1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/asan.h> 62 #include <sys/bitset.h> 63 #include <sys/domainset.h> 64 #include <sys/eventhandler.h> 65 #include <sys/kernel.h> 66 #include <sys/types.h> 67 #include <sys/limits.h> 68 #include <sys/queue.h> 69 #include <sys/malloc.h> 70 #include <sys/ktr.h> 71 #include <sys/lock.h> 72 #include <sys/msan.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/random.h> 76 #include <sys/rwlock.h> 77 #include <sys/sbuf.h> 78 #include <sys/sched.h> 79 #include <sys/sleepqueue.h> 80 #include <sys/smp.h> 81 #include <sys/smr.h> 82 #include <sys/sysctl.h> 83 #include <sys/taskqueue.h> 84 #include <sys/vmmeter.h> 85 86 #include <vm/vm.h> 87 #include <vm/vm_param.h> 88 #include <vm/vm_domainset.h> 89 #include <vm/vm_object.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_pageout.h> 92 #include <vm/vm_phys.h> 93 #include <vm/vm_pagequeue.h> 94 #include <vm/vm_map.h> 95 #include <vm/vm_kern.h> 96 #include <vm/vm_extern.h> 97 #include <vm/vm_dumpset.h> 98 #include <vm/uma.h> 99 #include <vm/uma_int.h> 100 #include <vm/uma_dbg.h> 101 102 #include <ddb/ddb.h> 103 104 #ifdef DEBUG_MEMGUARD 105 #include <vm/memguard.h> 106 #endif 107 108 #include <machine/md_var.h> 109 110 #ifdef INVARIANTS 111 #define UMA_ALWAYS_CTORDTOR 1 112 #else 113 #define UMA_ALWAYS_CTORDTOR 0 114 #endif 115 116 /* 117 * This is the zone and keg from which all zones are spawned. 118 */ 119 static uma_zone_t kegs; 120 static uma_zone_t zones; 121 122 /* 123 * On INVARIANTS builds, the slab contains a second bitset of the same size, 124 * "dbg_bits", which is laid out immediately after us_free. 125 */ 126 #ifdef INVARIANTS 127 #define SLAB_BITSETS 2 128 #else 129 #define SLAB_BITSETS 1 130 #endif 131 132 /* 133 * These are the two zones from which all offpage uma_slab_ts are allocated. 134 * 135 * One zone is for slab headers that can represent a larger number of items, 136 * making the slabs themselves more efficient, and the other zone is for 137 * headers that are smaller and represent fewer items, making the headers more 138 * efficient. 139 */ 140 #define SLABZONE_SIZE(setsize) \ 141 (sizeof(struct uma_hash_slab) + BITSET_SIZE(setsize) * SLAB_BITSETS) 142 #define SLABZONE0_SETSIZE (PAGE_SIZE / 16) 143 #define SLABZONE1_SETSIZE SLAB_MAX_SETSIZE 144 #define SLABZONE0_SIZE SLABZONE_SIZE(SLABZONE0_SETSIZE) 145 #define SLABZONE1_SIZE SLABZONE_SIZE(SLABZONE1_SETSIZE) 146 static uma_zone_t slabzones[2]; 147 148 /* 149 * The initial hash tables come out of this zone so they can be allocated 150 * prior to malloc coming up. 151 */ 152 static uma_zone_t hashzone; 153 154 /* The boot-time adjusted value for cache line alignment. */ 155 int uma_align_cache = 64 - 1; 156 157 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 158 static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc"); 159 160 /* 161 * Are we allowed to allocate buckets? 162 */ 163 static int bucketdisable = 1; 164 165 /* Linked list of all kegs in the system */ 166 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 167 168 /* Linked list of all cache-only zones in the system */ 169 static LIST_HEAD(,uma_zone) uma_cachezones = 170 LIST_HEAD_INITIALIZER(uma_cachezones); 171 172 /* 173 * Mutex for global lists: uma_kegs, uma_cachezones, and the per-keg list of 174 * zones. 175 */ 176 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 177 178 static struct sx uma_reclaim_lock; 179 180 /* 181 * First available virual address for boot time allocations. 182 */ 183 static vm_offset_t bootstart; 184 static vm_offset_t bootmem; 185 186 /* 187 * kmem soft limit, initialized by uma_set_limit(). Ensure that early 188 * allocations don't trigger a wakeup of the reclaim thread. 189 */ 190 unsigned long uma_kmem_limit = LONG_MAX; 191 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0, 192 "UMA kernel memory soft limit"); 193 unsigned long uma_kmem_total; 194 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0, 195 "UMA kernel memory usage"); 196 197 /* Is the VM done starting up? */ 198 static enum { 199 BOOT_COLD, 200 BOOT_KVA, 201 BOOT_PCPU, 202 BOOT_RUNNING, 203 BOOT_SHUTDOWN, 204 } booted = BOOT_COLD; 205 206 /* 207 * This is the handle used to schedule events that need to happen 208 * outside of the allocation fast path. 209 */ 210 static struct callout uma_callout; 211 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 212 213 /* 214 * This structure is passed as the zone ctor arg so that I don't have to create 215 * a special allocation function just for zones. 216 */ 217 struct uma_zctor_args { 218 const char *name; 219 size_t size; 220 uma_ctor ctor; 221 uma_dtor dtor; 222 uma_init uminit; 223 uma_fini fini; 224 uma_import import; 225 uma_release release; 226 void *arg; 227 uma_keg_t keg; 228 int align; 229 uint32_t flags; 230 }; 231 232 struct uma_kctor_args { 233 uma_zone_t zone; 234 size_t size; 235 uma_init uminit; 236 uma_fini fini; 237 int align; 238 uint32_t flags; 239 }; 240 241 struct uma_bucket_zone { 242 uma_zone_t ubz_zone; 243 const char *ubz_name; 244 int ubz_entries; /* Number of items it can hold. */ 245 int ubz_maxsize; /* Maximum allocation size per-item. */ 246 }; 247 248 /* 249 * Compute the actual number of bucket entries to pack them in power 250 * of two sizes for more efficient space utilization. 251 */ 252 #define BUCKET_SIZE(n) \ 253 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 254 255 #define BUCKET_MAX BUCKET_SIZE(256) 256 257 struct uma_bucket_zone bucket_zones[] = { 258 /* Literal bucket sizes. */ 259 { NULL, "2 Bucket", 2, 4096 }, 260 { NULL, "4 Bucket", 4, 3072 }, 261 { NULL, "8 Bucket", 8, 2048 }, 262 { NULL, "16 Bucket", 16, 1024 }, 263 /* Rounded down power of 2 sizes for efficiency. */ 264 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 265 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 266 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 267 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 268 { NULL, NULL, 0} 269 }; 270 271 /* 272 * Flags and enumerations to be passed to internal functions. 273 */ 274 enum zfreeskip { 275 SKIP_NONE = 0, 276 SKIP_CNT = 0x00000001, 277 SKIP_DTOR = 0x00010000, 278 SKIP_FINI = 0x00020000, 279 }; 280 281 /* Prototypes.. */ 282 283 void uma_startup1(vm_offset_t); 284 void uma_startup2(void); 285 286 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 287 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 288 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 289 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 290 static void *contig_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 291 static void page_free(void *, vm_size_t, uint8_t); 292 static void pcpu_page_free(void *, vm_size_t, uint8_t); 293 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int); 294 static void cache_drain(uma_zone_t); 295 static void bucket_drain(uma_zone_t, uma_bucket_t); 296 static void bucket_cache_reclaim(uma_zone_t zone, bool, int); 297 static bool bucket_cache_reclaim_domain(uma_zone_t, bool, bool, int); 298 static int keg_ctor(void *, int, void *, int); 299 static void keg_dtor(void *, int, void *); 300 static void keg_drain(uma_keg_t keg, int domain); 301 static int zone_ctor(void *, int, void *, int); 302 static void zone_dtor(void *, int, void *); 303 static inline void item_dtor(uma_zone_t zone, void *item, int size, 304 void *udata, enum zfreeskip skip); 305 static int zero_init(void *, int, int); 306 static void zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 307 int itemdomain, bool ws); 308 static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *); 309 static void zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *), void *); 310 static void zone_timeout(uma_zone_t zone, void *); 311 static int hash_alloc(struct uma_hash *, u_int); 312 static int hash_expand(struct uma_hash *, struct uma_hash *); 313 static void hash_free(struct uma_hash *hash); 314 static void uma_timeout(void *); 315 static void uma_shutdown(void); 316 static void *zone_alloc_item(uma_zone_t, void *, int, int); 317 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 318 static int zone_alloc_limit(uma_zone_t zone, int count, int flags); 319 static void zone_free_limit(uma_zone_t zone, int count); 320 static void bucket_enable(void); 321 static void bucket_init(void); 322 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 323 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 324 static void bucket_zone_drain(int domain); 325 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int); 326 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 327 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item); 328 static size_t slab_sizeof(int nitems); 329 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 330 uma_fini fini, int align, uint32_t flags); 331 static int zone_import(void *, void **, int, int, int); 332 static void zone_release(void *, void **, int); 333 static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int); 334 static bool cache_free(uma_zone_t, uma_cache_t, void *, void *, int); 335 336 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 337 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 338 static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS); 339 static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS); 340 static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS); 341 static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS); 342 static int sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS); 343 344 static uint64_t uma_zone_get_allocs(uma_zone_t zone); 345 346 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 347 "Memory allocation debugging"); 348 349 #ifdef INVARIANTS 350 static uint64_t uma_keg_get_allocs(uma_keg_t zone); 351 static inline struct noslabbits *slab_dbg_bits(uma_slab_t slab, uma_keg_t keg); 352 353 static bool uma_dbg_kskip(uma_keg_t keg, void *mem); 354 static bool uma_dbg_zskip(uma_zone_t zone, void *mem); 355 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 356 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 357 358 static u_int dbg_divisor = 1; 359 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor, 360 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0, 361 "Debug & thrash every this item in memory allocator"); 362 363 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER; 364 static counter_u64_t uma_skip_cnt = EARLY_COUNTER; 365 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD, 366 &uma_dbg_cnt, "memory items debugged"); 367 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD, 368 &uma_skip_cnt, "memory items skipped, not debugged"); 369 #endif 370 371 SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 372 "Universal Memory Allocator"); 373 374 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_INT, 375 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 376 377 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_STRUCT, 378 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 379 380 static int zone_warnings = 1; 381 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 382 "Warn when UMA zones becomes full"); 383 384 static int multipage_slabs = 1; 385 TUNABLE_INT("vm.debug.uma_multipage_slabs", &multipage_slabs); 386 SYSCTL_INT(_vm_debug, OID_AUTO, uma_multipage_slabs, 387 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &multipage_slabs, 0, 388 "UMA may choose larger slab sizes for better efficiency"); 389 390 /* 391 * Select the slab zone for an offpage slab with the given maximum item count. 392 */ 393 static inline uma_zone_t 394 slabzone(int ipers) 395 { 396 397 return (slabzones[ipers > SLABZONE0_SETSIZE]); 398 } 399 400 /* 401 * This routine checks to see whether or not it's safe to enable buckets. 402 */ 403 static void 404 bucket_enable(void) 405 { 406 407 KASSERT(booted >= BOOT_KVA, ("Bucket enable before init")); 408 bucketdisable = vm_page_count_min(); 409 } 410 411 /* 412 * Initialize bucket_zones, the array of zones of buckets of various sizes. 413 * 414 * For each zone, calculate the memory required for each bucket, consisting 415 * of the header and an array of pointers. 416 */ 417 static void 418 bucket_init(void) 419 { 420 struct uma_bucket_zone *ubz; 421 int size; 422 423 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 424 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 425 size += sizeof(void *) * ubz->ubz_entries; 426 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 427 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 428 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | 429 UMA_ZONE_FIRSTTOUCH); 430 } 431 } 432 433 /* 434 * Given a desired number of entries for a bucket, return the zone from which 435 * to allocate the bucket. 436 */ 437 static struct uma_bucket_zone * 438 bucket_zone_lookup(int entries) 439 { 440 struct uma_bucket_zone *ubz; 441 442 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 443 if (ubz->ubz_entries >= entries) 444 return (ubz); 445 ubz--; 446 return (ubz); 447 } 448 449 static int 450 bucket_select(int size) 451 { 452 struct uma_bucket_zone *ubz; 453 454 ubz = &bucket_zones[0]; 455 if (size > ubz->ubz_maxsize) 456 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 457 458 for (; ubz->ubz_entries != 0; ubz++) 459 if (ubz->ubz_maxsize < size) 460 break; 461 ubz--; 462 return (ubz->ubz_entries); 463 } 464 465 static uma_bucket_t 466 bucket_alloc(uma_zone_t zone, void *udata, int flags) 467 { 468 struct uma_bucket_zone *ubz; 469 uma_bucket_t bucket; 470 471 /* 472 * Don't allocate buckets early in boot. 473 */ 474 if (__predict_false(booted < BOOT_KVA)) 475 return (NULL); 476 477 /* 478 * To limit bucket recursion we store the original zone flags 479 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 480 * NOVM flag to persist even through deep recursions. We also 481 * store ZFLAG_BUCKET once we have recursed attempting to allocate 482 * a bucket for a bucket zone so we do not allow infinite bucket 483 * recursion. This cookie will even persist to frees of unused 484 * buckets via the allocation path or bucket allocations in the 485 * free path. 486 */ 487 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 488 udata = (void *)(uintptr_t)zone->uz_flags; 489 else { 490 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 491 return (NULL); 492 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 493 } 494 if (((uintptr_t)udata & UMA_ZONE_VM) != 0) 495 flags |= M_NOVM; 496 ubz = bucket_zone_lookup(atomic_load_16(&zone->uz_bucket_size)); 497 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 498 ubz++; 499 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 500 if (bucket) { 501 #ifdef INVARIANTS 502 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 503 #endif 504 bucket->ub_cnt = 0; 505 bucket->ub_entries = min(ubz->ubz_entries, 506 zone->uz_bucket_size_max); 507 bucket->ub_seq = SMR_SEQ_INVALID; 508 CTR3(KTR_UMA, "bucket_alloc: zone %s(%p) allocated bucket %p", 509 zone->uz_name, zone, bucket); 510 } 511 512 return (bucket); 513 } 514 515 static void 516 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 517 { 518 struct uma_bucket_zone *ubz; 519 520 if (bucket->ub_cnt != 0) 521 bucket_drain(zone, bucket); 522 523 KASSERT(bucket->ub_cnt == 0, 524 ("bucket_free: Freeing a non free bucket.")); 525 KASSERT(bucket->ub_seq == SMR_SEQ_INVALID, 526 ("bucket_free: Freeing an SMR bucket.")); 527 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 528 udata = (void *)(uintptr_t)zone->uz_flags; 529 ubz = bucket_zone_lookup(bucket->ub_entries); 530 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 531 } 532 533 static void 534 bucket_zone_drain(int domain) 535 { 536 struct uma_bucket_zone *ubz; 537 538 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 539 uma_zone_reclaim_domain(ubz->ubz_zone, UMA_RECLAIM_DRAIN, 540 domain); 541 } 542 543 #ifdef KASAN 544 _Static_assert(UMA_SMALLEST_UNIT % KASAN_SHADOW_SCALE == 0, 545 "Base UMA allocation size not a multiple of the KASAN scale factor"); 546 547 static void 548 kasan_mark_item_valid(uma_zone_t zone, void *item) 549 { 550 void *pcpu_item; 551 size_t sz, rsz; 552 int i; 553 554 if ((zone->uz_flags & UMA_ZONE_NOKASAN) != 0) 555 return; 556 557 sz = zone->uz_size; 558 rsz = roundup2(sz, KASAN_SHADOW_SCALE); 559 if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) { 560 kasan_mark(item, sz, rsz, KASAN_GENERIC_REDZONE); 561 } else { 562 pcpu_item = zpcpu_base_to_offset(item); 563 for (i = 0; i <= mp_maxid; i++) 564 kasan_mark(zpcpu_get_cpu(pcpu_item, i), sz, rsz, 565 KASAN_GENERIC_REDZONE); 566 } 567 } 568 569 static void 570 kasan_mark_item_invalid(uma_zone_t zone, void *item) 571 { 572 void *pcpu_item; 573 size_t sz; 574 int i; 575 576 if ((zone->uz_flags & UMA_ZONE_NOKASAN) != 0) 577 return; 578 579 sz = roundup2(zone->uz_size, KASAN_SHADOW_SCALE); 580 if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) { 581 kasan_mark(item, 0, sz, KASAN_UMA_FREED); 582 } else { 583 pcpu_item = zpcpu_base_to_offset(item); 584 for (i = 0; i <= mp_maxid; i++) 585 kasan_mark(zpcpu_get_cpu(pcpu_item, i), 0, sz, 586 KASAN_UMA_FREED); 587 } 588 } 589 590 static void 591 kasan_mark_slab_valid(uma_keg_t keg, void *mem) 592 { 593 size_t sz; 594 595 if ((keg->uk_flags & UMA_ZONE_NOKASAN) == 0) { 596 sz = keg->uk_ppera * PAGE_SIZE; 597 kasan_mark(mem, sz, sz, 0); 598 } 599 } 600 601 static void 602 kasan_mark_slab_invalid(uma_keg_t keg, void *mem) 603 { 604 size_t sz; 605 606 if ((keg->uk_flags & UMA_ZONE_NOKASAN) == 0) { 607 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0) 608 sz = keg->uk_ppera * PAGE_SIZE; 609 else 610 sz = keg->uk_pgoff; 611 kasan_mark(mem, 0, sz, KASAN_UMA_FREED); 612 } 613 } 614 #else /* !KASAN */ 615 static void 616 kasan_mark_item_valid(uma_zone_t zone __unused, void *item __unused) 617 { 618 } 619 620 static void 621 kasan_mark_item_invalid(uma_zone_t zone __unused, void *item __unused) 622 { 623 } 624 625 static void 626 kasan_mark_slab_valid(uma_keg_t keg __unused, void *mem __unused) 627 { 628 } 629 630 static void 631 kasan_mark_slab_invalid(uma_keg_t keg __unused, void *mem __unused) 632 { 633 } 634 #endif /* KASAN */ 635 636 #ifdef KMSAN 637 static inline void 638 kmsan_mark_item_uninitialized(uma_zone_t zone, void *item) 639 { 640 void *pcpu_item; 641 size_t sz; 642 int i; 643 644 if ((zone->uz_flags & 645 (UMA_ZFLAG_CACHE | UMA_ZONE_SECONDARY | UMA_ZONE_MALLOC)) != 0) { 646 /* 647 * Cache zones should not be instrumented by default, as UMA 648 * does not have enough information to do so correctly. 649 * Consumers can mark items themselves if it makes sense to do 650 * so. 651 * 652 * Items from secondary zones are initialized by the parent 653 * zone and thus cannot safely be marked by UMA. 654 * 655 * malloc zones are handled directly by malloc(9) and friends, 656 * since they can provide more precise origin tracking. 657 */ 658 return; 659 } 660 if (zone->uz_keg->uk_init != NULL) { 661 /* 662 * By definition, initialized items cannot be marked. The 663 * best we can do is mark items from these zones after they 664 * are freed to the keg. 665 */ 666 return; 667 } 668 669 sz = zone->uz_size; 670 if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) { 671 kmsan_orig(item, sz, KMSAN_TYPE_UMA, KMSAN_RET_ADDR); 672 kmsan_mark(item, sz, KMSAN_STATE_UNINIT); 673 } else { 674 pcpu_item = zpcpu_base_to_offset(item); 675 for (i = 0; i <= mp_maxid; i++) { 676 kmsan_orig(zpcpu_get_cpu(pcpu_item, i), sz, 677 KMSAN_TYPE_UMA, KMSAN_RET_ADDR); 678 kmsan_mark(zpcpu_get_cpu(pcpu_item, i), sz, 679 KMSAN_STATE_INITED); 680 } 681 } 682 } 683 #else /* !KMSAN */ 684 static inline void 685 kmsan_mark_item_uninitialized(uma_zone_t zone __unused, void *item __unused) 686 { 687 } 688 #endif /* KMSAN */ 689 690 /* 691 * Acquire the domain lock and record contention. 692 */ 693 static uma_zone_domain_t 694 zone_domain_lock(uma_zone_t zone, int domain) 695 { 696 uma_zone_domain_t zdom; 697 bool lockfail; 698 699 zdom = ZDOM_GET(zone, domain); 700 lockfail = false; 701 if (ZDOM_OWNED(zdom)) 702 lockfail = true; 703 ZDOM_LOCK(zdom); 704 /* This is unsynchronized. The counter does not need to be precise. */ 705 if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max) 706 zone->uz_bucket_size++; 707 return (zdom); 708 } 709 710 /* 711 * Search for the domain with the least cached items and return it if it 712 * is out of balance with the preferred domain. 713 */ 714 static __noinline int 715 zone_domain_lowest(uma_zone_t zone, int pref) 716 { 717 long least, nitems, prefitems; 718 int domain; 719 int i; 720 721 prefitems = least = LONG_MAX; 722 domain = 0; 723 for (i = 0; i < vm_ndomains; i++) { 724 nitems = ZDOM_GET(zone, i)->uzd_nitems; 725 if (nitems < least) { 726 domain = i; 727 least = nitems; 728 } 729 if (domain == pref) 730 prefitems = nitems; 731 } 732 if (prefitems < least * 2) 733 return (pref); 734 735 return (domain); 736 } 737 738 /* 739 * Search for the domain with the most cached items and return it or the 740 * preferred domain if it has enough to proceed. 741 */ 742 static __noinline int 743 zone_domain_highest(uma_zone_t zone, int pref) 744 { 745 long most, nitems; 746 int domain; 747 int i; 748 749 if (ZDOM_GET(zone, pref)->uzd_nitems > BUCKET_MAX) 750 return (pref); 751 752 most = 0; 753 domain = 0; 754 for (i = 0; i < vm_ndomains; i++) { 755 nitems = ZDOM_GET(zone, i)->uzd_nitems; 756 if (nitems > most) { 757 domain = i; 758 most = nitems; 759 } 760 } 761 762 return (domain); 763 } 764 765 /* 766 * Set the maximum imax value. 