xref: /freebsd/sys/vm/uma_core.c (revision be181ee2a28aa2b4b0e76684bce9f673ef668874)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org>
5  * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
6  * Copyright (c) 2004-2006 Robert N. M. Watson
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice unmodified, this list of conditions, and the following
14  *    disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 /*
32  * uma_core.c  Implementation of the Universal Memory allocator
33  *
34  * This allocator is intended to replace the multitude of similar object caches
35  * in the standard FreeBSD kernel.  The intent is to be flexible as well as
36  * efficient.  A primary design goal is to return unused memory to the rest of
37  * the system.  This will make the system as a whole more flexible due to the
38  * ability to move memory to subsystems which most need it instead of leaving
39  * pools of reserved memory unused.
40  *
41  * The basic ideas stem from similar slab/zone based allocators whose algorithms
42  * are well known.
43  *
44  */
45 
46 /*
47  * TODO:
48  *	- Improve memory usage for large allocations
49  *	- Investigate cache size adjustments
50  */
51 
52 #include <sys/cdefs.h>
53 __FBSDID("$FreeBSD$");
54 
55 #include "opt_ddb.h"
56 #include "opt_param.h"
57 #include "opt_vm.h"
58 
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/asan.h>
62 #include <sys/bitset.h>
63 #include <sys/domainset.h>
64 #include <sys/eventhandler.h>
65 #include <sys/kernel.h>
66 #include <sys/types.h>
67 #include <sys/limits.h>
68 #include <sys/queue.h>
69 #include <sys/malloc.h>
70 #include <sys/ktr.h>
71 #include <sys/lock.h>
72 #include <sys/msan.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/random.h>
76 #include <sys/rwlock.h>
77 #include <sys/sbuf.h>
78 #include <sys/sched.h>
79 #include <sys/sleepqueue.h>
80 #include <sys/smp.h>
81 #include <sys/smr.h>
82 #include <sys/sysctl.h>
83 #include <sys/taskqueue.h>
84 #include <sys/vmmeter.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/vm_domainset.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_phys.h>
93 #include <vm/vm_pagequeue.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vm_dumpset.h>
98 #include <vm/uma.h>
99 #include <vm/uma_int.h>
100 #include <vm/uma_dbg.h>
101 
102 #include <ddb/ddb.h>
103 
104 #ifdef DEBUG_MEMGUARD
105 #include <vm/memguard.h>
106 #endif
107 
108 #include <machine/md_var.h>
109 
110 #ifdef INVARIANTS
111 #define	UMA_ALWAYS_CTORDTOR	1
112 #else
113 #define	UMA_ALWAYS_CTORDTOR	0
114 #endif
115 
116 /*
117  * This is the zone and keg from which all zones are spawned.
118  */
119 static uma_zone_t kegs;
120 static uma_zone_t zones;
121 
122 /*
123  * On INVARIANTS builds, the slab contains a second bitset of the same size,
124  * "dbg_bits", which is laid out immediately after us_free.
125  */
126 #ifdef INVARIANTS
127 #define	SLAB_BITSETS	2
128 #else
129 #define	SLAB_BITSETS	1
130 #endif
131 
132 /*
133  * These are the two zones from which all offpage uma_slab_ts are allocated.
134  *
135  * One zone is for slab headers that can represent a larger number of items,
136  * making the slabs themselves more efficient, and the other zone is for
137  * headers that are smaller and represent fewer items, making the headers more
138  * efficient.
139  */
140 #define	SLABZONE_SIZE(setsize)					\
141     (sizeof(struct uma_hash_slab) + BITSET_SIZE(setsize) * SLAB_BITSETS)
142 #define	SLABZONE0_SETSIZE	(PAGE_SIZE / 16)
143 #define	SLABZONE1_SETSIZE	SLAB_MAX_SETSIZE
144 #define	SLABZONE0_SIZE	SLABZONE_SIZE(SLABZONE0_SETSIZE)
145 #define	SLABZONE1_SIZE	SLABZONE_SIZE(SLABZONE1_SETSIZE)
146 static uma_zone_t slabzones[2];
147 
148 /*
149  * The initial hash tables come out of this zone so they can be allocated
150  * prior to malloc coming up.
151  */
152 static uma_zone_t hashzone;
153 
154 /* The boot-time adjusted value for cache line alignment. */
155 int uma_align_cache = 64 - 1;
156 
157 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
158 static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc");
159 
160 /*
161  * Are we allowed to allocate buckets?
162  */
163 static int bucketdisable = 1;
164 
165 /* Linked list of all kegs in the system */
166 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs);
167 
168 /* Linked list of all cache-only zones in the system */
169 static LIST_HEAD(,uma_zone) uma_cachezones =
170     LIST_HEAD_INITIALIZER(uma_cachezones);
171 
172 /*
173  * Mutex for global lists: uma_kegs, uma_cachezones, and the per-keg list of
174  * zones.
175  */
176 static struct rwlock_padalign __exclusive_cache_line uma_rwlock;
177 
178 static struct sx uma_reclaim_lock;
179 
180 /*
181  * First available virual address for boot time allocations.
182  */
183 static vm_offset_t bootstart;
184 static vm_offset_t bootmem;
185 
186 /*
187  * kmem soft limit, initialized by uma_set_limit().  Ensure that early
188  * allocations don't trigger a wakeup of the reclaim thread.
189  */
190 unsigned long uma_kmem_limit = LONG_MAX;
191 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0,
192     "UMA kernel memory soft limit");
193 unsigned long uma_kmem_total;
194 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0,
195     "UMA kernel memory usage");
196 
197 /* Is the VM done starting up? */
198 static enum {
199 	BOOT_COLD,
200 	BOOT_KVA,
201 	BOOT_PCPU,
202 	BOOT_RUNNING,
203 	BOOT_SHUTDOWN,
204 } booted = BOOT_COLD;
205 
206 /*
207  * This is the handle used to schedule events that need to happen
208  * outside of the allocation fast path.
209  */
210 static struct timeout_task uma_timeout_task;
211 #define	UMA_TIMEOUT	20		/* Seconds for callout interval. */
212 
213 /*
214  * This structure is passed as the zone ctor arg so that I don't have to create
215  * a special allocation function just for zones.
216  */
217 struct uma_zctor_args {
218 	const char *name;
219 	size_t size;
220 	uma_ctor ctor;
221 	uma_dtor dtor;
222 	uma_init uminit;
223 	uma_fini fini;
224 	uma_import import;
225 	uma_release release;
226 	void *arg;
227 	uma_keg_t keg;
228 	int align;
229 	uint32_t flags;
230 };
231 
232 struct uma_kctor_args {
233 	uma_zone_t zone;
234 	size_t size;
235 	uma_init uminit;
236 	uma_fini fini;
237 	int align;
238 	uint32_t flags;
239 };
240 
241 struct uma_bucket_zone {
242 	uma_zone_t	ubz_zone;
243 	const char	*ubz_name;
244 	int		ubz_entries;	/* Number of items it can hold. */
245 	int		ubz_maxsize;	/* Maximum allocation size per-item. */
246 };
247 
248 /*
249  * Compute the actual number of bucket entries to pack them in power
250  * of two sizes for more efficient space utilization.
251  */
252 #define	BUCKET_SIZE(n)						\
253     (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *))
254 
255 #define	BUCKET_MAX	BUCKET_SIZE(256)
256 
257 struct uma_bucket_zone bucket_zones[] = {
258 	/* Literal bucket sizes. */
259 	{ NULL, "2 Bucket", 2, 4096 },
260 	{ NULL, "4 Bucket", 4, 3072 },
261 	{ NULL, "8 Bucket", 8, 2048 },
262 	{ NULL, "16 Bucket", 16, 1024 },
263 	/* Rounded down power of 2 sizes for efficiency. */
264 	{ NULL, "32 Bucket", BUCKET_SIZE(32), 512 },
265 	{ NULL, "64 Bucket", BUCKET_SIZE(64), 256 },
266 	{ NULL, "128 Bucket", BUCKET_SIZE(128), 128 },
267 	{ NULL, "256 Bucket", BUCKET_SIZE(256), 64 },
268 	{ NULL, NULL, 0}
269 };
270 
271 /*
272  * Flags and enumerations to be passed to internal functions.
273  */
274 enum zfreeskip {
275 	SKIP_NONE =	0,
276 	SKIP_CNT =	0x00000001,
277 	SKIP_DTOR =	0x00010000,
278 	SKIP_FINI =	0x00020000,
279 };
280 
281 /* Prototypes.. */
282 
283 void	uma_startup1(vm_offset_t);
284 void	uma_startup2(void);
285 
286 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
287 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
288 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
289 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
290 static void *contig_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
291 static void page_free(void *, vm_size_t, uint8_t);
292 static void pcpu_page_free(void *, vm_size_t, uint8_t);
293 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int);
294 static void cache_drain(uma_zone_t);
295 static void bucket_drain(uma_zone_t, uma_bucket_t);
296 static void bucket_cache_reclaim(uma_zone_t zone, bool, int);
297 static bool bucket_cache_reclaim_domain(uma_zone_t, bool, bool, int);
298 static int keg_ctor(void *, int, void *, int);
299 static void keg_dtor(void *, int, void *);
300 static void keg_drain(uma_keg_t keg, int domain);
301 static int zone_ctor(void *, int, void *, int);
302 static void zone_dtor(void *, int, void *);
303 static inline void item_dtor(uma_zone_t zone, void *item, int size,
304     void *udata, enum zfreeskip skip);
305 static int zero_init(void *, int, int);
306 static void zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata,
307     int itemdomain, bool ws);
308 static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *);
309 static void zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *), void *);
310 static void zone_timeout(uma_zone_t zone, void *);
311 static int hash_alloc(struct uma_hash *, u_int);
312 static int hash_expand(struct uma_hash *, struct uma_hash *);
313 static void hash_free(struct uma_hash *hash);
314 static void uma_timeout(void *, int);
315 static void uma_shutdown(void);
316 static void *zone_alloc_item(uma_zone_t, void *, int, int);
317 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip);
318 static int zone_alloc_limit(uma_zone_t zone, int count, int flags);
319 static void zone_free_limit(uma_zone_t zone, int count);
320 static void bucket_enable(void);
321 static void bucket_init(void);
322 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int);
323 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *);
324 static void bucket_zone_drain(int domain);
325 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int);
326 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab);
327 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item);
328 static size_t slab_sizeof(int nitems);
329 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
330     uma_fini fini, int align, uint32_t flags);
331 static int zone_import(void *, void **, int, int, int);
332 static void zone_release(void *, void **, int);
333 static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int);
334 static bool cache_free(uma_zone_t, uma_cache_t, void *, int);
335 
336 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
337 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
338 static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS);
339 static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS);
340 static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS);
341 static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS);
342 static int sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS);
343 
344 static uint64_t uma_zone_get_allocs(uma_zone_t zone);
345 
346 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
347     "Memory allocation debugging");
348 
349 #ifdef INVARIANTS
350 static uint64_t uma_keg_get_allocs(uma_keg_t zone);
351 static inline struct noslabbits *slab_dbg_bits(uma_slab_t slab, uma_keg_t keg);
352 
353 static bool uma_dbg_kskip(uma_keg_t keg, void *mem);
354 static bool uma_dbg_zskip(uma_zone_t zone, void *mem);
355 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item);
356 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item);
357 
358 static u_int dbg_divisor = 1;
359 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor,
360     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0,
361     "Debug & thrash every this item in memory allocator");
362 
363 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER;
364 static counter_u64_t uma_skip_cnt = EARLY_COUNTER;
365 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD,
366     &uma_dbg_cnt, "memory items debugged");
367 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD,
368     &uma_skip_cnt, "memory items skipped, not debugged");
369 #endif
370 
371 SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
372     "Universal Memory Allocator");
373 
374 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_INT,
375     0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
376 
377 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_STRUCT,
378     0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
379 
380 static int zone_warnings = 1;
381 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0,
382     "Warn when UMA zones becomes full");
383 
384 static int multipage_slabs = 1;
385 TUNABLE_INT("vm.debug.uma_multipage_slabs", &multipage_slabs);
386 SYSCTL_INT(_vm_debug, OID_AUTO, uma_multipage_slabs,
387     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &multipage_slabs, 0,
388     "UMA may choose larger slab sizes for better efficiency");
389 
390 /*
391  * Select the slab zone for an offpage slab with the given maximum item count.
392  */
393 static inline uma_zone_t
394 slabzone(int ipers)
395 {
396 
397 	return (slabzones[ipers > SLABZONE0_SETSIZE]);
398 }
399 
400 /*
401  * This routine checks to see whether or not it's safe to enable buckets.
402  */
403 static void
404 bucket_enable(void)
405 {
406 
407 	KASSERT(booted >= BOOT_KVA, ("Bucket enable before init"));
408 	bucketdisable = vm_page_count_min();
409 }
410 
411 /*
412  * Initialize bucket_zones, the array of zones of buckets of various sizes.
413  *
414  * For each zone, calculate the memory required for each bucket, consisting
415  * of the header and an array of pointers.
416  */
417 static void
418 bucket_init(void)
419 {
420 	struct uma_bucket_zone *ubz;
421 	int size;
422 
423 	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) {
424 		size = roundup(sizeof(struct uma_bucket), sizeof(void *));
425 		size += sizeof(void *) * ubz->ubz_entries;
426 		ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
427 		    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
428 		    UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET |
429 		    UMA_ZONE_FIRSTTOUCH);
430 	}
431 }
432 
433 /*
434  * Given a desired number of entries for a bucket, return the zone from which
435  * to allocate the bucket.
436  */
437 static struct uma_bucket_zone *
438 bucket_zone_lookup(int entries)
439 {
440 	struct uma_bucket_zone *ubz;
441 
442 	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
443 		if (ubz->ubz_entries >= entries)
444 			return (ubz);
445 	ubz--;
446 	return (ubz);
447 }
448 
449 static int
450 bucket_select(int size)
451 {
452 	struct uma_bucket_zone *ubz;
453 
454 	ubz = &bucket_zones[0];
455 	if (size > ubz->ubz_maxsize)
456 		return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1);
457 
458 	for (; ubz->ubz_entries != 0; ubz++)
459 		if (ubz->ubz_maxsize < size)
460 			break;
461 	ubz--;
462 	return (ubz->ubz_entries);
463 }
464 
465 static uma_bucket_t
466 bucket_alloc(uma_zone_t zone, void *udata, int flags)
467 {
468 	struct uma_bucket_zone *ubz;
469 	uma_bucket_t bucket;
470 
471 	/*
472 	 * Don't allocate buckets early in boot.
473 	 */
474 	if (__predict_false(booted < BOOT_KVA))
475 		return (NULL);
476 
477 	/*
478 	 * To limit bucket recursion we store the original zone flags
479 	 * in a cookie passed via zalloc_arg/zfree_arg.  This allows the
480 	 * NOVM flag to persist even through deep recursions.  We also
481 	 * store ZFLAG_BUCKET once we have recursed attempting to allocate
482 	 * a bucket for a bucket zone so we do not allow infinite bucket
483 	 * recursion.  This cookie will even persist to frees of unused
484 	 * buckets via the allocation path or bucket allocations in the
485 	 * free path.
486 	 */
487 	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
488 		udata = (void *)(uintptr_t)zone->uz_flags;
489 	else {
490 		if ((uintptr_t)udata & UMA_ZFLAG_BUCKET)
491 			return (NULL);
492 		udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET);
493 	}
494 	if (((uintptr_t)udata & UMA_ZONE_VM) != 0)
495 		flags |= M_NOVM;
496 	ubz = bucket_zone_lookup(atomic_load_16(&zone->uz_bucket_size));
497 	if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0)
498 		ubz++;
499 	bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags);
500 	if (bucket) {
501 #ifdef INVARIANTS
502 		bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
503 #endif
504 		bucket->ub_cnt = 0;
505 		bucket->ub_entries = min(ubz->ubz_entries,
506 		    zone->uz_bucket_size_max);
507 		bucket->ub_seq = SMR_SEQ_INVALID;
508 		CTR3(KTR_UMA, "bucket_alloc: zone %s(%p) allocated bucket %p",
509 		    zone->uz_name, zone, bucket);
510 	}
511 
512 	return (bucket);
513 }
514 
515 static void
516 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata)
517 {
518 	struct uma_bucket_zone *ubz;
519 
520 	if (bucket->ub_cnt != 0)
521 		bucket_drain(zone, bucket);
522 
523 	KASSERT(bucket->ub_cnt == 0,
524 	    ("bucket_free: Freeing a non free bucket."));
525 	KASSERT(bucket->ub_seq == SMR_SEQ_INVALID,
526 	    ("bucket_free: Freeing an SMR bucket."));
527 	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
528 		udata = (void *)(uintptr_t)zone->uz_flags;
529 	ubz = bucket_zone_lookup(bucket->ub_entries);
530 	uma_zfree_arg(ubz->ubz_zone, bucket, udata);
531 }
532 
533 static void
534 bucket_zone_drain(int domain)
535 {
536 	struct uma_bucket_zone *ubz;
537 
538 	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
539 		uma_zone_reclaim_domain(ubz->ubz_zone, UMA_RECLAIM_DRAIN,
540 		    domain);
541 }
542 
543 #ifdef KASAN
544 _Static_assert(UMA_SMALLEST_UNIT % KASAN_SHADOW_SCALE == 0,
545     "Base UMA allocation size not a multiple of the KASAN scale factor");
546 
547 static void
548 kasan_mark_item_valid(uma_zone_t zone, void *item)
549 {
550 	void *pcpu_item;
551 	size_t sz, rsz;
552 	int i;
553 
554 	if ((zone->uz_flags & UMA_ZONE_NOKASAN) != 0)
555 		return;
556 
557 	sz = zone->uz_size;
558 	rsz = roundup2(sz, KASAN_SHADOW_SCALE);
559 	if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) {
560 		kasan_mark(item, sz, rsz, KASAN_GENERIC_REDZONE);
561 	} else {
562 		pcpu_item = zpcpu_base_to_offset(item);
563 		for (i = 0; i <= mp_maxid; i++)
564 			kasan_mark(zpcpu_get_cpu(pcpu_item, i), sz, rsz,
565 			    KASAN_GENERIC_REDZONE);
566 	}
567 }
568 
569 static void
570 kasan_mark_item_invalid(uma_zone_t zone, void *item)
571 {
572 	void *pcpu_item;
573 	size_t sz;
574 	int i;
575 
576 	if ((zone->uz_flags & UMA_ZONE_NOKASAN) != 0)
577 		return;
578 
579 	sz = roundup2(zone->uz_size, KASAN_SHADOW_SCALE);
580 	if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) {
581 		kasan_mark(item, 0, sz, KASAN_UMA_FREED);
582 	} else {
583 		pcpu_item = zpcpu_base_to_offset(item);
584 		for (i = 0; i <= mp_maxid; i++)
585 			kasan_mark(zpcpu_get_cpu(pcpu_item, i), 0, sz,
586 			    KASAN_UMA_FREED);
587 	}
588 }
589 
590 static void
591 kasan_mark_slab_valid(uma_keg_t keg, void *mem)
592 {
593 	size_t sz;
594 
595 	if ((keg->uk_flags & UMA_ZONE_NOKASAN) == 0) {
596 		sz = keg->uk_ppera * PAGE_SIZE;
597 		kasan_mark(mem, sz, sz, 0);
598 	}
599 }
600 
601 static void
602 kasan_mark_slab_invalid(uma_keg_t keg, void *mem)
603 {
604 	size_t sz;
605 
606 	if ((keg->uk_flags & UMA_ZONE_NOKASAN) == 0) {
607 		if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0)
608 			sz = keg->uk_ppera * PAGE_SIZE;
609 		else
610 			sz = keg->uk_pgoff;
611 		kasan_mark(mem, 0, sz, KASAN_UMA_FREED);
612 	}
613 }
614 #else /* !KASAN */
615 static void
616 kasan_mark_item_valid(uma_zone_t zone __unused, void *item __unused)
617 {
618 }
619 
620 static void
621 kasan_mark_item_invalid(uma_zone_t zone __unused, void *item __unused)
622 {
623 }
624 
625 static void
626 kasan_mark_slab_valid(uma_keg_t keg __unused, void *mem __unused)
627 {
628 }
629 
630 static void
631 kasan_mark_slab_invalid(uma_keg_t keg __unused, void *mem __unused)
632 {
633 }
634 #endif /* KASAN */
635 
636 #ifdef KMSAN
637 static inline void
638 kmsan_mark_item_uninitialized(uma_zone_t zone, void *item)
639 {
640 	void *pcpu_item;
641 	size_t sz;
642 	int i;
643 
644 	if ((zone->uz_flags &
645 	    (UMA_ZFLAG_CACHE | UMA_ZONE_SECONDARY | UMA_ZONE_MALLOC)) != 0) {
646 		/*
647 		 * Cache zones should not be instrumented by default, as UMA
648 		 * does not have enough information to do so correctly.
649 		 * Consumers can mark items themselves if it makes sense to do
650 		 * so.
651 		 *
652 		 * Items from secondary zones are initialized by the parent
653 		 * zone and thus cannot safely be marked by UMA.
654 		 *
655 		 * malloc zones are handled directly by malloc(9) and friends,
656 		 * since they can provide more precise origin tracking.
657 		 */
658 		return;
659 	}
660 	if (zone->uz_keg->uk_init != NULL) {
661 		/*
662 		 * By definition, initialized items cannot be marked.  The
663 		 * best we can do is mark items from these zones after they
664 		 * are freed to the keg.
665 		 */
666 		return;
667 	}
668 
669 	sz = zone->uz_size;
670 	if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) {
671 		kmsan_orig(item, sz, KMSAN_TYPE_UMA, KMSAN_RET_ADDR);
672 		kmsan_mark(item, sz, KMSAN_STATE_UNINIT);
673 	} else {
674 		pcpu_item = zpcpu_base_to_offset(item);
675 		for (i = 0; i <= mp_maxid; i++) {
676 			kmsan_orig(zpcpu_get_cpu(pcpu_item, i), sz,
677 			    KMSAN_TYPE_UMA, KMSAN_RET_ADDR);
678 			kmsan_mark(zpcpu_get_cpu(pcpu_item, i), sz,
679 			    KMSAN_STATE_INITED);
680 		}
681 	}
682 }
683 #else /* !KMSAN */
684 static inline void
685 kmsan_mark_item_uninitialized(uma_zone_t zone __unused, void *item __unused)
686 {
687 }
688 #endif /* KMSAN */
689 
690 /*
691  * Acquire the domain lock and record contention.
692  */
693 static uma_zone_domain_t
694 zone_domain_lock(uma_zone_t zone, int domain)
695 {
696 	uma_zone_domain_t zdom;
697 	bool lockfail;
698 
699 	zdom = ZDOM_GET(zone, domain);
700 	lockfail = false;
701 	if (ZDOM_OWNED(zdom))
702 		lockfail = true;
703 	ZDOM_LOCK(zdom);
704 	/* This is unsynchronized.  The counter does not need to be precise. */
705 	if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max)
706 		zone->uz_bucket_size++;
707 	return (zdom);
708 }
709 
710 /*
711  * Search for the domain with the least cached items and return it if it
712  * is out of balance with the preferred domain.
713  */
714 static __noinline int
715 zone_domain_lowest(uma_zone_t zone, int pref)
716 {
717 	long least, nitems, prefitems;
718 	int domain;
719 	int i;
720 
721 	prefitems = least = LONG_MAX;
722 	domain = 0;
723 	for (i = 0; i < vm_ndomains; i++) {
724 		nitems = ZDOM_GET(zone, i)->uzd_nitems;
725 		if (nitems < least) {
726 			domain = i;
727 			least = nitems;
728 		}
729 		if (domain == pref)
730 			prefitems = nitems;
731 	}
732 	if (prefitems < least * 2)
733 		return (pref);
734 
735 	return (domain);
736 }
737 
738 /*
739  * Search for the domain with the most cached items and return it or the
740  * preferred domain if it has enough to proceed.
741  */
742 static __noinline int
743 zone_domain_highest(uma_zone_t zone, int pref)
744 {
745 	long most, nitems;
746 	int domain;
747 	int i;
748 
749 	if (ZDOM_GET(zone, pref)->uzd_nitems > BUCKET_MAX)
750 		return (pref);
751 
752 	most = 0;
753 	domain = 0;
754 	for (i = 0; i < vm_ndomains; i++) {
755 		nitems = ZDOM_GET(zone, i)->uzd_nitems;
756 		if (nitems > most) {
757 			domain = i;
758 			most = nitems;
759 		}
760 	}
761 
762 	return (domain);
763 }
764 
765 /*
766  * Set the maximum imax value.
767  */
768 static void
769 zone_domain_imax_set(uma_zone_domain_t zdom, int nitems)
770 {
771 	long old;
772 
773 	old = zdom->uzd_imax;
774 	do {
775 		if (old >= nitems)
776 			return;
777 	} while (atomic_fcmpset_long(&zdom->uzd_imax, &old, nitems) == 0);
778 
779 	/*
780 	 * We are at new maximum, so do the last WSS update for the old
781 	 * bimin and prepare to measure next allocation batch.
782 	 */
783 	if (zdom->uzd_wss < old - zdom->uzd_bimin)
784 		zdom->uzd_wss = old - zdom->uzd_bimin;
785 	zdom->uzd_bimin = nitems;
786 }
787 
788 /*
789  * Attempt to satisfy an allocation by retrieving a full bucket from one of the
790  * zone's caches.  If a bucket is found the zone is not locked on return.
791  */
792 static uma_bucket_t
793 zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom, bool reclaim)
794 {
795 	uma_bucket_t bucket;
796 	long cnt;
797 	int i;
798 	bool dtor = false;
799 
800 	ZDOM_LOCK_ASSERT(zdom);
801 
802 	if ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) == NULL)
803 		return (NULL);
804 
805 	/* SMR Buckets can not be re-used until readers expire. */
806 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0 &&
807 	    bucket->ub_seq != SMR_SEQ_INVALID) {
808 		if (!smr_poll(zone->uz_smr, bucket->ub_seq, false))
809 			return (NULL);
810 		bucket->ub_seq = SMR_SEQ_INVALID;
811 		dtor = (zone->uz_dtor != NULL) || UMA_ALWAYS_CTORDTOR;
812 		if (STAILQ_NEXT(bucket, ub_link) != NULL)
813 			zdom->uzd_seq = STAILQ_NEXT(bucket, ub_link)->ub_seq;
814 	}
815 	STAILQ_REMOVE_HEAD(&zdom->uzd_buckets, ub_link);
816 
817 	KASSERT(zdom->uzd_nitems >= bucket->ub_cnt,
818 	    ("%s: item count underflow (%ld, %d)",
819 	    __func__, zdom->uzd_nitems, bucket->ub_cnt));
820 	KASSERT(bucket->ub_cnt > 0,
821 	    ("%s: empty bucket in bucket cache", __func__));
822 	zdom->uzd_nitems -= bucket->ub_cnt;
823 
824 	if (reclaim) {
825 		/*
826 		 * Shift the bounds of the current WSS interval to avoid
827 		 * perturbing the estimates.
