1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/bitset.h> 62 #include <sys/domainset.h> 63 #include <sys/eventhandler.h> 64 #include <sys/kernel.h> 65 #include <sys/types.h> 66 #include <sys/limits.h> 67 #include <sys/queue.h> 68 #include <sys/malloc.h> 69 #include <sys/ktr.h> 70 #include <sys/lock.h> 71 #include <sys/sysctl.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/random.h> 75 #include <sys/rwlock.h> 76 #include <sys/sbuf.h> 77 #include <sys/sched.h> 78 #include <sys/sleepqueue.h> 79 #include <sys/smp.h> 80 #include <sys/smr.h> 81 #include <sys/taskqueue.h> 82 #include <sys/vmmeter.h> 83 84 #include <vm/vm.h> 85 #include <vm/vm_param.h> 86 #include <vm/vm_domainset.h> 87 #include <vm/vm_object.h> 88 #include <vm/vm_page.h> 89 #include <vm/vm_pageout.h> 90 #include <vm/vm_phys.h> 91 #include <vm/vm_pagequeue.h> 92 #include <vm/vm_map.h> 93 #include <vm/vm_kern.h> 94 #include <vm/vm_extern.h> 95 #include <vm/vm_dumpset.h> 96 #include <vm/uma.h> 97 #include <vm/uma_int.h> 98 #include <vm/uma_dbg.h> 99 100 #include <ddb/ddb.h> 101 102 #ifdef DEBUG_MEMGUARD 103 #include <vm/memguard.h> 104 #endif 105 106 #include <machine/md_var.h> 107 108 #ifdef INVARIANTS 109 #define UMA_ALWAYS_CTORDTOR 1 110 #else 111 #define UMA_ALWAYS_CTORDTOR 0 112 #endif 113 114 /* 115 * This is the zone and keg from which all zones are spawned. 116 */ 117 static uma_zone_t kegs; 118 static uma_zone_t zones; 119 120 /* 121 * On INVARIANTS builds, the slab contains a second bitset of the same size, 122 * "dbg_bits", which is laid out immediately after us_free. 123 */ 124 #ifdef INVARIANTS 125 #define SLAB_BITSETS 2 126 #else 127 #define SLAB_BITSETS 1 128 #endif 129 130 /* 131 * These are the two zones from which all offpage uma_slab_ts are allocated. 132 * 133 * One zone is for slab headers that can represent a larger number of items, 134 * making the slabs themselves more efficient, and the other zone is for 135 * headers that are smaller and represent fewer items, making the headers more 136 * efficient. 137 */ 138 #define SLABZONE_SIZE(setsize) \ 139 (sizeof(struct uma_hash_slab) + BITSET_SIZE(setsize) * SLAB_BITSETS) 140 #define SLABZONE0_SETSIZE (PAGE_SIZE / 16) 141 #define SLABZONE1_SETSIZE SLAB_MAX_SETSIZE 142 #define SLABZONE0_SIZE SLABZONE_SIZE(SLABZONE0_SETSIZE) 143 #define SLABZONE1_SIZE SLABZONE_SIZE(SLABZONE1_SETSIZE) 144 static uma_zone_t slabzones[2]; 145 146 /* 147 * The initial hash tables come out of this zone so they can be allocated 148 * prior to malloc coming up. 149 */ 150 static uma_zone_t hashzone; 151 152 /* The boot-time adjusted value for cache line alignment. */ 153 int uma_align_cache = 64 - 1; 154 155 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 156 static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc"); 157 158 /* 159 * Are we allowed to allocate buckets? 160 */ 161 static int bucketdisable = 1; 162 163 /* Linked list of all kegs in the system */ 164 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 165 166 /* Linked list of all cache-only zones in the system */ 167 static LIST_HEAD(,uma_zone) uma_cachezones = 168 LIST_HEAD_INITIALIZER(uma_cachezones); 169 170 /* This RW lock protects the keg list */ 171 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 172 173 /* 174 * First available virual address for boot time allocations. 175 */ 176 static vm_offset_t bootstart; 177 static vm_offset_t bootmem; 178 179 static struct sx uma_reclaim_lock; 180 181 /* 182 * kmem soft limit, initialized by uma_set_limit(). Ensure that early 183 * allocations don't trigger a wakeup of the reclaim thread. 184 */ 185 unsigned long uma_kmem_limit = LONG_MAX; 186 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0, 187 "UMA kernel memory soft limit"); 188 unsigned long uma_kmem_total; 189 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0, 190 "UMA kernel memory usage"); 191 192 /* Is the VM done starting up? */ 193 static enum { 194 BOOT_COLD, 195 BOOT_KVA, 196 BOOT_PCPU, 197 BOOT_RUNNING, 198 BOOT_SHUTDOWN, 199 } booted = BOOT_COLD; 200 201 /* 202 * This is the handle used to schedule events that need to happen 203 * outside of the allocation fast path. 204 */ 205 static struct callout uma_callout; 206 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 207 208 /* 209 * This structure is passed as the zone ctor arg so that I don't have to create 210 * a special allocation function just for zones. 211 */ 212 struct uma_zctor_args { 213 const char *name; 214 size_t size; 215 uma_ctor ctor; 216 uma_dtor dtor; 217 uma_init uminit; 218 uma_fini fini; 219 uma_import import; 220 uma_release release; 221 void *arg; 222 uma_keg_t keg; 223 int align; 224 uint32_t flags; 225 }; 226 227 struct uma_kctor_args { 228 uma_zone_t zone; 229 size_t size; 230 uma_init uminit; 231 uma_fini fini; 232 int align; 233 uint32_t flags; 234 }; 235 236 struct uma_bucket_zone { 237 uma_zone_t ubz_zone; 238 const char *ubz_name; 239 int ubz_entries; /* Number of items it can hold. */ 240 int ubz_maxsize; /* Maximum allocation size per-item. */ 241 }; 242 243 /* 244 * Compute the actual number of bucket entries to pack them in power 245 * of two sizes for more efficient space utilization. 246 */ 247 #define BUCKET_SIZE(n) \ 248 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 249 250 #define BUCKET_MAX BUCKET_SIZE(256) 251 252 struct uma_bucket_zone bucket_zones[] = { 253 /* Literal bucket sizes. */ 254 { NULL, "2 Bucket", 2, 4096 }, 255 { NULL, "4 Bucket", 4, 3072 }, 256 { NULL, "8 Bucket", 8, 2048 }, 257 { NULL, "16 Bucket", 16, 1024 }, 258 /* Rounded down power of 2 sizes for efficiency. */ 259 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 260 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 261 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 262 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 263 { NULL, NULL, 0} 264 }; 265 266 /* 267 * Flags and enumerations to be passed to internal functions. 268 */ 269 enum zfreeskip { 270 SKIP_NONE = 0, 271 SKIP_CNT = 0x00000001, 272 SKIP_DTOR = 0x00010000, 273 SKIP_FINI = 0x00020000, 274 }; 275 276 /* Prototypes.. */ 277 278 void uma_startup1(vm_offset_t); 279 void uma_startup2(void); 280 281 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 282 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 283 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 284 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 285 static void *contig_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 286 static void page_free(void *, vm_size_t, uint8_t); 287 static void pcpu_page_free(void *, vm_size_t, uint8_t); 288 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int); 289 static void cache_drain(uma_zone_t); 290 static void bucket_drain(uma_zone_t, uma_bucket_t); 291 static void bucket_cache_reclaim(uma_zone_t zone, bool); 292 static int keg_ctor(void *, int, void *, int); 293 static void keg_dtor(void *, int, void *); 294 static int zone_ctor(void *, int, void *, int); 295 static void zone_dtor(void *, int, void *); 296 static inline void item_dtor(uma_zone_t zone, void *item, int size, 297 void *udata, enum zfreeskip skip); 298 static int zero_init(void *, int, int); 299 static void zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 300 int itemdomain, bool ws); 301 static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *); 302 static void zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *), void *); 303 static void zone_timeout(uma_zone_t zone, void *); 304 static int hash_alloc(struct uma_hash *, u_int); 305 static int hash_expand(struct uma_hash *, struct uma_hash *); 306 static void hash_free(struct uma_hash *hash); 307 static void uma_timeout(void *); 308 static void uma_shutdown(void); 309 static void *zone_alloc_item(uma_zone_t, void *, int, int); 310 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 311 static int zone_alloc_limit(uma_zone_t zone, int count, int flags); 312 static void zone_free_limit(uma_zone_t zone, int count); 313 static void bucket_enable(void); 314 static void bucket_init(void); 315 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 316 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 317 static void bucket_zone_drain(void); 318 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int); 319 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 320 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item); 321 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 322 uma_fini fini, int align, uint32_t flags); 323 static int zone_import(void *, void **, int, int, int); 324 static void zone_release(void *, void **, int); 325 static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int); 326 static bool cache_free(uma_zone_t, uma_cache_t, void *, void *, int); 327 328 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 329 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 330 static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS); 331 static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS); 332 static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS); 333 static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS); 334 static int sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS); 335 336 static uint64_t uma_zone_get_allocs(uma_zone_t zone); 337 338 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 339 "Memory allocation debugging"); 340 341 #ifdef INVARIANTS 342 static uint64_t uma_keg_get_allocs(uma_keg_t zone); 343 static inline struct noslabbits *slab_dbg_bits(uma_slab_t slab, uma_keg_t keg); 344 345 static bool uma_dbg_kskip(uma_keg_t keg, void *mem); 346 static bool uma_dbg_zskip(uma_zone_t zone, void *mem); 347 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 348 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 349 350 static u_int dbg_divisor = 1; 351 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor, 352 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0, 353 "Debug & thrash every this item in memory allocator"); 354 355 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER; 356 static counter_u64_t uma_skip_cnt = EARLY_COUNTER; 357 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD, 358 &uma_dbg_cnt, "memory items debugged"); 359 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD, 360 &uma_skip_cnt, "memory items skipped, not debugged"); 361 #endif 362 363 SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 364 "Universal Memory Allocator"); 365 366 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_INT, 367 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 368 369 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_STRUCT, 370 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 371 372 static int zone_warnings = 1; 373 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 374 "Warn when UMA zones becomes full"); 375 376 static int multipage_slabs = 1; 377 TUNABLE_INT("vm.debug.uma_multipage_slabs", &multipage_slabs); 378 SYSCTL_INT(_vm_debug, OID_AUTO, uma_multipage_slabs, 379 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &multipage_slabs, 0, 380 "UMA may choose larger slab sizes for better efficiency"); 381 382 /* 383 * Select the slab zone for an offpage slab with the given maximum item count. 384 */ 385 static inline uma_zone_t 386 slabzone(int ipers) 387 { 388 389 return (slabzones[ipers > SLABZONE0_SETSIZE]); 390 } 391 392 /* 393 * This routine checks to see whether or not it's safe to enable buckets. 394 */ 395 static void 396 bucket_enable(void) 397 { 398 399 KASSERT(booted >= BOOT_KVA, ("Bucket enable before init")); 400 bucketdisable = vm_page_count_min(); 401 } 402 403 /* 404 * Initialize bucket_zones, the array of zones of buckets of various sizes. 405 * 406 * For each zone, calculate the memory required for each bucket, consisting 407 * of the header and an array of pointers. 408 */ 409 static void 410 bucket_init(void) 411 { 412 struct uma_bucket_zone *ubz; 413 int size; 414 415 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 416 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 417 size += sizeof(void *) * ubz->ubz_entries; 418 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 419 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 420 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | 421 UMA_ZONE_FIRSTTOUCH); 422 } 423 } 424 425 /* 426 * Given a desired number of entries for a bucket, return the zone from which 427 * to allocate the bucket. 428 */ 429 static struct uma_bucket_zone * 430 bucket_zone_lookup(int entries) 431 { 432 struct uma_bucket_zone *ubz; 433 434 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 435 if (ubz->ubz_entries >= entries) 436 return (ubz); 437 ubz--; 438 return (ubz); 439 } 440 441 static int 442 bucket_select(int size) 443 { 444 struct uma_bucket_zone *ubz; 445 446 ubz = &bucket_zones[0]; 447 if (size > ubz->ubz_maxsize) 448 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 449 450 for (; ubz->ubz_entries != 0; ubz++) 451 if (ubz->ubz_maxsize < size) 452 break; 453 ubz--; 454 return (ubz->ubz_entries); 455 } 456 457 static uma_bucket_t 458 bucket_alloc(uma_zone_t zone, void *udata, int flags) 459 { 460 struct uma_bucket_zone *ubz; 461 uma_bucket_t bucket; 462 463 /* 464 * Don't allocate buckets early in boot. 465 */ 466 if (__predict_false(booted < BOOT_KVA)) 467 return (NULL); 468 469 /* 470 * To limit bucket recursion we store the original zone flags 471 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 472 * NOVM flag to persist even through deep recursions. We also 473 * store ZFLAG_BUCKET once we have recursed attempting to allocate 474 * a bucket for a bucket zone so we do not allow infinite bucket 475 * recursion. This cookie will even persist to frees of unused 476 * buckets via the allocation path or bucket allocations in the 477 * free path. 478 */ 479 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 480 udata = (void *)(uintptr_t)zone->uz_flags; 481 else { 482 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 483 return (NULL); 484 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 485 } 486 if (((uintptr_t)udata & UMA_ZONE_VM) != 0) 487 flags |= M_NOVM; 488 ubz = bucket_zone_lookup(atomic_load_16(&zone->uz_bucket_size)); 489 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 490 ubz++; 491 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 492 if (bucket) { 493 #ifdef INVARIANTS 494 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 495 #endif 496 bucket->ub_cnt = 0; 497 bucket->ub_entries = min(ubz->ubz_entries, 498 zone->uz_bucket_size_max); 499 bucket->ub_seq = SMR_SEQ_INVALID; 500 CTR3(KTR_UMA, "bucket_alloc: zone %s(%p) allocated bucket %p", 501 zone->uz_name, zone, bucket); 502 } 503 504 return (bucket); 505 } 506 507 static void 508 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 509 { 510 struct uma_bucket_zone *ubz; 511 512 if (bucket->ub_cnt != 0) 513 bucket_drain(zone, bucket); 514 515 KASSERT(bucket->ub_cnt == 0, 516 ("bucket_free: Freeing a non free bucket.")); 517 KASSERT(bucket->ub_seq == SMR_SEQ_INVALID, 518 ("bucket_free: Freeing an SMR bucket.")); 519 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 520 udata = (void *)(uintptr_t)zone->uz_flags; 521 ubz = bucket_zone_lookup(bucket->ub_entries); 522 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 523 } 524 525 static void 526 bucket_zone_drain(void) 527 { 528 struct uma_bucket_zone *ubz; 529 530 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 531 uma_zone_reclaim(ubz->ubz_zone, UMA_RECLAIM_DRAIN); 532 } 533 534 /* 535 * Acquire the domain lock and record contention. 536 */ 537 static uma_zone_domain_t 538 zone_domain_lock(uma_zone_t zone, int domain) 539 { 540 uma_zone_domain_t zdom; 541 bool lockfail; 542 543 zdom = ZDOM_GET(zone, domain); 544 lockfail = false; 545 if (ZDOM_OWNED(zdom)) 546 lockfail = true; 547 ZDOM_LOCK(zdom); 548 /* This is unsynchronized. The counter does not need to be precise. */ 549 if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max) 550 zone->uz_bucket_size++; 551 return (zdom); 552 } 553 554 /* 555 * Search for the domain with the least cached items and return it if it 556 * is out of balance with the preferred domain. 557 */ 558 static __noinline int 559 zone_domain_lowest(uma_zone_t zone, int pref) 560 { 561 long least, nitems, prefitems; 562 int domain; 563 int i; 564 565 prefitems = least = LONG_MAX; 566 domain = 0; 567 for (i = 0; i < vm_ndomains; i++) { 568 nitems = ZDOM_GET(zone, i)->uzd_nitems; 569 if (nitems < least) { 570 domain = i; 571 least = nitems; 572 } 573 if (domain == pref) 574 prefitems = nitems; 575 } 576 if (prefitems < least * 2) 577 return (pref); 578 579 return (domain); 580 } 581 582 /* 583 * Search for the domain with the most cached items and return it or the 584 * preferred domain if it has enough to proceed. 585 */ 586 static __noinline int 587 zone_domain_highest(uma_zone_t zone, int pref) 588 { 589 long most, nitems; 590 int domain; 591 int i; 592 593 if (ZDOM_GET(zone, pref)->uzd_nitems > BUCKET_MAX) 594 return (pref); 595 596 most = 0; 597 domain = 0; 598 for (i = 0; i < vm_ndomains; i++) { 599 nitems = ZDOM_GET(zone, i)->uzd_nitems; 600 if (nitems > most) { 601 domain = i; 602 most = nitems; 603 } 604 } 605 606 return (domain); 607 } 608 609 /* 610 * Safely subtract cnt from imax. 611 */ 612 static void 613 zone_domain_imax_sub(uma_zone_domain_t zdom, int cnt) 614 { 615 long new; 616 long old; 617 618 old = zdom->uzd_imax; 619 do { 620 if (old <= cnt) 621 new = 0; 622 else 623 new = old - cnt; 624 } while (atomic_fcmpset_long(&zdom->uzd_imax, &old, new) == 0); 625 } 626 627 /* 628 * Set the maximum imax value. 629 */ 630 static void 631 zone_domain_imax_set(uma_zone_domain_t zdom, int nitems) 632 { 633 long old; 634 635 old = zdom->uzd_imax; 636 do { 637 if (old >= nitems) 638 break; 639 } while (atomic_fcmpset_long(&zdom->uzd_imax, &old, nitems) == 0); 640 } 641 642 /* 643 * Attempt to satisfy an allocation by retrieving a full bucket from one of the 644 * zone's caches. If a bucket is found the zone is not locked on return. 645 */ 646 static uma_bucket_t 647 zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom, bool reclaim) 648 { 649 uma_bucket_t bucket; 650 int i; 651 bool dtor = false; 652 653 ZDOM_LOCK_ASSERT(zdom); 654 655 if ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) == NULL) 656 return (NULL); 657 658 /* SMR Buckets can not be re-used until readers expire. */ 659 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 660 bucket->ub_seq != SMR_SEQ_INVALID) { 661 if (!smr_poll(zone->uz_smr, bucket->ub_seq, false)) 662 return (NULL); 663 bucket->ub_seq = SMR_SEQ_INVALID; 664 dtor = (zone->uz_dtor != NULL) || UMA_ALWAYS_CTORDTOR; 665 if (STAILQ_NEXT(bucket, ub_link) != NULL) 666 zdom->uzd_seq = STAILQ_NEXT(bucket, ub_link)->ub_seq; 667 } 668 STAILQ_REMOVE_HEAD(&zdom->uzd_buckets, ub_link); 669 670 KASSERT(zdom->uzd_nitems >= bucket->ub_cnt, 671 ("%s: item count underflow (%ld, %d)", 672 __func__, zdom->uzd_nitems, bucket->ub_cnt)); 673 KASSERT(bucket->ub_cnt > 0, 674 ("%s: empty bucket in bucket cache", __func__)); 675 zdom->uzd_nitems -= bucket->ub_cnt; 676 677 /* 678 * Shift the bounds of the current WSS interval to avoid 679 * perturbing the estimate. 680 */ 681 if (reclaim) { 682 zdom->uzd_imin -= lmin(zdom->uzd_imin, bucket->ub_cnt); 683 zone_domain_imax_sub(zdom, bucket->ub_cnt); 684 } else if (zdom->uzd_imin > zdom->uzd_nitems) 685 zdom->uzd_imin = zdom->uzd_nitems; 686 687 ZDOM_UNLOCK(zdom); 688 if (dtor) 689 for (i = 0; i < bucket->ub_cnt; i++) 690 item_dtor(zone, bucket->ub_bucket[i], zone->uz_size, 691 NULL, SKIP_NONE); 692 693 return (bucket); 694 } 695 696 /* 697 * Insert a full bucket into the specified cache. The "ws" parameter indicates 698 * whether the bucket's contents should be counted as part of the zone's working 699 * set. The bucket may be freed if it exceeds the bucket limit. 700 */ 701 static void 702 zone_put_bucket(uma_zone_t zone, int domain, uma_bucket_t bucket, void *udata, 703 const bool ws) 704 { 705 uma_zone_domain_t zdom; 706 707 /* We don't cache empty buckets. This can happen after a reclaim. */ 708 if (bucket->ub_cnt == 0) 709 goto out; 710 zdom = zone_domain_lock(zone, domain); 711 712 /* 713 * Conditionally set the maximum number of items. 