767 */ 768 static void 769 zone_domain_imax_set(uma_zone_domain_t zdom, int nitems) 770 { 771 long old; 772 773 old = zdom->uzd_imax; 774 do { 775 if (old >= nitems) 776 return; 777 } while (atomic_fcmpset_long(&zdom->uzd_imax, &old, nitems) == 0); 778 779 /* 780 * We are at new maximum, so do the last WSS update for the old 781 * bimin and prepare to measure next allocation batch. 782 */ 783 if (zdom->uzd_wss < old - zdom->uzd_bimin) 784 zdom->uzd_wss = old - zdom->uzd_bimin; 785 zdom->uzd_bimin = nitems; 786 } 787 788 /* 789 * Attempt to satisfy an allocation by retrieving a full bucket from one of the 790 * zone's caches. If a bucket is found the zone is not locked on return. 791 */ 792 static uma_bucket_t 793 zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom, bool reclaim) 794 { 795 uma_bucket_t bucket; 796 long cnt; 797 int i; 798 bool dtor = false; 799 800 ZDOM_LOCK_ASSERT(zdom); 801 802 if ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) == NULL) 803 return (NULL); 804 805 /* SMR Buckets can not be re-used until readers expire. */ 806 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 807 bucket->ub_seq != SMR_SEQ_INVALID) { 808 if (!smr_poll(zone->uz_smr, bucket->ub_seq, false)) 809 return (NULL); 810 bucket->ub_seq = SMR_SEQ_INVALID; 811 dtor = (zone->uz_dtor != NULL) || UMA_ALWAYS_CTORDTOR; 812 if (STAILQ_NEXT(bucket, ub_link) != NULL) 813 zdom->uzd_seq = STAILQ_NEXT(bucket, ub_link)->ub_seq; 814 } 815 STAILQ_REMOVE_HEAD(&zdom->uzd_buckets, ub_link); 816 817 KASSERT(zdom->uzd_nitems >= bucket->ub_cnt, 818 ("%s: item count underflow (%ld, %d)", 819 __func__, zdom->uzd_nitems, bucket->ub_cnt)); 820 KASSERT(bucket->ub_cnt > 0, 821 ("%s: empty bucket in bucket cache", __func__)); 822 zdom->uzd_nitems -= bucket->ub_cnt; 823 824 if (reclaim) { 825 /* 826 * Shift the bounds of the current WSS interval to avoid 827 * perturbing the estimates. 828 */ 829 cnt = lmin(zdom->uzd_bimin, bucket->ub_cnt); 830 atomic_subtract_long(&zdom->uzd_imax, cnt); 831 zdom->uzd_bimin -= cnt; 832 zdom->uzd_imin -= lmin(zdom->uzd_imin, bucket->ub_cnt); 833 if (zdom->uzd_limin >= bucket->ub_cnt) { 834 zdom->uzd_limin -= bucket->ub_cnt; 835 } else { 836 zdom->uzd_limin = 0; 837 zdom->uzd_timin = 0; 838 } 839 } else if (zdom->uzd_bimin > zdom->uzd_nitems) { 840 zdom->uzd_bimin = zdom->uzd_nitems; 841 if (zdom->uzd_imin > zdom->uzd_nitems) 842 zdom->uzd_imin = zdom->uzd_nitems; 843 } 844 845 ZDOM_UNLOCK(zdom); 846 if (dtor) 847 for (i = 0; i < bucket->ub_cnt; i++) 848 item_dtor(zone, bucket->ub_bucket[i], zone->uz_size, 849 NULL, SKIP_NONE); 850 851 return (bucket); 852 } 853 854 /* 855 * Insert a full bucket into the specified cache. The "ws" parameter indicates 856 * whether the bucket's contents should be counted as part of the zone's working 857 * set. The bucket may be freed if it exceeds the bucket limit. 858 */ 859 static void 860 zone_put_bucket(uma_zone_t zone, int domain, uma_bucket_t bucket, void *udata, 861 const bool ws) 862 { 863 uma_zone_domain_t zdom; 864 865 /* We don't cache empty buckets. This can happen after a reclaim. */ 866 if (bucket->ub_cnt == 0) 867 goto out; 868 zdom = zone_domain_lock(zone, domain); 869 870 /* 871 * Conditionally set the maximum number of items. 872 */ 873 zdom->uzd_nitems += bucket->ub_cnt; 874 if (__predict_true(zdom->uzd_nitems < zone->uz_bucket_max)) { 875 if (ws) { 876 zone_domain_imax_set(zdom, zdom->uzd_nitems); 877 } else { 878 /* 879 * Shift the bounds of the current WSS interval to 880 * avoid perturbing the estimates. 881 */ 882 atomic_add_long(&zdom->uzd_imax, bucket->ub_cnt); 883 zdom->uzd_imin += bucket->ub_cnt; 884 zdom->uzd_bimin += bucket->ub_cnt; 885 zdom->uzd_limin += bucket->ub_cnt; 886 } 887 if (STAILQ_EMPTY(&zdom->uzd_buckets)) 888 zdom->uzd_seq = bucket->ub_seq; 889 890 /* 891 * Try to promote reuse of recently used items. For items 892 * protected by SMR, try to defer reuse to minimize polling. 893 */ 894 if (bucket->ub_seq == SMR_SEQ_INVALID) 895 STAILQ_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); 896 else 897 STAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link); 898 ZDOM_UNLOCK(zdom); 899 return; 900 } 901 zdom->uzd_nitems -= bucket->ub_cnt; 902 ZDOM_UNLOCK(zdom); 903 out: 904 bucket_free(zone, bucket, udata); 905 } 906 907 /* Pops an item out of a per-cpu cache bucket. */ 908 static inline void * 909 cache_bucket_pop(uma_cache_t cache, uma_cache_bucket_t bucket) 910 { 911 void *item; 912 913 CRITICAL_ASSERT(curthread); 914 915 bucket->ucb_cnt--; 916 item = bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt]; 917 #ifdef INVARIANTS 918 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = NULL; 919 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 920 #endif 921 cache->uc_allocs++; 922 923 return (item); 924 } 925 926 /* Pushes an item into a per-cpu cache bucket. */ 927 static inline void 928 cache_bucket_push(uma_cache_t cache, uma_cache_bucket_t bucket, void *item) 929 { 930 931 CRITICAL_ASSERT(curthread); 932 KASSERT(bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] == NULL, 933 ("uma_zfree: Freeing to non free bucket index.")); 934 935 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = item; 936 bucket->ucb_cnt++; 937 cache->uc_frees++; 938 } 939 940 /* 941 * Unload a UMA bucket from a per-cpu cache. 942 */ 943 static inline uma_bucket_t 944 cache_bucket_unload(uma_cache_bucket_t bucket) 945 { 946 uma_bucket_t b; 947 948 b = bucket->ucb_bucket; 949 if (b != NULL) { 950 MPASS(b->ub_entries == bucket->ucb_entries); 951 b->ub_cnt = bucket->ucb_cnt; 952 bucket->ucb_bucket = NULL; 953 bucket->ucb_entries = bucket->ucb_cnt = 0; 954 } 955 956 return (b); 957 } 958 959 static inline uma_bucket_t 960 cache_bucket_unload_alloc(uma_cache_t cache) 961 { 962 963 return (cache_bucket_unload(&cache->uc_allocbucket)); 964 } 965 966 static inline uma_bucket_t 967 cache_bucket_unload_free(uma_cache_t cache) 968 { 969 970 return (cache_bucket_unload(&cache->uc_freebucket)); 971 } 972 973 static inline uma_bucket_t 974 cache_bucket_unload_cross(uma_cache_t cache) 975 { 976 977 return (cache_bucket_unload(&cache->uc_crossbucket)); 978 } 979 980 /* 981 * Load a bucket into a per-cpu cache bucket. 982 */ 983 static inline void 984 cache_bucket_load(uma_cache_bucket_t bucket, uma_bucket_t b) 985 { 986 987 CRITICAL_ASSERT(curthread); 988 MPASS(bucket->ucb_bucket == NULL); 989 MPASS(b->ub_seq == SMR_SEQ_INVALID); 990 991 bucket->ucb_bucket = b; 992 bucket->ucb_cnt = b->ub_cnt; 993 bucket->ucb_entries = b->ub_entries; 994 } 995 996 static inline void 997 cache_bucket_load_alloc(uma_cache_t cache, uma_bucket_t b) 998 { 999 1000 cache_bucket_load(&cache->uc_allocbucket, b); 1001 } 1002 1003 static inline void 1004 cache_bucket_load_free(uma_cache_t cache, uma_bucket_t b) 1005 { 1006 1007 cache_bucket_load(&cache->uc_freebucket, b); 1008 } 1009 1010 #ifdef NUMA 1011 static inline void 1012 cache_bucket_load_cross(uma_cache_t cache, uma_bucket_t b) 1013 { 1014 1015 cache_bucket_load(&cache->uc_crossbucket, b); 1016 } 1017 #endif 1018 1019 /* 1020 * Copy and preserve ucb_spare. 1021 */ 1022 static inline void 1023 cache_bucket_copy(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 1024 { 1025 1026 b1->ucb_bucket = b2->ucb_bucket; 1027 b1->ucb_entries = b2->ucb_entries; 1028 b1->ucb_cnt = b2->ucb_cnt; 1029 } 1030 1031 /* 1032 * Swap two cache buckets. 1033 */ 1034 static inline void 1035 cache_bucket_swap(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 1036 { 1037 struct uma_cache_bucket b3; 1038 1039 CRITICAL_ASSERT(curthread); 1040 1041 cache_bucket_copy(&b3, b1); 1042 cache_bucket_copy(b1, b2); 1043 cache_bucket_copy(b2, &b3); 1044 } 1045 1046 /* 1047 * Attempt to fetch a bucket from a zone on behalf of the current cpu cache. 1048 */ 1049 static uma_bucket_t 1050 cache_fetch_bucket(uma_zone_t zone, uma_cache_t cache, int domain) 1051 { 1052 uma_zone_domain_t zdom; 1053 uma_bucket_t bucket; 1054 1055 /* 1056 * Avoid the lock if possible. 1057 */ 1058 zdom = ZDOM_GET(zone, domain); 1059 if (zdom->uzd_nitems == 0) 1060 return (NULL); 1061 1062 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) != 0 && 1063 !smr_poll(zone->uz_smr, zdom->uzd_seq, false)) 1064 return (NULL); 1065 1066 /* 1067 * Check the zone's cache of buckets. 1068 */ 1069 zdom = zone_domain_lock(zone, domain); 1070 if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) 1071 return (bucket); 1072 ZDOM_UNLOCK(zdom); 1073 1074 return (NULL); 1075 } 1076 1077 static void 1078 zone_log_warning(uma_zone_t zone) 1079 { 1080 static const struct timeval warninterval = { 300, 0 }; 1081 1082 if (!zone_warnings || zone->uz_warning == NULL) 1083 return; 1084 1085 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 1086 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 1087 } 1088 1089 static inline void 1090 zone_maxaction(uma_zone_t zone) 1091 { 1092 1093 if (zone->uz_maxaction.ta_func != NULL) 1094 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 1095 } 1096 1097 /* 1098 * Routine called by timeout which is used to fire off some time interval 1099 * based calculations. (stats, hash size, etc.) 1100 * 1101 * Arguments: 1102 * arg Unused 1103 * 1104 * Returns: 1105 * Nothing 1106 */ 1107 static void 1108 uma_timeout(void *unused) 1109 { 1110 bucket_enable(); 1111 zone_foreach(zone_timeout, NULL); 1112 1113 /* Reschedule this event */ 1114 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 1115 } 1116 1117 /* 1118 * Update the working set size estimates for the zone's bucket cache. 1119 * The constants chosen here are somewhat arbitrary. 1120 */ 1121 static void 1122 zone_domain_update_wss(uma_zone_domain_t zdom) 1123 { 1124 long m; 1125 1126 ZDOM_LOCK_ASSERT(zdom); 1127 MPASS(zdom->uzd_imax >= zdom->uzd_nitems); 1128 MPASS(zdom->uzd_nitems >= zdom->uzd_bimin); 1129 MPASS(zdom->uzd_bimin >= zdom->uzd_imin); 1130 1131 /* 1132 * Estimate WSS as modified moving average of biggest allocation 1133 * batches for each period over few minutes (UMA_TIMEOUT of 20s). 1134 */ 1135 zdom->uzd_wss = lmax(zdom->uzd_wss * 3 / 4, 1136 zdom->uzd_imax - zdom->uzd_bimin); 1137 1138 /* 1139 * Estimate longtime minimum item count as a combination of recent 1140 * minimum item count, adjusted by WSS for safety, and the modified 1141 * moving average over the last several hours (UMA_TIMEOUT of 20s). 1142 * timin measures time since limin tried to go negative, that means 1143 * we were dangerously close to or got out of cache. 1144 */ 1145 m = zdom->uzd_imin - zdom->uzd_wss; 1146 if (m >= 0) { 1147 if (zdom->uzd_limin >= m) 1148 zdom->uzd_limin = m; 1149 else 1150 zdom->uzd_limin = (m + zdom->uzd_limin * 255) / 256; 1151 zdom->uzd_timin++; 1152 } else { 1153 zdom->uzd_limin = 0; 1154 zdom->uzd_timin = 0; 1155 } 1156 1157 /* To reduce period edge effects on WSS keep half of the imax. */ 1158 atomic_subtract_long(&zdom->uzd_imax, 1159 (zdom->uzd_imax - zdom->uzd_nitems + 1) / 2); 1160 zdom->uzd_imin = zdom->uzd_bimin = zdom->uzd_nitems; 1161 } 1162 1163 /* 1164 * Routine to perform timeout driven calculations. This expands the 1165 * hashes and does per cpu statistics aggregation. 1166 * 1167 * Returns nothing. 1168 */ 1169 static void 1170 zone_timeout(uma_zone_t zone, void *unused) 1171 { 1172 uma_keg_t keg; 1173 u_int slabs, pages; 1174 1175 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 1176 goto trim; 1177 1178 keg = zone->uz_keg; 1179 1180 /* 1181 * Hash zones are non-numa by definition so the first domain 1182 * is the only one present. 1183 */ 1184 KEG_LOCK(keg, 0); 1185 pages = keg->uk_domain[0].ud_pages; 1186 1187 /* 1188 * Expand the keg hash table. 1189 * 1190 * This is done if the number of slabs is larger than the hash size. 1191 * What I'm trying to do here is completely reduce collisions. This 1192 * may be a little aggressive. Should I allow for two collisions max? 1193 */ 1194 if ((slabs = pages / keg->uk_ppera) > keg->uk_hash.uh_hashsize) { 1195 struct uma_hash newhash; 1196 struct uma_hash oldhash; 1197 int ret; 1198 1199 /* 1200 * This is so involved because allocating and freeing 1201 * while the keg lock is held will lead to deadlock. 1202 * I have to do everything in stages and check for 1203 * races. 1204 */ 1205 KEG_UNLOCK(keg, 0); 1206 ret = hash_alloc(&newhash, 1 << fls(slabs)); 1207 KEG_LOCK(keg, 0); 1208 if (ret) { 1209 if (hash_expand(&keg->uk_hash, &newhash)) { 1210 oldhash = keg->uk_hash; 1211 keg->uk_hash = newhash; 1212 } else 1213 oldhash = newhash; 1214 1215 KEG_UNLOCK(keg, 0); 1216 hash_free(&oldhash); 1217 goto trim; 1218 } 1219 } 1220 KEG_UNLOCK(keg, 0); 1221 1222 trim: 1223 /* Trim caches not used for a long time. */ 1224 for (int i = 0; i < vm_ndomains; i++) { 1225 if (bucket_cache_reclaim_domain(zone, false, false, i) && 1226 (zone->uz_flags & UMA_ZFLAG_CACHE) == 0) 1227 keg_drain(zone->uz_keg, i); 1228 } 1229 } 1230 1231 /* 1232 * Allocate and zero fill the next sized hash table from the appropriate 1233 * backing store. 1234 * 1235 * Arguments: 1236 * hash A new hash structure with the old hash size in uh_hashsize 1237 * 1238 * Returns: 1239 * 1 on success and 0 on failure. 1240 */ 1241 static int 1242 hash_alloc(struct uma_hash *hash, u_int size) 1243 { 1244 size_t alloc; 1245 1246 KASSERT(powerof2(size), ("hash size must be power of 2")); 1247 if (size > UMA_HASH_SIZE_INIT) { 1248 hash->uh_hashsize = size; 1249 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 1250 hash->uh_slab_hash = malloc(alloc, M_UMAHASH, M_NOWAIT); 1251 } else { 1252 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 1253 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 1254 UMA_ANYDOMAIN, M_WAITOK); 1255 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 1256 } 1257 if (hash->uh_slab_hash) { 1258 bzero(hash->uh_slab_hash, alloc); 1259 hash->uh_hashmask = hash->uh_hashsize - 1; 1260 return (1); 1261 } 1262 1263 return (0); 1264 } 1265 1266 /* 1267 * Expands the hash table for HASH zones. This is done from zone_timeout 1268 * to reduce collisions. This must not be done in the regular allocation 1269 * path, otherwise, we can recurse on the vm while allocating pages. 1270 * 1271 * Arguments: 1272 * oldhash The hash you want to expand 1273 * newhash The hash structure for the new table 1274 * 1275 * Returns: 1276 * Nothing 1277 * 1278 * Discussion: 1279 */ 1280 static int 1281 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 1282 { 1283 uma_hash_slab_t slab; 1284 u_int hval; 1285 u_int idx; 1286 1287 if (!newhash->uh_slab_hash) 1288 return (0); 1289 1290 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 1291 return (0); 1292 1293 /* 1294 * I need to investigate hash algorithms for resizing without a 1295 * full rehash. 1296 */ 1297 1298 for (idx = 0; idx < oldhash->uh_hashsize; idx++) 1299 while (!LIST_EMPTY(&oldhash->uh_slab_hash[idx])) { 1300 slab = LIST_FIRST(&oldhash->uh_slab_hash[idx]); 1301 LIST_REMOVE(slab, uhs_hlink); 1302 hval = UMA_HASH(newhash, slab->uhs_data); 1303 LIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 1304 slab, uhs_hlink); 1305 } 1306 1307 return (1); 1308 } 1309 1310 /* 1311 * Free the hash bucket to the appropriate backing store. 1312 * 1313 * Arguments: 1314 * slab_hash The hash bucket we're freeing 1315 * hashsize The number of entries in that hash bucket 1316 * 1317 * Returns: 1318 * Nothing 1319 */ 1320 static void 1321 hash_free(struct uma_hash *hash) 1322 { 1323 if (hash->uh_slab_hash == NULL) 1324 return; 1325 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 1326 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 1327 else 1328 free(hash->uh_slab_hash, M_UMAHASH); 1329 } 1330 1331 /* 1332 * Frees all outstanding items in a bucket 1333 * 1334 * Arguments: 1335 * zone The zone to free to, must be unlocked. 1336 * bucket The free/alloc bucket with items. 1337 * 1338 * Returns: 1339 * Nothing 1340 */ 1341 static void 1342 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 1343 { 1344 int i; 1345 1346 if (bucket->ub_cnt == 0) 1347 return; 1348 1349 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 1350 bucket->ub_seq != SMR_SEQ_INVALID) { 1351 smr_wait(zone->uz_smr, bucket->ub_seq); 1352 bucket->ub_seq = SMR_SEQ_INVALID; 1353 for (i = 0; i < bucket->ub_cnt; i++) 1354 item_dtor(zone, bucket->ub_bucket[i], 1355 zone->uz_size, NULL, SKIP_NONE); 1356 } 1357 if (zone->uz_fini) 1358 for (i = 0; i < bucket->ub_cnt; i++) { 1359 kasan_mark_item_valid(zone, bucket->ub_bucket[i]); 1360 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 1361 kasan_mark_item_invalid(zone, bucket->ub_bucket[i]); 1362 } 1363 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 1364 if (zone->uz_max_items > 0) 1365 zone_free_limit(zone, bucket->ub_cnt); 1366 #ifdef INVARIANTS 1367 bzero(bucket->ub_bucket, sizeof(void *) * bucket->ub_cnt); 1368 #endif 1369 bucket->ub_cnt = 0; 1370 } 1371 1372 /* 1373 * Drains the per cpu caches for a zone. 1374 * 1375 * NOTE: This may only be called while the zone is being torn down, and not 1376 * during normal operation. This is necessary in order that we do not have 1377 * to migrate CPUs to drain the per-CPU caches. 1378 * 1379 * Arguments: 1380 * zone The zone to drain, must be unlocked. 1381 * 1382 * Returns: 1383 * Nothing 1384 */ 1385 static void 1386 cache_drain(uma_zone_t zone) 1387 { 1388 uma_cache_t cache; 1389 uma_bucket_t bucket; 1390 smr_seq_t seq; 1391 int cpu; 1392 1393 /* 1394 * XXX: It is safe to not lock the per-CPU caches, because we're 1395 * tearing down the zone anyway. I.e., there will be no further use 1396 * of the caches at this point. 1397 * 1398 * XXX: It would good to be able to assert that the zone is being 1399 * torn down to prevent improper use of cache_drain(). 1400 */ 1401 seq = SMR_SEQ_INVALID; 1402 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 1403 seq = smr_advance(zone->uz_smr); 1404 CPU_FOREACH(cpu) { 1405 cache = &zone->uz_cpu[cpu]; 1406 bucket = cache_bucket_unload_alloc(cache); 1407 if (bucket != NULL) 1408 bucket_free(zone, bucket, NULL); 1409 bucket = cache_bucket_unload_free(cache); 1410 if (bucket != NULL) { 1411 bucket->ub_seq = seq; 1412 bucket_free(zone, bucket, NULL); 1413 } 1414 bucket = cache_bucket_unload_cross(cache); 1415 if (bucket != NULL) { 1416 bucket->ub_seq = seq; 1417 bucket_free(zone, bucket, NULL); 1418 } 1419 } 1420 bucket_cache_reclaim(zone, true, UMA_ANYDOMAIN); 1421 } 1422 1423 static void 1424 cache_shrink(uma_zone_t zone, void *unused) 1425 { 1426 1427 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1428 return; 1429 1430 ZONE_LOCK(zone); 1431 zone->uz_bucket_size = 1432 (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2; 1433 ZONE_UNLOCK(zone); 1434 } 1435 1436 static void 1437 cache_drain_safe_cpu(uma_zone_t zone, void *unused) 1438 { 1439 uma_cache_t cache; 1440 uma_bucket_t b1, b2, b3; 1441 int domain; 1442 1443 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1444 return; 1445 1446 b1 = b2 = b3 = NULL; 1447 critical_enter(); 1448 cache = &zone->uz_cpu[curcpu]; 1449 domain = PCPU_GET(domain); 1450 b1 = cache_bucket_unload_alloc(cache); 1451 1452 /* 1453 * Don't flush SMR zone buckets. This leaves the zone without a 1454 * bucket and forces every free to synchronize(). 1455 */ 1456 if ((zone->uz_flags & UMA_ZONE_SMR) == 0) { 1457 b2 = cache_bucket_unload_free(cache); 1458 b3 = cache_bucket_unload_cross(cache); 1459 } 1460 critical_exit(); 1461 1462 if (b1 != NULL) 1463 zone_free_bucket(zone, b1, NULL, domain, false); 1464 if (b2 != NULL) 1465 zone_free_bucket(zone, b2, NULL, domain, false); 1466 if (b3 != NULL) { 1467 /* Adjust the domain so it goes to zone_free_cross. */ 1468 domain = (domain + 1) % vm_ndomains; 1469 zone_free_bucket(zone, b3, NULL, domain, false); 1470 } 1471 } 1472 1473 /* 1474 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 1475 * This is an expensive call because it needs to bind to all CPUs 1476 * one by one and enter a critical section on each of them in order 1477 * to safely access their cache buckets. 1478 * Zone lock must not be held on call this function. 1479 */ 1480 static void 1481 pcpu_cache_drain_safe(uma_zone_t zone) 1482 { 1483 int cpu; 1484 1485 /* 1486 * Polite bucket sizes shrinking was not enough, shrink aggressively. 