828 		 */
829 		cnt = lmin(zdom->uzd_bimin, bucket->ub_cnt);
830 		atomic_subtract_long(&zdom->uzd_imax, cnt);
831 		zdom->uzd_bimin -= cnt;
832 		zdom->uzd_imin -= lmin(zdom->uzd_imin, bucket->ub_cnt);
833 		if (zdom->uzd_limin >= bucket->ub_cnt) {
834 			zdom->uzd_limin -= bucket->ub_cnt;
835 		} else {
836 			zdom->uzd_limin = 0;
837 			zdom->uzd_timin = 0;
838 		}
839 	} else if (zdom->uzd_bimin > zdom->uzd_nitems) {
840 		zdom->uzd_bimin = zdom->uzd_nitems;
841 		if (zdom->uzd_imin > zdom->uzd_nitems)
842 			zdom->uzd_imin = zdom->uzd_nitems;
843 	}
844 
845 	ZDOM_UNLOCK(zdom);
846 	if (dtor)
847 		for (i = 0; i < bucket->ub_cnt; i++)
848 			item_dtor(zone, bucket->ub_bucket[i], zone->uz_size,
849 			    NULL, SKIP_NONE);
850 
851 	return (bucket);
852 }
853 
854 /*
855  * Insert a full bucket into the specified cache.  The "ws" parameter indicates
856  * whether the bucket's contents should be counted as part of the zone's working
857  * set.  The bucket may be freed if it exceeds the bucket limit.
858  */
859 static void
860 zone_put_bucket(uma_zone_t zone, int domain, uma_bucket_t bucket, void *udata,
861     const bool ws)
862 {
863 	uma_zone_domain_t zdom;
864 
865 	/* We don't cache empty buckets.  This can happen after a reclaim. */
866 	if (bucket->ub_cnt == 0)
867 		goto out;
868 	zdom = zone_domain_lock(zone, domain);
869 
870 	/*
871 	 * Conditionally set the maximum number of items.
872 	 */
873 	zdom->uzd_nitems += bucket->ub_cnt;
874 	if (__predict_true(zdom->uzd_nitems < zone->uz_bucket_max)) {
875 		if (ws) {
876 			zone_domain_imax_set(zdom, zdom->uzd_nitems);
877 		} else {
878 			/*
879 			 * Shift the bounds of the current WSS interval to
880 			 * avoid perturbing the estimates.
881 			 */
882 			atomic_add_long(&zdom->uzd_imax, bucket->ub_cnt);
883 			zdom->uzd_imin += bucket->ub_cnt;
884 			zdom->uzd_bimin += bucket->ub_cnt;
885 			zdom->uzd_limin += bucket->ub_cnt;
886 		}
887 		if (STAILQ_EMPTY(&zdom->uzd_buckets))
888 			zdom->uzd_seq = bucket->ub_seq;
889 
890 		/*
891 		 * Try to promote reuse of recently used items.  For items
892 		 * protected by SMR, try to defer reuse to minimize polling.
893 		 */
894 		if (bucket->ub_seq == SMR_SEQ_INVALID)
895 			STAILQ_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link);
896 		else
897 			STAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link);
898 		ZDOM_UNLOCK(zdom);
899 		return;
900 	}
901 	zdom->uzd_nitems -= bucket->ub_cnt;
902 	ZDOM_UNLOCK(zdom);
903 out:
904 	bucket_free(zone, bucket, udata);
905 }
906 
907 /* Pops an item out of a per-cpu cache bucket. */
908 static inline void *
909 cache_bucket_pop(uma_cache_t cache, uma_cache_bucket_t bucket)
910 {
911 	void *item;
912 
913 	CRITICAL_ASSERT(curthread);
914 
915 	bucket->ucb_cnt--;
916 	item = bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt];
917 #ifdef INVARIANTS
918 	bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = NULL;
919 	KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled."));
920 #endif
921 	cache->uc_allocs++;
922 
923 	return (item);
924 }
925 
926 /* Pushes an item into a per-cpu cache bucket. */
927 static inline void
928 cache_bucket_push(uma_cache_t cache, uma_cache_bucket_t bucket, void *item)
929 {
930 
931 	CRITICAL_ASSERT(curthread);
932 	KASSERT(bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] == NULL,
933 	    ("uma_zfree: Freeing to non free bucket index."));
934 
935 	bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = item;
936 	bucket->ucb_cnt++;
937 	cache->uc_frees++;
938 }
939 
940 /*
941  * Unload a UMA bucket from a per-cpu cache.
942  */
943 static inline uma_bucket_t
944 cache_bucket_unload(uma_cache_bucket_t bucket)
945 {
946 	uma_bucket_t b;
947 
948 	b = bucket->ucb_bucket;
949 	if (b != NULL) {
950 		MPASS(b->ub_entries == bucket->ucb_entries);
951 		b->ub_cnt = bucket->ucb_cnt;
952 		bucket->ucb_bucket = NULL;
953 		bucket->ucb_entries = bucket->ucb_cnt = 0;
954 	}
955 
956 	return (b);
957 }
958 
959 static inline uma_bucket_t
960 cache_bucket_unload_alloc(uma_cache_t cache)
961 {
962 
963 	return (cache_bucket_unload(&cache->uc_allocbucket));
964 }
965 
966 static inline uma_bucket_t
967 cache_bucket_unload_free(uma_cache_t cache)
968 {
969 
970 	return (cache_bucket_unload(&cache->uc_freebucket));
971 }
972 
973 static inline uma_bucket_t
974 cache_bucket_unload_cross(uma_cache_t cache)
975 {
976 
977 	return (cache_bucket_unload(&cache->uc_crossbucket));
978 }
979 
980 /*
981  * Load a bucket into a per-cpu cache bucket.
982  */
983 static inline void
984 cache_bucket_load(uma_cache_bucket_t bucket, uma_bucket_t b)
985 {
986 
987 	CRITICAL_ASSERT(curthread);
988 	MPASS(bucket->ucb_bucket == NULL);
989 	MPASS(b->ub_seq == SMR_SEQ_INVALID);
990 
991 	bucket->ucb_bucket = b;
992 	bucket->ucb_cnt = b->ub_cnt;
993 	bucket->ucb_entries = b->ub_entries;
994 }
995 
996 static inline void
997 cache_bucket_load_alloc(uma_cache_t cache, uma_bucket_t b)
998 {
999 
1000 	cache_bucket_load(&cache->uc_allocbucket, b);
1001 }
1002 
1003 static inline void
1004 cache_bucket_load_free(uma_cache_t cache, uma_bucket_t b)
1005 {
1006 
1007 	cache_bucket_load(&cache->uc_freebucket, b);
1008 }
1009 
1010 #ifdef NUMA
1011 static inline void
1012 cache_bucket_load_cross(uma_cache_t cache, uma_bucket_t b)
1013 {
1014 
1015 	cache_bucket_load(&cache->uc_crossbucket, b);
1016 }
1017 #endif
1018 
1019 /*
1020  * Copy and preserve ucb_spare.
1021  */
1022 static inline void
1023 cache_bucket_copy(uma_cache_bucket_t b1, uma_cache_bucket_t b2)
1024 {
1025 
1026 	b1->ucb_bucket = b2->ucb_bucket;
1027 	b1->ucb_entries = b2->ucb_entries;
1028 	b1->ucb_cnt = b2->ucb_cnt;
1029 }
1030 
1031 /*
1032  * Swap two cache buckets.
1033  */
1034 static inline void
1035 cache_bucket_swap(uma_cache_bucket_t b1, uma_cache_bucket_t b2)
1036 {
1037 	struct uma_cache_bucket b3;
1038 
1039 	CRITICAL_ASSERT(curthread);
1040 
1041 	cache_bucket_copy(&b3, b1);
1042 	cache_bucket_copy(b1, b2);
1043 	cache_bucket_copy(b2, &b3);
1044 }
1045 
1046 /*
1047  * Attempt to fetch a bucket from a zone on behalf of the current cpu cache.
1048  */
1049 static uma_bucket_t
1050 cache_fetch_bucket(uma_zone_t zone, uma_cache_t cache, int domain)
1051 {
1052 	uma_zone_domain_t zdom;
1053 	uma_bucket_t bucket;
1054 	smr_seq_t seq;
1055 
1056 	/*
1057 	 * Avoid the lock if possible.
1058 	 */
1059 	zdom = ZDOM_GET(zone, domain);
1060 	if (zdom->uzd_nitems == 0)
1061 		return (NULL);
1062 
1063 	if ((cache_uz_flags(cache) & UMA_ZONE_SMR) != 0 &&
1064 	    (seq = atomic_load_32(&zdom->uzd_seq)) != SMR_SEQ_INVALID &&
1065 	    !smr_poll(zone->uz_smr, seq, false))
1066 		return (NULL);
1067 
1068 	/*
1069 	 * Check the zone's cache of buckets.
1070 	 */
1071 	zdom = zone_domain_lock(zone, domain);
1072 	if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL)
1073 		return (bucket);
1074 	ZDOM_UNLOCK(zdom);
1075 
1076 	return (NULL);
1077 }
1078 
1079 static void
1080 zone_log_warning(uma_zone_t zone)
1081 {
1082 	static const struct timeval warninterval = { 300, 0 };
1083 
1084 	if (!zone_warnings || zone->uz_warning == NULL)
1085 		return;
1086 
1087 	if (ratecheck(&zone->uz_ratecheck, &warninterval))
1088 		printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning);
1089 }
1090 
1091 static inline void
1092 zone_maxaction(uma_zone_t zone)
1093 {
1094 
1095 	if (zone->uz_maxaction.ta_func != NULL)
1096 		taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction);
1097 }
1098 
1099 /*
1100  * Routine called by timeout which is used to fire off some time interval
1101  * based calculations.  (stats, hash size, etc.)
1102  *
1103  * Arguments:
1104  *	arg   Unused
1105  *
1106  * Returns:
1107  *	Nothing
1108  */
1109 static void
1110 uma_timeout(void *context __unused, int pending __unused)
1111 {
1112 	bucket_enable();
1113 	zone_foreach(zone_timeout, NULL);
1114 
1115 	/* Reschedule this event */
1116 	taskqueue_enqueue_timeout(taskqueue_thread, &uma_timeout_task,
1117 	    UMA_TIMEOUT * hz);
1118 }
1119 
1120 /*
1121  * Update the working set size estimates for the zone's bucket cache.
1122  * The constants chosen here are somewhat arbitrary.
1123  */
1124 static void
1125 zone_domain_update_wss(uma_zone_domain_t zdom)
1126 {
1127 	long m;
1128 
1129 	ZDOM_LOCK_ASSERT(zdom);
1130 	MPASS(zdom->uzd_imax >= zdom->uzd_nitems);
1131 	MPASS(zdom->uzd_nitems >= zdom->uzd_bimin);
1132 	MPASS(zdom->uzd_bimin >= zdom->uzd_imin);
1133 
1134 	/*
1135 	 * Estimate WSS as modified moving average of biggest allocation
1136 	 * batches for each period over few minutes (UMA_TIMEOUT of 20s).
1137 	 */
1138 	zdom->uzd_wss = lmax(zdom->uzd_wss * 3 / 4,
1139 	    zdom->uzd_imax - zdom->uzd_bimin);
1140 
1141 	/*
1142 	 * Estimate longtime minimum item count as a combination of recent
1143 	 * minimum item count, adjusted by WSS for safety, and the modified
1144 	 * moving average over the last several hours (UMA_TIMEOUT of 20s).
1145 	 * timin measures time since limin tried to go negative, that means
1146 	 * we were dangerously close to or got out of cache.
1147 	 */
1148 	m = zdom->uzd_imin - zdom->uzd_wss;
1149 	if (m >= 0) {
1150 		if (zdom->uzd_limin >= m)
1151 			zdom->uzd_limin = m;
1152 		else
1153 			zdom->uzd_limin = (m + zdom->uzd_limin * 255) / 256;
1154 		zdom->uzd_timin++;
1155 	} else {
1156 		zdom->uzd_limin = 0;
1157 		zdom->uzd_timin = 0;
1158 	}
1159 
1160 	/* To reduce period edge effects on WSS keep half of the imax. */
1161 	atomic_subtract_long(&zdom->uzd_imax,
1162 	    (zdom->uzd_imax - zdom->uzd_nitems + 1) / 2);
1163 	zdom->uzd_imin = zdom->uzd_bimin = zdom->uzd_nitems;
1164 }
1165 
1166 /*
1167  * Routine to perform timeout driven calculations.  This expands the
1168  * hashes and does per cpu statistics aggregation.
1169  *
1170  *  Returns nothing.
1171  */
1172 static void
1173 zone_timeout(uma_zone_t zone, void *unused)
1174 {
1175 	uma_keg_t keg;
1176 	u_int slabs, pages;
1177 
1178 	if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0)
1179 		goto trim;
1180 
1181 	keg = zone->uz_keg;
1182 
1183 	/*
1184 	 * Hash zones are non-numa by definition so the first domain
1185 	 * is the only one present.
1186 	 */
1187 	KEG_LOCK(keg, 0);
1188 	pages = keg->uk_domain[0].ud_pages;
1189 
1190 	/*
1191 	 * Expand the keg hash table.
1192 	 *
1193 	 * This is done if the number of slabs is larger than the hash size.
1194 	 * What I'm trying to do here is completely reduce collisions.  This
1195 	 * may be a little aggressive.  Should I allow for two collisions max?
1196 	 */
1197 	if ((slabs = pages / keg->uk_ppera) > keg->uk_hash.uh_hashsize) {
1198 		struct uma_hash newhash;
1199 		struct uma_hash oldhash;
1200 		int ret;
1201 
1202 		/*
1203 		 * This is so involved because allocating and freeing
1204 		 * while the keg lock is held will lead to deadlock.
1205 		 * I have to do everything in stages and check for
1206 		 * races.
1207 		 */
1208 		KEG_UNLOCK(keg, 0);
1209 		ret = hash_alloc(&newhash, 1 << fls(slabs));
1210 		KEG_LOCK(keg, 0);
1211 		if (ret) {
1212 			if (hash_expand(&keg->uk_hash, &newhash)) {
1213 				oldhash = keg->uk_hash;
1214 				keg->uk_hash = newhash;
1215 			} else
1216 				oldhash = newhash;
1217 
1218 			KEG_UNLOCK(keg, 0);
1219 			hash_free(&oldhash);
1220 			goto trim;
1221 		}
1222 	}
1223 	KEG_UNLOCK(keg, 0);
1224 
1225 trim:
1226 	/* Trim caches not used for a long time. */
1227 	if ((zone->uz_flags & UMA_ZONE_UNMANAGED) == 0) {
1228 		for (int i = 0; i < vm_ndomains; i++) {
1229 			if (bucket_cache_reclaim_domain(zone, false, false, i) &&
1230 			    (zone->uz_flags & UMA_ZFLAG_CACHE) == 0)
1231 				keg_drain(zone->uz_keg, i);
1232 		}
1233 	}
1234 }
1235 
1236 /*
1237  * Allocate and zero fill the next sized hash table from the appropriate
1238  * backing store.
1239  *
1240  * Arguments:
1241  *	hash  A new hash structure with the old hash size in uh_hashsize
1242  *
1243  * Returns:
1244  *	1 on success and 0 on failure.
1245  */
1246 static int
1247 hash_alloc(struct uma_hash *hash, u_int size)
1248 {
1249 	size_t alloc;
1250 
1251 	KASSERT(powerof2(size), ("hash size must be power of 2"));
1252 	if (size > UMA_HASH_SIZE_INIT)  {
1253 		hash->uh_hashsize = size;
1254 		alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
1255 		hash->uh_slab_hash = malloc(alloc, M_UMAHASH, M_NOWAIT);
1256 	} else {
1257 		alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
1258 		hash->uh_slab_hash = zone_alloc_item(hashzone, NULL,
1259 		    UMA_ANYDOMAIN, M_WAITOK);
1260 		hash->uh_hashsize = UMA_HASH_SIZE_INIT;
1261 	}
1262 	if (hash->uh_slab_hash) {
1263 		bzero(hash->uh_slab_hash, alloc);
1264 		hash->uh_hashmask = hash->uh_hashsize - 1;
1265 		return (1);
1266 	}
1267 
1268 	return (0);
1269 }
1270 
1271 /*
1272  * Expands the hash table for HASH zones.  This is done from zone_timeout
1273  * to reduce collisions.  This must not be done in the regular allocation
1274  * path, otherwise, we can recurse on the vm while allocating pages.
1275  *
1276  * Arguments:
1277  *	oldhash  The hash you want to expand
1278  *	newhash  The hash structure for the new table
1279  *
1280  * Returns:
1281  *	Nothing
1282  *
1283  * Discussion:
1284  */
1285 static int
1286 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
1287 {
1288 	uma_hash_slab_t slab;
1289 	u_int hval;
1290 	u_int idx;
1291 
1292 	if (!newhash->uh_slab_hash)
1293 		return (0);
1294 
1295 	if (oldhash->uh_hashsize >= newhash->uh_hashsize)
1296 		return (0);
1297 
1298 	/*
1299 	 * I need to investigate hash algorithms for resizing without a
1300 	 * full rehash.
1301 	 */
1302 
1303 	for (idx = 0; idx < oldhash->uh_hashsize; idx++)
1304 		while (!LIST_EMPTY(&oldhash->uh_slab_hash[idx])) {
1305 			slab = LIST_FIRST(&oldhash->uh_slab_hash[idx]);
1306 			LIST_REMOVE(slab, uhs_hlink);
1307 			hval = UMA_HASH(newhash, slab->uhs_data);
1308 			LIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
1309 			    slab, uhs_hlink);
1310 		}
1311 
1312 	return (1);
1313 }
1314 
1315 /*
1316  * Free the hash bucket to the appropriate backing store.
1317  *
1318  * Arguments:
1319  *	slab_hash  The hash bucket we're freeing
1320  *	hashsize   The number of entries in that hash bucket
1321  *
1322  * Returns:
1323  *	Nothing
1324  */
1325 static void
1326 hash_free(struct uma_hash *hash)
1327 {
1328 	if (hash->uh_slab_hash == NULL)
1329 		return;
1330 	if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
1331 		zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE);
1332 	else
1333 		free(hash->uh_slab_hash, M_UMAHASH);
1334 }
1335 
1336 /*
1337  * Frees all outstanding items in a bucket
1338  *
1339  * Arguments:
1340  *	zone   The zone to free to, must be unlocked.
1341  *	bucket The free/alloc bucket with items.
1342  *
1343  * Returns:
1344  *	Nothing
1345  */
1346 static void
1347 bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
1348 {
1349 	int i;
1350 
1351 	if (bucket->ub_cnt == 0)
1352 		return;
1353 
1354 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0 &&
1355 	    bucket->ub_seq != SMR_SEQ_INVALID) {
1356 		smr_wait(zone->uz_smr, bucket->ub_seq);
1357 		bucket->ub_seq = SMR_SEQ_INVALID;
1358 		for (i = 0; i < bucket->ub_cnt; i++)
1359 			item_dtor(zone, bucket->ub_bucket[i],
1360 			    zone->uz_size, NULL, SKIP_NONE);
1361 	}
1362 	if (zone->uz_fini)
1363 		for (i = 0; i < bucket->ub_cnt; i++) {
1364 			kasan_mark_item_valid(zone, bucket->ub_bucket[i]);
1365 			zone->uz_fini(bucket->ub_bucket[i], zone->uz_size);
1366 			kasan_mark_item_invalid(zone, bucket->ub_bucket[i]);
1367 		}
1368 	zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt);
1369 	if (zone->uz_max_items > 0)
1370 		zone_free_limit(zone, bucket->ub_cnt);
1371 #ifdef INVARIANTS
1372 	bzero(bucket->ub_bucket, sizeof(void *) * bucket->ub_cnt);
1373 #endif
1374 	bucket->ub_cnt = 0;
1375 }
1376 
1377 /*
1378  * Drains the per cpu caches for a zone.
1379  *
1380  * NOTE: This may only be called while the zone is being torn down, and not
1381  * during normal operation.  This is necessary in order that we do not have
1382  * to migrate CPUs to drain the per-CPU caches.
1383  *
1384  * Arguments:
1385  *	zone     The zone to drain, must be unlocked.
1386  *
1387  * Returns:
1388  *	Nothing
1389  */
1390 static void
1391 cache_drain(uma_zone_t zone)
1392 {
1393 	uma_cache_t cache;
1394 	uma_bucket_t bucket;
1395 	smr_seq_t seq;
1396 	int cpu;
1397 
1398 	/*
1399 	 * XXX: It is safe to not lock the per-CPU caches, because we're
1400 	 * tearing down the zone anyway.  I.e., there will be no further use
1401 	 * of the caches at this point.
1402 	 *
1403 	 * XXX: It would good to be able to assert that the zone is being
1404 	 * torn down to prevent improper use of cache_drain().
1405 	 */
1406 	seq = SMR_SEQ_INVALID;
1407 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
1408 		seq = smr_advance(zone->uz_smr);
1409 	CPU_FOREACH(cpu) {
1410 		cache = &zone->uz_cpu[cpu];
1411 		bucket = cache_bucket_unload_alloc(cache);
1412 		if (bucket != NULL)
1413 			bucket_free(zone, bucket, NULL);
1414 		bucket = cache_bucket_unload_free(cache);
1415 		if (bucket != NULL) {
1416 			bucket->ub_seq = seq;
1417 			bucket_free(zone, bucket, NULL);
1418 		}
1419 		bucket = cache_bucket_unload_cross(cache);
1420 		if (bucket != NULL) {
1421 			bucket->ub_seq = seq;
1422 			bucket_free(zone, bucket, NULL);
1423 		}
1424 	}
1425 	bucket_cache_reclaim(zone, true, UMA_ANYDOMAIN);
1426 }
1427 
1428 static void
1429 cache_shrink(uma_zone_t zone, void *unused)
1430 {
1431 
1432 	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
1433 		return;
1434 
1435 	ZONE_LOCK(zone);
1436 	zone->uz_bucket_size =
1437 	    (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2;
1438 	ZONE_UNLOCK(zone);
1439 }
1440 
1441 static void
1442 cache_drain_safe_cpu(uma_zone_t zone, void *unused)
1443 {
1444 	uma_cache_t cache;
1445 	uma_bucket_t b1, b2, b3;
1446 	int domain;
1447 
1448 	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
1449 		return;
1450 
1451 	b1 = b2 = b3 = NULL;
1452 	critical_enter();
1453 	cache = &zone->uz_cpu[curcpu];
1454 	domain = PCPU_GET(domain);
1455 	b1 = cache_bucket_unload_alloc(cache);
1456 
1457 	/*
1458 	 * Don't flush SMR zone buckets.  This leaves the zone without a
1459 	 * bucket and forces every free to synchronize().
1460 	 */
1461 	if ((zone->uz_flags & UMA_ZONE_SMR) == 0) {
1462 		b2 = cache_bucket_unload_free(cache);
1463 		b3 = cache_bucket_unload_cross(cache);
1464 	}
1465 	critical_exit();
1466 
1467 	if (b1 != NULL)
1468 		zone_free_bucket(zone, b1, NULL, domain, false);
1469 	if (b2 != NULL)
1470 		zone_free_bucket(zone, b2, NULL, domain, false);
1471 	if (b3 != NULL) {
1472 		/* Adjust the domain so it goes to zone_free_cross. */
1473 		domain = (domain + 1) % vm_ndomains;
1474 		zone_free_bucket(zone, b3, NULL, domain, false);
1475 	}
1476 }
1477 
1478 /*
1479  * Safely drain per-CPU caches of a zone(s) to alloc bucket.
1480  * This is an expensive call because it needs to bind to all CPUs
1481  * one by one and enter a critical section on each of them in order
1482  * to safely access their cache buckets.
1483  * Zone lock must not be held on call this function.
1484  */
1485 static void
1486 pcpu_cache_drain_safe(uma_zone_t zone)
1487 {
1488 	int cpu;
1489 
1490 	/*
1491 	 * Polite bucket sizes shrinking was not enough, shrink aggressively.
1492 	 */
1493 	if (zone)
1494 		cache_shrink(zone, NULL);
1495 	else
1496 		zone_foreach(cache_shrink, NULL);
1497 
1498 	CPU_FOREACH(cpu) {
1499 		thread_lock(curthread);
1500 		sched_bind(curthread, cpu);
1501 		thread_unlock(curthread);
1502 
1503 		if (zone)
1504 			cache_drain_safe_cpu(zone, NULL);
1505 		else
1506 			zone_foreach(cache_drain_safe_cpu, NULL);
1507 	}
1508 	thread_lock(curthread);
1509 	sched_unbind(curthread);
1510 	thread_unlock(curthread);
1511 }
1512 
1513 /*
1514  * Reclaim cached buckets from a zone.  All buckets are reclaimed if the caller
1515  * requested a drain, otherwise the per-domain caches are trimmed to either
1516  * estimated working set size.
1517  */
1518 static bool
1519 bucket_cache_reclaim_domain(uma_zone_t zone, bool drain, bool trim, int domain)
1520 {
1521 	uma_zone_domain_t zdom;
1522 	uma_bucket_t bucket;
1523 	long target;
1524 	bool done = false;
1525 
1526 	/*
1527 	 * The cross bucket is partially filled and not part of
1528 	 * the item count.  Reclaim it individually here.
1529 	 */
1530 	zdom = ZDOM_GET(zone, domain);
1531 	if ((zone->uz_flags & UMA_ZONE_SMR) == 0 || drain) {
1532 		ZONE_CROSS_LOCK(zone);
1533 		bucket = zdom->uzd_cross;
1534 		zdom->uzd_cross = NULL;
1535 		ZONE_CROSS_UNLOCK(zone);
1536 		if (bucket != NULL)
1537 			bucket_free(zone, bucket, NULL);
1538 	}
1539 
1540 	/*
1541 	 * If we were asked to drain the zone, we are done only once
1542 	 * this bucket cache is empty.  If trim, we reclaim items in
1543 	 * excess of the zone's estimated working set size.  Multiple
1544 	 * consecutive calls will shrink the WSS and so reclaim more.
1545 	 * If neither drain nor trim, then voluntarily reclaim 1/4
1546 	 * (to reduce first spike) of items not used for a long time.