714 */ 715 zdom->uzd_nitems += bucket->ub_cnt; 716 if (__predict_true(zdom->uzd_nitems < zone->uz_bucket_max)) { 717 if (ws) 718 zone_domain_imax_set(zdom, zdom->uzd_nitems); 719 if (STAILQ_EMPTY(&zdom->uzd_buckets)) 720 zdom->uzd_seq = bucket->ub_seq; 721 722 /* 723 * Try to promote reuse of recently used items. For items 724 * protected by SMR, try to defer reuse to minimize polling. 725 */ 726 if (bucket->ub_seq == SMR_SEQ_INVALID) 727 STAILQ_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); 728 else 729 STAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link); 730 ZDOM_UNLOCK(zdom); 731 return; 732 } 733 zdom->uzd_nitems -= bucket->ub_cnt; 734 ZDOM_UNLOCK(zdom); 735 out: 736 bucket_free(zone, bucket, udata); 737 } 738 739 /* Pops an item out of a per-cpu cache bucket. */ 740 static inline void * 741 cache_bucket_pop(uma_cache_t cache, uma_cache_bucket_t bucket) 742 { 743 void *item; 744 745 CRITICAL_ASSERT(curthread); 746 747 bucket->ucb_cnt--; 748 item = bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt]; 749 #ifdef INVARIANTS 750 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = NULL; 751 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 752 #endif 753 cache->uc_allocs++; 754 755 return (item); 756 } 757 758 /* Pushes an item into a per-cpu cache bucket. */ 759 static inline void 760 cache_bucket_push(uma_cache_t cache, uma_cache_bucket_t bucket, void *item) 761 { 762 763 CRITICAL_ASSERT(curthread); 764 KASSERT(bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] == NULL, 765 ("uma_zfree: Freeing to non free bucket index.")); 766 767 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = item; 768 bucket->ucb_cnt++; 769 cache->uc_frees++; 770 } 771 772 /* 773 * Unload a UMA bucket from a per-cpu cache. 774 */ 775 static inline uma_bucket_t 776 cache_bucket_unload(uma_cache_bucket_t bucket) 777 { 778 uma_bucket_t b; 779 780 b = bucket->ucb_bucket; 781 if (b != NULL) { 782 MPASS(b->ub_entries == bucket->ucb_entries); 783 b->ub_cnt = bucket->ucb_cnt; 784 bucket->ucb_bucket = NULL; 785 bucket->ucb_entries = bucket->ucb_cnt = 0; 786 } 787 788 return (b); 789 } 790 791 static inline uma_bucket_t 792 cache_bucket_unload_alloc(uma_cache_t cache) 793 { 794 795 return (cache_bucket_unload(&cache->uc_allocbucket)); 796 } 797 798 static inline uma_bucket_t 799 cache_bucket_unload_free(uma_cache_t cache) 800 { 801 802 return (cache_bucket_unload(&cache->uc_freebucket)); 803 } 804 805 static inline uma_bucket_t 806 cache_bucket_unload_cross(uma_cache_t cache) 807 { 808 809 return (cache_bucket_unload(&cache->uc_crossbucket)); 810 } 811 812 /* 813 * Load a bucket into a per-cpu cache bucket. 814 */ 815 static inline void 816 cache_bucket_load(uma_cache_bucket_t bucket, uma_bucket_t b) 817 { 818 819 CRITICAL_ASSERT(curthread); 820 MPASS(bucket->ucb_bucket == NULL); 821 MPASS(b->ub_seq == SMR_SEQ_INVALID); 822 823 bucket->ucb_bucket = b; 824 bucket->ucb_cnt = b->ub_cnt; 825 bucket->ucb_entries = b->ub_entries; 826 } 827 828 static inline void 829 cache_bucket_load_alloc(uma_cache_t cache, uma_bucket_t b) 830 { 831 832 cache_bucket_load(&cache->uc_allocbucket, b); 833 } 834 835 static inline void 836 cache_bucket_load_free(uma_cache_t cache, uma_bucket_t b) 837 { 838 839 cache_bucket_load(&cache->uc_freebucket, b); 840 } 841 842 #ifdef NUMA 843 static inline void 844 cache_bucket_load_cross(uma_cache_t cache, uma_bucket_t b) 845 { 846 847 cache_bucket_load(&cache->uc_crossbucket, b); 848 } 849 #endif 850 851 /* 852 * Copy and preserve ucb_spare. 853 */ 854 static inline void 855 cache_bucket_copy(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 856 { 857 858 b1->ucb_bucket = b2->ucb_bucket; 859 b1->ucb_entries = b2->ucb_entries; 860 b1->ucb_cnt = b2->ucb_cnt; 861 } 862 863 /* 864 * Swap two cache buckets. 865 */ 866 static inline void 867 cache_bucket_swap(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 868 { 869 struct uma_cache_bucket b3; 870 871 CRITICAL_ASSERT(curthread); 872 873 cache_bucket_copy(&b3, b1); 874 cache_bucket_copy(b1, b2); 875 cache_bucket_copy(b2, &b3); 876 } 877 878 /* 879 * Attempt to fetch a bucket from a zone on behalf of the current cpu cache. 880 */ 881 static uma_bucket_t 882 cache_fetch_bucket(uma_zone_t zone, uma_cache_t cache, int domain) 883 { 884 uma_zone_domain_t zdom; 885 uma_bucket_t bucket; 886 887 /* 888 * Avoid the lock if possible. 889 */ 890 zdom = ZDOM_GET(zone, domain); 891 if (zdom->uzd_nitems == 0) 892 return (NULL); 893 894 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) != 0 && 895 !smr_poll(zone->uz_smr, zdom->uzd_seq, false)) 896 return (NULL); 897 898 /* 899 * Check the zone's cache of buckets. 900 */ 901 zdom = zone_domain_lock(zone, domain); 902 if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) 903 return (bucket); 904 ZDOM_UNLOCK(zdom); 905 906 return (NULL); 907 } 908 909 static void 910 zone_log_warning(uma_zone_t zone) 911 { 912 static const struct timeval warninterval = { 300, 0 }; 913 914 if (!zone_warnings || zone->uz_warning == NULL) 915 return; 916 917 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 918 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 919 } 920 921 static inline void 922 zone_maxaction(uma_zone_t zone) 923 { 924 925 if (zone->uz_maxaction.ta_func != NULL) 926 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 927 } 928 929 /* 930 * Routine called by timeout which is used to fire off some time interval 931 * based calculations. (stats, hash size, etc.) 932 * 933 * Arguments: 934 * arg Unused 935 * 936 * Returns: 937 * Nothing 938 */ 939 static void 940 uma_timeout(void *unused) 941 { 942 bucket_enable(); 943 zone_foreach(zone_timeout, NULL); 944 945 /* Reschedule this event */ 946 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 947 } 948 949 /* 950 * Update the working set size estimate for the zone's bucket cache. 951 * The constants chosen here are somewhat arbitrary. With an update period of 952 * 20s (UMA_TIMEOUT), this estimate is dominated by zone activity over the 953 * last 100s. 954 */ 955 static void 956 zone_domain_update_wss(uma_zone_domain_t zdom) 957 { 958 long wss; 959 960 ZDOM_LOCK(zdom); 961 MPASS(zdom->uzd_imax >= zdom->uzd_imin); 962 wss = zdom->uzd_imax - zdom->uzd_imin; 963 zdom->uzd_imax = zdom->uzd_imin = zdom->uzd_nitems; 964 zdom->uzd_wss = (4 * wss + zdom->uzd_wss) / 5; 965 ZDOM_UNLOCK(zdom); 966 } 967 968 /* 969 * Routine to perform timeout driven calculations. This expands the 970 * hashes and does per cpu statistics aggregation. 971 * 972 * Returns nothing. 973 */ 974 static void 975 zone_timeout(uma_zone_t zone, void *unused) 976 { 977 uma_keg_t keg; 978 u_int slabs, pages; 979 980 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 981 goto update_wss; 982 983 keg = zone->uz_keg; 984 985 /* 986 * Hash zones are non-numa by definition so the first domain 987 * is the only one present. 988 */ 989 KEG_LOCK(keg, 0); 990 pages = keg->uk_domain[0].ud_pages; 991 992 /* 993 * Expand the keg hash table. 994 * 995 * This is done if the number of slabs is larger than the hash size. 996 * What I'm trying to do here is completely reduce collisions. This 997 * may be a little aggressive. Should I allow for two collisions max? 998 */ 999 if ((slabs = pages / keg->uk_ppera) > keg->uk_hash.uh_hashsize) { 1000 struct uma_hash newhash; 1001 struct uma_hash oldhash; 1002 int ret; 1003 1004 /* 1005 * This is so involved because allocating and freeing 1006 * while the keg lock is held will lead to deadlock. 1007 * I have to do everything in stages and check for 1008 * races. 1009 */ 1010 KEG_UNLOCK(keg, 0); 1011 ret = hash_alloc(&newhash, 1 << fls(slabs)); 1012 KEG_LOCK(keg, 0); 1013 if (ret) { 1014 if (hash_expand(&keg->uk_hash, &newhash)) { 1015 oldhash = keg->uk_hash; 1016 keg->uk_hash = newhash; 1017 } else 1018 oldhash = newhash; 1019 1020 KEG_UNLOCK(keg, 0); 1021 hash_free(&oldhash); 1022 goto update_wss; 1023 } 1024 } 1025 KEG_UNLOCK(keg, 0); 1026 1027 update_wss: 1028 for (int i = 0; i < vm_ndomains; i++) 1029 zone_domain_update_wss(ZDOM_GET(zone, i)); 1030 } 1031 1032 /* 1033 * Allocate and zero fill the next sized hash table from the appropriate 1034 * backing store. 1035 * 1036 * Arguments: 1037 * hash A new hash structure with the old hash size in uh_hashsize 1038 * 1039 * Returns: 1040 * 1 on success and 0 on failure. 1041 */ 1042 static int 1043 hash_alloc(struct uma_hash *hash, u_int size) 1044 { 1045 size_t alloc; 1046 1047 KASSERT(powerof2(size), ("hash size must be power of 2")); 1048 if (size > UMA_HASH_SIZE_INIT) { 1049 hash->uh_hashsize = size; 1050 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 1051 hash->uh_slab_hash = malloc(alloc, M_UMAHASH, M_NOWAIT); 1052 } else { 1053 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 1054 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 1055 UMA_ANYDOMAIN, M_WAITOK); 1056 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 1057 } 1058 if (hash->uh_slab_hash) { 1059 bzero(hash->uh_slab_hash, alloc); 1060 hash->uh_hashmask = hash->uh_hashsize - 1; 1061 return (1); 1062 } 1063 1064 return (0); 1065 } 1066 1067 /* 1068 * Expands the hash table for HASH zones. This is done from zone_timeout 1069 * to reduce collisions. This must not be done in the regular allocation 1070 * path, otherwise, we can recurse on the vm while allocating pages. 1071 * 1072 * Arguments: 1073 * oldhash The hash you want to expand 1074 * newhash The hash structure for the new table 1075 * 1076 * Returns: 1077 * Nothing 1078 * 1079 * Discussion: 1080 */ 1081 static int 1082 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 1083 { 1084 uma_hash_slab_t slab; 1085 u_int hval; 1086 u_int idx; 1087 1088 if (!newhash->uh_slab_hash) 1089 return (0); 1090 1091 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 1092 return (0); 1093 1094 /* 1095 * I need to investigate hash algorithms for resizing without a 1096 * full rehash. 1097 */ 1098 1099 for (idx = 0; idx < oldhash->uh_hashsize; idx++) 1100 while (!LIST_EMPTY(&oldhash->uh_slab_hash[idx])) { 1101 slab = LIST_FIRST(&oldhash->uh_slab_hash[idx]); 1102 LIST_REMOVE(slab, uhs_hlink); 1103 hval = UMA_HASH(newhash, slab->uhs_data); 1104 LIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 1105 slab, uhs_hlink); 1106 } 1107 1108 return (1); 1109 } 1110 1111 /* 1112 * Free the hash bucket to the appropriate backing store. 1113 * 1114 * Arguments: 1115 * slab_hash The hash bucket we're freeing 1116 * hashsize The number of entries in that hash bucket 1117 * 1118 * Returns: 1119 * Nothing 1120 */ 1121 static void 1122 hash_free(struct uma_hash *hash) 1123 { 1124 if (hash->uh_slab_hash == NULL) 1125 return; 1126 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 1127 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 1128 else 1129 free(hash->uh_slab_hash, M_UMAHASH); 1130 } 1131 1132 /* 1133 * Frees all outstanding items in a bucket 1134 * 1135 * Arguments: 1136 * zone The zone to free to, must be unlocked. 1137 * bucket The free/alloc bucket with items. 1138 * 1139 * Returns: 1140 * Nothing 1141 */ 1142 static void 1143 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 1144 { 1145 int i; 1146 1147 if (bucket->ub_cnt == 0) 1148 return; 1149 1150 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 1151 bucket->ub_seq != SMR_SEQ_INVALID) { 1152 smr_wait(zone->uz_smr, bucket->ub_seq); 1153 bucket->ub_seq = SMR_SEQ_INVALID; 1154 for (i = 0; i < bucket->ub_cnt; i++) 1155 item_dtor(zone, bucket->ub_bucket[i], 1156 zone->uz_size, NULL, SKIP_NONE); 1157 } 1158 if (zone->uz_fini) 1159 for (i = 0; i < bucket->ub_cnt; i++) 1160 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 1161 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 1162 if (zone->uz_max_items > 0) 1163 zone_free_limit(zone, bucket->ub_cnt); 1164 #ifdef INVARIANTS 1165 bzero(bucket->ub_bucket, sizeof(void *) * bucket->ub_cnt); 1166 #endif 1167 bucket->ub_cnt = 0; 1168 } 1169 1170 /* 1171 * Drains the per cpu caches for a zone. 1172 * 1173 * NOTE: This may only be called while the zone is being torn down, and not 1174 * during normal operation. This is necessary in order that we do not have 1175 * to migrate CPUs to drain the per-CPU caches. 1176 * 1177 * Arguments: 1178 * zone The zone to drain, must be unlocked. 1179 * 1180 * Returns: 1181 * Nothing 1182 */ 1183 static void 1184 cache_drain(uma_zone_t zone) 1185 { 1186 uma_cache_t cache; 1187 uma_bucket_t bucket; 1188 smr_seq_t seq; 1189 int cpu; 1190 1191 /* 1192 * XXX: It is safe to not lock the per-CPU caches, because we're 1193 * tearing down the zone anyway. I.e., there will be no further use 1194 * of the caches at this point. 1195 * 1196 * XXX: It would good to be able to assert that the zone is being 1197 * torn down to prevent improper use of cache_drain(). 1198 */ 1199 seq = SMR_SEQ_INVALID; 1200 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 1201 seq = smr_advance(zone->uz_smr); 1202 CPU_FOREACH(cpu) { 1203 cache = &zone->uz_cpu[cpu]; 1204 bucket = cache_bucket_unload_alloc(cache); 1205 if (bucket != NULL) 1206 bucket_free(zone, bucket, NULL); 1207 bucket = cache_bucket_unload_free(cache); 1208 if (bucket != NULL) { 1209 bucket->ub_seq = seq; 1210 bucket_free(zone, bucket, NULL); 1211 } 1212 bucket = cache_bucket_unload_cross(cache); 1213 if (bucket != NULL) { 1214 bucket->ub_seq = seq; 1215 bucket_free(zone, bucket, NULL); 1216 } 1217 } 1218 bucket_cache_reclaim(zone, true); 1219 } 1220 1221 static void 1222 cache_shrink(uma_zone_t zone, void *unused) 1223 { 1224 1225 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1226 return; 1227 1228 zone->uz_bucket_size = 1229 (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2; 1230 } 1231 1232 static void 1233 cache_drain_safe_cpu(uma_zone_t zone, void *unused) 1234 { 1235 uma_cache_t cache; 1236 uma_bucket_t b1, b2, b3; 1237 int domain; 1238 1239 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1240 return; 1241 1242 b1 = b2 = b3 = NULL; 1243 critical_enter(); 1244 cache = &zone->uz_cpu[curcpu]; 1245 domain = PCPU_GET(domain); 1246 b1 = cache_bucket_unload_alloc(cache); 1247 1248 /* 1249 * Don't flush SMR zone buckets. This leaves the zone without a 1250 * bucket and forces every free to synchronize(). 1251 */ 1252 if ((zone->uz_flags & UMA_ZONE_SMR) == 0) { 1253 b2 = cache_bucket_unload_free(cache); 1254 b3 = cache_bucket_unload_cross(cache); 1255 } 1256 critical_exit(); 1257 1258 if (b1 != NULL) 1259 zone_free_bucket(zone, b1, NULL, domain, false); 1260 if (b2 != NULL) 1261 zone_free_bucket(zone, b2, NULL, domain, false); 1262 if (b3 != NULL) { 1263 /* Adjust the domain so it goes to zone_free_cross. */ 1264 domain = (domain + 1) % vm_ndomains; 1265 zone_free_bucket(zone, b3, NULL, domain, false); 1266 } 1267 } 1268 1269 /* 1270 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 1271 * This is an expensive call because it needs to bind to all CPUs 1272 * one by one and enter a critical section on each of them in order 1273 * to safely access their cache buckets. 1274 * Zone lock must not be held on call this function. 1275 */ 1276 static void 1277 pcpu_cache_drain_safe(uma_zone_t zone) 1278 { 1279 int cpu; 1280 1281 /* 1282 * Polite bucket sizes shrinking was not enough, shrink aggressively. 1283 */ 1284 if (zone) 1285 cache_shrink(zone, NULL); 1286 else 1287 zone_foreach(cache_shrink, NULL); 1288 1289 CPU_FOREACH(cpu) { 1290 thread_lock(curthread); 1291 sched_bind(curthread, cpu); 1292 thread_unlock(curthread); 1293 1294 if (zone) 1295 cache_drain_safe_cpu(zone, NULL); 1296 else 1297 zone_foreach(cache_drain_safe_cpu, NULL); 1298 } 1299 thread_lock(curthread); 1300 sched_unbind(curthread); 1301 thread_unlock(curthread); 1302 } 1303 1304 /* 1305 * Reclaim cached buckets from a zone. All buckets are reclaimed if the caller 1306 * requested a drain, otherwise the per-domain caches are trimmed to either 1307 * estimated working set size. 1308 */ 1309 static void 1310 bucket_cache_reclaim(uma_zone_t zone, bool drain) 1311 { 1312 uma_zone_domain_t zdom; 1313 uma_bucket_t bucket; 1314 long target; 1315 int i; 1316 1317 /* 1318 * Shrink the zone bucket size to ensure that the per-CPU caches 1319 * don't grow too large. 1320 */ 1321 if (zone->uz_bucket_size > zone->uz_bucket_size_min) 1322 zone->uz_bucket_size--; 1323 1324 for (i = 0; i < vm_ndomains; i++) { 1325 /* 1326 * The cross bucket is partially filled and not part of 1327 * the item count. Reclaim it individually here. 1328 */ 1329 zdom = ZDOM_GET(zone, i); 1330 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 || drain) { 1331 ZONE_CROSS_LOCK(zone); 1332 bucket = zdom->uzd_cross; 1333 zdom->uzd_cross = NULL; 1334 ZONE_CROSS_UNLOCK(zone); 1335 if (bucket != NULL) 1336 bucket_free(zone, bucket, NULL); 1337 } 1338 1339 /* 1340 * If we were asked to drain the zone, we are done only once 1341 * this bucket cache is empty. Otherwise, we reclaim items in 1342 * excess of the zone's estimated working set size. If the 1343 * difference nitems - imin is larger than the WSS estimate, 1344 * then the estimate will grow at the end of this interval and 1345 * we ignore the historical average. 1346 */ 1347 ZDOM_LOCK(zdom); 1348 target = drain ? 0 : lmax(zdom->uzd_wss, zdom->uzd_nitems - 1349 zdom->uzd_imin); 1350 while (zdom->uzd_nitems > target) { 1351 bucket = zone_fetch_bucket(zone, zdom, true); 1352 if (bucket == NULL) 1353 break; 1354 bucket_free(zone, bucket, NULL); 1355 ZDOM_LOCK(zdom); 1356 } 1357 ZDOM_UNLOCK(zdom); 1358 } 1359 } 1360 1361 static void 1362 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 1363 { 1364 uint8_t *mem; 1365 int i; 1366 uint8_t flags; 1367 1368 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 1369 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 1370 1371 mem = slab_data(slab, keg); 1372 flags = slab->us_flags; 1373 i = start; 1374 if (keg->uk_fini != NULL) { 1375 for (i--; i > -1; i--) 1376 #ifdef INVARIANTS 1377 /* 1378 * trash_fini implies that dtor was trash_dtor. trash_fini 1379 * would check that memory hasn't been modified since free, 1380 * which executed trash_dtor. 1381 * That's why we need to run uma_dbg_kskip() check here, 1382 * albeit we don't make skip check for other init/fini 1383 * invocations. 1384 */ 1385 if (!uma_dbg_kskip(keg, slab_item(slab, keg, i)) || 1386 keg->uk_fini != trash_fini) 1387 #endif 1388 keg->uk_fini(slab_item(slab, keg, i), keg->uk_size); 1389 } 1390 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) 1391 zone_free_item(slabzone(keg->uk_ipers), slab_tohashslab(slab), 1392 NULL, SKIP_NONE); 1393 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 1394 uma_total_dec(PAGE_SIZE * keg->uk_ppera); 1395 } 1396 1397 static void 1398 keg_drain_domain(uma_keg_t keg, int domain) 1399 { 1400 struct slabhead freeslabs; 1401 uma_domain_t dom; 1402 uma_slab_t slab, tmp; 1403 uint32_t i, stofree, stokeep, partial; 1404 1405 dom = &keg->uk_domain[domain]; 1406 LIST_INIT(&freeslabs); 1407 1408 CTR4(KTR_UMA, "keg_drain %s(%p) domain %d free items: %u", 1409 keg->uk_name, keg, domain, dom->ud_free_items); 1410 1411 KEG_LOCK(keg, domain); 1412 1413 /* 1414 * Are the free items in partially allocated slabs sufficient to meet 1415 * the reserve? If not, compute the number of fully free slabs that must 1416 * be kept. 1417 */ 1418 partial = dom->ud_free_items - dom->ud_free_slabs * keg->uk_ipers; 1419 if (partial < keg->uk_reserve) { 1420 stokeep = min(dom->ud_free_slabs, 1421 howmany(keg->uk_reserve - partial, keg->uk_ipers)); 1422 } else { 1423 stokeep = 0; 1424 } 1425 stofree = dom->ud_free_slabs - stokeep; 1426 1427 /* 1428 * Partition the free slabs into two sets: those that must be kept in 1429 * order to maintain the reserve, and those that may be released back to 1430 * the system. Since one set may be much larger than the other, 1431 * populate the smaller of the two sets and swap them if necessary. 