1 /* 2 * Copyright (c) 2002, Jeffrey Roberson <jeff@freebsd.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 /* 28 * uma_core.c Implementation of the Universal Memory allocator 29 * 30 * This allocator is intended to replace the multitude of similar object caches 31 * in the standard FreeBSD kernel. The intent is to be flexible as well as 32 * effecient. A primary design goal is to return unused memory to the rest of 33 * the system. This will make the system as a whole more flexible due to the 34 * ability to move memory to subsystems which most need it instead of leaving 35 * pools of reserved memory unused. 36 * 37 * The basic ideas stem from similar slab/zone based allocators whose algorithms 38 * are well known. 39 * 40 */ 41 42 /* 43 * TODO: 44 * - Improve memory usage for large allocations 45 * - Investigate cache size adjustments 46 */ 47 48 #include <sys/cdefs.h> 49 __FBSDID("$FreeBSD$"); 50 51 /* I should really use ktr.. */ 52 /* 53 #define UMA_DEBUG 1 54 #define UMA_DEBUG_ALLOC 1 55 #define UMA_DEBUG_ALLOC_1 1 56 */ 57 58 #include "opt_param.h" 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/kernel.h> 62 #include <sys/types.h> 63 #include <sys/queue.h> 64 #include <sys/malloc.h> 65 #include <sys/lock.h> 66 #include <sys/sysctl.h> 67 #include <sys/mutex.h> 68 #include <sys/proc.h> 69 #include <sys/smp.h> 70 #include <sys/vmmeter.h> 71 72 #include <vm/vm.h> 73 #include <vm/vm_object.h> 74 #include <vm/vm_page.h> 75 #include <vm/vm_param.h> 76 #include <vm/vm_map.h> 77 #include <vm/vm_kern.h> 78 #include <vm/vm_extern.h> 79 #include <vm/uma.h> 80 #include <vm/uma_int.h> 81 #include <vm/uma_dbg.h> 82 83 #include <machine/vmparam.h> 84 85 /* 86 * This is the zone and keg from which all zones are spawned. The idea is that 87 * even the zone & keg heads are allocated from the allocator, so we use the 88 * bss section to bootstrap us. 89 */ 90 static struct uma_keg masterkeg; 91 static struct uma_zone masterzone_k; 92 static struct uma_zone masterzone_z; 93 static uma_zone_t kegs = &masterzone_k; 94 static uma_zone_t zones = &masterzone_z; 95 96 /* This is the zone from which all of uma_slab_t's are allocated. */ 97 static uma_zone_t slabzone; 98 static uma_zone_t slabrefzone; /* With refcounters (for UMA_ZONE_REFCNT) */ 99 100 /* 101 * The initial hash tables come out of this zone so they can be allocated 102 * prior to malloc coming up. 103 */ 104 static uma_zone_t hashzone; 105 106 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 107 108 /* 109 * Are we allowed to allocate buckets? 110 */ 111 static int bucketdisable = 1; 112 113 /* Linked list of all kegs in the system */ 114 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(&uma_kegs); 115 116 /* This mutex protects the keg list */ 117 static struct mtx uma_mtx; 118 119 /* These are the pcpu cache locks */ 120 static struct mtx uma_pcpu_mtx[MAXCPU]; 121 122 /* Linked list of boot time pages */ 123 static LIST_HEAD(,uma_slab) uma_boot_pages = 124 LIST_HEAD_INITIALIZER(&uma_boot_pages); 125 126 /* Count of free boottime pages */ 127 static int uma_boot_free = 0; 128 129 /* Is the VM done starting up? */ 130 static int booted = 0; 131 132 /* 133 * This is the handle used to schedule events that need to happen 134 * outside of the allocation fast path. 135 */ 136 static struct callout uma_callout; 137 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 138 139 /* 140 * This structure is passed as the zone ctor arg so that I don't have to create 141 * a special allocation function just for zones. 142 */ 143 struct uma_zctor_args { 144 char *name; 145 size_t size; 146 uma_ctor ctor; 147 uma_dtor dtor; 148 uma_init uminit; 149 uma_fini fini; 150 uma_keg_t keg; 151 int align; 152 u_int16_t flags; 153 }; 154 155 struct uma_kctor_args { 156 uma_zone_t zone; 157 size_t size; 158 uma_init uminit; 159 uma_fini fini; 160 int align; 161 u_int16_t flags; 162 }; 163 164 struct uma_bucket_zone { 165 uma_zone_t ubz_zone; 166 char *ubz_name; 167 int ubz_entries; 168 }; 169 170 #define BUCKET_MAX 128 171 172 struct uma_bucket_zone bucket_zones[] = { 173 { NULL, "16 Bucket", 16 }, 174 { NULL, "32 Bucket", 32 }, 175 { NULL, "64 Bucket", 64 }, 176 { NULL, "128 Bucket", 128 }, 177 { NULL, NULL, 0} 178 }; 179 180 #define BUCKET_SHIFT 4 181 #define BUCKET_ZONES ((BUCKET_MAX >> BUCKET_SHIFT) + 1) 182 183 uint8_t bucket_size[BUCKET_ZONES]; 184 185 /* Prototypes.. */ 186 187 static void *obj_alloc(uma_zone_t, int, u_int8_t *, int); 188 static void *page_alloc(uma_zone_t, int, u_int8_t *, int); 189 static void *startup_alloc(uma_zone_t, int, u_int8_t *, int); 190 static void page_free(void *, int, u_int8_t); 191 static uma_slab_t slab_zalloc(uma_zone_t, int); 192 static void cache_drain(uma_zone_t); 193 static void bucket_drain(uma_zone_t, uma_bucket_t); 194 static void bucket_cache_drain(uma_zone_t zone); 195 static void keg_ctor(void *, int, void *); 196 static void keg_dtor(void *, int, void *); 197 static void zone_ctor(void *, int, void *); 198 static void zone_dtor(void *, int, void *); 199 static void zero_init(void *, int); 200 static void zone_small_init(uma_zone_t zone); 201 static void zone_large_init(uma_zone_t zone); 202 static void zone_foreach(void (*zfunc)(uma_zone_t)); 203 static void zone_timeout(uma_zone_t zone); 204 static int hash_alloc(struct uma_hash *); 205 static int hash_expand(struct uma_hash *, struct uma_hash *); 206 static void hash_free(struct uma_hash *hash); 207 static void uma_timeout(void *); 208 static void uma_startup3(void); 209 static void *uma_zalloc_internal(uma_zone_t, void *, int); 210 static void uma_zfree_internal(uma_zone_t, void *, void *, int); 211 static void bucket_enable(void); 212 static void bucket_init(void); 213 static uma_bucket_t bucket_alloc(int, int); 214 static void bucket_free(uma_bucket_t); 215 static void bucket_zone_drain(void); 216 static int uma_zalloc_bucket(uma_zone_t zone, int flags); 217 static uma_slab_t uma_zone_slab(uma_zone_t zone, int flags); 218 static void *uma_slab_alloc(uma_zone_t zone, uma_slab_t slab); 219 static void zone_drain(uma_zone_t); 220 static void uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 221 uma_fini fini, int align, u_int16_t flags); 222 223 void uma_print_zone(uma_zone_t); 224 void uma_print_stats(void); 225 static int sysctl_vm_zone(SYSCTL_HANDLER_ARGS); 226 227 #ifdef WITNESS 228 static int nosleepwithlocks = 1; 229 SYSCTL_INT(_debug, OID_AUTO, nosleepwithlocks, CTLFLAG_RD, &nosleepwithlocks, 230 0, "Convert M_WAITOK to M_NOWAIT to avoid lock-held-across-sleep paths"); 231 #else 232 static int nosleepwithlocks = 0; 233 SYSCTL_INT(_debug, OID_AUTO, nosleepwithlocks, CTLFLAG_RW, &nosleepwithlocks, 234 0, "Convert M_WAITOK to M_NOWAIT to avoid lock-held-across-sleep paths"); 235 #endif 236 SYSCTL_OID(_vm, OID_AUTO, zone, CTLTYPE_STRING|CTLFLAG_RD, 237 NULL, 0, sysctl_vm_zone, "A", "Zone Info"); 238 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 239 240 /* 241 * This routine checks to see whether or not it's safe to enable buckets. 242 */ 243 244 static void 245 bucket_enable(void) 246 { 247 if (cnt.v_free_count < cnt.v_free_min) 248 bucketdisable = 1; 249 else 250 bucketdisable = 0; 251 } 252 253 static void 254 bucket_init(void) 255 { 256 struct uma_bucket_zone *ubz; 257 int i; 258 int j; 259 260 for (i = 0, j = 0; bucket_zones[j].ubz_entries != 0; j++) { 261 int size; 262 263 ubz = &bucket_zones[j]; 264 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 265 size += sizeof(void *) * ubz->ubz_entries; 266 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 267 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 268 for (; i <= ubz->ubz_entries; i += (1 << BUCKET_SHIFT)) 269 bucket_size[i >> BUCKET_SHIFT] = j; 270 } 271 } 272 273 static uma_bucket_t 274 bucket_alloc(int entries, int bflags) 275 { 276 struct uma_bucket_zone *ubz; 277 uma_bucket_t bucket; 278 int idx; 279 280 /* 281 * This is to stop us from allocating per cpu buckets while we're 282 * running out of UMA_BOOT_PAGES. Otherwise, we would exhaust the 283 * boot pages. This also prevents us from allocating buckets in 284 * low memory situations. 