1547 	 */
1548 	ZDOM_LOCK(zdom);
1549 	zone_domain_update_wss(zdom);
1550 	if (drain)
1551 		target = 0;
1552 	else if (trim)
1553 		target = zdom->uzd_wss;
1554 	else if (zdom->uzd_timin > 900 / UMA_TIMEOUT)
1555 		target = zdom->uzd_nitems - zdom->uzd_limin / 4;
1556 	else {
1557 		ZDOM_UNLOCK(zdom);
1558 		return (done);
1559 	}
1560 	while ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) != NULL &&
1561 	    zdom->uzd_nitems >= target + bucket->ub_cnt) {
1562 		bucket = zone_fetch_bucket(zone, zdom, true);
1563 		if (bucket == NULL)
1564 			break;
1565 		bucket_free(zone, bucket, NULL);
1566 		done = true;
1567 		ZDOM_LOCK(zdom);
1568 	}
1569 	ZDOM_UNLOCK(zdom);
1570 	return (done);
1571 }
1572 
1573 static void
1574 bucket_cache_reclaim(uma_zone_t zone, bool drain, int domain)
1575 {
1576 	int i;
1577 
1578 	/*
1579 	 * Shrink the zone bucket size to ensure that the per-CPU caches
1580 	 * don't grow too large.
1581 	 */
1582 	if (zone->uz_bucket_size > zone->uz_bucket_size_min)
1583 		zone->uz_bucket_size--;
1584 
1585 	if (domain != UMA_ANYDOMAIN &&
1586 	    (zone->uz_flags & UMA_ZONE_ROUNDROBIN) == 0) {
1587 		bucket_cache_reclaim_domain(zone, drain, true, domain);
1588 	} else {
1589 		for (i = 0; i < vm_ndomains; i++)
1590 			bucket_cache_reclaim_domain(zone, drain, true, i);
1591 	}
1592 }
1593 
1594 static void
1595 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start)
1596 {
1597 	uint8_t *mem;
1598 	size_t size;
1599 	int i;
1600 	uint8_t flags;
1601 
1602 	CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes",
1603 	    keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera);
1604 
1605 	mem = slab_data(slab, keg);
1606 	size = PAGE_SIZE * keg->uk_ppera;
1607 
1608 	kasan_mark_slab_valid(keg, mem);
1609 	if (keg->uk_fini != NULL) {
1610 		for (i = start - 1; i > -1; i--)
1611 #ifdef INVARIANTS
1612 		/*
1613 		 * trash_fini implies that dtor was trash_dtor. trash_fini
1614 		 * would check that memory hasn't been modified since free,
1615 		 * which executed trash_dtor.
1616 		 * That's why we need to run uma_dbg_kskip() check here,
1617 		 * albeit we don't make skip check for other init/fini
1618 		 * invocations.
1619 		 */
1620 		if (!uma_dbg_kskip(keg, slab_item(slab, keg, i)) ||
1621 		    keg->uk_fini != trash_fini)
1622 #endif
1623 			keg->uk_fini(slab_item(slab, keg, i), keg->uk_size);
1624 	}
1625 	flags = slab->us_flags;
1626 	if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) {
1627 		zone_free_item(slabzone(keg->uk_ipers), slab_tohashslab(slab),
1628 		    NULL, SKIP_NONE);
1629 	}
1630 	keg->uk_freef(mem, size, flags);
1631 	uma_total_dec(size);
1632 }
1633 
1634 static void
1635 keg_drain_domain(uma_keg_t keg, int domain)
1636 {
1637 	struct slabhead freeslabs;
1638 	uma_domain_t dom;
1639 	uma_slab_t slab, tmp;
1640 	uint32_t i, stofree, stokeep, partial;
1641 
1642 	dom = &keg->uk_domain[domain];
1643 	LIST_INIT(&freeslabs);
1644 
1645 	CTR4(KTR_UMA, "keg_drain %s(%p) domain %d free items: %u",
1646 	    keg->uk_name, keg, domain, dom->ud_free_items);
1647 
1648 	KEG_LOCK(keg, domain);
1649 
1650 	/*
1651 	 * Are the free items in partially allocated slabs sufficient to meet
1652 	 * the reserve? If not, compute the number of fully free slabs that must
1653 	 * be kept.
1654 	 */
1655 	partial = dom->ud_free_items - dom->ud_free_slabs * keg->uk_ipers;
1656 	if (partial < keg->uk_reserve) {
1657 		stokeep = min(dom->ud_free_slabs,
1658 		    howmany(keg->uk_reserve - partial, keg->uk_ipers));
1659 	} else {
1660 		stokeep = 0;
1661 	}
1662 	stofree = dom->ud_free_slabs - stokeep;
1663 
1664 	/*
1665 	 * Partition the free slabs into two sets: those that must be kept in
1666 	 * order to maintain the reserve, and those that may be released back to
1667 	 * the system.  Since one set may be much larger than the other,
1668 	 * populate the smaller of the two sets and swap them if necessary.
1669 	 */
1670 	for (i = min(stofree, stokeep); i > 0; i--) {
1671 		slab = LIST_FIRST(&dom->ud_free_slab);
1672 		LIST_REMOVE(slab, us_link);
1673 		LIST_INSERT_HEAD(&freeslabs, slab, us_link);
1674 	}
1675 	if (stofree > stokeep)
1676 		LIST_SWAP(&freeslabs, &dom->ud_free_slab, uma_slab, us_link);
1677 
1678 	if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) {
1679 		LIST_FOREACH(slab, &freeslabs, us_link)
1680 			UMA_HASH_REMOVE(&keg->uk_hash, slab);
1681 	}
1682 	dom->ud_free_items -= stofree * keg->uk_ipers;
1683 	dom->ud_free_slabs -= stofree;
1684 	dom->ud_pages -= stofree * keg->uk_ppera;
1685 	KEG_UNLOCK(keg, domain);
1686 
1687 	LIST_FOREACH_SAFE(slab, &freeslabs, us_link, tmp)
1688 		keg_free_slab(keg, slab, keg->uk_ipers);
1689 }
1690 
1691 /*
1692  * Frees pages from a keg back to the system.  This is done on demand from
1693  * the pageout daemon.
1694  *
1695  * Returns nothing.
1696  */
1697 static void
1698 keg_drain(uma_keg_t keg, int domain)
1699 {
1700 	int i;
1701 
1702 	if ((keg->uk_flags & UMA_ZONE_NOFREE) != 0)
1703 		return;
1704 	if (domain != UMA_ANYDOMAIN) {
1705 		keg_drain_domain(keg, domain);
1706 	} else {
1707 		for (i = 0; i < vm_ndomains; i++)
1708 			keg_drain_domain(keg, i);
1709 	}
1710 }
1711 
1712 static void
1713 zone_reclaim(uma_zone_t zone, int domain, int waitok, bool drain)
1714 {
1715 	/*
1716 	 * Count active reclaim operations in order to interlock with
1717 	 * zone_dtor(), which removes the zone from global lists before
1718 	 * attempting to reclaim items itself.
1719 	 *
1720 	 * The zone may be destroyed while sleeping, so only zone_dtor() should
1721 	 * specify M_WAITOK.
1722 	 */
1723 	ZONE_LOCK(zone);
1724 	if (waitok == M_WAITOK) {
1725 		while (zone->uz_reclaimers > 0)
1726 			msleep(zone, ZONE_LOCKPTR(zone), PVM, "zonedrain", 1);
1727 	}
1728 	zone->uz_reclaimers++;
1729 	ZONE_UNLOCK(zone);
1730 	bucket_cache_reclaim(zone, drain, domain);
1731 
1732 	if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0)
1733 		keg_drain(zone->uz_keg, domain);
1734 	ZONE_LOCK(zone);
1735 	zone->uz_reclaimers--;
1736 	if (zone->uz_reclaimers == 0)
1737 		wakeup(zone);
1738 	ZONE_UNLOCK(zone);
1739 }
1740 
1741 /*
1742  * Allocate a new slab for a keg and inserts it into the partial slab list.
1743  * The keg should be unlocked on entry.  If the allocation succeeds it will
1744  * be locked on return.
1745  *
1746  * Arguments:
1747  *	flags   Wait flags for the item initialization routine
1748  *	aflags  Wait flags for the slab allocation
1749  *
1750  * Returns:
1751  *	The slab that was allocated or NULL if there is no memory and the
1752  *	caller specified M_NOWAIT.
1753  */
1754 static uma_slab_t
1755 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags,
1756     int aflags)
1757 {
1758 	uma_domain_t dom;
1759 	uma_slab_t slab;
1760 	unsigned long size;
1761 	uint8_t *mem;
1762 	uint8_t sflags;
1763 	int i;
1764 
1765 	TSENTER();
1766 
1767 	KASSERT(domain >= 0 && domain < vm_ndomains,
1768 	    ("keg_alloc_slab: domain %d out of range", domain));
1769 
1770 	slab = NULL;
1771 	mem = NULL;
1772 	if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) {
1773 		uma_hash_slab_t hslab;
1774 		hslab = zone_alloc_item(slabzone(keg->uk_ipers), NULL,
1775 		    domain, aflags);
1776 		if (hslab == NULL)
1777 			goto fail;
1778 		slab = &hslab->uhs_slab;
1779 	}
1780 
1781 	/*
1782 	 * This reproduces the old vm_zone behavior of zero filling pages the
1783 	 * first time they are added to a zone.
1784 	 *
1785 	 * Malloced items are zeroed in uma_zalloc.
1786 	 */
1787 
1788 	if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
1789 		aflags |= M_ZERO;
1790 	else
1791 		aflags &= ~M_ZERO;
1792 
1793 	if (keg->uk_flags & UMA_ZONE_NODUMP)
1794 		aflags |= M_NODUMP;
1795 
1796 	/* zone is passed for legacy reasons. */
1797 	size = keg->uk_ppera * PAGE_SIZE;
1798 	mem = keg->uk_allocf(zone, size, domain, &sflags, aflags);
1799 	if (mem == NULL) {
1800 		if (keg->uk_flags & UMA_ZFLAG_OFFPAGE)
1801 			zone_free_item(slabzone(keg->uk_ipers),
1802 			    slab_tohashslab(slab), NULL, SKIP_NONE);
1803 		goto fail;
1804 	}
1805 	uma_total_inc(size);
1806 
1807 	/* For HASH zones all pages go to the same uma_domain. */
1808 	if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0)
1809 		domain = 0;
1810 
1811 	kmsan_mark(mem, size,
1812 	    (aflags & M_ZERO) != 0 ? KMSAN_STATE_INITED : KMSAN_STATE_UNINIT);
1813 
1814 	/* Point the slab into the allocated memory */
1815 	if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE))
1816 		slab = (uma_slab_t)(mem + keg->uk_pgoff);
1817 	else
1818 		slab_tohashslab(slab)->uhs_data = mem;
1819 
1820 	if (keg->uk_flags & UMA_ZFLAG_VTOSLAB)
1821 		for (i = 0; i < keg->uk_ppera; i++)
1822 			vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE),
1823 			    zone, slab);
1824 
1825 	slab->us_freecount = keg->uk_ipers;
1826 	slab->us_flags = sflags;
1827 	slab->us_domain = domain;
1828 
1829 	BIT_FILL(keg->uk_ipers, &slab->us_free);
1830 #ifdef INVARIANTS
1831 	BIT_ZERO(keg->uk_ipers, slab_dbg_bits(slab, keg));
1832 #endif
1833 
1834 	if (keg->uk_init != NULL) {
1835 		for (i = 0; i < keg->uk_ipers; i++)
1836 			if (keg->uk_init(slab_item(slab, keg, i),
1837 			    keg->uk_size, flags) != 0)
1838 				break;
1839 		if (i != keg->uk_ipers) {
1840 			keg_free_slab(keg, slab, i);
1841 			goto fail;
1842 		}
1843 	}
1844 	kasan_mark_slab_invalid(keg, mem);
1845 	KEG_LOCK(keg, domain);
1846 
1847 	CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)",
1848 	    slab, keg->uk_name, keg);
1849 
1850 	if (keg->uk_flags & UMA_ZFLAG_HASH)
1851 		UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
1852 
1853 	/*
1854 	 * If we got a slab here it's safe to mark it partially used
1855 	 * and return.  We assume that the caller is going to remove
1856 	 * at least one item.
1857 	 */
1858 	dom = &keg->uk_domain[domain];
1859 	LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
1860 	dom->ud_pages += keg->uk_ppera;
1861 	dom->ud_free_items += keg->uk_ipers;
1862 
1863 	TSEXIT();
1864 	return (slab);
1865 
1866 fail:
1867 	return (NULL);
1868 }
1869 
1870 /*
1871  * This function is intended to be used early on in place of page_alloc().  It
1872  * performs contiguous physical memory allocations and uses a bump allocator for
1873  * KVA, so is usable before the kernel map is initialized.
1874  */
1875 static void *
1876 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1877     int wait)
1878 {
1879 	vm_paddr_t pa;
1880 	vm_page_t m;
1881 	int i, pages;
1882 
1883 	pages = howmany(bytes, PAGE_SIZE);
1884 	KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__));
1885 
1886 	*pflag = UMA_SLAB_BOOT;
1887 	m = vm_page_alloc_noobj_contig_domain(domain, malloc2vm_flags(wait) |
1888 	    VM_ALLOC_WIRED, pages, (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0,
1889 	    VM_MEMATTR_DEFAULT);
1890 	if (m == NULL)
1891 		return (NULL);
1892 
1893 	pa = VM_PAGE_TO_PHYS(m);
1894 	for (i = 0; i < pages; i++, pa += PAGE_SIZE) {
1895 #if defined(__aarch64__) || defined(__amd64__) || \
1896     defined(__riscv) || defined(__powerpc64__)
1897 		if ((wait & M_NODUMP) == 0)
1898 			dump_add_page(pa);
1899 #endif
1900 	}
1901 
1902 	/* Allocate KVA and indirectly advance bootmem. */
1903 	return ((void *)pmap_map(&bootmem, m->phys_addr,
1904 	    m->phys_addr + (pages * PAGE_SIZE), VM_PROT_READ | VM_PROT_WRITE));
1905 }
1906 
1907 static void
1908 startup_free(void *mem, vm_size_t bytes)
1909 {
1910 	vm_offset_t va;
1911 	vm_page_t m;
1912 
1913 	va = (vm_offset_t)mem;
1914 	m = PHYS_TO_VM_PAGE(pmap_kextract(va));
1915 
1916 	/*
1917 	 * startup_alloc() returns direct-mapped slabs on some platforms.  Avoid
1918 	 * unmapping ranges of the direct map.
1919 	 */
1920 	if (va >= bootstart && va + bytes <= bootmem)
1921 		pmap_remove(kernel_pmap, va, va + bytes);
1922 	for (; bytes != 0; bytes -= PAGE_SIZE, m++) {
1923 #if defined(__aarch64__) || defined(__amd64__) || \
1924     defined(__riscv) || defined(__powerpc64__)
1925 		dump_drop_page(VM_PAGE_TO_PHYS(m));
1926 #endif
1927 		vm_page_unwire_noq(m);
1928 		vm_page_free(m);
1929 	}
1930 }
1931 
1932 /*
1933  * Allocates a number of pages from the system
1934  *
1935  * Arguments:
1936  *	bytes  The number of bytes requested
1937  *	wait  Shall we wait?
1938  *
1939  * Returns:
1940  *	A pointer to the alloced memory or possibly
1941  *	NULL if M_NOWAIT is set.
1942  */
1943 static void *
1944 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1945     int wait)
1946 {
1947 	void *p;	/* Returned page */
1948 
1949 	*pflag = UMA_SLAB_KERNEL;
1950 	p = kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait);
1951 
1952 	return (p);
1953 }
1954 
1955 static void *
1956 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1957     int wait)
1958 {
1959 	struct pglist alloctail;
1960 	vm_offset_t addr, zkva;
1961 	int cpu, flags;
1962 	vm_page_t p, p_next;
1963 #ifdef NUMA
1964 	struct pcpu *pc;
1965 #endif
1966 
1967 	MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE);
1968 
1969 	TAILQ_INIT(&alloctail);
1970 	flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | malloc2vm_flags(wait);
1971 	*pflag = UMA_SLAB_KERNEL;
1972 	for (cpu = 0; cpu <= mp_maxid; cpu++) {
1973 		if (CPU_ABSENT(cpu)) {
1974 			p = vm_page_alloc_noobj(flags);
1975 		} else {
1976 #ifndef NUMA
1977 			p = vm_page_alloc_noobj(flags);
1978 #else
1979 			pc = pcpu_find(cpu);
1980 			if (__predict_false(VM_DOMAIN_EMPTY(pc->pc_domain)))
1981 				p = NULL;
1982 			else
1983 				p = vm_page_alloc_noobj_domain(pc->pc_domain,
1984 				    flags);
1985 			if (__predict_false(p == NULL))
1986 				p = vm_page_alloc_noobj(flags);
1987 #endif
1988 		}
1989 		if (__predict_false(p == NULL))
1990 			goto fail;
1991 		TAILQ_INSERT_TAIL(&alloctail, p, listq);
1992 	}
1993 	if ((addr = kva_alloc(bytes)) == 0)
1994 		goto fail;
1995 	zkva = addr;
1996 	TAILQ_FOREACH(p, &alloctail, listq) {
1997 		pmap_qenter(zkva, &p, 1);
1998 		zkva += PAGE_SIZE;
1999 	}
2000 	return ((void*)addr);
2001 fail:
2002 	TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
2003 		vm_page_unwire_noq(p);
2004 		vm_page_free(p);
2005 	}
2006 	return (NULL);
2007 }
2008 
2009 /*
2010  * Allocates a number of pages not belonging to a VM object
2011  *
2012  * Arguments:
2013  *	bytes  The number of bytes requested
2014  *	wait   Shall we wait?
2015  *
2016  * Returns:
2017  *	A pointer to the alloced memory or possibly
2018  *	NULL if M_NOWAIT is set.
2019  */
2020 static void *
2021 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags,
2022     int wait)
2023 {
2024 	TAILQ_HEAD(, vm_page) alloctail;
2025 	u_long npages;
2026 	vm_offset_t retkva, zkva;
2027 	vm_page_t p, p_next;
2028 	uma_keg_t keg;
2029 	int req;
2030 
2031 	TAILQ_INIT(&alloctail);
2032 	keg = zone->uz_keg;
2033 	req = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
2034 	if ((wait & M_WAITOK) != 0)
2035 		req |= VM_ALLOC_WAITOK;
2036 
2037 	npages = howmany(bytes, PAGE_SIZE);
2038 	while (npages > 0) {
2039 		p = vm_page_alloc_noobj_domain(domain, req);
2040 		if (p != NULL) {
2041 			/*
2042 			 * Since the page does not belong to an object, its
2043 			 * listq is unused.
2044 			 */
2045 			TAILQ_INSERT_TAIL(&alloctail, p, listq);
2046 			npages--;
2047 			continue;
2048 		}
2049 		/*
2050 		 * Page allocation failed, free intermediate pages and
2051 		 * exit.
2052 		 */
2053 		TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
2054 			vm_page_unwire_noq(p);
2055 			vm_page_free(p);
2056 		}
2057 		return (NULL);
2058 	}
2059 	*flags = UMA_SLAB_PRIV;
2060 	zkva = keg->uk_kva +
2061 	    atomic_fetchadd_long(&keg->uk_offset, round_page(bytes));
2062 	retkva = zkva;
2063 	TAILQ_FOREACH(p, &alloctail, listq) {
2064 		pmap_qenter(zkva, &p, 1);
2065 		zkva += PAGE_SIZE;
2066 	}
2067 
2068 	return ((void *)retkva);
2069 }
2070 
2071 /*
2072  * Allocate physically contiguous pages.
2073  */
2074 static void *
2075 contig_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
2076     int wait)
2077 {
2078 
2079 	*pflag = UMA_SLAB_KERNEL;
2080 	return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain),
2081 	    bytes, wait, 0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT));
2082 }
2083 
2084 /*
2085  * Frees a number of pages to the system
2086  *
2087  * Arguments:
2088  *	mem   A pointer to the memory to be freed
2089  *	size  The size of the memory being freed
2090  *	flags The original p->us_flags field
2091  *
2092  * Returns:
2093  *	Nothing
2094  */
2095 static void
2096 page_free(void *mem, vm_size_t size, uint8_t flags)
2097 {
2098 
2099 	if ((flags & UMA_SLAB_BOOT) != 0) {
2100 		startup_free(mem, size);
2101 		return;
2102 	}
2103 
2104 	KASSERT((flags & UMA_SLAB_KERNEL) != 0,
2105 	    ("UMA: page_free used with invalid flags %x", flags));
2106 
2107 	kmem_free(mem, size);
2108 }
2109 
2110 /*
2111  * Frees pcpu zone allocations
2112  *
2113  * Arguments:
2114  *	mem   A pointer to the memory to be freed
2115  *	size  The size of the memory being freed
2116  *	flags The original p->us_flags field
2117  *
2118  * Returns:
2119  *	Nothing
2120  */
2121 static void
2122 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags)
2123 {
2124 	vm_offset_t sva, curva;
2125 	vm_paddr_t paddr;
2126 	vm_page_t m;
2127 
2128 	MPASS(size == (mp_maxid+1)*PAGE_SIZE);
2129 
2130 	if ((flags & UMA_SLAB_BOOT) != 0) {
2131 		startup_free(mem, size);
2132 		return;
2133 	}
2134 
2135 	sva = (vm_offset_t)mem;
2136 	for (curva = sva; curva < sva + size; curva += PAGE_SIZE) {
2137 		paddr = pmap_kextract(curva);
2138 		m = PHYS_TO_VM_PAGE(paddr);
2139 		vm_page_unwire_noq(m);
2140 		vm_page_free(m);
2141 	}
2142 	pmap_qremove(sva, size >> PAGE_SHIFT);
2143 	kva_free(sva, size);
2144 }
2145 
2146 /*
2147  * Zero fill initializer
2148  *
2149  * Arguments/Returns follow uma_init specifications
2150  */
2151 static int
2152 zero_init(void *mem, int size, int flags)
2153 {
2154 	bzero(mem, size);
2155 	return (0);
2156 }
2157 
2158 #ifdef INVARIANTS
2159 static struct noslabbits *
2160 slab_dbg_bits(uma_slab_t slab, uma_keg_t keg)
2161 {
2162 
2163 	return ((void *)((char *)&slab->us_free + BITSET_SIZE(keg->uk_ipers)));
2164 }
2165 #endif
2166 
2167 /*
2168  * Actual size of embedded struct slab (!OFFPAGE).
2169  */
2170 static size_t
2171 slab_sizeof(int nitems)
2172 {
2173 	size_t s;
2174 
2175 	s = sizeof(struct uma_slab) + BITSET_SIZE(nitems) * SLAB_BITSETS;
2176 	return (roundup(s, UMA_ALIGN_PTR + 1));
2177 }
2178 
2179 #define	UMA_FIXPT_SHIFT	31
2180 #define	UMA_FRAC_FIXPT(n, d)						\
2181 	((uint32_t)(((uint64_t)(n) << UMA_FIXPT_SHIFT) / (d)))
2182 #define	UMA_FIXPT_PCT(f)						\
2183 	((u_int)(((uint64_t)100 * (f)) >> UMA_FIXPT_SHIFT))
2184 #define	UMA_PCT_FIXPT(pct)	UMA_FRAC_FIXPT((pct), 100)
2185 #define	UMA_MIN_EFF	UMA_PCT_FIXPT(100 - UMA_MAX_WASTE)
2186 
2187 /*
2188  * Compute the number of items that will fit in a slab.  If hdr is true, the
2189  * item count may be limited to provide space in the slab for an inline slab
2190  * header.  Otherwise, all slab space will be provided for item storage.
2191  */
2192 static u_int
2193 slab_ipers_hdr(u_int size, u_int rsize, u_int slabsize, bool hdr)
2194 {
2195 	u_int ipers;
2196 	u_int padpi;
2197 
2198 	/* The padding between items is not needed after the last item. */
2199 	padpi = rsize - size;
2200 
2201 	if (hdr) {
2202 		/*
2203 		 * Start with the maximum item count and remove items until
2204 		 * the slab header first alongside the allocatable memory.
2205 		 */
2206 		for (ipers = MIN(SLAB_MAX_SETSIZE,
2207 		    (slabsize + padpi - slab_sizeof(1)) / rsize);
2208 		    ipers > 0 &&
2209 		    ipers * rsize - padpi + slab_sizeof(ipers) > slabsize;
2210 		    ipers--)
2211 			continue;
2212 	} else {
2213 		ipers = MIN((slabsize + padpi) / rsize, SLAB_MAX_SETSIZE);
2214 	}
2215 
2216 	return (ipers);
2217 }
2218 
2219 struct keg_layout_result {
2220 	u_int format;
2221 	u_int slabsize;
2222 	u_int ipers;
2223 	u_int eff;
2224 };
2225 
2226 static void
2227 keg_layout_one(uma_keg_t keg, u_int rsize, u_int slabsize, u_int fmt,
2228     struct keg_layout_result *kl)
2229 {
2230 	u_int total;
2231 
2232 	kl->format = fmt;
2233 	kl->slabsize = slabsize;
2234 
2235 	/* Handle INTERNAL as inline with an extra page. */
2236 	if ((fmt & UMA_ZFLAG_INTERNAL) != 0) {
2237 		kl->format &= ~UMA_ZFLAG_INTERNAL;
2238 		kl->slabsize += PAGE_SIZE;
2239 	}
2240 
2241 	kl->ipers = slab_ipers_hdr(keg->uk_size, rsize, kl->slabsize,
2242 	    (fmt & UMA_ZFLAG_OFFPAGE) == 0);
2243 
2244 	/* Account for memory used by an offpage slab header. */
2245 	total = kl->slabsize;
2246 	if ((fmt & UMA_ZFLAG_OFFPAGE) != 0)
2247 		total += slabzone(kl->ipers)->uz_keg->uk_rsize;
2248 
2249 	kl->eff = UMA_FRAC_FIXPT(kl->ipers * rsize, total);
2250 }
2251 
2252 /*
2253  * Determine the format of a uma keg.  This determines where the slab header
2254  * will be placed (inline or offpage) and calculates ipers, rsize, and ppera.
2255  *
2256  * Arguments
2257  *	keg  The zone we should initialize
2258  *
2259  * Returns
2260  *	Nothing
2261  */
2262 static void
2263 keg_layout(uma_keg_t keg)
2264 {
2265 	struct keg_layout_result kl = {}, kl_tmp;
2266 	u_int fmts[2];
2267 	u_int alignsize;
2268 	u_int nfmt;
2269 	u_int pages;
2270 	u_int rsize;
2271 	u_int slabsize;
2272 	u_int i, j;
2273 
2274 	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 ||
2275 	    (keg->uk_size <= UMA_PCPU_ALLOC_SIZE &&
2276 	     (keg->uk_flags & UMA_ZONE_CACHESPREAD) == 0),
2277 	    ("%s: cannot configure for PCPU: keg=%s, size=%u, flags=0x%b",
2278 	     __func__, keg->uk_name, keg->uk_size, keg->uk_flags,
2279 	     PRINT_UMA_ZFLAGS));
2280 	KASSERT((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) == 0 ||
2281 	    (keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0,
2282 	    ("%s: incompatible flags 0x%b", __func__, keg->uk_flags,
2283 	     PRINT_UMA_ZFLAGS));
2284 
2285 	alignsize = keg->uk_align + 1;
2286 #ifdef KASAN
2287 	/*
2288 	 * ASAN requires that each allocation be aligned to the shadow map
2289 	 * scale factor.