1432 */ 1433 for (i = min(stofree, stokeep); i > 0; i--) { 1434 slab = LIST_FIRST(&dom->ud_free_slab); 1435 LIST_REMOVE(slab, us_link); 1436 LIST_INSERT_HEAD(&freeslabs, slab, us_link); 1437 } 1438 if (stofree > stokeep) 1439 LIST_SWAP(&freeslabs, &dom->ud_free_slab, uma_slab, us_link); 1440 1441 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) { 1442 LIST_FOREACH(slab, &freeslabs, us_link) 1443 UMA_HASH_REMOVE(&keg->uk_hash, slab); 1444 } 1445 dom->ud_free_items -= stofree * keg->uk_ipers; 1446 dom->ud_free_slabs -= stofree; 1447 dom->ud_pages -= stofree * keg->uk_ppera; 1448 KEG_UNLOCK(keg, domain); 1449 1450 LIST_FOREACH_SAFE(slab, &freeslabs, us_link, tmp) 1451 keg_free_slab(keg, slab, keg->uk_ipers); 1452 } 1453 1454 /* 1455 * Frees pages from a keg back to the system. This is done on demand from 1456 * the pageout daemon. 1457 * 1458 * Returns nothing. 1459 */ 1460 static void 1461 keg_drain(uma_keg_t keg) 1462 { 1463 int i; 1464 1465 if ((keg->uk_flags & UMA_ZONE_NOFREE) != 0) 1466 return; 1467 for (i = 0; i < vm_ndomains; i++) 1468 keg_drain_domain(keg, i); 1469 } 1470 1471 static void 1472 zone_reclaim(uma_zone_t zone, int waitok, bool drain) 1473 { 1474 1475 /* 1476 * Set draining to interlock with zone_dtor() so we can release our 1477 * locks as we go. Only dtor() should do a WAITOK call since it 1478 * is the only call that knows the structure will still be available 1479 * when it wakes up. 1480 */ 1481 ZONE_LOCK(zone); 1482 while (zone->uz_flags & UMA_ZFLAG_RECLAIMING) { 1483 if (waitok == M_NOWAIT) 1484 goto out; 1485 msleep(zone, &ZDOM_GET(zone, 0)->uzd_lock, PVM, "zonedrain", 1486 1); 1487 } 1488 zone->uz_flags |= UMA_ZFLAG_RECLAIMING; 1489 ZONE_UNLOCK(zone); 1490 bucket_cache_reclaim(zone, drain); 1491 1492 /* 1493 * The DRAINING flag protects us from being freed while 1494 * we're running. Normally the uma_rwlock would protect us but we 1495 * must be able to release and acquire the right lock for each keg. 1496 */ 1497 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) 1498 keg_drain(zone->uz_keg); 1499 ZONE_LOCK(zone); 1500 zone->uz_flags &= ~UMA_ZFLAG_RECLAIMING; 1501 wakeup(zone); 1502 out: 1503 ZONE_UNLOCK(zone); 1504 } 1505 1506 static void 1507 zone_drain(uma_zone_t zone, void *unused) 1508 { 1509 1510 zone_reclaim(zone, M_NOWAIT, true); 1511 } 1512 1513 static void 1514 zone_trim(uma_zone_t zone, void *unused) 1515 { 1516 1517 zone_reclaim(zone, M_NOWAIT, false); 1518 } 1519 1520 /* 1521 * Allocate a new slab for a keg and inserts it into the partial slab list. 1522 * The keg should be unlocked on entry. If the allocation succeeds it will 1523 * be locked on return. 1524 * 1525 * Arguments: 1526 * flags Wait flags for the item initialization routine 1527 * aflags Wait flags for the slab allocation 1528 * 1529 * Returns: 1530 * The slab that was allocated or NULL if there is no memory and the 1531 * caller specified M_NOWAIT. 1532 */ 1533 static uma_slab_t 1534 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags, 1535 int aflags) 1536 { 1537 uma_domain_t dom; 1538 uma_alloc allocf; 1539 uma_slab_t slab; 1540 unsigned long size; 1541 uint8_t *mem; 1542 uint8_t sflags; 1543 int i; 1544 1545 KASSERT(domain >= 0 && domain < vm_ndomains, 1546 ("keg_alloc_slab: domain %d out of range", domain)); 1547 1548 allocf = keg->uk_allocf; 1549 slab = NULL; 1550 mem = NULL; 1551 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) { 1552 uma_hash_slab_t hslab; 1553 hslab = zone_alloc_item(slabzone(keg->uk_ipers), NULL, 1554 domain, aflags); 1555 if (hslab == NULL) 1556 goto fail; 1557 slab = &hslab->uhs_slab; 1558 } 1559 1560 /* 1561 * This reproduces the old vm_zone behavior of zero filling pages the 1562 * first time they are added to a zone. 1563 * 1564 * Malloced items are zeroed in uma_zalloc. 1565 */ 1566 1567 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1568 aflags |= M_ZERO; 1569 else 1570 aflags &= ~M_ZERO; 1571 1572 if (keg->uk_flags & UMA_ZONE_NODUMP) 1573 aflags |= M_NODUMP; 1574 1575 /* zone is passed for legacy reasons. */ 1576 size = keg->uk_ppera * PAGE_SIZE; 1577 mem = allocf(zone, size, domain, &sflags, aflags); 1578 if (mem == NULL) { 1579 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) 1580 zone_free_item(slabzone(keg->uk_ipers), 1581 slab_tohashslab(slab), NULL, SKIP_NONE); 1582 goto fail; 1583 } 1584 uma_total_inc(size); 1585 1586 /* For HASH zones all pages go to the same uma_domain. */ 1587 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 1588 domain = 0; 1589 1590 /* Point the slab into the allocated memory */ 1591 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) 1592 slab = (uma_slab_t )(mem + keg->uk_pgoff); 1593 else 1594 slab_tohashslab(slab)->uhs_data = mem; 1595 1596 if (keg->uk_flags & UMA_ZFLAG_VTOSLAB) 1597 for (i = 0; i < keg->uk_ppera; i++) 1598 vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE), 1599 zone, slab); 1600 1601 slab->us_freecount = keg->uk_ipers; 1602 slab->us_flags = sflags; 1603 slab->us_domain = domain; 1604 1605 BIT_FILL(keg->uk_ipers, &slab->us_free); 1606 #ifdef INVARIANTS 1607 BIT_ZERO(keg->uk_ipers, slab_dbg_bits(slab, keg)); 1608 #endif 1609 1610 if (keg->uk_init != NULL) { 1611 for (i = 0; i < keg->uk_ipers; i++) 1612 if (keg->uk_init(slab_item(slab, keg, i), 1613 keg->uk_size, flags) != 0) 1614 break; 1615 if (i != keg->uk_ipers) { 1616 keg_free_slab(keg, slab, i); 1617 goto fail; 1618 } 1619 } 1620 KEG_LOCK(keg, domain); 1621 1622 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1623 slab, keg->uk_name, keg); 1624 1625 if (keg->uk_flags & UMA_ZFLAG_HASH) 1626 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1627 1628 /* 1629 * If we got a slab here it's safe to mark it partially used 1630 * and return. We assume that the caller is going to remove 1631 * at least one item. 1632 */ 1633 dom = &keg->uk_domain[domain]; 1634 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 1635 dom->ud_pages += keg->uk_ppera; 1636 dom->ud_free_items += keg->uk_ipers; 1637 1638 return (slab); 1639 1640 fail: 1641 return (NULL); 1642 } 1643 1644 /* 1645 * This function is intended to be used early on in place of page_alloc() so 1646 * that we may use the boot time page cache to satisfy allocations before 1647 * the VM is ready. 1648 */ 1649 static void * 1650 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1651 int wait) 1652 { 1653 vm_paddr_t pa; 1654 vm_page_t m; 1655 void *mem; 1656 int pages; 1657 int i; 1658 1659 pages = howmany(bytes, PAGE_SIZE); 1660 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1661 1662 *pflag = UMA_SLAB_BOOT; 1663 m = vm_page_alloc_contig_domain(NULL, 0, domain, 1664 malloc2vm_flags(wait) | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED, pages, 1665 (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT); 1666 if (m == NULL) 1667 return (NULL); 1668 1669 pa = VM_PAGE_TO_PHYS(m); 1670 for (i = 0; i < pages; i++, pa += PAGE_SIZE) { 1671 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 1672 defined(__riscv) || defined(__powerpc64__) 1673 if ((wait & M_NODUMP) == 0) 1674 dump_add_page(pa); 1675 #endif 1676 } 1677 /* Allocate KVA and indirectly advance bootmem. */ 1678 mem = (void *)pmap_map(&bootmem, m->phys_addr, 1679 m->phys_addr + (pages * PAGE_SIZE), VM_PROT_READ | VM_PROT_WRITE); 1680 if ((wait & M_ZERO) != 0) 1681 bzero(mem, pages * PAGE_SIZE); 1682 1683 return (mem); 1684 } 1685 1686 static void 1687 startup_free(void *mem, vm_size_t bytes) 1688 { 1689 vm_offset_t va; 1690 vm_page_t m; 1691 1692 va = (vm_offset_t)mem; 1693 m = PHYS_TO_VM_PAGE(pmap_kextract(va)); 1694 1695 /* 1696 * startup_alloc() returns direct-mapped slabs on some platforms. Avoid 1697 * unmapping ranges of the direct map. 1698 */ 1699 if (va >= bootstart && va + bytes <= bootmem) 1700 pmap_remove(kernel_pmap, va, va + bytes); 1701 for (; bytes != 0; bytes -= PAGE_SIZE, m++) { 1702 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 1703 defined(__riscv) || defined(__powerpc64__) 1704 dump_drop_page(VM_PAGE_TO_PHYS(m)); 1705 #endif 1706 vm_page_unwire_noq(m); 1707 vm_page_free(m); 1708 } 1709 } 1710 1711 /* 1712 * Allocates a number of pages from the system 1713 * 1714 * Arguments: 1715 * bytes The number of bytes requested 1716 * wait Shall we wait? 1717 * 1718 * Returns: 1719 * A pointer to the alloced memory or possibly 1720 * NULL if M_NOWAIT is set. 1721 */ 1722 static void * 1723 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1724 int wait) 1725 { 1726 void *p; /* Returned page */ 1727 1728 *pflag = UMA_SLAB_KERNEL; 1729 p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait); 1730 1731 return (p); 1732 } 1733 1734 static void * 1735 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1736 int wait) 1737 { 1738 struct pglist alloctail; 1739 vm_offset_t addr, zkva; 1740 int cpu, flags; 1741 vm_page_t p, p_next; 1742 #ifdef NUMA 1743 struct pcpu *pc; 1744 #endif 1745 1746 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE); 1747 1748 TAILQ_INIT(&alloctail); 1749 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1750 malloc2vm_flags(wait); 1751 *pflag = UMA_SLAB_KERNEL; 1752 for (cpu = 0; cpu <= mp_maxid; cpu++) { 1753 if (CPU_ABSENT(cpu)) { 1754 p = vm_page_alloc(NULL, 0, flags); 1755 } else { 1756 #ifndef NUMA 1757 p = vm_page_alloc(NULL, 0, flags); 1758 #else 1759 pc = pcpu_find(cpu); 1760 if (__predict_false(VM_DOMAIN_EMPTY(pc->pc_domain))) 1761 p = NULL; 1762 else 1763 p = vm_page_alloc_domain(NULL, 0, 1764 pc->pc_domain, flags); 1765 if (__predict_false(p == NULL)) 1766 p = vm_page_alloc(NULL, 0, flags); 1767 #endif 1768 } 1769 if (__predict_false(p == NULL)) 1770 goto fail; 1771 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1772 } 1773 if ((addr = kva_alloc(bytes)) == 0) 1774 goto fail; 1775 zkva = addr; 1776 TAILQ_FOREACH(p, &alloctail, listq) { 1777 pmap_qenter(zkva, &p, 1); 1778 zkva += PAGE_SIZE; 1779 } 1780 return ((void*)addr); 1781 fail: 1782 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1783 vm_page_unwire_noq(p); 1784 vm_page_free(p); 1785 } 1786 return (NULL); 1787 } 1788 1789 /* 1790 * Allocates a number of pages from within an object 1791 * 1792 * Arguments: 1793 * bytes The number of bytes requested 1794 * wait Shall we wait? 1795 * 1796 * Returns: 1797 * A pointer to the alloced memory or possibly 1798 * NULL if M_NOWAIT is set. 1799 */ 1800 static void * 1801 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 1802 int wait) 1803 { 1804 TAILQ_HEAD(, vm_page) alloctail; 1805 u_long npages; 1806 vm_offset_t retkva, zkva; 1807 vm_page_t p, p_next; 1808 uma_keg_t keg; 1809 1810 TAILQ_INIT(&alloctail); 1811 keg = zone->uz_keg; 1812 1813 npages = howmany(bytes, PAGE_SIZE); 1814 while (npages > 0) { 1815 p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT | 1816 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1817 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK : 1818 VM_ALLOC_NOWAIT)); 1819 if (p != NULL) { 1820 /* 1821 * Since the page does not belong to an object, its 1822 * listq is unused. 1823 */ 1824 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1825 npages--; 1826 continue; 1827 } 1828 /* 1829 * Page allocation failed, free intermediate pages and 1830 * exit. 1831 */ 1832 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1833 vm_page_unwire_noq(p); 1834 vm_page_free(p); 1835 } 1836 return (NULL); 1837 } 1838 *flags = UMA_SLAB_PRIV; 1839 zkva = keg->uk_kva + 1840 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1841 retkva = zkva; 1842 TAILQ_FOREACH(p, &alloctail, listq) { 1843 pmap_qenter(zkva, &p, 1); 1844 zkva += PAGE_SIZE; 1845 } 1846 1847 return ((void *)retkva); 1848 } 1849 1850 /* 1851 * Allocate physically contiguous pages. 1852 */ 1853 static void * 1854 contig_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1855 int wait) 1856 { 1857 1858 *pflag = UMA_SLAB_KERNEL; 1859 return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain), 1860 bytes, wait, 0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT)); 1861 } 1862 1863 /* 1864 * Frees a number of pages to the system 1865 * 1866 * Arguments: 1867 * mem A pointer to the memory to be freed 1868 * size The size of the memory being freed 1869 * flags The original p->us_flags field 1870 * 1871 * Returns: 1872 * Nothing 1873 */ 1874 static void 1875 page_free(void *mem, vm_size_t size, uint8_t flags) 1876 { 1877 1878 if ((flags & UMA_SLAB_BOOT) != 0) { 1879 startup_free(mem, size); 1880 return; 1881 } 1882 1883 KASSERT((flags & UMA_SLAB_KERNEL) != 0, 1884 ("UMA: page_free used with invalid flags %x", flags)); 1885 1886 kmem_free((vm_offset_t)mem, size); 1887 } 1888 1889 /* 1890 * Frees pcpu zone allocations 1891 * 1892 * Arguments: 1893 * mem A pointer to the memory to be freed 1894 * size The size of the memory being freed 1895 * flags The original p->us_flags field 1896 * 1897 * Returns: 1898 * Nothing 1899 */ 1900 static void 1901 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags) 1902 { 1903 vm_offset_t sva, curva; 1904 vm_paddr_t paddr; 1905 vm_page_t m; 1906 1907 MPASS(size == (mp_maxid+1)*PAGE_SIZE); 1908 1909 if ((flags & UMA_SLAB_BOOT) != 0) { 1910 startup_free(mem, size); 1911 return; 1912 } 1913 1914 sva = (vm_offset_t)mem; 1915 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) { 1916 paddr = pmap_kextract(curva); 1917 m = PHYS_TO_VM_PAGE(paddr); 1918 vm_page_unwire_noq(m); 1919 vm_page_free(m); 1920 } 1921 pmap_qremove(sva, size >> PAGE_SHIFT); 1922 kva_free(sva, size); 1923 } 1924 1925 /* 1926 * Zero fill initializer 1927 * 1928 * Arguments/Returns follow uma_init specifications 1929 */ 1930 static int 1931 zero_init(void *mem, int size, int flags) 1932 { 1933 bzero(mem, size); 1934 return (0); 1935 } 1936 1937 #ifdef INVARIANTS 1938 static struct noslabbits * 1939 slab_dbg_bits(uma_slab_t slab, uma_keg_t keg) 1940 { 1941 1942 return ((void *)((char *)&slab->us_free + BITSET_SIZE(keg->uk_ipers))); 1943 } 1944 #endif 1945 1946 /* 1947 * Actual size of embedded struct slab (!OFFPAGE). 1948 */ 1949 static size_t 1950 slab_sizeof(int nitems) 1951 { 1952 size_t s; 1953 1954 s = sizeof(struct uma_slab) + BITSET_SIZE(nitems) * SLAB_BITSETS; 1955 return (roundup(s, UMA_ALIGN_PTR + 1)); 1956 } 1957 1958 #define UMA_FIXPT_SHIFT 31 1959 #define UMA_FRAC_FIXPT(n, d) \ 1960 ((uint32_t)(((uint64_t)(n) << UMA_FIXPT_SHIFT) / (d))) 1961 #define UMA_FIXPT_PCT(f) \ 1962 ((u_int)(((uint64_t)100 * (f)) >> UMA_FIXPT_SHIFT)) 1963 #define UMA_PCT_FIXPT(pct) UMA_FRAC_FIXPT((pct), 100) 1964 #define UMA_MIN_EFF UMA_PCT_FIXPT(100 - UMA_MAX_WASTE) 1965 1966 /* 1967 * Compute the number of items that will fit in a slab. If hdr is true, the 1968 * item count may be limited to provide space in the slab for an inline slab 1969 * header. Otherwise, all slab space will be provided for item storage. 1970 */ 1971 static u_int 1972 slab_ipers_hdr(u_int size, u_int rsize, u_int slabsize, bool hdr) 1973 { 1974 u_int ipers; 1975 u_int padpi; 1976 1977 /* The padding between items is not needed after the last item. */ 1978 padpi = rsize - size; 1979 1980 if (hdr) { 1981 /* 1982 * Start with the maximum item count and remove items until 1983 * the slab header first alongside the allocatable memory. 1984 */ 1985 for (ipers = MIN(SLAB_MAX_SETSIZE, 1986 (slabsize + padpi - slab_sizeof(1)) / rsize); 1987 ipers > 0 && 1988 ipers * rsize - padpi + slab_sizeof(ipers) > slabsize; 1989 ipers--) 1990 continue; 1991 } else { 1992 ipers = MIN((slabsize + padpi) / rsize, SLAB_MAX_SETSIZE); 1993 } 1994 1995 return (ipers); 1996 } 1997 1998 struct keg_layout_result { 1999 u_int format; 2000 u_int slabsize; 2001 u_int ipers; 2002 u_int eff; 2003 }; 2004 2005 static void 2006 keg_layout_one(uma_keg_t keg, u_int rsize, u_int slabsize, u_int fmt, 2007 struct keg_layout_result *kl) 2008 { 2009 u_int total; 2010 2011 kl->format = fmt; 2012 kl->slabsize = slabsize; 2013 2014 /* Handle INTERNAL as inline with an extra page. */ 2015 if ((fmt & UMA_ZFLAG_INTERNAL) != 0) { 2016 kl->format &= ~UMA_ZFLAG_INTERNAL; 2017 kl->slabsize += PAGE_SIZE; 2018 } 2019 2020 kl->ipers = slab_ipers_hdr(keg->uk_size, rsize, kl->slabsize, 2021 (fmt & UMA_ZFLAG_OFFPAGE) == 0); 2022 2023 /* Account for memory used by an offpage slab header. */ 2024 total = kl->slabsize; 2025 if ((fmt & UMA_ZFLAG_OFFPAGE) != 0) 2026 total += slabzone(kl->ipers)->uz_keg->uk_rsize; 2027 2028 kl->eff = UMA_FRAC_FIXPT(kl->ipers * rsize, total); 2029 } 2030 2031 /* 2032 * Determine the format of a uma keg. This determines where the slab header 2033 * will be placed (inline or offpage) and calculates ipers, rsize, and ppera. 2034 * 2035 * Arguments 2036 * keg The zone we should initialize 2037 * 2038 * Returns 2039 * Nothing 2040 */ 2041 static void 2042 keg_layout(uma_keg_t keg) 2043 { 2044 struct keg_layout_result kl = {}, kl_tmp; 2045 u_int fmts[2]; 2046 u_int alignsize; 2047 u_int nfmt; 2048 u_int pages; 2049 u_int rsize; 2050 u_int slabsize; 2051 u_int i, j; 2052 2053 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 2054 (keg->uk_size <= UMA_PCPU_ALLOC_SIZE && 2055 (keg->uk_flags & UMA_ZONE_CACHESPREAD) == 0), 2056 ("%s: cannot configure for PCPU: keg=%s, size=%u, flags=0x%b", 2057 __func__, keg->uk_name, keg->uk_size, keg->uk_flags, 2058 PRINT_UMA_ZFLAGS)); 2059 KASSERT((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) == 0 || 2060 (keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0, 2061 ("%s: incompatible flags 0x%b", __func__, keg->uk_flags, 2062 PRINT_UMA_ZFLAGS)); 2063 2064 alignsize = keg->uk_align + 1; 2065 2066 /* 2067 * Calculate the size of each allocation (rsize) according to 2068 * alignment. If the requested size is smaller than we have 2069 * allocation bits for we round it up. 2070 */ 2071 rsize = MAX(keg->uk_size, UMA_SMALLEST_UNIT); 2072 rsize = roundup2(rsize, alignsize); 2073 2074 if ((keg->uk_flags & UMA_ZONE_CACHESPREAD) != 0) { 2075 /* 2076 * We want one item to start on every align boundary in a page. 2077 * To do this we will span pages. We will also extend the item 2078 * by the size of align if it is an even multiple of align. 2079 * Otherwise, it would fall on the same boundary every time. 2080 */ 2081 if ((rsize & alignsize) == 0) 2082 rsize += alignsize; 2083 slabsize = rsize * (PAGE_SIZE / alignsize); 2084 slabsize = MIN(slabsize, rsize * SLAB_MAX_SETSIZE); 2085 slabsize = MIN(slabsize, UMA_CACHESPREAD_MAX_SIZE); 2086 slabsize = round_page(slabsize); 2087 } else { 2088 /* 2089 * Start with a slab size of as many pages as it takes to 2090 * represent a single item. We will try to fit as many 2091 * additional items into the slab as possible. 2092 */ 2093 slabsize = round_page(keg->uk_size); 2094 } 2095 2096 /* Build a list of all of the available formats for this keg. */ 2097 nfmt = 0; 2098 2099 /* Evaluate an inline slab layout. */ 2100 if ((keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0) 2101 fmts[nfmt++] = 0; 2102 2103 /* TODO: vm_page-embedded slab. */ 2104 2105 /* 2106 * We can't do OFFPAGE if we're internal or if we've been 2107 * asked to not go to the VM for buckets. If we do this we 2108 * may end up going to the VM for slabs which we do not want 2109 * to do if we're UMA_ZONE_VM, which clearly forbids it. 2110 * In those cases, evaluate a pseudo-format called INTERNAL 2111 * which has an inline slab header and one extra page to 2112 * guarantee that it fits. 2113 * 2114 * Otherwise, see if using an OFFPAGE slab will improve our 2115 * efficiency. 2116 */ 2117 if ((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) != 0) 2118 fmts[nfmt++] = UMA_ZFLAG_INTERNAL; 2119 else 2120 fmts[nfmt++] = UMA_ZFLAG_OFFPAGE; 2121 2122 /* 2123 * Choose a slab size and format which satisfy the minimum efficiency. 2124 * Prefer the smallest slab size that meets the constraints. 