285 */ 286 287 if (bucketdisable) 288 return (NULL); 289 idx = howmany(entries, 1 << BUCKET_SHIFT); 290 ubz = &bucket_zones[bucket_size[idx]]; 291 bucket = uma_zalloc_internal(ubz->ubz_zone, NULL, bflags); 292 if (bucket) { 293 #ifdef INVARIANTS 294 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 295 #endif 296 bucket->ub_cnt = 0; 297 bucket->ub_entries = ubz->ubz_entries; 298 } 299 300 return (bucket); 301 } 302 303 static void 304 bucket_free(uma_bucket_t bucket) 305 { 306 struct uma_bucket_zone *ubz; 307 int idx; 308 309 idx = howmany(bucket->ub_entries, 1 << BUCKET_SHIFT); 310 ubz = &bucket_zones[bucket_size[idx]]; 311 uma_zfree_internal(ubz->ubz_zone, bucket, NULL, 0); 312 } 313 314 static void 315 bucket_zone_drain(void) 316 { 317 struct uma_bucket_zone *ubz; 318 319 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 320 zone_drain(ubz->ubz_zone); 321 } 322 323 324 /* 325 * Routine called by timeout which is used to fire off some time interval 326 * based calculations. (stats, hash size, etc.) 327 * 328 * Arguments: 329 * arg Unused 330 * 331 * Returns: 332 * Nothing 333 */ 334 static void 335 uma_timeout(void *unused) 336 { 337 bucket_enable(); 338 zone_foreach(zone_timeout); 339 340 /* Reschedule this event */ 341 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 342 } 343 344 /* 345 * Routine to perform timeout driven calculations. This expands the 346 * hashes and does per cpu statistics aggregation. 347 * 348 * Arguments: 349 * zone The zone to operate on 350 * 351 * Returns: 352 * Nothing 353 */ 354 static void 355 zone_timeout(uma_zone_t zone) 356 { 357 uma_keg_t keg; 358 uma_cache_t cache; 359 u_int64_t alloc; 360 int cpu; 361 362 keg = zone->uz_keg; 363 alloc = 0; 364 365 /* 366 * Aggregate per cpu cache statistics back to the zone. 367 * 368 * XXX This should be done in the sysctl handler. 369 * 370 * I may rewrite this to set a flag in the per cpu cache instead of 371 * locking. If the flag is not cleared on the next round I will have 372 * to lock and do it here instead so that the statistics don't get too 373 * far out of sync. 374 */ 375 if (!(keg->uk_flags & UMA_ZFLAG_INTERNAL)) { 376 for (cpu = 0; cpu <= mp_maxid; cpu++) { 377 if (CPU_ABSENT(cpu)) 378 continue; 379 CPU_LOCK(cpu); 380 cache = &zone->uz_cpu[cpu]; 381 /* Add them up, and reset */ 382 alloc += cache->uc_allocs; 383 cache->uc_allocs = 0; 384 CPU_UNLOCK(cpu); 385 } 386 } 387 388 /* Now push these stats back into the zone.. */ 389 ZONE_LOCK(zone); 390 zone->uz_allocs += alloc; 391 392 /* 393 * Expand the zone hash table. 394 * 395 * This is done if the number of slabs is larger than the hash size. 396 * What I'm trying to do here is completely reduce collisions. This 397 * may be a little aggressive. Should I allow for two collisions max? 398 */ 399 400 if (keg->uk_flags & UMA_ZONE_HASH && 401 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) { 402 struct uma_hash newhash; 403 struct uma_hash oldhash; 404 int ret; 405 406 /* 407 * This is so involved because allocating and freeing 408 * while the zone lock is held will lead to deadlock. 409 * I have to do everything in stages and check for 410 * races. 411 */ 412 newhash = keg->uk_hash; 413 ZONE_UNLOCK(zone); 414 ret = hash_alloc(&newhash); 415 ZONE_LOCK(zone); 416 if (ret) { 417 if (hash_expand(&keg->uk_hash, &newhash)) { 418 oldhash = keg->uk_hash; 419 keg->uk_hash = newhash; 420 } else 421 oldhash = newhash; 422 423 ZONE_UNLOCK(zone); 424 hash_free(&oldhash); 425 ZONE_LOCK(zone); 426 } 427 } 428 ZONE_UNLOCK(zone); 429 } 430 431 /* 432 * Allocate and zero fill the next sized hash table from the appropriate 433 * backing store. 434 * 435 * Arguments: 436 * hash A new hash structure with the old hash size in uh_hashsize 437 * 438 * Returns: 439 * 1 on sucess and 0 on failure. 440 */ 441 static int 442 hash_alloc(struct uma_hash *hash) 443 { 444 int oldsize; 445 int alloc; 446 447 oldsize = hash->uh_hashsize; 448 449 /* We're just going to go to a power of two greater */ 450 if (oldsize) { 451 hash->uh_hashsize = oldsize * 2; 452 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 453 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 454 M_UMAHASH, M_NOWAIT); 455 } else { 456 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 457 hash->uh_slab_hash = uma_zalloc_internal(hashzone, NULL, 458 M_WAITOK); 459 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 460 } 461 if (hash->uh_slab_hash) { 462 bzero(hash->uh_slab_hash, alloc); 463 hash->uh_hashmask = hash->uh_hashsize - 1; 464 return (1); 465 } 466 467 return (0); 468 } 469 470 /* 471 * Expands the hash table for HASH zones. This is done from zone_timeout 472 * to reduce collisions. This must not be done in the regular allocation 473 * path, otherwise, we can recurse on the vm while allocating pages. 474 * 475 * Arguments: 476 * oldhash The hash you want to expand 477 * newhash The hash structure for the new table 478 * 479 * Returns: 480 * Nothing 481 * 482 * Discussion: 483 */ 484 static int 485 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 486 { 487 uma_slab_t slab; 488 int hval; 489 int i; 490 491 if (!newhash->uh_slab_hash) 492 return (0); 493 494 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 495 return (0); 496 497 /* 498 * I need to investigate hash algorithms for resizing without a 499 * full rehash. 500 */ 501 502 for (i = 0; i < oldhash->uh_hashsize; i++) 503 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) { 504 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]); 505 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink); 506 hval = UMA_HASH(newhash, slab->us_data); 507 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 508 slab, us_hlink); 509 } 510 511 return (1); 512 } 513 514 /* 515 * Free the hash bucket to the appropriate backing store. 516 * 517 * Arguments: 518 * slab_hash The hash bucket we're freeing 519 * hashsize The number of entries in that hash bucket 520 * 521 * Returns: 522 * Nothing 523 */ 524 static void 525 hash_free(struct uma_hash *hash) 526 { 527 if (hash->uh_slab_hash == NULL) 528 return; 529 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 530 uma_zfree_internal(hashzone, 531 hash->uh_slab_hash, NULL, 0); 532 else 533 free(hash->uh_slab_hash, M_UMAHASH); 534 } 535 536 /* 537 * Frees all outstanding items in a bucket 538 * 539 * Arguments: 540 * zone The zone to free to, must be unlocked. 541 * bucket The free/alloc bucket with items, cpu queue must be locked. 542 * 543 * Returns: 544 * Nothing 545 */ 546 547 static void 548 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 549 { 550 uma_slab_t slab; 551 int mzone; 552 void *item; 553 554 if (bucket == NULL) 555 return; 556 557 slab = NULL; 558 mzone = 0; 559 560 /* We have to lookup the slab again for malloc.. */ 561 if (zone->uz_keg->uk_flags & UMA_ZONE_MALLOC) 562 mzone = 1; 563 564 while (bucket->ub_cnt > 0) { 565 bucket->ub_cnt--; 566 item = bucket->ub_bucket[bucket->ub_cnt]; 567 #ifdef INVARIANTS 568 bucket->ub_bucket[bucket->ub_cnt] = NULL; 569 KASSERT(item != NULL, 570 ("bucket_drain: botched ptr, item is NULL")); 571 #endif 572 /* 573 * This is extremely inefficient. The slab pointer was passed 574 * to uma_zfree_arg, but we lost it because the buckets don't 575 * hold them. This will go away when free() gets a size passed 576 * to it. 577 */ 578 if (mzone) 579 slab = vtoslab((vm_offset_t)item & (~UMA_SLAB_MASK)); 580 uma_zfree_internal(zone, item, slab, 1); 581 } 582 } 583 584 /* 585 * Drains the per cpu caches for a zone. 586 * 587 * Arguments: 588 * zone The zone to drain, must be unlocked. 589 * 590 * Returns: 591 * Nothing 592 */ 593 static void 594 cache_drain(uma_zone_t zone) 595 { 596 uma_cache_t cache; 597 int cpu; 598 599 /* 600 * We have to lock each cpu cache before locking the zone 601 */ 602 for (cpu = 0; cpu <= mp_maxid; cpu++) { 603 if (CPU_ABSENT(cpu)) 604 continue; 605 CPU_LOCK(cpu); 606 cache = &zone->uz_cpu[cpu]; 607 bucket_drain(zone, cache->uc_allocbucket); 608 bucket_drain(zone, cache->uc_freebucket); 609 if (cache->uc_allocbucket != NULL) 610 bucket_free(cache->uc_allocbucket); 611 if (cache->uc_freebucket != NULL) 612 bucket_free(cache->uc_freebucket); 613 cache->uc_allocbucket = cache->uc_freebucket = NULL; 614 } 615 ZONE_LOCK(zone); 616 bucket_cache_drain(zone); 617 ZONE_UNLOCK(zone); 618 for (cpu = 0; cpu <= mp_maxid; cpu++) { 619 if (CPU_ABSENT(cpu)) 620 continue; 621 CPU_UNLOCK(cpu); 622 } 623 } 624 625 /* 626 * Drain the cached buckets from a zone. Expects a locked zone on entry. 627 */ 628 static void 629 bucket_cache_drain(uma_zone_t zone) 630 { 631 uma_bucket_t bucket; 632 633 /* 634 * Drain the bucket queues and free the buckets, we just keep two per 635 * cpu (alloc/free). 