1487 */ 1488 if (zone) 1489 cache_shrink(zone, NULL); 1490 else 1491 zone_foreach(cache_shrink, NULL); 1492 1493 CPU_FOREACH(cpu) { 1494 thread_lock(curthread); 1495 sched_bind(curthread, cpu); 1496 thread_unlock(curthread); 1497 1498 if (zone) 1499 cache_drain_safe_cpu(zone, NULL); 1500 else 1501 zone_foreach(cache_drain_safe_cpu, NULL); 1502 } 1503 thread_lock(curthread); 1504 sched_unbind(curthread); 1505 thread_unlock(curthread); 1506 } 1507 1508 /* 1509 * Reclaim cached buckets from a zone. All buckets are reclaimed if the caller 1510 * requested a drain, otherwise the per-domain caches are trimmed to either 1511 * estimated working set size. 1512 */ 1513 static bool 1514 bucket_cache_reclaim_domain(uma_zone_t zone, bool drain, bool trim, int domain) 1515 { 1516 uma_zone_domain_t zdom; 1517 uma_bucket_t bucket; 1518 long target; 1519 bool done = false; 1520 1521 /* 1522 * The cross bucket is partially filled and not part of 1523 * the item count. Reclaim it individually here. 1524 */ 1525 zdom = ZDOM_GET(zone, domain); 1526 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 || drain) { 1527 ZONE_CROSS_LOCK(zone); 1528 bucket = zdom->uzd_cross; 1529 zdom->uzd_cross = NULL; 1530 ZONE_CROSS_UNLOCK(zone); 1531 if (bucket != NULL) 1532 bucket_free(zone, bucket, NULL); 1533 } 1534 1535 /* 1536 * If we were asked to drain the zone, we are done only once 1537 * this bucket cache is empty. If trim, we reclaim items in 1538 * excess of the zone's estimated working set size. Multiple 1539 * consecutive calls will shrink the WSS and so reclaim more. 1540 * If neither drain nor trim, then voluntarily reclaim 1/4 1541 * (to reduce first spike) of items not used for a long time. 1542 */ 1543 ZDOM_LOCK(zdom); 1544 zone_domain_update_wss(zdom); 1545 if (drain) 1546 target = 0; 1547 else if (trim) 1548 target = zdom->uzd_wss; 1549 else if (zdom->uzd_timin > 900 / UMA_TIMEOUT) 1550 target = zdom->uzd_nitems - zdom->uzd_limin / 4; 1551 else { 1552 ZDOM_UNLOCK(zdom); 1553 return (done); 1554 } 1555 while ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) != NULL && 1556 zdom->uzd_nitems >= target + bucket->ub_cnt) { 1557 bucket = zone_fetch_bucket(zone, zdom, true); 1558 if (bucket == NULL) 1559 break; 1560 bucket_free(zone, bucket, NULL); 1561 done = true; 1562 ZDOM_LOCK(zdom); 1563 } 1564 ZDOM_UNLOCK(zdom); 1565 return (done); 1566 } 1567 1568 static void 1569 bucket_cache_reclaim(uma_zone_t zone, bool drain, int domain) 1570 { 1571 int i; 1572 1573 /* 1574 * Shrink the zone bucket size to ensure that the per-CPU caches 1575 * don't grow too large. 1576 */ 1577 if (zone->uz_bucket_size > zone->uz_bucket_size_min) 1578 zone->uz_bucket_size--; 1579 1580 if (domain != UMA_ANYDOMAIN && 1581 (zone->uz_flags & UMA_ZONE_ROUNDROBIN) == 0) { 1582 bucket_cache_reclaim_domain(zone, drain, true, domain); 1583 } else { 1584 for (i = 0; i < vm_ndomains; i++) 1585 bucket_cache_reclaim_domain(zone, drain, true, i); 1586 } 1587 } 1588 1589 static void 1590 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 1591 { 1592 uint8_t *mem; 1593 size_t size; 1594 int i; 1595 uint8_t flags; 1596 1597 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 1598 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 1599 1600 mem = slab_data(slab, keg); 1601 size = PAGE_SIZE * keg->uk_ppera; 1602 1603 kasan_mark_slab_valid(keg, mem); 1604 if (keg->uk_fini != NULL) { 1605 for (i = start - 1; i > -1; i--) 1606 #ifdef INVARIANTS 1607 /* 1608 * trash_fini implies that dtor was trash_dtor. trash_fini 1609 * would check that memory hasn't been modified since free, 1610 * which executed trash_dtor. 1611 * That's why we need to run uma_dbg_kskip() check here, 1612 * albeit we don't make skip check for other init/fini 1613 * invocations. 1614 */ 1615 if (!uma_dbg_kskip(keg, slab_item(slab, keg, i)) || 1616 keg->uk_fini != trash_fini) 1617 #endif 1618 keg->uk_fini(slab_item(slab, keg, i), keg->uk_size); 1619 } 1620 flags = slab->us_flags; 1621 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) { 1622 zone_free_item(slabzone(keg->uk_ipers), slab_tohashslab(slab), 1623 NULL, SKIP_NONE); 1624 } 1625 keg->uk_freef(mem, size, flags); 1626 uma_total_dec(size); 1627 } 1628 1629 static void 1630 keg_drain_domain(uma_keg_t keg, int domain) 1631 { 1632 struct slabhead freeslabs; 1633 uma_domain_t dom; 1634 uma_slab_t slab, tmp; 1635 uint32_t i, stofree, stokeep, partial; 1636 1637 dom = &keg->uk_domain[domain]; 1638 LIST_INIT(&freeslabs); 1639 1640 CTR4(KTR_UMA, "keg_drain %s(%p) domain %d free items: %u", 1641 keg->uk_name, keg, domain, dom->ud_free_items); 1642 1643 KEG_LOCK(keg, domain); 1644 1645 /* 1646 * Are the free items in partially allocated slabs sufficient to meet 1647 * the reserve? If not, compute the number of fully free slabs that must 1648 * be kept. 1649 */ 1650 partial = dom->ud_free_items - dom->ud_free_slabs * keg->uk_ipers; 1651 if (partial < keg->uk_reserve) { 1652 stokeep = min(dom->ud_free_slabs, 1653 howmany(keg->uk_reserve - partial, keg->uk_ipers)); 1654 } else { 1655 stokeep = 0; 1656 } 1657 stofree = dom->ud_free_slabs - stokeep; 1658 1659 /* 1660 * Partition the free slabs into two sets: those that must be kept in 1661 * order to maintain the reserve, and those that may be released back to 1662 * the system. Since one set may be much larger than the other, 1663 * populate the smaller of the two sets and swap them if necessary. 1664 */ 1665 for (i = min(stofree, stokeep); i > 0; i--) { 1666 slab = LIST_FIRST(&dom->ud_free_slab); 1667 LIST_REMOVE(slab, us_link); 1668 LIST_INSERT_HEAD(&freeslabs, slab, us_link); 1669 } 1670 if (stofree > stokeep) 1671 LIST_SWAP(&freeslabs, &dom->ud_free_slab, uma_slab, us_link); 1672 1673 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) { 1674 LIST_FOREACH(slab, &freeslabs, us_link) 1675 UMA_HASH_REMOVE(&keg->uk_hash, slab); 1676 } 1677 dom->ud_free_items -= stofree * keg->uk_ipers; 1678 dom->ud_free_slabs -= stofree; 1679 dom->ud_pages -= stofree * keg->uk_ppera; 1680 KEG_UNLOCK(keg, domain); 1681 1682 LIST_FOREACH_SAFE(slab, &freeslabs, us_link, tmp) 1683 keg_free_slab(keg, slab, keg->uk_ipers); 1684 } 1685 1686 /* 1687 * Frees pages from a keg back to the system. This is done on demand from 1688 * the pageout daemon. 1689 * 1690 * Returns nothing. 1691 */ 1692 static void 1693 keg_drain(uma_keg_t keg, int domain) 1694 { 1695 int i; 1696 1697 if ((keg->uk_flags & UMA_ZONE_NOFREE) != 0) 1698 return; 1699 if (domain != UMA_ANYDOMAIN) { 1700 keg_drain_domain(keg, domain); 1701 } else { 1702 for (i = 0; i < vm_ndomains; i++) 1703 keg_drain_domain(keg, i); 1704 } 1705 } 1706 1707 static void 1708 zone_reclaim(uma_zone_t zone, int domain, int waitok, bool drain) 1709 { 1710 /* 1711 * Count active reclaim operations in order to interlock with 1712 * zone_dtor(), which removes the zone from global lists before 1713 * attempting to reclaim items itself. 1714 * 1715 * The zone may be destroyed while sleeping, so only zone_dtor() should 1716 * specify M_WAITOK. 1717 */ 1718 ZONE_LOCK(zone); 1719 if (waitok == M_WAITOK) { 1720 while (zone->uz_reclaimers > 0) 1721 msleep(zone, ZONE_LOCKPTR(zone), PVM, "zonedrain", 1); 1722 } 1723 zone->uz_reclaimers++; 1724 ZONE_UNLOCK(zone); 1725 bucket_cache_reclaim(zone, drain, domain); 1726 1727 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) 1728 keg_drain(zone->uz_keg, domain); 1729 ZONE_LOCK(zone); 1730 zone->uz_reclaimers--; 1731 if (zone->uz_reclaimers == 0) 1732 wakeup(zone); 1733 ZONE_UNLOCK(zone); 1734 } 1735 1736 static void 1737 zone_drain(uma_zone_t zone, void *arg) 1738 { 1739 int domain; 1740 1741 domain = (int)(uintptr_t)arg; 1742 zone_reclaim(zone, domain, M_NOWAIT, true); 1743 } 1744 1745 static void 1746 zone_trim(uma_zone_t zone, void *arg) 1747 { 1748 int domain; 1749 1750 domain = (int)(uintptr_t)arg; 1751 zone_reclaim(zone, domain, M_NOWAIT, false); 1752 } 1753 1754 /* 1755 * Allocate a new slab for a keg and inserts it into the partial slab list. 1756 * The keg should be unlocked on entry. If the allocation succeeds it will 1757 * be locked on return. 1758 * 1759 * Arguments: 1760 * flags Wait flags for the item initialization routine 1761 * aflags Wait flags for the slab allocation 1762 * 1763 * Returns: 1764 * The slab that was allocated or NULL if there is no memory and the 1765 * caller specified M_NOWAIT. 1766 */ 1767 static uma_slab_t 1768 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags, 1769 int aflags) 1770 { 1771 uma_domain_t dom; 1772 uma_slab_t slab; 1773 unsigned long size; 1774 uint8_t *mem; 1775 uint8_t sflags; 1776 int i; 1777 1778 KASSERT(domain >= 0 && domain < vm_ndomains, 1779 ("keg_alloc_slab: domain %d out of range", domain)); 1780 1781 slab = NULL; 1782 mem = NULL; 1783 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) { 1784 uma_hash_slab_t hslab; 1785 hslab = zone_alloc_item(slabzone(keg->uk_ipers), NULL, 1786 domain, aflags); 1787 if (hslab == NULL) 1788 goto fail; 1789 slab = &hslab->uhs_slab; 1790 } 1791 1792 /* 1793 * This reproduces the old vm_zone behavior of zero filling pages the 1794 * first time they are added to a zone. 1795 * 1796 * Malloced items are zeroed in uma_zalloc. 1797 */ 1798 1799 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1800 aflags |= M_ZERO; 1801 else 1802 aflags &= ~M_ZERO; 1803 1804 if (keg->uk_flags & UMA_ZONE_NODUMP) 1805 aflags |= M_NODUMP; 1806 1807 /* zone is passed for legacy reasons. */ 1808 size = keg->uk_ppera * PAGE_SIZE; 1809 mem = keg->uk_allocf(zone, size, domain, &sflags, aflags); 1810 if (mem == NULL) { 1811 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) 1812 zone_free_item(slabzone(keg->uk_ipers), 1813 slab_tohashslab(slab), NULL, SKIP_NONE); 1814 goto fail; 1815 } 1816 uma_total_inc(size); 1817 1818 /* For HASH zones all pages go to the same uma_domain. */ 1819 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 1820 domain = 0; 1821 1822 /* Point the slab into the allocated memory */ 1823 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) 1824 slab = (uma_slab_t)(mem + keg->uk_pgoff); 1825 else 1826 slab_tohashslab(slab)->uhs_data = mem; 1827 1828 if (keg->uk_flags & UMA_ZFLAG_VTOSLAB) 1829 for (i = 0; i < keg->uk_ppera; i++) 1830 vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE), 1831 zone, slab); 1832 1833 slab->us_freecount = keg->uk_ipers; 1834 slab->us_flags = sflags; 1835 slab->us_domain = domain; 1836 1837 BIT_FILL(keg->uk_ipers, &slab->us_free); 1838 #ifdef INVARIANTS 1839 BIT_ZERO(keg->uk_ipers, slab_dbg_bits(slab, keg)); 1840 #endif 1841 1842 if (keg->uk_init != NULL) { 1843 for (i = 0; i < keg->uk_ipers; i++) 1844 if (keg->uk_init(slab_item(slab, keg, i), 1845 keg->uk_size, flags) != 0) 1846 break; 1847 if (i != keg->uk_ipers) { 1848 keg_free_slab(keg, slab, i); 1849 goto fail; 1850 } 1851 } 1852 kasan_mark_slab_invalid(keg, mem); 1853 KEG_LOCK(keg, domain); 1854 1855 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1856 slab, keg->uk_name, keg); 1857 1858 if (keg->uk_flags & UMA_ZFLAG_HASH) 1859 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1860 1861 /* 1862 * If we got a slab here it's safe to mark it partially used 1863 * and return. We assume that the caller is going to remove 1864 * at least one item. 1865 */ 1866 dom = &keg->uk_domain[domain]; 1867 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 1868 dom->ud_pages += keg->uk_ppera; 1869 dom->ud_free_items += keg->uk_ipers; 1870 1871 return (slab); 1872 1873 fail: 1874 return (NULL); 1875 } 1876 1877 /* 1878 * This function is intended to be used early on in place of page_alloc(). It 1879 * performs contiguous physical memory allocations and uses a bump allocator for 1880 * KVA, so is usable before the kernel map is initialized. 1881 */ 1882 static void * 1883 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1884 int wait) 1885 { 1886 vm_paddr_t pa; 1887 vm_page_t m; 1888 void *mem; 1889 int pages; 1890 int i; 1891 1892 pages = howmany(bytes, PAGE_SIZE); 1893 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1894 1895 *pflag = UMA_SLAB_BOOT; 1896 m = vm_page_alloc_contig_domain(NULL, 0, domain, 1897 malloc2vm_flags(wait) | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED, pages, 1898 (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT); 1899 if (m == NULL) 1900 return (NULL); 1901 1902 pa = VM_PAGE_TO_PHYS(m); 1903 for (i = 0; i < pages; i++, pa += PAGE_SIZE) { 1904 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 1905 defined(__riscv) || defined(__powerpc64__) 1906 if ((wait & M_NODUMP) == 0) 1907 dump_add_page(pa); 1908 #endif 1909 } 1910 /* Allocate KVA and indirectly advance bootmem. */ 1911 mem = (void *)pmap_map(&bootmem, m->phys_addr, 1912 m->phys_addr + (pages * PAGE_SIZE), VM_PROT_READ | VM_PROT_WRITE); 1913 if ((wait & M_ZERO) != 0) 1914 bzero(mem, pages * PAGE_SIZE); 1915 1916 return (mem); 1917 } 1918 1919 static void 1920 startup_free(void *mem, vm_size_t bytes) 1921 { 1922 vm_offset_t va; 1923 vm_page_t m; 1924 1925 va = (vm_offset_t)mem; 1926 m = PHYS_TO_VM_PAGE(pmap_kextract(va)); 1927 1928 /* 1929 * startup_alloc() returns direct-mapped slabs on some platforms. Avoid 1930 * unmapping ranges of the direct map. 1931 */ 1932 if (va >= bootstart && va + bytes <= bootmem) 1933 pmap_remove(kernel_pmap, va, va + bytes); 1934 for (; bytes != 0; bytes -= PAGE_SIZE, m++) { 1935 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 1936 defined(__riscv) || defined(__powerpc64__) 1937 dump_drop_page(VM_PAGE_TO_PHYS(m)); 1938 #endif 1939 vm_page_unwire_noq(m); 1940 vm_page_free(m); 1941 } 1942 } 1943 1944 /* 1945 * Allocates a number of pages from the system 1946 * 1947 * Arguments: 1948 * bytes The number of bytes requested 1949 * wait Shall we wait? 1950 * 1951 * Returns: 1952 * A pointer to the alloced memory or possibly 1953 * NULL if M_NOWAIT is set. 1954 */ 1955 static void * 1956 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1957 int wait) 1958 { 1959 void *p; /* Returned page */ 1960 1961 *pflag = UMA_SLAB_KERNEL; 1962 p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait); 1963 1964 return (p); 1965 } 1966 1967 static void * 1968 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1969 int wait) 1970 { 1971 struct pglist alloctail; 1972 vm_offset_t addr, zkva; 1973 int cpu, flags; 1974 vm_page_t p, p_next; 1975 #ifdef NUMA 1976 struct pcpu *pc; 1977 #endif 1978 1979 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE); 1980 1981 TAILQ_INIT(&alloctail); 1982 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1983 malloc2vm_flags(wait); 1984 *pflag = UMA_SLAB_KERNEL; 1985 for (cpu = 0; cpu <= mp_maxid; cpu++) { 1986 if (CPU_ABSENT(cpu)) { 1987 p = vm_page_alloc(NULL, 0, flags); 1988 } else { 1989 #ifndef NUMA 1990 p = vm_page_alloc(NULL, 0, flags); 1991 #else 1992 pc = pcpu_find(cpu); 1993 if (__predict_false(VM_DOMAIN_EMPTY(pc->pc_domain))) 1994 p = NULL; 1995 else 1996 p = vm_page_alloc_domain(NULL, 0, 1997 pc->pc_domain, flags); 1998 if (__predict_false(p == NULL)) 1999 p = vm_page_alloc(NULL, 0, flags); 2000 #endif 2001 } 2002 if (__predict_false(p == NULL)) 2003 goto fail; 2004 TAILQ_INSERT_TAIL(&alloctail, p, listq); 2005 } 2006 if ((addr = kva_alloc(bytes)) == 0) 2007 goto fail; 2008 zkva = addr; 2009 TAILQ_FOREACH(p, &alloctail, listq) { 2010 pmap_qenter(zkva, &p, 1); 2011 zkva += PAGE_SIZE; 2012 } 2013 return ((void*)addr); 2014 fail: 2015 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 2016 vm_page_unwire_noq(p); 2017 vm_page_free(p); 2018 } 2019 return (NULL); 2020 } 2021 2022 /* 2023 * Allocates a number of pages from within an object 2024 * 2025 * Arguments: 2026 * bytes The number of bytes requested 2027 * wait Shall we wait? 2028 * 2029 * Returns: 2030 * A pointer to the alloced memory or possibly 2031 * NULL if M_NOWAIT is set. 2032 */ 2033 static void * 2034 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 2035 int wait) 2036 { 2037 TAILQ_HEAD(, vm_page) alloctail; 2038 u_long npages; 2039 vm_offset_t retkva, zkva; 2040 vm_page_t p, p_next; 2041 uma_keg_t keg; 2042 2043 TAILQ_INIT(&alloctail); 2044 keg = zone->uz_keg; 2045 2046 npages = howmany(bytes, PAGE_SIZE); 2047 while (npages > 0) { 2048 p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT | 2049 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 2050 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK : 2051 VM_ALLOC_NOWAIT)); 2052 if (p != NULL) { 2053 /* 2054 * Since the page does not belong to an object, its 2055 * listq is unused. 2056 */ 2057 TAILQ_INSERT_TAIL(&alloctail, p, listq); 2058 npages--; 2059 continue; 2060 } 2061 /* 2062 * Page allocation failed, free intermediate pages and 2063 * exit. 2064 */ 2065 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 2066 vm_page_unwire_noq(p); 2067 vm_page_free(p); 2068 } 2069 return (NULL); 2070 } 2071 *flags = UMA_SLAB_PRIV; 2072 zkva = keg->uk_kva + 2073 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 2074 retkva = zkva; 2075 TAILQ_FOREACH(p, &alloctail, listq) { 2076 pmap_qenter(zkva, &p, 1); 2077 zkva += PAGE_SIZE; 2078 } 2079 2080 return ((void *)retkva); 2081 } 2082 2083 /* 2084 * Allocate physically contiguous pages. 2085 */ 2086 static void * 2087 contig_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 2088 int wait) 2089 { 2090 2091 *pflag = UMA_SLAB_KERNEL; 2092 return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain), 2093 bytes, wait, 0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT)); 2094 } 2095 2096 /* 2097 * Frees a number of pages to the system 2098 * 2099 * Arguments: 2100 * mem A pointer to the memory to be freed 2101 * size The size of the memory being freed 2102 * flags The original p->us_flags field 2103 * 2104 * Returns: 2105 * Nothing 2106 */ 2107 static void 2108 page_free(void *mem, vm_size_t size, uint8_t flags) 2109 { 2110 2111 if ((flags & UMA_SLAB_BOOT) != 0) { 2112 startup_free(mem, size); 2113 return; 2114 } 2115 2116 KASSERT((flags & UMA_SLAB_KERNEL) != 0, 2117 ("UMA: page_free used with invalid flags %x", flags)); 2118 2119 kmem_free((vm_offset_t)mem, size); 2120 } 2121 2122 /* 2123 * Frees pcpu zone allocations 2124 * 2125 * Arguments: 2126 * mem A pointer to the memory to be freed 2127 * size The size of the memory being freed 2128 * flags The original p->us_flags field 2129 * 2130 * Returns: 2131 * Nothing 2132 */ 2133 static void 2134 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags) 2135 { 2136 vm_offset_t sva, curva; 2137 vm_paddr_t paddr; 2138 vm_page_t m; 2139 2140 MPASS(size == (mp_maxid+1)*PAGE_SIZE); 2141 2142 if ((flags & UMA_SLAB_BOOT) != 0) { 2143 startup_free(mem, size); 2144 return; 2145 } 2146 2147 sva = (vm_offset_t)mem; 2148 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) { 2149 paddr = pmap_kextract(curva); 2150 m = PHYS_TO_VM_PAGE(paddr); 2151 vm_page_unwire_noq(m); 2152 vm_page_free(m); 2153 } 2154 pmap_qremove(sva, size >> PAGE_SHIFT); 2155 kva_free(sva, size); 2156 } 2157 2158 /* 2159 * Zero fill initializer 2160 * 2161 * Arguments/Returns follow uma_init specifications 2162 */ 2163 static int 2164 zero_init(void *mem, int size, int flags) 2165 { 2166 bzero(mem, size); 2167 return (0); 2168 } 2169 2170 #ifdef INVARIANTS 2171 static struct noslabbits * 2172 slab_dbg_bits(uma_slab_t slab, uma_keg_t keg) 2173 { 2174 2175 return ((void *)((char *)&slab->us_free + BITSET_SIZE(keg->uk_ipers))); 2176 } 2177 #endif 2178 2179 /* 2180 * Actual size of embedded struct slab (!OFFPAGE). 2181 */ 2182 static size_t 2183 slab_sizeof(int nitems) 2184 { 2185 size_t s; 2186 2187 s = sizeof(struct uma_slab) + BITSET_SIZE(nitems) * SLAB_BITSETS; 2188 return (roundup(s, UMA_ALIGN_PTR + 1)); 2189 } 2190 2191 #define UMA_FIXPT_SHIFT 31 2192 #define UMA_FRAC_FIXPT(n, d) \ 2193 ((uint32_t)(((uint64_t)(n) << UMA_FIXPT_SHIFT) / (d))) 2194 #define UMA_FIXPT_PCT(f) \ 2195 ((u_int)(((uint64_t)100 * (f)) >> UMA_FIXPT_SHIFT)) 2196 #define UMA_PCT_FIXPT(pct) UMA_FRAC_FIXPT((pct), 100) 2197 #define UMA_MIN_EFF UMA_PCT_FIXPT(100 - UMA_MAX_WASTE) 2198 2199 /* 2200 * Compute the number of items that will fit in a slab. If hdr is true, the 2201 * item count may be limited to provide space in the slab for an inline slab 2202 * header. Otherwise, all slab space will be provided for item storage. 2203 */ 2204 static u_int 2205 slab_ipers_hdr(u_int size, u_int rsize, u_int slabsize, bool hdr) 2206 { 2207 u_int ipers; 2208 u_int padpi; 2209 2210 /* The padding between items is not needed after the last item. */ 2211 padpi = rsize - size; 2212 2213 if (hdr) { 2214 /* 2215 * Start with the maximum item count and remove items until 2216 * the slab header first alongside the allocatable memory. 2217 */ 2218 for (ipers = MIN(SLAB_MAX_SETSIZE, 2219 (slabsize + padpi - slab_sizeof(1)) / rsize); 2220 ipers > 0 && 2221 ipers * rsize - padpi + slab_sizeof(ipers) > slabsize; 2222 ipers--) 2223 continue; 2224 } else { 2225 ipers = MIN((slabsize + padpi) / rsize, SLAB_MAX_SETSIZE); 2226 } 2227 2228 return (ipers); 2229 } 2230 2231 struct keg_layout_result { 2232 u_int format; 2233 u_int slabsize; 2234 u_int ipers; 2235 u_int eff; 2236 }; 2237 2238 static void 2239 keg_layout_one(uma_keg_t keg, u_int rsize, u_int slabsize, u_int fmt, 2240 struct keg_layout_result *kl) 2241 { 2242 u_int total; 2243 2244 kl->format = fmt; 2245 kl->slabsize = slabsize; 2246 2247 /* Handle INTERNAL as inline with an extra page. */ 2248 if ((fmt & UMA_ZFLAG_INTERNAL) != 0) { 2249 kl->format &= ~UMA_ZFLAG_INTERNAL; 2250 kl->slabsize += PAGE_SIZE; 2251 } 2252 2253 kl->ipers = slab_ipers_hdr(keg->uk_size, rsize, kl->slabsize, 2254 (fmt & UMA_ZFLAG_OFFPAGE) == 0); 2255 2256 /* Account for memory used by an offpage slab header. */ 2257 total = kl->slabsize; 2258 if ((fmt & UMA_ZFLAG_OFFPAGE) != 0) 2259 total += slabzone(kl->ipers)->uz_keg->uk_rsize; 2260 2261 kl->eff = UMA_FRAC_FIXPT(kl->ipers * rsize, total); 2262 } 2263 2264 /* 2265 * Determine the format of a uma keg. This determines where the slab header 2266 * will be placed (inline or offpage) and calculates ipers, rsize, and ppera. 