2125 * 2126 * Start with a minimum slab size, to accommodate CACHESPREAD. Then, 2127 * for small items (up to PAGE_SIZE), the iteration increment is one 2128 * page; and for large items, the increment is one item. 2129 */ 2130 i = (slabsize + rsize - keg->uk_size) / MAX(PAGE_SIZE, rsize); 2131 KASSERT(i >= 1, ("keg %s(%p) flags=0x%b slabsize=%u, rsize=%u, i=%u", 2132 keg->uk_name, keg, keg->uk_flags, PRINT_UMA_ZFLAGS, slabsize, 2133 rsize, i)); 2134 for ( ; ; i++) { 2135 slabsize = (rsize <= PAGE_SIZE) ? ptoa(i) : 2136 round_page(rsize * (i - 1) + keg->uk_size); 2137 2138 for (j = 0; j < nfmt; j++) { 2139 /* Only if we have no viable format yet. */ 2140 if ((fmts[j] & UMA_ZFLAG_INTERNAL) != 0 && 2141 kl.ipers > 0) 2142 continue; 2143 2144 keg_layout_one(keg, rsize, slabsize, fmts[j], &kl_tmp); 2145 if (kl_tmp.eff <= kl.eff) 2146 continue; 2147 2148 kl = kl_tmp; 2149 2150 CTR6(KTR_UMA, "keg %s layout: format %#x " 2151 "(ipers %u * rsize %u) / slabsize %#x = %u%% eff", 2152 keg->uk_name, kl.format, kl.ipers, rsize, 2153 kl.slabsize, UMA_FIXPT_PCT(kl.eff)); 2154 2155 /* Stop when we reach the minimum efficiency. */ 2156 if (kl.eff >= UMA_MIN_EFF) 2157 break; 2158 } 2159 2160 if (kl.eff >= UMA_MIN_EFF || !multipage_slabs || 2161 slabsize >= SLAB_MAX_SETSIZE * rsize || 2162 (keg->uk_flags & (UMA_ZONE_PCPU | UMA_ZONE_CONTIG)) != 0) 2163 break; 2164 } 2165 2166 pages = atop(kl.slabsize); 2167 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 2168 pages *= mp_maxid + 1; 2169 2170 keg->uk_rsize = rsize; 2171 keg->uk_ipers = kl.ipers; 2172 keg->uk_ppera = pages; 2173 keg->uk_flags |= kl.format; 2174 2175 /* 2176 * How do we find the slab header if it is offpage or if not all item 2177 * start addresses are in the same page? We could solve the latter 2178 * case with vaddr alignment, but we don't. 2179 */ 2180 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0 || 2181 (keg->uk_ipers - 1) * rsize >= PAGE_SIZE) { 2182 if ((keg->uk_flags & UMA_ZONE_NOTPAGE) != 0) 2183 keg->uk_flags |= UMA_ZFLAG_HASH; 2184 else 2185 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2186 } 2187 2188 CTR6(KTR_UMA, "%s: keg=%s, flags=%#x, rsize=%u, ipers=%u, ppera=%u", 2189 __func__, keg->uk_name, keg->uk_flags, rsize, keg->uk_ipers, 2190 pages); 2191 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE, 2192 ("%s: keg=%s, flags=0x%b, rsize=%u, ipers=%u, ppera=%u", __func__, 2193 keg->uk_name, keg->uk_flags, PRINT_UMA_ZFLAGS, rsize, 2194 keg->uk_ipers, pages)); 2195 } 2196 2197 /* 2198 * Keg header ctor. This initializes all fields, locks, etc. And inserts 2199 * the keg onto the global keg list. 2200 * 2201 * Arguments/Returns follow uma_ctor specifications 2202 * udata Actually uma_kctor_args 2203 */ 2204 static int 2205 keg_ctor(void *mem, int size, void *udata, int flags) 2206 { 2207 struct uma_kctor_args *arg = udata; 2208 uma_keg_t keg = mem; 2209 uma_zone_t zone; 2210 int i; 2211 2212 bzero(keg, size); 2213 keg->uk_size = arg->size; 2214 keg->uk_init = arg->uminit; 2215 keg->uk_fini = arg->fini; 2216 keg->uk_align = arg->align; 2217 keg->uk_reserve = 0; 2218 keg->uk_flags = arg->flags; 2219 2220 /* 2221 * We use a global round-robin policy by default. Zones with 2222 * UMA_ZONE_FIRSTTOUCH set will use first-touch instead, in which 2223 * case the iterator is never run. 2224 */ 2225 keg->uk_dr.dr_policy = DOMAINSET_RR(); 2226 keg->uk_dr.dr_iter = 0; 2227 2228 /* 2229 * The primary zone is passed to us at keg-creation time. 2230 */ 2231 zone = arg->zone; 2232 keg->uk_name = zone->uz_name; 2233 2234 if (arg->flags & UMA_ZONE_ZINIT) 2235 keg->uk_init = zero_init; 2236 2237 if (arg->flags & UMA_ZONE_MALLOC) 2238 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2239 2240 #ifndef SMP 2241 keg->uk_flags &= ~UMA_ZONE_PCPU; 2242 #endif 2243 2244 keg_layout(keg); 2245 2246 /* 2247 * Use a first-touch NUMA policy for kegs that pmap_extract() will 2248 * work on. Use round-robin for everything else. 2249 * 2250 * Zones may override the default by specifying either. 2251 */ 2252 #ifdef NUMA 2253 if ((keg->uk_flags & 2254 (UMA_ZONE_ROUNDROBIN | UMA_ZFLAG_CACHE | UMA_ZONE_NOTPAGE)) == 0) 2255 keg->uk_flags |= UMA_ZONE_FIRSTTOUCH; 2256 else if ((keg->uk_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2257 keg->uk_flags |= UMA_ZONE_ROUNDROBIN; 2258 #endif 2259 2260 /* 2261 * If we haven't booted yet we need allocations to go through the 2262 * startup cache until the vm is ready. 2263 */ 2264 #ifdef UMA_MD_SMALL_ALLOC 2265 if (keg->uk_ppera == 1) 2266 keg->uk_allocf = uma_small_alloc; 2267 else 2268 #endif 2269 if (booted < BOOT_KVA) 2270 keg->uk_allocf = startup_alloc; 2271 else if (keg->uk_flags & UMA_ZONE_PCPU) 2272 keg->uk_allocf = pcpu_page_alloc; 2273 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && keg->uk_ppera > 1) 2274 keg->uk_allocf = contig_alloc; 2275 else 2276 keg->uk_allocf = page_alloc; 2277 #ifdef UMA_MD_SMALL_ALLOC 2278 if (keg->uk_ppera == 1) 2279 keg->uk_freef = uma_small_free; 2280 else 2281 #endif 2282 if (keg->uk_flags & UMA_ZONE_PCPU) 2283 keg->uk_freef = pcpu_page_free; 2284 else 2285 keg->uk_freef = page_free; 2286 2287 /* 2288 * Initialize keg's locks. 2289 */ 2290 for (i = 0; i < vm_ndomains; i++) 2291 KEG_LOCK_INIT(keg, i, (arg->flags & UMA_ZONE_MTXCLASS)); 2292 2293 /* 2294 * If we're putting the slab header in the actual page we need to 2295 * figure out where in each page it goes. See slab_sizeof 2296 * definition. 2297 */ 2298 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) { 2299 size_t shsize; 2300 2301 shsize = slab_sizeof(keg->uk_ipers); 2302 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize; 2303 /* 2304 * The only way the following is possible is if with our 2305 * UMA_ALIGN_PTR adjustments we are now bigger than 2306 * UMA_SLAB_SIZE. I haven't checked whether this is 2307 * mathematically possible for all cases, so we make 2308 * sure here anyway. 2309 */ 2310 KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera, 2311 ("zone %s ipers %d rsize %d size %d slab won't fit", 2312 zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size)); 2313 } 2314 2315 if (keg->uk_flags & UMA_ZFLAG_HASH) 2316 hash_alloc(&keg->uk_hash, 0); 2317 2318 CTR3(KTR_UMA, "keg_ctor %p zone %s(%p)", keg, zone->uz_name, zone); 2319 2320 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 2321 2322 rw_wlock(&uma_rwlock); 2323 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 2324 rw_wunlock(&uma_rwlock); 2325 return (0); 2326 } 2327 2328 static void 2329 zone_kva_available(uma_zone_t zone, void *unused) 2330 { 2331 uma_keg_t keg; 2332 2333 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 2334 return; 2335 KEG_GET(zone, keg); 2336 2337 if (keg->uk_allocf == startup_alloc) { 2338 /* Switch to the real allocator. */ 2339 if (keg->uk_flags & UMA_ZONE_PCPU) 2340 keg->uk_allocf = pcpu_page_alloc; 2341 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && 2342 keg->uk_ppera > 1) 2343 keg->uk_allocf = contig_alloc; 2344 else 2345 keg->uk_allocf = page_alloc; 2346 } 2347 } 2348 2349 static void 2350 zone_alloc_counters(uma_zone_t zone, void *unused) 2351 { 2352 2353 zone->uz_allocs = counter_u64_alloc(M_WAITOK); 2354 zone->uz_frees = counter_u64_alloc(M_WAITOK); 2355 zone->uz_fails = counter_u64_alloc(M_WAITOK); 2356 zone->uz_xdomain = counter_u64_alloc(M_WAITOK); 2357 } 2358 2359 static void 2360 zone_alloc_sysctl(uma_zone_t zone, void *unused) 2361 { 2362 uma_zone_domain_t zdom; 2363 uma_domain_t dom; 2364 uma_keg_t keg; 2365 struct sysctl_oid *oid, *domainoid; 2366 int domains, i, cnt; 2367 static const char *nokeg = "cache zone"; 2368 char *c; 2369 2370 /* 2371 * Make a sysctl safe copy of the zone name by removing 2372 * any special characters and handling dups by appending 2373 * an index. 2374 */ 2375 if (zone->uz_namecnt != 0) { 2376 /* Count the number of decimal digits and '_' separator. */ 2377 for (i = 1, cnt = zone->uz_namecnt; cnt != 0; i++) 2378 cnt /= 10; 2379 zone->uz_ctlname = malloc(strlen(zone->uz_name) + i + 1, 2380 M_UMA, M_WAITOK); 2381 sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name, 2382 zone->uz_namecnt); 2383 } else 2384 zone->uz_ctlname = strdup(zone->uz_name, M_UMA); 2385 for (c = zone->uz_ctlname; *c != '\0'; c++) 2386 if (strchr("./\\ -", *c) != NULL) 2387 *c = '_'; 2388 2389 /* 2390 * Basic parameters at the root. 2391 */ 2392 zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma), 2393 OID_AUTO, zone->uz_ctlname, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2394 oid = zone->uz_oid; 2395 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2396 "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size"); 2397 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2398 "flags", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE, 2399 zone, 0, sysctl_handle_uma_zone_flags, "A", 2400 "Allocator configuration flags"); 2401 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2402 "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0, 2403 "Desired per-cpu cache size"); 2404 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2405 "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0, 2406 "Maximum allowed per-cpu cache size"); 2407 2408 /* 2409 * keg if present. 2410 */ 2411 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 2412 domains = vm_ndomains; 2413 else 2414 domains = 1; 2415 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2416 "keg", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2417 keg = zone->uz_keg; 2418 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) { 2419 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2420 "name", CTLFLAG_RD, keg->uk_name, "Keg name"); 2421 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2422 "rsize", CTLFLAG_RD, &keg->uk_rsize, 0, 2423 "Real object size with alignment"); 2424 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2425 "ppera", CTLFLAG_RD, &keg->uk_ppera, 0, 2426 "pages per-slab allocation"); 2427 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2428 "ipers", CTLFLAG_RD, &keg->uk_ipers, 0, 2429 "items available per-slab"); 2430 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2431 "align", CTLFLAG_RD, &keg->uk_align, 0, 2432 "item alignment mask"); 2433 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2434 "reserve", CTLFLAG_RD, &keg->uk_reserve, 0, 2435 "number of reserved items"); 2436 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2437 "efficiency", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2438 keg, 0, sysctl_handle_uma_slab_efficiency, "I", 2439 "Slab utilization (100 - internal fragmentation %)"); 2440 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(oid), 2441 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2442 for (i = 0; i < domains; i++) { 2443 dom = &keg->uk_domain[i]; 2444 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2445 OID_AUTO, VM_DOMAIN(i)->vmd_name, 2446 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2447 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2448 "pages", CTLFLAG_RD, &dom->ud_pages, 0, 2449 "Total pages currently allocated from VM"); 2450 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2451 "free_items", CTLFLAG_RD, &dom->ud_free_items, 0, 2452 "items free in the slab layer"); 2453 } 2454 } else 2455 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2456 "name", CTLFLAG_RD, nokeg, "Keg name"); 2457 2458 /* 2459 * Information about zone limits. 2460 */ 2461 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2462 "limit", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2463 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2464 "items", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2465 zone, 0, sysctl_handle_uma_zone_items, "QU", 2466 "Current number of allocated items if limit is set"); 2467 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2468 "max_items", CTLFLAG_RD, &zone->uz_max_items, 0, 2469 "Maximum number of allocated and cached items"); 2470 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2471 "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0, 2472 "Number of threads sleeping at limit"); 2473 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2474 "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0, 2475 "Total zone limit sleeps"); 2476 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2477 "bucket_max", CTLFLAG_RD, &zone->uz_bucket_max, 0, 2478 "Maximum number of items in each domain's bucket cache"); 2479 2480 /* 2481 * Per-domain zone information. 2482 */ 2483 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), 2484 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2485 for (i = 0; i < domains; i++) { 2486 zdom = ZDOM_GET(zone, i); 2487 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2488 OID_AUTO, VM_DOMAIN(i)->vmd_name, 2489 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2490 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2491 "nitems", CTLFLAG_RD, &zdom->uzd_nitems, 2492 "number of items in this domain"); 2493 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2494 "imax", CTLFLAG_RD, &zdom->uzd_imax, 2495 "maximum item count in this period"); 2496 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2497 "imin", CTLFLAG_RD, &zdom->uzd_imin, 2498 "minimum item count in this period"); 2499 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2500 "wss", CTLFLAG_RD, &zdom->uzd_wss, 2501 "Working set size"); 2502 } 2503 2504 /* 2505 * General statistics. 2506 */ 2507 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2508 "stats", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2509 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2510 "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2511 zone, 1, sysctl_handle_uma_zone_cur, "I", 2512 "Current number of allocated items"); 2513 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2514 "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2515 zone, 0, sysctl_handle_uma_zone_allocs, "QU", 2516 "Total allocation calls"); 2517 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2518 "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2519 zone, 0, sysctl_handle_uma_zone_frees, "QU", 2520 "Total free calls"); 2521 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2522 "fails", CTLFLAG_RD, &zone->uz_fails, 2523 "Number of allocation failures"); 2524 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2525 "xdomain", CTLFLAG_RD, &zone->uz_xdomain, 2526 "Free calls from the wrong domain"); 2527 } 2528 2529 struct uma_zone_count { 2530 const char *name; 2531 int count; 2532 }; 2533 2534 static void 2535 zone_count(uma_zone_t zone, void *arg) 2536 { 2537 struct uma_zone_count *cnt; 2538 2539 cnt = arg; 2540 /* 2541 * Some zones are rapidly created with identical names and 2542 * destroyed out of order. This can lead to gaps in the count. 2543 * Use one greater than the maximum observed for this name. 2544 */ 2545 if (strcmp(zone->uz_name, cnt->name) == 0) 2546 cnt->count = MAX(cnt->count, 2547 zone->uz_namecnt + 1); 2548 } 2549 2550 static void 2551 zone_update_caches(uma_zone_t zone) 2552 { 2553 int i; 2554 2555 for (i = 0; i <= mp_maxid; i++) { 2556 cache_set_uz_size(&zone->uz_cpu[i], zone->uz_size); 2557 cache_set_uz_flags(&zone->uz_cpu[i], zone->uz_flags); 2558 } 2559 } 2560 2561 /* 2562 * Zone header ctor. This initializes all fields, locks, etc. 2563 * 2564 * Arguments/Returns follow uma_ctor specifications 2565 * udata Actually uma_zctor_args 2566 */ 2567 static int 2568 zone_ctor(void *mem, int size, void *udata, int flags) 2569 { 2570 struct uma_zone_count cnt; 2571 struct uma_zctor_args *arg = udata; 2572 uma_zone_domain_t zdom; 2573 uma_zone_t zone = mem; 2574 uma_zone_t z; 2575 uma_keg_t keg; 2576 int i; 2577 2578 bzero(zone, size); 2579 zone->uz_name = arg->name; 2580 zone->uz_ctor = arg->ctor; 2581 zone->uz_dtor = arg->dtor; 2582 zone->uz_init = NULL; 2583 zone->uz_fini = NULL; 2584 zone->uz_sleeps = 0; 2585 zone->uz_bucket_size = 0; 2586 zone->uz_bucket_size_min = 0; 2587 zone->uz_bucket_size_max = BUCKET_MAX; 2588 zone->uz_flags = (arg->flags & UMA_ZONE_SMR); 2589 zone->uz_warning = NULL; 2590 /* The domain structures follow the cpu structures. */ 2591 zone->uz_bucket_max = ULONG_MAX; 2592 timevalclear(&zone->uz_ratecheck); 2593 2594 /* Count the number of duplicate names. */ 2595 cnt.name = arg->name; 2596 cnt.count = 0; 2597 zone_foreach(zone_count, &cnt); 2598 zone->uz_namecnt = cnt.count; 2599 ZONE_CROSS_LOCK_INIT(zone); 2600 2601 for (i = 0; i < vm_ndomains; i++) { 2602 zdom = ZDOM_GET(zone, i); 2603 ZDOM_LOCK_INIT(zone, zdom, (arg->flags & UMA_ZONE_MTXCLASS)); 2604 STAILQ_INIT(&zdom->uzd_buckets); 2605 } 2606 2607 #ifdef INVARIANTS 2608 if (arg->uminit == trash_init && arg->fini == trash_fini) 2609 zone->uz_flags |= UMA_ZFLAG_TRASH | UMA_ZFLAG_CTORDTOR; 2610 #endif 2611 2612 /* 2613 * This is a pure cache zone, no kegs. 2614 */ 2615 if (arg->import) { 2616 KASSERT((arg->flags & UMA_ZFLAG_CACHE) != 0, 2617 ("zone_ctor: Import specified for non-cache zone.")); 2618 zone->uz_flags = arg->flags; 2619 zone->uz_size = arg->size; 2620 zone->uz_import = arg->import; 2621 zone->uz_release = arg->release; 2622 zone->uz_arg = arg->arg; 2623 #ifdef NUMA 2624 /* 2625 * Cache zones are round-robin unless a policy is 2626 * specified because they may have incompatible 2627 * constraints. 2628 */ 2629 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2630 zone->uz_flags |= UMA_ZONE_ROUNDROBIN; 2631 #endif 2632 rw_wlock(&uma_rwlock); 2633 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 2634 rw_wunlock(&uma_rwlock); 2635 goto out; 2636 } 2637 2638 /* 2639 * Use the regular zone/keg/slab allocator. 2640 */ 2641 zone->uz_import = zone_import; 2642 zone->uz_release = zone_release; 2643 zone->uz_arg = zone; 2644 keg = arg->keg; 2645 2646 if (arg->flags & UMA_ZONE_SECONDARY) { 2647 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 2648 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 2649 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 2650 zone->uz_init = arg->uminit; 2651 zone->uz_fini = arg->fini; 2652 zone->uz_flags |= UMA_ZONE_SECONDARY; 2653 rw_wlock(&uma_rwlock); 2654 ZONE_LOCK(zone); 2655 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 2656 if (LIST_NEXT(z, uz_link) == NULL) { 2657 LIST_INSERT_AFTER(z, zone, uz_link); 2658 break; 2659 } 2660 } 2661 ZONE_UNLOCK(zone); 2662 rw_wunlock(&uma_rwlock); 2663 } else if (keg == NULL) { 2664 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 2665 arg->align, arg->flags)) == NULL) 2666 return (ENOMEM); 2667 } else { 2668 struct uma_kctor_args karg; 2669 int error; 2670 2671 /* We should only be here from uma_startup() */ 2672 karg.size = arg->size; 2673 karg.uminit = arg->uminit; 2674 karg.fini = arg->fini; 2675 karg.align = arg->align; 2676 karg.flags = (arg->flags & ~UMA_ZONE_SMR); 2677 karg.zone = zone; 2678 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 2679 flags); 2680 if (error) 2681 return (error); 2682 } 2683 2684 /* Inherit properties from the keg. */ 2685 zone->uz_keg = keg; 2686 zone->uz_size = keg->uk_size; 2687 zone->uz_flags |= (keg->uk_flags & 2688 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 2689 2690 out: 2691 if (booted >= BOOT_PCPU) { 2692 zone_alloc_counters(zone, NULL); 2693 if (booted >= BOOT_RUNNING) 2694 zone_alloc_sysctl(zone, NULL); 2695 } else { 2696 zone->uz_allocs = EARLY_COUNTER; 2697 zone->uz_frees = EARLY_COUNTER; 2698 zone->uz_fails = EARLY_COUNTER; 2699 } 2700 2701 /* Caller requests a private SMR context. */ 2702 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 2703 zone->uz_smr = smr_create(zone->uz_name, 0, 0); 2704 2705 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != 2706 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), 2707 ("Invalid zone flag combination")); 2708 if (arg->flags & UMA_ZFLAG_INTERNAL) 2709 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 2710 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) 2711 zone->uz_bucket_size = BUCKET_MAX; 2712 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) 2713 zone->uz_bucket_size = 0; 2714 else 2715 zone->uz_bucket_size = bucket_select(zone->uz_size); 2716 zone->uz_bucket_size_min = zone->uz_bucket_size; 2717 if (zone->uz_dtor != NULL || zone->uz_ctor != NULL) 2718 zone->uz_flags |= UMA_ZFLAG_CTORDTOR; 2719 zone_update_caches(zone); 2720 2721 return (0); 2722 } 2723 2724 /* 2725 * Keg header dtor. This frees all data, destroys locks, frees the hash 2726 * table and removes the keg from the global list. 2727 * 2728 * Arguments/Returns follow uma_dtor specifications 2729 * udata unused 2730 */ 2731 static void 2732 keg_dtor(void *arg, int size, void *udata) 2733 { 2734 uma_keg_t keg; 2735 uint32_t free, pages; 2736 int i; 2737 2738 keg = (uma_keg_t)arg; 2739 free = pages = 0; 2740 for (i = 0; i < vm_ndomains; i++) { 2741 free += keg->uk_domain[i].ud_free_items; 2742 pages += keg->uk_domain[i].ud_pages; 2743 KEG_LOCK_FINI(keg, i); 2744 } 2745 if (pages != 0) 2746 printf("Freed UMA keg (%s) was not empty (%u items). " 2747 " Lost %u pages of memory.