636 */ 637 while ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) { 638 LIST_REMOVE(bucket, ub_link); 639 ZONE_UNLOCK(zone); 640 bucket_drain(zone, bucket); 641 bucket_free(bucket); 642 ZONE_LOCK(zone); 643 } 644 645 /* Now we do the free queue.. */ 646 while ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) { 647 LIST_REMOVE(bucket, ub_link); 648 bucket_free(bucket); 649 } 650 } 651 652 /* 653 * Frees pages from a zone back to the system. This is done on demand from 654 * the pageout daemon. 655 * 656 * Arguments: 657 * zone The zone to free pages from 658 * all Should we drain all items? 659 * 660 * Returns: 661 * Nothing. 662 */ 663 static void 664 zone_drain(uma_zone_t zone) 665 { 666 struct slabhead freeslabs = {}; 667 uma_keg_t keg; 668 uma_slab_t slab; 669 uma_slab_t n; 670 u_int8_t flags; 671 u_int8_t *mem; 672 int i; 673 674 keg = zone->uz_keg; 675 676 /* 677 * We don't want to take pages from statically allocated zones at this 678 * time 679 */ 680 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 681 return; 682 683 ZONE_LOCK(zone); 684 685 #ifdef UMA_DEBUG 686 printf("%s free items: %u\n", zone->uz_name, keg->uk_free); 687 #endif 688 bucket_cache_drain(zone); 689 if (keg->uk_free == 0) 690 goto finished; 691 692 slab = LIST_FIRST(&keg->uk_free_slab); 693 while (slab) { 694 n = LIST_NEXT(slab, us_link); 695 696 /* We have no where to free these to */ 697 if (slab->us_flags & UMA_SLAB_BOOT) { 698 slab = n; 699 continue; 700 } 701 702 LIST_REMOVE(slab, us_link); 703 keg->uk_pages -= keg->uk_ppera; 704 keg->uk_free -= keg->uk_ipers; 705 706 if (keg->uk_flags & UMA_ZONE_HASH) 707 UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data); 708 709 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 710 711 slab = n; 712 } 713 finished: 714 ZONE_UNLOCK(zone); 715 716 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 717 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 718 if (keg->uk_fini) 719 for (i = 0; i < keg->uk_ipers; i++) 720 keg->uk_fini( 721 slab->us_data + (keg->uk_rsize * i), 722 keg->uk_size); 723 flags = slab->us_flags; 724 mem = slab->us_data; 725 726 if ((keg->uk_flags & UMA_ZONE_MALLOC) || 727 (keg->uk_flags & UMA_ZONE_REFCNT)) { 728 vm_object_t obj; 729 730 if (flags & UMA_SLAB_KMEM) 731 obj = kmem_object; 732 else 733 obj = NULL; 734 for (i = 0; i < keg->uk_ppera; i++) 735 vsetobj((vm_offset_t)mem + (i * PAGE_SIZE), 736 obj); 737 } 738 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 739 uma_zfree_internal(keg->uk_slabzone, slab, NULL, 0); 740 #ifdef UMA_DEBUG 741 printf("%s: Returning %d bytes.\n", 742 zone->uz_name, UMA_SLAB_SIZE * keg->uk_ppera); 743 #endif 744 keg->uk_freef(mem, UMA_SLAB_SIZE * keg->uk_ppera, flags); 745 } 746 } 747 748 /* 749 * Allocate a new slab for a zone. This does not insert the slab onto a list. 750 * 751 * Arguments: 752 * zone The zone to allocate slabs for 753 * wait Shall we wait? 754 * 755 * Returns: 756 * The slab that was allocated or NULL if there is no memory and the 757 * caller specified M_NOWAIT. 758 */ 759 static uma_slab_t 760 slab_zalloc(uma_zone_t zone, int wait) 761 { 762 uma_slabrefcnt_t slabref; 763 uma_slab_t slab; 764 uma_keg_t keg; 765 u_int8_t *mem; 766 u_int8_t flags; 767 int i; 768 769 slab = NULL; 770 keg = zone->uz_keg; 771 772 #ifdef UMA_DEBUG 773 printf("slab_zalloc: Allocating a new slab for %s\n", zone->uz_name); 774 #endif 775 ZONE_UNLOCK(zone); 776 777 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 778 slab = uma_zalloc_internal(keg->uk_slabzone, NULL, wait); 779 if (slab == NULL) { 780 ZONE_LOCK(zone); 781 return NULL; 782 } 783 } 784 785 /* 786 * This reproduces the old vm_zone behavior of zero filling pages the 787 * first time they are added to a zone. 788 * 789 * Malloced items are zeroed in uma_zalloc. 790 */ 791 792 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 793 wait |= M_ZERO; 794 else 795 wait &= ~M_ZERO; 796 797 mem = keg->uk_allocf(zone, keg->uk_ppera * UMA_SLAB_SIZE, 798 &flags, wait); 799 if (mem == NULL) { 800 ZONE_LOCK(zone); 801 return (NULL); 802 } 803 804 /* Point the slab into the allocated memory */ 805 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 806 slab = (uma_slab_t )(mem + keg->uk_pgoff); 807 808 if ((keg->uk_flags & UMA_ZONE_MALLOC) || 809 (keg->uk_flags & UMA_ZONE_REFCNT)) 810 for (i = 0; i < keg->uk_ppera; i++) 811 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 812 813 slab->us_keg = keg; 814 slab->us_data = mem; 815 slab->us_freecount = keg->uk_ipers; 816 slab->us_firstfree = 0; 817 slab->us_flags = flags; 818 for (i = 0; i < keg->uk_ipers; i++) 819 slab->us_freelist[i].us_item = i+1; 820 821 if (keg->uk_flags & UMA_ZONE_REFCNT) { 822 slabref = (uma_slabrefcnt_t)slab; 823 for (i = 0; i < keg->uk_ipers; i++) 824 slabref->us_freelist[i].us_refcnt = 0; 825 } 826 827 if (keg->uk_init) 828 for (i = 0; i < keg->uk_ipers; i++) 829 keg->uk_init(slab->us_data + (keg->uk_rsize * i), 830 keg->uk_size); 831 ZONE_LOCK(zone); 832 833 if (keg->uk_flags & UMA_ZONE_HASH) 834 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 835 836 keg->uk_pages += keg->uk_ppera; 837 keg->uk_free += keg->uk_ipers; 838 839 return (slab); 840 } 841 842 /* 843 * This function is intended to be used early on in place of page_alloc() so 844 * that we may use the boot time page cache to satisfy allocations before 845 * the VM is ready. 846 */ 847 static void * 848 startup_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait) 849 { 850 uma_keg_t keg; 851 852 keg = zone->uz_keg; 853 854 /* 855 * Check our small startup cache to see if it has pages remaining. 856 */ 857 mtx_lock(&uma_mtx); 858 if (uma_boot_free != 0) { 859 uma_slab_t tmps; 860 861 tmps = LIST_FIRST(&uma_boot_pages); 862 LIST_REMOVE(tmps, us_link); 863 uma_boot_free--; 864 mtx_unlock(&uma_mtx); 865 *pflag = tmps->us_flags; 866 return (tmps->us_data); 867 } 868 mtx_unlock(&uma_mtx); 869 if (booted == 0) 870 panic("UMA: Increase UMA_BOOT_PAGES"); 871 /* 872 * Now that we've booted reset these users to their real allocator. 873 */ 874 #ifdef UMA_MD_SMALL_ALLOC 875 keg->uk_allocf = uma_small_alloc; 876 #else 877 keg->uk_allocf = page_alloc; 878 #endif 879 return keg->uk_allocf(zone, bytes, pflag, wait); 880 } 881 882 /* 883 * Allocates a number of pages from the system 884 * 885 * Arguments: 886 * zone Unused 887 * bytes The number of bytes requested 888 * wait Shall we wait? 889 * 890 * Returns: 891 * A pointer to the alloced memory or possibly 892 * NULL if M_NOWAIT is set. 893 */ 894 static void * 895 page_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait) 896 { 897 void *p; /* Returned page */ 898 899 *pflag = UMA_SLAB_KMEM; 900 p = (void *) kmem_malloc(kmem_map, bytes, wait); 901 902 return (p); 903 } 904 905 /* 906 * Allocates a number of pages from within an object 907 * 908 * Arguments: 909 * zone Unused 910 * bytes The number of bytes requested 911 * wait Shall we wait? 912 * 913 * Returns: 914 * A pointer to the alloced memory or possibly 915 * NULL if M_NOWAIT is set. 916 */ 917 static void * 918 obj_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait) 919 { 920 vm_object_t object; 921 vm_offset_t retkva, zkva; 922 vm_page_t p; 923 int pages, startpages; 924 925 object = zone->uz_keg->uk_obj; 926 retkva = 0; 927 928 /* 929 * This looks a little weird since we're getting one page at a time. 930 */ 931 VM_OBJECT_LOCK(object); 932 p = TAILQ_LAST(&object->memq, pglist); 933 pages = p != NULL ? p->pindex + 1 : 0; 934 startpages = pages; 935 zkva = zone->uz_keg->uk_kva + pages * PAGE_SIZE; 936 for (; bytes > 0; bytes -= PAGE_SIZE) { 937 p = vm_page_alloc(object, pages, 938 VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED); 939 if (p == NULL) { 940 if (pages != startpages) 941 pmap_qremove(retkva, pages - startpages); 942 while (pages != startpages) { 943 pages--; 944 p = TAILQ_LAST(&object->memq, pglist); 945 vm_page_lock_queues(); 946 vm_page_unwire(p, 0); 947 vm_page_free(p); 948 vm_page_unlock_queues(); 949 } 950 retkva = 0; 951 goto done; 952 } 953 pmap_qenter(zkva, &p, 1); 954 if (retkva == 0) 955 retkva = zkva; 956 zkva += PAGE_SIZE; 957 pages += 1; 958 } 959 done: 960 VM_OBJECT_UNLOCK(object); 961 *flags = UMA_SLAB_PRIV; 962 963 return ((void *)retkva); 964 } 965 966 /* 967 * Frees a number of pages to the system 968 * 969 * Arguments: 970 * mem A pointer to the memory to be freed 971 * size The size of the memory being freed 972 * flags The original p->us_flags field 973 * 974 * Returns: 975 * Nothing 976 */ 977 static void 978 page_free(void *mem, int size, u_int8_t flags) 979 { 980 vm_map_t map; 981 982 if (flags & UMA_SLAB_KMEM) 983 map = kmem_map; 984 else 985 panic("UMA: page_free used with invalid flags %d\n", flags); 986 987 