2267 * 2268 * Arguments 2269 * keg The zone we should initialize 2270 * 2271 * Returns 2272 * Nothing 2273 */ 2274 static void 2275 keg_layout(uma_keg_t keg) 2276 { 2277 struct keg_layout_result kl = {}, kl_tmp; 2278 u_int fmts[2]; 2279 u_int alignsize; 2280 u_int nfmt; 2281 u_int pages; 2282 u_int rsize; 2283 u_int slabsize; 2284 u_int i, j; 2285 2286 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 2287 (keg->uk_size <= UMA_PCPU_ALLOC_SIZE && 2288 (keg->uk_flags & UMA_ZONE_CACHESPREAD) == 0), 2289 ("%s: cannot configure for PCPU: keg=%s, size=%u, flags=0x%b", 2290 __func__, keg->uk_name, keg->uk_size, keg->uk_flags, 2291 PRINT_UMA_ZFLAGS)); 2292 KASSERT((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) == 0 || 2293 (keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0, 2294 ("%s: incompatible flags 0x%b", __func__, keg->uk_flags, 2295 PRINT_UMA_ZFLAGS)); 2296 2297 alignsize = keg->uk_align + 1; 2298 #ifdef KASAN 2299 /* 2300 * ASAN requires that each allocation be aligned to the shadow map 2301 * scale factor. 2302 */ 2303 if (alignsize < KASAN_SHADOW_SCALE) 2304 alignsize = KASAN_SHADOW_SCALE; 2305 #endif 2306 2307 /* 2308 * Calculate the size of each allocation (rsize) according to 2309 * alignment. If the requested size is smaller than we have 2310 * allocation bits for we round it up. 2311 */ 2312 rsize = MAX(keg->uk_size, UMA_SMALLEST_UNIT); 2313 rsize = roundup2(rsize, alignsize); 2314 2315 if ((keg->uk_flags & UMA_ZONE_CACHESPREAD) != 0) { 2316 /* 2317 * We want one item to start on every align boundary in a page. 2318 * To do this we will span pages. We will also extend the item 2319 * by the size of align if it is an even multiple of align. 2320 * Otherwise, it would fall on the same boundary every time. 2321 */ 2322 if ((rsize & alignsize) == 0) 2323 rsize += alignsize; 2324 slabsize = rsize * (PAGE_SIZE / alignsize); 2325 slabsize = MIN(slabsize, rsize * SLAB_MAX_SETSIZE); 2326 slabsize = MIN(slabsize, UMA_CACHESPREAD_MAX_SIZE); 2327 slabsize = round_page(slabsize); 2328 } else { 2329 /* 2330 * Start with a slab size of as many pages as it takes to 2331 * represent a single item. We will try to fit as many 2332 * additional items into the slab as possible. 2333 */ 2334 slabsize = round_page(keg->uk_size); 2335 } 2336 2337 /* Build a list of all of the available formats for this keg. */ 2338 nfmt = 0; 2339 2340 /* Evaluate an inline slab layout. */ 2341 if ((keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0) 2342 fmts[nfmt++] = 0; 2343 2344 /* TODO: vm_page-embedded slab. */ 2345 2346 /* 2347 * We can't do OFFPAGE if we're internal or if we've been 2348 * asked to not go to the VM for buckets. If we do this we 2349 * may end up going to the VM for slabs which we do not want 2350 * to do if we're UMA_ZONE_VM, which clearly forbids it. 2351 * In those cases, evaluate a pseudo-format called INTERNAL 2352 * which has an inline slab header and one extra page to 2353 * guarantee that it fits. 2354 * 2355 * Otherwise, see if using an OFFPAGE slab will improve our 2356 * efficiency. 2357 */ 2358 if ((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) != 0) 2359 fmts[nfmt++] = UMA_ZFLAG_INTERNAL; 2360 else 2361 fmts[nfmt++] = UMA_ZFLAG_OFFPAGE; 2362 2363 /* 2364 * Choose a slab size and format which satisfy the minimum efficiency. 2365 * Prefer the smallest slab size that meets the constraints. 2366 * 2367 * Start with a minimum slab size, to accommodate CACHESPREAD. Then, 2368 * for small items (up to PAGE_SIZE), the iteration increment is one 2369 * page; and for large items, the increment is one item. 2370 */ 2371 i = (slabsize + rsize - keg->uk_size) / MAX(PAGE_SIZE, rsize); 2372 KASSERT(i >= 1, ("keg %s(%p) flags=0x%b slabsize=%u, rsize=%u, i=%u", 2373 keg->uk_name, keg, keg->uk_flags, PRINT_UMA_ZFLAGS, slabsize, 2374 rsize, i)); 2375 for ( ; ; i++) { 2376 slabsize = (rsize <= PAGE_SIZE) ? ptoa(i) : 2377 round_page(rsize * (i - 1) + keg->uk_size); 2378 2379 for (j = 0; j < nfmt; j++) { 2380 /* Only if we have no viable format yet. */ 2381 if ((fmts[j] & UMA_ZFLAG_INTERNAL) != 0 && 2382 kl.ipers > 0) 2383 continue; 2384 2385 keg_layout_one(keg, rsize, slabsize, fmts[j], &kl_tmp); 2386 if (kl_tmp.eff <= kl.eff) 2387 continue; 2388 2389 kl = kl_tmp; 2390 2391 CTR6(KTR_UMA, "keg %s layout: format %#x " 2392 "(ipers %u * rsize %u) / slabsize %#x = %u%% eff", 2393 keg->uk_name, kl.format, kl.ipers, rsize, 2394 kl.slabsize, UMA_FIXPT_PCT(kl.eff)); 2395 2396 /* Stop when we reach the minimum efficiency. */ 2397 if (kl.eff >= UMA_MIN_EFF) 2398 break; 2399 } 2400 2401 if (kl.eff >= UMA_MIN_EFF || !multipage_slabs || 2402 slabsize >= SLAB_MAX_SETSIZE * rsize || 2403 (keg->uk_flags & (UMA_ZONE_PCPU | UMA_ZONE_CONTIG)) != 0) 2404 break; 2405 } 2406 2407 pages = atop(kl.slabsize); 2408 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 2409 pages *= mp_maxid + 1; 2410 2411 keg->uk_rsize = rsize; 2412 keg->uk_ipers = kl.ipers; 2413 keg->uk_ppera = pages; 2414 keg->uk_flags |= kl.format; 2415 2416 /* 2417 * How do we find the slab header if it is offpage or if not all item 2418 * start addresses are in the same page? We could solve the latter 2419 * case with vaddr alignment, but we don't. 2420 */ 2421 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0 || 2422 (keg->uk_ipers - 1) * rsize >= PAGE_SIZE) { 2423 if ((keg->uk_flags & UMA_ZONE_NOTPAGE) != 0) 2424 keg->uk_flags |= UMA_ZFLAG_HASH; 2425 else 2426 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2427 } 2428 2429 CTR6(KTR_UMA, "%s: keg=%s, flags=%#x, rsize=%u, ipers=%u, ppera=%u", 2430 __func__, keg->uk_name, keg->uk_flags, rsize, keg->uk_ipers, 2431 pages); 2432 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE, 2433 ("%s: keg=%s, flags=0x%b, rsize=%u, ipers=%u, ppera=%u", __func__, 2434 keg->uk_name, keg->uk_flags, PRINT_UMA_ZFLAGS, rsize, 2435 keg->uk_ipers, pages)); 2436 } 2437 2438 /* 2439 * Keg header ctor. This initializes all fields, locks, etc. And inserts 2440 * the keg onto the global keg list. 2441 * 2442 * Arguments/Returns follow uma_ctor specifications 2443 * udata Actually uma_kctor_args 2444 */ 2445 static int 2446 keg_ctor(void *mem, int size, void *udata, int flags) 2447 { 2448 struct uma_kctor_args *arg = udata; 2449 uma_keg_t keg = mem; 2450 uma_zone_t zone; 2451 int i; 2452 2453 bzero(keg, size); 2454 keg->uk_size = arg->size; 2455 keg->uk_init = arg->uminit; 2456 keg->uk_fini = arg->fini; 2457 keg->uk_align = arg->align; 2458 keg->uk_reserve = 0; 2459 keg->uk_flags = arg->flags; 2460 2461 /* 2462 * We use a global round-robin policy by default. Zones with 2463 * UMA_ZONE_FIRSTTOUCH set will use first-touch instead, in which 2464 * case the iterator is never run. 2465 */ 2466 keg->uk_dr.dr_policy = DOMAINSET_RR(); 2467 keg->uk_dr.dr_iter = 0; 2468 2469 /* 2470 * The primary zone is passed to us at keg-creation time. 2471 */ 2472 zone = arg->zone; 2473 keg->uk_name = zone->uz_name; 2474 2475 if (arg->flags & UMA_ZONE_ZINIT) 2476 keg->uk_init = zero_init; 2477 2478 if (arg->flags & UMA_ZONE_MALLOC) 2479 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2480 2481 #ifndef SMP 2482 keg->uk_flags &= ~UMA_ZONE_PCPU; 2483 #endif 2484 2485 keg_layout(keg); 2486 2487 /* 2488 * Use a first-touch NUMA policy for kegs that pmap_extract() will 2489 * work on. Use round-robin for everything else. 2490 * 2491 * Zones may override the default by specifying either. 2492 */ 2493 #ifdef NUMA 2494 if ((keg->uk_flags & 2495 (UMA_ZONE_ROUNDROBIN | UMA_ZFLAG_CACHE | UMA_ZONE_NOTPAGE)) == 0) 2496 keg->uk_flags |= UMA_ZONE_FIRSTTOUCH; 2497 else if ((keg->uk_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2498 keg->uk_flags |= UMA_ZONE_ROUNDROBIN; 2499 #endif 2500 2501 /* 2502 * If we haven't booted yet we need allocations to go through the 2503 * startup cache until the vm is ready. 2504 */ 2505 #ifdef UMA_MD_SMALL_ALLOC 2506 if (keg->uk_ppera == 1) 2507 keg->uk_allocf = uma_small_alloc; 2508 else 2509 #endif 2510 if (booted < BOOT_KVA) 2511 keg->uk_allocf = startup_alloc; 2512 else if (keg->uk_flags & UMA_ZONE_PCPU) 2513 keg->uk_allocf = pcpu_page_alloc; 2514 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && keg->uk_ppera > 1) 2515 keg->uk_allocf = contig_alloc; 2516 else 2517 keg->uk_allocf = page_alloc; 2518 #ifdef UMA_MD_SMALL_ALLOC 2519 if (keg->uk_ppera == 1) 2520 keg->uk_freef = uma_small_free; 2521 else 2522 #endif 2523 if (keg->uk_flags & UMA_ZONE_PCPU) 2524 keg->uk_freef = pcpu_page_free; 2525 else 2526 keg->uk_freef = page_free; 2527 2528 /* 2529 * Initialize keg's locks. 2530 */ 2531 for (i = 0; i < vm_ndomains; i++) 2532 KEG_LOCK_INIT(keg, i, (arg->flags & UMA_ZONE_MTXCLASS)); 2533 2534 /* 2535 * If we're putting the slab header in the actual page we need to 2536 * figure out where in each page it goes. See slab_sizeof 2537 * definition. 2538 */ 2539 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) { 2540 size_t shsize; 2541 2542 shsize = slab_sizeof(keg->uk_ipers); 2543 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize; 2544 /* 2545 * The only way the following is possible is if with our 2546 * UMA_ALIGN_PTR adjustments we are now bigger than 2547 * UMA_SLAB_SIZE. I haven't checked whether this is 2548 * mathematically possible for all cases, so we make 2549 * sure here anyway. 2550 */ 2551 KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera, 2552 ("zone %s ipers %d rsize %d size %d slab won't fit", 2553 zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size)); 2554 } 2555 2556 if (keg->uk_flags & UMA_ZFLAG_HASH) 2557 hash_alloc(&keg->uk_hash, 0); 2558 2559 CTR3(KTR_UMA, "keg_ctor %p zone %s(%p)", keg, zone->uz_name, zone); 2560 2561 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 2562 2563 rw_wlock(&uma_rwlock); 2564 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 2565 rw_wunlock(&uma_rwlock); 2566 return (0); 2567 } 2568 2569 static void 2570 zone_kva_available(uma_zone_t zone, void *unused) 2571 { 2572 uma_keg_t keg; 2573 2574 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 2575 return; 2576 KEG_GET(zone, keg); 2577 2578 if (keg->uk_allocf == startup_alloc) { 2579 /* Switch to the real allocator. */ 2580 if (keg->uk_flags & UMA_ZONE_PCPU) 2581 keg->uk_allocf = pcpu_page_alloc; 2582 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && 2583 keg->uk_ppera > 1) 2584 keg->uk_allocf = contig_alloc; 2585 else 2586 keg->uk_allocf = page_alloc; 2587 } 2588 } 2589 2590 static void 2591 zone_alloc_counters(uma_zone_t zone, void *unused) 2592 { 2593 2594 zone->uz_allocs = counter_u64_alloc(M_WAITOK); 2595 zone->uz_frees = counter_u64_alloc(M_WAITOK); 2596 zone->uz_fails = counter_u64_alloc(M_WAITOK); 2597 zone->uz_xdomain = counter_u64_alloc(M_WAITOK); 2598 } 2599 2600 static void 2601 zone_alloc_sysctl(uma_zone_t zone, void *unused) 2602 { 2603 uma_zone_domain_t zdom; 2604 uma_domain_t dom; 2605 uma_keg_t keg; 2606 struct sysctl_oid *oid, *domainoid; 2607 int domains, i, cnt; 2608 static const char *nokeg = "cache zone"; 2609 char *c; 2610 2611 /* 2612 * Make a sysctl safe copy of the zone name by removing 2613 * any special characters and handling dups by appending 2614 * an index. 2615 */ 2616 if (zone->uz_namecnt != 0) { 2617 /* Count the number of decimal digits and '_' separator. */ 2618 for (i = 1, cnt = zone->uz_namecnt; cnt != 0; i++) 2619 cnt /= 10; 2620 zone->uz_ctlname = malloc(strlen(zone->uz_name) + i + 1, 2621 M_UMA, M_WAITOK); 2622 sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name, 2623 zone->uz_namecnt); 2624 } else 2625 zone->uz_ctlname = strdup(zone->uz_name, M_UMA); 2626 for (c = zone->uz_ctlname; *c != '\0'; c++) 2627 if (strchr("./\\ -", *c) != NULL) 2628 *c = '_'; 2629 2630 /* 2631 * Basic parameters at the root. 2632 */ 2633 zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma), 2634 OID_AUTO, zone->uz_ctlname, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2635 oid = zone->uz_oid; 2636 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2637 "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size"); 2638 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2639 "flags", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE, 2640 zone, 0, sysctl_handle_uma_zone_flags, "A", 2641 "Allocator configuration flags"); 2642 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2643 "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0, 2644 "Desired per-cpu cache size"); 2645 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2646 "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0, 2647 "Maximum allowed per-cpu cache size"); 2648 2649 /* 2650 * keg if present. 2651 */ 2652 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 2653 domains = vm_ndomains; 2654 else 2655 domains = 1; 2656 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2657 "keg", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2658 keg = zone->uz_keg; 2659 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) { 2660 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2661 "name", CTLFLAG_RD, keg->uk_name, "Keg name"); 2662 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2663 "rsize", CTLFLAG_RD, &keg->uk_rsize, 0, 2664 "Real object size with alignment"); 2665 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2666 "ppera", CTLFLAG_RD, &keg->uk_ppera, 0, 2667 "pages per-slab allocation"); 2668 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2669 "ipers", CTLFLAG_RD, &keg->uk_ipers, 0, 2670 "items available per-slab"); 2671 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2672 "align", CTLFLAG_RD, &keg->uk_align, 0, 2673 "item alignment mask"); 2674 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2675 "reserve", CTLFLAG_RD, &keg->uk_reserve, 0, 2676 "number of reserved items"); 2677 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2678 "efficiency", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2679 keg, 0, sysctl_handle_uma_slab_efficiency, "I", 2680 "Slab utilization (100 - internal fragmentation %)"); 2681 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(oid), 2682 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2683 for (i = 0; i < domains; i++) { 2684 dom = &keg->uk_domain[i]; 2685 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2686 OID_AUTO, VM_DOMAIN(i)->vmd_name, 2687 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2688 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2689 "pages", CTLFLAG_RD, &dom->ud_pages, 0, 2690 "Total pages currently allocated from VM"); 2691 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2692 "free_items", CTLFLAG_RD, &dom->ud_free_items, 0, 2693 "items free in the slab layer"); 2694 } 2695 } else 2696 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2697 "name", CTLFLAG_RD, nokeg, "Keg name"); 2698 2699 /* 2700 * Information about zone limits. 2701 */ 2702 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2703 "limit", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2704 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2705 "items", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2706 zone, 0, sysctl_handle_uma_zone_items, "QU", 2707 "Current number of allocated items if limit is set"); 2708 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2709 "max_items", CTLFLAG_RD, &zone->uz_max_items, 0, 2710 "Maximum number of allocated and cached items"); 2711 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2712 "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0, 2713 "Number of threads sleeping at limit"); 2714 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2715 "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0, 2716 "Total zone limit sleeps"); 2717 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2718 "bucket_max", CTLFLAG_RD, &zone->uz_bucket_max, 0, 2719 "Maximum number of items in each domain's bucket cache"); 2720 2721 /* 2722 * Per-domain zone information. 2723 */ 2724 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), 2725 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2726 for (i = 0; i < domains; i++) { 2727 zdom = ZDOM_GET(zone, i); 2728 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2729 OID_AUTO, VM_DOMAIN(i)->vmd_name, 2730 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2731 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2732 "nitems", CTLFLAG_RD, &zdom->uzd_nitems, 2733 "number of items in this domain"); 2734 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2735 "imax", CTLFLAG_RD, &zdom->uzd_imax, 2736 "maximum item count in this period"); 2737 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2738 "imin", CTLFLAG_RD, &zdom->uzd_imin, 2739 "minimum item count in this period"); 2740 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2741 "bimin", CTLFLAG_RD, &zdom->uzd_bimin, 2742 "Minimum item count in this batch"); 2743 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2744 "wss", CTLFLAG_RD, &zdom->uzd_wss, 2745 "Working set size"); 2746 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2747 "limin", CTLFLAG_RD, &zdom->uzd_limin, 2748 "Long time minimum item count"); 2749 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2750 "timin", CTLFLAG_RD, &zdom->uzd_timin, 0, 2751 "Time since zero long time minimum item count"); 2752 } 2753 2754 /* 2755 * General statistics. 2756 */ 2757 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2758 "stats", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2759 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2760 "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2761 zone, 1, sysctl_handle_uma_zone_cur, "I", 2762 "Current number of allocated items"); 2763 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2764 "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2765 zone, 0, sysctl_handle_uma_zone_allocs, "QU", 2766 "Total allocation calls"); 2767 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2768 "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2769 zone, 0, sysctl_handle_uma_zone_frees, "QU", 2770 "Total free calls"); 2771 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2772 "fails", CTLFLAG_RD, &zone->uz_fails, 2773 "Number of allocation failures"); 2774 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2775 "xdomain", CTLFLAG_RD, &zone->uz_xdomain, 2776 "Free calls from the wrong domain"); 2777 } 2778 2779 struct uma_zone_count { 2780 const char *name; 2781 int count; 2782 }; 2783 2784 static void 2785 zone_count(uma_zone_t zone, void *arg) 2786 { 2787 struct uma_zone_count *cnt; 2788 2789 cnt = arg; 2790 /* 2791 * Some zones are rapidly created with identical names and 2792 * destroyed out of order. This can lead to gaps in the count. 2793 * Use one greater than the maximum observed for this name. 2794 */ 2795 if (strcmp(zone->uz_name, cnt->name) == 0) 2796 cnt->count = MAX(cnt->count, 2797 zone->uz_namecnt + 1); 2798 } 2799 2800 static void 2801 zone_update_caches(uma_zone_t zone) 2802 { 2803 int i; 2804 2805 for (i = 0; i <= mp_maxid; i++) { 2806 cache_set_uz_size(&zone->uz_cpu[i], zone->uz_size); 2807 cache_set_uz_flags(&zone->uz_cpu[i], zone->uz_flags); 2808 } 2809 } 2810 2811 /* 2812 * Zone header ctor. This initializes all fields, locks, etc. 2813 * 2814 * Arguments/Returns follow uma_ctor specifications 2815 * udata Actually uma_zctor_args 2816 */ 2817 static int 2818 zone_ctor(void *mem, int size, void *udata, int flags) 2819 { 2820 struct uma_zone_count cnt; 2821 struct uma_zctor_args *arg = udata; 2822 uma_zone_domain_t zdom; 2823 uma_zone_t zone = mem; 2824 uma_zone_t z; 2825 uma_keg_t keg; 2826 int i; 2827 2828 bzero(zone, size); 2829 zone->uz_name = arg->name; 2830 zone->uz_ctor = arg->ctor; 2831 zone->uz_dtor = arg->dtor; 2832 zone->uz_init = NULL; 2833 zone->uz_fini = NULL; 2834 zone->uz_sleeps = 0; 2835 zone->uz_bucket_size = 0; 2836 zone->uz_bucket_size_min = 0; 2837 zone->uz_bucket_size_max = BUCKET_MAX; 2838 zone->uz_flags = (arg->flags & UMA_ZONE_SMR); 2839 zone->uz_warning = NULL; 2840 /* The domain structures follow the cpu structures. */ 2841 zone->uz_bucket_max = ULONG_MAX; 2842 timevalclear(&zone->uz_ratecheck); 2843 2844 /* Count the number of duplicate names. */ 2845 cnt.name = arg->name; 2846 cnt.count = 0; 2847 zone_foreach(zone_count, &cnt); 2848 zone->uz_namecnt = cnt.count; 2849 ZONE_CROSS_LOCK_INIT(zone); 2850 2851 for (i = 0; i < vm_ndomains; i++) { 2852 zdom = ZDOM_GET(zone, i); 2853 ZDOM_LOCK_INIT(zone, zdom, (arg->flags & UMA_ZONE_MTXCLASS)); 2854 STAILQ_INIT(&zdom->uzd_buckets); 2855 } 2856 2857 #if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN) 2858 if (arg->uminit == trash_init && arg->fini == trash_fini) 2859 zone->uz_flags |= UMA_ZFLAG_TRASH | UMA_ZFLAG_CTORDTOR; 2860 #elif defined(KASAN) 2861 if ((arg->flags & (UMA_ZONE_NOFREE | UMA_ZFLAG_CACHE)) != 0) 2862 arg->flags |= UMA_ZONE_NOKASAN; 2863 #endif 2864 2865 /* 2866 * This is a pure cache zone, no kegs. 2867 */ 2868 if (arg->import) { 2869 KASSERT((arg->flags & UMA_ZFLAG_CACHE) != 0, 2870 ("zone_ctor: Import specified for non-cache zone.")); 2871 zone->uz_flags = arg->flags; 2872 zone->uz_size = arg->size; 2873 zone->uz_import = arg->import; 2874 zone->uz_release = arg->release; 2875 zone->uz_arg = arg->arg; 2876 #ifdef NUMA 2877 /* 2878 * Cache zones are round-robin unless a policy is 2879 * specified because they may have incompatible 2880 * constraints. 2881 */ 2882 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2883 zone->uz_flags |= UMA_ZONE_ROUNDROBIN; 2884 #endif 2885 rw_wlock(&uma_rwlock); 2886 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 2887 rw_wunlock(&uma_rwlock); 2888 goto out; 2889 } 2890 2891 /* 2892 * Use the regular zone/keg/slab allocator. 