2290 	 */
2291 	if (alignsize < KASAN_SHADOW_SCALE)
2292 		alignsize = KASAN_SHADOW_SCALE;
2293 #endif
2294 
2295 	/*
2296 	 * Calculate the size of each allocation (rsize) according to
2297 	 * alignment.  If the requested size is smaller than we have
2298 	 * allocation bits for we round it up.
2299 	 */
2300 	rsize = MAX(keg->uk_size, UMA_SMALLEST_UNIT);
2301 	rsize = roundup2(rsize, alignsize);
2302 
2303 	if ((keg->uk_flags & UMA_ZONE_CACHESPREAD) != 0) {
2304 		/*
2305 		 * We want one item to start on every align boundary in a page.
2306 		 * To do this we will span pages.  We will also extend the item
2307 		 * by the size of align if it is an even multiple of align.
2308 		 * Otherwise, it would fall on the same boundary every time.
2309 		 */
2310 		if ((rsize & alignsize) == 0)
2311 			rsize += alignsize;
2312 		slabsize = rsize * (PAGE_SIZE / alignsize);
2313 		slabsize = MIN(slabsize, rsize * SLAB_MAX_SETSIZE);
2314 		slabsize = MIN(slabsize, UMA_CACHESPREAD_MAX_SIZE);
2315 		slabsize = round_page(slabsize);
2316 	} else {
2317 		/*
2318 		 * Start with a slab size of as many pages as it takes to
2319 		 * represent a single item.  We will try to fit as many
2320 		 * additional items into the slab as possible.
2321 		 */
2322 		slabsize = round_page(keg->uk_size);
2323 	}
2324 
2325 	/* Build a list of all of the available formats for this keg. */
2326 	nfmt = 0;
2327 
2328 	/* Evaluate an inline slab layout. */
2329 	if ((keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0)
2330 		fmts[nfmt++] = 0;
2331 
2332 	/* TODO: vm_page-embedded slab. */
2333 
2334 	/*
2335 	 * We can't do OFFPAGE if we're internal or if we've been
2336 	 * asked to not go to the VM for buckets.  If we do this we
2337 	 * may end up going to the VM for slabs which we do not want
2338 	 * to do if we're UMA_ZONE_VM, which clearly forbids it.
2339 	 * In those cases, evaluate a pseudo-format called INTERNAL
2340 	 * which has an inline slab header and one extra page to
2341 	 * guarantee that it fits.
2342 	 *
2343 	 * Otherwise, see if using an OFFPAGE slab will improve our
2344 	 * efficiency.
2345 	 */
2346 	if ((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) != 0)
2347 		fmts[nfmt++] = UMA_ZFLAG_INTERNAL;
2348 	else
2349 		fmts[nfmt++] = UMA_ZFLAG_OFFPAGE;
2350 
2351 	/*
2352 	 * Choose a slab size and format which satisfy the minimum efficiency.
2353 	 * Prefer the smallest slab size that meets the constraints.
2354 	 *
2355 	 * Start with a minimum slab size, to accommodate CACHESPREAD.  Then,
2356 	 * for small items (up to PAGE_SIZE), the iteration increment is one
2357 	 * page; and for large items, the increment is one item.
2358 	 */
2359 	i = (slabsize + rsize - keg->uk_size) / MAX(PAGE_SIZE, rsize);
2360 	KASSERT(i >= 1, ("keg %s(%p) flags=0x%b slabsize=%u, rsize=%u, i=%u",
2361 	    keg->uk_name, keg, keg->uk_flags, PRINT_UMA_ZFLAGS, slabsize,
2362 	    rsize, i));
2363 	for ( ; ; i++) {
2364 		slabsize = (rsize <= PAGE_SIZE) ? ptoa(i) :
2365 		    round_page(rsize * (i - 1) + keg->uk_size);
2366 
2367 		for (j = 0; j < nfmt; j++) {
2368 			/* Only if we have no viable format yet. */
2369 			if ((fmts[j] & UMA_ZFLAG_INTERNAL) != 0 &&
2370 			    kl.ipers > 0)
2371 				continue;
2372 
2373 			keg_layout_one(keg, rsize, slabsize, fmts[j], &kl_tmp);
2374 			if (kl_tmp.eff <= kl.eff)
2375 				continue;
2376 
2377 			kl = kl_tmp;
2378 
2379 			CTR6(KTR_UMA, "keg %s layout: format %#x "
2380 			    "(ipers %u * rsize %u) / slabsize %#x = %u%% eff",
2381 			    keg->uk_name, kl.format, kl.ipers, rsize,
2382 			    kl.slabsize, UMA_FIXPT_PCT(kl.eff));
2383 
2384 			/* Stop when we reach the minimum efficiency. */
2385 			if (kl.eff >= UMA_MIN_EFF)
2386 				break;
2387 		}
2388 
2389 		if (kl.eff >= UMA_MIN_EFF || !multipage_slabs ||
2390 		    slabsize >= SLAB_MAX_SETSIZE * rsize ||
2391 		    (keg->uk_flags & (UMA_ZONE_PCPU | UMA_ZONE_CONTIG)) != 0)
2392 			break;
2393 	}
2394 
2395 	pages = atop(kl.slabsize);
2396 	if ((keg->uk_flags & UMA_ZONE_PCPU) != 0)
2397 		pages *= mp_maxid + 1;
2398 
2399 	keg->uk_rsize = rsize;
2400 	keg->uk_ipers = kl.ipers;
2401 	keg->uk_ppera = pages;
2402 	keg->uk_flags |= kl.format;
2403 
2404 	/*
2405 	 * How do we find the slab header if it is offpage or if not all item
2406 	 * start addresses are in the same page?  We could solve the latter
2407 	 * case with vaddr alignment, but we don't.
2408 	 */
2409 	if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0 ||
2410 	    (keg->uk_ipers - 1) * rsize >= PAGE_SIZE) {
2411 		if ((keg->uk_flags & UMA_ZONE_NOTPAGE) != 0)
2412 			keg->uk_flags |= UMA_ZFLAG_HASH;
2413 		else
2414 			keg->uk_flags |= UMA_ZFLAG_VTOSLAB;
2415 	}
2416 
2417 	CTR6(KTR_UMA, "%s: keg=%s, flags=%#x, rsize=%u, ipers=%u, ppera=%u",
2418 	    __func__, keg->uk_name, keg->uk_flags, rsize, keg->uk_ipers,
2419 	    pages);
2420 	KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE,
2421 	    ("%s: keg=%s, flags=0x%b, rsize=%u, ipers=%u, ppera=%u", __func__,
2422 	     keg->uk_name, keg->uk_flags, PRINT_UMA_ZFLAGS, rsize,
2423 	     keg->uk_ipers, pages));
2424 }
2425 
2426 /*
2427  * Keg header ctor.  This initializes all fields, locks, etc.  And inserts
2428  * the keg onto the global keg list.
2429  *
2430  * Arguments/Returns follow uma_ctor specifications
2431  *	udata  Actually uma_kctor_args
2432  */
2433 static int
2434 keg_ctor(void *mem, int size, void *udata, int flags)
2435 {
2436 	struct uma_kctor_args *arg = udata;
2437 	uma_keg_t keg = mem;
2438 	uma_zone_t zone;
2439 	int i;
2440 
2441 	bzero(keg, size);
2442 	keg->uk_size = arg->size;
2443 	keg->uk_init = arg->uminit;
2444 	keg->uk_fini = arg->fini;
2445 	keg->uk_align = arg->align;
2446 	keg->uk_reserve = 0;
2447 	keg->uk_flags = arg->flags;
2448 
2449 	/*
2450 	 * We use a global round-robin policy by default.  Zones with
2451 	 * UMA_ZONE_FIRSTTOUCH set will use first-touch instead, in which
2452 	 * case the iterator is never run.
2453 	 */
2454 	keg->uk_dr.dr_policy = DOMAINSET_RR();
2455 	keg->uk_dr.dr_iter = 0;
2456 
2457 	/*
2458 	 * The primary zone is passed to us at keg-creation time.
2459 	 */
2460 	zone = arg->zone;
2461 	keg->uk_name = zone->uz_name;
2462 
2463 	if (arg->flags & UMA_ZONE_ZINIT)
2464 		keg->uk_init = zero_init;
2465 
2466 	if (arg->flags & UMA_ZONE_MALLOC)
2467 		keg->uk_flags |= UMA_ZFLAG_VTOSLAB;
2468 
2469 #ifndef SMP
2470 	keg->uk_flags &= ~UMA_ZONE_PCPU;
2471 #endif
2472 
2473 	keg_layout(keg);
2474 
2475 	/*
2476 	 * Use a first-touch NUMA policy for kegs that pmap_extract() will
2477 	 * work on.  Use round-robin for everything else.
2478 	 *
2479 	 * Zones may override the default by specifying either.
2480 	 */
2481 #ifdef NUMA
2482 	if ((keg->uk_flags &
2483 	    (UMA_ZONE_ROUNDROBIN | UMA_ZFLAG_CACHE | UMA_ZONE_NOTPAGE)) == 0)
2484 		keg->uk_flags |= UMA_ZONE_FIRSTTOUCH;
2485 	else if ((keg->uk_flags & UMA_ZONE_FIRSTTOUCH) == 0)
2486 		keg->uk_flags |= UMA_ZONE_ROUNDROBIN;
2487 #endif
2488 
2489 	/*
2490 	 * If we haven't booted yet we need allocations to go through the
2491 	 * startup cache until the vm is ready.
2492 	 */
2493 #ifdef UMA_MD_SMALL_ALLOC
2494 	if (keg->uk_ppera == 1)
2495 		keg->uk_allocf = uma_small_alloc;
2496 	else
2497 #endif
2498 	if (booted < BOOT_KVA)
2499 		keg->uk_allocf = startup_alloc;
2500 	else if (keg->uk_flags & UMA_ZONE_PCPU)
2501 		keg->uk_allocf = pcpu_page_alloc;
2502 	else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && keg->uk_ppera > 1)
2503 		keg->uk_allocf = contig_alloc;
2504 	else
2505 		keg->uk_allocf = page_alloc;
2506 #ifdef UMA_MD_SMALL_ALLOC
2507 	if (keg->uk_ppera == 1)
2508 		keg->uk_freef = uma_small_free;
2509 	else
2510 #endif
2511 	if (keg->uk_flags & UMA_ZONE_PCPU)
2512 		keg->uk_freef = pcpu_page_free;
2513 	else
2514 		keg->uk_freef = page_free;
2515 
2516 	/*
2517 	 * Initialize keg's locks.
2518 	 */
2519 	for (i = 0; i < vm_ndomains; i++)
2520 		KEG_LOCK_INIT(keg, i, (arg->flags & UMA_ZONE_MTXCLASS));
2521 
2522 	/*
2523 	 * If we're putting the slab header in the actual page we need to
2524 	 * figure out where in each page it goes.  See slab_sizeof
2525 	 * definition.
2526 	 */
2527 	if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) {
2528 		size_t shsize;
2529 
2530 		shsize = slab_sizeof(keg->uk_ipers);
2531 		keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize;
2532 		/*
2533 		 * The only way the following is possible is if with our
2534 		 * UMA_ALIGN_PTR adjustments we are now bigger than
2535 		 * UMA_SLAB_SIZE.  I haven't checked whether this is
2536 		 * mathematically possible for all cases, so we make
2537 		 * sure here anyway.
2538 		 */
2539 		KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera,
2540 		    ("zone %s ipers %d rsize %d size %d slab won't fit",
2541 		    zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size));
2542 	}
2543 
2544 	if (keg->uk_flags & UMA_ZFLAG_HASH)
2545 		hash_alloc(&keg->uk_hash, 0);
2546 
2547 	CTR3(KTR_UMA, "keg_ctor %p zone %s(%p)", keg, zone->uz_name, zone);
2548 
2549 	LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
2550 
2551 	rw_wlock(&uma_rwlock);
2552 	LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
2553 	rw_wunlock(&uma_rwlock);
2554 	return (0);
2555 }
2556 
2557 static void
2558 zone_kva_available(uma_zone_t zone, void *unused)
2559 {
2560 	uma_keg_t keg;
2561 
2562 	if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0)
2563 		return;
2564 	KEG_GET(zone, keg);
2565 
2566 	if (keg->uk_allocf == startup_alloc) {
2567 		/* Switch to the real allocator. */
2568 		if (keg->uk_flags & UMA_ZONE_PCPU)
2569 			keg->uk_allocf = pcpu_page_alloc;
2570 		else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 &&
2571 		    keg->uk_ppera > 1)
2572 			keg->uk_allocf = contig_alloc;
2573 		else
2574 			keg->uk_allocf = page_alloc;
2575 	}
2576 }
2577 
2578 static void
2579 zone_alloc_counters(uma_zone_t zone, void *unused)
2580 {
2581 
2582 	zone->uz_allocs = counter_u64_alloc(M_WAITOK);
2583 	zone->uz_frees = counter_u64_alloc(M_WAITOK);
2584 	zone->uz_fails = counter_u64_alloc(M_WAITOK);
2585 	zone->uz_xdomain = counter_u64_alloc(M_WAITOK);
2586 }
2587 
2588 static void
2589 zone_alloc_sysctl(uma_zone_t zone, void *unused)
2590 {
2591 	uma_zone_domain_t zdom;
2592 	uma_domain_t dom;
2593 	uma_keg_t keg;
2594 	struct sysctl_oid *oid, *domainoid;
2595 	int domains, i, cnt;
2596 	static const char *nokeg = "cache zone";
2597 	char *c;
2598 
2599 	/*
2600 	 * Make a sysctl safe copy of the zone name by removing
2601 	 * any special characters and handling dups by appending
2602 	 * an index.
2603 	 */
2604 	if (zone->uz_namecnt != 0) {
2605 		/* Count the number of decimal digits and '_' separator. */
2606 		for (i = 1, cnt = zone->uz_namecnt; cnt != 0; i++)
2607 			cnt /= 10;
2608 		zone->uz_ctlname = malloc(strlen(zone->uz_name) + i + 1,
2609 		    M_UMA, M_WAITOK);
2610 		sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name,
2611 		    zone->uz_namecnt);
2612 	} else
2613 		zone->uz_ctlname = strdup(zone->uz_name, M_UMA);
2614 	for (c = zone->uz_ctlname; *c != '\0'; c++)
2615 		if (strchr("./\\ -", *c) != NULL)
2616 			*c = '_';
2617 
2618 	/*
2619 	 * Basic parameters at the root.
2620 	 */
2621 	zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma),
2622 	    OID_AUTO, zone->uz_ctlname, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2623 	oid = zone->uz_oid;
2624 	SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2625 	    "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size");
2626 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2627 	    "flags", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE,
2628 	    zone, 0, sysctl_handle_uma_zone_flags, "A",
2629 	    "Allocator configuration flags");
2630 	SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2631 	    "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0,
2632 	    "Desired per-cpu cache size");
2633 	SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2634 	    "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0,
2635 	    "Maximum allowed per-cpu cache size");
2636 
2637 	/*
2638 	 * keg if present.
2639 	 */
2640 	if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0)
2641 		domains = vm_ndomains;
2642 	else
2643 		domains = 1;
2644 	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO,
2645 	    "keg", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2646 	keg = zone->uz_keg;
2647 	if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) {
2648 		SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2649 		    "name", CTLFLAG_RD, keg->uk_name, "Keg name");
2650 		SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2651 		    "rsize", CTLFLAG_RD, &keg->uk_rsize, 0,
2652 		    "Real object size with alignment");
2653 		SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2654 		    "ppera", CTLFLAG_RD, &keg->uk_ppera, 0,
2655 		    "pages per-slab allocation");
2656 		SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2657 		    "ipers", CTLFLAG_RD, &keg->uk_ipers, 0,
2658 		    "items available per-slab");
2659 		SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2660 		    "align", CTLFLAG_RD, &keg->uk_align, 0,
2661 		    "item alignment mask");
2662 		SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2663 		    "reserve", CTLFLAG_RD, &keg->uk_reserve, 0,
2664 		    "number of reserved items");
2665 		SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2666 		    "efficiency", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE,
2667 		    keg, 0, sysctl_handle_uma_slab_efficiency, "I",
2668 		    "Slab utilization (100 - internal fragmentation %)");
2669 		domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(oid),
2670 		    OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2671 		for (i = 0; i < domains; i++) {
2672 			dom = &keg->uk_domain[i];
2673 			oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid),
2674 			    OID_AUTO, VM_DOMAIN(i)->vmd_name,
2675 			    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2676 			SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2677 			    "pages", CTLFLAG_RD, &dom->ud_pages, 0,
2678 			    "Total pages currently allocated from VM");
2679 			SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2680 			    "free_items", CTLFLAG_RD, &dom->ud_free_items, 0,
2681 			    "Items free in the slab layer");
2682 			SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2683 			    "free_slabs", CTLFLAG_RD, &dom->ud_free_slabs, 0,
2684 			    "Unused slabs");
2685 		}
2686 	} else
2687 		SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2688 		    "name", CTLFLAG_RD, nokeg, "Keg name");
2689 
2690 	/*
2691 	 * Information about zone limits.
2692 	 */
2693 	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO,
2694 	    "limit", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2695 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2696 	    "items", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE,
2697 	    zone, 0, sysctl_handle_uma_zone_items, "QU",
2698 	    "Current number of allocated items if limit is set");
2699 	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2700 	    "max_items", CTLFLAG_RD, &zone->uz_max_items, 0,
2701 	    "Maximum number of allocated and cached items");
2702 	SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2703 	    "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0,
2704 	    "Number of threads sleeping at limit");
2705 	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2706 	    "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0,
2707 	    "Total zone limit sleeps");
2708 	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2709 	    "bucket_max", CTLFLAG_RD, &zone->uz_bucket_max, 0,
2710 	    "Maximum number of items in each domain's bucket cache");
2711 
2712 	/*
2713 	 * Per-domain zone information.
2714 	 */
2715 	domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid),
2716 	    OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2717 	for (i = 0; i < domains; i++) {
2718 		zdom = ZDOM_GET(zone, i);
2719 		oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid),
2720 		    OID_AUTO, VM_DOMAIN(i)->vmd_name,
2721 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2722 		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2723 		    "nitems", CTLFLAG_RD, &zdom->uzd_nitems,
2724 		    "number of items in this domain");
2725 		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2726 		    "imax", CTLFLAG_RD, &zdom->uzd_imax,
2727 		    "maximum item count in this period");
2728 		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2729 		    "imin", CTLFLAG_RD, &zdom->uzd_imin,
2730 		    "minimum item count in this period");
2731 		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2732 		    "bimin", CTLFLAG_RD, &zdom->uzd_bimin,
2733 		    "Minimum item count in this batch");
2734 		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2735 		    "wss", CTLFLAG_RD, &zdom->uzd_wss,
2736 		    "Working set size");
2737 		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2738 		    "limin", CTLFLAG_RD, &zdom->uzd_limin,
2739 		    "Long time minimum item count");
2740 		SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2741 		    "timin", CTLFLAG_RD, &zdom->uzd_timin, 0,
2742 		    "Time since zero long time minimum item count");
2743 	}
2744 
2745 	/*
2746 	 * General statistics.
2747 	 */
2748 	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO,
2749 	    "stats", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2750 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2751 	    "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE,
2752 	    zone, 1, sysctl_handle_uma_zone_cur, "I",
2753 	    "Current number of allocated items");
2754 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2755 	    "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE,
2756 	    zone, 0, sysctl_handle_uma_zone_allocs, "QU",
2757 	    "Total allocation calls");
2758 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2759 	    "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE,
2760 	    zone, 0, sysctl_handle_uma_zone_frees, "QU",
2761 	    "Total free calls");
2762 	SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2763 	    "fails", CTLFLAG_RD, &zone->uz_fails,
2764 	    "Number of allocation failures");
2765 	SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2766 	    "xdomain", CTLFLAG_RD, &zone->uz_xdomain,
2767 	    "Free calls from the wrong domain");
2768 }
2769 
2770 struct uma_zone_count {
2771 	const char	*name;
2772 	int		count;
2773 };
2774 
2775 static void
2776 zone_count(uma_zone_t zone, void *arg)
2777 {
2778 	struct uma_zone_count *cnt;
2779 
2780 	cnt = arg;
2781 	/*
2782 	 * Some zones are rapidly created with identical names and
2783 	 * destroyed out of order.  This can lead to gaps in the count.
2784 	 * Use one greater than the maximum observed for this name.
2785 	 */
2786 	if (strcmp(zone->uz_name, cnt->name) == 0)
2787 		cnt->count = MAX(cnt->count,
2788 		    zone->uz_namecnt + 1);
2789 }
2790 
2791 static void
2792 zone_update_caches(uma_zone_t zone)
2793 {
2794 	int i;
2795 
2796 	for (i = 0; i <= mp_maxid; i++) {
2797 		cache_set_uz_size(&zone->uz_cpu[i], zone->uz_size);
2798 		cache_set_uz_flags(&zone->uz_cpu[i], zone->uz_flags);
2799 	}
2800 }
2801 
2802 /*
2803  * Zone header ctor.  This initializes all fields, locks, etc.
2804  *
2805  * Arguments/Returns follow uma_ctor specifications
2806  *	udata  Actually uma_zctor_args
2807  */
2808 static int
2809 zone_ctor(void *mem, int size, void *udata, int flags)
2810 {
2811 	struct uma_zone_count cnt;
2812 	struct uma_zctor_args *arg = udata;
2813 	uma_zone_domain_t zdom;
2814 	uma_zone_t zone = mem;
2815 	uma_zone_t z;
2816 	uma_keg_t keg;
2817 	int i;
2818 
2819 	bzero(zone, size);
2820 	zone->uz_name = arg->name;
2821 	zone->uz_ctor = arg->ctor;
2822 	zone->uz_dtor = arg->dtor;
2823 	zone->uz_init = NULL;
2824 	zone->uz_fini = NULL;
2825 	zone->uz_sleeps = 0;
2826 	zone->uz_bucket_size = 0;
2827 	zone->uz_bucket_size_min = 0;
2828 	zone->uz_bucket_size_max = BUCKET_MAX;
2829 	zone->uz_flags = (arg->flags & UMA_ZONE_SMR);
2830 	zone->uz_warning = NULL;
2831 	/* The domain structures follow the cpu structures. */
2832 	zone->uz_bucket_max = ULONG_MAX;
2833 	timevalclear(&zone->uz_ratecheck);
2834 
2835 	/* Count the number of duplicate names. */
2836 	cnt.name = arg->name;
2837 	cnt.count = 0;
2838 	zone_foreach(zone_count, &cnt);
2839 	zone->uz_namecnt = cnt.count;
2840 	ZONE_CROSS_LOCK_INIT(zone);
2841 
2842 	for (i = 0; i < vm_ndomains; i++) {
2843 		zdom = ZDOM_GET(zone, i);
2844 		ZDOM_LOCK_INIT(zone, zdom, (arg->flags & UMA_ZONE_MTXCLASS));
2845 		STAILQ_INIT(&zdom->uzd_buckets);
2846 	}
2847 
2848 #if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN)
2849 	if (arg->uminit == trash_init && arg->fini == trash_fini)
2850 		zone->uz_flags |= UMA_ZFLAG_TRASH | UMA_ZFLAG_CTORDTOR;
2851 #elif defined(KASAN)
2852 	if ((arg->flags & (UMA_ZONE_NOFREE | UMA_ZFLAG_CACHE)) != 0)
2853 		arg->flags |= UMA_ZONE_NOKASAN;
2854 #endif
2855 
2856 	/*
2857 	 * This is a pure cache zone, no kegs.
2858 	 */
2859 	if (arg->import) {
2860 		KASSERT((arg->flags & UMA_ZFLAG_CACHE) != 0,
2861 		    ("zone_ctor: Import specified for non-cache zone."));
2862 		zone->uz_flags = arg->flags;
2863 		zone->uz_size = arg->size;
2864 		zone->uz_import = arg->import;
2865 		zone->uz_release = arg->release;
2866 		zone->uz_arg = arg->arg;
2867 #ifdef NUMA
2868 		/*
2869 		 * Cache zones are round-robin unless a policy is
2870 		 * specified because they may have incompatible
2871 		 * constraints.
2872 		 */
2873 		if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0)
2874 			zone->uz_flags |= UMA_ZONE_ROUNDROBIN;
2875 #endif
2876 		rw_wlock(&uma_rwlock);
2877 		LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link);
2878 		rw_wunlock(&uma_rwlock);
2879 		goto out;
2880 	}
2881 
2882 	/*
2883 	 * Use the regular zone/keg/slab allocator.
2884 	 */
2885 	zone->uz_import = zone_import;
2886 	zone->uz_release = zone_release;
2887 	zone->uz_arg = zone;
2888 	keg = arg->keg;
2889 
2890 	if (arg->flags & UMA_ZONE_SECONDARY) {
2891 		KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0,
2892 		    ("Secondary zone requested UMA_ZFLAG_INTERNAL"));
2893 		KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
2894 		zone->uz_init = arg->uminit;
2895 		zone->uz_fini = arg->fini;
2896 		zone->uz_flags |= UMA_ZONE_SECONDARY;
2897 		rw_wlock(&uma_rwlock);
2898 		ZONE_LOCK(zone);
2899 		LIST_FOREACH(z, &keg->uk_zones, uz_link) {
2900 			if (LIST_NEXT(z, uz_link) == NULL) {
2901 				LIST_INSERT_AFTER(z, zone, uz_link);
2902 				break;
2903 			}
2904 		}
2905 		ZONE_UNLOCK(zone);
2906 		rw_wunlock(&uma_rwlock);
2907 	} else if (keg == NULL) {
2908 		if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
2909 		    arg->align, arg->flags)) == NULL)
2910 			return (ENOMEM);
2911 	} else {
2912 		struct uma_kctor_args karg;
2913 		int error;
2914 
2915 		/* We should only be here from uma_startup() */
2916 		karg.size = arg->size;
2917 		karg.uminit = arg->uminit;
2918 		karg.fini = arg->fini;
2919 		karg.align = arg->align;
2920 		karg.flags = (arg->flags & ~UMA_ZONE_SMR);
2921 		karg.zone = zone;
2922 		error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
2923 		    flags);
2924 		if (error)
2925 			return (error);
2926 	}
2927 
2928 	/* Inherit properties from the keg. */
2929 	zone->uz_keg = keg;
2930 	zone->uz_size = keg->uk_size;
2931 	zone->uz_flags |= (keg->uk_flags &
2932 	    (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT));
2933 
2934 out:
2935 	if (booted >= BOOT_PCPU) {
2936 		zone_alloc_counters(zone, NULL);
2937 		if (booted >= BOOT_RUNNING)
2938 			zone_alloc_sysctl(zone, NULL);
2939 	} else {
2940 		zone->uz_allocs = EARLY_COUNTER;
2941 		zone->uz_frees = EARLY_COUNTER;
2942 		zone->uz_fails = EARLY_COUNTER;
2943 	}
2944 
2945 	/* Caller requests a private SMR context. */
2946 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
2947 		zone->uz_smr = smr_create(zone->uz_name, 0, 0);
2948 
2949 	KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) !=
2950 	    (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET),
2951 	    ("Invalid zone flag combination"));
2952 	if (arg->flags & UMA_ZFLAG_INTERNAL)
2953 		zone->uz_bucket_size_max = zone->uz_bucket_size = 0;
2954 	if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0)
2955 		zone->uz_bucket_size = BUCKET_MAX;
2956 	else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0)
2957 		zone->uz_bucket_size = 0;
2958 	else
2959 		zone->uz_bucket_size = bucket_select(zone->uz_size);
2960 	zone->uz_bucket_size_min = zone->uz_bucket_size;
2961 	if (zone->uz_dtor != NULL || zone->uz_ctor != NULL)
2962 		zone->uz_flags |= UMA_ZFLAG_CTORDTOR;
2963 	zone_update_caches(zone);
2964 
2965 	return (0);
2966 }
2967 
2968 /*
2969  * Keg header dtor.  This frees all data, destroys locks, frees the hash
2970  * table and removes the keg from the global list.