kmem_free(map, (vm_offset_t)mem, size); 988 } 989 990 /* 991 * Zero fill initializer 992 * 993 * Arguments/Returns follow uma_init specifications 994 */ 995 static void 996 zero_init(void *mem, int size) 997 { 998 bzero(mem, size); 999 } 1000 1001 /* 1002 * Finish creating a small uma zone. This calculates ipers, and the zone size. 1003 * 1004 * Arguments 1005 * zone The zone we should initialize 1006 * 1007 * Returns 1008 * Nothing 1009 */ 1010 static void 1011 zone_small_init(uma_zone_t zone) 1012 { 1013 uma_keg_t keg; 1014 int rsize; 1015 int memused; 1016 int ipers; 1017 1018 keg = zone->uz_keg; 1019 KASSERT(keg != NULL, ("Keg is null in zone_small_init")); 1020 rsize = keg->uk_size; 1021 1022 if (rsize < UMA_SMALLEST_UNIT) 1023 rsize = UMA_SMALLEST_UNIT; 1024 1025 if (rsize & keg->uk_align) 1026 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1027 1028 keg->uk_rsize = rsize; 1029 1030 rsize += 1; /* Account for the byte of linkage */ 1031 keg->uk_ipers = (UMA_SLAB_SIZE - sizeof(struct uma_slab)) / rsize; 1032 keg->uk_ppera = 1; 1033 1034 KASSERT(keg->uk_ipers != 0, ("zone_small_init: ipers is 0, uh-oh!")); 1035 memused = keg->uk_ipers * keg->uk_rsize; 1036 1037 /* Can we do any better? */ 1038 if ((keg->uk_flags & UMA_ZONE_REFCNT) || 1039 ((UMA_SLAB_SIZE - memused) >= UMA_MAX_WASTE)) { 1040 /* 1041 * We can't do this if we're internal or if we've been 1042 * asked to not go to the VM for buckets. If we do this we 1043 * may end up going to the VM (kmem_map) for slabs which we 1044 * do not want to do if we're UMA_ZFLAG_CACHEONLY as a 1045 * result of UMA_ZONE_VM, which clearly forbids it. 1046 */ 1047 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1048 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1049 return; 1050 ipers = UMA_SLAB_SIZE / keg->uk_rsize; 1051 if ((keg->uk_flags & UMA_ZONE_REFCNT) || 1052 (ipers > keg->uk_ipers)) { 1053 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1054 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1055 keg->uk_flags |= UMA_ZONE_HASH; 1056 keg->uk_ipers = ipers; 1057 } 1058 } 1059 } 1060 1061 /* 1062 * Finish creating a large (> UMA_SLAB_SIZE) uma zone. Just give in and do 1063 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1064 * more complicated. 1065 * 1066 * Arguments 1067 * zone The zone we should initialize 1068 * 1069 * Returns 1070 * Nothing 1071 */ 1072 static void 1073 zone_large_init(uma_zone_t zone) 1074 { 1075 uma_keg_t keg; 1076 int pages; 1077 1078 keg = zone->uz_keg; 1079 1080 KASSERT(keg != NULL, ("Keg is null in zone_large_init")); 1081 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0, 1082 ("zone_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY zone")); 1083 1084 pages = keg->uk_size / UMA_SLAB_SIZE; 1085 1086 /* Account for remainder */ 1087 if ((pages * UMA_SLAB_SIZE) < keg->uk_size) 1088 pages++; 1089 1090 keg->uk_ppera = pages; 1091 keg->uk_ipers = 1; 1092 1093 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1094 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1095 keg->uk_flags |= UMA_ZONE_HASH; 1096 1097 keg->uk_rsize = keg->uk_size; 1098 } 1099 1100 /* 1101 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1102 * the keg onto the global keg list. 1103 * 1104 * Arguments/Returns follow uma_ctor specifications 1105 * udata Actually uma_kctor_args 1106 */ 1107 static void 1108 keg_ctor(void *mem, int size, void *udata) 1109 { 1110 struct uma_kctor_args *arg = udata; 1111 uma_keg_t keg = mem; 1112 uma_zone_t zone; 1113 1114 bzero(keg, size); 1115 keg->uk_size = arg->size; 1116 keg->uk_init = arg->uminit; 1117 keg->uk_fini = arg->fini; 1118 keg->uk_align = arg->align; 1119 keg->uk_free = 0; 1120 keg->uk_pages = 0; 1121 keg->uk_flags = arg->flags; 1122 keg->uk_allocf = page_alloc; 1123 keg->uk_freef = page_free; 1124 keg->uk_recurse = 0; 1125 keg->uk_slabzone = NULL; 1126 1127 /* 1128 * The master zone is passed to us at keg-creation time. 1129 */ 1130 zone = arg->zone; 1131 zone->uz_keg = keg; 1132 1133 if (arg->flags & UMA_ZONE_VM) 1134 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1135 1136 if (arg->flags & UMA_ZONE_ZINIT) 1137 keg->uk_init = zero_init; 1138 1139 /* 1140 * The +1 byte added to uk_size is to account for the byte of 1141 * linkage that is added to the size in zone_small_init(). If 1142 * we don't account for this here then we may end up in 1143 * zone_small_init() with a calculated 'ipers' of 0. 1144 */ 1145 if ((keg->uk_size+1) > (UMA_SLAB_SIZE - sizeof(struct uma_slab))) 1146 zone_large_init(zone); 1147 else 1148 zone_small_init(zone); 1149 1150 if (keg->uk_flags & UMA_ZONE_REFCNT) 1151 keg->uk_slabzone = slabrefzone; 1152 else if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1153 keg->uk_slabzone = slabzone; 1154 1155 /* 1156 * If we haven't booted yet we need allocations to go through the 1157 * startup cache until the vm is ready. 1158 */ 1159 if (keg->uk_ppera == 1) { 1160 #ifdef UMA_MD_SMALL_ALLOC 1161 keg->uk_allocf = uma_small_alloc; 1162 keg->uk_freef = uma_small_free; 1163 #endif 1164 if (booted == 0) 1165 keg->uk_allocf = startup_alloc; 1166 } 1167 1168 /* 1169 * Initialize keg's lock (shared among zones) through 1170 * Master zone 1171 */ 1172 zone->uz_lock = &keg->uk_lock; 1173 if (arg->flags & UMA_ZONE_MTXCLASS) 1174 ZONE_LOCK_INIT(zone, 1); 1175 else 1176 ZONE_LOCK_INIT(zone, 0); 1177 1178 /* 1179 * If we're putting the slab header in the actual page we need to 1180 * figure out where in each page it goes. This calculates a right 1181 * justified offset into the memory on an ALIGN_PTR boundary. 1182 */ 1183 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1184 int totsize; 1185 1186 /* Size of the slab struct and free list */ 1187 totsize = sizeof(struct uma_slab) + keg->uk_ipers; 1188 if (totsize & UMA_ALIGN_PTR) 1189 totsize = (totsize & ~UMA_ALIGN_PTR) + 1190 (UMA_ALIGN_PTR + 1); 1191 keg->uk_pgoff = UMA_SLAB_SIZE - totsize; 1192 totsize = keg->uk_pgoff + sizeof(struct uma_slab) 1193 + keg->uk_ipers; 1194 /* I don't think it's possible, but I'll make sure anyway */ 1195 if (totsize > UMA_SLAB_SIZE) { 1196 printf("zone %s ipers %d rsize %d size %d\n", 1197 zone->uz_name, keg->uk_ipers, keg->uk_rsize, 1198 keg->uk_size); 1199 panic("UMA slab won't fit.\n"); 1200 } 1201 } 1202 1203 if (keg->uk_flags & UMA_ZONE_HASH) 1204 hash_alloc(&keg->uk_hash); 1205 1206 #ifdef UMA_DEBUG 1207 printf("%s(%p) size = %d ipers = %d ppera = %d pgoff = %d\n", 1208 zone->uz_name, zone, 1209 keg->uk_size, keg->uk_ipers, 1210 keg->uk_ppera, keg->uk_pgoff); 1211 #endif 1212 1213 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1214 1215 mtx_lock(&uma_mtx); 1216 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1217 mtx_unlock(&uma_mtx); 1218 } 1219 1220 /* 1221 * Zone header ctor. This initializes all fields, locks, etc. 1222 * 1223 * Arguments/Returns follow uma_ctor specifications 1224 * udata Actually uma_zctor_args 1225 */ 1226 1227 static void 1228 zone_ctor(void *mem, int size, void *udata) 1229 { 1230 struct uma_zctor_args *arg = udata; 1231 uma_zone_t zone = mem; 1232 uma_zone_t z; 1233 uma_keg_t keg; 1234 1235 bzero(zone, size); 1236 zone->uz_name = arg->name; 1237 zone->uz_ctor = arg->ctor; 1238 zone->uz_dtor = arg->dtor; 1239 zone->uz_init = NULL; 1240 zone->uz_fini = NULL; 1241 zone->uz_allocs = 0; 1242 zone->uz_fills = zone->uz_count = 0; 1243 1244 if (arg->flags & UMA_ZONE_SECONDARY) { 1245 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 1246 keg = arg->keg; 1247 zone->uz_keg = keg; 1248 zone->uz_init = arg->uminit; 1249 zone->uz_fini = arg->fini; 1250 zone->uz_lock = &keg->uk_lock; 1251 mtx_lock(&uma_mtx); 1252 ZONE_LOCK(zone); 1253 keg->uk_flags |= UMA_ZONE_SECONDARY; 1254 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 1255 if (LIST_NEXT(z, uz_link) == NULL) { 1256 LIST_INSERT_AFTER(z, zone, uz_link); 1257 break; 1258 } 1259 } 1260 ZONE_UNLOCK(zone); 1261 mtx_unlock(&uma_mtx); 1262 } else if (arg->keg == NULL) { 1263 uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 1264 arg->align, arg->flags); 1265 } else { 1266 struct uma_kctor_args karg; 1267 1268 /* We should only be here from uma_startup() */ 1269 karg.size = arg->size; 1270 karg.uminit = arg->uminit; 1271 karg.fini = arg->fini; 1272 karg.align = arg->align; 1273 karg.flags = arg->flags; 1274 karg.zone = zone; 1275 keg_ctor(arg->keg, sizeof(struct uma_keg), &karg); 1276 } 1277 keg = zone->uz_keg; 1278 zone->uz_lock = &keg->uk_lock; 1279 1280 /* 1281 * Some internal zones don't have room allocated for the per cpu 1282 * caches. If we're internal, bail out here. 1283 */ 1284 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { 1285 KASSERT((keg->uk_flags & UMA_ZONE_SECONDARY) == 0, 1286 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 1287 return; 1288 } 1289 1290 if (keg->uk_flags & UMA_ZONE_MAXBUCKET) 1291 zone->uz_count = BUCKET_MAX; 1292 else if (keg->uk_ipers <= BUCKET_MAX) 1293 zone->uz_count = keg->uk_ipers; 1294 else 1295 zone->uz_count = BUCKET_MAX; 1296 } 1297 1298 /* 1299 * Keg header dtor. This frees all data, destroys locks, frees the hash 1300 * table and removes the keg from the global list. 1301 * 1302 * Arguments/Returns follow uma_dtor specifications 1303 * udata unused 1304 */ 1305 static void 1306 keg_dtor(void *arg, int size, void *udata) 1307 { 1308 uma_keg_t keg; 1309 1310 keg = (uma_keg_t)arg; 1311 mtx_lock(&keg->uk_lock); 1312 if (keg->uk_free != 0) { 1313 printf("Freed UMA keg was not empty (%d items). " 1314 " Lost %d pages of memory.