\n", 2748 keg->uk_name ? keg->uk_name : "", 2749 pages / keg->uk_ppera * keg->uk_ipers - free, pages); 2750 2751 hash_free(&keg->uk_hash); 2752 } 2753 2754 /* 2755 * Zone header dtor. 2756 * 2757 * Arguments/Returns follow uma_dtor specifications 2758 * udata unused 2759 */ 2760 static void 2761 zone_dtor(void *arg, int size, void *udata) 2762 { 2763 uma_zone_t zone; 2764 uma_keg_t keg; 2765 int i; 2766 2767 zone = (uma_zone_t)arg; 2768 2769 sysctl_remove_oid(zone->uz_oid, 1, 1); 2770 2771 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 2772 cache_drain(zone); 2773 2774 rw_wlock(&uma_rwlock); 2775 LIST_REMOVE(zone, uz_link); 2776 rw_wunlock(&uma_rwlock); 2777 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { 2778 keg = zone->uz_keg; 2779 keg->uk_reserve = 0; 2780 } 2781 zone_reclaim(zone, M_WAITOK, true); 2782 2783 /* 2784 * We only destroy kegs from non secondary/non cache zones. 2785 */ 2786 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { 2787 keg = zone->uz_keg; 2788 rw_wlock(&uma_rwlock); 2789 LIST_REMOVE(keg, uk_link); 2790 rw_wunlock(&uma_rwlock); 2791 zone_free_item(kegs, keg, NULL, SKIP_NONE); 2792 } 2793 counter_u64_free(zone->uz_allocs); 2794 counter_u64_free(zone->uz_frees); 2795 counter_u64_free(zone->uz_fails); 2796 counter_u64_free(zone->uz_xdomain); 2797 free(zone->uz_ctlname, M_UMA); 2798 for (i = 0; i < vm_ndomains; i++) 2799 ZDOM_LOCK_FINI(ZDOM_GET(zone, i)); 2800 ZONE_CROSS_LOCK_FINI(zone); 2801 } 2802 2803 static void 2804 zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *arg), void *arg) 2805 { 2806 uma_keg_t keg; 2807 uma_zone_t zone; 2808 2809 LIST_FOREACH(keg, &uma_kegs, uk_link) { 2810 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 2811 zfunc(zone, arg); 2812 } 2813 LIST_FOREACH(zone, &uma_cachezones, uz_link) 2814 zfunc(zone, arg); 2815 } 2816 2817 /* 2818 * Traverses every zone in the system and calls a callback 2819 * 2820 * Arguments: 2821 * zfunc A pointer to a function which accepts a zone 2822 * as an argument. 2823 * 2824 * Returns: 2825 * Nothing 2826 */ 2827 static void 2828 zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg) 2829 { 2830 2831 rw_rlock(&uma_rwlock); 2832 zone_foreach_unlocked(zfunc, arg); 2833 rw_runlock(&uma_rwlock); 2834 } 2835 2836 /* 2837 * Initialize the kernel memory allocator. This is done after pages can be 2838 * allocated but before general KVA is available. 2839 */ 2840 void 2841 uma_startup1(vm_offset_t virtual_avail) 2842 { 2843 struct uma_zctor_args args; 2844 size_t ksize, zsize, size; 2845 uma_keg_t primarykeg; 2846 uintptr_t m; 2847 int domain; 2848 uint8_t pflag; 2849 2850 bootstart = bootmem = virtual_avail; 2851 2852 rw_init(&uma_rwlock, "UMA lock"); 2853 sx_init(&uma_reclaim_lock, "umareclaim"); 2854 2855 ksize = sizeof(struct uma_keg) + 2856 (sizeof(struct uma_domain) * vm_ndomains); 2857 ksize = roundup(ksize, UMA_SUPER_ALIGN); 2858 zsize = sizeof(struct uma_zone) + 2859 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 2860 (sizeof(struct uma_zone_domain) * vm_ndomains); 2861 zsize = roundup(zsize, UMA_SUPER_ALIGN); 2862 2863 /* Allocate the zone of zones, zone of kegs, and zone of zones keg. */ 2864 size = (zsize * 2) + ksize; 2865 for (domain = 0; domain < vm_ndomains; domain++) { 2866 m = (uintptr_t)startup_alloc(NULL, size, domain, &pflag, 2867 M_NOWAIT | M_ZERO); 2868 if (m != 0) 2869 break; 2870 } 2871 zones = (uma_zone_t)m; 2872 m += zsize; 2873 kegs = (uma_zone_t)m; 2874 m += zsize; 2875 primarykeg = (uma_keg_t)m; 2876 2877 /* "manually" create the initial zone */ 2878 memset(&args, 0, sizeof(args)); 2879 args.name = "UMA Kegs"; 2880 args.size = ksize; 2881 args.ctor = keg_ctor; 2882 args.dtor = keg_dtor; 2883 args.uminit = zero_init; 2884 args.fini = NULL; 2885 args.keg = primarykeg; 2886 args.align = UMA_SUPER_ALIGN - 1; 2887 args.flags = UMA_ZFLAG_INTERNAL; 2888 zone_ctor(kegs, zsize, &args, M_WAITOK); 2889 2890 args.name = "UMA Zones"; 2891 args.size = zsize; 2892 args.ctor = zone_ctor; 2893 args.dtor = zone_dtor; 2894 args.uminit = zero_init; 2895 args.fini = NULL; 2896 args.keg = NULL; 2897 args.align = UMA_SUPER_ALIGN - 1; 2898 args.flags = UMA_ZFLAG_INTERNAL; 2899 zone_ctor(zones, zsize, &args, M_WAITOK); 2900 2901 /* Now make zones for slab headers */ 2902 slabzones[0] = uma_zcreate("UMA Slabs 0", SLABZONE0_SIZE, 2903 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2904 slabzones[1] = uma_zcreate("UMA Slabs 1", SLABZONE1_SIZE, 2905 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2906 2907 hashzone = uma_zcreate("UMA Hash", 2908 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 2909 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2910 2911 bucket_init(); 2912 smr_init(); 2913 } 2914 2915 #ifndef UMA_MD_SMALL_ALLOC 2916 extern void vm_radix_reserve_kva(void); 2917 #endif 2918 2919 /* 2920 * Advertise the availability of normal kva allocations and switch to 2921 * the default back-end allocator. Marks the KVA we consumed on startup 2922 * as used in the map. 2923 */ 2924 void 2925 uma_startup2(void) 2926 { 2927 2928 if (bootstart != bootmem) { 2929 vm_map_lock(kernel_map); 2930 (void)vm_map_insert(kernel_map, NULL, 0, bootstart, bootmem, 2931 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT); 2932 vm_map_unlock(kernel_map); 2933 } 2934 2935 #ifndef UMA_MD_SMALL_ALLOC 2936 /* Set up radix zone to use noobj_alloc. */ 2937 vm_radix_reserve_kva(); 2938 #endif 2939 2940 booted = BOOT_KVA; 2941 zone_foreach_unlocked(zone_kva_available, NULL); 2942 bucket_enable(); 2943 } 2944 2945 /* 2946 * Allocate counters as early as possible so that boot-time allocations are 2947 * accounted more precisely. 2948 */ 2949 static void 2950 uma_startup_pcpu(void *arg __unused) 2951 { 2952 2953 zone_foreach_unlocked(zone_alloc_counters, NULL); 2954 booted = BOOT_PCPU; 2955 } 2956 SYSINIT(uma_startup_pcpu, SI_SUB_COUNTER, SI_ORDER_ANY, uma_startup_pcpu, NULL); 2957 2958 /* 2959 * Finish our initialization steps. 2960 */ 2961 static void 2962 uma_startup3(void *arg __unused) 2963 { 2964 2965 #ifdef INVARIANTS 2966 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor); 2967 uma_dbg_cnt = counter_u64_alloc(M_WAITOK); 2968 uma_skip_cnt = counter_u64_alloc(M_WAITOK); 2969 #endif 2970 zone_foreach_unlocked(zone_alloc_sysctl, NULL); 2971 callout_init(&uma_callout, 1); 2972 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 2973 booted = BOOT_RUNNING; 2974 2975 EVENTHANDLER_REGISTER(shutdown_post_sync, uma_shutdown, NULL, 2976 EVENTHANDLER_PRI_FIRST); 2977 } 2978 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 2979 2980 static void 2981 uma_shutdown(void) 2982 { 2983 2984 booted = BOOT_SHUTDOWN; 2985 } 2986 2987 static uma_keg_t 2988 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 2989 int align, uint32_t flags) 2990 { 2991 struct uma_kctor_args args; 2992 2993 args.size = size; 2994 args.uminit = uminit; 2995 args.fini = fini; 2996 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 2997 args.flags = flags; 2998 args.zone = zone; 2999 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 3000 } 3001 3002 /* Public functions */ 3003 /* See uma.h */ 3004 void 3005 uma_set_align(int align) 3006 { 3007 3008 if (align != UMA_ALIGN_CACHE) 3009 uma_align_cache = align; 3010 } 3011 3012 /* See uma.h */ 3013 uma_zone_t 3014 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 3015 uma_init uminit, uma_fini fini, int align, uint32_t flags) 3016 3017 { 3018 struct uma_zctor_args args; 3019 uma_zone_t res; 3020 3021 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 3022 align, name)); 3023 3024 /* This stuff is essential for the zone ctor */ 3025 memset(&args, 0, sizeof(args)); 3026 args.name = name; 3027 args.size = size; 3028 args.ctor = ctor; 3029 args.dtor = dtor; 3030 args.uminit = uminit; 3031 args.fini = fini; 3032 #ifdef INVARIANTS 3033 /* 3034 * Inject procedures which check for memory use after free if we are 3035 * allowed to scramble the memory while it is not allocated. This 3036 * requires that: UMA is actually able to access the memory, no init 3037 * or fini procedures, no dependency on the initial value of the 3038 * memory, and no (legitimate) use of the memory after free. Note, 3039 * the ctor and dtor do not need to be empty. 3040 */ 3041 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOTOUCH | 3042 UMA_ZONE_NOFREE))) && uminit == NULL && fini == NULL) { 3043 args.uminit = trash_init; 3044 args.fini = trash_fini; 3045 } 3046 #endif 3047 args.align = align; 3048 args.flags = flags; 3049 args.keg = NULL; 3050 3051 sx_slock(&uma_reclaim_lock); 3052 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 3053 sx_sunlock(&uma_reclaim_lock); 3054 3055 return (res); 3056 } 3057 3058 /* See uma.h */ 3059 uma_zone_t 3060 uma_zsecond_create(const char *name, uma_ctor ctor, uma_dtor dtor, 3061 uma_init zinit, uma_fini zfini, uma_zone_t primary) 3062 { 3063 struct uma_zctor_args args; 3064 uma_keg_t keg; 3065 uma_zone_t res; 3066 3067 keg = primary->uz_keg; 3068 memset(&args, 0, sizeof(args)); 3069 args.name = name; 3070 args.size = keg->uk_size; 3071 args.ctor = ctor; 3072 args.dtor = dtor; 3073 args.uminit = zinit; 3074 args.fini = zfini; 3075 args.align = keg->uk_align; 3076 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 3077 args.keg = keg; 3078 3079 sx_slock(&uma_reclaim_lock); 3080 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 3081 sx_sunlock(&uma_reclaim_lock); 3082 3083 return (res); 3084 } 3085 3086 /* See uma.h */ 3087 uma_zone_t 3088 uma_zcache_create(const char *name, int size, uma_ctor ctor, uma_dtor dtor, 3089 uma_init zinit, uma_fini zfini, uma_import zimport, uma_release zrelease, 3090 void *arg, int flags) 3091 { 3092 struct uma_zctor_args args; 3093 3094 memset(&args, 0, sizeof(args)); 3095 args.name = name; 3096 args.size = size; 3097 args.ctor = ctor; 3098 args.dtor = dtor; 3099 args.uminit = zinit; 3100 args.fini = zfini; 3101 args.import = zimport; 3102 args.release = zrelease; 3103 args.arg = arg; 3104 args.align = 0; 3105 args.flags = flags | UMA_ZFLAG_CACHE; 3106 3107 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 3108 } 3109 3110 /* See uma.h */ 3111 void 3112 uma_zdestroy(uma_zone_t zone) 3113 { 3114 3115 /* 3116 * Large slabs are expensive to reclaim, so don't bother doing 3117 * unnecessary work if we're shutting down. 3118 */ 3119 if (booted == BOOT_SHUTDOWN && 3120 zone->uz_fini == NULL && zone->uz_release == zone_release) 3121 return; 3122 sx_slock(&uma_reclaim_lock); 3123 zone_free_item(zones, zone, NULL, SKIP_NONE); 3124 sx_sunlock(&uma_reclaim_lock); 3125 } 3126 3127 void 3128 uma_zwait(uma_zone_t zone) 3129 { 3130 3131 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 3132 uma_zfree_smr(zone, uma_zalloc_smr(zone, M_WAITOK)); 3133 else if ((zone->uz_flags & UMA_ZONE_PCPU) != 0) 3134 uma_zfree_pcpu(zone, uma_zalloc_pcpu(zone, M_WAITOK)); 3135 else 3136 uma_zfree(zone, uma_zalloc(zone, M_WAITOK)); 3137 } 3138 3139 void * 3140 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags) 3141 { 3142 void *item, *pcpu_item; 3143 #ifdef SMP 3144 int i; 3145 3146 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 3147 #endif 3148 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO); 3149 if (item == NULL) 3150 return (NULL); 3151 pcpu_item = zpcpu_base_to_offset(item); 3152 if (flags & M_ZERO) { 3153 #ifdef SMP 3154 for (i = 0; i <= mp_maxid; i++) 3155 bzero(zpcpu_get_cpu(pcpu_item, i), zone->uz_size); 3156 #else 3157 bzero(item, zone->uz_size); 3158 #endif 3159 } 3160 return (pcpu_item); 3161 } 3162 3163 /* 3164 * A stub while both regular and pcpu cases are identical. 3165 */ 3166 void 3167 uma_zfree_pcpu_arg(uma_zone_t zone, void *pcpu_item, void *udata) 3168 { 3169 void *item; 3170 3171 #ifdef SMP 3172 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 3173 #endif 3174 item = zpcpu_offset_to_base(pcpu_item); 3175 uma_zfree_arg(zone, item, udata); 3176 } 3177 3178 static inline void * 3179 item_ctor(uma_zone_t zone, int uz_flags, int size, void *udata, int flags, 3180 void *item) 3181 { 3182 #ifdef INVARIANTS 3183 bool skipdbg; 3184 3185 skipdbg = uma_dbg_zskip(zone, item); 3186 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 3187 zone->uz_ctor != trash_ctor) 3188 trash_ctor(item, size, udata, flags); 3189 #endif 3190 /* Check flags before loading ctor pointer. */ 3191 if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0) && 3192 __predict_false(zone->uz_ctor != NULL) && 3193 zone->uz_ctor(item, size, udata, flags) != 0) { 3194 counter_u64_add(zone->uz_fails, 1); 3195 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT); 3196 return (NULL); 3197 } 3198 #ifdef INVARIANTS 3199 if (!skipdbg) 3200 uma_dbg_alloc(zone, NULL, item); 3201 #endif 3202 if (__predict_false(flags & M_ZERO)) 3203 return (memset(item, 0, size)); 3204 3205 return (item); 3206 } 3207 3208 static inline void 3209 item_dtor(uma_zone_t zone, void *item, int size, void *udata, 3210 enum zfreeskip skip) 3211 { 3212 #ifdef INVARIANTS 3213 bool skipdbg; 3214 3215 skipdbg = uma_dbg_zskip(zone, item); 3216 if (skip == SKIP_NONE && !skipdbg) { 3217 if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0) 3218 uma_dbg_free(zone, udata, item); 3219 else 3220 uma_dbg_free(zone, NULL, item); 3221 } 3222 #endif 3223 if (__predict_true(skip < SKIP_DTOR)) { 3224 if (zone->uz_dtor != NULL) 3225 zone->uz_dtor(item, size, udata); 3226 #ifdef INVARIANTS 3227 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 3228 zone->uz_dtor != trash_dtor) 3229 trash_dtor(item, size, udata); 3230 #endif 3231 } 3232 } 3233 3234 #ifdef NUMA 3235 static int 3236 item_domain(void *item) 3237 { 3238 int domain; 3239 3240 domain = vm_phys_domain(vtophys(item)); 3241 KASSERT(domain >= 0 && domain < vm_ndomains, 3242 ("%s: unknown domain for item %p", __func__, item)); 3243 return (domain); 3244 } 3245 #endif 3246 3247 #if defined(INVARIANTS) || defined(DEBUG_MEMGUARD) || defined(WITNESS) 3248 #define UMA_ZALLOC_DEBUG 3249 static int 3250 uma_zalloc_debug(uma_zone_t zone, void **itemp, void *udata, int flags) 3251 { 3252 int error; 3253 3254 error = 0; 3255 #ifdef WITNESS 3256 if (flags & M_WAITOK) { 3257 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3258 "uma_zalloc_debug: zone \"%s\"", zone->uz_name); 3259 } 3260 #endif 3261 3262 #ifdef INVARIANTS 3263 KASSERT((flags & M_EXEC) == 0, 3264 ("uma_zalloc_debug: called with M_EXEC")); 3265 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3266 ("uma_zalloc_debug: called within spinlock or critical section")); 3267 KASSERT((zone->uz_flags & UMA_ZONE_PCPU) == 0 || (flags & M_ZERO) == 0, 3268 ("uma_zalloc_debug: allocating from a pcpu zone with M_ZERO")); 3269 #endif 3270 3271 #ifdef DEBUG_MEMGUARD 3272 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && memguard_cmp_zone(zone)) { 3273 void *item; 3274 item = memguard_alloc(zone->uz_size, flags); 3275 if (item != NULL) { 3276 error = EJUSTRETURN; 3277 if (zone->uz_init != NULL && 3278 zone->uz_init(item, zone->uz_size, flags) != 0) { 3279 *itemp = NULL; 3280 return (error); 3281 } 3282 if (zone->uz_ctor != NULL && 3283 zone->uz_ctor(item, zone->uz_size, udata, 3284 flags) != 0) { 3285 counter_u64_add(zone->uz_fails, 1); 3286 zone->uz_fini(item, zone->uz_size); 3287 *itemp = NULL; 3288 return (error); 3289 } 3290 *itemp = item; 3291 return (error); 3292 } 3293 /* This is unfortunate but should not be fatal. */ 3294 } 3295 #endif 3296 return (error); 3297 } 3298 3299 static int 3300 uma_zfree_debug(uma_zone_t zone, void *item, void *udata) 3301 { 3302 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3303 ("uma_zfree_debug: called with spinlock or critical section held")); 3304 3305 #ifdef DEBUG_MEMGUARD 3306 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && is_memguard_addr(item)) { 3307 if (zone->uz_dtor != NULL) 3308 zone->uz_dtor(item, zone->uz_size, udata); 3309 if (zone->uz_fini != NULL) 3310 zone->uz_fini(item, zone->uz_size); 3311 memguard_free(item); 3312 return (EJUSTRETURN); 3313 } 3314 #endif 3315 return (0); 3316 } 3317 #endif 3318 3319 static inline void * 3320 cache_alloc_item(uma_zone_t zone, uma_cache_t cache, uma_cache_bucket_t bucket, 3321 void *udata, int flags) 3322 { 3323 void *item; 3324 int size, uz_flags; 3325 3326 item = cache_bucket_pop(cache, bucket); 3327 size = cache_uz_size(cache); 3328 uz_flags = cache_uz_flags(cache); 3329 critical_exit(); 3330 return (item_ctor(zone, uz_flags, size, udata, flags, item)); 3331 } 3332 3333 static __noinline void * 3334 cache_alloc_retry(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3335 { 3336 uma_cache_bucket_t bucket; 3337 int domain; 3338 3339 while (cache_alloc(zone, cache, udata, flags)) { 3340 cache = &zone->uz_cpu[curcpu]; 3341 bucket = &cache->uc_allocbucket; 3342 if (__predict_false(bucket->ucb_cnt == 0)) 3343 continue; 3344 return (cache_alloc_item(zone, cache, bucket, udata, flags)); 3345 } 3346 critical_exit(); 3347 3348 /* 3349 * We can not get a bucket so try to return a single item. 3350 */ 3351 if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH) 3352 domain = PCPU_GET(domain); 3353 else 3354 domain = UMA_ANYDOMAIN; 3355 return (zone_alloc_item(zone, udata, domain, flags)); 3356 } 3357 3358 /* See uma.h */ 3359 void * 3360 uma_zalloc_smr(uma_zone_t zone, int flags) 3361 { 3362 uma_cache_bucket_t bucket; 3363 uma_cache_t cache; 3364 3365 #ifdef UMA_ZALLOC_DEBUG 3366 void *item; 3367 3368 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 3369 ("uma_zalloc_arg: called with non-SMR zone.")); 3370 if (uma_zalloc_debug(zone, &item, NULL, flags) == EJUSTRETURN) 3371 return (item); 3372 #endif 3373 3374 critical_enter(); 3375 cache = &zone->uz_cpu[curcpu]; 3376 bucket = &cache->uc_allocbucket; 3377 if (__predict_false(bucket->ucb_cnt == 0)) 3378 return (cache_alloc_retry(zone, cache, NULL, flags)); 3379 return (cache_alloc_item(zone, cache, bucket, NULL, flags)); 3380 } 3381 3382 /* See uma.h */ 3383 void * 3384 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 3385 { 3386 uma_cache_bucket_t bucket; 3387 uma_cache_t cache; 3388 3389 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3390 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3391 3392 /* This is the fast path allocation */ 3393 CTR3(KTR_UMA, "uma_zalloc_arg zone %s(%p) flags %d", zone->uz_name, 3394 zone, flags); 3395 3396 #ifdef UMA_ZALLOC_DEBUG 3397 void *item; 3398 3399 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 3400 ("uma_zalloc_arg: called with SMR zone.")); 3401 if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN) 3402 return (item); 3403 #endif 3404 3405 /* 3406 * If possible, allocate from the per-CPU cache. There are two 3407 * requirements for safe access to the per-CPU cache: (1) the thread 3408 * accessing the cache must not be preempted or yield during access, 3409 * and (2) the thread must not migrate CPUs without switching which 3410 * cache it accesses. We rely on a critical section to prevent 3411 * preemption and migration. We release the critical section in 3412 * order to acquire the zone mutex if we are unable to allocate from 3413 * the current cache; when we re-acquire the critical section, we 3414 * must detect and handle migration if it has occurred. 3415 */ 3416 critical_enter(); 3417 cache = &zone->uz_cpu[curcpu]; 3418 bucket = &cache->uc_allocbucket; 3419 if (__predict_false(bucket->ucb_cnt == 0)) 3420 return (cache_alloc_retry(zone, cache, udata, flags)); 3421 return (cache_alloc_item(zone, cache, bucket, udata, flags)); 3422 } 3423 3424 /* 3425 * Replenish an alloc bucket and possibly restore an old one. Called in 3426 * a critical section. Returns in a critical section. 3427 * 3428 * A false return value indicates an allocation failure. 3429 * A true return value indicates success and the caller should retry. 3430 */ 3431 static __noinline bool 3432 cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3433 { 3434 uma_bucket_t bucket; 3435 int curdomain, domain; 3436 bool new; 3437 3438 CRITICAL_ASSERT(curthread); 3439 3440 /* 3441 * If we have run out of items in our alloc bucket see 3442 * if we can switch with the free bucket. 