2893 */ 2894 zone->uz_import = zone_import; 2895 zone->uz_release = zone_release; 2896 zone->uz_arg = zone; 2897 keg = arg->keg; 2898 2899 if (arg->flags & UMA_ZONE_SECONDARY) { 2900 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 2901 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 2902 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 2903 zone->uz_init = arg->uminit; 2904 zone->uz_fini = arg->fini; 2905 zone->uz_flags |= UMA_ZONE_SECONDARY; 2906 rw_wlock(&uma_rwlock); 2907 ZONE_LOCK(zone); 2908 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 2909 if (LIST_NEXT(z, uz_link) == NULL) { 2910 LIST_INSERT_AFTER(z, zone, uz_link); 2911 break; 2912 } 2913 } 2914 ZONE_UNLOCK(zone); 2915 rw_wunlock(&uma_rwlock); 2916 } else if (keg == NULL) { 2917 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 2918 arg->align, arg->flags)) == NULL) 2919 return (ENOMEM); 2920 } else { 2921 struct uma_kctor_args karg; 2922 int error; 2923 2924 /* We should only be here from uma_startup() */ 2925 karg.size = arg->size; 2926 karg.uminit = arg->uminit; 2927 karg.fini = arg->fini; 2928 karg.align = arg->align; 2929 karg.flags = (arg->flags & ~UMA_ZONE_SMR); 2930 karg.zone = zone; 2931 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 2932 flags); 2933 if (error) 2934 return (error); 2935 } 2936 2937 /* Inherit properties from the keg. */ 2938 zone->uz_keg = keg; 2939 zone->uz_size = keg->uk_size; 2940 zone->uz_flags |= (keg->uk_flags & 2941 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 2942 2943 out: 2944 if (booted >= BOOT_PCPU) { 2945 zone_alloc_counters(zone, NULL); 2946 if (booted >= BOOT_RUNNING) 2947 zone_alloc_sysctl(zone, NULL); 2948 } else { 2949 zone->uz_allocs = EARLY_COUNTER; 2950 zone->uz_frees = EARLY_COUNTER; 2951 zone->uz_fails = EARLY_COUNTER; 2952 } 2953 2954 /* Caller requests a private SMR context. */ 2955 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 2956 zone->uz_smr = smr_create(zone->uz_name, 0, 0); 2957 2958 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != 2959 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), 2960 ("Invalid zone flag combination")); 2961 if (arg->flags & UMA_ZFLAG_INTERNAL) 2962 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 2963 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) 2964 zone->uz_bucket_size = BUCKET_MAX; 2965 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) 2966 zone->uz_bucket_size = 0; 2967 else 2968 zone->uz_bucket_size = bucket_select(zone->uz_size); 2969 zone->uz_bucket_size_min = zone->uz_bucket_size; 2970 if (zone->uz_dtor != NULL || zone->uz_ctor != NULL) 2971 zone->uz_flags |= UMA_ZFLAG_CTORDTOR; 2972 zone_update_caches(zone); 2973 2974 return (0); 2975 } 2976 2977 /* 2978 * Keg header dtor. This frees all data, destroys locks, frees the hash 2979 * table and removes the keg from the global list. 2980 * 2981 * Arguments/Returns follow uma_dtor specifications 2982 * udata unused 2983 */ 2984 static void 2985 keg_dtor(void *arg, int size, void *udata) 2986 { 2987 uma_keg_t keg; 2988 uint32_t free, pages; 2989 int i; 2990 2991 keg = (uma_keg_t)arg; 2992 free = pages = 0; 2993 for (i = 0; i < vm_ndomains; i++) { 2994 free += keg->uk_domain[i].ud_free_items; 2995 pages += keg->uk_domain[i].ud_pages; 2996 KEG_LOCK_FINI(keg, i); 2997 } 2998 if (pages != 0) 2999 printf("Freed UMA keg (%s) was not empty (%u items). " 3000 " Lost %u pages of memory.\n", 3001 keg->uk_name ? keg->uk_name : "", 3002 pages / keg->uk_ppera * keg->uk_ipers - free, pages); 3003 3004 hash_free(&keg->uk_hash); 3005 } 3006 3007 /* 3008 * Zone header dtor. 3009 * 3010 * Arguments/Returns follow uma_dtor specifications 3011 * udata unused 3012 */ 3013 static void 3014 zone_dtor(void *arg, int size, void *udata) 3015 { 3016 uma_zone_t zone; 3017 uma_keg_t keg; 3018 int i; 3019 3020 zone = (uma_zone_t)arg; 3021 3022 sysctl_remove_oid(zone->uz_oid, 1, 1); 3023 3024 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 3025 cache_drain(zone); 3026 3027 rw_wlock(&uma_rwlock); 3028 LIST_REMOVE(zone, uz_link); 3029 rw_wunlock(&uma_rwlock); 3030 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { 3031 keg = zone->uz_keg; 3032 keg->uk_reserve = 0; 3033 } 3034 zone_reclaim(zone, UMA_ANYDOMAIN, M_WAITOK, true); 3035 3036 /* 3037 * We only destroy kegs from non secondary/non cache zones. 3038 */ 3039 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { 3040 keg = zone->uz_keg; 3041 rw_wlock(&uma_rwlock); 3042 LIST_REMOVE(keg, uk_link); 3043 rw_wunlock(&uma_rwlock); 3044 zone_free_item(kegs, keg, NULL, SKIP_NONE); 3045 } 3046 counter_u64_free(zone->uz_allocs); 3047 counter_u64_free(zone->uz_frees); 3048 counter_u64_free(zone->uz_fails); 3049 counter_u64_free(zone->uz_xdomain); 3050 free(zone->uz_ctlname, M_UMA); 3051 for (i = 0; i < vm_ndomains; i++) 3052 ZDOM_LOCK_FINI(ZDOM_GET(zone, i)); 3053 ZONE_CROSS_LOCK_FINI(zone); 3054 } 3055 3056 static void 3057 zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *arg), void *arg) 3058 { 3059 uma_keg_t keg; 3060 uma_zone_t zone; 3061 3062 LIST_FOREACH(keg, &uma_kegs, uk_link) { 3063 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 3064 zfunc(zone, arg); 3065 } 3066 LIST_FOREACH(zone, &uma_cachezones, uz_link) 3067 zfunc(zone, arg); 3068 } 3069 3070 /* 3071 * Traverses every zone in the system and calls a callback 3072 * 3073 * Arguments: 3074 * zfunc A pointer to a function which accepts a zone 3075 * as an argument. 3076 * 3077 * Returns: 3078 * Nothing 3079 */ 3080 static void 3081 zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg) 3082 { 3083 3084 rw_rlock(&uma_rwlock); 3085 zone_foreach_unlocked(zfunc, arg); 3086 rw_runlock(&uma_rwlock); 3087 } 3088 3089 /* 3090 * Initialize the kernel memory allocator. This is done after pages can be 3091 * allocated but before general KVA is available. 3092 */ 3093 void 3094 uma_startup1(vm_offset_t virtual_avail) 3095 { 3096 struct uma_zctor_args args; 3097 size_t ksize, zsize, size; 3098 uma_keg_t primarykeg; 3099 uintptr_t m; 3100 int domain; 3101 uint8_t pflag; 3102 3103 bootstart = bootmem = virtual_avail; 3104 3105 rw_init(&uma_rwlock, "UMA lock"); 3106 sx_init(&uma_reclaim_lock, "umareclaim"); 3107 3108 ksize = sizeof(struct uma_keg) + 3109 (sizeof(struct uma_domain) * vm_ndomains); 3110 ksize = roundup(ksize, UMA_SUPER_ALIGN); 3111 zsize = sizeof(struct uma_zone) + 3112 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 3113 (sizeof(struct uma_zone_domain) * vm_ndomains); 3114 zsize = roundup(zsize, UMA_SUPER_ALIGN); 3115 3116 /* Allocate the zone of zones, zone of kegs, and zone of zones keg. */ 3117 size = (zsize * 2) + ksize; 3118 for (domain = 0; domain < vm_ndomains; domain++) { 3119 m = (uintptr_t)startup_alloc(NULL, size, domain, &pflag, 3120 M_NOWAIT | M_ZERO); 3121 if (m != 0) 3122 break; 3123 } 3124 zones = (uma_zone_t)m; 3125 m += zsize; 3126 kegs = (uma_zone_t)m; 3127 m += zsize; 3128 primarykeg = (uma_keg_t)m; 3129 3130 /* "manually" create the initial zone */ 3131 memset(&args, 0, sizeof(args)); 3132 args.name = "UMA Kegs"; 3133 args.size = ksize; 3134 args.ctor = keg_ctor; 3135 args.dtor = keg_dtor; 3136 args.uminit = zero_init; 3137 args.fini = NULL; 3138 args.keg = primarykeg; 3139 args.align = UMA_SUPER_ALIGN - 1; 3140 args.flags = UMA_ZFLAG_INTERNAL; 3141 zone_ctor(kegs, zsize, &args, M_WAITOK); 3142 3143 args.name = "UMA Zones"; 3144 args.size = zsize; 3145 args.ctor = zone_ctor; 3146 args.dtor = zone_dtor; 3147 args.uminit = zero_init; 3148 args.fini = NULL; 3149 args.keg = NULL; 3150 args.align = UMA_SUPER_ALIGN - 1; 3151 args.flags = UMA_ZFLAG_INTERNAL; 3152 zone_ctor(zones, zsize, &args, M_WAITOK); 3153 3154 /* Now make zones for slab headers */ 3155 slabzones[0] = uma_zcreate("UMA Slabs 0", SLABZONE0_SIZE, 3156 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 3157 slabzones[1] = uma_zcreate("UMA Slabs 1", SLABZONE1_SIZE, 3158 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 3159 3160 hashzone = uma_zcreate("UMA Hash", 3161 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 3162 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 3163 3164 bucket_init(); 3165 smr_init(); 3166 } 3167 3168 #ifndef UMA_MD_SMALL_ALLOC 3169 extern void vm_radix_reserve_kva(void); 3170 #endif 3171 3172 /* 3173 * Advertise the availability of normal kva allocations and switch to 3174 * the default back-end allocator. Marks the KVA we consumed on startup 3175 * as used in the map. 3176 */ 3177 void 3178 uma_startup2(void) 3179 { 3180 3181 if (bootstart != bootmem) { 3182 vm_map_lock(kernel_map); 3183 (void)vm_map_insert(kernel_map, NULL, 0, bootstart, bootmem, 3184 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT); 3185 vm_map_unlock(kernel_map); 3186 } 3187 3188 #ifndef UMA_MD_SMALL_ALLOC 3189 /* Set up radix zone to use noobj_alloc. */ 3190 vm_radix_reserve_kva(); 3191 #endif 3192 3193 booted = BOOT_KVA; 3194 zone_foreach_unlocked(zone_kva_available, NULL); 3195 bucket_enable(); 3196 } 3197 3198 /* 3199 * Allocate counters as early as possible so that boot-time allocations are 3200 * accounted more precisely. 3201 */ 3202 static void 3203 uma_startup_pcpu(void *arg __unused) 3204 { 3205 3206 zone_foreach_unlocked(zone_alloc_counters, NULL); 3207 booted = BOOT_PCPU; 3208 } 3209 SYSINIT(uma_startup_pcpu, SI_SUB_COUNTER, SI_ORDER_ANY, uma_startup_pcpu, NULL); 3210 3211 /* 3212 * Finish our initialization steps. 3213 */ 3214 static void 3215 uma_startup3(void *arg __unused) 3216 { 3217 3218 #ifdef INVARIANTS 3219 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor); 3220 uma_dbg_cnt = counter_u64_alloc(M_WAITOK); 3221 uma_skip_cnt = counter_u64_alloc(M_WAITOK); 3222 #endif 3223 zone_foreach_unlocked(zone_alloc_sysctl, NULL); 3224 callout_init(&uma_callout, 1); 3225 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 3226 booted = BOOT_RUNNING; 3227 3228 EVENTHANDLER_REGISTER(shutdown_post_sync, uma_shutdown, NULL, 3229 EVENTHANDLER_PRI_FIRST); 3230 } 3231 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 3232 3233 static void 3234 uma_shutdown(void) 3235 { 3236 3237 booted = BOOT_SHUTDOWN; 3238 } 3239 3240 static uma_keg_t 3241 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 3242 int align, uint32_t flags) 3243 { 3244 struct uma_kctor_args args; 3245 3246 args.size = size; 3247 args.uminit = uminit; 3248 args.fini = fini; 3249 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 3250 args.flags = flags; 3251 args.zone = zone; 3252 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 3253 } 3254 3255 /* Public functions */ 3256 /* See uma.h */ 3257 void 3258 uma_set_align(int align) 3259 { 3260 3261 if (align != UMA_ALIGN_CACHE) 3262 uma_align_cache = align; 3263 } 3264 3265 /* See uma.h */ 3266 uma_zone_t 3267 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 3268 uma_init uminit, uma_fini fini, int align, uint32_t flags) 3269 3270 { 3271 struct uma_zctor_args args; 3272 uma_zone_t res; 3273 3274 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 3275 align, name)); 3276 3277 /* This stuff is essential for the zone ctor */ 3278 memset(&args, 0, sizeof(args)); 3279 args.name = name; 3280 args.size = size; 3281 args.ctor = ctor; 3282 args.dtor = dtor; 3283 args.uminit = uminit; 3284 args.fini = fini; 3285 #if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN) 3286 /* 3287 * Inject procedures which check for memory use after free if we are 3288 * allowed to scramble the memory while it is not allocated. This 3289 * requires that: UMA is actually able to access the memory, no init 3290 * or fini procedures, no dependency on the initial value of the 3291 * memory, and no (legitimate) use of the memory after free. Note, 3292 * the ctor and dtor do not need to be empty. 3293 */ 3294 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOTOUCH | 3295 UMA_ZONE_NOFREE))) && uminit == NULL && fini == NULL) { 3296 args.uminit = trash_init; 3297 args.fini = trash_fini; 3298 } 3299 #endif 3300 args.align = align; 3301 args.flags = flags; 3302 args.keg = NULL; 3303 3304 sx_xlock(&uma_reclaim_lock); 3305 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 3306 sx_xunlock(&uma_reclaim_lock); 3307 3308 return (res); 3309 } 3310 3311 /* See uma.h */ 3312 uma_zone_t 3313 uma_zsecond_create(const char *name, uma_ctor ctor, uma_dtor dtor, 3314 uma_init zinit, uma_fini zfini, uma_zone_t primary) 3315 { 3316 struct uma_zctor_args args; 3317 uma_keg_t keg; 3318 uma_zone_t res; 3319 3320 keg = primary->uz_keg; 3321 memset(&args, 0, sizeof(args)); 3322 args.name = name; 3323 args.size = keg->uk_size; 3324 args.ctor = ctor; 3325 args.dtor = dtor; 3326 args.uminit = zinit; 3327 args.fini = zfini; 3328 args.align = keg->uk_align; 3329 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 3330 args.keg = keg; 3331 3332 sx_xlock(&uma_reclaim_lock); 3333 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 3334 sx_xunlock(&uma_reclaim_lock); 3335 3336 return (res); 3337 } 3338 3339 /* See uma.h */ 3340 uma_zone_t 3341 uma_zcache_create(const char *name, int size, uma_ctor ctor, uma_dtor dtor, 3342 uma_init zinit, uma_fini zfini, uma_import zimport, uma_release zrelease, 3343 void *arg, int flags) 3344 { 3345 struct uma_zctor_args args; 3346 3347 memset(&args, 0, sizeof(args)); 3348 args.name = name; 3349 args.size = size; 3350 args.ctor = ctor; 3351 args.dtor = dtor; 3352 args.uminit = zinit; 3353 args.fini = zfini; 3354 args.import = zimport; 3355 args.release = zrelease; 3356 args.arg = arg; 3357 args.align = 0; 3358 args.flags = flags | UMA_ZFLAG_CACHE; 3359 3360 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 3361 } 3362 3363 /* See uma.h */ 3364 void 3365 uma_zdestroy(uma_zone_t zone) 3366 { 3367 3368 /* 3369 * Large slabs are expensive to reclaim, so don't bother doing 3370 * unnecessary work if we're shutting down. 3371 */ 3372 if (booted == BOOT_SHUTDOWN && 3373 zone->uz_fini == NULL && zone->uz_release == zone_release) 3374 return; 3375 sx_xlock(&uma_reclaim_lock); 3376 zone_free_item(zones, zone, NULL, SKIP_NONE); 3377 sx_xunlock(&uma_reclaim_lock); 3378 } 3379 3380 void 3381 uma_zwait(uma_zone_t zone) 3382 { 3383 3384 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 3385 uma_zfree_smr(zone, uma_zalloc_smr(zone, M_WAITOK)); 3386 else if ((zone->uz_flags & UMA_ZONE_PCPU) != 0) 3387 uma_zfree_pcpu(zone, uma_zalloc_pcpu(zone, M_WAITOK)); 3388 else 3389 uma_zfree(zone, uma_zalloc(zone, M_WAITOK)); 3390 } 3391 3392 void * 3393 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags) 3394 { 3395 void *item, *pcpu_item; 3396 #ifdef SMP 3397 int i; 3398 3399 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 3400 #endif 3401 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO); 3402 if (item == NULL) 3403 return (NULL); 3404 pcpu_item = zpcpu_base_to_offset(item); 3405 if (flags & M_ZERO) { 3406 #ifdef SMP 3407 for (i = 0; i <= mp_maxid; i++) 3408 bzero(zpcpu_get_cpu(pcpu_item, i), zone->uz_size); 3409 #else 3410 bzero(item, zone->uz_size); 3411 #endif 3412 } 3413 return (pcpu_item); 3414 } 3415 3416 /* 3417 * A stub while both regular and pcpu cases are identical. 3418 */ 3419 void 3420 uma_zfree_pcpu_arg(uma_zone_t zone, void *pcpu_item, void *udata) 3421 { 3422 void *item; 3423 3424 #ifdef SMP 3425 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 3426 #endif 3427 3428 /* uma_zfree_pcu_*(..., NULL) does nothing, to match free(9). */ 3429 if (pcpu_item == NULL) 3430 return; 3431 3432 item = zpcpu_offset_to_base(pcpu_item); 3433 uma_zfree_arg(zone, item, udata); 3434 } 3435 3436 static inline void * 3437 item_ctor(uma_zone_t zone, int uz_flags, int size, void *udata, int flags, 3438 void *item) 3439 { 3440 #ifdef INVARIANTS 3441 bool skipdbg; 3442 #endif 3443 3444 kasan_mark_item_valid(zone, item); 3445 kmsan_mark_item_uninitialized(zone, item); 3446 3447 #ifdef INVARIANTS 3448 skipdbg = uma_dbg_zskip(zone, item); 3449 if (!skipdbg && (uz_flags & UMA_ZFLAG_TRASH) != 0 && 3450 zone->uz_ctor != trash_ctor) 3451 trash_ctor(item, size, udata, flags); 3452 #endif 3453 3454 /* Check flags before loading ctor pointer. */ 3455 if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0) && 3456 __predict_false(zone->uz_ctor != NULL) && 3457 zone->uz_ctor(item, size, udata, flags) != 0) { 3458 counter_u64_add(zone->uz_fails, 1); 3459 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT); 3460 return (NULL); 3461 } 3462 #ifdef INVARIANTS 3463 if (!skipdbg) 3464 uma_dbg_alloc(zone, NULL, item); 3465 #endif 3466 if (__predict_false(flags & M_ZERO)) 3467 return (memset(item, 0, size)); 3468 3469 return (item); 3470 } 3471 3472 static inline void 3473 item_dtor(uma_zone_t zone, void *item, int size, void *udata, 3474 enum zfreeskip skip) 3475 { 3476 #ifdef INVARIANTS 3477 bool skipdbg; 3478 3479 skipdbg = uma_dbg_zskip(zone, item); 3480 if (skip == SKIP_NONE && !skipdbg) { 3481 if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0) 3482 uma_dbg_free(zone, udata, item); 3483 else 3484 uma_dbg_free(zone, NULL, item); 3485 } 3486 #endif 3487 if (__predict_true(skip < SKIP_DTOR)) { 3488 if (zone->uz_dtor != NULL) 3489 zone->uz_dtor(item, size, udata); 3490 #ifdef INVARIANTS 3491 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 3492 zone->uz_dtor != trash_dtor) 3493 trash_dtor(item, size, udata); 3494 #endif 3495 } 3496 kasan_mark_item_invalid(zone, item); 3497 } 3498 3499 #ifdef NUMA 3500 static int 3501 item_domain(void *item) 3502 { 3503 int domain; 3504 3505 domain = vm_phys_domain(vtophys(item)); 3506 KASSERT(domain >= 0 && domain < vm_ndomains, 3507 ("%s: unknown domain for item %p", __func__, item)); 3508 return (domain); 3509 } 3510 #endif 3511 3512 #if defined(INVARIANTS) || defined(DEBUG_MEMGUARD) || defined(WITNESS) 3513 #define UMA_ZALLOC_DEBUG 3514 static int 3515 uma_zalloc_debug(uma_zone_t zone, void **itemp, void *udata, int flags) 3516 { 3517 int error; 3518 3519 error = 0; 3520 #ifdef WITNESS 3521 if (flags & M_WAITOK) { 3522 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3523 "uma_zalloc_debug: zone \"%s\"", zone->uz_name); 3524 } 3525 #endif 3526 3527 #ifdef INVARIANTS 3528 KASSERT((flags & M_EXEC) == 0, 3529 ("uma_zalloc_debug: called with M_EXEC")); 3530 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3531 ("uma_zalloc_debug: called within spinlock or critical section")); 3532 KASSERT((zone->uz_flags & UMA_ZONE_PCPU) == 0 || (flags & M_ZERO) == 0, 3533 ("uma_zalloc_debug: allocating from a pcpu zone with M_ZERO")); 3534 #endif 3535 3536 #ifdef DEBUG_MEMGUARD 3537 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && memguard_cmp_zone(zone)) { 3538 void *item; 3539 item = memguard_alloc(zone->uz_size, flags); 3540 if (item != NULL) { 3541 error = EJUSTRETURN; 3542 if (zone->uz_init != NULL && 3543 zone->uz_init(item, zone->uz_size, flags) != 0) { 3544 *itemp = NULL; 3545 return (error); 3546 } 3547 if (zone->uz_ctor != NULL && 3548 zone->uz_ctor(item, zone->uz_size, udata, 3549 flags) != 0) { 3550 counter_u64_add(zone->uz_fails, 1); 3551 zone->uz_fini(item, zone->uz_size); 3552 *itemp = NULL; 3553 return (error); 3554 } 3555 *itemp = item; 3556 return (error); 3557 } 3558 /* This is unfortunate but should not be fatal. */ 3559 } 3560 #endif 3561 return (error); 3562 } 3563 3564 static int 3565 uma_zfree_debug(uma_zone_t zone, void *item, void *udata) 3566 { 3567 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3568 ("uma_zfree_debug: called with spinlock or critical section held")); 3569 3570 #ifdef DEBUG_MEMGUARD 3571 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && is_memguard_addr(item)) { 3572 if (zone->uz_dtor != NULL) 3573 zone->uz_dtor(item, zone->uz_size, udata); 3574 if (zone->uz_fini != NULL) 3575 zone->uz_fini(item, zone->uz_size); 3576 memguard_free(item); 3577 return (EJUSTRETURN); 3578 } 3579 #endif 3580 return (0); 3581 } 3582 #endif 3583 3584 static inline void * 3585 cache_alloc_item(uma_zone_t zone, uma_cache_t cache, uma_cache_bucket_t bucket, 3586 void *udata, int flags) 3587 { 3588 void *item; 3589 int size, uz_flags; 3590 3591 item = cache_bucket_pop(cache, bucket); 3592 size = cache_uz_size(cache); 3593 uz_flags = cache_uz_flags(cache); 3594 critical_exit(); 3595 return (item_ctor(zone, uz_flags, size, udata, flags, item)); 3596 } 3597 3598 static __noinline void * 3599 cache_alloc_retry(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3600 { 3601 uma_cache_bucket_t bucket; 3602 int domain; 3603 3604 while (cache_alloc(zone, cache, udata, flags)) { 3605 cache = &zone->uz_cpu[curcpu]; 3606 bucket = &cache->uc_allocbucket; 3607 if (__predict_false(bucket->ucb_cnt == 0)) 3608 continue; 3609 return (cache_alloc_item(zone, cache, bucket, udata, flags)); 3610 } 3611 critical_exit(); 3612 3613 /* 3614 * We can not get a bucket so try to return a single item. 3615 */ 3616 if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH) 3617 domain = PCPU_GET(domain); 3618 else 3619 domain = UMA_ANYDOMAIN; 3620 return (zone_alloc_item(zone, udata, domain, flags)); 3621 } 3622 3623 /* See uma.h */ 3624 void * 3625 uma_zalloc_smr(uma_zone_t zone, int flags) 3626 { 3627 uma_cache_bucket_t bucket; 3628 uma_cache_t cache; 3629 3630 #ifdef UMA_ZALLOC_DEBUG 3631 void *item; 3632 3633 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 3634 ("uma_zalloc_arg: called with non-SMR zone.")); 3635 if (uma_zalloc_debug(zone, &item, NULL, flags) == EJUSTRETURN) 3636 return (item); 3637 #endif 3638 3639 critical_enter(); 3640 cache = &zone->uz_cpu[curcpu]; 3641 bucket = &cache->uc_allocbucket; 3642 if (__predict_false(bucket->ucb_cnt == 0)) 3643 return (cache_alloc_retry(zone, cache, NULL, flags)); 3644 return (cache_alloc_item(zone, cache, bucket, NULL, flags)); 3645 } 3646 3647 /* See uma.h */ 3648 void * 3649 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 3650 { 3651 uma_cache_bucket_t bucket; 3652 uma_cache_t cache; 3653 3654 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3655 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3656 3657 /* This is the fast path allocation */ 3658 CTR3(KTR_UMA, "uma_zalloc_arg zone %s(%p) flags %d", zone->uz_name, 3659 zone, flags); 3660 3661 #ifdef UMA_ZALLOC_DEBUG 3662 void *item; 3663 3664 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 3665 ("uma_zalloc_arg: called with SMR zone.")); 3666 if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN) 3667 return (item); 3668 #endif 3669 3670 /* 3671 * If possible, allocate from the per-CPU cache. There are two 3672 * requirements for safe access to the per-CPU cache: (1) the thread 3673 * accessing the cache must not be preempted or yield during access, 3674 * and (2) the thread must not migrate CPUs without switching which 3675 * cache it accesses. We rely on a critical section to prevent 3676 * preemption and migration. We release the critical section in 3677 * order to acquire the zone mutex if we are unable to allocate from 3678 * the current cache; when we re-acquire the critical section, we 3679 * must detect and handle migration if it has occurred. 