\n", 1315 keg->uk_free, keg->uk_pages); 1316 } 1317 mtx_unlock(&keg->uk_lock); 1318 1319 if (keg->uk_flags & UMA_ZONE_HASH) 1320 hash_free(&keg->uk_hash); 1321 1322 mtx_destroy(&keg->uk_lock); 1323 } 1324 1325 /* 1326 * Zone header dtor. 1327 * 1328 * Arguments/Returns follow uma_dtor specifications 1329 * udata unused 1330 */ 1331 static void 1332 zone_dtor(void *arg, int size, void *udata) 1333 { 1334 uma_zone_t zone; 1335 uma_keg_t keg; 1336 1337 zone = (uma_zone_t)arg; 1338 keg = zone->uz_keg; 1339 1340 if (!(keg->uk_flags & UMA_ZFLAG_INTERNAL)) 1341 cache_drain(zone); 1342 1343 mtx_lock(&uma_mtx); 1344 zone_drain(zone); 1345 if (keg->uk_flags & UMA_ZONE_SECONDARY) { 1346 LIST_REMOVE(zone, uz_link); 1347 /* 1348 * XXX there are some races here where 1349 * the zone can be drained but zone lock 1350 * released and then refilled before we 1351 * remove it... we dont care for now 1352 */ 1353 ZONE_LOCK(zone); 1354 if (LIST_EMPTY(&keg->uk_zones)) 1355 keg->uk_flags &= ~UMA_ZONE_SECONDARY; 1356 ZONE_UNLOCK(zone); 1357 mtx_unlock(&uma_mtx); 1358 } else { 1359 LIST_REMOVE(keg, uk_link); 1360 LIST_REMOVE(zone, uz_link); 1361 mtx_unlock(&uma_mtx); 1362 uma_zfree_internal(kegs, keg, NULL, 0); 1363 } 1364 zone->uz_keg = NULL; 1365 } 1366 1367 /* 1368 * Traverses every zone in the system and calls a callback 1369 * 1370 * Arguments: 1371 * zfunc A pointer to a function which accepts a zone 1372 * as an argument. 1373 * 1374 * Returns: 1375 * Nothing 1376 */ 1377 static void 1378 zone_foreach(void (*zfunc)(uma_zone_t)) 1379 { 1380 uma_keg_t keg; 1381 uma_zone_t zone; 1382 1383 mtx_lock(&uma_mtx); 1384 LIST_FOREACH(keg, &uma_kegs, uk_link) { 1385 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 1386 zfunc(zone); 1387 } 1388 mtx_unlock(&uma_mtx); 1389 } 1390 1391 /* Public functions */ 1392 /* See uma.h */ 1393 void 1394 uma_startup(void *bootmem) 1395 { 1396 struct uma_zctor_args args; 1397 uma_slab_t slab; 1398 int slabsize; 1399 int i; 1400 1401 #ifdef UMA_DEBUG 1402 printf("Creating uma keg headers zone and keg.\n"); 1403 #endif 1404 /* 1405 * The general UMA lock is a recursion-allowed lock because 1406 * there is a code path where, while we're still configured 1407 * to use startup_alloc() for backend page allocations, we 1408 * may end up in uma_reclaim() which calls zone_foreach(zone_drain), 1409 * which grabs uma_mtx, only to later call into startup_alloc() 1410 * because while freeing we needed to allocate a bucket. Since 1411 * startup_alloc() also takes uma_mtx, we need to be able to 1412 * recurse on it. 1413 */ 1414 mtx_init(&uma_mtx, "UMA lock", NULL, MTX_DEF | MTX_RECURSE); 1415 1416 /* "manually" create the initial zone */ 1417 args.name = "UMA Kegs"; 1418 args.size = sizeof(struct uma_keg); 1419 args.ctor = keg_ctor; 1420 args.dtor = keg_dtor; 1421 args.uminit = zero_init; 1422 args.fini = NULL; 1423 args.keg = &masterkeg; 1424 args.align = 32 - 1; 1425 args.flags = UMA_ZFLAG_INTERNAL; 1426 /* The initial zone has no Per cpu queues so it's smaller */ 1427 zone_ctor(kegs, sizeof(struct uma_zone), &args); 1428 1429 #ifdef UMA_DEBUG 1430 printf("Filling boot free list.\n"); 1431 #endif 1432 for (i = 0; i < UMA_BOOT_PAGES; i++) { 1433 slab = (uma_slab_t)((u_int8_t *)bootmem + (i * UMA_SLAB_SIZE)); 1434 slab->us_data = (u_int8_t *)slab; 1435 slab->us_flags = UMA_SLAB_BOOT; 1436 LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link); 1437 uma_boot_free++; 1438 } 1439 1440 #ifdef UMA_DEBUG 1441 printf("Creating uma zone headers zone and keg.\n"); 1442 #endif 1443 args.name = "UMA Zones"; 1444 args.size = sizeof(struct uma_zone) + 1445 (sizeof(struct uma_cache) * (mp_maxid + 1)); 1446 args.ctor = zone_ctor; 1447 args.dtor = zone_dtor; 1448 args.uminit = zero_init; 1449 args.fini = NULL; 1450 args.keg = NULL; 1451 args.align = 32 - 1; 1452 args.flags = UMA_ZFLAG_INTERNAL; 1453 /* The initial zone has no Per cpu queues so it's smaller */ 1454 zone_ctor(zones, sizeof(struct uma_zone), &args); 1455 1456 #ifdef UMA_DEBUG 1457 printf("Initializing pcpu cache locks.\n"); 1458 #endif 1459 /* Initialize the pcpu cache lock set once and for all */ 1460 for (i = 0; i <= mp_maxid; i++) 1461 CPU_LOCK_INIT(i); 1462 1463 #ifdef UMA_DEBUG 1464 printf("Creating slab and hash zones.\n"); 1465 #endif 1466 1467 /* 1468 * This is the max number of free list items we'll have with 1469 * offpage slabs. 1470 */ 1471 slabsize = UMA_SLAB_SIZE - sizeof(struct uma_slab); 1472 slabsize /= UMA_MAX_WASTE; 1473 slabsize++; /* In case there it's rounded */ 1474 slabsize += sizeof(struct uma_slab); 1475 1476 /* Now make a zone for slab headers */ 1477 slabzone = uma_zcreate("UMA Slabs", 1478 slabsize, 1479 NULL, NULL, NULL, NULL, 1480 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1481 1482 /* 1483 * We also create a zone for the bigger slabs with reference 1484 * counts in them, to accomodate UMA_ZONE_REFCNT zones. 1485 */ 1486 slabsize = UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt); 1487 slabsize /= UMA_MAX_WASTE; 1488 slabsize++; 1489 slabsize += 4 * slabsize; 1490 slabsize += sizeof(struct uma_slab_refcnt); 1491 slabrefzone = uma_zcreate("UMA RCntSlabs", 1492 slabsize, 1493 NULL, NULL, NULL, NULL, 1494 UMA_ALIGN_PTR, 1495 UMA_ZFLAG_INTERNAL); 1496 1497 hashzone = uma_zcreate("UMA Hash", 1498 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 1499 NULL, NULL, NULL, NULL, 1500 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1501 1502 bucket_init(); 1503 1504 #ifdef UMA_MD_SMALL_ALLOC 1505 booted = 1; 1506 #endif 1507 1508 #ifdef UMA_DEBUG 1509 printf("UMA startup complete.\n"); 1510 #endif 1511 } 1512 1513 /* see uma.h */ 1514 void 1515 uma_startup2(void) 1516 { 1517 booted = 1; 1518 bucket_enable(); 1519 #ifdef UMA_DEBUG 1520 printf("UMA startup2 complete.\n"); 1521 #endif 1522 } 1523 1524 /* 1525 * Initialize our callout handle 1526 * 1527 */ 1528 1529 static void 1530 uma_startup3(void) 1531 { 1532 #ifdef UMA_DEBUG 1533 printf("Starting callout.\n"); 1534 #endif 1535 callout_init(&uma_callout, CALLOUT_MPSAFE); 1536 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 1537 #ifdef UMA_DEBUG 1538 printf("UMA startup3 complete.\n"); 1539 #endif 1540 } 1541 1542 static void 1543 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 1544 int align, u_int16_t flags) 1545 { 1546 struct uma_kctor_args args; 1547 1548 args.size = size; 1549 args.uminit = uminit; 1550 args.fini = fini; 1551 args.align = align; 1552 args.flags = flags; 1553 args.zone = zone; 1554 zone = uma_zalloc_internal(kegs, &args, M_WAITOK); 1555 } 1556 1557 /* See uma.h */ 1558 uma_zone_t 1559 uma_zcreate(char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 1560 uma_init uminit, uma_fini fini, int align, u_int16_t flags) 1561 1562 { 1563 struct uma_zctor_args args; 1564 1565 /* This stuff is essential for the zone ctor */ 1566 args.name = name; 1567 args.size = size; 1568 args.ctor = ctor; 1569 args.dtor = dtor; 1570 args.uminit = uminit; 1571 args.fini = fini; 1572 args.align = align; 1573 args.flags = flags; 1574 args.keg = NULL; 1575 1576 return (uma_zalloc_internal(zones, &args, M_WAITOK)); 1577 } 1578 1579 /* See uma.h */ 1580 uma_zone_t 1581 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 1582 uma_init zinit, uma_fini zfini, uma_zone_t master) 1583 { 1584 struct uma_zctor_args args; 1585 1586 args.name = name; 1587 args.size = master->uz_keg->uk_size; 1588 args.ctor = ctor; 1589 args.dtor = dtor; 1590 args.uminit = zinit; 1591 args.fini = zfini; 1592 args.align = master->uz_keg->uk_align; 1593 args.flags = master->uz_keg->uk_flags | UMA_ZONE_SECONDARY; 1594 args.keg = master->uz_keg; 1595 1596 return (uma_zalloc_internal(zones, &args, M_WAITOK)); 1597 } 1598 1599 /* See uma.h */ 1600 void 1601 uma_zdestroy(uma_zone_t zone) 1602 { 1603 uma_zfree_internal(zones, zone, NULL, 0); 1604 } 1605 1606 /* See uma.h */ 1607 void * 1608 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 1609 { 1610 void *item; 1611 uma_cache_t cache; 1612 uma_bucket_t bucket; 1613 int cpu; 1614 int badness; 1615 1616 /* This is the fast path allocation */ 1617 #ifdef UMA_DEBUG_ALLOC_1 1618 printf("Allocating one item from %s(%p)\n", zone->uz_name, zone); 1619 #endif 1620 1621 if (!