3443 * 3444 * SMR Zones can't re-use the free bucket until the sequence has 3445 * expired. 3446 */ 3447 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) == 0 && 3448 cache->uc_freebucket.ucb_cnt != 0) { 3449 cache_bucket_swap(&cache->uc_freebucket, 3450 &cache->uc_allocbucket); 3451 return (true); 3452 } 3453 3454 /* 3455 * Discard any empty allocation bucket while we hold no locks. 3456 */ 3457 bucket = cache_bucket_unload_alloc(cache); 3458 critical_exit(); 3459 3460 if (bucket != NULL) { 3461 KASSERT(bucket->ub_cnt == 0, 3462 ("cache_alloc: Entered with non-empty alloc bucket.")); 3463 bucket_free(zone, bucket, udata); 3464 } 3465 3466 /* 3467 * Attempt to retrieve the item from the per-CPU cache has failed, so 3468 * we must go back to the zone. This requires the zdom lock, so we 3469 * must drop the critical section, then re-acquire it when we go back 3470 * to the cache. Since the critical section is released, we may be 3471 * preempted or migrate. As such, make sure not to maintain any 3472 * thread-local state specific to the cache from prior to releasing 3473 * the critical section. 3474 */ 3475 domain = PCPU_GET(domain); 3476 if ((cache_uz_flags(cache) & UMA_ZONE_ROUNDROBIN) != 0 || 3477 VM_DOMAIN_EMPTY(domain)) 3478 domain = zone_domain_highest(zone, domain); 3479 bucket = cache_fetch_bucket(zone, cache, domain); 3480 if (bucket == NULL && zone->uz_bucket_size != 0 && !bucketdisable) { 3481 bucket = zone_alloc_bucket(zone, udata, domain, flags); 3482 new = true; 3483 } else { 3484 new = false; 3485 } 3486 3487 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 3488 zone->uz_name, zone, bucket); 3489 if (bucket == NULL) { 3490 critical_enter(); 3491 return (false); 3492 } 3493 3494 /* 3495 * See if we lost the race or were migrated. Cache the 3496 * initialized bucket to make this less likely or claim 3497 * the memory directly. 3498 */ 3499 critical_enter(); 3500 cache = &zone->uz_cpu[curcpu]; 3501 if (cache->uc_allocbucket.ucb_bucket == NULL && 3502 ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) == 0 || 3503 (curdomain = PCPU_GET(domain)) == domain || 3504 VM_DOMAIN_EMPTY(curdomain))) { 3505 if (new) 3506 atomic_add_long(&ZDOM_GET(zone, domain)->uzd_imax, 3507 bucket->ub_cnt); 3508 cache_bucket_load_alloc(cache, bucket); 3509 return (true); 3510 } 3511 3512 /* 3513 * We lost the race, release this bucket and start over. 3514 */ 3515 critical_exit(); 3516 zone_put_bucket(zone, domain, bucket, udata, false); 3517 critical_enter(); 3518 3519 return (true); 3520 } 3521 3522 void * 3523 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 3524 { 3525 #ifdef NUMA 3526 uma_bucket_t bucket; 3527 uma_zone_domain_t zdom; 3528 void *item; 3529 #endif 3530 3531 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3532 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3533 3534 /* This is the fast path allocation */ 3535 CTR4(KTR_UMA, "uma_zalloc_domain zone %s(%p) domain %d flags %d", 3536 zone->uz_name, zone, domain, flags); 3537 3538 if (flags & M_WAITOK) { 3539 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3540 "uma_zalloc_domain: zone \"%s\"", zone->uz_name); 3541 } 3542 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3543 ("uma_zalloc_domain: called with spinlock or critical section held")); 3544 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 3545 ("uma_zalloc_domain: called with SMR zone.")); 3546 #ifdef NUMA 3547 KASSERT((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0, 3548 ("uma_zalloc_domain: called with non-FIRSTTOUCH zone.")); 3549 3550 if (vm_ndomains == 1) 3551 return (uma_zalloc_arg(zone, udata, flags)); 3552 3553 /* 3554 * Try to allocate from the bucket cache before falling back to the keg. 3555 * We could try harder and attempt to allocate from per-CPU caches or 3556 * the per-domain cross-domain buckets, but the complexity is probably 3557 * not worth it. It is more important that frees of previous 3558 * cross-domain allocations do not blow up the cache. 3559 */ 3560 zdom = zone_domain_lock(zone, domain); 3561 if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) { 3562 item = bucket->ub_bucket[bucket->ub_cnt - 1]; 3563 #ifdef INVARIANTS 3564 bucket->ub_bucket[bucket->ub_cnt - 1] = NULL; 3565 #endif 3566 bucket->ub_cnt--; 3567 zone_put_bucket(zone, domain, bucket, udata, true); 3568 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, 3569 flags, item); 3570 if (item != NULL) { 3571 KASSERT(item_domain(item) == domain, 3572 ("%s: bucket cache item %p from wrong domain", 3573 __func__, item)); 3574 counter_u64_add(zone->uz_allocs, 1); 3575 } 3576 return (item); 3577 } 3578 ZDOM_UNLOCK(zdom); 3579 return (zone_alloc_item(zone, udata, domain, flags)); 3580 #else 3581 return (uma_zalloc_arg(zone, udata, flags)); 3582 #endif 3583 } 3584 3585 /* 3586 * Find a slab with some space. Prefer slabs that are partially used over those 3587 * that are totally full. This helps to reduce fragmentation. 3588 * 3589 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 3590 * only 'domain'. 3591 */ 3592 static uma_slab_t 3593 keg_first_slab(uma_keg_t keg, int domain, bool rr) 3594 { 3595 uma_domain_t dom; 3596 uma_slab_t slab; 3597 int start; 3598 3599 KASSERT(domain >= 0 && domain < vm_ndomains, 3600 ("keg_first_slab: domain %d out of range", domain)); 3601 KEG_LOCK_ASSERT(keg, domain); 3602 3603 slab = NULL; 3604 start = domain; 3605 do { 3606 dom = &keg->uk_domain[domain]; 3607 if ((slab = LIST_FIRST(&dom->ud_part_slab)) != NULL) 3608 return (slab); 3609 if ((slab = LIST_FIRST(&dom->ud_free_slab)) != NULL) { 3610 LIST_REMOVE(slab, us_link); 3611 dom->ud_free_slabs--; 3612 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3613 return (slab); 3614 } 3615 if (rr) 3616 domain = (domain + 1) % vm_ndomains; 3617 } while (domain != start); 3618 3619 return (NULL); 3620 } 3621 3622 /* 3623 * Fetch an existing slab from a free or partial list. Returns with the 3624 * keg domain lock held if a slab was found or unlocked if not. 3625 */ 3626 static uma_slab_t 3627 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags) 3628 { 3629 uma_slab_t slab; 3630 uint32_t reserve; 3631 3632 /* HASH has a single free list. */ 3633 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 3634 domain = 0; 3635 3636 KEG_LOCK(keg, domain); 3637 reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve; 3638 if (keg->uk_domain[domain].ud_free_items <= reserve || 3639 (slab = keg_first_slab(keg, domain, rr)) == NULL) { 3640 KEG_UNLOCK(keg, domain); 3641 return (NULL); 3642 } 3643 return (slab); 3644 } 3645 3646 static uma_slab_t 3647 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags) 3648 { 3649 struct vm_domainset_iter di; 3650 uma_slab_t slab; 3651 int aflags, domain; 3652 bool rr; 3653 3654 restart: 3655 /* 3656 * Use the keg's policy if upper layers haven't already specified a 3657 * domain (as happens with first-touch zones). 3658 * 3659 * To avoid races we run the iterator with the keg lock held, but that 3660 * means that we cannot allow the vm_domainset layer to sleep. Thus, 3661 * clear M_WAITOK and handle low memory conditions locally. 3662 */ 3663 rr = rdomain == UMA_ANYDOMAIN; 3664 if (rr) { 3665 aflags = (flags & ~M_WAITOK) | M_NOWAIT; 3666 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 3667 &aflags); 3668 } else { 3669 aflags = flags; 3670 domain = rdomain; 3671 } 3672 3673 for (;;) { 3674 slab = keg_fetch_free_slab(keg, domain, rr, flags); 3675 if (slab != NULL) 3676 return (slab); 3677 3678 /* 3679 * M_NOVM means don't ask at all! 3680 */ 3681 if (flags & M_NOVM) 3682 break; 3683 3684 slab = keg_alloc_slab(keg, zone, domain, flags, aflags); 3685 if (slab != NULL) 3686 return (slab); 3687 if (!rr && (flags & M_WAITOK) == 0) 3688 break; 3689 if (rr && vm_domainset_iter_policy(&di, &domain) != 0) { 3690 if ((flags & M_WAITOK) != 0) { 3691 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0); 3692 goto restart; 3693 } 3694 break; 3695 } 3696 } 3697 3698 /* 3699 * We might not have been able to get a slab but another cpu 3700 * could have while we were unlocked. Check again before we 3701 * fail. 3702 */ 3703 if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL) 3704 return (slab); 3705 3706 return (NULL); 3707 } 3708 3709 static void * 3710 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 3711 { 3712 uma_domain_t dom; 3713 void *item; 3714 int freei; 3715 3716 KEG_LOCK_ASSERT(keg, slab->us_domain); 3717 3718 dom = &keg->uk_domain[slab->us_domain]; 3719 freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1; 3720 BIT_CLR(keg->uk_ipers, freei, &slab->us_free); 3721 item = slab_item(slab, keg, freei); 3722 slab->us_freecount--; 3723 dom->ud_free_items--; 3724 3725 /* 3726 * Move this slab to the full list. It must be on the partial list, so 3727 * we do not need to update the free slab count. In particular, 3728 * keg_fetch_slab() always returns slabs on the partial list. 3729 */ 3730 if (slab->us_freecount == 0) { 3731 LIST_REMOVE(slab, us_link); 3732 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 3733 } 3734 3735 return (item); 3736 } 3737 3738 static int 3739 zone_import(void *arg, void **bucket, int max, int domain, int flags) 3740 { 3741 uma_domain_t dom; 3742 uma_zone_t zone; 3743 uma_slab_t slab; 3744 uma_keg_t keg; 3745 #ifdef NUMA 3746 int stripe; 3747 #endif 3748 int i; 3749 3750 zone = arg; 3751 slab = NULL; 3752 keg = zone->uz_keg; 3753 /* Try to keep the buckets totally full */ 3754 for (i = 0; i < max; ) { 3755 if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL) 3756 break; 3757 #ifdef NUMA 3758 stripe = howmany(max, vm_ndomains); 3759 #endif 3760 dom = &keg->uk_domain[slab->us_domain]; 3761 do { 3762 bucket[i++] = slab_alloc_item(keg, slab); 3763 if (dom->ud_free_items <= keg->uk_reserve) { 3764 /* 3765 * Avoid depleting the reserve after a 3766 * successful item allocation, even if 3767 * M_USE_RESERVE is specified. 3768 */ 3769 KEG_UNLOCK(keg, slab->us_domain); 3770 goto out; 3771 } 3772 #ifdef NUMA 3773 /* 3774 * If the zone is striped we pick a new slab for every 3775 * N allocations. Eliminating this conditional will 3776 * instead pick a new domain for each bucket rather 3777 * than stripe within each bucket. The current option 3778 * produces more fragmentation and requires more cpu 3779 * time but yields better distribution. 3780 */ 3781 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0 && 3782 vm_ndomains > 1 && --stripe == 0) 3783 break; 3784 #endif 3785 } while (slab->us_freecount != 0 && i < max); 3786 KEG_UNLOCK(keg, slab->us_domain); 3787 3788 /* Don't block if we allocated any successfully. */ 3789 flags &= ~M_WAITOK; 3790 flags |= M_NOWAIT; 3791 } 3792 out: 3793 return i; 3794 } 3795 3796 static int 3797 zone_alloc_limit_hard(uma_zone_t zone, int count, int flags) 3798 { 3799 uint64_t old, new, total, max; 3800 3801 /* 3802 * The hard case. We're going to sleep because there were existing 3803 * sleepers or because we ran out of items. This routine enforces 3804 * fairness by keeping fifo order. 3805 * 3806 * First release our ill gotten gains and make some noise. 3807 */ 3808 for (;;) { 3809 zone_free_limit(zone, count); 3810 zone_log_warning(zone); 3811 zone_maxaction(zone); 3812 if (flags & M_NOWAIT) 3813 return (0); 3814 3815 /* 3816 * We need to allocate an item or set ourself as a sleeper 3817 * while the sleepq lock is held to avoid wakeup races. This 3818 * is essentially a home rolled semaphore. 3819 */ 3820 sleepq_lock(&zone->uz_max_items); 3821 old = zone->uz_items; 3822 do { 3823 MPASS(UZ_ITEMS_SLEEPERS(old) < UZ_ITEMS_SLEEPERS_MAX); 3824 /* Cache the max since we will evaluate twice. */ 3825 max = zone->uz_max_items; 3826 if (UZ_ITEMS_SLEEPERS(old) != 0 || 3827 UZ_ITEMS_COUNT(old) >= max) 3828 new = old + UZ_ITEMS_SLEEPER; 3829 else 3830 new = old + MIN(count, max - old); 3831 } while (atomic_fcmpset_64(&zone->uz_items, &old, new) == 0); 3832 3833 /* We may have successfully allocated under the sleepq lock. */ 3834 if (UZ_ITEMS_SLEEPERS(new) == 0) { 3835 sleepq_release(&zone->uz_max_items); 3836 return (new - old); 3837 } 3838 3839 /* 3840 * This is in a different cacheline from uz_items so that we 3841 * don't constantly invalidate the fastpath cacheline when we 3842 * adjust item counts. This could be limited to toggling on 3843 * transitions. 3844 */ 3845 atomic_add_32(&zone->uz_sleepers, 1); 3846 atomic_add_64(&zone->uz_sleeps, 1); 3847 3848 /* 3849 * We have added ourselves as a sleeper. The sleepq lock 3850 * protects us from wakeup races. Sleep now and then retry. 3851 */ 3852 sleepq_add(&zone->uz_max_items, NULL, "zonelimit", 0, 0); 3853 sleepq_wait(&zone->uz_max_items, PVM); 3854 3855 /* 3856 * After wakeup, remove ourselves as a sleeper and try 3857 * again. We no longer have the sleepq lock for protection. 3858 * 3859 * Subract ourselves as a sleeper while attempting to add 3860 * our count. 3861 */ 3862 atomic_subtract_32(&zone->uz_sleepers, 1); 3863 old = atomic_fetchadd_64(&zone->uz_items, 3864 -(UZ_ITEMS_SLEEPER - count)); 3865 /* We're no longer a sleeper. */ 3866 old -= UZ_ITEMS_SLEEPER; 3867 3868 /* 3869 * If we're still at the limit, restart. Notably do not 3870 * block on other sleepers. Cache the max value to protect 3871 * against changes via sysctl. 3872 */ 3873 total = UZ_ITEMS_COUNT(old); 3874 max = zone->uz_max_items; 3875 if (total >= max) 3876 continue; 3877 /* Truncate if necessary, otherwise wake other sleepers. */ 3878 if (total + count > max) { 3879 zone_free_limit(zone, total + count - max); 3880 count = max - total; 3881 } else if (total + count < max && UZ_ITEMS_SLEEPERS(old) != 0) 3882 wakeup_one(&zone->uz_max_items); 3883 3884 return (count); 3885 } 3886 } 3887 3888 /* 3889 * Allocate 'count' items from our max_items limit. Returns the number 3890 * available. If M_NOWAIT is not specified it will sleep until at least 3891 * one item can be allocated. 3892 */ 3893 static int 3894 zone_alloc_limit(uma_zone_t zone, int count, int flags) 3895 { 3896 uint64_t old; 3897 uint64_t max; 3898 3899 max = zone->uz_max_items; 3900 MPASS(max > 0); 3901 3902 /* 3903 * We expect normal allocations to succeed with a simple 3904 * fetchadd. 3905 */ 3906 old = atomic_fetchadd_64(&zone->uz_items, count); 3907 if (__predict_true(old + count <= max)) 3908 return (count); 3909 3910 /* 3911 * If we had some items and no sleepers just return the 3912 * truncated value. We have to release the excess space 3913 * though because that may wake sleepers who weren't woken 3914 * because we were temporarily over the limit. 3915 */ 3916 if (old < max) { 3917 zone_free_limit(zone, (old + count) - max); 3918 return (max - old); 3919 } 3920 return (zone_alloc_limit_hard(zone, count, flags)); 3921 } 3922 3923 /* 3924 * Free a number of items back to the limit. 3925 */ 3926 static void 3927 zone_free_limit(uma_zone_t zone, int count) 3928 { 3929 uint64_t old; 3930 3931 MPASS(count > 0); 3932 3933 /* 3934 * In the common case we either have no sleepers or 3935 * are still over the limit and can just return. 3936 */ 3937 old = atomic_fetchadd_64(&zone->uz_items, -count); 3938 if (__predict_true(UZ_ITEMS_SLEEPERS(old) == 0 || 3939 UZ_ITEMS_COUNT(old) - count >= zone->uz_max_items)) 3940 return; 3941 3942 /* 3943 * Moderate the rate of wakeups. Sleepers will continue 3944 * to generate wakeups if necessary. 3945 */ 3946 wakeup_one(&zone->uz_max_items); 3947 } 3948 3949 static uma_bucket_t 3950 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags) 3951 { 3952 uma_bucket_t bucket; 3953 int maxbucket, cnt; 3954 3955 CTR3(KTR_UMA, "zone_alloc_bucket zone %s(%p) domain %d", zone->uz_name, 3956 zone, domain); 3957 3958 /* Avoid allocs targeting empty domains. */ 3959 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 3960 domain = UMA_ANYDOMAIN; 3961 else if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) 3962 domain = UMA_ANYDOMAIN; 3963 3964 if (zone->uz_max_items > 0) 3965 maxbucket = zone_alloc_limit(zone, zone->uz_bucket_size, 3966 M_NOWAIT); 3967 else 3968 maxbucket = zone->uz_bucket_size; 3969 if (maxbucket == 0) 3970 return (false); 3971 3972 /* Don't wait for buckets, preserve caller's NOVM setting. */ 3973 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 3974 if (bucket == NULL) { 3975 cnt = 0; 3976 goto out; 3977 } 3978 3979 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 3980 MIN(maxbucket, bucket->ub_entries), domain, flags); 3981 3982 /* 3983 * Initialize the memory if necessary. 3984 */ 3985 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 3986 int i; 3987 3988 for (i = 0; i < bucket->ub_cnt; i++) 3989 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 3990 flags) != 0) 3991 break; 3992 /* 3993 * If we couldn't initialize the whole bucket, put the 3994 * rest back onto the freelist. 3995 */ 3996 if (i != bucket->ub_cnt) { 3997 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 3998 bucket->ub_cnt - i); 3999 #ifdef INVARIANTS 4000 bzero(&bucket->ub_bucket[i], 4001 sizeof(void *) * (bucket->ub_cnt - i)); 4002 #endif 4003 bucket->ub_cnt = i; 4004 } 4005 } 4006 4007 cnt = bucket->ub_cnt; 4008 if (bucket->ub_cnt == 0) { 4009 bucket_free(zone, bucket, udata); 4010 counter_u64_add(zone->uz_fails, 1); 4011 bucket = NULL; 4012 } 4013 out: 4014 if (zone->uz_max_items > 0 && cnt < maxbucket) 4015 zone_free_limit(zone, maxbucket - cnt); 4016 4017 return (bucket); 4018 } 4019 4020 /* 4021 * Allocates a single item from a zone. 4022 * 4023 * Arguments 4024 * zone The zone to alloc for. 4025 * udata The data to be passed to the constructor. 4026 * domain The domain to allocate from or UMA_ANYDOMAIN. 4027 * flags M_WAITOK, M_NOWAIT, M_ZERO. 4028 * 4029 * Returns 4030 * NULL if there is no memory and M_NOWAIT is set 4031 * An item if successful 4032 */ 4033 4034 static void * 4035 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 4036 { 4037 void *item; 4038 4039 if (zone->uz_max_items > 0 && zone_alloc_limit(zone, 1, flags) == 0) { 4040 counter_u64_add(zone->uz_fails, 1); 4041 return (NULL); 4042 } 4043 4044 /* Avoid allocs targeting empty domains. */ 4045 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 4046 domain = UMA_ANYDOMAIN; 4047 4048 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 4049 goto fail_cnt; 4050 4051 /* 4052 * We have to call both the zone's init (not the keg's init) 4053 * and the zone's ctor. This is because the item is going from 4054 * a keg slab directly to the user, and the user is expecting it 4055 * to be both zone-init'd as well as zone-ctor'd. 4056 */ 4057 if (zone->uz_init != NULL) { 4058 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 4059 zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT); 4060 goto fail_cnt; 4061 } 4062 } 4063 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, flags, 4064 item); 4065 if (item == NULL) 4066 goto fail; 4067 4068 counter_u64_add(zone->uz_allocs, 1); 4069 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 4070 zone->uz_name, zone); 4071 4072 return (item); 4073 4074 fail_cnt: 4075 counter_u64_add(zone->uz_fails, 1); 4076 fail: 4077 if (zone->uz_max_items > 0) 4078 zone_free_limit(zone, 1); 4079 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 4080 zone->uz_name, zone); 4081 4082 return (NULL); 4083 } 4084 4085 /* See uma.h */ 4086 void 4087 uma_zfree_smr(uma_zone_t zone, void *item) 4088 { 4089 uma_cache_t cache; 4090 uma_cache_bucket_t bucket; 4091 int itemdomain, uz_flags; 4092 4093 #ifdef UMA_ZALLOC_DEBUG 4094 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 4095 ("uma_zfree_smr: called with non-SMR zone.")); 4096 KASSERT(item != NULL, ("uma_zfree_smr: Called with NULL pointer.")); 4097 SMR_ASSERT_NOT_ENTERED(zone->uz_smr); 4098 if (uma_zfree_debug(zone, item, NULL) == EJUSTRETURN) 4099 return; 4100 #endif 4101 cache = &zone->uz_cpu[curcpu]; 4102 uz_flags = cache_uz_flags(cache); 4103 itemdomain = 0; 4104 #ifdef NUMA 4105 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4106 itemdomain = item_domain(item); 4107 #endif 4108 critical_enter(); 4109 do { 4110 cache = &zone->uz_cpu[curcpu]; 4111 /* SMR Zones must free to the free bucket. */ 4112 bucket = &cache->uc_freebucket; 4113 #ifdef NUMA 4114 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4115 PCPU_GET(domain) != itemdomain) { 4116 bucket = &cache->uc_crossbucket; 4117 } 4118 #endif 4119 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 4120 cache_bucket_push(cache, bucket, item); 4121 critical_exit(); 4122 return; 4123 } 4124 } while (cache_free(zone, cache, NULL, item, itemdomain)); 4125 critical_exit(); 4126 4127 /* 4128 * If nothing else caught this, we'll just do an internal free. 4129 */ 4130 zone_free_item(zone, item, NULL, SKIP_NONE); 4131 } 4132 4133 /* See uma.h */ 4134 void 4135 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 4136 { 4137 uma_cache_t cache; 4138 uma_cache_bucket_t bucket; 4139 int itemdomain, uz_flags; 4140 4141 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 4142 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 4143 4144 CTR2(KTR_UMA, "uma_zfree_arg zone %s(%p)", zone->uz_name, zone); 4145 4146 #ifdef UMA_ZALLOC_DEBUG 4147 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 4148 ("uma_zfree_arg: called with SMR zone.")); 4149 if (uma_zfree_debug(zone, item, udata) == EJUSTRETURN) 4150 return; 4151 #endif 4152 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 4153 if (item == NULL) 4154 return; 4155 4156 /* 4157 * We are accessing the per-cpu cache without a critical section to 4158 * fetch size and flags. This is acceptable, if we are preempted we 4159 * will simply read another cpu's line. 4160 */ 4161 cache = &zone->uz_cpu[curcpu]; 4162 uz_flags = cache_uz_flags(cache); 4163 if (UMA_ALWAYS_CTORDTOR || 4164 __predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0)) 4165 item_dtor(zone, item, cache_uz_size(cache), udata, SKIP_NONE); 4166 4167 /* 4168 * The race here is acceptable. If we miss it we'll just have to wait 4169 * a little longer for the limits to be reset. 