg_free = kfree; 4858 4859 /* 4860 * A zone is secondary is it is not the first entry 4861 * on the keg's zone list. 4862 */ 4863 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 4864 (LIST_FIRST(&kz->uk_zones) != z)) 4865 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 4866 uma_vm_zone_stats(&uth, z, &sbuf, ups, 4867 kz->uk_flags & UMA_ZFLAG_INTERNAL); 4868 ZONE_UNLOCK(z); 4869 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 4870 for (i = 0; i < mp_maxid + 1; i++) 4871 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 4872 } 4873 } 4874 LIST_FOREACH(z, &uma_cachezones, uz_link) { 4875 bzero(&uth, sizeof(uth)); 4876 ZONE_LOCK(z); 4877 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 4878 uth.uth_size = z->uz_size; 4879 uma_vm_zone_stats(&uth, z, &sbuf, ups, false); 4880 ZONE_UNLOCK(z); 4881 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 4882 for (i = 0; i < mp_maxid + 1; i++) 4883 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 4884 } 4885 4886 rw_runlock(&uma_rwlock); 4887 error = sbuf_finish(&sbuf); 4888 sbuf_delete(&sbuf); 4889 free(ups, M_TEMP); 4890 return (error); 4891 } 4892 4893 int 4894 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 4895 { 4896 uma_zone_t zone = *(uma_zone_t *)arg1; 4897 int error, max; 4898 4899 max = uma_zone_get_max(zone); 4900 error = sysctl_handle_int(oidp, &max, 0, req); 4901 if (error || !req->newptr) 4902 return (error); 4903 4904 uma_zone_set_max(zone, max); 4905 4906 return (0); 4907 } 4908 4909 int 4910 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 4911 { 4912 uma_zone_t zone; 4913 int cur; 4914 4915 /* 4916 * Some callers want to add sysctls for global zones that 4917 * may not yet exist so they pass a pointer to a pointer. 4918 */ 4919 if (arg2 == 0) 4920 zone = *(uma_zone_t *)arg1; 4921 else 4922 zone = arg1; 4923 cur = uma_zone_get_cur(zone); 4924 return (sysctl_handle_int(oidp, &cur, 0, req)); 4925 } 4926 4927 static int 4928 sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS) 4929 { 4930 uma_zone_t zone = arg1; 4931 uint64_t cur; 4932 4933 cur = uma_zone_get_allocs(zone); 4934 return (sysctl_handle_64(oidp, &cur, 0, req)); 4935 } 4936 4937 static int 4938 sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS) 4939 { 4940 uma_zone_t zone = arg1; 4941 uint64_t cur; 4942 4943 cur = uma_zone_get_frees(zone); 4944 return (sysctl_handle_64(oidp, &cur, 0, req)); 4945 } 4946 4947 static int 4948 sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS) 4949 { 4950 struct sbuf sbuf; 4951 uma_zone_t zone = arg1; 4952 int error; 4953 4954 sbuf_new_for_sysctl(&sbuf, NULL, 0, req); 4955 if (zone->uz_flags != 0) 4956 sbuf_printf(&sbuf, "0x%b", zone->uz_flags, PRINT_UMA_ZFLAGS); 4957 else 4958 sbuf_printf(&sbuf, "0"); 4959 error = sbuf_finish(&sbuf); 4960 sbuf_delete(&sbuf); 4961 4962 return (error); 4963 } 4964 4965 static int 4966 sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS) 4967 { 4968 uma_keg_t keg = arg1; 4969 int avail, effpct, total; 4970 4971 total = keg->uk_ppera * PAGE_SIZE; 4972 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0) 4973 total += slabzone(keg->uk_ipers)->uz_keg->uk_rsize; 4974 /* 4975 * We consider the client's requested size and alignment here, not the 4976 * real size determination uk_rsize, because we also adjust the real 4977 * size for internal implementation reasons (max bitset size). 