(flags & M_NOWAIT)) { 1622 KASSERT(curthread->td_intr_nesting_level == 0, 1623 ("malloc(M_WAITOK) in interrupt context")); 1624 badness = nosleepwithlocks; 1625 #ifdef WITNESS 1626 badness = WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, 1627 NULL, 1628 "malloc(M_WAITOK) of \"%s\", forcing M_NOWAIT", 1629 zone->uz_name); 1630 #endif 1631 if (badness) { 1632 flags &= ~M_WAITOK; 1633 flags |= M_NOWAIT; 1634 } 1635 } 1636 1637 zalloc_restart: 1638 cpu = PCPU_GET(cpuid); 1639 CPU_LOCK(cpu); 1640 cache = &zone->uz_cpu[cpu]; 1641 1642 zalloc_start: 1643 bucket = cache->uc_allocbucket; 1644 1645 if (bucket) { 1646 if (bucket->ub_cnt > 0) { 1647 bucket->ub_cnt--; 1648 item = bucket->ub_bucket[bucket->ub_cnt]; 1649 #ifdef INVARIANTS 1650 bucket->ub_bucket[bucket->ub_cnt] = NULL; 1651 #endif 1652 KASSERT(item != NULL, 1653 ("uma_zalloc: Bucket pointer mangled.")); 1654 cache->uc_allocs++; 1655 #ifdef INVARIANTS 1656 ZONE_LOCK(zone); 1657 uma_dbg_alloc(zone, NULL, item); 1658 ZONE_UNLOCK(zone); 1659 #endif 1660 CPU_UNLOCK(cpu); 1661 if (zone->uz_ctor) 1662 zone->uz_ctor(item,zone->uz_keg->uk_size,udata); 1663 if (flags & M_ZERO) 1664 bzero(item, zone->uz_keg->uk_size); 1665 return (item); 1666 } else if (cache->uc_freebucket) { 1667 /* 1668 * We have run out of items in our allocbucket. 1669 * See if we can switch with our free bucket. 1670 */ 1671 if (cache->uc_freebucket->ub_cnt > 0) { 1672 #ifdef UMA_DEBUG_ALLOC 1673 printf("uma_zalloc: Swapping empty with" 1674 " alloc.\n"); 1675 #endif 1676 bucket = cache->uc_freebucket; 1677 cache->uc_freebucket = cache->uc_allocbucket; 1678 cache->uc_allocbucket = bucket; 1679 1680 goto zalloc_start; 1681 } 1682 } 1683 } 1684 ZONE_LOCK(zone); 1685 /* Since we have locked the zone we may as well send back our stats */ 1686 zone->uz_allocs += cache->uc_allocs; 1687 cache->uc_allocs = 0; 1688 1689 /* Our old one is now a free bucket */ 1690 if (cache->uc_allocbucket) { 1691 KASSERT(cache->uc_allocbucket->ub_cnt == 0, 1692 ("uma_zalloc_arg: Freeing a non free bucket.")); 1693 LIST_INSERT_HEAD(&zone->uz_free_bucket, 1694 cache->uc_allocbucket, ub_link); 1695 cache->uc_allocbucket = NULL; 1696 } 1697 1698 /* Check the free list for a new alloc bucket */ 1699 if ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) { 1700 KASSERT(bucket->ub_cnt != 0, 1701 ("uma_zalloc_arg: Returning an empty bucket.")); 1702 1703 LIST_REMOVE(bucket, ub_link); 1704 cache->uc_allocbucket = bucket; 1705 ZONE_UNLOCK(zone); 1706 goto zalloc_start; 1707 } 1708 /* We are no longer associated with this cpu!!! */ 1709 CPU_UNLOCK(cpu); 1710 1711 /* Bump up our uz_count so we get here less */ 1712 if (zone->uz_count < BUCKET_MAX) 1713 zone->uz_count++; 1714 1715 /* 1716 * Now lets just fill a bucket and put it on the free list. If that 1717 * works we'll restart the allocation from the begining. 1718 */ 1719 if (uma_zalloc_bucket(zone, flags)) { 1720 ZONE_UNLOCK(zone); 1721 goto zalloc_restart; 1722 } 1723 ZONE_UNLOCK(zone); 1724 /* 1725 * We may not be able to get a bucket so return an actual item. 1726 */ 1727 #ifdef UMA_DEBUG 1728 printf("uma_zalloc_arg: Bucketzone returned NULL\n"); 1729 #endif 1730 1731 return (uma_zalloc_internal(zone, udata, flags)); 1732 } 1733 1734 static uma_slab_t 1735 uma_zone_slab(uma_zone_t zone, int flags) 1736 { 1737 uma_slab_t slab; 1738 uma_keg_t keg; 1739 1740 keg = zone->uz_keg; 1741 1742 /* 1743 * This is to prevent us from recursively trying to allocate 1744 * buckets. The problem is that if an allocation forces us to 1745 * grab a new bucket we will call page_alloc, which will go off 1746 * and cause the vm to allocate vm_map_entries. If we need new 1747 * buckets there too we will recurse in kmem_alloc and bad 1748 * things happen. So instead we return a NULL bucket, and make 1749 * the code that allocates buckets smart enough to deal with it 1750 */ 1751 if (keg->uk_flags & UMA_ZFLAG_INTERNAL && keg->uk_recurse != 0) 1752 return (NULL); 1753 1754 slab = NULL; 1755 1756 for (;;) { 1757 /* 1758 * Find a slab with some space. Prefer slabs that are partially 1759 * used over those that are totally full. This helps to reduce 1760 * fragmentation. 1761 */ 1762 if (keg->uk_free != 0) { 1763 if (!LIST_EMPTY(&keg->uk_part_slab)) { 1764 slab = LIST_FIRST(&keg->uk_part_slab); 1765 } else { 1766 slab = LIST_FIRST(&keg->uk_free_slab); 1767 LIST_REMOVE(slab, us_link); 1768 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, 1769 us_link); 1770 } 1771 return (slab); 1772 } 1773 1774 /* 1775 * M_NOVM means don't ask at all! 1776 */ 1777 if (flags & M_NOVM) 1778 break; 1779 1780 if (keg->uk_maxpages && 1781 keg->uk_pages >= keg->uk_maxpages) { 1782 keg->uk_flags |= UMA_ZFLAG_FULL; 1783 1784 if (flags & M_NOWAIT) 1785 break; 1786 else 1787 msleep(keg, &keg->uk_lock, PVM, 1788 "zonelimit", 0); 1789 continue; 1790 } 1791 keg->uk_recurse++; 1792 slab = slab_zalloc(zone, flags); 1793 keg->uk_recurse--; 1794 1795 /* 1796 * If we got a slab here it's safe to mark it partially used 1797 * and return. We assume that the caller is going to remove 1798 * at least one item. 1799 */ 1800 if (slab) { 1801 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 1802 return (slab); 1803 } 1804 /* 1805 * We might not have been able to get a slab but another cpu 1806 * could have while we were unlocked. Check again before we 1807 * fail. 1808 */ 1809 if (flags & M_NOWAIT) 1810 flags |= M_NOVM; 1811 } 1812 return (slab); 1813 } 1814 1815 static void * 1816 uma_slab_alloc(uma_zone_t zone, uma_slab_t slab) 1817 { 1818 uma_keg_t keg; 1819 void *item; 1820 u_int8_t freei; 1821 1822 keg = zone->uz_keg; 1823 1824 freei = slab->us_firstfree; 1825 slab->us_firstfree = slab->us_freelist[freei].us_item; 1826 item = slab->us_data + (keg->uk_rsize * freei); 1827 1828 slab->us_freecount--; 1829 keg->uk_free--; 1830 #ifdef INVARIANTS 1831 uma_dbg_alloc(zone, slab, item); 1832 #endif 1833 /* Move this slab to the full list */ 1834 if (slab->us_freecount == 0) { 1835 LIST_REMOVE(slab, us_link); 1836 LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link); 1837 } 1838 1839 return (item); 1840 } 1841 1842 static int 1843 uma_zalloc_bucket(uma_zone_t zone, int flags) 1844 { 1845 uma_bucket_t bucket; 1846 uma_slab_t slab; 1847 int16_t saved; 1848 int max; 1849 1850 /* 1851 * Try this zone's free list first so we don't allocate extra buckets. 1852 */ 1853 if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) { 1854 KASSERT(bucket->ub_cnt == 0, 1855 ("uma_zalloc_bucket: Bucket on free list is not empty.")); 1856 LIST_REMOVE(bucket, ub_link); 1857 } else { 1858 int bflags; 1859 1860 bflags = (flags & ~M_ZERO); 1861 if (zone->uz_keg->uk_flags & UMA_ZFLAG_CACHEONLY) 1862 bflags |= M_NOVM; 1863 1864 ZONE_UNLOCK(zone); 1865 bucket = bucket_alloc(zone->uz_count, bflags); 1866 ZONE_LOCK(zone); 1867 } 1868 1869 if (bucket == NULL) 1870 return (0); 1871 1872 #ifdef SMP 1873 /* 1874 * This code is here to limit the number of simultaneous bucket fills 1875 * for any given zone to the number of per cpu caches in this zone. This 1876 * is done so that we don't allocate more memory than we really need. 1877 */ 1878 if (zone->uz_fills >= mp_ncpus) 1879 goto done; 1880 1881 #endif 1882 zone->uz_fills++; 1883 1884 max = MIN(bucket->ub_entries, zone->uz_count); 1885 /* Try to keep the buckets totally full */ 1886 saved = bucket->ub_cnt; 1887 while (bucket->ub_cnt < max && 1888 (slab = uma_zone_slab(zone, flags)) != NULL) { 1889 while (slab->us_freecount && bucket->ub_cnt < max) { 1890 bucket->ub_bucket[bucket->ub_cnt++] = 1891 uma_slab_alloc(zone, slab); 1892 } 1893 1894 /* Don't block on the next fill */ 1895 flags |= M_NOWAIT; 1896 } 1897 1898 /* 1899 * We unlock here because we need to call the zone's init. 1900 * It should be safe to unlock because the slab dealt with 1901 * above is already on the appropriate list within the keg 1902 * and the bucket we filled is not yet on any list, so we 1903 * own it. 1904 */ 1905 if (zone->uz_init != NULL) { 1906 int i; 1907 1908 ZONE_UNLOCK(zone); 1909 for (i = saved; i < bucket->ub_cnt; i++) 1910 zone->uz_init(bucket->ub_bucket[i], 1911 zone->uz_keg->uk_size); 1912 ZONE_LOCK(zone); 1913 } 1914 1915 zone->uz_fills--; 1916 if (bucket->ub_cnt != 0) { 1917 LIST_INSERT_HEAD(&zone->uz_full_bucket, 1918 bucket, ub_link); 1919 return (1); 1920 } 1921 #ifdef SMP 1922 done: 1923 #endif 1924 bucket_free(bucket); 1925 1926 return (0); 1927 } 1928 /* 1929 * Allocates an item for an internal zone 1930 * 1931 * Arguments 1932 * zone The zone to alloc for. 1933 * udata The data to be passed to the constructor. 