3680 */ 3681 critical_enter(); 3682 cache = &zone->uz_cpu[curcpu]; 3683 bucket = &cache->uc_allocbucket; 3684 if (__predict_false(bucket->ucb_cnt == 0)) 3685 return (cache_alloc_retry(zone, cache, udata, flags)); 3686 return (cache_alloc_item(zone, cache, bucket, udata, flags)); 3687 } 3688 3689 /* 3690 * Replenish an alloc bucket and possibly restore an old one. Called in 3691 * a critical section. Returns in a critical section. 3692 * 3693 * A false return value indicates an allocation failure. 3694 * A true return value indicates success and the caller should retry. 3695 */ 3696 static __noinline bool 3697 cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3698 { 3699 uma_bucket_t bucket; 3700 int curdomain, domain; 3701 bool new; 3702 3703 CRITICAL_ASSERT(curthread); 3704 3705 /* 3706 * If we have run out of items in our alloc bucket see 3707 * if we can switch with the free bucket. 3708 * 3709 * SMR Zones can't re-use the free bucket until the sequence has 3710 * expired. 3711 */ 3712 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) == 0 && 3713 cache->uc_freebucket.ucb_cnt != 0) { 3714 cache_bucket_swap(&cache->uc_freebucket, 3715 &cache->uc_allocbucket); 3716 return (true); 3717 } 3718 3719 /* 3720 * Discard any empty allocation bucket while we hold no locks. 3721 */ 3722 bucket = cache_bucket_unload_alloc(cache); 3723 critical_exit(); 3724 3725 if (bucket != NULL) { 3726 KASSERT(bucket->ub_cnt == 0, 3727 ("cache_alloc: Entered with non-empty alloc bucket.")); 3728 bucket_free(zone, bucket, udata); 3729 } 3730 3731 /* 3732 * Attempt to retrieve the item from the per-CPU cache has failed, so 3733 * we must go back to the zone. This requires the zdom lock, so we 3734 * must drop the critical section, then re-acquire it when we go back 3735 * to the cache. Since the critical section is released, we may be 3736 * preempted or migrate. As such, make sure not to maintain any 3737 * thread-local state specific to the cache from prior to releasing 3738 * the critical section. 3739 */ 3740 domain = PCPU_GET(domain); 3741 if ((cache_uz_flags(cache) & UMA_ZONE_ROUNDROBIN) != 0 || 3742 VM_DOMAIN_EMPTY(domain)) 3743 domain = zone_domain_highest(zone, domain); 3744 bucket = cache_fetch_bucket(zone, cache, domain); 3745 if (bucket == NULL && zone->uz_bucket_size != 0 && !bucketdisable) { 3746 bucket = zone_alloc_bucket(zone, udata, domain, flags); 3747 new = true; 3748 } else { 3749 new = false; 3750 } 3751 3752 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 3753 zone->uz_name, zone, bucket); 3754 if (bucket == NULL) { 3755 critical_enter(); 3756 return (false); 3757 } 3758 3759 /* 3760 * See if we lost the race or were migrated. Cache the 3761 * initialized bucket to make this less likely or claim 3762 * the memory directly. 3763 */ 3764 critical_enter(); 3765 cache = &zone->uz_cpu[curcpu]; 3766 if (cache->uc_allocbucket.ucb_bucket == NULL && 3767 ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) == 0 || 3768 (curdomain = PCPU_GET(domain)) == domain || 3769 VM_DOMAIN_EMPTY(curdomain))) { 3770 if (new) 3771 atomic_add_long(&ZDOM_GET(zone, domain)->uzd_imax, 3772 bucket->ub_cnt); 3773 cache_bucket_load_alloc(cache, bucket); 3774 return (true); 3775 } 3776 3777 /* 3778 * We lost the race, release this bucket and start over. 3779 */ 3780 critical_exit(); 3781 zone_put_bucket(zone, domain, bucket, udata, !new); 3782 critical_enter(); 3783 3784 return (true); 3785 } 3786 3787 void * 3788 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 3789 { 3790 #ifdef NUMA 3791 uma_bucket_t bucket; 3792 uma_zone_domain_t zdom; 3793 void *item; 3794 #endif 3795 3796 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3797 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3798 3799 /* This is the fast path allocation */ 3800 CTR4(KTR_UMA, "uma_zalloc_domain zone %s(%p) domain %d flags %d", 3801 zone->uz_name, zone, domain, flags); 3802 3803 if (flags & M_WAITOK) { 3804 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3805 "uma_zalloc_domain: zone \"%s\"", zone->uz_name); 3806 } 3807 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3808 ("uma_zalloc_domain: called with spinlock or critical section held")); 3809 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 3810 ("uma_zalloc_domain: called with SMR zone.")); 3811 #ifdef NUMA 3812 KASSERT((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0, 3813 ("uma_zalloc_domain: called with non-FIRSTTOUCH zone.")); 3814 3815 if (vm_ndomains == 1) 3816 return (uma_zalloc_arg(zone, udata, flags)); 3817 3818 /* 3819 * Try to allocate from the bucket cache before falling back to the keg. 3820 * We could try harder and attempt to allocate from per-CPU caches or 3821 * the per-domain cross-domain buckets, but the complexity is probably 3822 * not worth it. It is more important that frees of previous 3823 * cross-domain allocations do not blow up the cache. 3824 */ 3825 zdom = zone_domain_lock(zone, domain); 3826 if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) { 3827 item = bucket->ub_bucket[bucket->ub_cnt - 1]; 3828 #ifdef INVARIANTS 3829 bucket->ub_bucket[bucket->ub_cnt - 1] = NULL; 3830 #endif 3831 bucket->ub_cnt--; 3832 zone_put_bucket(zone, domain, bucket, udata, true); 3833 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, 3834 flags, item); 3835 if (item != NULL) { 3836 KASSERT(item_domain(item) == domain, 3837 ("%s: bucket cache item %p from wrong domain", 3838 __func__, item)); 3839 counter_u64_add(zone->uz_allocs, 1); 3840 } 3841 return (item); 3842 } 3843 ZDOM_UNLOCK(zdom); 3844 return (zone_alloc_item(zone, udata, domain, flags)); 3845 #else 3846 return (uma_zalloc_arg(zone, udata, flags)); 3847 #endif 3848 } 3849 3850 /* 3851 * Find a slab with some space. Prefer slabs that are partially used over those 3852 * that are totally full. This helps to reduce fragmentation. 3853 * 3854 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 3855 * only 'domain'. 3856 */ 3857 static uma_slab_t 3858 keg_first_slab(uma_keg_t keg, int domain, bool rr) 3859 { 3860 uma_domain_t dom; 3861 uma_slab_t slab; 3862 int start; 3863 3864 KASSERT(domain >= 0 && domain < vm_ndomains, 3865 ("keg_first_slab: domain %d out of range", domain)); 3866 KEG_LOCK_ASSERT(keg, domain); 3867 3868 slab = NULL; 3869 start = domain; 3870 do { 3871 dom = &keg->uk_domain[domain]; 3872 if ((slab = LIST_FIRST(&dom->ud_part_slab)) != NULL) 3873 return (slab); 3874 if ((slab = LIST_FIRST(&dom->ud_free_slab)) != NULL) { 3875 LIST_REMOVE(slab, us_link); 3876 dom->ud_free_slabs--; 3877 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3878 return (slab); 3879 } 3880 if (rr) 3881 domain = (domain + 1) % vm_ndomains; 3882 } while (domain != start); 3883 3884 return (NULL); 3885 } 3886 3887 /* 3888 * Fetch an existing slab from a free or partial list. Returns with the 3889 * keg domain lock held if a slab was found or unlocked if not. 3890 */ 3891 static uma_slab_t 3892 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags) 3893 { 3894 uma_slab_t slab; 3895 uint32_t reserve; 3896 3897 /* HASH has a single free list. */ 3898 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 3899 domain = 0; 3900 3901 KEG_LOCK(keg, domain); 3902 reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve; 3903 if (keg->uk_domain[domain].ud_free_items <= reserve || 3904 (slab = keg_first_slab(keg, domain, rr)) == NULL) { 3905 KEG_UNLOCK(keg, domain); 3906 return (NULL); 3907 } 3908 return (slab); 3909 } 3910 3911 static uma_slab_t 3912 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags) 3913 { 3914 struct vm_domainset_iter di; 3915 uma_slab_t slab; 3916 int aflags, domain; 3917 bool rr; 3918 3919 restart: 3920 /* 3921 * Use the keg's policy if upper layers haven't already specified a 3922 * domain (as happens with first-touch zones). 3923 * 3924 * To avoid races we run the iterator with the keg lock held, but that 3925 * means that we cannot allow the vm_domainset layer to sleep. Thus, 3926 * clear M_WAITOK and handle low memory conditions locally. 3927 */ 3928 rr = rdomain == UMA_ANYDOMAIN; 3929 if (rr) { 3930 aflags = (flags & ~M_WAITOK) | M_NOWAIT; 3931 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 3932 &aflags); 3933 } else { 3934 aflags = flags; 3935 domain = rdomain; 3936 } 3937 3938 for (;;) { 3939 slab = keg_fetch_free_slab(keg, domain, rr, flags); 3940 if (slab != NULL) 3941 return (slab); 3942 3943 /* 3944 * M_NOVM means don't ask at all! 3945 */ 3946 if (flags & M_NOVM) 3947 break; 3948 3949 slab = keg_alloc_slab(keg, zone, domain, flags, aflags); 3950 if (slab != NULL) 3951 return (slab); 3952 if (!rr && (flags & M_WAITOK) == 0) 3953 break; 3954 if (rr && vm_domainset_iter_policy(&di, &domain) != 0) { 3955 if ((flags & M_WAITOK) != 0) { 3956 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0); 3957 goto restart; 3958 } 3959 break; 3960 } 3961 } 3962 3963 /* 3964 * We might not have been able to get a slab but another cpu 3965 * could have while we were unlocked. Check again before we 3966 * fail. 3967 */ 3968 if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL) 3969 return (slab); 3970 3971 return (NULL); 3972 } 3973 3974 static void * 3975 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 3976 { 3977 uma_domain_t dom; 3978 void *item; 3979 int freei; 3980 3981 KEG_LOCK_ASSERT(keg, slab->us_domain); 3982 3983 dom = &keg->uk_domain[slab->us_domain]; 3984 freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1; 3985 BIT_CLR(keg->uk_ipers, freei, &slab->us_free); 3986 item = slab_item(slab, keg, freei); 3987 slab->us_freecount--; 3988 dom->ud_free_items--; 3989 3990 /* 3991 * Move this slab to the full list. It must be on the partial list, so 3992 * we do not need to update the free slab count. In particular, 3993 * keg_fetch_slab() always returns slabs on the partial list. 3994 */ 3995 if (slab->us_freecount == 0) { 3996 LIST_REMOVE(slab, us_link); 3997 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 3998 } 3999 4000 return (item); 4001 } 4002 4003 static int 4004 zone_import(void *arg, void **bucket, int max, int domain, int flags) 4005 { 4006 uma_domain_t dom; 4007 uma_zone_t zone; 4008 uma_slab_t slab; 4009 uma_keg_t keg; 4010 #ifdef NUMA 4011 int stripe; 4012 #endif 4013 int i; 4014 4015 zone = arg; 4016 slab = NULL; 4017 keg = zone->uz_keg; 4018 /* Try to keep the buckets totally full */ 4019 for (i = 0; i < max; ) { 4020 if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL) 4021 break; 4022 #ifdef NUMA 4023 stripe = howmany(max, vm_ndomains); 4024 #endif 4025 dom = &keg->uk_domain[slab->us_domain]; 4026 do { 4027 bucket[i++] = slab_alloc_item(keg, slab); 4028 if (dom->ud_free_items <= keg->uk_reserve) { 4029 /* 4030 * Avoid depleting the reserve after a 4031 * successful item allocation, even if 4032 * M_USE_RESERVE is specified. 4033 */ 4034 KEG_UNLOCK(keg, slab->us_domain); 4035 goto out; 4036 } 4037 #ifdef NUMA 4038 /* 4039 * If the zone is striped we pick a new slab for every 4040 * N allocations. Eliminating this conditional will 4041 * instead pick a new domain for each bucket rather 4042 * than stripe within each bucket. The current option 4043 * produces more fragmentation and requires more cpu 4044 * time but yields better distribution. 4045 */ 4046 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0 && 4047 vm_ndomains > 1 && --stripe == 0) 4048 break; 4049 #endif 4050 } while (slab->us_freecount != 0 && i < max); 4051 KEG_UNLOCK(keg, slab->us_domain); 4052 4053 /* Don't block if we allocated any successfully. */ 4054 flags &= ~M_WAITOK; 4055 flags |= M_NOWAIT; 4056 } 4057 out: 4058 return i; 4059 } 4060 4061 static int 4062 zone_alloc_limit_hard(uma_zone_t zone, int count, int flags) 4063 { 4064 uint64_t old, new, total, max; 4065 4066 /* 4067 * The hard case. We're going to sleep because there were existing 4068 * sleepers or because we ran out of items. This routine enforces 4069 * fairness by keeping fifo order. 4070 * 4071 * First release our ill gotten gains and make some noise. 4072 */ 4073 for (;;) { 4074 zone_free_limit(zone, count); 4075 zone_log_warning(zone); 4076 zone_maxaction(zone); 4077 if (flags & M_NOWAIT) 4078 return (0); 4079 4080 /* 4081 * We need to allocate an item or set ourself as a sleeper 4082 * while the sleepq lock is held to avoid wakeup races. This 4083 * is essentially a home rolled semaphore. 4084 */ 4085 sleepq_lock(&zone->uz_max_items); 4086 old = zone->uz_items; 4087 do { 4088 MPASS(UZ_ITEMS_SLEEPERS(old) < UZ_ITEMS_SLEEPERS_MAX); 4089 /* Cache the max since we will evaluate twice. */ 4090 max = zone->uz_max_items; 4091 if (UZ_ITEMS_SLEEPERS(old) != 0 || 4092 UZ_ITEMS_COUNT(old) >= max) 4093 new = old + UZ_ITEMS_SLEEPER; 4094 else 4095 new = old + MIN(count, max - old); 4096 } while (atomic_fcmpset_64(&zone->uz_items, &old, new) == 0); 4097 4098 /* We may have successfully allocated under the sleepq lock. */ 4099 if (UZ_ITEMS_SLEEPERS(new) == 0) { 4100 sleepq_release(&zone->uz_max_items); 4101 return (new - old); 4102 } 4103 4104 /* 4105 * This is in a different cacheline from uz_items so that we 4106 * don't constantly invalidate the fastpath cacheline when we 4107 * adjust item counts. This could be limited to toggling on 4108 * transitions. 4109 */ 4110 atomic_add_32(&zone->uz_sleepers, 1); 4111 atomic_add_64(&zone->uz_sleeps, 1); 4112 4113 /* 4114 * We have added ourselves as a sleeper. The sleepq lock 4115 * protects us from wakeup races. Sleep now and then retry. 4116 */ 4117 sleepq_add(&zone->uz_max_items, NULL, "zonelimit", 0, 0); 4118 sleepq_wait(&zone->uz_max_items, PVM); 4119 4120 /* 4121 * After wakeup, remove ourselves as a sleeper and try 4122 * again. We no longer have the sleepq lock for protection. 4123 * 4124 * Subract ourselves as a sleeper while attempting to add 4125 * our count. 4126 */ 4127 atomic_subtract_32(&zone->uz_sleepers, 1); 4128 old = atomic_fetchadd_64(&zone->uz_items, 4129 -(UZ_ITEMS_SLEEPER - count)); 4130 /* We're no longer a sleeper. */ 4131 old -= UZ_ITEMS_SLEEPER; 4132 4133 /* 4134 * If we're still at the limit, restart. Notably do not 4135 * block on other sleepers. Cache the max value to protect 4136 * against changes via sysctl. 4137 */ 4138 total = UZ_ITEMS_COUNT(old); 4139 max = zone->uz_max_items; 4140 if (total >= max) 4141 continue; 4142 /* Truncate if necessary, otherwise wake other sleepers. */ 4143 if (total + count > max) { 4144 zone_free_limit(zone, total + count - max); 4145 count = max - total; 4146 } else if (total + count < max && UZ_ITEMS_SLEEPERS(old) != 0) 4147 wakeup_one(&zone->uz_max_items); 4148 4149 return (count); 4150 } 4151 } 4152 4153 /* 4154 * Allocate 'count' items from our max_items limit. Returns the number 4155 * available. If M_NOWAIT is not specified it will sleep until at least 4156 * one item can be allocated. 4157 */ 4158 static int 4159 zone_alloc_limit(uma_zone_t zone, int count, int flags) 4160 { 4161 uint64_t old; 4162 uint64_t max; 4163 4164 max = zone->uz_max_items; 4165 MPASS(max > 0); 4166 4167 /* 4168 * We expect normal allocations to succeed with a simple 4169 * fetchadd. 4170 */ 4171 old = atomic_fetchadd_64(&zone->uz_items, count); 4172 if (__predict_true(old + count <= max)) 4173 return (count); 4174 4175 /* 4176 * If we had some items and no sleepers just return the 4177 * truncated value. We have to release the excess space 4178 * though because that may wake sleepers who weren't woken 4179 * because we were temporarily over the limit. 4180 */ 4181 if (old < max) { 4182 zone_free_limit(zone, (old + count) - max); 4183 return (max - old); 4184 } 4185 return (zone_alloc_limit_hard(zone, count, flags)); 4186 } 4187 4188 /* 4189 * Free a number of items back to the limit. 4190 */ 4191 static void 4192 zone_free_limit(uma_zone_t zone, int count) 4193 { 4194 uint64_t old; 4195 4196 MPASS(count > 0); 4197 4198 /* 4199 * In the common case we either have no sleepers or 4200 * are still over the limit and can just return. 4201 */ 4202 old = atomic_fetchadd_64(&zone->uz_items, -count); 4203 if (__predict_true(UZ_ITEMS_SLEEPERS(old) == 0 || 4204 UZ_ITEMS_COUNT(old) - count >= zone->uz_max_items)) 4205 return; 4206 4207 /* 4208 * Moderate the rate of wakeups. Sleepers will continue 4209 * to generate wakeups if necessary. 4210 */ 4211 wakeup_one(&zone->uz_max_items); 4212 } 4213 4214 static uma_bucket_t 4215 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags) 4216 { 4217 uma_bucket_t bucket; 4218 int error, maxbucket, cnt; 4219 4220 CTR3(KTR_UMA, "zone_alloc_bucket zone %s(%p) domain %d", zone->uz_name, 4221 zone, domain); 4222 4223 /* Avoid allocs targeting empty domains. */ 4224 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 4225 domain = UMA_ANYDOMAIN; 4226 else if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) 4227 domain = UMA_ANYDOMAIN; 4228 4229 if (zone->uz_max_items > 0) 4230 maxbucket = zone_alloc_limit(zone, zone->uz_bucket_size, 4231 M_NOWAIT); 4232 else 4233 maxbucket = zone->uz_bucket_size; 4234 if (maxbucket == 0) 4235 return (false); 4236 4237 /* Don't wait for buckets, preserve caller's NOVM setting. */ 4238 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 4239 if (bucket == NULL) { 4240 cnt = 0; 4241 goto out; 4242 } 4243 4244 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 4245 MIN(maxbucket, bucket->ub_entries), domain, flags); 4246 4247 /* 4248 * Initialize the memory if necessary. 4249 */ 4250 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 4251 int i; 4252 4253 for (i = 0; i < bucket->ub_cnt; i++) { 4254 kasan_mark_item_valid(zone, bucket->ub_bucket[i]); 4255 error = zone->uz_init(bucket->ub_bucket[i], 4256 zone->uz_size, flags); 4257 kasan_mark_item_invalid(zone, bucket->ub_bucket[i]); 4258 if (error != 0) 4259 break; 4260 } 4261 4262 /* 4263 * If we couldn't initialize the whole bucket, put the 4264 * rest back onto the freelist. 4265 */ 4266 if (i != bucket->ub_cnt) { 4267 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 4268 bucket->ub_cnt - i); 4269 #ifdef INVARIANTS 4270 bzero(&bucket->ub_bucket[i], 4271 sizeof(void *) * (bucket->ub_cnt - i)); 4272 #endif 4273 bucket->ub_cnt = i; 4274 } 4275 } 4276 4277 cnt = bucket->ub_cnt; 4278 if (bucket->ub_cnt == 0) { 4279 bucket_free(zone, bucket, udata); 4280 counter_u64_add(zone->uz_fails, 1); 4281 bucket = NULL; 4282 } 4283 out: 4284 if (zone->uz_max_items > 0 && cnt < maxbucket) 4285 zone_free_limit(zone, maxbucket - cnt); 4286 4287 return (bucket); 4288 } 4289 4290 /* 4291 * Allocates a single item from a zone. 4292 * 4293 * Arguments 4294 * zone The zone to alloc for. 4295 * udata The data to be passed to the constructor. 4296 * domain The domain to allocate from or UMA_ANYDOMAIN. 