2971  *
2972  * Arguments/Returns follow uma_dtor specifications
2973  *	udata  unused
2974  */
2975 static void
2976 keg_dtor(void *arg, int size, void *udata)
2977 {
2978 	uma_keg_t keg;
2979 	uint32_t free, pages;
2980 	int i;
2981 
2982 	keg = (uma_keg_t)arg;
2983 	free = pages = 0;
2984 	for (i = 0; i < vm_ndomains; i++) {
2985 		free += keg->uk_domain[i].ud_free_items;
2986 		pages += keg->uk_domain[i].ud_pages;
2987 		KEG_LOCK_FINI(keg, i);
2988 	}
2989 	if (pages != 0)
2990 		printf("Freed UMA keg (%s) was not empty (%u items). "
2991 		    " Lost %u pages of memory.\n",
2992 		    keg->uk_name ? keg->uk_name : "",
2993 		    pages / keg->uk_ppera * keg->uk_ipers - free, pages);
2994 
2995 	hash_free(&keg->uk_hash);
2996 }
2997 
2998 /*
2999  * Zone header dtor.
3000  *
3001  * Arguments/Returns follow uma_dtor specifications
3002  *	udata  unused
3003  */
3004 static void
3005 zone_dtor(void *arg, int size, void *udata)
3006 {
3007 	uma_zone_t zone;
3008 	uma_keg_t keg;
3009 	int i;
3010 
3011 	zone = (uma_zone_t)arg;
3012 
3013 	sysctl_remove_oid(zone->uz_oid, 1, 1);
3014 
3015 	if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
3016 		cache_drain(zone);
3017 
3018 	rw_wlock(&uma_rwlock);
3019 	LIST_REMOVE(zone, uz_link);
3020 	rw_wunlock(&uma_rwlock);
3021 	if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) {
3022 		keg = zone->uz_keg;
3023 		keg->uk_reserve = 0;
3024 	}
3025 	zone_reclaim(zone, UMA_ANYDOMAIN, M_WAITOK, true);
3026 
3027 	/*
3028 	 * We only destroy kegs from non secondary/non cache zones.
3029 	 */
3030 	if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) {
3031 		keg = zone->uz_keg;
3032 		rw_wlock(&uma_rwlock);
3033 		LIST_REMOVE(keg, uk_link);
3034 		rw_wunlock(&uma_rwlock);
3035 		zone_free_item(kegs, keg, NULL, SKIP_NONE);
3036 	}
3037 	counter_u64_free(zone->uz_allocs);
3038 	counter_u64_free(zone->uz_frees);
3039 	counter_u64_free(zone->uz_fails);
3040 	counter_u64_free(zone->uz_xdomain);
3041 	free(zone->uz_ctlname, M_UMA);
3042 	for (i = 0; i < vm_ndomains; i++)
3043 		ZDOM_LOCK_FINI(ZDOM_GET(zone, i));
3044 	ZONE_CROSS_LOCK_FINI(zone);
3045 }
3046 
3047 static void
3048 zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *arg), void *arg)
3049 {
3050 	uma_keg_t keg;
3051 	uma_zone_t zone;
3052 
3053 	LIST_FOREACH(keg, &uma_kegs, uk_link) {
3054 		LIST_FOREACH(zone, &keg->uk_zones, uz_link)
3055 			zfunc(zone, arg);
3056 	}
3057 	LIST_FOREACH(zone, &uma_cachezones, uz_link)
3058 		zfunc(zone, arg);
3059 }
3060 
3061 /*
3062  * Traverses every zone in the system and calls a callback
3063  *
3064  * Arguments:
3065  *	zfunc  A pointer to a function which accepts a zone
3066  *		as an argument.
3067  *
3068  * Returns:
3069  *	Nothing
3070  */
3071 static void
3072 zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg)
3073 {
3074 
3075 	rw_rlock(&uma_rwlock);
3076 	zone_foreach_unlocked(zfunc, arg);
3077 	rw_runlock(&uma_rwlock);
3078 }
3079 
3080 /*
3081  * Initialize the kernel memory allocator.  This is done after pages can be
3082  * allocated but before general KVA is available.
3083  */
3084 void
3085 uma_startup1(vm_offset_t virtual_avail)
3086 {
3087 	struct uma_zctor_args args;
3088 	size_t ksize, zsize, size;
3089 	uma_keg_t primarykeg;
3090 	uintptr_t m;
3091 	int domain;
3092 	uint8_t pflag;
3093 
3094 	bootstart = bootmem = virtual_avail;
3095 
3096 	rw_init(&uma_rwlock, "UMA lock");
3097 	sx_init(&uma_reclaim_lock, "umareclaim");
3098 
3099 	ksize = sizeof(struct uma_keg) +
3100 	    (sizeof(struct uma_domain) * vm_ndomains);
3101 	ksize = roundup(ksize, UMA_SUPER_ALIGN);
3102 	zsize = sizeof(struct uma_zone) +
3103 	    (sizeof(struct uma_cache) * (mp_maxid + 1)) +
3104 	    (sizeof(struct uma_zone_domain) * vm_ndomains);
3105 	zsize = roundup(zsize, UMA_SUPER_ALIGN);
3106 
3107 	/* Allocate the zone of zones, zone of kegs, and zone of zones keg. */
3108 	size = (zsize * 2) + ksize;
3109 	for (domain = 0; domain < vm_ndomains; domain++) {
3110 		m = (uintptr_t)startup_alloc(NULL, size, domain, &pflag,
3111 		    M_NOWAIT | M_ZERO);
3112 		if (m != 0)
3113 			break;
3114 	}
3115 	zones = (uma_zone_t)m;
3116 	m += zsize;
3117 	kegs = (uma_zone_t)m;
3118 	m += zsize;
3119 	primarykeg = (uma_keg_t)m;
3120 
3121 	/* "manually" create the initial zone */
3122 	memset(&args, 0, sizeof(args));
3123 	args.name = "UMA Kegs";
3124 	args.size = ksize;
3125 	args.ctor = keg_ctor;
3126 	args.dtor = keg_dtor;
3127 	args.uminit = zero_init;
3128 	args.fini = NULL;
3129 	args.keg = primarykeg;
3130 	args.align = UMA_SUPER_ALIGN - 1;
3131 	args.flags = UMA_ZFLAG_INTERNAL;
3132 	zone_ctor(kegs, zsize, &args, M_WAITOK);
3133 
3134 	args.name = "UMA Zones";
3135 	args.size = zsize;
3136 	args.ctor = zone_ctor;
3137 	args.dtor = zone_dtor;
3138 	args.uminit = zero_init;
3139 	args.fini = NULL;
3140 	args.keg = NULL;
3141 	args.align = UMA_SUPER_ALIGN - 1;
3142 	args.flags = UMA_ZFLAG_INTERNAL;
3143 	zone_ctor(zones, zsize, &args, M_WAITOK);
3144 
3145 	/* Now make zones for slab headers */
3146 	slabzones[0] = uma_zcreate("UMA Slabs 0", SLABZONE0_SIZE,
3147 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
3148 	slabzones[1] = uma_zcreate("UMA Slabs 1", SLABZONE1_SIZE,
3149 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
3150 
3151 	hashzone = uma_zcreate("UMA Hash",
3152 	    sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
3153 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
3154 
3155 	bucket_init();
3156 	smr_init();
3157 }
3158 
3159 #ifndef UMA_MD_SMALL_ALLOC
3160 extern void vm_radix_reserve_kva(void);
3161 #endif
3162 
3163 /*
3164  * Advertise the availability of normal kva allocations and switch to
3165  * the default back-end allocator.  Marks the KVA we consumed on startup
3166  * as used in the map.
3167  */
3168 void
3169 uma_startup2(void)
3170 {
3171 
3172 	if (bootstart != bootmem) {
3173 		vm_map_lock(kernel_map);
3174 		(void)vm_map_insert(kernel_map, NULL, 0, bootstart, bootmem,
3175 		    VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
3176 		vm_map_unlock(kernel_map);
3177 	}
3178 
3179 #ifndef UMA_MD_SMALL_ALLOC
3180 	/* Set up radix zone to use noobj_alloc. */
3181 	vm_radix_reserve_kva();
3182 #endif
3183 
3184 	booted = BOOT_KVA;
3185 	zone_foreach_unlocked(zone_kva_available, NULL);
3186 	bucket_enable();
3187 }
3188 
3189 /*
3190  * Allocate counters as early as possible so that boot-time allocations are
3191  * accounted more precisely.
3192  */
3193 static void
3194 uma_startup_pcpu(void *arg __unused)
3195 {
3196 
3197 	zone_foreach_unlocked(zone_alloc_counters, NULL);
3198 	booted = BOOT_PCPU;
3199 }
3200 SYSINIT(uma_startup_pcpu, SI_SUB_COUNTER, SI_ORDER_ANY, uma_startup_pcpu, NULL);
3201 
3202 /*
3203  * Finish our initialization steps.
3204  */
3205 static void
3206 uma_startup3(void *arg __unused)
3207 {
3208 
3209 #ifdef INVARIANTS
3210 	TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor);
3211 	uma_dbg_cnt = counter_u64_alloc(M_WAITOK);
3212 	uma_skip_cnt = counter_u64_alloc(M_WAITOK);
3213 #endif
3214 	zone_foreach_unlocked(zone_alloc_sysctl, NULL);
3215 	booted = BOOT_RUNNING;
3216 
3217 	EVENTHANDLER_REGISTER(shutdown_post_sync, uma_shutdown, NULL,
3218 	    EVENTHANDLER_PRI_FIRST);
3219 }
3220 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
3221 
3222 static void
3223 uma_startup4(void *arg __unused)
3224 {
3225 	TIMEOUT_TASK_INIT(taskqueue_thread, &uma_timeout_task, 0, uma_timeout,
3226 	    NULL);
3227 	taskqueue_enqueue_timeout(taskqueue_thread, &uma_timeout_task,
3228 	    UMA_TIMEOUT * hz);
3229 }
3230 SYSINIT(uma_startup4, SI_SUB_TASKQ, SI_ORDER_ANY, uma_startup4, NULL);
3231 
3232 static void
3233 uma_shutdown(void)
3234 {
3235 
3236 	booted = BOOT_SHUTDOWN;
3237 }
3238 
3239 static uma_keg_t
3240 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
3241 		int align, uint32_t flags)
3242 {
3243 	struct uma_kctor_args args;
3244 
3245 	args.size = size;
3246 	args.uminit = uminit;
3247 	args.fini = fini;
3248 	args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align;
3249 	args.flags = flags;
3250 	args.zone = zone;
3251 	return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK));
3252 }
3253 
3254 /* Public functions */
3255 /* See uma.h */
3256 void
3257 uma_set_align(int align)
3258 {
3259 
3260 	if (align != UMA_ALIGN_CACHE)
3261 		uma_align_cache = align;
3262 }
3263 
3264 /* See uma.h */
3265 uma_zone_t
3266 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
3267 		uma_init uminit, uma_fini fini, int align, uint32_t flags)
3268 
3269 {
3270 	struct uma_zctor_args args;
3271 	uma_zone_t res;
3272 
3273 	KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"",
3274 	    align, name));
3275 
3276 	/* This stuff is essential for the zone ctor */
3277 	memset(&args, 0, sizeof(args));
3278 	args.name = name;
3279 	args.size = size;
3280 	args.ctor = ctor;
3281 	args.dtor = dtor;
3282 	args.uminit = uminit;
3283 	args.fini = fini;
3284 #if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN)
3285 	/*
3286 	 * Inject procedures which check for memory use after free if we are
3287 	 * allowed to scramble the memory while it is not allocated.  This
3288 	 * requires that: UMA is actually able to access the memory, no init
3289 	 * or fini procedures, no dependency on the initial value of the
3290 	 * memory, and no (legitimate) use of the memory after free.  Note,
3291 	 * the ctor and dtor do not need to be empty.
3292 	 */
3293 	if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOTOUCH |
3294 	    UMA_ZONE_NOFREE))) && uminit == NULL && fini == NULL) {
3295 		args.uminit = trash_init;
3296 		args.fini = trash_fini;
3297 	}
3298 #endif
3299 	args.align = align;
3300 	args.flags = flags;
3301 	args.keg = NULL;
3302 
3303 	sx_xlock(&uma_reclaim_lock);
3304 	res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK);
3305 	sx_xunlock(&uma_reclaim_lock);
3306 
3307 	return (res);
3308 }
3309 
3310 /* See uma.h */
3311 uma_zone_t
3312 uma_zsecond_create(const char *name, uma_ctor ctor, uma_dtor dtor,
3313     uma_init zinit, uma_fini zfini, uma_zone_t primary)
3314 {
3315 	struct uma_zctor_args args;
3316 	uma_keg_t keg;
3317 	uma_zone_t res;
3318 
3319 	keg = primary->uz_keg;
3320 	memset(&args, 0, sizeof(args));
3321 	args.name = name;
3322 	args.size = keg->uk_size;
3323 	args.ctor = ctor;
3324 	args.dtor = dtor;
3325 	args.uminit = zinit;
3326 	args.fini = zfini;
3327 	args.align = keg->uk_align;
3328 	args.flags = keg->uk_flags | UMA_ZONE_SECONDARY;
3329 	args.keg = keg;
3330 
3331 	sx_xlock(&uma_reclaim_lock);
3332 	res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK);
3333 	sx_xunlock(&uma_reclaim_lock);
3334 
3335 	return (res);
3336 }
3337 
3338 /* See uma.h */
3339 uma_zone_t
3340 uma_zcache_create(const char *name, int size, uma_ctor ctor, uma_dtor dtor,
3341     uma_init zinit, uma_fini zfini, uma_import zimport, uma_release zrelease,
3342     void *arg, int flags)
3343 {
3344 	struct uma_zctor_args args;
3345 
3346 	memset(&args, 0, sizeof(args));
3347 	args.name = name;
3348 	args.size = size;
3349 	args.ctor = ctor;
3350 	args.dtor = dtor;
3351 	args.uminit = zinit;
3352 	args.fini = zfini;
3353 	args.import = zimport;
3354 	args.release = zrelease;
3355 	args.arg = arg;
3356 	args.align = 0;
3357 	args.flags = flags | UMA_ZFLAG_CACHE;
3358 
3359 	return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK));
3360 }
3361 
3362 /* See uma.h */
3363 void
3364 uma_zdestroy(uma_zone_t zone)
3365 {
3366 
3367 	/*
3368 	 * Large slabs are expensive to reclaim, so don't bother doing
3369 	 * unnecessary work if we're shutting down.
3370 	 */
3371 	if (booted == BOOT_SHUTDOWN &&
3372 	    zone->uz_fini == NULL && zone->uz_release == zone_release)
3373 		return;
3374 	sx_xlock(&uma_reclaim_lock);
3375 	zone_free_item(zones, zone, NULL, SKIP_NONE);
3376 	sx_xunlock(&uma_reclaim_lock);
3377 }
3378 
3379 void
3380 uma_zwait(uma_zone_t zone)
3381 {
3382 
3383 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
3384 		uma_zfree_smr(zone, uma_zalloc_smr(zone, M_WAITOK));
3385 	else if ((zone->uz_flags & UMA_ZONE_PCPU) != 0)
3386 		uma_zfree_pcpu(zone, uma_zalloc_pcpu(zone, M_WAITOK));
3387 	else
3388 		uma_zfree(zone, uma_zalloc(zone, M_WAITOK));
3389 }
3390 
3391 void *
3392 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags)
3393 {
3394 	void *item, *pcpu_item;
3395 #ifdef SMP
3396 	int i;
3397 
3398 	MPASS(zone->uz_flags & UMA_ZONE_PCPU);
3399 #endif
3400 	item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO);
3401 	if (item == NULL)
3402 		return (NULL);
3403 	pcpu_item = zpcpu_base_to_offset(item);
3404 	if (flags & M_ZERO) {
3405 #ifdef SMP
3406 		for (i = 0; i <= mp_maxid; i++)
3407 			bzero(zpcpu_get_cpu(pcpu_item, i), zone->uz_size);
3408 #else
3409 		bzero(item, zone->uz_size);
3410 #endif
3411 	}
3412 	return (pcpu_item);
3413 }
3414 
3415 /*
3416  * A stub while both regular and pcpu cases are identical.
3417  */
3418 void
3419 uma_zfree_pcpu_arg(uma_zone_t zone, void *pcpu_item, void *udata)
3420 {
3421 	void *item;
3422 
3423 #ifdef SMP
3424 	MPASS(zone->uz_flags & UMA_ZONE_PCPU);
3425 #endif
3426 
3427         /* uma_zfree_pcu_*(..., NULL) does nothing, to match free(9). */
3428         if (pcpu_item == NULL)
3429                 return;
3430 
3431 	item = zpcpu_offset_to_base(pcpu_item);
3432 	uma_zfree_arg(zone, item, udata);
3433 }
3434 
3435 static inline void *
3436 item_ctor(uma_zone_t zone, int uz_flags, int size, void *udata, int flags,
3437     void *item)
3438 {
3439 #ifdef INVARIANTS
3440 	bool skipdbg;
3441 #endif
3442 
3443 	kasan_mark_item_valid(zone, item);
3444 	kmsan_mark_item_uninitialized(zone, item);
3445 
3446 #ifdef INVARIANTS
3447 	skipdbg = uma_dbg_zskip(zone, item);
3448 	if (!skipdbg && (uz_flags & UMA_ZFLAG_TRASH) != 0 &&
3449 	    zone->uz_ctor != trash_ctor)
3450 		trash_ctor(item, size, udata, flags);
3451 #endif
3452 
3453 	/* Check flags before loading ctor pointer. */
3454 	if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0) &&
3455 	    __predict_false(zone->uz_ctor != NULL) &&
3456 	    zone->uz_ctor(item, size, udata, flags) != 0) {
3457 		counter_u64_add(zone->uz_fails, 1);
3458 		zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT);
3459 		return (NULL);
3460 	}
3461 #ifdef INVARIANTS
3462 	if (!skipdbg)
3463 		uma_dbg_alloc(zone, NULL, item);
3464 #endif
3465 	if (__predict_false(flags & M_ZERO))
3466 		return (memset(item, 0, size));
3467 
3468 	return (item);
3469 }
3470 
3471 static inline void
3472 item_dtor(uma_zone_t zone, void *item, int size, void *udata,
3473     enum zfreeskip skip)
3474 {
3475 #ifdef INVARIANTS
3476 	bool skipdbg;
3477 
3478 	skipdbg = uma_dbg_zskip(zone, item);
3479 	if (skip == SKIP_NONE && !skipdbg) {
3480 		if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0)
3481 			uma_dbg_free(zone, udata, item);
3482 		else
3483 			uma_dbg_free(zone, NULL, item);
3484 	}
3485 #endif
3486 	if (__predict_true(skip < SKIP_DTOR)) {
3487 		if (zone->uz_dtor != NULL)
3488 			zone->uz_dtor(item, size, udata);
3489 #ifdef INVARIANTS
3490 		if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 &&
3491 		    zone->uz_dtor != trash_dtor)
3492 			trash_dtor(item, size, udata);
3493 #endif
3494 	}
3495 	kasan_mark_item_invalid(zone, item);
3496 }
3497 
3498 #ifdef NUMA
3499 static int
3500 item_domain(void *item)
3501 {
3502 	int domain;
3503 
3504 	domain = vm_phys_domain(vtophys(item));
3505 	KASSERT(domain >= 0 && domain < vm_ndomains,
3506 	    ("%s: unknown domain for item %p", __func__, item));
3507 	return (domain);
3508 }
3509 #endif
3510 
3511 #if defined(INVARIANTS) || defined(DEBUG_MEMGUARD) || defined(WITNESS)
3512 #if defined(INVARIANTS) && (defined(DDB) || defined(STACK))
3513 #include <sys/stack.h>
3514 #endif
3515 #define	UMA_ZALLOC_DEBUG
3516 static int
3517 uma_zalloc_debug(uma_zone_t zone, void **itemp, void *udata, int flags)
3518 {
3519 	int error;
3520 
3521 	error = 0;
3522 #ifdef WITNESS
3523 	if (flags & M_WAITOK) {
3524 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
3525 		    "uma_zalloc_debug: zone \"%s\"", zone->uz_name);
3526 	}
3527 #endif
3528 
3529 #ifdef INVARIANTS
3530 	KASSERT((flags & M_EXEC) == 0,
3531 	    ("uma_zalloc_debug: called with M_EXEC"));
3532 	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
3533 	    ("uma_zalloc_debug: called within spinlock or critical section"));
3534 	KASSERT((zone->uz_flags & UMA_ZONE_PCPU) == 0 || (flags & M_ZERO) == 0,
3535 	    ("uma_zalloc_debug: allocating from a pcpu zone with M_ZERO"));
3536 
3537 	_Static_assert(M_NOWAIT != 0 && M_WAITOK != 0,
3538 	    "M_NOWAIT and M_WAITOK must be non-zero for this assertion:");
3539 #if 0
3540 	/*
3541 	 * Give the #elif clause time to find problems, then remove it
3542 	 * and enable this.  (Remove <sys/stack.h> above, too.)
3543 	 */
3544 	KASSERT((flags & (M_NOWAIT|M_WAITOK)) == M_NOWAIT ||
3545 	    (flags & (M_NOWAIT|M_WAITOK)) == M_WAITOK,
3546 	    ("uma_zalloc_debug: must pass one of M_NOWAIT or M_WAITOK"));
3547 #elif defined(DDB) || defined(STACK)
3548 	if (__predict_false((flags & (M_NOWAIT|M_WAITOK)) != M_NOWAIT &&
3549 	    (flags & (M_NOWAIT|M_WAITOK)) != M_WAITOK)) {
3550 		static int stack_count;
3551 		struct stack st;
3552 
3553 		if (stack_count < 10) {
3554 			++stack_count;
3555 			printf("uma_zalloc* called with bad WAIT flags:\n");
3556 			stack_save(&st);
3557 			stack_print(&st);
3558 		}
3559 	}
3560 #endif
3561 #endif
3562 
3563 #ifdef DEBUG_MEMGUARD
3564 	if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && memguard_cmp_zone(zone)) {
3565 		void *item;
3566 		item = memguard_alloc(zone->uz_size, flags);
3567 		if (item != NULL) {
3568 			error = EJUSTRETURN;
3569 			if (zone->uz_init != NULL &&
3570 			    zone->uz_init(item, zone->uz_size, flags) != 0) {
3571 				*itemp = NULL;
3572 				return (error);
3573 			}
3574 			if (zone->uz_ctor != NULL &&
3575 			    zone->uz_ctor(item, zone->uz_size, udata,
3576 			    flags) != 0) {
3577 				counter_u64_add(zone->uz_fails, 1);
3578 				if (zone->uz_fini != NULL)
3579 					zone->uz_fini(item, zone->uz_size);
3580 				*itemp = NULL;
3581 				return (error);
3582 			}
3583 			*itemp = item;
3584 			return (error);
3585 		}
3586 		/* This is unfortunate but should not be fatal. */
3587 	}
3588 #endif
3589 	return (error);
3590 }
3591 
3592 static int
3593 uma_zfree_debug(uma_zone_t zone, void *item, void *udata)
3594 {
3595 	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
3596 	    ("uma_zfree_debug: called with spinlock or critical section held"));
3597 
3598 #ifdef DEBUG_MEMGUARD
3599 	if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && is_memguard_addr(item)) {
3600 		if (zone->uz_dtor != NULL)
3601 			zone->uz_dtor(item, zone->uz_size, udata);
3602 		if (zone->uz_fini != NULL)
3603 			zone->uz_fini(item, zone->uz_size);
3604 		memguard_free(item);
3605 		return (EJUSTRETURN);
3606 	}
3607 #endif
3608 	return (0);
3609 }
3610 #endif
3611 
3612 static inline void *
3613 cache_alloc_item(uma_zone_t zone, uma_cache_t cache, uma_cache_bucket_t bucket,
3614     void *udata, int flags)
3615 {
3616 	void *item;
3617 	int size, uz_flags;
3618 
3619 	item = cache_bucket_pop(cache, bucket);
3620 	size = cache_uz_size(cache);
3621 	uz_flags = cache_uz_flags(cache);
3622 	critical_exit();
3623 	return (item_ctor(zone, uz_flags, size, udata, flags, item));
3624 }
3625 
3626 static __noinline void *
3627 cache_alloc_retry(uma_zone_t zone, uma_cache_t cache, void *udata, int flags)
3628 {
3629 	uma_cache_bucket_t bucket;
3630 	int domain;
3631 
3632 	while (cache_alloc(zone, cache, udata, flags)) {
3633 		cache = &zone->uz_cpu[curcpu];
3634 		bucket = &cache->uc_allocbucket;
3635 		if (__predict_false(bucket->ucb_cnt == 0))
3636 			continue;
3637 		return (cache_alloc_item(zone, cache, bucket, udata, flags));
3638 	}
3639 	critical_exit();
3640 
3641 	/*
3642 	 * We can not get a bucket so try to return a single item.