1934 * flags M_WAITOK, M_NOWAIT, M_ZERO. 1935 * 1936 * Returns 1937 * NULL if there is no memory and M_NOWAIT is set 1938 * An item if successful 1939 */ 1940 1941 static void * 1942 uma_zalloc_internal(uma_zone_t zone, void *udata, int flags) 1943 { 1944 uma_keg_t keg; 1945 uma_slab_t slab; 1946 void *item; 1947 1948 item = NULL; 1949 keg = zone->uz_keg; 1950 1951 #ifdef UMA_DEBUG_ALLOC 1952 printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone); 1953 #endif 1954 ZONE_LOCK(zone); 1955 1956 slab = uma_zone_slab(zone, flags); 1957 if (slab == NULL) { 1958 ZONE_UNLOCK(zone); 1959 return (NULL); 1960 } 1961 1962 item = uma_slab_alloc(zone, slab); 1963 1964 ZONE_UNLOCK(zone); 1965 1966 /* 1967 * We have to call both the zone's init (not the keg's init) 1968 * and the zone's ctor. This is because the item is going from 1969 * a keg slab directly to the user, and the user is expecting it 1970 * to be both zone-init'd as well as zone-ctor'd. 1971 */ 1972 if (zone->uz_init != NULL) 1973 zone->uz_init(item, keg->uk_size); 1974 if (zone->uz_ctor != NULL) 1975 zone->uz_ctor(item, keg->uk_size, udata); 1976 if (flags & M_ZERO) 1977 bzero(item, keg->uk_size); 1978 1979 return (item); 1980 } 1981 1982 /* See uma.h */ 1983 void 1984 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 1985 { 1986 uma_keg_t keg; 1987 uma_cache_t cache; 1988 uma_bucket_t bucket; 1989 int bflags; 1990 int cpu; 1991 int skip; 1992 1993 /* This is the fast path free */ 1994 skip = 0; 1995 keg = zone->uz_keg; 1996 1997 #ifdef UMA_DEBUG_ALLOC_1 1998 printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone); 1999 #endif 2000 /* 2001 * The race here is acceptable. If we miss it we'll just have to wait 2002 * a little longer for the limits to be reset. 2003 */ 2004 2005 if (keg->uk_flags & UMA_ZFLAG_FULL) 2006 goto zfree_internal; 2007 2008 if (zone->uz_dtor) { 2009 zone->uz_dtor(item, keg->uk_size, udata); 2010 skip = 1; 2011 } 2012 2013 zfree_restart: 2014 cpu = PCPU_GET(cpuid); 2015 CPU_LOCK(cpu); 2016 cache = &zone->uz_cpu[cpu]; 2017 2018 zfree_start: 2019 bucket = cache->uc_freebucket; 2020 2021 if (bucket) { 2022 /* 2023 * Do we have room in our bucket? It is OK for this uz count 2024 * check to be slightly out of sync. 2025 */ 2026 2027 if (bucket->ub_cnt < bucket->ub_entries) { 2028 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 2029 ("uma_zfree: Freeing to non free bucket index.")); 2030 bucket->ub_bucket[bucket->ub_cnt] = item; 2031 bucket->ub_cnt++; 2032 #ifdef INVARIANTS 2033 ZONE_LOCK(zone); 2034 if (keg->uk_flags & UMA_ZONE_MALLOC) 2035 uma_dbg_free(zone, udata, item); 2036 else 2037 uma_dbg_free(zone, NULL, item); 2038 ZONE_UNLOCK(zone); 2039 #endif 2040 CPU_UNLOCK(cpu); 2041 return; 2042 } else if (cache->uc_allocbucket) { 2043 #ifdef UMA_DEBUG_ALLOC 2044 printf("uma_zfree: Swapping buckets.\n"); 2045 #endif 2046 /* 2047 * We have run out of space in our freebucket. 2048 * See if we can switch with our alloc bucket. 2049 */ 2050 if (cache->uc_allocbucket->ub_cnt < 2051 cache->uc_freebucket->ub_cnt) { 2052 bucket = cache->uc_freebucket; 2053 cache->uc_freebucket = cache->uc_allocbucket; 2054 cache->uc_allocbucket = bucket; 2055 goto zfree_start; 2056 } 2057 } 2058 } 2059 /* 2060 * We can get here for two reasons: 2061 * 2062 * 1) The buckets are NULL 2063 * 2) The alloc and free buckets are both somewhat full. 2064 */ 2065 2066 ZONE_LOCK(zone); 2067 2068 bucket = cache->uc_freebucket; 2069 cache->uc_freebucket = NULL; 2070 2071 /* Can we throw this on the zone full list? */ 2072 if (bucket != NULL) { 2073 #ifdef UMA_DEBUG_ALLOC 2074 printf("uma_zfree: Putting old bucket on the free list.\n"); 2075 #endif 2076 /* ub_cnt is pointing to the last free item */ 2077 KASSERT(bucket->ub_cnt != 0, 2078 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n")); 2079 LIST_INSERT_HEAD(&zone->uz_full_bucket, 2080 bucket, ub_link); 2081 } 2082 if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) { 2083 LIST_REMOVE(bucket, ub_link); 2084 ZONE_UNLOCK(zone); 2085 cache->uc_freebucket = bucket; 2086 goto zfree_start; 2087 } 2088 /* We're done with this CPU now */ 2089 CPU_UNLOCK(cpu); 2090 2091 /* And the zone.. */ 2092 ZONE_UNLOCK(zone); 2093 2094 #ifdef UMA_DEBUG_ALLOC 2095 printf("uma_zfree: Allocating new free bucket.\n"); 2096 #endif 2097 bflags = M_NOWAIT; 2098 2099 if (keg->uk_flags & UMA_ZFLAG_CACHEONLY) 2100 bflags |= M_NOVM; 2101 bucket = bucket_alloc(zone->uz_count, bflags); 2102 if (bucket) { 2103 ZONE_LOCK(zone); 2104 LIST_INSERT_HEAD(&zone->uz_free_bucket, 2105 bucket, ub_link); 2106 ZONE_UNLOCK(zone); 2107 goto zfree_restart; 2108 } 2109 2110 /* 2111 * If nothing else caught this, we'll just do an internal free. 2112 */ 2113 2114 zfree_internal: 2115 2116 #ifdef INVARIANTS 2117 /* 2118 * If we need to skip the dtor and the uma_dbg_free in 2119 * uma_zfree_internal because we've already called the dtor 2120 * above, but we ended up here, then we need to make sure 2121 * that we take care of the uma_dbg_free immediately. 2122 */ 2123 if (skip) { 2124 ZONE_LOCK(zone); 2125 if (keg->uk_flags & UMA_ZONE_MALLOC) 2126 uma_dbg_free(zone, udata, item); 2127 else 2128 uma_dbg_free(zone, NULL, item); 2129 ZONE_UNLOCK(zone); 2130 } 2131 #endif 2132 uma_zfree_internal(zone, item, udata, skip); 2133 2134 return; 2135 } 2136 2137 /* 2138 * Frees an item to an INTERNAL zone or allocates a free bucket 2139 * 2140 * Arguments: 2141 * zone The zone to free to 2142 * item The item we're freeing 2143 * udata User supplied data for the dtor 2144 * skip Skip the dtor, it was done in uma_zfree_arg 2145 */ 2146 static void 2147 uma_zfree_internal(uma_zone_t zone, void *item, void *udata, int skip) 2148 { 2149 uma_slab_t slab; 2150 uma_keg_t keg; 2151 u_int8_t *mem; 2152 u_int8_t freei; 2153 2154 keg = zone->uz_keg; 2155 2156 if (!skip && zone->uz_dtor) 2157 zone->uz_dtor(item, keg->uk_size, udata); 2158 if (zone->uz_fini) 2159 zone->uz_fini(item, keg->uk_size); 2160 2161 ZONE_LOCK(zone); 2162 2163 if (!(keg->uk_flags & UMA_ZONE_MALLOC)) { 2164 mem = (u_int8_t *)((unsigned long)item & (~UMA_SLAB_MASK)); 2165 if (keg->uk_flags & UMA_ZONE_HASH) 2166 slab = hash_sfind(&keg->uk_hash, mem); 2167 else { 2168 mem += keg->uk_pgoff; 2169 slab = (uma_slab_t)mem; 2170 } 2171 } else { 2172 slab = (uma_slab_t)udata; 2173 } 2174 2175 /* Do we need to remove from any lists? */ 2176 if (slab->us_freecount+1 == keg->uk_ipers) { 2177 LIST_REMOVE(slab, us_link); 2178 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 2179 } else if (slab->us_freecount == 0) { 2180 LIST_REMOVE(slab, us_link); 2181 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2182 } 2183 2184 /* Slab management stuff */ 2185 freei = ((unsigned long)item - (unsigned long)slab->us_data) 2186 / keg->uk_rsize; 2187 2188 #ifdef INVARIANTS 2189 if (!skip) 2190 uma_dbg_free(zone, slab, item); 2191 #endif 2192 2193 slab->us_freelist[freei].us_item = slab->us_firstfree; 2194 slab->us_firstfree = freei; 2195 slab->us_freecount++; 2196 2197 /* Zone statistics */ 2198 keg->uk_free++; 2199 2200 if (keg->uk_flags & UMA_ZFLAG_FULL) { 2201 if (keg->uk_pages < keg->uk_maxpages) 2202 keg->uk_flags &= ~UMA_ZFLAG_FULL; 2203 2204 /* We can handle one more allocation */ 2205 wakeup_one(keg); 2206 } 2207 2208 ZONE_UNLOCK(zone); 2209 } 2210 2211 /* See uma.h */ 2212 void 2213 uma_zone_set_max(uma_zone_t zone, int nitems) 2214 { 2215 uma_keg_t keg; 2216 2217 keg = zone->uz_keg; 2218 ZONE_LOCK(zone); 2219 if (keg->uk_ppera > 1) 2220 keg->uk_maxpages = nitems * keg->uk_ppera; 2221 else 2222 keg->uk_maxpages = nitems / keg->uk_ipers; 2223 2224 if (keg->uk_maxpages * keg->uk_ipers < nitems) 2225 keg->uk_maxpages++; 2226 2227 ZONE_UNLOCK(zone); 2228 } 2229 2230 /* See uma.h */ 2231 void 2232 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 2233 { 2234 ZONE_LOCK(zone); 2235 KASSERT(zone->uz_keg->uk_pages == 0, 2236 ("uma_zone_set_init on non-empty keg")); 2237 zone->uz_keg->uk_init = uminit; 2238 ZONE_UNLOCK(zone); 2239 } 2240 2241 /* See uma.h */ 2242 void 2243 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 2244 { 2245 ZONE_LOCK(zone); 2246 KASSERT(zone->uz_keg->uk_pages == 0, 2247 ("uma_zone_set_fini on non-empty keg")); 2248 zone->uz_keg->uk_fini = fini; 2249 ZONE_UNLOCK(zone); 2250 } 2251 2252 /* See uma.h */ 2253 void 2254 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 2255 { 2256 ZONE_LOCK(zone); 2257 KASSERT(zone->uz_keg->uk_pages == 0, 2258 ("uma_zone_set_zinit on non-empty keg")); 2259 zone->uz_init = zinit; 2260 ZONE_UNLOCK(zone); 2261 } 2262 2263 /* See uma.h */ 2264 void 2265 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 2266 { 2267 ZONE_LOCK(zone); 2268 KASSERT(zone->uz_keg->uk_pages == 0, 2269 ("uma_zone_set_zfini on non-empty keg")); 2270 zone->uz_fini = zfini; 2271 ZONE_UNLOCK(zone); 2272 } 2273 2274 /* See uma.h */ 2275 void 2276 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 2277 { 2278 ZONE_LOCK(zone); 2279 zone->uz_keg->uk_freef = freef; 2280 ZONE_UNLOCK(zone); 2281 } 2282 2283 /* See uma.h */ 2284 void 2285 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 2286 { 2287 ZONE_LOCK(zone); 2288 zone->uz_keg->uk_flags |= UMA_ZFLAG_PRIVALLOC; 2289 zone->uz_keg->uk_allocf = allocf; 2290 ZONE_UNLOCK(zone); 2291 } 2292 2293 /* See uma.h */ 2294 int 2295 uma_zone_set_obj(uma_zone_t zone, struct vm_object *obj, int count) 2296 { 2297 uma_keg_t keg; 2298 vm_offset_t kva; 2299 int pages; 2300 2301 keg = zone->uz_keg; 2302 pages = count / keg->uk_ipers; 2303 2304 if (pages * keg->uk_ipers < count) 2305 pages++; 2306 2307 kva = kmem_alloc_pageable(kernel_map, pages * UMA_SLAB_SIZE); 2308 2309 if (kva == 0) 2310 return (0); 2311 if (obj == NULL) { 2312 obj = vm_object_allocate(OBJT_DEFAULT, 2313 pages); 2314 } else { 2315 VM_OBJECT_LOCK_INIT(obj); 2316 _vm_object_allocate(OBJT_DEFAULT, 2317 pages, obj); 2318 } 2319 ZONE_LOCK(zone); 2320 keg->uk_kva = kva; 2321 keg->uk_obj = obj; 2322 keg->uk_maxpages = pages; 2323 keg->uk_allocf = obj_alloc; 2324 keg->uk_flags |= UMA_ZONE_NOFREE | UMA_ZFLAG_PRIVALLOC; 2325 ZONE_UNLOCK(zone); 2326 return (1); 2327 } 2328 2329 /* See uma.h */ 2330 void 2331 uma_prealloc(uma_zone_t zone, int items) 2332 { 2333 int slabs; 2334 uma_slab_t slab; 2335 uma_keg_t keg; 2336 2337 keg = zone->uz_keg; 2338 ZONE_LOCK(zone); 2339 slabs = items / keg->uk_ipers; 2340 if (slabs * keg->uk_ipers < items) 2341 slabs++; 2342 while (slabs > 0) { 2343 slab = slab_zalloc(zone, M_WAITOK); 2344 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 2345 slabs--; 2346 } 2347 ZONE_UNLOCK(zone); 2348 } 2349 2350 /* See uma.h */ 2351 u_int32_t * 2352 uma_find_refcnt(uma_zone_t zone, void *item) 2353 { 2354 uma_slabrefcnt_t slab; 2355 uma_keg_t keg; 2356 u_int32_t *refcnt; 2357 int idx; 2358 2359 keg = zone->uz_keg; 2360 slab = (uma_slabrefcnt_t)vtoslab((vm_offset_t)item & (~UMA_SLAB_MASK)); 2361 KASSERT(slab != NULL, 2362 ("uma_find_refcnt(): zone possibly not UMA_ZONE_REFCNT")); 2363 idx = ((unsigned long)item - (unsigned long)slab->us_data) 2364 / keg->uk_rsize; 2365 refcnt = &(slab->us_freelist[idx].us_refcnt); 2366 return refcnt; 2367 } 2368 2369 /* See uma.h */ 2370 void 2371 uma_reclaim(void) 2372 { 2373 #ifdef UMA_DEBUG 2374 printf("UMA: vm asked us to release pages!\n"); 2375 #endif 2376 bucket_enable(); 2377 zone_foreach(zone_drain); 2378 /* 2379 * Some slabs may have been freed but this zone will be visited early 2380 * we visit again so that we can free pages that are empty once other 2381 * zones are drained. We have to do the same for buckets. 2382 */ 2383 zone_drain(slabzone); 2384 zone_drain(slabrefzone); 2385 bucket_zone_drain(); 2386 } 2387 2388 void * 2389 uma_large_malloc(int size, int wait) 2390 { 2391 void *mem; 2392 uma_slab_t slab; 2393 u_int8_t flags; 2394 2395 slab = uma_zalloc_internal(slabzone, NULL, wait); 2396 if (slab == NULL) 2397 return (NULL); 2398 mem = page_alloc(NULL, size, &flags, wait); 2399 if (mem) { 2400 vsetslab((vm_offset_t)mem, slab); 2401 slab->us_data = mem; 2402 slab->us_flags = flags | UMA_SLAB_MALLOC; 2403 slab->us_size = size; 2404 } else { 2405 uma_zfree_internal(slabzone, slab, NULL, 0); 2406 } 2407 2408 return (mem); 2409 } 2410 2411 void 2412 uma_large_free(uma_slab_t slab) 2413 { 2414 vsetobj((vm_offset_t)slab->us_data, kmem_object); 2415 page_free(slab->us_data, slab->us_size, slab->us_flags); 2416 uma_zfree_internal(slabzone, slab, NULL, 0); 2417 } 2418 2419 void 2420 uma_print_stats(void) 2421 { 2422 zone_foreach(uma_print_zone); 2423 } 2424 2425 static void 2426 slab_print(uma_slab_t slab) 2427 { 2428 printf("slab: keg %p, data %p, freecount %d, firstfree %d\n", 2429 slab->us_keg, slab->us_data, slab->us_freecount, 2430 slab->us_firstfree); 2431 } 2432 2433 static void 2434 cache_print(uma_cache_t cache) 2435 { 2436 printf("alloc: %p(%d), free: %p(%d)\n", 2437 cache->uc_allocbucket, 2438 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, 2439 cache->uc_freebucket, 2440 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0); 2441 } 2442 2443 void 2444 uma_print_zone(uma_zone_t zone) 2445 { 2446 uma_cache_t cache; 2447 uma_keg_t keg; 2448 uma_slab_t slab; 2449 int i; 2450 2451 keg = zone->uz_keg; 2452 printf("%s(%p) size %d(%d) flags %d ipers %d ppera %d out %d free %d\n", 2453 zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags, 2454 keg->uk_ipers, keg->uk_ppera, 2455 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free); 2456 printf("Part slabs:\n"); 2457 LIST_FOREACH(slab, &keg->uk_part_slab, us_link) 2458 slab_print(slab); 2459 printf("Free slabs:\n"); 2460 LIST_FOREACH(slab, &keg->uk_free_slab, us_link) 2461 slab_print(slab); 2462 printf("Full slabs:\n"); 2463 LIST_FOREACH(slab, &keg->uk_full_slab, us_link) 2464 slab_print(slab); 2465 for (i = 0; i <= mp_maxid; i++) { 2466 if (CPU_ABSENT(i)) 2467 continue; 2468 cache = &zone->uz_cpu[i]; 2469 printf("CPU %d Cache:\n", i); 2470 cache_print(cache); 2471 } 2472 } 2473 2474 /* 2475 * Sysctl handler for vm.zone 2476 * 2477 * stolen from vm_zone.c 2478 */ 2479 static int 2480 sysctl_vm_zone(SYSCTL_HANDLER_ARGS) 2481 { 2482 int error, len, cnt; 2483 const int linesize = 128; /* conservative */ 2484 int totalfree; 2485 char *tmpbuf, *offset; 2486 uma_zone_t z; 2487 uma_keg_t zk; 2488 char *p; 2489 int cpu; 2490 int cachefree; 2491 uma_bucket_t bucket; 2492 uma_cache_t cache; 2493 2494 cnt = 0; 2495 mtx_lock(&uma_mtx); 2496 LIST_FOREACH(zk, &uma_kegs, uk_link) { 2497 LIST_FOREACH(z, &zk->uk_zones, uz_link) 2498 cnt++; 2499 } 2500 mtx_unlock(&uma_mtx); 2501 MALLOC(tmpbuf, char *, (cnt == 0 ? 1 : cnt) * linesize, 2502 M_TEMP, M_WAITOK); 2503 len = snprintf(tmpbuf, linesize, 2504 "\nITEM SIZE LIMIT USED FREE REQUESTS\n\n"); 2505 if (cnt == 0) 2506 tmpbuf[len - 1] = '\0'; 2507 error = SYSCTL_OUT(req, tmpbuf, cnt == 0 ? len-1 : len); 2508 if (error || cnt == 0) 2509 goto out; 2510 offset = tmpbuf; 2511 mtx_lock(&uma_mtx); 2512 LIST_FOREACH(zk, &uma_kegs, uk_link) { 2513 LIST_FOREACH(z, &zk->uk_zones, uz_link) { 2514 if (cnt == 0) /* list may have changed size */ 2515 break; 2516 if (!(zk->uk_flags & UMA_ZFLAG_INTERNAL)) { 2517 for (cpu = 0; cpu <= mp_maxid; cpu++) { 2518 if (CPU_ABSENT(cpu)) 2519 continue; 2520 CPU_LOCK(cpu); 2521 } 2522 } 2523 ZONE_LOCK(z); 2524 cachefree = 0; 2525 if (!(zk->uk_flags & UMA_ZFLAG_INTERNAL)) { 2526 for (cpu = 0; cpu <= mp_maxid; cpu++) { 2527 if (CPU_ABSENT(cpu)) 2528 continue; 2529 cache = &z->uz_cpu[cpu]; 2530 if (cache->uc_allocbucket != NULL) 2531 cachefree += cache->uc_allocbucket->ub_cnt; 2532 if (cache->uc_freebucket != NULL) 2533 cachefree += cache->uc_freebucket->ub_cnt; 2534 CPU_UNLOCK(cpu); 2535 } 2536 } 2537 LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link) { 2538 cachefree += bucket->ub_cnt; 2539 } 2540 totalfree = zk->uk_free + cachefree; 2541 len = snprintf(offset, linesize, 2542 "%-12.12s %6.6u, %8.8u, %6.6u, %6.6u, %8.8llu\n", 2543 z->uz_name, zk->uk_size, 2544 zk->uk_maxpages * zk->uk_ipers, 2545 (zk->uk_ipers * (zk->uk_pages / zk->uk_ppera)) - totalfree, 2546 totalfree, 2547 (unsigned long long)z->uz_allocs); 2548 ZONE_UNLOCK(z); 2549 for (p = offset + 12; p > offset && *p == ' '; --p) 2550 /* nothing */ ; 2551 p[1] = ':'; 2552 cnt--; 2553 offset += len; 2554 } 2555 } 2556 mtx_unlock(&uma_mtx); 2557 *offset++ = '\0'; 2558 error = SYSCTL_OUT(req, tmpbuf, offset - tmpbuf); 2559 out: 2560 FREE(tmpbuf, M_TEMP); 2561 return (error); 2562 } 2563