4978 */ 4979 avail = keg->uk_ipers * roundup2(keg->uk_size, keg->uk_align + 1); 4980 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 4981 avail *= mp_maxid + 1; 4982 effpct = 100 * avail / total; 4983 return (sysctl_handle_int(oidp, &effpct, 0, req)); 4984 } 4985 4986 static int 4987 sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS) 4988 { 4989 uma_zone_t zone = arg1; 4990 uint64_t cur; 4991 4992 cur = UZ_ITEMS_COUNT(atomic_load_64(&zone->uz_items)); 4993 return (sysctl_handle_64(oidp, &cur, 0, req)); 4994 } 4995 4996 #ifdef INVARIANTS 4997 static uma_slab_t 4998 uma_dbg_getslab(uma_zone_t zone, void *item) 4999 { 5000 uma_slab_t slab; 5001 uma_keg_t keg; 5002 uint8_t *mem; 5003 5004 /* 5005 * It is safe to return the slab here even though the 5006 * zone is unlocked because the item's allocation state 5007 * essentially holds a reference. 5008 */ 5009 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 5010 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5011 return (NULL); 5012 if (zone->uz_flags & UMA_ZFLAG_VTOSLAB) 5013 return (vtoslab((vm_offset_t)mem)); 5014 keg = zone->uz_keg; 5015 if ((keg->uk_flags & UMA_ZFLAG_HASH) == 0) 5016 return ((uma_slab_t)(mem + keg->uk_pgoff)); 5017 KEG_LOCK(keg, 0); 5018 slab = hash_sfind(&keg->uk_hash, mem); 5019 KEG_UNLOCK(keg, 0); 5020 5021 return (slab); 5022 } 5023 5024 static bool 5025 uma_dbg_zskip(uma_zone_t zone, void *mem) 5026 { 5027 5028 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5029 return (true); 5030 5031 return (uma_dbg_kskip(zone->uz_keg, mem)); 5032 } 5033 5034 static bool 5035 uma_dbg_kskip(uma_keg_t keg, void *mem) 5036 { 5037 uintptr_t idx; 5038 5039 if (dbg_divisor == 0) 5040 return (true); 5041 5042 if (dbg_divisor == 1) 5043 return (false); 5044 5045 idx = (uintptr_t)mem >> PAGE_SHIFT; 5046 if (keg->uk_ipers > 1) { 5047 idx *= keg->uk_ipers; 5048 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize; 5049 } 5050 5051 if ((idx / dbg_divisor) * dbg_divisor != idx) { 5052 counter_u64_add(uma_skip_cnt, 1); 5053 return (true); 5054 } 5055 counter_u64_add(uma_dbg_cnt, 1); 5056 5057 return (false); 5058 } 5059 5060 /* 5061 * Set up the slab's freei data such that uma_dbg_free can function. 5062 * 5063 */ 5064 static void 5065 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 5066 { 5067 uma_keg_t keg; 5068 int freei; 5069 5070 if (slab == NULL) { 5071 slab = uma_dbg_getslab(zone, item); 5072 if (slab == NULL) 5073 panic("uma: item %p did not belong to zone %s\n", 5074 item, zone->uz_name); 5075 } 5076 keg = zone->uz_keg; 5077 freei = slab_item_index(slab, keg, item); 5078 5079 if (BIT_ISSET(keg->uk_ipers, freei, slab_dbg_bits(slab, keg))) 5080 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n", 5081 item, zone, zone->uz_name, slab, freei); 5082 BIT_SET_ATOMIC(keg->uk_ipers, freei, slab_dbg_bits(slab, keg)); 5083 } 5084 5085 /* 5086 * Verifies freed addresses. Checks for alignment, valid slab membership 5087 * and duplicate frees. 5088 * 5089 */ 5090 static void 5091 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 5092 { 5093 uma_keg_t keg; 5094 int freei; 5095 5096 if (slab == NULL) { 5097 slab = uma_dbg_getslab(zone, item); 5098 if (slab == NULL) 5099 panic("uma: Freed item %p did not belong to zone %s\n", 5100 item, zone->uz_name); 5101 } 5102 keg = zone->uz_keg; 5103 freei = slab_item_index(slab, keg, item); 5104 5105 if (freei >= keg->uk_ipers) 5106 panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n", 5107 item, zone, zone->uz_name, slab, freei); 5108 5109 if (slab_item(slab, keg, freei) != item) 5110 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n", 5111 item, zone, zone->uz_name, slab, freei); 5112 5113 if (!BIT_ISSET(keg->uk_ipers, freei, slab_dbg_bits(slab, keg))) 5114 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n", 5115 item, zone, zone->uz_name, slab, freei); 5116 5117 BIT_CLR_ATOMIC(keg->uk_ipers, freei, slab_dbg_bits(slab, keg)); 5118 } 5119 #endif /* INVARIANTS */ 5120 5121 #ifdef DDB 