3643 	 */
3644 	if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH)
3645 		domain = PCPU_GET(domain);
3646 	else
3647 		domain = UMA_ANYDOMAIN;
3648 	return (zone_alloc_item(zone, udata, domain, flags));
3649 }
3650 
3651 /* See uma.h */
3652 void *
3653 uma_zalloc_smr(uma_zone_t zone, int flags)
3654 {
3655 	uma_cache_bucket_t bucket;
3656 	uma_cache_t cache;
3657 
3658 	CTR3(KTR_UMA, "uma_zalloc_smr zone %s(%p) flags %d", zone->uz_name,
3659 	    zone, flags);
3660 
3661 #ifdef UMA_ZALLOC_DEBUG
3662 	void *item;
3663 
3664 	KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0,
3665 	    ("uma_zalloc_arg: called with non-SMR zone."));
3666 	if (uma_zalloc_debug(zone, &item, NULL, flags) == EJUSTRETURN)
3667 		return (item);
3668 #endif
3669 
3670 	critical_enter();
3671 	cache = &zone->uz_cpu[curcpu];
3672 	bucket = &cache->uc_allocbucket;
3673 	if (__predict_false(bucket->ucb_cnt == 0))
3674 		return (cache_alloc_retry(zone, cache, NULL, flags));
3675 	return (cache_alloc_item(zone, cache, bucket, NULL, flags));
3676 }
3677 
3678 /* See uma.h */
3679 void *
3680 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
3681 {
3682 	uma_cache_bucket_t bucket;
3683 	uma_cache_t cache;
3684 
3685 	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
3686 	random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
3687 
3688 	/* This is the fast path allocation */
3689 	CTR3(KTR_UMA, "uma_zalloc_arg zone %s(%p) flags %d", zone->uz_name,
3690 	    zone, flags);
3691 
3692 #ifdef UMA_ZALLOC_DEBUG
3693 	void *item;
3694 
3695 	KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
3696 	    ("uma_zalloc_arg: called with SMR zone."));
3697 	if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN)
3698 		return (item);
3699 #endif
3700 
3701 	/*
3702 	 * If possible, allocate from the per-CPU cache.  There are two
3703 	 * requirements for safe access to the per-CPU cache: (1) the thread
3704 	 * accessing the cache must not be preempted or yield during access,
3705 	 * and (2) the thread must not migrate CPUs without switching which
3706 	 * cache it accesses.  We rely on a critical section to prevent
3707 	 * preemption and migration.  We release the critical section in
3708 	 * order to acquire the zone mutex if we are unable to allocate from
3709 	 * the current cache; when we re-acquire the critical section, we
3710 	 * must detect and handle migration if it has occurred.
3711 	 */
3712 	critical_enter();
3713 	cache = &zone->uz_cpu[curcpu];
3714 	bucket = &cache->uc_allocbucket;
3715 	if (__predict_false(bucket->ucb_cnt == 0))
3716 		return (cache_alloc_retry(zone, cache, udata, flags));
3717 	return (cache_alloc_item(zone, cache, bucket, udata, flags));
3718 }
3719 
3720 /*
3721  * Replenish an alloc bucket and possibly restore an old one.  Called in
3722  * a critical section.  Returns in a critical section.
3723  *
3724  * A false return value indicates an allocation failure.
3725  * A true return value indicates success and the caller should retry.
3726  */
3727 static __noinline bool
3728 cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags)
3729 {
3730 	uma_bucket_t bucket;
3731 	int curdomain, domain;
3732 	bool new;
3733 
3734 	CRITICAL_ASSERT(curthread);
3735 
3736 	/*
3737 	 * If we have run out of items in our alloc bucket see
3738 	 * if we can switch with the free bucket.
3739 	 *
3740 	 * SMR Zones can't re-use the free bucket until the sequence has
3741 	 * expired.
3742 	 */
3743 	if ((cache_uz_flags(cache) & UMA_ZONE_SMR) == 0 &&
3744 	    cache->uc_freebucket.ucb_cnt != 0) {
3745 		cache_bucket_swap(&cache->uc_freebucket,
3746 		    &cache->uc_allocbucket);
3747 		return (true);
3748 	}
3749 
3750 	/*
3751 	 * Discard any empty allocation bucket while we hold no locks.
3752 	 */
3753 	bucket = cache_bucket_unload_alloc(cache);
3754 	critical_exit();
3755 
3756 	if (bucket != NULL) {
3757 		KASSERT(bucket->ub_cnt == 0,
3758 		    ("cache_alloc: Entered with non-empty alloc bucket."));
3759 		bucket_free(zone, bucket, udata);
3760 	}
3761 
3762 	/*
3763 	 * Attempt to retrieve the item from the per-CPU cache has failed, so
3764 	 * we must go back to the zone.  This requires the zdom lock, so we
3765 	 * must drop the critical section, then re-acquire it when we go back
3766 	 * to the cache.  Since the critical section is released, we may be
3767 	 * preempted or migrate.  As such, make sure not to maintain any
3768 	 * thread-local state specific to the cache from prior to releasing
3769 	 * the critical section.
3770 	 */
3771 	domain = PCPU_GET(domain);
3772 	if ((cache_uz_flags(cache) & UMA_ZONE_ROUNDROBIN) != 0 ||
3773 	    VM_DOMAIN_EMPTY(domain))
3774 		domain = zone_domain_highest(zone, domain);
3775 	bucket = cache_fetch_bucket(zone, cache, domain);
3776 	if (bucket == NULL && zone->uz_bucket_size != 0 && !bucketdisable) {
3777 		bucket = zone_alloc_bucket(zone, udata, domain, flags);
3778 		new = true;
3779 	} else {
3780 		new = false;
3781 	}
3782 
3783 	CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p",
3784 	    zone->uz_name, zone, bucket);
3785 	if (bucket == NULL) {
3786 		critical_enter();
3787 		return (false);
3788 	}
3789 
3790 	/*
3791 	 * See if we lost the race or were migrated.  Cache the
3792 	 * initialized bucket to make this less likely or claim
3793 	 * the memory directly.
3794 	 */
3795 	critical_enter();
3796 	cache = &zone->uz_cpu[curcpu];
3797 	if (cache->uc_allocbucket.ucb_bucket == NULL &&
3798 	    ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) == 0 ||
3799 	    (curdomain = PCPU_GET(domain)) == domain ||
3800 	    VM_DOMAIN_EMPTY(curdomain))) {
3801 		if (new)
3802 			atomic_add_long(&ZDOM_GET(zone, domain)->uzd_imax,
3803 			    bucket->ub_cnt);
3804 		cache_bucket_load_alloc(cache, bucket);
3805 		return (true);
3806 	}
3807 
3808 	/*
3809 	 * We lost the race, release this bucket and start over.
3810 	 */
3811 	critical_exit();
3812 	zone_put_bucket(zone, domain, bucket, udata, !new);
3813 	critical_enter();
3814 
3815 	return (true);
3816 }
3817 
3818 void *
3819 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags)
3820 {
3821 #ifdef NUMA
3822 	uma_bucket_t bucket;
3823 	uma_zone_domain_t zdom;
3824 	void *item;
3825 #endif
3826 
3827 	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
3828 	random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
3829 
3830 	/* This is the fast path allocation */
3831 	CTR4(KTR_UMA, "uma_zalloc_domain zone %s(%p) domain %d flags %d",
3832 	    zone->uz_name, zone, domain, flags);
3833 
3834 	KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
3835 	    ("uma_zalloc_domain: called with SMR zone."));
3836 #ifdef NUMA
3837 	KASSERT((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0,
3838 	    ("uma_zalloc_domain: called with non-FIRSTTOUCH zone."));
3839 
3840 	if (vm_ndomains == 1)
3841 		return (uma_zalloc_arg(zone, udata, flags));
3842 
3843 #ifdef UMA_ZALLOC_DEBUG
3844 	if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN)
3845 		return (item);
3846 #endif
3847 
3848 	/*
3849 	 * Try to allocate from the bucket cache before falling back to the keg.
3850 	 * We could try harder and attempt to allocate from per-CPU caches or
3851 	 * the per-domain cross-domain buckets, but the complexity is probably
3852 	 * not worth it.  It is more important that frees of previous
3853 	 * cross-domain allocations do not blow up the cache.
3854 	 */
3855 	zdom = zone_domain_lock(zone, domain);
3856 	if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) {
3857 		item = bucket->ub_bucket[bucket->ub_cnt - 1];
3858 #ifdef INVARIANTS
3859 		bucket->ub_bucket[bucket->ub_cnt - 1] = NULL;
3860 #endif
3861 		bucket->ub_cnt--;
3862 		zone_put_bucket(zone, domain, bucket, udata, true);
3863 		item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata,
3864 		    flags, item);
3865 		if (item != NULL) {
3866 			KASSERT(item_domain(item) == domain,
3867 			    ("%s: bucket cache item %p from wrong domain",
3868 			    __func__, item));
3869 			counter_u64_add(zone->uz_allocs, 1);
3870 		}
3871 		return (item);
3872 	}
3873 	ZDOM_UNLOCK(zdom);
3874 	return (zone_alloc_item(zone, udata, domain, flags));
3875 #else
3876 	return (uma_zalloc_arg(zone, udata, flags));
3877 #endif
3878 }
3879 
3880 /*
3881  * Find a slab with some space.  Prefer slabs that are partially used over those
3882  * that are totally full.  This helps to reduce fragmentation.
3883  *
3884  * If 'rr' is 1, search all domains starting from 'domain'.  Otherwise check
3885  * only 'domain'.
3886  */
3887 static uma_slab_t
3888 keg_first_slab(uma_keg_t keg, int domain, bool rr)
3889 {
3890 	uma_domain_t dom;
3891 	uma_slab_t slab;
3892 	int start;
3893 
3894 	KASSERT(domain >= 0 && domain < vm_ndomains,
3895 	    ("keg_first_slab: domain %d out of range", domain));
3896 	KEG_LOCK_ASSERT(keg, domain);
3897 
3898 	slab = NULL;
3899 	start = domain;
3900 	do {
3901 		dom = &keg->uk_domain[domain];
3902 		if ((slab = LIST_FIRST(&dom->ud_part_slab)) != NULL)
3903 			return (slab);
3904 		if ((slab = LIST_FIRST(&dom->ud_free_slab)) != NULL) {
3905 			LIST_REMOVE(slab, us_link);
3906 			dom->ud_free_slabs--;
3907 			LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
3908 			return (slab);
3909 		}
3910 		if (rr)
3911 			domain = (domain + 1) % vm_ndomains;
3912 	} while (domain != start);
3913 
3914 	return (NULL);
3915 }
3916 
3917 /*
3918  * Fetch an existing slab from a free or partial list.  Returns with the
3919  * keg domain lock held if a slab was found or unlocked if not.
3920  */
3921 static uma_slab_t
3922 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags)
3923 {
3924 	uma_slab_t slab;
3925 	uint32_t reserve;
3926 
3927 	/* HASH has a single free list. */
3928 	if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0)
3929 		domain = 0;
3930 
3931 	KEG_LOCK(keg, domain);
3932 	reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve;
3933 	if (keg->uk_domain[domain].ud_free_items <= reserve ||
3934 	    (slab = keg_first_slab(keg, domain, rr)) == NULL) {
3935 		KEG_UNLOCK(keg, domain);
3936 		return (NULL);
3937 	}
3938 	return (slab);
3939 }
3940 
3941 static uma_slab_t
3942 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags)
3943 {
3944 	struct vm_domainset_iter di;
3945 	uma_slab_t slab;
3946 	int aflags, domain;
3947 	bool rr;
3948 
3949 	KASSERT((flags & (M_WAITOK | M_NOVM)) != (M_WAITOK | M_NOVM),
3950 	    ("%s: invalid flags %#x", __func__, flags));
3951 
3952 restart:
3953 	/*
3954 	 * Use the keg's policy if upper layers haven't already specified a
3955 	 * domain (as happens with first-touch zones).
3956 	 *
3957 	 * To avoid races we run the iterator with the keg lock held, but that
3958 	 * means that we cannot allow the vm_domainset layer to sleep.  Thus,
3959 	 * clear M_WAITOK and handle low memory conditions locally.
3960 	 */
3961 	rr = rdomain == UMA_ANYDOMAIN;
3962 	if (rr) {
3963 		aflags = (flags & ~M_WAITOK) | M_NOWAIT;
3964 		vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain,
3965 		    &aflags);
3966 	} else {
3967 		aflags = flags;
3968 		domain = rdomain;
3969 	}
3970 
3971 	for (;;) {
3972 		slab = keg_fetch_free_slab(keg, domain, rr, flags);
3973 		if (slab != NULL)
3974 			return (slab);
3975 
3976 		/*
3977 		 * M_NOVM is used to break the recursion that can otherwise
3978 		 * occur if low-level memory management routines use UMA.
3979 		 */
3980 		if ((flags & M_NOVM) == 0) {
3981 			slab = keg_alloc_slab(keg, zone, domain, flags, aflags);
3982 			if (slab != NULL)
3983 				return (slab);
3984 		}
3985 
3986 		if (!rr) {
3987 			if ((flags & M_USE_RESERVE) != 0) {
3988 				/*
3989 				 * Drain reserves from other domains before
3990 				 * giving up or sleeping.  It may be useful to
3991 				 * support per-domain reserves eventually.
3992 				 */
3993 				rdomain = UMA_ANYDOMAIN;
3994 				goto restart;
3995 			}
3996 			if ((flags & M_WAITOK) == 0)
3997 				break;
3998 			vm_wait_domain(domain);
3999 		} else if (vm_domainset_iter_policy(&di, &domain) != 0) {
4000 			if ((flags & M_WAITOK) != 0) {
4001 				vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0);
4002 				goto restart;
4003 			}
4004 			break;
4005 		}
4006 	}
4007 
4008 	/*
4009 	 * We might not have been able to get a slab but another cpu
4010 	 * could have while we were unlocked.  Check again before we
4011 	 * fail.
4012 	 */
4013 	if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL)
4014 		return (slab);
4015 
4016 	return (NULL);
4017 }
4018 
4019 static void *
4020 slab_alloc_item(uma_keg_t keg, uma_slab_t slab)
4021 {
4022 	uma_domain_t dom;
4023 	void *item;
4024 	int freei;
4025 
4026 	KEG_LOCK_ASSERT(keg, slab->us_domain);
4027 
4028 	dom = &keg->uk_domain[slab->us_domain];
4029 	freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1;
4030 	BIT_CLR(keg->uk_ipers, freei, &slab->us_free);
4031 	item = slab_item(slab, keg, freei);
4032 	slab->us_freecount--;
4033 	dom->ud_free_items--;
4034 
4035 	/*
4036 	 * Move this slab to the full list.  It must be on the partial list, so
4037 	 * we do not need to update the free slab count.  In particular,
4038 	 * keg_fetch_slab() always returns slabs on the partial list.
4039 	 */
4040 	if (slab->us_freecount == 0) {
4041 		LIST_REMOVE(slab, us_link);
4042 		LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link);
4043 	}
4044 
4045 	return (item);
4046 }
4047 
4048 static int
4049 zone_import(void *arg, void **bucket, int max, int domain, int flags)
4050 {
4051 	uma_domain_t dom;
4052 	uma_zone_t zone;
4053 	uma_slab_t slab;
4054 	uma_keg_t keg;
4055 #ifdef NUMA
4056 	int stripe;
4057 #endif
4058 	int i;
4059 
4060 	zone = arg;
4061 	slab = NULL;
4062 	keg = zone->uz_keg;
4063 	/* Try to keep the buckets totally full */
4064 	for (i = 0; i < max; ) {
4065 		if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL)
4066 			break;
4067 #ifdef NUMA
4068 		stripe = howmany(max, vm_ndomains);
4069 #endif
4070 		dom = &keg->uk_domain[slab->us_domain];
4071 		do {
4072 			bucket[i++] = slab_alloc_item(keg, slab);
4073 			if (keg->uk_reserve > 0 &&
4074 			    dom->ud_free_items <= keg->uk_reserve) {
4075 				/*
4076 				 * Avoid depleting the reserve after a
4077 				 * successful item allocation, even if
4078 				 * M_USE_RESERVE is specified.
4079 				 */
4080 				KEG_UNLOCK(keg, slab->us_domain);
4081 				goto out;
4082 			}
4083 #ifdef NUMA
4084 			/*
4085 			 * If the zone is striped we pick a new slab for every
4086 			 * N allocations.  Eliminating this conditional will
4087 			 * instead pick a new domain for each bucket rather
4088 			 * than stripe within each bucket.  The current option
4089 			 * produces more fragmentation and requires more cpu
4090 			 * time but yields better distribution.
4091 			 */
4092 			if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0 &&
4093 			    vm_ndomains > 1 && --stripe == 0)
4094 				break;
4095 #endif
4096 		} while (slab->us_freecount != 0 && i < max);
4097 		KEG_UNLOCK(keg, slab->us_domain);
4098 
4099 		/* Don't block if we allocated any successfully. */
4100 		flags &= ~M_WAITOK;
4101 		flags |= M_NOWAIT;
4102 	}
4103 out:
4104 	return i;
4105 }
4106 
4107 static int
4108 zone_alloc_limit_hard(uma_zone_t zone, int count, int flags)
4109 {
4110 	uint64_t old, new, total, max;
4111 
4112 	/*
4113 	 * The hard case.  We're going to sleep because there were existing
4114 	 * sleepers or because we ran out of items.  This routine enforces
4115 	 * fairness by keeping fifo order.
4116 	 *
4117 	 * First release our ill gotten gains and make some noise.
4118 	 */
4119 	for (;;) {
4120 		zone_free_limit(zone, count);
4121 		zone_log_warning(zone);
4122 		zone_maxaction(zone);
4123 		if (flags & M_NOWAIT)
4124 			return (0);
4125 
4126 		/*
4127 		 * We need to allocate an item or set ourself as a sleeper
4128 		 * while the sleepq lock is held to avoid wakeup races.  This
4129 		 * is essentially a home rolled semaphore.
4130 		 */
4131 		sleepq_lock(&zone->uz_max_items);
4132 		old = zone->uz_items;
4133 		do {
4134 			MPASS(UZ_ITEMS_SLEEPERS(old) < UZ_ITEMS_SLEEPERS_MAX);
4135 			/* Cache the max since we will evaluate twice. */
4136 			max = zone->uz_max_items;
4137 			if (UZ_ITEMS_SLEEPERS(old) != 0 ||
4138 			    UZ_ITEMS_COUNT(old) >= max)
4139 				new = old + UZ_ITEMS_SLEEPER;
4140 			else
4141 				new = old + MIN(count, max - old);
4142 		} while (atomic_fcmpset_64(&zone->uz_items, &old, new) == 0);
4143 
4144 		/* We may have successfully allocated under the sleepq lock. */
4145 		if (UZ_ITEMS_SLEEPERS(new) == 0) {
4146 			sleepq_release(&zone->uz_max_items);
4147 			return (new - old);
4148 		}
4149 
4150 		/*
4151 		 * This is in a different cacheline from uz_items so that we
4152 		 * don't constantly invalidate the fastpath cacheline when we
4153 		 * adjust item counts.  This could be limited to toggling on
4154 		 * transitions.
4155 		 */
4156 		atomic_add_32(&zone->uz_sleepers, 1);
4157 		atomic_add_64(&zone->uz_sleeps, 1);
4158 
4159 		/*
4160 		 * We have added ourselves as a sleeper.  The sleepq lock
4161 		 * protects us from wakeup races.  Sleep now and then retry.
4162 		 */
4163 		sleepq_add(&zone->uz_max_items, NULL, "zonelimit", 0, 0);
4164 		sleepq_wait(&zone->uz_max_items, PVM);
4165 
4166 		/*
4167 		 * After wakeup, remove ourselves as a sleeper and try
4168 		 * again.  We no longer have the sleepq lock for protection.
4169 		 *
4170 		 * Subract ourselves as a sleeper while attempting to add
4171 		 * our count.
4172 		 */
4173 		atomic_subtract_32(&zone->uz_sleepers, 1);
4174 		old = atomic_fetchadd_64(&zone->uz_items,
4175 		    -(UZ_ITEMS_SLEEPER - count));
4176 		/* We're no longer a sleeper. */
4177 		old -= UZ_ITEMS_SLEEPER;
4178 
4179 		/*
4180 		 * If we're still at the limit, restart.  Notably do not
4181 		 * block on other sleepers.  Cache the max value to protect
4182 		 * against changes via sysctl.
4183 		 */
4184 		total = UZ_ITEMS_COUNT(old);
4185 		max = zone->uz_max_items;
4186 		if (total >= max)
4187 			continue;
4188 		/* Truncate if necessary, otherwise wake other sleepers. */
4189 		if (total + count > max) {
4190 			zone_free_limit(zone, total + count - max);
4191 			count = max - total;
4192 		} else if (total + count < max && UZ_ITEMS_SLEEPERS(old) != 0)
4193 			wakeup_one(&zone->uz_max_items);
4194 
4195 		return (count);
4196 	}
4197 }
4198 
4199 /*
4200  * Allocate 'count' items from our max_items limit.  Returns the number
4201  * available.  If M_NOWAIT is not specified it will sleep until at least
4202  * one item can be allocated.
4203  */
4204 static int
4205 zone_alloc_limit(uma_zone_t zone, int count, int flags)
4206 {
4207 	uint64_t old;
4208 	uint64_t max;
4209 
4210 	max = zone->uz_max_items;
4211 	MPASS(max > 0);
4212 
4213 	/*
4214 	 * We expect normal allocations to succeed with a simple
4215 	 * fetchadd.
4216 	 */
4217 	old = atomic_fetchadd_64(&zone->uz_items, count);
4218 	if (__predict_true(old + count <= max))
4219 		return (count);
4220 
4221 	/*
4222 	 * If we had some items and no sleepers just return the
4223 	 * truncated value.  We have to release the excess space
4224 	 * though because that may wake sleepers who weren't woken
4225 	 * because we were temporarily over the limit.
4226 	 */
4227 	if (old < max) {
4228 		zone_free_limit(zone, (old + count) - max);
4229 		return (max - old);
4230 	}
4231 	return (zone_alloc_limit_hard(zone, count, flags));
4232 }
4233 
4234 /*
4235  * Free a number of items back to the limit.
4236  */
4237 static void
4238 zone_free_limit(uma_zone_t zone, int count)
4239 {
4240 	uint64_t old;
4241 
4242 	MPASS(count > 0);
4243 
4244 	/*
4245 	 * In the common case we either have no sleepers or
4246 	 * are still over the limit and can just return.
4247 	 */
4248 	old = atomic_fetchadd_64(&zone->uz_items, -count);
4249 	if (__predict_true(UZ_ITEMS_SLEEPERS(old) == 0 ||
4250 	   UZ_ITEMS_COUNT(old) - count >= zone->uz_max_items))
4251 		return;
4252 
4253 	/*
4254 	 * Moderate the rate of wakeups.  Sleepers will continue
4255 	 * to generate wakeups if necessary.
4256 	 */
4257 	wakeup_one(&zone->uz_max_items);
4258 }
4259 
4260 static uma_bucket_t
4261 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags)
4262 {
4263 	uma_bucket_t bucket;
4264 	int error, maxbucket, cnt;
4265 
4266 	CTR3(KTR_UMA, "zone_alloc_bucket zone %s(%p) domain %d", zone->uz_name,
4267 	    zone, domain);
4268 
4269 	/* Avoid allocs targeting empty domains. */
4270 	if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain))
4271 		domain = UMA_ANYDOMAIN;
4272 	else if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0)
4273 		domain = UMA_ANYDOMAIN;
4274 
4275 	if (zone->uz_max_items > 0)
4276 		maxbucket = zone_alloc_limit(zone, zone->uz_bucket_size,
4277 		    M_NOWAIT);
4278 	else
4279 		maxbucket = zone->uz_bucket_size;
4280 	if (maxbucket == 0)
4281 		return (NULL);
4282 
4283 	/* Don't wait for buckets, preserve caller's NOVM setting. */
4284 	bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM));
4285 	if (bucket == NULL) {
4286 		cnt = 0;
4287 		goto out;
4288 	}
4289 
4290 	bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket,
4291 	    MIN(maxbucket, bucket->ub_entries), domain, flags);
4292 
4293 	/*
4294 	 * Initialize the memory if necessary.
4295 	 */
4296 	if (bucket->ub_cnt != 0 && zone->uz_init != NULL) {
4297 		int i;
4298 
4299 		for (i = 0; i < bucket->ub_cnt; i++) {
4300 			kasan_mark_item_valid(zone, bucket->ub_bucket[i]);
4301 			error = zone->uz_init(bucket->ub_bucket[i],
4302 			    zone->uz_size, flags);
4303 			kasan_mark_item_invalid(zone, bucket->ub_bucket[i]);
4304 			if (error != 0)
4305 				break;
4306 		}
4307 
4308 		/*
4309 		 * If we couldn't initialize the whole bucket, put the
4310 		 * rest back onto the freelist.
4311 		 */
4312 		if (i != bucket->ub_cnt) {
4313 			zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i],
4314 			    bucket->ub_cnt - i);
4315 #ifdef INVARIANTS
4316 			bzero(&bucket->ub_bucket[i],
4317 			    sizeof(void *) * (bucket->ub_cnt - i));
4318 #endif
4319 			bucket->ub_cnt = i;
4320 		}
4321 	}
4322 
4323 	cnt = bucket->ub_cnt;
4324 	if (bucket->ub_cnt == 0) {
4325 		bucket_free(zone, bucket, udata);
4326 		counter_u64_add(zone->uz_fails, 1);
4327 		bucket = NULL;
4328 	}
4329 out:
4330 	if (zone->uz_max_items > 0 && cnt < maxbucket)
4331 		zone_free_limit(zone, maxbucket - cnt);
4332 
4333 	return (bucket);
4334 }
4335 
4336 /*
4337  * Allocates a single item from a zone.
4338  *
4339  * Arguments
4340  *	zone   The zone to alloc for.
4341  *	udata  The data to be passed to the constructor.
4342  *	domain The domain to allocate from or UMA_ANYDOMAIN.
4343  *	flags  M_WAITOK, M_NOWAIT, M_ZERO.
4344  *
4345  * Returns
4346  *	NULL if there is no memory and M_NOWAIT is set
4347  *	An item if successful
4348  */
4349 
4350 static void *
4351 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags)
4352 {
4353 	void *item;
4354 
4355 	if (zone->uz_max_items > 0 && zone_alloc_limit(zone, 1, flags) == 0) {
4356 		counter_u64_add(zone->uz_fails, 1);
4357 		return (NULL);
4358 	}
4359 
4360 	/* Avoid allocs targeting empty domains. */
4361 	if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain))
4362 		domain = UMA_ANYDOMAIN;
4363 
4364 	if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1)
4365 		goto fail_cnt;
4366 
4367 	/*
4368 	 * We have to call both the zone's init (not the keg's init)
4369 	 * and the zone's ctor.  This is because the item is going from
4370 	 * a keg slab directly to the user, and the user is expecting it
4371 	 * to be both zone-init'd as well as zone-ctor'd.