4170 */ 4171 if (__predict_false(uz_flags & UMA_ZFLAG_LIMIT)) { 4172 if (atomic_load_32(&zone->uz_sleepers) > 0) 4173 goto zfree_item; 4174 } 4175 4176 /* 4177 * If possible, free to the per-CPU cache. There are two 4178 * requirements for safe access to the per-CPU cache: (1) the thread 4179 * accessing the cache must not be preempted or yield during access, 4180 * and (2) the thread must not migrate CPUs without switching which 4181 * cache it accesses. We rely on a critical section to prevent 4182 * preemption and migration. We release the critical section in 4183 * order to acquire the zone mutex if we are unable to free to the 4184 * current cache; when we re-acquire the critical section, we must 4185 * detect and handle migration if it has occurred. 4186 */ 4187 itemdomain = 0; 4188 #ifdef NUMA 4189 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4190 itemdomain = item_domain(item); 4191 #endif 4192 critical_enter(); 4193 do { 4194 cache = &zone->uz_cpu[curcpu]; 4195 /* 4196 * Try to free into the allocbucket first to give LIFO 4197 * ordering for cache-hot datastructures. Spill over 4198 * into the freebucket if necessary. Alloc will swap 4199 * them if one runs dry. 4200 */ 4201 bucket = &cache->uc_allocbucket; 4202 #ifdef NUMA 4203 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4204 PCPU_GET(domain) != itemdomain) { 4205 bucket = &cache->uc_crossbucket; 4206 } else 4207 #endif 4208 if (bucket->ucb_cnt == bucket->ucb_entries && 4209 cache->uc_freebucket.ucb_cnt < 4210 cache->uc_freebucket.ucb_entries) 4211 cache_bucket_swap(&cache->uc_freebucket, 4212 &cache->uc_allocbucket); 4213 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 4214 cache_bucket_push(cache, bucket, item); 4215 critical_exit(); 4216 return; 4217 } 4218 } while (cache_free(zone, cache, udata, item, itemdomain)); 4219 critical_exit(); 4220 4221 /* 4222 * If nothing else caught this, we'll just do an internal free. 4223 */ 4224 zfree_item: 4225 zone_free_item(zone, item, udata, SKIP_DTOR); 4226 } 4227 4228 #ifdef NUMA 4229 /* 4230 * sort crossdomain free buckets to domain correct buckets and cache 4231 * them. 4232 */ 4233 static void 4234 zone_free_cross(uma_zone_t zone, uma_bucket_t bucket, void *udata) 4235 { 4236 struct uma_bucketlist emptybuckets, fullbuckets; 4237 uma_zone_domain_t zdom; 4238 uma_bucket_t b; 4239 smr_seq_t seq; 4240 void *item; 4241 int domain; 4242 4243 CTR3(KTR_UMA, 4244 "uma_zfree: zone %s(%p) draining cross bucket %p", 4245 zone->uz_name, zone, bucket); 4246 4247 /* 4248 * It is possible for buckets to arrive here out of order so we fetch 4249 * the current smr seq rather than accepting the bucket's. 4250 */ 4251 seq = SMR_SEQ_INVALID; 4252 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 4253 seq = smr_advance(zone->uz_smr); 4254 4255 /* 4256 * To avoid having ndomain * ndomain buckets for sorting we have a 4257 * lock on the current crossfree bucket. A full matrix with 4258 * per-domain locking could be used if necessary. 4259 */ 4260 STAILQ_INIT(&emptybuckets); 4261 STAILQ_INIT(&fullbuckets); 4262 ZONE_CROSS_LOCK(zone); 4263 for (; bucket->ub_cnt > 0; bucket->ub_cnt--) { 4264 item = bucket->ub_bucket[bucket->ub_cnt - 1]; 4265 domain = item_domain(item); 4266 zdom = ZDOM_GET(zone, domain); 4267 if (zdom->uzd_cross == NULL) { 4268 if ((b = STAILQ_FIRST(&emptybuckets)) != NULL) { 4269 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link); 4270 zdom->uzd_cross = b; 4271 } else { 4272 /* 4273 * Avoid allocating a bucket with the cross lock 4274 * held, since allocation can trigger a 4275 * cross-domain free and bucket zones may 4276 * allocate from each other. 4277 */ 4278 ZONE_CROSS_UNLOCK(zone); 4279 b = bucket_alloc(zone, udata, M_NOWAIT); 4280 if (b == NULL) 4281 goto out; 4282 ZONE_CROSS_LOCK(zone); 4283 if (zdom->uzd_cross != NULL) { 4284 STAILQ_INSERT_HEAD(&emptybuckets, b, 4285 ub_link); 4286 } else { 4287 zdom->uzd_cross = b; 4288 } 4289 } 4290 } 4291 b = zdom->uzd_cross; 4292 b->ub_bucket[b->ub_cnt++] = item; 4293 b->ub_seq = seq; 4294 if (b->ub_cnt == b->ub_entries) { 4295 STAILQ_INSERT_HEAD(&fullbuckets, b, ub_link); 4296 if ((b = STAILQ_FIRST(&emptybuckets)) != NULL) 4297 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link); 4298 zdom->uzd_cross = b; 4299 } 4300 } 4301 ZONE_CROSS_UNLOCK(zone); 4302 out: 4303 if (bucket->ub_cnt == 0) 4304 bucket->ub_seq = SMR_SEQ_INVALID; 4305 bucket_free(zone, bucket, udata); 4306 4307 while ((b = STAILQ_FIRST(&emptybuckets)) != NULL) { 4308 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link); 4309 bucket_free(zone, b, udata); 4310 } 4311 while ((b = STAILQ_FIRST(&fullbuckets)) != NULL) { 4312 STAILQ_REMOVE_HEAD(&fullbuckets, ub_link); 4313 domain = item_domain(b->ub_bucket[0]); 4314 zone_put_bucket(zone, domain, b, udata, true); 4315 } 4316 } 4317 #endif 4318 4319 static void 4320 zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 4321 int itemdomain, bool ws) 4322 { 4323 4324 #ifdef NUMA 4325 /* 4326 * Buckets coming from the wrong domain will be entirely for the 4327 * only other domain on two domain systems. In this case we can 4328 * simply cache them. Otherwise we need to sort them back to 4329 * correct domains. 4330 */ 4331 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4332 vm_ndomains > 2 && PCPU_GET(domain) != itemdomain) { 4333 zone_free_cross(zone, bucket, udata); 4334 return; 4335 } 4336 #endif 4337 4338 /* 4339 * Attempt to save the bucket in the zone's domain bucket cache. 4340 */ 4341 CTR3(KTR_UMA, 4342 "uma_zfree: zone %s(%p) putting bucket %p on free list", 4343 zone->uz_name, zone, bucket); 4344 /* ub_cnt is pointing to the last free item */ 4345 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) 4346 itemdomain = zone_domain_lowest(zone, itemdomain); 4347 zone_put_bucket(zone, itemdomain, bucket, udata, ws); 4348 } 4349 4350 /* 4351 * Populate a free or cross bucket for the current cpu cache. Free any 4352 * existing full bucket either to the zone cache or back to the slab layer. 4353 * 4354 * Enters and returns in a critical section. false return indicates that 4355 * we can not satisfy this free in the cache layer. true indicates that 4356 * the caller should retry. 4357 */ 4358 static __noinline bool 4359 cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, void *item, 4360 int itemdomain) 4361 { 4362 uma_cache_bucket_t cbucket; 4363 uma_bucket_t newbucket, bucket; 4364 4365 CRITICAL_ASSERT(curthread); 4366 4367 if (zone->uz_bucket_size == 0) 4368 return false; 4369 4370 cache = &zone->uz_cpu[curcpu]; 4371 newbucket = NULL; 4372 4373 /* 4374 * FIRSTTOUCH domains need to free to the correct zdom. When 4375 * enabled this is the zdom of the item. The bucket is the 4376 * cross bucket if the current domain and itemdomain do not match. 4377 */ 4378 cbucket = &cache->uc_freebucket; 4379 #ifdef NUMA 4380 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { 4381 if (PCPU_GET(domain) != itemdomain) { 4382 cbucket = &cache->uc_crossbucket; 4383 if (cbucket->ucb_cnt != 0) 4384 counter_u64_add(zone->uz_xdomain, 4385 cbucket->ucb_cnt); 4386 } 4387 } 4388 #endif 4389 bucket = cache_bucket_unload(cbucket); 4390 KASSERT(bucket == NULL || bucket->ub_cnt == bucket->ub_entries, 4391 ("cache_free: Entered with non-full free bucket.")); 4392 4393 /* We are no longer associated with this CPU. */ 4394 critical_exit(); 4395 4396 /* 4397 * Don't let SMR zones operate without a free bucket. Force 4398 * a synchronize and re-use this one. We will only degrade 4399 * to a synchronize every bucket_size items rather than every 4400 * item if we fail to allocate a bucket. 4401 */ 4402 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) { 4403 if (bucket != NULL) 4404 bucket->ub_seq = smr_advance(zone->uz_smr); 4405 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4406 if (newbucket == NULL && bucket != NULL) { 4407 bucket_drain(zone, bucket); 4408 newbucket = bucket; 4409 bucket = NULL; 4410 } 4411 } else if (!bucketdisable) 4412 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4413 4414 if (bucket != NULL) 4415 zone_free_bucket(zone, bucket, udata, itemdomain, true); 4416 4417 critical_enter(); 4418 if ((bucket = newbucket) == NULL) 4419 return (false); 4420 cache = &zone->uz_cpu[curcpu]; 4421 #ifdef NUMA 4422 /* 4423 * Check to see if we should be populating the cross bucket. If it 4424 * is already populated we will fall through and attempt to populate 4425 * the free bucket. 4426 */ 4427 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { 4428 if (PCPU_GET(domain) != itemdomain && 4429 cache->uc_crossbucket.ucb_bucket == NULL) { 4430 cache_bucket_load_cross(cache, bucket); 4431 return (true); 4432 } 4433 } 4434 #endif 4435 /* 4436 * We may have lost the race to fill the bucket or switched CPUs. 4437 */ 4438 if (cache->uc_freebucket.ucb_bucket != NULL) { 4439 critical_exit(); 4440 bucket_free(zone, bucket, udata); 4441 critical_enter(); 4442 } else 4443 cache_bucket_load_free(cache, bucket); 4444 4445 return (true); 4446 } 4447 4448 static void 4449 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item) 4450 { 4451 uma_keg_t keg; 4452 uma_domain_t dom; 4453 int freei; 4454 4455 keg = zone->uz_keg; 4456 KEG_LOCK_ASSERT(keg, slab->us_domain); 4457 4458 /* Do we need to remove from any lists? */ 4459 dom = &keg->uk_domain[slab->us_domain]; 4460 if (slab->us_freecount + 1 == keg->uk_ipers) { 4461 LIST_REMOVE(slab, us_link); 4462 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 4463 dom->ud_free_slabs++; 4464 } else if (slab->us_freecount == 0) { 4465 LIST_REMOVE(slab, us_link); 4466 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 4467 } 4468 4469 /* Slab management. */ 4470 freei = slab_item_index(slab, keg, item); 4471 BIT_SET(keg->uk_ipers, freei, &slab->us_free); 4472 slab->us_freecount++; 4473 4474 /* Keg statistics. */ 4475 dom->ud_free_items++; 4476 } 4477 4478 static void 4479 zone_release(void *arg, void **bucket, int cnt) 4480 { 4481 struct mtx *lock; 4482 uma_zone_t zone; 4483 uma_slab_t slab; 4484 uma_keg_t keg; 4485 uint8_t *mem; 4486 void *item; 4487 int i; 4488 4489 zone = arg; 4490 keg = zone->uz_keg; 4491 lock = NULL; 4492 if (__predict_false((zone->uz_flags & UMA_ZFLAG_HASH) != 0)) 4493 lock = KEG_LOCK(keg, 0); 4494 for (i = 0; i < cnt; i++) { 4495 item = bucket[i]; 4496 if (__predict_true((zone->uz_flags & UMA_ZFLAG_VTOSLAB) != 0)) { 4497 slab = vtoslab((vm_offset_t)item); 4498 } else { 4499 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 4500 if ((zone->uz_flags & UMA_ZFLAG_HASH) != 0) 4501 slab = hash_sfind(&keg->uk_hash, mem); 4502 else 4503 slab = (uma_slab_t)(mem + keg->uk_pgoff); 4504 } 4505 if (lock != KEG_LOCKPTR(keg, slab->us_domain)) { 4506 if (lock != NULL) 4507 mtx_unlock(lock); 4508 lock = KEG_LOCK(keg, slab->us_domain); 4509 } 4510 slab_free_item(zone, slab, item); 4511 } 4512 if (lock != NULL) 4513 mtx_unlock(lock); 4514 } 4515 4516 /* 4517 * Frees a single item to any zone. 4518 * 4519 * Arguments: 4520 * zone The zone to free to 4521 * item The item we're freeing 4522 * udata User supplied data for the dtor 4523 * skip Skip dtors and finis 4524 */ 4525 static __noinline void 4526 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 4527 { 4528 4529 /* 4530 * If a free is sent directly to an SMR zone we have to 4531 * synchronize immediately because the item can instantly 4532 * be reallocated. This should only happen in degenerate 4533 * cases when no memory is available for per-cpu caches. 4534 */ 4535 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && skip == SKIP_NONE) 4536 smr_synchronize(zone->uz_smr); 4537 4538 item_dtor(zone, item, zone->uz_size, udata, skip); 4539 4540 if (skip < SKIP_FINI && zone->uz_fini) 4541 zone->uz_fini(item, zone->uz_size); 4542 4543 zone->uz_release(zone->uz_arg, &item, 1); 4544 4545 if (skip & SKIP_CNT) 4546 return; 4547 4548 counter_u64_add(zone->uz_frees, 1); 4549 4550 if (zone->uz_max_items > 0) 4551 zone_free_limit(zone, 1); 4552 } 4553 4554 /* See uma.h */ 4555 int 4556 uma_zone_set_max(uma_zone_t zone, int nitems) 4557 { 4558 4559 /* 4560 * If the limit is small, we may need to constrain the maximum per-CPU 4561 * cache size, or disable caching entirely. 4562 */ 4563 uma_zone_set_maxcache(zone, nitems); 4564 4565 /* 4566 * XXX This can misbehave if the zone has any allocations with 4567 * no limit and a limit is imposed. There is currently no 4568 * way to clear a limit. 4569 */ 4570 ZONE_LOCK(zone); 4571 zone->uz_max_items = nitems; 4572 zone->uz_flags |= UMA_ZFLAG_LIMIT; 4573 zone_update_caches(zone); 4574 /* We may need to wake waiters. */ 4575 wakeup(&zone->uz_max_items); 4576 ZONE_UNLOCK(zone); 4577 4578 return (nitems); 4579 } 4580 4581 /* See uma.h */ 4582 void 4583 uma_zone_set_maxcache(uma_zone_t zone, int nitems) 4584 { 4585 int bpcpu, bpdom, bsize, nb; 4586 4587 ZONE_LOCK(zone); 4588 4589 /* 4590 * Compute a lower bound on the number of items that may be cached in 4591 * the zone. Each CPU gets at least two buckets, and for cross-domain 4592 * frees we use an additional bucket per CPU and per domain. Select the 4593 * largest bucket size that does not exceed half of the requested limit, 4594 * with the left over space given to the full bucket cache. 4595 */ 4596 bpdom = 0; 4597 bpcpu = 2; 4598 #ifdef NUMA 4599 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && vm_ndomains > 1) { 4600 bpcpu++; 4601 bpdom++; 4602 } 4603 #endif 4604 nb = bpcpu * mp_ncpus + bpdom * vm_ndomains; 4605 bsize = nitems / nb / 2; 4606 if (bsize > BUCKET_MAX) 4607 bsize = BUCKET_MAX; 4608 else if (bsize == 0 && nitems / nb > 0) 4609 bsize = 1; 4610 zone->uz_bucket_size_max = zone->uz_bucket_size = bsize; 4611 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 4612 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 4613 zone->uz_bucket_max = nitems - nb * bsize; 4614 ZONE_UNLOCK(zone); 4615 } 4616 4617 /* See uma.h */ 4618 int 4619 uma_zone_get_max(uma_zone_t zone) 4620 { 4621 int nitems; 4622 4623 nitems = atomic_load_64(&zone->uz_max_items); 4624 4625 return (nitems); 4626 } 4627 4628 /* See uma.h */ 4629 void 4630 uma_zone_set_warning(uma_zone_t zone, const char *warning) 4631 { 4632 4633 ZONE_ASSERT_COLD(zone); 4634 zone->uz_warning = warning; 4635 } 4636 4637 /* See uma.h */ 4638 void 4639 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 4640 { 4641 4642 ZONE_ASSERT_COLD(zone); 4643 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 4644 } 4645 4646 /* See uma.h */ 4647 int 4648 uma_zone_get_cur(uma_zone_t zone) 4649 { 4650 int64_t nitems; 4651 u_int i; 4652 4653 nitems = 0; 4654 if (zone->uz_allocs != EARLY_COUNTER && zone->uz_frees != EARLY_COUNTER) 4655 nitems = counter_u64_fetch(zone->uz_allocs) - 4656 counter_u64_fetch(zone->uz_frees); 4657 CPU_FOREACH(i) 4658 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs) - 4659 atomic_load_64(&zone->uz_cpu[i].uc_frees); 4660 4661 return (nitems < 0 ? 0 : nitems); 4662 } 4663 4664 static uint64_t 4665 uma_zone_get_allocs(uma_zone_t zone) 4666 { 4667 uint64_t nitems; 4668 u_int i; 4669 4670 nitems = 0; 4671 if (zone->uz_allocs != EARLY_COUNTER) 4672 nitems = counter_u64_fetch(zone->uz_allocs); 4673 CPU_FOREACH(i) 4674 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs); 4675 4676 return (nitems); 4677 } 4678 4679 static uint64_t 4680 uma_zone_get_frees(uma_zone_t zone) 4681 { 4682 uint64_t nitems; 4683 u_int i; 4684 4685 nitems = 0; 4686 if (zone->uz_frees != EARLY_COUNTER) 4687 nitems = counter_u64_fetch(zone->uz_frees); 4688 CPU_FOREACH(i) 4689 nitems += atomic_load_64(&zone->uz_cpu[i].uc_frees); 4690 4691 return (nitems); 4692 } 4693 4694 #ifdef INVARIANTS 4695 /* Used only for KEG_ASSERT_COLD(). */ 4696 static uint64_t 4697 uma_keg_get_allocs(uma_keg_t keg) 4698 { 4699 uma_zone_t z; 4700 uint64_t nitems; 4701 4702 nitems = 0; 4703 LIST_FOREACH(z, &keg->uk_zones, uz_link) 4704 nitems += uma_zone_get_allocs(z); 4705 4706 return (nitems); 4707 } 4708 #endif 4709 4710 /* See uma.h */ 4711 void 4712 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 4713 { 4714 uma_keg_t keg; 4715 4716 KEG_GET(zone, keg); 4717 KEG_ASSERT_COLD(keg); 4718 keg->uk_init = uminit; 4719 } 4720 4721 /* See uma.h */ 4722 void 4723 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 4724 { 4725 uma_keg_t keg; 4726 4727 KEG_GET(zone, keg); 4728 KEG_ASSERT_COLD(keg); 4729 keg->uk_fini = fini; 4730 } 4731 4732 /* See uma.h */ 4733 void 4734 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 4735 { 4736 4737 ZONE_ASSERT_COLD(zone); 4738 zone->uz_init = zinit; 4739 } 4740 4741 /* See uma.h */ 4742 void 4743 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 4744 { 4745 4746 ZONE_ASSERT_COLD(zone); 4747 zone->uz_fini = zfini; 4748 } 4749 4750 /* See uma.h */ 4751 void 4752 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 4753 { 4754 uma_keg_t keg; 4755 4756 KEG_GET(zone, keg); 4757 KEG_ASSERT_COLD(keg); 4758 keg->uk_freef = freef; 4759 } 4760 4761 /* See uma.h */ 4762 void 4763 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 4764 { 4765 uma_keg_t keg; 4766 4767 KEG_GET(zone, keg); 4768 KEG_ASSERT_COLD(keg); 4769 keg->uk_allocf = allocf; 4770 } 4771 4772 /* See uma.h */ 4773 void 4774 uma_zone_set_smr(uma_zone_t zone, smr_t smr) 4775 { 4776 4777 ZONE_ASSERT_COLD(zone); 4778 4779 KASSERT(smr != NULL, ("Got NULL smr")); 4780 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 4781 ("zone %p (%s) already uses SMR", zone, zone->uz_name)); 4782 zone->uz_flags |= UMA_ZONE_SMR; 4783 zone->uz_smr = smr; 4784 zone_update_caches(zone); 4785 } 4786 4787 smr_t 4788 uma_zone_get_smr(uma_zone_t zone) 4789 { 4790 4791 return (zone->uz_smr); 4792 } 4793 4794 /* See uma.h */ 4795 void 4796 uma_zone_reserve(uma_zone_t zone, int items) 4797 { 4798 uma_keg_t keg; 4799 4800 KEG_GET(zone, keg); 4801 KEG_ASSERT_COLD(keg); 4802 keg->uk_reserve = items; 4803 } 4804 4805 /* See uma.h */ 4806 int 4807 uma_zone_reserve_kva(uma_zone_t zone, int count) 4808 { 4809 uma_keg_t keg; 4810 vm_offset_t kva; 4811 u_int pages; 4812 4813 KEG_GET(zone, keg); 4814 KEG_ASSERT_COLD(keg); 4815 ZONE_ASSERT_COLD(zone); 4816 4817 pages = howmany(count, keg->uk_ipers) * keg->uk_ppera; 4818 4819 #ifdef UMA_MD_SMALL_ALLOC 4820 if (keg->uk_ppera > 1) { 4821 #else 4822 if (1) { 4823 #endif 4824 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 4825 if (kva == 0) 4826 return (0); 4827 } else 4828 kva = 0; 4829 4830 MPASS(keg->uk_kva == 0); 4831 keg->uk_kva = kva; 4832 keg->uk_offset = 0; 4833 zone->uz_max_items = pages * keg->uk_ipers; 4834 #ifdef UMA_MD_SMALL_ALLOC 4835 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 4836 #else 4837 keg->uk_allocf = noobj_alloc; 4838 #endif 4839 keg->uk_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 4840 zone->uz_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 4841 zone_update_caches(zone); 4842 4843 return (1); 4844 } 4845 4846 /* See uma.h */ 4847 void 4848 uma_prealloc(uma_zone_t zone, int items) 4849 { 4850 struct vm_domainset_iter di; 4851 uma_domain_t dom; 4852 uma_slab_t slab; 4853 uma_keg_t keg; 4854 int aflags, domain, slabs; 4855 4856 KEG_GET(zone, keg); 4857 slabs = howmany(items, keg->uk_ipers); 4858 while (slabs-- > 0) { 4859 aflags = M_NOWAIT; 4860 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 4861 &aflags); 4862 for (;;) { 4863 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK, 4864 aflags); 4865 if (slab != NULL) { 4866 dom = &keg->uk_domain[slab->us_domain]; 4867 /* 4868 * keg_alloc_slab() always returns a slab on the 4869 * partial list. 4870 */ 4871 LIST_REMOVE(slab, us_link); 4872 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, 4873 us_link); 4874 dom->ud_free_slabs++; 4875 KEG_UNLOCK(keg, slab->us_domain); 4876 break; 4877 } 4878 if (vm_domainset_iter_policy(&di, &domain) != 0) 4879 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0); 4880 } 4881 } 4882 } 4883 4884 /* 4885 * Returns a snapshot of memory consumption in bytes. 