4297 * flags M_WAITOK, M_NOWAIT, M_ZERO. 4298 * 4299 * Returns 4300 * NULL if there is no memory and M_NOWAIT is set 4301 * An item if successful 4302 */ 4303 4304 static void * 4305 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 4306 { 4307 void *item; 4308 4309 if (zone->uz_max_items > 0 && zone_alloc_limit(zone, 1, flags) == 0) { 4310 counter_u64_add(zone->uz_fails, 1); 4311 return (NULL); 4312 } 4313 4314 /* Avoid allocs targeting empty domains. */ 4315 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 4316 domain = UMA_ANYDOMAIN; 4317 4318 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 4319 goto fail_cnt; 4320 4321 /* 4322 * We have to call both the zone's init (not the keg's init) 4323 * and the zone's ctor. This is because the item is going from 4324 * a keg slab directly to the user, and the user is expecting it 4325 * to be both zone-init'd as well as zone-ctor'd. 4326 */ 4327 if (zone->uz_init != NULL) { 4328 int error; 4329 4330 kasan_mark_item_valid(zone, item); 4331 error = zone->uz_init(item, zone->uz_size, flags); 4332 kasan_mark_item_invalid(zone, item); 4333 if (error != 0) { 4334 zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT); 4335 goto fail_cnt; 4336 } 4337 } 4338 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, flags, 4339 item); 4340 if (item == NULL) 4341 goto fail; 4342 4343 counter_u64_add(zone->uz_allocs, 1); 4344 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 4345 zone->uz_name, zone); 4346 4347 return (item); 4348 4349 fail_cnt: 4350 counter_u64_add(zone->uz_fails, 1); 4351 fail: 4352 if (zone->uz_max_items > 0) 4353 zone_free_limit(zone, 1); 4354 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 4355 zone->uz_name, zone); 4356 4357 return (NULL); 4358 } 4359 4360 /* See uma.h */ 4361 void 4362 uma_zfree_smr(uma_zone_t zone, void *item) 4363 { 4364 uma_cache_t cache; 4365 uma_cache_bucket_t bucket; 4366 int itemdomain, uz_flags; 4367 4368 #ifdef UMA_ZALLOC_DEBUG 4369 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 4370 ("uma_zfree_smr: called with non-SMR zone.")); 4371 KASSERT(item != NULL, ("uma_zfree_smr: Called with NULL pointer.")); 4372 SMR_ASSERT_NOT_ENTERED(zone->uz_smr); 4373 if (uma_zfree_debug(zone, item, NULL) == EJUSTRETURN) 4374 return; 4375 #endif 4376 cache = &zone->uz_cpu[curcpu]; 4377 uz_flags = cache_uz_flags(cache); 4378 itemdomain = 0; 4379 #ifdef NUMA 4380 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4381 itemdomain = item_domain(item); 4382 #endif 4383 critical_enter(); 4384 do { 4385 cache = &zone->uz_cpu[curcpu]; 4386 /* SMR Zones must free to the free bucket. */ 4387 bucket = &cache->uc_freebucket; 4388 #ifdef NUMA 4389 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4390 PCPU_GET(domain) != itemdomain) { 4391 bucket = &cache->uc_crossbucket; 4392 } 4393 #endif 4394 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 4395 cache_bucket_push(cache, bucket, item); 4396 critical_exit(); 4397 return; 4398 } 4399 } while (cache_free(zone, cache, NULL, item, itemdomain)); 4400 critical_exit(); 4401 4402 /* 4403 * If nothing else caught this, we'll just do an internal free. 4404 */ 4405 zone_free_item(zone, item, NULL, SKIP_NONE); 4406 } 4407 4408 /* See uma.h */ 4409 void 4410 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 4411 { 4412 uma_cache_t cache; 4413 uma_cache_bucket_t bucket; 4414 int itemdomain, uz_flags; 4415 4416 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 4417 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 4418 4419 CTR2(KTR_UMA, "uma_zfree_arg zone %s(%p)", zone->uz_name, zone); 4420 4421 #ifdef UMA_ZALLOC_DEBUG 4422 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 4423 ("uma_zfree_arg: called with SMR zone.")); 4424 if (uma_zfree_debug(zone, item, udata) == EJUSTRETURN) 4425 return; 4426 #endif 4427 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 4428 if (item == NULL) 4429 return; 4430 4431 /* 4432 * We are accessing the per-cpu cache without a critical section to 4433 * fetch size and flags. This is acceptable, if we are preempted we 4434 * will simply read another cpu's line. 4435 */ 4436 cache = &zone->uz_cpu[curcpu]; 4437 uz_flags = cache_uz_flags(cache); 4438 if (UMA_ALWAYS_CTORDTOR || 4439 __predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0)) 4440 item_dtor(zone, item, cache_uz_size(cache), udata, SKIP_NONE); 4441 4442 /* 4443 * The race here is acceptable. If we miss it we'll just have to wait 4444 * a little longer for the limits to be reset. 4445 */ 4446 if (__predict_false(uz_flags & UMA_ZFLAG_LIMIT)) { 4447 if (atomic_load_32(&zone->uz_sleepers) > 0) 4448 goto zfree_item; 4449 } 4450 4451 /* 4452 * If possible, free to the per-CPU cache. There are two 4453 * requirements for safe access to the per-CPU cache: (1) the thread 4454 * accessing the cache must not be preempted or yield during access, 4455 * and (2) the thread must not migrate CPUs without switching which 4456 * cache it accesses. We rely on a critical section to prevent 4457 * preemption and migration. We release the critical section in 4458 * order to acquire the zone mutex if we are unable to free to the 4459 * current cache; when we re-acquire the critical section, we must 4460 * detect and handle migration if it has occurred. 4461 */ 4462 itemdomain = 0; 4463 #ifdef NUMA 4464 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4465 itemdomain = item_domain(item); 4466 #endif 4467 critical_enter(); 4468 do { 4469 cache = &zone->uz_cpu[curcpu]; 4470 /* 4471 * Try to free into the allocbucket first to give LIFO 4472 * ordering for cache-hot datastructures. Spill over 4473 * into the freebucket if necessary. Alloc will swap 4474 * them if one runs dry. 4475 */ 4476 bucket = &cache->uc_allocbucket; 4477 #ifdef NUMA 4478 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4479 PCPU_GET(domain) != itemdomain) { 4480 bucket = &cache->uc_crossbucket; 4481 } else 4482 #endif 4483 if (bucket->ucb_cnt == bucket->ucb_entries && 4484 cache->uc_freebucket.ucb_cnt < 4485 cache->uc_freebucket.ucb_entries) 4486 cache_bucket_swap(&cache->uc_freebucket, 4487 &cache->uc_allocbucket); 4488 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 4489 cache_bucket_push(cache, bucket, item); 4490 critical_exit(); 4491 return; 4492 } 4493 } while (cache_free(zone, cache, udata, item, itemdomain)); 4494 critical_exit(); 4495 4496 /* 4497 * If nothing else caught this, we'll just do an internal free. 4498 */ 4499 zfree_item: 4500 zone_free_item(zone, item, udata, SKIP_DTOR); 4501 } 4502 4503 #ifdef NUMA 4504 /* 4505 * sort crossdomain free buckets to domain correct buckets and cache 4506 * them. 4507 */ 4508 static void 4509 zone_free_cross(uma_zone_t zone, uma_bucket_t bucket, void *udata) 4510 { 4511 struct uma_bucketlist emptybuckets, fullbuckets; 4512 uma_zone_domain_t zdom; 4513 uma_bucket_t b; 4514 smr_seq_t seq; 4515 void *item; 4516 int domain; 4517 4518 CTR3(KTR_UMA, 4519 "uma_zfree: zone %s(%p) draining cross bucket %p", 4520 zone->uz_name, zone, bucket); 4521 4522 /* 4523 * It is possible for buckets to arrive here out of order so we fetch 4524 * the current smr seq rather than accepting the bucket's. 4525 */ 4526 seq = SMR_SEQ_INVALID; 4527 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 4528 seq = smr_advance(zone->uz_smr); 4529 4530 /* 4531 * To avoid having ndomain * ndomain buckets for sorting we have a 4532 * lock on the current crossfree bucket. A full matrix with 4533 * per-domain locking could be used if necessary. 4534 */ 4535 STAILQ_INIT(&emptybuckets); 4536 STAILQ_INIT(&fullbuckets); 4537 ZONE_CROSS_LOCK(zone); 4538 for (; bucket->ub_cnt > 0; bucket->ub_cnt--) { 4539 item = bucket->ub_bucket[bucket->ub_cnt - 1]; 4540 domain = item_domain(item); 4541 zdom = ZDOM_GET(zone, domain); 4542 if (zdom->uzd_cross == NULL) { 4543 if ((b = STAILQ_FIRST(&emptybuckets)) != NULL) { 4544 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link); 4545 zdom->uzd_cross = b; 4546 } else { 4547 /* 4548 * Avoid allocating a bucket with the cross lock 4549 * held, since allocation can trigger a 4550 * cross-domain free and bucket zones may 4551 * allocate from each other. 4552 */ 4553 ZONE_CROSS_UNLOCK(zone); 4554 b = bucket_alloc(zone, udata, M_NOWAIT); 4555 if (b == NULL) 4556 goto out; 4557 ZONE_CROSS_LOCK(zone); 4558 if (zdom->uzd_cross != NULL) { 4559 STAILQ_INSERT_HEAD(&emptybuckets, b, 4560 ub_link); 4561 } else { 4562 zdom->uzd_cross = b; 4563 } 4564 } 4565 } 4566 b = zdom->uzd_cross; 4567 b->ub_bucket[b->ub_cnt++] = item; 4568 b->ub_seq = seq; 4569 if (b->ub_cnt == b->ub_entries) { 4570 STAILQ_INSERT_HEAD(&fullbuckets, b, ub_link); 4571 if ((b = STAILQ_FIRST(&emptybuckets)) != NULL) 4572 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link); 4573 zdom->uzd_cross = b; 4574 } 4575 } 4576 ZONE_CROSS_UNLOCK(zone); 4577 out: 4578 if (bucket->ub_cnt == 0) 4579 bucket->ub_seq = SMR_SEQ_INVALID; 4580 bucket_free(zone, bucket, udata); 4581 4582 while ((b = STAILQ_FIRST(&emptybuckets)) != NULL) { 4583 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link); 4584 bucket_free(zone, b, udata); 4585 } 4586 while ((b = STAILQ_FIRST(&fullbuckets)) != NULL) { 4587 STAILQ_REMOVE_HEAD(&fullbuckets, ub_link); 4588 domain = item_domain(b->ub_bucket[0]); 4589 zone_put_bucket(zone, domain, b, udata, true); 4590 } 4591 } 4592 #endif 4593 4594 static void 4595 zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 4596 int itemdomain, bool ws) 4597 { 4598 4599 #ifdef NUMA 4600 /* 4601 * Buckets coming from the wrong domain will be entirely for the 4602 * only other domain on two domain systems. In this case we can 4603 * simply cache them. Otherwise we need to sort them back to 4604 * correct domains. 4605 */ 4606 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4607 vm_ndomains > 2 && PCPU_GET(domain) != itemdomain) { 4608 zone_free_cross(zone, bucket, udata); 4609 return; 4610 } 4611 #endif 4612 4613 /* 4614 * Attempt to save the bucket in the zone's domain bucket cache. 4615 */ 4616 CTR3(KTR_UMA, 4617 "uma_zfree: zone %s(%p) putting bucket %p on free list", 4618 zone->uz_name, zone, bucket); 4619 /* ub_cnt is pointing to the last free item */ 4620 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) 4621 itemdomain = zone_domain_lowest(zone, itemdomain); 4622 zone_put_bucket(zone, itemdomain, bucket, udata, ws); 4623 } 4624 4625 /* 4626 * Populate a free or cross bucket for the current cpu cache. Free any 4627 * existing full bucket either to the zone cache or back to the slab layer. 4628 * 4629 * Enters and returns in a critical section. false return indicates that 4630 * we can not satisfy this free in the cache layer. true indicates that 4631 * the caller should retry. 4632 */ 4633 static __noinline bool 4634 cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, void *item, 4635 int itemdomain) 4636 { 4637 uma_cache_bucket_t cbucket; 4638 uma_bucket_t newbucket, bucket; 4639 4640 CRITICAL_ASSERT(curthread); 4641 4642 if (zone->uz_bucket_size == 0) 4643 return false; 4644 4645 cache = &zone->uz_cpu[curcpu]; 4646 newbucket = NULL; 4647 4648 /* 4649 * FIRSTTOUCH domains need to free to the correct zdom. When 4650 * enabled this is the zdom of the item. The bucket is the 4651 * cross bucket if the current domain and itemdomain do not match. 4652 */ 4653 cbucket = &cache->uc_freebucket; 4654 #ifdef NUMA 4655 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { 4656 if (PCPU_GET(domain) != itemdomain) { 4657 cbucket = &cache->uc_crossbucket; 4658 if (cbucket->ucb_cnt != 0) 4659 counter_u64_add(zone->uz_xdomain, 4660 cbucket->ucb_cnt); 4661 } 4662 } 4663 #endif 4664 bucket = cache_bucket_unload(cbucket); 4665 KASSERT(bucket == NULL || bucket->ub_cnt == bucket->ub_entries, 4666 ("cache_free: Entered with non-full free bucket.")); 4667 4668 /* We are no longer associated with this CPU. */ 4669 critical_exit(); 4670 4671 /* 4672 * Don't let SMR zones operate without a free bucket. Force 4673 * a synchronize and re-use this one. We will only degrade 4674 * to a synchronize every bucket_size items rather than every 4675 * item if we fail to allocate a bucket. 4676 */ 4677 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) { 4678 if (bucket != NULL) 4679 bucket->ub_seq = smr_advance(zone->uz_smr); 4680 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4681 if (newbucket == NULL && bucket != NULL) { 4682 bucket_drain(zone, bucket); 4683 newbucket = bucket; 4684 bucket = NULL; 4685 } 4686 } else if (!bucketdisable) 4687 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4688 4689 if (bucket != NULL) 4690 zone_free_bucket(zone, bucket, udata, itemdomain, true); 4691 4692 critical_enter(); 4693 if ((bucket = newbucket) == NULL) 4694 return (false); 4695 cache = &zone->uz_cpu[curcpu]; 4696 #ifdef NUMA 4697 /* 4698 * Check to see if we should be populating the cross bucket. If it 4699 * is already populated we will fall through and attempt to populate 4700 * the free bucket. 4701 */ 4702 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { 4703 if (PCPU_GET(domain) != itemdomain && 4704 cache->uc_crossbucket.ucb_bucket == NULL) { 4705 cache_bucket_load_cross(cache, bucket); 4706 return (true); 4707 } 4708 } 4709 #endif 4710 /* 4711 * We may have lost the race to fill the bucket or switched CPUs. 4712 */ 4713 if (cache->uc_freebucket.ucb_bucket != NULL) { 4714 critical_exit(); 4715 bucket_free(zone, bucket, udata); 4716 critical_enter(); 4717 } else 4718 cache_bucket_load_free(cache, bucket); 4719 4720 return (true); 4721 } 4722 4723 static void 4724 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item) 4725 { 4726 uma_keg_t keg; 4727 uma_domain_t dom; 4728 int freei; 4729 4730 keg = zone->uz_keg; 4731 KEG_LOCK_ASSERT(keg, slab->us_domain); 4732 4733 /* Do we need to remove from any lists? */ 4734 dom = &keg->uk_domain[slab->us_domain]; 4735 if (slab->us_freecount + 1 == keg->uk_ipers) { 4736 LIST_REMOVE(slab, us_link); 4737 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 4738 dom->ud_free_slabs++; 4739 } else if (slab->us_freecount == 0) { 4740 LIST_REMOVE(slab, us_link); 4741 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 4742 } 4743 4744 /* Slab management. */ 4745 freei = slab_item_index(slab, keg, item); 4746 BIT_SET(keg->uk_ipers, freei, &slab->us_free); 4747 slab->us_freecount++; 4748 4749 /* Keg statistics. */ 4750 dom->ud_free_items++; 4751 } 4752 4753 static void 4754 zone_release(void *arg, void **bucket, int cnt) 4755 { 4756 struct mtx *lock; 4757 uma_zone_t zone; 4758 uma_slab_t slab; 4759 uma_keg_t keg; 4760 uint8_t *mem; 4761 void *item; 4762 int i; 4763 4764 zone = arg; 4765 keg = zone->uz_keg; 4766 lock = NULL; 4767 if (__predict_false((zone->uz_flags & UMA_ZFLAG_HASH) != 0)) 4768 lock = KEG_LOCK(keg, 0); 4769 for (i = 0; i < cnt; i++) { 4770 item = bucket[i]; 4771 if (__predict_true((zone->uz_flags & UMA_ZFLAG_VTOSLAB) != 0)) { 4772 slab = vtoslab((vm_offset_t)item); 4773 } else { 4774 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 4775 if ((zone->uz_flags & UMA_ZFLAG_HASH) != 0) 4776 slab = hash_sfind(&keg->uk_hash, mem); 4777 else 4778 slab = (uma_slab_t)(mem + keg->uk_pgoff); 4779 } 4780 if (lock != KEG_LOCKPTR(keg, slab->us_domain)) { 4781 if (lock != NULL) 4782 mtx_unlock(lock); 4783 lock = KEG_LOCK(keg, slab->us_domain); 4784 } 4785 slab_free_item(zone, slab, item); 4786 } 4787 if (lock != NULL) 4788 mtx_unlock(lock); 4789 } 4790 4791 /* 4792 * Frees a single item to any zone. 4793 * 4794 * Arguments: 4795 * zone The zone to free to 4796 * item The item we're freeing 4797 * udata User supplied data for the dtor 4798 * skip Skip dtors and finis 4799 */ 4800 static __noinline void 4801 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 4802 { 4803 4804 /* 4805 * If a free is sent directly to an SMR zone we have to 4806 * synchronize immediately because the item can instantly 4807 * be reallocated. This should only happen in degenerate 4808 * cases when no memory is available for per-cpu caches. 4809 */ 4810 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && skip == SKIP_NONE) 4811 smr_synchronize(zone->uz_smr); 4812 4813 item_dtor(zone, item, zone->uz_size, udata, skip); 4814 4815 if (skip < SKIP_FINI && zone->uz_fini) { 4816 kasan_mark_item_valid(zone, item); 4817 zone->uz_fini(item, zone->uz_size); 4818 kasan_mark_item_invalid(zone, item); 4819 } 4820 4821 zone->uz_release(zone->uz_arg, &item, 1); 4822 4823 if (skip & SKIP_CNT) 4824 return; 4825 4826 counter_u64_add(zone->uz_frees, 1); 4827 4828 if (zone->uz_max_items > 0) 4829 zone_free_limit(zone, 1); 4830 } 4831 4832 /* See uma.h */ 4833 int 4834 uma_zone_set_max(uma_zone_t zone, int nitems) 4835 { 4836 4837 /* 4838 * If the limit is small, we may need to constrain the maximum per-CPU 4839 * cache size, or disable caching entirely. 4840 */ 4841 uma_zone_set_maxcache(zone, nitems); 4842 4843 /* 4844 * XXX This can misbehave if the zone has any allocations with 4845 * no limit and a limit is imposed. There is currently no 4846 * way to clear a limit. 4847 */ 4848 ZONE_LOCK(zone); 4849 zone->uz_max_items = nitems; 4850 zone->uz_flags |= UMA_ZFLAG_LIMIT; 4851 zone_update_caches(zone); 4852 /* We may need to wake waiters. */ 4853 wakeup(&zone->uz_max_items); 4854 ZONE_UNLOCK(zone); 4855 4856 return (nitems); 4857 } 4858 4859 /* See uma.h */ 4860 void 4861 uma_zone_set_maxcache(uma_zone_t zone, int nitems) 4862 { 4863 int bpcpu, bpdom, bsize, nb; 4864 4865 ZONE_LOCK(zone); 4866 4867 /* 4868 * Compute a lower bound on the number of items that may be cached in 4869 * the zone. Each CPU gets at least two buckets, and for cross-domain 4870 * frees we use an additional bucket per CPU and per domain. Select the 4871 * largest bucket size that does not exceed half of the requested limit, 4872 * with the left over space given to the full bucket cache. 4873 */ 4874 bpdom = 0; 4875 bpcpu = 2; 4876 #ifdef NUMA 4877 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && vm_ndomains > 1) { 4878 bpcpu++; 4879 bpdom++; 4880 } 4881 #endif 4882 nb = bpcpu * mp_ncpus + bpdom * vm_ndomains; 4883 bsize = nitems / nb / 2; 4884 if (bsize > BUCKET_MAX) 4885 bsize = BUCKET_MAX; 4886 else if (bsize == 0 && nitems / nb > 0) 4887 bsize = 1; 4888 zone->uz_bucket_size_max = zone->uz_bucket_size = bsize; 4889 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 4890 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 4891 zone->uz_bucket_max = nitems - nb * bsize; 4892 ZONE_UNLOCK(zone); 4893 } 4894 4895 /* See uma.h */ 4896 int 4897 uma_zone_get_max(uma_zone_t zone) 4898 { 4899 int nitems; 4900 4901 nitems = atomic_load_64(&zone->uz_max_items); 4902 4903 return (nitems); 4904 } 4905 4906 /* See uma.h */ 4907 void 4908 uma_zone_set_warning(uma_zone_t zone, const char *warning) 4909 { 4910 4911 ZONE_ASSERT_COLD(zone); 4912 zone->uz_warning = warning; 4913 } 4914 4915 /* See uma.h */ 4916 void 4917 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 4918 { 4919 4920 ZONE_ASSERT_COLD(zone); 4921 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 4922 } 4923 4924 /* See uma.h */ 4925 int 4926 uma_zone_get_cur(uma_zone_t zone) 4927 { 4928 int64_t nitems; 4929 u_int i; 4930 4931 nitems = 0; 4932 if (zone->uz_allocs != EARLY_COUNTER && zone->uz_frees != EARLY_COUNTER) 4933 nitems = counter_u64_fetch(zone->uz_allocs) - 4934 counter_u64_fetch(zone->uz_frees); 4935 CPU_FOREACH(i) 4936 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs) - 4937 atomic_load_64(&zone->uz_cpu[i].uc_frees); 4938 4939 return (nitems < 0 ? 0 : nitems); 4940 } 4941 4942 static uint64_t 4943 uma_zone_get_allocs(uma_zone_t zone) 4944 { 4945 uint64_t nitems; 4946 u_int i; 4947 4948 nitems = 0; 4949 if (zone->uz_allocs != EARLY_COUNTER) 4950 nitems = counter_u64_fetch(zone->uz_allocs); 4951 CPU_FOREACH(i) 4952 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs); 4953 4954 return (nitems); 4955 } 4956 4957 static uint64_t 4958 uma_zone_get_frees(uma_zone_t zone) 4959 { 4960 uint64_t nitems; 4961 u_int i; 4962 4963 nitems = 0; 4964 if (zone->uz_frees != EARLY_COUNTER) 4965 nitems = counter_u64_fetch(zone->uz_frees); 4966 CPU_FOREACH(i) 4967 nitems += atomic_load_64(&zone->uz_cpu[i].uc_frees); 4968 4969 return (nitems); 4970 } 4971 4972 #ifdef INVARIANTS 4973 /* Used only for KEG_ASSERT_COLD(). */ 4974 static uint64_t 4975 uma_keg_get_allocs(uma_keg_t keg) 4976 { 4977 uma_zone_t z; 4978 uint64_t nitems; 4979 4980 nitems = 0; 4981 LIST_FOREACH(z, &keg->uk_zones, uz_link) 4982 nitems += uma_zone_get_allocs(z); 4983 4984 return (nitems); 4985 } 4986 #endif 4987 4988 /* See uma.h */ 4989 void 4990 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 4991 { 4992 uma_keg_t keg; 4993 4994 KEG_GET(zone, keg); 4995 KEG_ASSERT_COLD(keg); 4996 keg->uk_init = uminit; 4997 } 4998 4999 /* See uma.h */ 5000 void 5001 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 5002 { 5003 uma_keg_t keg; 5004 5005 KEG_GET(zone, keg); 5006 KEG_ASSERT_COLD(keg); 5007 keg->uk_fini = fini; 5008 } 5009 5010 /* See uma.h */ 5011 void 5012 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 5013 { 5014 5015 ZONE_ASSERT_COLD(zone); 5016 zone->uz_init = zinit; 5017 } 5018 5019 /* See uma.h */ 5020 void 5021 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 5022 { 5023 5024 ZONE_ASSERT_COLD(zone); 5025 zone->uz_fini = zfini; 5026 } 5027 5028 /* See uma.h */ 5029 void 5030 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 5031 { 5032 uma_keg_t keg; 5033 5034 KEG_GET(zone, keg); 5035 KEG_ASSERT_COLD(keg); 5036 keg->uk_freef = freef; 5037 } 5038 5039 /* See uma.h */ 5040 void 5041 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 5042 { 5043 uma_keg_t keg; 5044 5045 KEG_GET(zone, keg); 5046 KEG_ASSERT_COLD(keg); 5047 keg->uk_allocf = allocf; 5048 } 5049 5050 /* See uma.h */ 5051 void 5052 uma_zone_set_smr(uma_zone_t zone, smr_t smr) 5053 { 5054 5055 ZONE_ASSERT_COLD(zone); 5056 5057 KASSERT(smr != NULL, ("Got NULL smr")); 5058 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 5059 ("zone %p (%s) already uses SMR", zone, zone->uz_name)); 5060 zone->uz_flags |= UMA_ZONE_SMR; 5061 zone->uz_smr = smr; 5062 zone_update_caches(zone); 5063 } 5064 5065 smr_t 5066 uma_zone_get_smr(uma_zone_t zone) 5067 { 5068 5069 return (zone->uz_smr); 5070 } 5071 5072 /* See uma.h */ 5073 void 5074 uma_zone_reserve(uma_zone_t zone, int items) 5075 { 5076 uma_keg_t keg; 5077 5078 KEG_GET(zone, keg); 5079 KEG_ASSERT_COLD(keg); 5080 keg->uk_reserve = items; 5081 } 5082 5083 /* See uma.h */ 5084 int 5085 uma_zone_reserve_kva(uma_zone_t zone, int count) 5086 { 5087 uma_keg_t keg; 5088 vm_offset_t kva; 5089 u_int pages; 5090 5091 KEG_GET(zone, keg); 5092 KEG_ASSERT_COLD(keg); 5093 ZONE_ASSERT_COLD(zone); 5094 5095 pages = howmany(count, keg->uk_ipers) * keg->uk_ppera; 5096 5097 #ifdef UMA_MD_SMALL_ALLOC 5098 if (keg->uk_ppera > 1) { 5099 #else 5100 if (1) { 5101 #endif 5102 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 5103 if (kva == 0) 5104 return (0); 5105 } else 5106 kva = 0; 5107 5108 MPASS(keg->uk_kva == 0); 5109 keg->uk_kva = kva; 5110 keg->uk_offset = 0; 5111 zone->uz_max_items = pages * keg->uk_ipers; 5112 #ifdef UMA_MD_SMALL_ALLOC 5113 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 5114 #else 5115 keg->uk_allocf = noobj_alloc; 5116 #endif 5117 keg->uk_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 5118 zone->uz_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 5119 zone_update_caches(zone); 5120 5121 return (1); 5122 } 5123 5124 /* See uma.h */ 5125 void 5126 uma_prealloc(uma_zone_t zone, int items) 5127 { 5128 struct vm_domainset_iter di; 5129 uma_domain_t dom; 5130 uma_slab_t slab; 5131 uma_keg_t keg; 5132 int aflags, domain, slabs; 5133 5134 KEG_GET(zone, keg); 5135 slabs = howmany(items, keg->uk_ipers); 5136 while (slabs-- > 0) { 5137 aflags = M_NOWAIT; 5138 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 5139 &aflags); 5140 for (;;) { 5141 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK, 5142 aflags); 5143 if (slab != NULL) { 5144 dom = &keg->uk_domain[slab->us_domain]; 5145 /* 5146 * keg_alloc_slab() always returns a slab on the 5147 * partial list. 5148 */ 5149 LIST_REMOVE(slab, us_link); 5150 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, 5151 us_link); 5152 dom->ud_free_slabs++; 5153 KEG_UNLOCK(keg, slab->us_domain); 5154 break; 5155 } 5156 if (vm_domainset_iter_policy(&di, &domain) != 0) 5157 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0); 5158 } 5159 } 5160 } 5161 5162 /* 5163 * Returns a snapshot of memory consumption in bytes. 