4372 	 */
4373 	if (zone->uz_init != NULL) {
4374 		int error;
4375 
4376 		kasan_mark_item_valid(zone, item);
4377 		error = zone->uz_init(item, zone->uz_size, flags);
4378 		kasan_mark_item_invalid(zone, item);
4379 		if (error != 0) {
4380 			zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT);
4381 			goto fail_cnt;
4382 		}
4383 	}
4384 	item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, flags,
4385 	    item);
4386 	if (item == NULL)
4387 		goto fail;
4388 
4389 	counter_u64_add(zone->uz_allocs, 1);
4390 	CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item,
4391 	    zone->uz_name, zone);
4392 
4393 	return (item);
4394 
4395 fail_cnt:
4396 	counter_u64_add(zone->uz_fails, 1);
4397 fail:
4398 	if (zone->uz_max_items > 0)
4399 		zone_free_limit(zone, 1);
4400 	CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)",
4401 	    zone->uz_name, zone);
4402 
4403 	return (NULL);
4404 }
4405 
4406 /* See uma.h */
4407 void
4408 uma_zfree_smr(uma_zone_t zone, void *item)
4409 {
4410 	uma_cache_t cache;
4411 	uma_cache_bucket_t bucket;
4412 	int itemdomain;
4413 #ifdef NUMA
4414 	int uz_flags;
4415 #endif
4416 
4417 	CTR3(KTR_UMA, "uma_zfree_smr zone %s(%p) item %p",
4418 	    zone->uz_name, zone, item);
4419 
4420 #ifdef UMA_ZALLOC_DEBUG
4421 	KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0,
4422 	    ("uma_zfree_smr: called with non-SMR zone."));
4423 	KASSERT(item != NULL, ("uma_zfree_smr: Called with NULL pointer."));
4424 	SMR_ASSERT_NOT_ENTERED(zone->uz_smr);
4425 	if (uma_zfree_debug(zone, item, NULL) == EJUSTRETURN)
4426 		return;
4427 #endif
4428 	cache = &zone->uz_cpu[curcpu];
4429 	itemdomain = 0;
4430 #ifdef NUMA
4431 	uz_flags = cache_uz_flags(cache);
4432 	if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0)
4433 		itemdomain = item_domain(item);
4434 #endif
4435 	critical_enter();
4436 	do {
4437 		cache = &zone->uz_cpu[curcpu];
4438 		/* SMR Zones must free to the free bucket. */
4439 		bucket = &cache->uc_freebucket;
4440 #ifdef NUMA
4441 		if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 &&
4442 		    PCPU_GET(domain) != itemdomain) {
4443 			bucket = &cache->uc_crossbucket;
4444 		}
4445 #endif
4446 		if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) {
4447 			cache_bucket_push(cache, bucket, item);
4448 			critical_exit();
4449 			return;
4450 		}
4451 	} while (cache_free(zone, cache, NULL, itemdomain));
4452 	critical_exit();
4453 
4454 	/*
4455 	 * If nothing else caught this, we'll just do an internal free.
4456 	 */
4457 	zone_free_item(zone, item, NULL, SKIP_NONE);
4458 }
4459 
4460 /* See uma.h */
4461 void
4462 uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
4463 {
4464 	uma_cache_t cache;
4465 	uma_cache_bucket_t bucket;
4466 	int itemdomain, uz_flags;
4467 
4468 	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
4469 	random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
4470 
4471 	CTR3(KTR_UMA, "uma_zfree_arg zone %s(%p) item %p",
4472 	    zone->uz_name, zone, item);
4473 
4474 #ifdef UMA_ZALLOC_DEBUG
4475 	KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
4476 	    ("uma_zfree_arg: called with SMR zone."));
4477 	if (uma_zfree_debug(zone, item, udata) == EJUSTRETURN)
4478 		return;
4479 #endif
4480         /* uma_zfree(..., NULL) does nothing, to match free(9). */
4481         if (item == NULL)
4482                 return;
4483 
4484 	/*
4485 	 * We are accessing the per-cpu cache without a critical section to
4486 	 * fetch size and flags.  This is acceptable, if we are preempted we
4487 	 * will simply read another cpu's line.
4488 	 */
4489 	cache = &zone->uz_cpu[curcpu];
4490 	uz_flags = cache_uz_flags(cache);
4491 	if (UMA_ALWAYS_CTORDTOR ||
4492 	    __predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0))
4493 		item_dtor(zone, item, cache_uz_size(cache), udata, SKIP_NONE);
4494 
4495 	/*
4496 	 * The race here is acceptable.  If we miss it we'll just have to wait
4497 	 * a little longer for the limits to be reset.
4498 	 */
4499 	if (__predict_false(uz_flags & UMA_ZFLAG_LIMIT)) {
4500 		if (atomic_load_32(&zone->uz_sleepers) > 0)
4501 			goto zfree_item;
4502 	}
4503 
4504 	/*
4505 	 * If possible, free to the per-CPU cache.  There are two
4506 	 * requirements for safe access to the per-CPU cache: (1) the thread
4507 	 * accessing the cache must not be preempted or yield during access,
4508 	 * and (2) the thread must not migrate CPUs without switching which
4509 	 * cache it accesses.  We rely on a critical section to prevent
4510 	 * preemption and migration.  We release the critical section in
4511 	 * order to acquire the zone mutex if we are unable to free to the
4512 	 * current cache; when we re-acquire the critical section, we must
4513 	 * detect and handle migration if it has occurred.
4514 	 */
4515 	itemdomain = 0;
4516 #ifdef NUMA
4517 	if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0)
4518 		itemdomain = item_domain(item);
4519 #endif
4520 	critical_enter();
4521 	do {
4522 		cache = &zone->uz_cpu[curcpu];
4523 		/*
4524 		 * Try to free into the allocbucket first to give LIFO
4525 		 * ordering for cache-hot datastructures.  Spill over
4526 		 * into the freebucket if necessary.  Alloc will swap
4527 		 * them if one runs dry.
4528 		 */
4529 		bucket = &cache->uc_allocbucket;
4530 #ifdef NUMA
4531 		if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 &&
4532 		    PCPU_GET(domain) != itemdomain) {
4533 			bucket = &cache->uc_crossbucket;
4534 		} else
4535 #endif
4536 		if (bucket->ucb_cnt == bucket->ucb_entries &&
4537 		   cache->uc_freebucket.ucb_cnt <
4538 		   cache->uc_freebucket.ucb_entries)
4539 			cache_bucket_swap(&cache->uc_freebucket,
4540 			    &cache->uc_allocbucket);
4541 		if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) {
4542 			cache_bucket_push(cache, bucket, item);
4543 			critical_exit();
4544 			return;
4545 		}
4546 	} while (cache_free(zone, cache, udata, itemdomain));
4547 	critical_exit();
4548 
4549 	/*
4550 	 * If nothing else caught this, we'll just do an internal free.
4551 	 */
4552 zfree_item:
4553 	zone_free_item(zone, item, udata, SKIP_DTOR);
4554 }
4555 
4556 #ifdef NUMA
4557 /*
4558  * sort crossdomain free buckets to domain correct buckets and cache
4559  * them.
4560  */
4561 static void
4562 zone_free_cross(uma_zone_t zone, uma_bucket_t bucket, void *udata)
4563 {
4564 	struct uma_bucketlist emptybuckets, fullbuckets;
4565 	uma_zone_domain_t zdom;
4566 	uma_bucket_t b;
4567 	smr_seq_t seq;
4568 	void *item;
4569 	int domain;
4570 
4571 	CTR3(KTR_UMA,
4572 	    "uma_zfree: zone %s(%p) draining cross bucket %p",
4573 	    zone->uz_name, zone, bucket);
4574 
4575 	/*
4576 	 * It is possible for buckets to arrive here out of order so we fetch
4577 	 * the current smr seq rather than accepting the bucket's.
4578 	 */
4579 	seq = SMR_SEQ_INVALID;
4580 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
4581 		seq = smr_advance(zone->uz_smr);
4582 
4583 	/*
4584 	 * To avoid having ndomain * ndomain buckets for sorting we have a
4585 	 * lock on the current crossfree bucket.  A full matrix with
4586 	 * per-domain locking could be used if necessary.
4587 	 */
4588 	STAILQ_INIT(&emptybuckets);
4589 	STAILQ_INIT(&fullbuckets);
4590 	ZONE_CROSS_LOCK(zone);
4591 	for (; bucket->ub_cnt > 0; bucket->ub_cnt--) {
4592 		item = bucket->ub_bucket[bucket->ub_cnt - 1];
4593 		domain = item_domain(item);
4594 		zdom = ZDOM_GET(zone, domain);
4595 		if (zdom->uzd_cross == NULL) {
4596 			if ((b = STAILQ_FIRST(&emptybuckets)) != NULL) {
4597 				STAILQ_REMOVE_HEAD(&emptybuckets, ub_link);
4598 				zdom->uzd_cross = b;
4599 			} else {
4600 				/*
4601 				 * Avoid allocating a bucket with the cross lock
4602 				 * held, since allocation can trigger a
4603 				 * cross-domain free and bucket zones may
4604 				 * allocate from each other.
4605 				 */
4606 				ZONE_CROSS_UNLOCK(zone);
4607 				b = bucket_alloc(zone, udata, M_NOWAIT);
4608 				if (b == NULL)
4609 					goto out;
4610 				ZONE_CROSS_LOCK(zone);
4611 				if (zdom->uzd_cross != NULL) {
4612 					STAILQ_INSERT_HEAD(&emptybuckets, b,
4613 					    ub_link);
4614 				} else {
4615 					zdom->uzd_cross = b;
4616 				}
4617 			}
4618 		}
4619 		b = zdom->uzd_cross;
4620 		b->ub_bucket[b->ub_cnt++] = item;
4621 		b->ub_seq = seq;
4622 		if (b->ub_cnt == b->ub_entries) {
4623 			STAILQ_INSERT_HEAD(&fullbuckets, b, ub_link);
4624 			if ((b = STAILQ_FIRST(&emptybuckets)) != NULL)
4625 				STAILQ_REMOVE_HEAD(&emptybuckets, ub_link);
4626 			zdom->uzd_cross = b;
4627 		}
4628 	}
4629 	ZONE_CROSS_UNLOCK(zone);
4630 out:
4631 	if (bucket->ub_cnt == 0)
4632 		bucket->ub_seq = SMR_SEQ_INVALID;
4633 	bucket_free(zone, bucket, udata);
4634 
4635 	while ((b = STAILQ_FIRST(&emptybuckets)) != NULL) {
4636 		STAILQ_REMOVE_HEAD(&emptybuckets, ub_link);
4637 		bucket_free(zone, b, udata);
4638 	}
4639 	while ((b = STAILQ_FIRST(&fullbuckets)) != NULL) {
4640 		STAILQ_REMOVE_HEAD(&fullbuckets, ub_link);
4641 		domain = item_domain(b->ub_bucket[0]);
4642 		zone_put_bucket(zone, domain, b, udata, true);
4643 	}
4644 }
4645 #endif
4646 
4647 static void
4648 zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata,
4649     int itemdomain, bool ws)
4650 {
4651 
4652 #ifdef NUMA
4653 	/*
4654 	 * Buckets coming from the wrong domain will be entirely for the
4655 	 * only other domain on two domain systems.  In this case we can
4656 	 * simply cache them.  Otherwise we need to sort them back to
4657 	 * correct domains.
4658 	 */
4659 	if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 &&
4660 	    vm_ndomains > 2 && PCPU_GET(domain) != itemdomain) {
4661 		zone_free_cross(zone, bucket, udata);
4662 		return;
4663 	}
4664 #endif
4665 
4666 	/*
4667 	 * Attempt to save the bucket in the zone's domain bucket cache.
4668 	 */
4669 	CTR3(KTR_UMA,
4670 	    "uma_zfree: zone %s(%p) putting bucket %p on free list",
4671 	    zone->uz_name, zone, bucket);
4672 	/* ub_cnt is pointing to the last free item */
4673 	if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0)
4674 		itemdomain = zone_domain_lowest(zone, itemdomain);
4675 	zone_put_bucket(zone, itemdomain, bucket, udata, ws);
4676 }
4677 
4678 /*
4679  * Populate a free or cross bucket for the current cpu cache.  Free any
4680  * existing full bucket either to the zone cache or back to the slab layer.
4681  *
4682  * Enters and returns in a critical section.  false return indicates that
4683  * we can not satisfy this free in the cache layer.  true indicates that
4684  * the caller should retry.
4685  */
4686 static __noinline bool
4687 cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, int itemdomain)
4688 {
4689 	uma_cache_bucket_t cbucket;
4690 	uma_bucket_t newbucket, bucket;
4691 
4692 	CRITICAL_ASSERT(curthread);
4693 
4694 	if (zone->uz_bucket_size == 0)
4695 		return false;
4696 
4697 	cache = &zone->uz_cpu[curcpu];
4698 	newbucket = NULL;
4699 
4700 	/*
4701 	 * FIRSTTOUCH domains need to free to the correct zdom.  When
4702 	 * enabled this is the zdom of the item.   The bucket is the
4703 	 * cross bucket if the current domain and itemdomain do not match.
4704 	 */
4705 	cbucket = &cache->uc_freebucket;
4706 #ifdef NUMA
4707 	if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) {
4708 		if (PCPU_GET(domain) != itemdomain) {
4709 			cbucket = &cache->uc_crossbucket;
4710 			if (cbucket->ucb_cnt != 0)
4711 				counter_u64_add(zone->uz_xdomain,
4712 				    cbucket->ucb_cnt);
4713 		}
4714 	}
4715 #endif
4716 	bucket = cache_bucket_unload(cbucket);
4717 	KASSERT(bucket == NULL || bucket->ub_cnt == bucket->ub_entries,
4718 	    ("cache_free: Entered with non-full free bucket."));
4719 
4720 	/* We are no longer associated with this CPU. */
4721 	critical_exit();
4722 
4723 	/*
4724 	 * Don't let SMR zones operate without a free bucket.  Force
4725 	 * a synchronize and re-use this one.  We will only degrade
4726 	 * to a synchronize every bucket_size items rather than every
4727 	 * item if we fail to allocate a bucket.
4728 	 */
4729 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0) {
4730 		if (bucket != NULL)
4731 			bucket->ub_seq = smr_advance(zone->uz_smr);
4732 		newbucket = bucket_alloc(zone, udata, M_NOWAIT);
4733 		if (newbucket == NULL && bucket != NULL) {
4734 			bucket_drain(zone, bucket);
4735 			newbucket = bucket;
4736 			bucket = NULL;
4737 		}
4738 	} else if (!bucketdisable)
4739 		newbucket = bucket_alloc(zone, udata, M_NOWAIT);
4740 
4741 	if (bucket != NULL)
4742 		zone_free_bucket(zone, bucket, udata, itemdomain, true);
4743 
4744 	critical_enter();
4745 	if ((bucket = newbucket) == NULL)
4746 		return (false);
4747 	cache = &zone->uz_cpu[curcpu];
4748 #ifdef NUMA
4749 	/*
4750 	 * Check to see if we should be populating the cross bucket.  If it
4751 	 * is already populated we will fall through and attempt to populate
4752 	 * the free bucket.
4753 	 */
4754 	if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) {
4755 		if (PCPU_GET(domain) != itemdomain &&
4756 		    cache->uc_crossbucket.ucb_bucket == NULL) {
4757 			cache_bucket_load_cross(cache, bucket);
4758 			return (true);
4759 		}
4760 	}
4761 #endif
4762 	/*
4763 	 * We may have lost the race to fill the bucket or switched CPUs.
4764 	 */
4765 	if (cache->uc_freebucket.ucb_bucket != NULL) {
4766 		critical_exit();
4767 		bucket_free(zone, bucket, udata);
4768 		critical_enter();
4769 	} else
4770 		cache_bucket_load_free(cache, bucket);
4771 
4772 	return (true);
4773 }
4774 
4775 static void
4776 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item)
4777 {
4778 	uma_keg_t keg;
4779 	uma_domain_t dom;
4780 	int freei;
4781 
4782 	keg = zone->uz_keg;
4783 	KEG_LOCK_ASSERT(keg, slab->us_domain);
4784 
4785 	/* Do we need to remove from any lists? */
4786 	dom = &keg->uk_domain[slab->us_domain];
4787 	if (slab->us_freecount + 1 == keg->uk_ipers) {
4788 		LIST_REMOVE(slab, us_link);
4789 		LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link);
4790 		dom->ud_free_slabs++;
4791 	} else if (slab->us_freecount == 0) {
4792 		LIST_REMOVE(slab, us_link);
4793 		LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
4794 	}
4795 
4796 	/* Slab management. */
4797 	freei = slab_item_index(slab, keg, item);
4798 	BIT_SET(keg->uk_ipers, freei, &slab->us_free);
4799 	slab->us_freecount++;
4800 
4801 	/* Keg statistics. */
4802 	dom->ud_free_items++;
4803 }
4804 
4805 static void
4806 zone_release(void *arg, void **bucket, int cnt)
4807 {
4808 	struct mtx *lock;
4809 	uma_zone_t zone;
4810 	uma_slab_t slab;
4811 	uma_keg_t keg;
4812 	uint8_t *mem;
4813 	void *item;
4814 	int i;
4815 
4816 	zone = arg;
4817 	keg = zone->uz_keg;
4818 	lock = NULL;
4819 	if (__predict_false((zone->uz_flags & UMA_ZFLAG_HASH) != 0))
4820 		lock = KEG_LOCK(keg, 0);
4821 	for (i = 0; i < cnt; i++) {
4822 		item = bucket[i];
4823 		if (__predict_true((zone->uz_flags & UMA_ZFLAG_VTOSLAB) != 0)) {
4824 			slab = vtoslab((vm_offset_t)item);
4825 		} else {
4826 			mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
4827 			if ((zone->uz_flags & UMA_ZFLAG_HASH) != 0)
4828 				slab = hash_sfind(&keg->uk_hash, mem);
4829 			else
4830 				slab = (uma_slab_t)(mem + keg->uk_pgoff);
4831 		}
4832 		if (lock != KEG_LOCKPTR(keg, slab->us_domain)) {
4833 			if (lock != NULL)
4834 				mtx_unlock(lock);
4835 			lock = KEG_LOCK(keg, slab->us_domain);
4836 		}
4837 		slab_free_item(zone, slab, item);
4838 	}
4839 	if (lock != NULL)
4840 		mtx_unlock(lock);
4841 }
4842 
4843 /*
4844  * Frees a single item to any zone.
4845  *
4846  * Arguments:
4847  *	zone   The zone to free to
4848  *	item   The item we're freeing
4849  *	udata  User supplied data for the dtor
4850  *	skip   Skip dtors and finis
4851  */
4852 static __noinline void
4853 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip)
4854 {
4855 
4856 	/*
4857 	 * If a free is sent directly to an SMR zone we have to
4858 	 * synchronize immediately because the item can instantly
4859 	 * be reallocated. This should only happen in degenerate
4860 	 * cases when no memory is available for per-cpu caches.
4861 	 */
4862 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && skip == SKIP_NONE)
4863 		smr_synchronize(zone->uz_smr);
4864 
4865 	item_dtor(zone, item, zone->uz_size, udata, skip);
4866 
4867 	if (skip < SKIP_FINI && zone->uz_fini) {
4868 		kasan_mark_item_valid(zone, item);
4869 		zone->uz_fini(item, zone->uz_size);
4870 		kasan_mark_item_invalid(zone, item);
4871 	}
4872 
4873 	zone->uz_release(zone->uz_arg, &item, 1);
4874 
4875 	if (skip & SKIP_CNT)
4876 		return;
4877 
4878 	counter_u64_add(zone->uz_frees, 1);
4879 
4880 	if (zone->uz_max_items > 0)
4881 		zone_free_limit(zone, 1);
4882 }
4883 
4884 /* See uma.h */
4885 int
4886 uma_zone_set_max(uma_zone_t zone, int nitems)
4887 {
4888 
4889 	/*
4890 	 * If the limit is small, we may need to constrain the maximum per-CPU
4891 	 * cache size, or disable caching entirely.
4892 	 */
4893 	uma_zone_set_maxcache(zone, nitems);
4894 
4895 	/*
4896 	 * XXX This can misbehave if the zone has any allocations with
4897 	 * no limit and a limit is imposed.  There is currently no
4898 	 * way to clear a limit.
4899 	 */
4900 	ZONE_LOCK(zone);
4901 	if (zone->uz_max_items == 0)
4902 		ZONE_ASSERT_COLD(zone);
4903 	zone->uz_max_items = nitems;
4904 	zone->uz_flags |= UMA_ZFLAG_LIMIT;
4905 	zone_update_caches(zone);
4906 	/* We may need to wake waiters. */
4907 	wakeup(&zone->uz_max_items);
4908 	ZONE_UNLOCK(zone);
4909 
4910 	return (nitems);
4911 }
4912 
4913 /* See uma.h */
4914 void
4915 uma_zone_set_maxcache(uma_zone_t zone, int nitems)
4916 {
4917 	int bpcpu, bpdom, bsize, nb;
4918 
4919 	ZONE_LOCK(zone);
4920 
4921 	/*
4922 	 * Compute a lower bound on the number of items that may be cached in
4923 	 * the zone.  Each CPU gets at least two buckets, and for cross-domain
4924 	 * frees we use an additional bucket per CPU and per domain.  Select the
4925 	 * largest bucket size that does not exceed half of the requested limit,
4926 	 * with the left over space given to the full bucket cache.
4927 	 */
4928 	bpdom = 0;
4929 	bpcpu = 2;
4930 #ifdef NUMA
4931 	if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && vm_ndomains > 1) {
4932 		bpcpu++;
4933 		bpdom++;
4934 	}
4935 #endif
4936 	nb = bpcpu * mp_ncpus + bpdom * vm_ndomains;
4937 	bsize = nitems / nb / 2;
4938 	if (bsize > BUCKET_MAX)
4939 		bsize = BUCKET_MAX;
4940 	else if (bsize == 0 && nitems / nb > 0)
4941 		bsize = 1;
4942 	zone->uz_bucket_size_max = zone->uz_bucket_size = bsize;
4943 	if (zone->uz_bucket_size_min > zone->uz_bucket_size_max)
4944 		zone->uz_bucket_size_min = zone->uz_bucket_size_max;
4945 	zone->uz_bucket_max = nitems - nb * bsize;
4946 	ZONE_UNLOCK(zone);
4947 }
4948 
4949 /* See uma.h */
4950 int
4951 uma_zone_get_max(uma_zone_t zone)
4952 {
4953 	int nitems;
4954 
4955 	nitems = atomic_load_64(&zone->uz_max_items);
4956 
4957 	return (nitems);
4958 }
4959 
4960 /* See uma.h */
4961 void
4962 uma_zone_set_warning(uma_zone_t zone, const char *warning)
4963 {
4964 
4965 	ZONE_ASSERT_COLD(zone);
4966 	zone->uz_warning = warning;
4967 }
4968 
4969 /* See uma.h */
4970 void
4971 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction)
4972 {
4973 
4974 	ZONE_ASSERT_COLD(zone);
4975 	TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone);
4976 }
4977 
4978 /* See uma.h */
4979 int
4980 uma_zone_get_cur(uma_zone_t zone)
4981 {
4982 	int64_t nitems;
4983 	u_int i;
4984 
4985 	nitems = 0;
4986 	if (zone->uz_allocs != EARLY_COUNTER && zone->uz_frees != EARLY_COUNTER)
4987 		nitems = counter_u64_fetch(zone->uz_allocs) -
4988 		    counter_u64_fetch(zone->uz_frees);
4989 	CPU_FOREACH(i)
4990 		nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs) -
4991 		    atomic_load_64(&zone->uz_cpu[i].uc_frees);
4992 
4993 	return (nitems < 0 ? 0 : nitems);
4994 }
4995 
4996 static uint64_t
4997 uma_zone_get_allocs(uma_zone_t zone)
4998 {
4999 	uint64_t nitems;
5000 	u_int i;
5001 
5002 	nitems = 0;
5003 	if (zone->uz_allocs != EARLY_COUNTER)
5004 		nitems = counter_u64_fetch(zone->uz_allocs);
5005 	CPU_FOREACH(i)
5006 		nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs);
5007 
5008 	return (nitems);
5009 }
5010 
5011 static uint64_t
5012 uma_zone_get_frees(uma_zone_t zone)
5013 {
5014 	uint64_t nitems;
5015 	u_int i;
5016 
5017 	nitems = 0;
5018 	if (zone->uz_frees != EARLY_COUNTER)
5019 		nitems = counter_u64_fetch(zone->uz_frees);
5020 	CPU_FOREACH(i)
5021 		nitems += atomic_load_64(&zone->uz_cpu[i].uc_frees);
5022 
5023 	return (nitems);
5024 }
5025 
5026 #ifdef INVARIANTS
5027 /* Used only for KEG_ASSERT_COLD(). */
5028 static uint64_t
5029 uma_keg_get_allocs(uma_keg_t keg)
5030 {
5031 	uma_zone_t z;
5032 	uint64_t nitems;
5033 
5034 	nitems = 0;
5035 	LIST_FOREACH(z, &keg->uk_zones, uz_link)
5036 		nitems += uma_zone_get_allocs(z);
5037 
5038 	return (nitems);
5039 }
5040 #endif
5041 
5042 /* See uma.h */
5043 void
5044 uma_zone_set_init(uma_zone_t zone, uma_init uminit)
5045 {
5046 	uma_keg_t keg;
5047 
5048 	KEG_GET(zone, keg);
5049 	KEG_ASSERT_COLD(keg);
5050 	keg->uk_init = uminit;
5051 }
5052 
5053 /* See uma.h */
5054 void
5055 uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
5056 {
5057 	uma_keg_t keg;
5058 
5059 	KEG_GET(zone, keg);
5060 	KEG_ASSERT_COLD(keg);
5061 	keg->uk_fini = fini;
5062 }
5063 
5064 /* See uma.h */
5065 void
5066 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
5067 {
5068 
5069 	ZONE_ASSERT_COLD(zone);
5070 	zone->uz_init = zinit;
5071 }
5072 
5073 /* See uma.h */
5074 void
5075 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
5076 {
5077 
5078 	ZONE_ASSERT_COLD(zone);
5079 	zone->uz_fini = zfini;
5080 }
5081 
5082 /* See uma.h */
5083 void
5084 uma_zone_set_freef(uma_zone_t zone, uma_free freef)
5085 {
5086 	uma_keg_t keg;
5087 
5088 	KEG_GET(zone, keg);
5089 	KEG_ASSERT_COLD(keg);
5090 	keg->uk_freef = freef;
5091 }
5092 
5093 /* See uma.h */
5094 void
5095 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
5096 {
5097 	uma_keg_t keg;
5098 
5099 	KEG_GET(zone, keg);
5100 	KEG_ASSERT_COLD(keg);
5101 	keg->uk_allocf = allocf;
5102 }
5103 
5104 /* See uma.h */
5105 void
5106 uma_zone_set_smr(uma_zone_t zone, smr_t smr)
5107 {
5108 
5109 	ZONE_ASSERT_COLD(zone);
5110 
5111 	KASSERT(smr != NULL, ("Got NULL smr"));
5112 	KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
5113 	    ("zone %p (%s) already uses SMR", zone, zone->uz_name));
5114 	zone->uz_flags |= UMA_ZONE_SMR;
5115 	zone->uz_smr = smr;
5116 	zone_update_caches(zone);
5117 }
5118 
5119 smr_t
5120 uma_zone_get_smr(uma_zone_t zone)
5121 {
5122 
5123 	return (zone->uz_smr);
5124 }
5125 
5126 /* See uma.h */
5127 void
5128 uma_zone_reserve(uma_zone_t zone, int items)
5129 {
5130 	uma_keg_t keg;
5131 
5132 	KEG_GET(zone, keg);
5133 	KEG_ASSERT_COLD(keg);
5134 	keg->uk_reserve = items;
5135 }
5136 
5137 /* See uma.h */
5138 int
5139 uma_zone_reserve_kva(uma_zone_t zone, int count)
5140 {
5141 	uma_keg_t keg;
5142 	vm_offset_t kva;
5143 	u_int pages;
5144 
5145 	KEG_GET(zone, keg);
5146 	KEG_ASSERT_COLD(keg);
5147 	ZONE_ASSERT_COLD(zone);
5148 
5149 	pages = howmany(count, keg->uk_ipers) * keg->uk_ppera;
5150 
5151 #ifdef UMA_MD_SMALL_ALLOC
5152 	if (keg->uk_ppera > 1) {
5153 #else
5154 	if (1) {
5155 #endif
5156 		kva = kva_alloc((vm_size_t)pages * PAGE_SIZE);
5157 		if (kva == 0)
5158 			return (0);
5159 	} else
5160 		kva = 0;
5161 
5162 	MPASS(keg->uk_kva == 0);
5163 	keg->uk_kva = kva;
5164 	keg->uk_offset = 0;
5165 	zone->uz_max_items = pages * keg->uk_ipers;
5166 #ifdef UMA_MD_SMALL_ALLOC
5167 	keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc;
5168 #else
5169 	keg->uk_allocf = noobj_alloc;
5170 #endif
5171 	keg->uk_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE;
5172 	zone->uz_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE;
5173 	zone_update_caches(zone);
5174 
5175 	return (1);
5176 }
5177 
5178 /* See uma.h */
5179 void
5180 uma_prealloc(uma_zone_t zone, int items)
5181 {
5182 	struct vm_domainset_iter di;
5183 	uma_domain_t dom;
5184 	uma_slab_t slab;
5185 	uma_keg_t keg;
5186 	int aflags, domain, slabs;
5187 
5188 	KEG_GET(zone, keg);
5189 	slabs = howmany(items, keg->uk_ipers);
5190 	while (slabs-- > 0) {
5191 		aflags = M_NOWAIT;
5192 		vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain,
5193 		    &aflags);
5194 		for (;;) {
5195 			slab = keg_alloc_slab(keg, zone, domain, M_WAITOK,
5196 			    aflags);
5197 			if (slab != NULL) {
5198 				dom = &keg->uk_domain[slab->us_domain];
5199 				/*
5200 				 * keg_alloc_slab() always returns a slab on the
5201 				 * partial list.