4886 */ 4887 size_t 4888 uma_zone_memory(uma_zone_t zone) 4889 { 4890 size_t sz; 4891 int i; 4892 4893 sz = 0; 4894 if (zone->uz_flags & UMA_ZFLAG_CACHE) { 4895 for (i = 0; i < vm_ndomains; i++) 4896 sz += ZDOM_GET(zone, i)->uzd_nitems; 4897 return (sz * zone->uz_size); 4898 } 4899 for (i = 0; i < vm_ndomains; i++) 4900 sz += zone->uz_keg->uk_domain[i].ud_pages; 4901 4902 return (sz * PAGE_SIZE); 4903 } 4904 4905 /* See uma.h */ 4906 void 4907 uma_reclaim(int req) 4908 { 4909 4910 CTR0(KTR_UMA, "UMA: vm asked us to release pages!"); 4911 sx_xlock(&uma_reclaim_lock); 4912 bucket_enable(); 4913 4914 switch (req) { 4915 case UMA_RECLAIM_TRIM: 4916 zone_foreach(zone_trim, NULL); 4917 break; 4918 case UMA_RECLAIM_DRAIN: 4919 case UMA_RECLAIM_DRAIN_CPU: 4920 zone_foreach(zone_drain, NULL); 4921 if (req == UMA_RECLAIM_DRAIN_CPU) { 4922 pcpu_cache_drain_safe(NULL); 4923 zone_foreach(zone_drain, NULL); 4924 } 4925 break; 4926 default: 4927 panic("unhandled reclamation request %d", req); 4928 } 4929 4930 /* 4931 * Some slabs may have been freed but this zone will be visited early 4932 * we visit again so that we can free pages that are empty once other 4933 * zones are drained. We have to do the same for buckets. 4934 */ 4935 zone_drain(slabzones[0], NULL); 4936 zone_drain(slabzones[1], NULL); 4937 bucket_zone_drain(); 4938 sx_xunlock(&uma_reclaim_lock); 4939 } 4940 4941 static volatile int uma_reclaim_needed; 4942 4943 void 4944 uma_reclaim_wakeup(void) 4945 { 4946 4947 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 4948 wakeup(uma_reclaim); 4949 } 4950 4951 void 4952 uma_reclaim_worker(void *arg __unused) 4953 { 4954 4955 for (;;) { 4956 sx_xlock(&uma_reclaim_lock); 4957 while (atomic_load_int(&uma_reclaim_needed) == 0) 4958 sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl", 4959 hz); 4960 sx_xunlock(&uma_reclaim_lock); 4961 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 4962 uma_reclaim(UMA_RECLAIM_DRAIN_CPU); 4963 atomic_store_int(&uma_reclaim_needed, 0); 4964 /* Don't fire more than once per-second. */ 4965 pause("umarclslp", hz); 4966 } 4967 } 4968 4969 /* See uma.h */ 4970 void 4971 uma_zone_reclaim(uma_zone_t zone, int req) 4972 { 4973 4974 switch (req) { 4975 case UMA_RECLAIM_TRIM: 4976 zone_trim(zone, NULL); 4977 break; 4978 case UMA_RECLAIM_DRAIN: 4979 zone_drain(zone, NULL); 4980 break; 4981 case UMA_RECLAIM_DRAIN_CPU: 4982 pcpu_cache_drain_safe(zone); 4983 zone_drain(zone, NULL); 4984 break; 4985 default: 4986 panic("unhandled reclamation request %d", req); 4987 } 4988 } 4989 4990 /* See uma.h */ 4991 int 4992 uma_zone_exhausted(uma_zone_t zone) 4993 { 4994 4995 return (atomic_load_32(&zone->uz_sleepers) > 0); 4996 } 4997 4998 unsigned long 4999 uma_limit(void) 5000 { 5001 5002 return (uma_kmem_limit); 5003 } 5004 5005 void 5006 uma_set_limit(unsigned long limit) 5007 { 5008 5009 uma_kmem_limit = limit; 5010 } 5011 5012 unsigned long 5013 uma_size(void) 5014 { 5015 5016 return (atomic_load_long(&uma_kmem_total)); 5017 } 5018 5019 long 5020 uma_avail(void) 5021 { 5022 5023 return (uma_kmem_limit - uma_size()); 5024 } 5025 5026 #ifdef DDB 5027 /* 5028 * Generate statistics across both the zone and its per-cpu cache's. Return 5029 * desired statistics if the pointer is non-NULL for that statistic. 5030 * 5031 * Note: does not update the zone statistics, as it can't safely clear the 5032 * per-CPU cache statistic. 5033 * 5034 */ 5035 static void 5036 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp, 5037 uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp) 5038 { 5039 uma_cache_t cache; 5040 uint64_t allocs, frees, sleeps, xdomain; 5041 int cachefree, cpu; 5042 5043 allocs = frees = sleeps = xdomain = 0; 5044 cachefree = 0; 5045 CPU_FOREACH(cpu) { 5046 cache = &z->uz_cpu[cpu]; 5047 cachefree += cache->uc_allocbucket.ucb_cnt; 5048 cachefree += cache->uc_freebucket.ucb_cnt; 5049 xdomain += cache->uc_crossbucket.ucb_cnt; 5050 cachefree += cache->uc_crossbucket.ucb_cnt; 5051 allocs += cache->uc_allocs; 5052 frees += cache->uc_frees; 5053 } 5054 allocs += counter_u64_fetch(z->uz_allocs); 5055 frees += counter_u64_fetch(z->uz_frees); 5056 xdomain += counter_u64_fetch(z->uz_xdomain); 5057 sleeps += z->uz_sleeps; 5058 if (cachefreep != NULL) 5059 *cachefreep = cachefree; 5060 if (allocsp != NULL) 5061 *allocsp = allocs; 5062 if (freesp != NULL) 5063 *freesp = frees; 5064 if (sleepsp != NULL) 5065 *sleepsp = sleeps; 5066 if (xdomainp != NULL) 5067 *xdomainp = xdomain; 5068 } 5069 #endif /* DDB */ 5070 5071 static int 5072 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 5073 { 5074 uma_keg_t kz; 5075 uma_zone_t z; 5076 int count; 5077 5078 count = 0; 5079 rw_rlock(&uma_rwlock); 5080 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5081 LIST_FOREACH(z, &kz->uk_zones, uz_link) 5082 count++; 5083 } 5084 LIST_FOREACH(z, &uma_cachezones, uz_link) 5085 count++; 5086 5087 rw_runlock(&uma_rwlock); 5088 return (sysctl_handle_int(oidp, &count, 0, req)); 5089 } 5090 5091 static void 5092 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf, 5093 struct uma_percpu_stat *ups, bool internal) 5094 { 5095 uma_zone_domain_t zdom; 5096 uma_cache_t cache; 5097 int i; 5098 5099 for (i = 0; i < vm_ndomains; i++) { 5100 zdom = ZDOM_GET(z, i); 5101 uth->uth_zone_free += zdom->uzd_nitems; 5102 } 5103 uth->uth_allocs = counter_u64_fetch(z->uz_allocs); 5104 uth->uth_frees = counter_u64_fetch(z->uz_frees); 5105 uth->uth_fails = counter_u64_fetch(z->uz_fails); 5106 uth->uth_xdomain = counter_u64_fetch(z->uz_xdomain); 5107 uth->uth_sleeps = z->uz_sleeps; 5108 5109 for (i = 0; i < mp_maxid + 1; i++) { 5110 bzero(&ups[i], sizeof(*ups)); 5111 if (internal || CPU_ABSENT(i)) 5112 continue; 5113 cache = &z->uz_cpu[i]; 5114 ups[i].ups_cache_free += cache->uc_allocbucket.ucb_cnt; 5115 ups[i].ups_cache_free += cache->uc_freebucket.ucb_cnt; 5116 ups[i].ups_cache_free += cache->uc_crossbucket.ucb_cnt; 5117 ups[i].ups_allocs = cache->uc_allocs; 5118 ups[i].ups_frees = cache->uc_frees; 5119 } 5120 } 5121 5122 static int 5123 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 5124 { 5125 struct uma_stream_header ush; 5126 struct uma_type_header uth; 5127 struct uma_percpu_stat *ups; 5128 struct sbuf sbuf; 5129 uma_keg_t kz; 5130 uma_zone_t z; 5131 uint64_t items; 5132 uint32_t kfree, pages; 5133 int count, error, i; 5134 5135 error = sysctl_wire_old_buffer(req, 0); 5136 if (error != 0) 5137 return (error); 5138 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 5139 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 5140 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 5141 5142 count = 0; 5143 rw_rlock(&uma_rwlock); 5144 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5145 LIST_FOREACH(z, &kz->uk_zones, uz_link) 5146 count++; 5147 } 5148 5149 LIST_FOREACH(z, &uma_cachezones, uz_link) 5150 count++; 5151 5152 /* 5153 * Insert stream header. 5154 */ 5155 bzero(&ush, sizeof(ush)); 5156 ush.ush_version = UMA_STREAM_VERSION; 5157 ush.ush_maxcpus = (mp_maxid + 1); 5158 ush.ush_count = count; 5159 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 5160 5161 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5162 kfree = pages = 0; 5163 for (i = 0; i < vm_ndomains; i++) { 5164 kfree += kz->uk_domain[i].ud_free_items; 5165 pages += kz->uk_domain[i].ud_pages; 5166 } 5167 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5168 bzero(&uth, sizeof(uth)); 5169 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 5170 uth.uth_align = kz->uk_align; 5171 uth.uth_size = kz->uk_size; 5172 uth.uth_rsize = kz->uk_rsize; 5173 if (z->uz_max_items > 0) { 5174 items = UZ_ITEMS_COUNT(z->uz_items); 5175 uth.uth_pages = (items / kz->uk_ipers) * 5176 kz->uk_ppera; 5177 } else 5178 uth.uth_pages = pages; 5179 uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) * 5180 kz->uk_ppera; 5181 uth.uth_limit = z->uz_max_items; 5182 uth.uth_keg_free = kfree; 5183 5184 /* 5185 * A zone is secondary is it is not the first entry 5186 * on the keg's zone list. 5187 */ 5188 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 5189 (LIST_FIRST(&kz->uk_zones) != z)) 5190 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 5191 uma_vm_zone_stats(&uth, z, &sbuf, ups, 5192 kz->uk_flags & UMA_ZFLAG_INTERNAL); 5193 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 5194 for (i = 0; i < mp_maxid + 1; i++) 5195 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 5196 } 5197 } 5198 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5199 bzero(&uth, sizeof(uth)); 5200 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 5201 uth.uth_size = z->uz_size; 5202 uma_vm_zone_stats(&uth, z, &sbuf, ups, false); 5203 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 5204 for (i = 0; i < mp_maxid + 1; i++) 5205 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 5206 } 5207 5208 rw_runlock(&uma_rwlock); 5209 error = sbuf_finish(&sbuf); 5210 sbuf_delete(&sbuf); 5211 free(ups, M_TEMP); 5212 return (error); 5213 } 5214 5215 int 5216 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 5217 { 5218 uma_zone_t zone = *(uma_zone_t *)arg1; 5219 int error, max; 5220 5221 max = uma_zone_get_max(zone); 5222 error = sysctl_handle_int(oidp, &max, 0, req); 5223 if (error || !req->newptr) 5224 return (error); 5225 5226 uma_zone_set_max(zone, max); 5227 5228 return (0); 5229 } 5230 5231 int 5232 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 5233 { 5234 uma_zone_t zone; 5235 int cur; 5236 5237 /* 5238 * Some callers want to add sysctls for global zones that 5239 * may not yet exist so they pass a pointer to a pointer. 5240 */ 5241 if (arg2 == 0) 5242 zone = *(uma_zone_t *)arg1; 5243 else 5244 zone = arg1; 5245 cur = uma_zone_get_cur(zone); 5246 return (sysctl_handle_int(oidp, &cur, 0, req)); 5247 } 5248 5249 static int 5250 sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS) 5251 { 5252 uma_zone_t zone = arg1; 5253 uint64_t cur; 5254 5255 cur = uma_zone_get_allocs(zone); 5256 return (sysctl_handle_64(oidp, &cur, 0, req)); 5257 } 5258 5259 static int 5260 sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS) 5261 { 5262 uma_zone_t zone = arg1; 5263 uint64_t cur; 5264 5265 cur = uma_zone_get_frees(zone); 5266 return (sysctl_handle_64(oidp, &cur, 0, req)); 5267 } 5268 5269 static int 5270 sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS) 5271 { 5272 struct sbuf sbuf; 5273 uma_zone_t zone = arg1; 5274 int error; 5275 5276 sbuf_new_for_sysctl(&sbuf, NULL, 0, req); 5277 if (zone->uz_flags != 0) 5278 sbuf_printf(&sbuf, "0x%b", zone->uz_flags, PRINT_UMA_ZFLAGS); 5279 else 5280 sbuf_printf(&sbuf, "0"); 5281 error = sbuf_finish(&sbuf); 5282 sbuf_delete(&sbuf); 5283 5284 return (error); 5285 } 5286 5287 static int 5288 sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS) 5289 { 5290 uma_keg_t keg = arg1; 5291 int avail, effpct, total; 5292 5293 total = keg->uk_ppera * PAGE_SIZE; 5294 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0) 5295 total += slabzone(keg->uk_ipers)->uz_keg->uk_rsize; 5296 /* 5297 * We consider the client's requested size and alignment here, not the 5298 * real size determination uk_rsize, because we also adjust the real 5299 * size for internal implementation reasons (max bitset size). 5300 */ 5301 avail = keg->uk_ipers * roundup2(keg->uk_size, keg->uk_align + 1); 5302 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 5303 avail *= mp_maxid + 1; 5304 effpct = 100 * avail / total; 5305 return (sysctl_handle_int(oidp, &effpct, 0, req)); 5306 } 5307 5308 static int 5309 sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS) 5310 { 5311 uma_zone_t zone = arg1; 5312 uint64_t cur; 5313 5314 cur = UZ_ITEMS_COUNT(atomic_load_64(&zone->uz_items)); 5315 return (sysctl_handle_64(oidp, &cur, 0, req)); 5316 } 5317 5318 #ifdef INVARIANTS 5319 static uma_slab_t 5320 uma_dbg_getslab(uma_zone_t zone, void *item) 5321 { 5322 uma_slab_t slab; 5323 uma_keg_t keg; 5324 uint8_t *mem; 5325 5326 /* 5327 * It is safe to return the slab here even though the 5328 * zone is unlocked because the item's allocation state 5329 * essentially holds a reference. 5330 */ 5331 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 5332 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5333 return (NULL); 5334 if (zone->uz_flags & UMA_ZFLAG_VTOSLAB) 5335 return (vtoslab((vm_offset_t)mem)); 5336 keg = zone->uz_keg; 5337 if ((keg->uk_flags & UMA_ZFLAG_HASH) == 0) 5338 return ((uma_slab_t)(mem + keg->uk_pgoff)); 5339 KEG_LOCK(keg, 0); 5340 slab = hash_sfind(&keg->uk_hash, mem); 5341 KEG_UNLOCK(keg, 0); 5342 5343 return (slab); 5344 } 5345 5346 static bool 5347 uma_dbg_zskip(uma_zone_t zone, void *mem) 5348 { 5349 5350 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5351 return (true); 5352 5353 return (uma_dbg_kskip(zone->uz_keg, mem)); 5354 } 5355 5356 static bool 5357 uma_dbg_kskip(uma_keg_t keg, void *mem) 5358 { 5359 uintptr_t idx; 5360 5361 if (dbg_divisor == 0) 5362 return (true); 5363 5364 if (dbg_divisor == 1) 5365 return (false); 5366 5367 idx = (uintptr_t)mem >> PAGE_SHIFT; 5368 if (keg->uk_ipers > 1) { 5369 idx *= keg->uk_ipers; 5370 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize; 5371 } 5372 5373 if ((idx / dbg_divisor) * dbg_divisor != idx) { 5374 counter_u64_add(uma_skip_cnt, 1); 5375 return (true); 5376 } 5377 counter_u64_add(uma_dbg_cnt, 1); 5378 5379 return (false); 5380 } 5381 5382 /* 5383 * Set up the slab's freei data such that uma_dbg_free can function. 5384 * 5385 */ 5386 static void 5387 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 5388 { 5389 uma_keg_t keg; 5390 int freei; 5391 5392 if (slab == NULL) { 5393 slab = uma_dbg_getslab(zone, item); 5394 if (slab == NULL) 5395 panic("uma: item %p did not belong to zone %s", 5396 item, zone->uz_name); 5397 } 5398 keg = zone->uz_keg; 5399 freei = slab_item_index(slab, keg, item); 5400 5401 if (BIT_TEST_SET_ATOMIC(keg->uk_ipers, freei, 5402 slab_dbg_bits(slab, keg))) 5403 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)", 5404 item, zone, zone->uz_name, slab, freei); 5405 } 5406 5407 /* 5408 * Verifies freed addresses. Checks for alignment, valid slab membership 5409 * and duplicate frees. 5410 * 5411 */ 5412 static void 5413 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 5414 { 5415 uma_keg_t keg; 5416 int freei; 5417 5418 if (slab == NULL) { 5419 slab = uma_dbg_getslab(zone, item); 5420 if (slab == NULL) 5421 panic("uma: Freed item %p did not belong to zone %s", 5422 item, zone->uz_name); 5423 } 5424 keg = zone->uz_keg; 5425 freei = slab_item_index(slab, keg, item); 5426 5427 if (freei >= keg->uk_ipers) 5428 panic("Invalid free of %p from zone %p(%s) slab %p(%d)", 5429 item, zone, zone->uz_name, slab, freei); 5430 5431 if (slab_item(slab, keg, freei) != item) 5432 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)", 5433 item, zone, zone->uz_name, slab, freei); 5434 5435 if (!BIT_TEST_CLR_ATOMIC(keg->uk_ipers, freei, 5436 slab_dbg_bits(slab, keg))) 5437 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)", 5438 item, zone, zone->uz_name, slab, freei); 5439 } 5440 #endif /* INVARIANTS */ 5441 5442 #ifdef DDB 5443 static int64_t 5444 get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used, 5445 uint64_t *sleeps, long *cachefree, uint64_t *xdomain) 5446 { 5447 uint64_t frees; 5448 int i; 5449 5450 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 5451 *allocs = counter_u64_fetch(z->uz_allocs); 5452 frees = counter_u64_fetch(z->uz_frees); 5453 *sleeps = z->uz_sleeps; 5454 *cachefree = 0; 5455 *xdomain = 0; 5456 } else 5457 uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps, 5458 xdomain); 5459 for (i = 0; i < vm_ndomains; i++) { 5460 *cachefree += ZDOM_GET(z, i)->uzd_nitems; 5461 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 5462 (LIST_FIRST(&kz->uk_zones) != z))) 5463 *cachefree += kz->uk_domain[i].ud_free_items; 5464 } 5465 *used = *allocs - frees; 5466 return (((int64_t)*used + *cachefree) * kz->uk_size); 5467 } 5468 5469 DB_SHOW_COMMAND(uma, db_show_uma) 5470 { 5471 const char *fmt_hdr, *fmt_entry; 5472 uma_keg_t kz; 5473 uma_zone_t z; 5474 uint64_t allocs, used, sleeps, xdomain; 5475 long cachefree; 5476 /* variables for sorting */ 5477 uma_keg_t cur_keg; 5478 uma_zone_t cur_zone, last_zone; 5479 int64_t cur_size, last_size, size; 5480 int ties; 5481 5482 /* /i option produces machine-parseable CSV output */ 5483 if (modif[0] == 'i') { 5484 fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n"; 5485 fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n"; 5486 } else { 5487 fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n"; 5488 fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n"; 5489 } 5490 5491 db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests", 5492 "Sleeps", "Bucket", "Total Mem", "XFree"); 5493 5494 /* Sort the zones with largest size first. */ 5495 last_zone = NULL; 5496 last_size = INT64_MAX; 5497 for (;;) { 5498 cur_zone = NULL; 5499 cur_size = -1; 5500 ties = 0; 5501 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5502 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5503 /* 5504 * In the case of size ties, print out zones 5505 * in the order they are encountered. That is, 5506 * when we encounter the most recently output 5507 * zone, we have already printed all preceding 5508 * ties, and we must print all following ties. 5509 */ 5510 if (z == last_zone) { 5511 ties = 1; 5512 continue; 5513 } 5514 size = get_uma_stats(kz, z, &allocs, &used, 5515 &sleeps, &cachefree, &xdomain); 5516 if (size > cur_size && size < last_size + ties) 5517 { 5518 cur_size = size; 5519 cur_zone = z; 5520 cur_keg = kz; 5521 } 5522 } 5523 } 5524 if (cur_zone == NULL) 5525 break; 5526 5527 size = get_uma_stats(cur_keg, cur_zone, &allocs, &used, 5528 &sleeps, &cachefree, &xdomain); 5529 db_printf(fmt_entry, cur_zone->uz_name, 5530 (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree, 5531 (uintmax_t)allocs, (uintmax_t)sleeps, 5532 (unsigned)cur_zone->uz_bucket_size, (intmax_t)size, 5533 xdomain); 5534 5535 if (db_pager_quit) 5536 return; 5537 last_zone = cur_zone; 5538 last_size = cur_size; 5539 } 5540 } 5541 5542 DB_SHOW_COMMAND(umacache, db_show_umacache) 5543 { 5544 uma_zone_t z; 5545 uint64_t allocs, frees; 5546 long cachefree; 5547 int i; 5548 5549 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 5550 "Requests", "Bucket"); 5551 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5552 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL); 5553 for (i = 0; i < vm_ndomains; i++) 5554 cachefree += ZDOM_GET(z, i)->uzd_nitems; 5555 db_printf("%18s %8ju %8jd %8ld %12ju %8u\n", 5556 z->uz_name, (uintmax_t)z->uz_size, 5557 (intmax_t)(allocs - frees), cachefree, 5558 (uintmax_t)allocs, z->uz_bucket_size); 5559 if (db_pager_quit) 5560 return; 5561 } 5562 } 5563 #endif /* DDB */ 5564