5164 */ 5165 size_t 5166 uma_zone_memory(uma_zone_t zone) 5167 { 5168 size_t sz; 5169 int i; 5170 5171 sz = 0; 5172 if (zone->uz_flags & UMA_ZFLAG_CACHE) { 5173 for (i = 0; i < vm_ndomains; i++) 5174 sz += ZDOM_GET(zone, i)->uzd_nitems; 5175 return (sz * zone->uz_size); 5176 } 5177 for (i = 0; i < vm_ndomains; i++) 5178 sz += zone->uz_keg->uk_domain[i].ud_pages; 5179 5180 return (sz * PAGE_SIZE); 5181 } 5182 5183 /* See uma.h */ 5184 void 5185 uma_reclaim(int req) 5186 { 5187 uma_reclaim_domain(req, UMA_ANYDOMAIN); 5188 } 5189 5190 void 5191 uma_reclaim_domain(int req, int domain) 5192 { 5193 void *arg; 5194 5195 bucket_enable(); 5196 5197 arg = (void *)(uintptr_t)domain; 5198 sx_slock(&uma_reclaim_lock); 5199 switch (req) { 5200 case UMA_RECLAIM_TRIM: 5201 zone_foreach(zone_trim, arg); 5202 break; 5203 case UMA_RECLAIM_DRAIN: 5204 zone_foreach(zone_drain, arg); 5205 break; 5206 case UMA_RECLAIM_DRAIN_CPU: 5207 zone_foreach(zone_drain, arg); 5208 pcpu_cache_drain_safe(NULL); 5209 zone_foreach(zone_drain, arg); 5210 break; 5211 default: 5212 panic("unhandled reclamation request %d", req); 5213 } 5214 5215 /* 5216 * Some slabs may have been freed but this zone will be visited early 5217 * we visit again so that we can free pages that are empty once other 5218 * zones are drained. We have to do the same for buckets. 5219 */ 5220 zone_drain(slabzones[0], arg); 5221 zone_drain(slabzones[1], arg); 5222 bucket_zone_drain(domain); 5223 sx_sunlock(&uma_reclaim_lock); 5224 } 5225 5226 static volatile int uma_reclaim_needed; 5227 5228 void 5229 uma_reclaim_wakeup(void) 5230 { 5231 5232 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 5233 wakeup(uma_reclaim); 5234 } 5235 5236 void 5237 uma_reclaim_worker(void *arg __unused) 5238 { 5239 5240 for (;;) { 5241 sx_xlock(&uma_reclaim_lock); 5242 while (atomic_load_int(&uma_reclaim_needed) == 0) 5243 sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl", 5244 hz); 5245 sx_xunlock(&uma_reclaim_lock); 5246 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 5247 uma_reclaim(UMA_RECLAIM_DRAIN_CPU); 5248 atomic_store_int(&uma_reclaim_needed, 0); 5249 /* Don't fire more than once per-second. */ 5250 pause("umarclslp", hz); 5251 } 5252 } 5253 5254 /* See uma.h */ 5255 void 5256 uma_zone_reclaim(uma_zone_t zone, int req) 5257 { 5258 uma_zone_reclaim_domain(zone, req, UMA_ANYDOMAIN); 5259 } 5260 5261 void 5262 uma_zone_reclaim_domain(uma_zone_t zone, int req, int domain) 5263 { 5264 void *arg; 5265 5266 arg = (void *)(uintptr_t)domain; 5267 switch (req) { 5268 case UMA_RECLAIM_TRIM: 5269 zone_trim(zone, arg); 5270 break; 5271 case UMA_RECLAIM_DRAIN: 5272 zone_drain(zone, arg); 5273 break; 5274 case UMA_RECLAIM_DRAIN_CPU: 5275 pcpu_cache_drain_safe(zone); 5276 zone_drain(zone, arg); 5277 break; 5278 default: 5279 panic("unhandled reclamation request %d", req); 5280 } 5281 } 5282 5283 /* See uma.h */ 5284 int 5285 uma_zone_exhausted(uma_zone_t zone) 5286 { 5287 5288 return (atomic_load_32(&zone->uz_sleepers) > 0); 5289 } 5290 5291 unsigned long 5292 uma_limit(void) 5293 { 5294 5295 return (uma_kmem_limit); 5296 } 5297 5298 void 5299 uma_set_limit(unsigned long limit) 5300 { 5301 5302 uma_kmem_limit = limit; 5303 } 5304 5305 unsigned long 5306 uma_size(void) 5307 { 5308 5309 return (atomic_load_long(&uma_kmem_total)); 5310 } 5311 5312 long 5313 uma_avail(void) 5314 { 5315 5316 return (uma_kmem_limit - uma_size()); 5317 } 5318 5319 #ifdef DDB 5320 /* 5321 * Generate statistics across both the zone and its per-cpu cache's. Return 5322 * desired statistics if the pointer is non-NULL for that statistic. 5323 * 5324 * Note: does not update the zone statistics, as it can't safely clear the 5325 * per-CPU cache statistic. 5326 * 5327 */ 5328 static void 5329 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp, 5330 uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp) 5331 { 5332 uma_cache_t cache; 5333 uint64_t allocs, frees, sleeps, xdomain; 5334 int cachefree, cpu; 5335 5336 allocs = frees = sleeps = xdomain = 0; 5337 cachefree = 0; 5338 CPU_FOREACH(cpu) { 5339 cache = &z->uz_cpu[cpu]; 5340 cachefree += cache->uc_allocbucket.ucb_cnt; 5341 cachefree += cache->uc_freebucket.ucb_cnt; 5342 xdomain += cache->uc_crossbucket.ucb_cnt; 5343 cachefree += cache->uc_crossbucket.ucb_cnt; 5344 allocs += cache->uc_allocs; 5345 frees += cache->uc_frees; 5346 } 5347 allocs += counter_u64_fetch(z->uz_allocs); 5348 frees += counter_u64_fetch(z->uz_frees); 5349 xdomain += counter_u64_fetch(z->uz_xdomain); 5350 sleeps += z->uz_sleeps; 5351 if (cachefreep != NULL) 5352 *cachefreep = cachefree; 5353 if (allocsp != NULL) 5354 *allocsp = allocs; 5355 if (freesp != NULL) 5356 *freesp = frees; 5357 if (sleepsp != NULL) 5358 *sleepsp = sleeps; 5359 if (xdomainp != NULL) 5360 *xdomainp = xdomain; 5361 } 5362 #endif /* DDB */ 5363 5364 static int 5365 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 5366 { 5367 uma_keg_t kz; 5368 uma_zone_t z; 5369 int count; 5370 5371 count = 0; 5372 rw_rlock(&uma_rwlock); 5373 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5374 LIST_FOREACH(z, &kz->uk_zones, uz_link) 5375 count++; 5376 } 5377 LIST_FOREACH(z, &uma_cachezones, uz_link) 5378 count++; 5379 5380 rw_runlock(&uma_rwlock); 5381 return (sysctl_handle_int(oidp, &count, 0, req)); 5382 } 5383 5384 static void 5385 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf, 5386 struct uma_percpu_stat *ups, bool internal) 5387 { 5388 uma_zone_domain_t zdom; 5389 uma_cache_t cache; 5390 int i; 5391 5392 for (i = 0; i < vm_ndomains; i++) { 5393 zdom = ZDOM_GET(z, i); 5394 uth->uth_zone_free += zdom->uzd_nitems; 5395 } 5396 uth->uth_allocs = counter_u64_fetch(z->uz_allocs); 5397 uth->uth_frees = counter_u64_fetch(z->uz_frees); 5398 uth->uth_fails = counter_u64_fetch(z->uz_fails); 5399 uth->uth_xdomain = counter_u64_fetch(z->uz_xdomain); 5400 uth->uth_sleeps = z->uz_sleeps; 5401 5402 for (i = 0; i < mp_maxid + 1; i++) { 5403 bzero(&ups[i], sizeof(*ups)); 5404 if (internal || CPU_ABSENT(i)) 5405 continue; 5406 cache = &z->uz_cpu[i]; 5407 ups[i].ups_cache_free += cache->uc_allocbucket.ucb_cnt; 5408 ups[i].ups_cache_free += cache->uc_freebucket.ucb_cnt; 5409 ups[i].ups_cache_free += cache->uc_crossbucket.ucb_cnt; 5410 ups[i].ups_allocs = cache->uc_allocs; 5411 ups[i].ups_frees = cache->uc_frees; 5412 } 5413 } 5414 5415 static int 5416 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 5417 { 5418 struct uma_stream_header ush; 5419 struct uma_type_header uth; 5420 struct uma_percpu_stat *ups; 5421 struct sbuf sbuf; 5422 uma_keg_t kz; 5423 uma_zone_t z; 5424 uint64_t items; 5425 uint32_t kfree, pages; 5426 int count, error, i; 5427 5428 error = sysctl_wire_old_buffer(req, 0); 5429 if (error != 0) 5430 return (error); 5431 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 5432 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 5433 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 5434 5435 count = 0; 5436 rw_rlock(&uma_rwlock); 5437 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5438 LIST_FOREACH(z, &kz->uk_zones, uz_link) 5439 count++; 5440 } 5441 5442 LIST_FOREACH(z, &uma_cachezones, uz_link) 5443 count++; 5444 5445 /* 5446 * Insert stream header. 5447 */ 5448 bzero(&ush, sizeof(ush)); 5449 ush.ush_version = UMA_STREAM_VERSION; 5450 ush.ush_maxcpus = (mp_maxid + 1); 5451 ush.ush_count = count; 5452 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 5453 5454 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5455 kfree = pages = 0; 5456 for (i = 0; i < vm_ndomains; i++) { 5457 kfree += kz->uk_domain[i].ud_free_items; 5458 pages += kz->uk_domain[i].ud_pages; 5459 } 5460 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5461 bzero(&uth, sizeof(uth)); 5462 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 5463 uth.uth_align = kz->uk_align; 5464 uth.uth_size = kz->uk_size; 5465 uth.uth_rsize = kz->uk_rsize; 5466 if (z->uz_max_items > 0) { 5467 items = UZ_ITEMS_COUNT(z->uz_items); 5468 uth.uth_pages = (items / kz->uk_ipers) * 5469 kz->uk_ppera; 5470 } else 5471 uth.uth_pages = pages; 5472 uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) * 5473 kz->uk_ppera; 5474 uth.uth_limit = z->uz_max_items; 5475 uth.uth_keg_free = kfree; 5476 5477 /* 5478 * A zone is secondary is it is not the first entry 5479 * on the keg's zone list. 5480 */ 5481 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 5482 (LIST_FIRST(&kz->uk_zones) != z)) 5483 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 5484 uma_vm_zone_stats(&uth, z, &sbuf, ups, 5485 kz->uk_flags & UMA_ZFLAG_INTERNAL); 5486 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 5487 for (i = 0; i < mp_maxid + 1; i++) 5488 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 5489 } 5490 } 5491 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5492 bzero(&uth, sizeof(uth)); 5493 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 5494 uth.uth_size = z->uz_size; 5495 uma_vm_zone_stats(&uth, z, &sbuf, ups, false); 5496 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 5497 for (i = 0; i < mp_maxid + 1; i++) 5498 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 5499 } 5500 5501 rw_runlock(&uma_rwlock); 5502 error = sbuf_finish(&sbuf); 5503 sbuf_delete(&sbuf); 5504 free(ups, M_TEMP); 5505 return (error); 5506 } 5507 5508 int 5509 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 5510 { 5511 uma_zone_t zone = *(uma_zone_t *)arg1; 5512 int error, max; 5513 5514 max = uma_zone_get_max(zone); 5515 error = sysctl_handle_int(oidp, &max, 0, req); 5516 if (error || !req->newptr) 5517 return (error); 5518 5519 uma_zone_set_max(zone, max); 5520 5521 return (0); 5522 } 5523 5524 int 5525 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 5526 { 5527 uma_zone_t zone; 5528 int cur; 5529 5530 /* 5531 * Some callers want to add sysctls for global zones that 5532 * may not yet exist so they pass a pointer to a pointer. 5533 */ 5534 if (arg2 == 0) 5535 zone = *(uma_zone_t *)arg1; 5536 else 5537 zone = arg1; 5538 cur = uma_zone_get_cur(zone); 5539 return (sysctl_handle_int(oidp, &cur, 0, req)); 5540 } 5541 5542 static int 5543 sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS) 5544 { 5545 uma_zone_t zone = arg1; 5546 uint64_t cur; 5547 5548 cur = uma_zone_get_allocs(zone); 5549 return (sysctl_handle_64(oidp, &cur, 0, req)); 5550 } 5551 5552 static int 5553 sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS) 5554 { 5555 uma_zone_t zone = arg1; 5556 uint64_t cur; 5557 5558 cur = uma_zone_get_frees(zone); 5559 return (sysctl_handle_64(oidp, &cur, 0, req)); 5560 } 5561 5562 static int 5563 sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS) 5564 { 5565 struct sbuf sbuf; 5566 uma_zone_t zone = arg1; 5567 int error; 5568 5569 sbuf_new_for_sysctl(&sbuf, NULL, 0, req); 5570 if (zone->uz_flags != 0) 5571 sbuf_printf(&sbuf, "0x%b", zone->uz_flags, PRINT_UMA_ZFLAGS); 5572 else 5573 sbuf_printf(&sbuf, "0"); 5574 error = sbuf_finish(&sbuf); 5575 sbuf_delete(&sbuf); 5576 5577 return (error); 5578 } 5579 5580 static int 5581 sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS) 5582 { 5583 uma_keg_t keg = arg1; 5584 int avail, effpct, total; 5585 5586 total = keg->uk_ppera * PAGE_SIZE; 5587 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0) 5588 total += slabzone(keg->uk_ipers)->uz_keg->uk_rsize; 5589 /* 5590 * We consider the client's requested size and alignment here, not the 5591 * real size determination uk_rsize, because we also adjust the real 5592 * size for internal implementation reasons (max bitset size). 5593 */ 5594 avail = keg->uk_ipers * roundup2(keg->uk_size, keg->uk_align + 1); 5595 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 5596 avail *= mp_maxid + 1; 5597 effpct = 100 * avail / total; 5598 return (sysctl_handle_int(oidp, &effpct, 0, req)); 5599 } 5600 5601 static int 5602 sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS) 5603 { 5604 uma_zone_t zone = arg1; 5605 uint64_t cur; 5606 5607 cur = UZ_ITEMS_COUNT(atomic_load_64(&zone->uz_items)); 5608 return (sysctl_handle_64(oidp, &cur, 0, req)); 5609 } 5610 5611 #ifdef INVARIANTS 5612 static uma_slab_t 5613 uma_dbg_getslab(uma_zone_t zone, void *item) 5614 { 5615 uma_slab_t slab; 5616 uma_keg_t keg; 5617 uint8_t *mem; 5618 5619 /* 5620 * It is safe to return the slab here even though the 5621 * zone is unlocked because the item's allocation state 5622 * essentially holds a reference. 5623 */ 5624 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 5625 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5626 return (NULL); 5627 if (zone->uz_flags & UMA_ZFLAG_VTOSLAB) 5628 return (vtoslab((vm_offset_t)mem)); 5629 keg = zone->uz_keg; 5630 if ((keg->uk_flags & UMA_ZFLAG_HASH) == 0) 5631 return ((uma_slab_t)(mem + keg->uk_pgoff)); 5632 KEG_LOCK(keg, 0); 5633 slab = hash_sfind(&keg->uk_hash, mem); 5634 KEG_UNLOCK(keg, 0); 5635 5636 return (slab); 5637 } 5638 5639 static bool 5640 uma_dbg_zskip(uma_zone_t zone, void *mem) 5641 { 5642 5643 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5644 return (true); 5645 5646 return (uma_dbg_kskip(zone->uz_keg, mem)); 5647 } 5648 5649 static bool 5650 uma_dbg_kskip(uma_keg_t keg, void *mem) 5651 { 5652 uintptr_t idx; 5653 5654 if (dbg_divisor == 0) 5655 return (true); 5656 5657 if (dbg_divisor == 1) 5658 return (false); 5659 5660 idx = (uintptr_t)mem >> PAGE_SHIFT; 5661 if (keg->uk_ipers > 1) { 5662 idx *= keg->uk_ipers; 5663 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize; 5664 } 5665 5666 if ((idx / dbg_divisor) * dbg_divisor != idx) { 5667 counter_u64_add(uma_skip_cnt, 1); 5668 return (true); 5669 } 5670 counter_u64_add(uma_dbg_cnt, 1); 5671 5672 return (false); 5673 } 5674 5675 /* 5676 * Set up the slab's freei data such that uma_dbg_free can function. 5677 * 5678 */ 5679 static void 5680 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 5681 { 5682 uma_keg_t keg; 5683 int freei; 5684 5685 if (slab == NULL) { 5686 slab = uma_dbg_getslab(zone, item); 5687 if (slab == NULL) 5688 panic("uma: item %p did not belong to zone %s", 5689 item, zone->uz_name); 5690 } 5691 keg = zone->uz_keg; 5692 freei = slab_item_index(slab, keg, item); 5693 5694 if (BIT_TEST_SET_ATOMIC(keg->uk_ipers, freei, 5695 slab_dbg_bits(slab, keg))) 5696 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)", 5697 item, zone, zone->uz_name, slab, freei); 5698 } 5699 5700 /* 5701 * Verifies freed addresses. Checks for alignment, valid slab membership 5702 * and duplicate frees. 5703 * 5704 */ 5705 static void 5706 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 5707 { 5708 uma_keg_t keg; 5709 int freei; 5710 5711 if (slab == NULL) { 5712 slab = uma_dbg_getslab(zone, item); 5713 if (slab == NULL) 5714 panic("uma: Freed item %p did not belong to zone %s", 5715 item, zone->uz_name); 5716 } 5717 keg = zone->uz_keg; 5718 freei = slab_item_index(slab, keg, item); 5719 5720 if (freei >= keg->uk_ipers) 5721 panic("Invalid free of %p from zone %p(%s) slab %p(%d)", 5722 item, zone, zone->uz_name, slab, freei); 5723 5724 if (slab_item(slab, keg, freei) != item) 5725 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)", 5726 item, zone, zone->uz_name, slab, freei); 5727 5728 if (!BIT_TEST_CLR_ATOMIC(keg->uk_ipers, freei, 5729 slab_dbg_bits(slab, keg))) 5730 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)", 5731 item, zone, zone->uz_name, slab, freei); 5732 } 5733 #endif /* INVARIANTS */ 5734 5735 #ifdef DDB 5736 static int64_t 5737 get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used, 5738 uint64_t *sleeps, long *cachefree, uint64_t *xdomain) 5739 { 5740 uint64_t frees; 5741 int i; 5742 5743 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 5744 *allocs = counter_u64_fetch(z->uz_allocs); 5745 frees = counter_u64_fetch(z->uz_frees); 5746 *sleeps = z->uz_sleeps; 5747 *cachefree = 0; 5748 *xdomain = 0; 5749 } else 5750 uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps, 5751 xdomain); 5752 for (i = 0; i < vm_ndomains; i++) { 5753 *cachefree += ZDOM_GET(z, i)->uzd_nitems; 5754 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 5755 (LIST_FIRST(&kz->uk_zones) != z))) 5756 *cachefree += kz->uk_domain[i].ud_free_items; 5757 } 5758 *used = *allocs - frees; 5759 return (((int64_t)*used + *cachefree) * kz->uk_size); 5760 } 5761 5762 DB_SHOW_COMMAND(uma, db_show_uma) 5763 { 5764 const char *fmt_hdr, *fmt_entry; 5765 uma_keg_t kz; 5766 uma_zone_t z; 5767 uint64_t allocs, used, sleeps, xdomain; 5768 long cachefree; 5769 /* variables for sorting */ 5770 uma_keg_t cur_keg; 5771 uma_zone_t cur_zone, last_zone; 5772 int64_t cur_size, last_size, size; 5773 int ties; 5774 5775 /* /i option produces machine-parseable CSV output */ 5776 if (modif[0] == 'i') { 5777 fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n"; 5778 fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n"; 5779 } else { 5780 fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n"; 5781 fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n"; 5782 } 5783 5784 db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests", 5785 "Sleeps", "Bucket", "Total Mem", "XFree"); 5786 5787 /* Sort the zones with largest size first. */ 5788 last_zone = NULL; 5789 last_size = INT64_MAX; 5790 for (;;) { 5791 cur_zone = NULL; 5792 cur_size = -1; 5793 ties = 0; 5794 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5795 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5796 /* 5797 * In the case of size ties, print out zones 5798 * in the order they are encountered. That is, 5799 * when we encounter the most recently output 5800 * zone, we have already printed all preceding 5801 * ties, and we must print all following ties. 5802 */ 5803 if (z == last_zone) { 5804 ties = 1; 5805 continue; 5806 } 5807 size = get_uma_stats(kz, z, &allocs, &used, 5808 &sleeps, &cachefree, &xdomain); 5809 if (size > cur_size && size < last_size + ties) 5810 { 5811 cur_size = size; 5812 cur_zone = z; 5813 cur_keg = kz; 5814 } 5815 } 5816 } 5817 if (cur_zone == NULL) 5818 break; 5819 5820 size = get_uma_stats(cur_keg, cur_zone, &allocs, &used, 5821 &sleeps, &cachefree, &xdomain); 5822 db_printf(fmt_entry, cur_zone->uz_name, 5823 (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree, 5824 (uintmax_t)allocs, (uintmax_t)sleeps, 5825 (unsigned)cur_zone->uz_bucket_size, (intmax_t)size, 5826 xdomain); 5827 5828 if (db_pager_quit) 5829 return; 5830 last_zone = cur_zone; 5831 last_size = cur_size; 5832 } 5833 } 5834 5835 DB_SHOW_COMMAND(umacache, db_show_umacache) 5836 { 5837 uma_zone_t z; 5838 uint64_t allocs, frees; 5839 long cachefree; 5840 int i; 5841 5842 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 5843 "Requests", "Bucket"); 5844 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5845 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL); 5846 for (i = 0; i < vm_ndomains; i++) 5847 cachefree += ZDOM_GET(z, i)->uzd_nitems; 5848 db_printf("%18s %8ju %8jd %8ld %12ju %8u\n", 5849 z->uz_name, (uintmax_t)z->uz_size, 5850 (intmax_t)(allocs - frees), cachefree, 5851 (uintmax_t)allocs, z->uz_bucket_size); 5852 if (db_pager_quit) 5853 return; 5854 } 5855 } 5856 #endif /* DDB */ 5857