5122 static int64_t 5123 get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used, 5124 uint64_t *sleeps, long *cachefree, uint64_t *xdomain) 5125 { 5126 uint64_t frees; 5127 int i; 5128 5129 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 5130 *allocs = counter_u64_fetch(z->uz_allocs); 5131 frees = counter_u64_fetch(z->uz_frees); 5132 *sleeps = z->uz_sleeps; 5133 *cachefree = 0; 5134 *xdomain = 0; 5135 } else 5136 uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps, 5137 xdomain); 5138 for (i = 0; i < vm_ndomains; i++) { 5139 *cachefree += z->uz_domain[i].uzd_nitems; 5140 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 5141 (LIST_FIRST(&kz->uk_zones) != z))) 5142 *cachefree += kz->uk_domain[i].ud_free; 5143 } 5144 *used = *allocs - frees; 5145 return (((int64_t)*used + *cachefree) * kz->uk_size); 5146 } 5147 5148 DB_SHOW_COMMAND(uma, db_show_uma) 5149 { 5150 const char *fmt_hdr, *fmt_entry; 5151 uma_keg_t kz; 5152 uma_zone_t z; 5153 uint64_t allocs, used, sleeps, xdomain; 5154 long cachefree; 5155 /* variables for sorting */ 5156 uma_keg_t cur_keg; 5157 uma_zone_t cur_zone, last_zone; 5158 int64_t cur_size, last_size, size; 5159 int ties; 5160 5161 /* /i option produces machine-parseable CSV output */ 5162 if (modif[0] == 'i') { 5163 fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n"; 5164 fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n"; 5165 } else { 5166 fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n"; 5167 fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n"; 5168 } 5169 5170 db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests", 5171 "Sleeps", "Bucket", "Total Mem", "XFree"); 5172 5173 /* Sort the zones with largest size first. */ 5174 last_zone = NULL; 5175 last_size = INT64_MAX; 5176 for (;;) { 5177 cur_zone = NULL; 5178 cur_size = -1; 5179 ties = 0; 5180 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5181 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5182 /* 5183 * In the case of size ties, print out zones 5184 * in the order they are encountered. That is, 5185 * when we encounter the most recently output 5186 * zone, we have already printed all preceding 5187 * ties, and we must print all following ties. 5188 */ 5189 if (z == last_zone) { 5190 ties = 1; 5191 continue; 5192 } 5193 size = get_uma_stats(kz, z, &allocs, &used, 5194 &sleeps, &cachefree, &xdomain); 5195 if (size > cur_size && size < last_size + ties) 5196 { 5197 cur_size = size; 5198 cur_zone = z; 5199 cur_keg = kz; 5200 } 5201 } 5202 } 5203 if (cur_zone == NULL) 5204 break; 5205 5206 size = get_uma_stats(cur_keg, cur_zone, &allocs, &used, 5207 &sleeps, &cachefree, &xdomain); 5208 db_printf(fmt_entry, cur_zone->uz_name, 5209 (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree, 5210 (uintmax_t)allocs, (uintmax_t)sleeps, 5211 (unsigned)cur_zone->uz_bucket_size, (intmax_t)size, 5212 xdomain); 5213 5214 if (db_pager_quit) 5215 return; 5216 last_zone = cur_zone; 5217 last_size = cur_size; 5218 } 5219 } 5220 5221 DB_SHOW_COMMAND(umacache, db_show_umacache) 5222 { 5223 uma_zone_t z; 5224 uint64_t allocs, frees; 5225 long cachefree; 5226 int i; 5227 5228 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 5229 "Requests", "Bucket"); 5230 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5231 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL); 5232 for (i = 0; i < vm_ndomains; i++) 5233 cachefree += z->uz_domain[i].uzd_nitems; 5234 db_printf("%18s %8ju %8jd %8ld %12ju %8u\n", 5235 z->uz_name, (uintmax_t)z->uz_size, 5236 (intmax_t)(allocs - frees), cachefree, 5237 (uintmax_t)allocs, z->uz_bucket_size); 5238 if (db_pager_quit) 5239 return; 5240 } 5241 } 5242 #endif /* DDB */ 5243