5202 				 */
5203 				LIST_REMOVE(slab, us_link);
5204 				LIST_INSERT_HEAD(&dom->ud_free_slab, slab,
5205 				    us_link);
5206 				dom->ud_free_slabs++;
5207 				KEG_UNLOCK(keg, slab->us_domain);
5208 				break;
5209 			}
5210 			if (vm_domainset_iter_policy(&di, &domain) != 0)
5211 				vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0);
5212 		}
5213 	}
5214 }
5215 
5216 /*
5217  * Returns a snapshot of memory consumption in bytes.
5218  */
5219 size_t
5220 uma_zone_memory(uma_zone_t zone)
5221 {
5222 	size_t sz;
5223 	int i;
5224 
5225 	sz = 0;
5226 	if (zone->uz_flags & UMA_ZFLAG_CACHE) {
5227 		for (i = 0; i < vm_ndomains; i++)
5228 			sz += ZDOM_GET(zone, i)->uzd_nitems;
5229 		return (sz * zone->uz_size);
5230 	}
5231 	for (i = 0; i < vm_ndomains; i++)
5232 		sz += zone->uz_keg->uk_domain[i].ud_pages;
5233 
5234 	return (sz * PAGE_SIZE);
5235 }
5236 
5237 struct uma_reclaim_args {
5238 	int	domain;
5239 	int	req;
5240 };
5241 
5242 static void
5243 uma_reclaim_domain_cb(uma_zone_t zone, void *arg)
5244 {
5245 	struct uma_reclaim_args *args;
5246 
5247 	args = arg;
5248 	if ((zone->uz_flags & UMA_ZONE_UNMANAGED) == 0)
5249 		uma_zone_reclaim_domain(zone, args->req, args->domain);
5250 }
5251 
5252 /* See uma.h */
5253 void
5254 uma_reclaim(int req)
5255 {
5256 	uma_reclaim_domain(req, UMA_ANYDOMAIN);
5257 }
5258 
5259 void
5260 uma_reclaim_domain(int req, int domain)
5261 {
5262 	struct uma_reclaim_args args;
5263 
5264 	bucket_enable();
5265 
5266 	args.domain = domain;
5267 	args.req = req;
5268 
5269 	sx_slock(&uma_reclaim_lock);
5270 	switch (req) {
5271 	case UMA_RECLAIM_TRIM:
5272 	case UMA_RECLAIM_DRAIN:
5273 		zone_foreach(uma_reclaim_domain_cb, &args);
5274 		break;
5275 	case UMA_RECLAIM_DRAIN_CPU:
5276 		zone_foreach(uma_reclaim_domain_cb, &args);
5277 		pcpu_cache_drain_safe(NULL);
5278 		zone_foreach(uma_reclaim_domain_cb, &args);
5279 		break;
5280 	default:
5281 		panic("unhandled reclamation request %d", req);
5282 	}
5283 
5284 	/*
5285 	 * Some slabs may have been freed but this zone will be visited early
5286 	 * we visit again so that we can free pages that are empty once other
5287 	 * zones are drained.  We have to do the same for buckets.
5288 	 */
5289 	uma_zone_reclaim_domain(slabzones[0], UMA_RECLAIM_DRAIN, domain);
5290 	uma_zone_reclaim_domain(slabzones[1], UMA_RECLAIM_DRAIN, domain);
5291 	bucket_zone_drain(domain);
5292 	sx_sunlock(&uma_reclaim_lock);
5293 }
5294 
5295 static volatile int uma_reclaim_needed;
5296 
5297 void
5298 uma_reclaim_wakeup(void)
5299 {
5300 
5301 	if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0)
5302 		wakeup(uma_reclaim);
5303 }
5304 
5305 void
5306 uma_reclaim_worker(void *arg __unused)
5307 {
5308 
5309 	for (;;) {
5310 		sx_xlock(&uma_reclaim_lock);
5311 		while (atomic_load_int(&uma_reclaim_needed) == 0)
5312 			sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl",
5313 			    hz);
5314 		sx_xunlock(&uma_reclaim_lock);
5315 		EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM);
5316 		uma_reclaim(UMA_RECLAIM_DRAIN_CPU);
5317 		atomic_store_int(&uma_reclaim_needed, 0);
5318 		/* Don't fire more than once per-second. */
5319 		pause("umarclslp", hz);
5320 	}
5321 }
5322 
5323 /* See uma.h */
5324 void
5325 uma_zone_reclaim(uma_zone_t zone, int req)
5326 {
5327 	uma_zone_reclaim_domain(zone, req, UMA_ANYDOMAIN);
5328 }
5329 
5330 void
5331 uma_zone_reclaim_domain(uma_zone_t zone, int req, int domain)
5332 {
5333 	switch (req) {
5334 	case UMA_RECLAIM_TRIM:
5335 		zone_reclaim(zone, domain, M_NOWAIT, false);
5336 		break;
5337 	case UMA_RECLAIM_DRAIN:
5338 		zone_reclaim(zone, domain, M_NOWAIT, true);
5339 		break;
5340 	case UMA_RECLAIM_DRAIN_CPU:
5341 		pcpu_cache_drain_safe(zone);
5342 		zone_reclaim(zone, domain, M_NOWAIT, true);
5343 		break;
5344 	default:
5345 		panic("unhandled reclamation request %d", req);
5346 	}
5347 }
5348 
5349 /* See uma.h */
5350 int
5351 uma_zone_exhausted(uma_zone_t zone)
5352 {
5353 
5354 	return (atomic_load_32(&zone->uz_sleepers) > 0);
5355 }
5356 
5357 unsigned long
5358 uma_limit(void)
5359 {
5360 
5361 	return (uma_kmem_limit);
5362 }
5363 
5364 void
5365 uma_set_limit(unsigned long limit)
5366 {
5367 
5368 	uma_kmem_limit = limit;
5369 }
5370 
5371 unsigned long
5372 uma_size(void)
5373 {
5374 
5375 	return (atomic_load_long(&uma_kmem_total));
5376 }
5377 
5378 long
5379 uma_avail(void)
5380 {
5381 
5382 	return (uma_kmem_limit - uma_size());
5383 }
5384 
5385 #ifdef DDB
5386 /*
5387  * Generate statistics across both the zone and its per-cpu cache's.  Return
5388  * desired statistics if the pointer is non-NULL for that statistic.
5389  *
5390  * Note: does not update the zone statistics, as it can't safely clear the
5391  * per-CPU cache statistic.
5392  *
5393  */
5394 static void
5395 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp,
5396     uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp)
5397 {
5398 	uma_cache_t cache;
5399 	uint64_t allocs, frees, sleeps, xdomain;
5400 	int cachefree, cpu;
5401 
5402 	allocs = frees = sleeps = xdomain = 0;
5403 	cachefree = 0;
5404 	CPU_FOREACH(cpu) {
5405 		cache = &z->uz_cpu[cpu];
5406 		cachefree += cache->uc_allocbucket.ucb_cnt;
5407 		cachefree += cache->uc_freebucket.ucb_cnt;
5408 		xdomain += cache->uc_crossbucket.ucb_cnt;
5409 		cachefree += cache->uc_crossbucket.ucb_cnt;
5410 		allocs += cache->uc_allocs;
5411 		frees += cache->uc_frees;
5412 	}
5413 	allocs += counter_u64_fetch(z->uz_allocs);
5414 	frees += counter_u64_fetch(z->uz_frees);
5415 	xdomain += counter_u64_fetch(z->uz_xdomain);
5416 	sleeps += z->uz_sleeps;
5417 	if (cachefreep != NULL)
5418 		*cachefreep = cachefree;
5419 	if (allocsp != NULL)
5420 		*allocsp = allocs;
5421 	if (freesp != NULL)
5422 		*freesp = frees;
5423 	if (sleepsp != NULL)
5424 		*sleepsp = sleeps;
5425 	if (xdomainp != NULL)
5426 		*xdomainp = xdomain;
5427 }
5428 #endif /* DDB */
5429 
5430 static int
5431 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
5432 {
5433 	uma_keg_t kz;
5434 	uma_zone_t z;
5435 	int count;
5436 
5437 	count = 0;
5438 	rw_rlock(&uma_rwlock);
5439 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
5440 		LIST_FOREACH(z, &kz->uk_zones, uz_link)
5441 			count++;
5442 	}
5443 	LIST_FOREACH(z, &uma_cachezones, uz_link)
5444 		count++;
5445 
5446 	rw_runlock(&uma_rwlock);
5447 	return (sysctl_handle_int(oidp, &count, 0, req));
5448 }
5449 
5450 static void
5451 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf,
5452     struct uma_percpu_stat *ups, bool internal)
5453 {
5454 	uma_zone_domain_t zdom;
5455 	uma_cache_t cache;
5456 	int i;
5457 
5458 	for (i = 0; i < vm_ndomains; i++) {
5459 		zdom = ZDOM_GET(z, i);
5460 		uth->uth_zone_free += zdom->uzd_nitems;
5461 	}
5462 	uth->uth_allocs = counter_u64_fetch(z->uz_allocs);
5463 	uth->uth_frees = counter_u64_fetch(z->uz_frees);
5464 	uth->uth_fails = counter_u64_fetch(z->uz_fails);
5465 	uth->uth_xdomain = counter_u64_fetch(z->uz_xdomain);
5466 	uth->uth_sleeps = z->uz_sleeps;
5467 
5468 	for (i = 0; i < mp_maxid + 1; i++) {
5469 		bzero(&ups[i], sizeof(*ups));
5470 		if (internal || CPU_ABSENT(i))
5471 			continue;
5472 		cache = &z->uz_cpu[i];
5473 		ups[i].ups_cache_free += cache->uc_allocbucket.ucb_cnt;
5474 		ups[i].ups_cache_free += cache->uc_freebucket.ucb_cnt;
5475 		ups[i].ups_cache_free += cache->uc_crossbucket.ucb_cnt;
5476 		ups[i].ups_allocs = cache->uc_allocs;
5477 		ups[i].ups_frees = cache->uc_frees;
5478 	}
5479 }
5480 
5481 static int
5482 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
5483 {
5484 	struct uma_stream_header ush;
5485 	struct uma_type_header uth;
5486 	struct uma_percpu_stat *ups;
5487 	struct sbuf sbuf;
5488 	uma_keg_t kz;
5489 	uma_zone_t z;
5490 	uint64_t items;
5491 	uint32_t kfree, pages;
5492 	int count, error, i;
5493 
5494 	error = sysctl_wire_old_buffer(req, 0);
5495 	if (error != 0)
5496 		return (error);
5497 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
5498 	sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL);
5499 	ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK);
5500 
5501 	count = 0;
5502 	rw_rlock(&uma_rwlock);
5503 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
5504 		LIST_FOREACH(z, &kz->uk_zones, uz_link)
5505 			count++;
5506 	}
5507 
5508 	LIST_FOREACH(z, &uma_cachezones, uz_link)
5509 		count++;
5510 
5511 	/*
5512 	 * Insert stream header.
5513 	 */
5514 	bzero(&ush, sizeof(ush));
5515 	ush.ush_version = UMA_STREAM_VERSION;
5516 	ush.ush_maxcpus = (mp_maxid + 1);
5517 	ush.ush_count = count;
5518 	(void)sbuf_bcat(&sbuf, &ush, sizeof(ush));
5519 
5520 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
5521 		kfree = pages = 0;
5522 		for (i = 0; i < vm_ndomains; i++) {
5523 			kfree += kz->uk_domain[i].ud_free_items;
5524 			pages += kz->uk_domain[i].ud_pages;
5525 		}
5526 		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
5527 			bzero(&uth, sizeof(uth));
5528 			strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
5529 			uth.uth_align = kz->uk_align;
5530 			uth.uth_size = kz->uk_size;
5531 			uth.uth_rsize = kz->uk_rsize;
5532 			if (z->uz_max_items > 0) {
5533 				items = UZ_ITEMS_COUNT(z->uz_items);
5534 				uth.uth_pages = (items / kz->uk_ipers) *
5535 					kz->uk_ppera;
5536 			} else
5537 				uth.uth_pages = pages;
5538 			uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) *
5539 			    kz->uk_ppera;
5540 			uth.uth_limit = z->uz_max_items;
5541 			uth.uth_keg_free = kfree;
5542 
5543 			/*
5544 			 * A zone is secondary is it is not the first entry
5545 			 * on the keg's zone list.
5546 			 */
5547 			if ((z->uz_flags & UMA_ZONE_SECONDARY) &&
5548 			    (LIST_FIRST(&kz->uk_zones) != z))
5549 				uth.uth_zone_flags = UTH_ZONE_SECONDARY;
5550 			uma_vm_zone_stats(&uth, z, &sbuf, ups,
5551 			    kz->uk_flags & UMA_ZFLAG_INTERNAL);
5552 			(void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
5553 			for (i = 0; i < mp_maxid + 1; i++)
5554 				(void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i]));
5555 		}
5556 	}
5557 	LIST_FOREACH(z, &uma_cachezones, uz_link) {
5558 		bzero(&uth, sizeof(uth));
5559 		strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
5560 		uth.uth_size = z->uz_size;
5561 		uma_vm_zone_stats(&uth, z, &sbuf, ups, false);
5562 		(void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
5563 		for (i = 0; i < mp_maxid + 1; i++)
5564 			(void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i]));
5565 	}
5566 
5567 	rw_runlock(&uma_rwlock);
5568 	error = sbuf_finish(&sbuf);
5569 	sbuf_delete(&sbuf);
5570 	free(ups, M_TEMP);
5571 	return (error);
5572 }
5573 
5574 int
5575 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS)
5576 {
5577 	uma_zone_t zone = *(uma_zone_t *)arg1;
5578 	int error, max;
5579 
5580 	max = uma_zone_get_max(zone);
5581 	error = sysctl_handle_int(oidp, &max, 0, req);
5582 	if (error || !req->newptr)
5583 		return (error);
5584 
5585 	uma_zone_set_max(zone, max);
5586 
5587 	return (0);
5588 }
5589 
5590 int
5591 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS)
5592 {
5593 	uma_zone_t zone;
5594 	int cur;
5595 
5596 	/*
5597 	 * Some callers want to add sysctls for global zones that
5598 	 * may not yet exist so they pass a pointer to a pointer.
5599 	 */
5600 	if (arg2 == 0)
5601 		zone = *(uma_zone_t *)arg1;
5602 	else
5603 		zone = arg1;
5604 	cur = uma_zone_get_cur(zone);
5605 	return (sysctl_handle_int(oidp, &cur, 0, req));
5606 }
5607 
5608 static int
5609 sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS)
5610 {
5611 	uma_zone_t zone = arg1;
5612 	uint64_t cur;
5613 
5614 	cur = uma_zone_get_allocs(zone);
5615 	return (sysctl_handle_64(oidp, &cur, 0, req));
5616 }
5617 
5618 static int
5619 sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS)
5620 {
5621 	uma_zone_t zone = arg1;
5622 	uint64_t cur;
5623 
5624 	cur = uma_zone_get_frees(zone);
5625 	return (sysctl_handle_64(oidp, &cur, 0, req));
5626 }
5627 
5628 static int
5629 sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS)
5630 {
5631 	struct sbuf sbuf;
5632 	uma_zone_t zone = arg1;
5633 	int error;
5634 
5635 	sbuf_new_for_sysctl(&sbuf, NULL, 0, req);
5636 	if (zone->uz_flags != 0)
5637 		sbuf_printf(&sbuf, "0x%b", zone->uz_flags, PRINT_UMA_ZFLAGS);
5638 	else
5639 		sbuf_printf(&sbuf, "0");
5640 	error = sbuf_finish(&sbuf);
5641 	sbuf_delete(&sbuf);
5642 
5643 	return (error);
5644 }
5645 
5646 static int
5647 sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS)
5648 {
5649 	uma_keg_t keg = arg1;
5650 	int avail, effpct, total;
5651 
5652 	total = keg->uk_ppera * PAGE_SIZE;
5653 	if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0)
5654 		total += slabzone(keg->uk_ipers)->uz_keg->uk_rsize;
5655 	/*
5656 	 * We consider the client's requested size and alignment here, not the
5657 	 * real size determination uk_rsize, because we also adjust the real
5658 	 * size for internal implementation reasons (max bitset size).
5659 	 */
5660 	avail = keg->uk_ipers * roundup2(keg->uk_size, keg->uk_align + 1);
5661 	if ((keg->uk_flags & UMA_ZONE_PCPU) != 0)
5662 		avail *= mp_maxid + 1;
5663 	effpct = 100 * avail / total;
5664 	return (sysctl_handle_int(oidp, &effpct, 0, req));
5665 }
5666 
5667 static int
5668 sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS)
5669 {
5670 	uma_zone_t zone = arg1;
5671 	uint64_t cur;
5672 
5673 	cur = UZ_ITEMS_COUNT(atomic_load_64(&zone->uz_items));
5674 	return (sysctl_handle_64(oidp, &cur, 0, req));
5675 }
5676 
5677 #ifdef INVARIANTS
5678 static uma_slab_t
5679 uma_dbg_getslab(uma_zone_t zone, void *item)
5680 {
5681 	uma_slab_t slab;
5682 	uma_keg_t keg;
5683 	uint8_t *mem;
5684 
5685 	/*
5686 	 * It is safe to return the slab here even though the
5687 	 * zone is unlocked because the item's allocation state
5688 	 * essentially holds a reference.
5689 	 */
5690 	mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
5691 	if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0)
5692 		return (NULL);
5693 	if (zone->uz_flags & UMA_ZFLAG_VTOSLAB)
5694 		return (vtoslab((vm_offset_t)mem));
5695 	keg = zone->uz_keg;
5696 	if ((keg->uk_flags & UMA_ZFLAG_HASH) == 0)
5697 		return ((uma_slab_t)(mem + keg->uk_pgoff));
5698 	KEG_LOCK(keg, 0);
5699 	slab = hash_sfind(&keg->uk_hash, mem);
5700 	KEG_UNLOCK(keg, 0);
5701 
5702 	return (slab);
5703 }
5704 
5705 static bool
5706 uma_dbg_zskip(uma_zone_t zone, void *mem)
5707 {
5708 
5709 	if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0)
5710 		return (true);
5711 
5712 	return (uma_dbg_kskip(zone->uz_keg, mem));
5713 }
5714 
5715 static bool
5716 uma_dbg_kskip(uma_keg_t keg, void *mem)
5717 {
5718 	uintptr_t idx;
5719 
5720 	if (dbg_divisor == 0)
5721 		return (true);
5722 
5723 	if (dbg_divisor == 1)
5724 		return (false);
5725 
5726 	idx = (uintptr_t)mem >> PAGE_SHIFT;
5727 	if (keg->uk_ipers > 1) {
5728 		idx *= keg->uk_ipers;
5729 		idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize;
5730 	}
5731 
5732 	if ((idx / dbg_divisor) * dbg_divisor != idx) {
5733 		counter_u64_add(uma_skip_cnt, 1);
5734 		return (true);
5735 	}
5736 	counter_u64_add(uma_dbg_cnt, 1);
5737 
5738 	return (false);
5739 }
5740 
5741 /*
5742  * Set up the slab's freei data such that uma_dbg_free can function.
5743  *
5744  */
5745 static void
5746 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item)
5747 {
5748 	uma_keg_t keg;
5749 	int freei;
5750 
5751 	if (slab == NULL) {
5752 		slab = uma_dbg_getslab(zone, item);
5753 		if (slab == NULL)
5754 			panic("uma: item %p did not belong to zone %s",
5755 			    item, zone->uz_name);
5756 	}
5757 	keg = zone->uz_keg;
5758 	freei = slab_item_index(slab, keg, item);
5759 
5760 	if (BIT_TEST_SET_ATOMIC(keg->uk_ipers, freei,
5761 	    slab_dbg_bits(slab, keg)))
5762 		panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)",
5763 		    item, zone, zone->uz_name, slab, freei);
5764 }
5765 
5766 /*
5767  * Verifies freed addresses.  Checks for alignment, valid slab membership
5768  * and duplicate frees.
5769  *
5770  */
5771 static void
5772 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item)
5773 {
5774 	uma_keg_t keg;
5775 	int freei;
5776 
5777 	if (slab == NULL) {
5778 		slab = uma_dbg_getslab(zone, item);
5779 		if (slab == NULL)
5780 			panic("uma: Freed item %p did not belong to zone %s",
5781 			    item, zone->uz_name);
5782 	}
5783 	keg = zone->uz_keg;
5784 	freei = slab_item_index(slab, keg, item);
5785 
5786 	if (freei >= keg->uk_ipers)
5787 		panic("Invalid free of %p from zone %p(%s) slab %p(%d)",
5788 		    item, zone, zone->uz_name, slab, freei);
5789 
5790 	if (slab_item(slab, keg, freei) != item)
5791 		panic("Unaligned free of %p from zone %p(%s) slab %p(%d)",
5792 		    item, zone, zone->uz_name, slab, freei);
5793 
5794 	if (!BIT_TEST_CLR_ATOMIC(keg->uk_ipers, freei,
5795 	    slab_dbg_bits(slab, keg)))
5796 		panic("Duplicate free of %p from zone %p(%s) slab %p(%d)",
5797 		    item, zone, zone->uz_name, slab, freei);
5798 }
5799 #endif /* INVARIANTS */
5800 
5801 #ifdef DDB
5802 static int64_t
5803 get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used,
5804     uint64_t *sleeps, long *cachefree, uint64_t *xdomain)
5805 {
5806 	uint64_t frees;
5807 	int i;
5808 
5809 	if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
5810 		*allocs = counter_u64_fetch(z->uz_allocs);
5811 		frees = counter_u64_fetch(z->uz_frees);
5812 		*sleeps = z->uz_sleeps;
5813 		*cachefree = 0;
5814 		*xdomain = 0;
5815 	} else
5816 		uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps,
5817 		    xdomain);
5818 	for (i = 0; i < vm_ndomains; i++) {
5819 		*cachefree += ZDOM_GET(z, i)->uzd_nitems;
5820 		if (!((z->uz_flags & UMA_ZONE_SECONDARY) &&
5821 		    (LIST_FIRST(&kz->uk_zones) != z)))
5822 			*cachefree += kz->uk_domain[i].ud_free_items;
5823 	}
5824 	*used = *allocs - frees;
5825 	return (((int64_t)*used + *cachefree) * kz->uk_size);
5826 }
5827 
5828 DB_SHOW_COMMAND_FLAGS(uma, db_show_uma, DB_CMD_MEMSAFE)
5829 {
5830 	const char *fmt_hdr, *fmt_entry;
5831 	uma_keg_t kz;
5832 	uma_zone_t z;
5833 	uint64_t allocs, used, sleeps, xdomain;
5834 	long cachefree;
5835 	/* variables for sorting */
5836 	uma_keg_t cur_keg;
5837 	uma_zone_t cur_zone, last_zone;
5838 	int64_t cur_size, last_size, size;
5839 	int ties;
5840 
5841 	/* /i option produces machine-parseable CSV output */
5842 	if (modif[0] == 'i') {
5843 		fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n";
5844 		fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n";
5845 	} else {
5846 		fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n";
5847 		fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n";
5848 	}
5849 
5850 	db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests",
5851 	    "Sleeps", "Bucket", "Total Mem", "XFree");
5852 
5853 	/* Sort the zones with largest size first. */
5854 	last_zone = NULL;
5855 	last_size = INT64_MAX;
5856 	for (;;) {
5857 		cur_zone = NULL;
5858 		cur_size = -1;
5859 		ties = 0;
5860 		LIST_FOREACH(kz, &uma_kegs, uk_link) {
5861 			LIST_FOREACH(z, &kz->uk_zones, uz_link) {
5862 				/*
5863 				 * In the case of size ties, print out zones
5864 				 * in the order they are encountered.  That is,
5865 				 * when we encounter the most recently output
5866 				 * zone, we have already printed all preceding
5867 				 * ties, and we must print all following ties.
5868 				 */
5869 				if (z == last_zone) {
5870 					ties = 1;
5871 					continue;
5872 				}
5873 				size = get_uma_stats(kz, z, &allocs, &used,
5874 				    &sleeps, &cachefree, &xdomain);
5875 				if (size > cur_size && size < last_size + ties)
5876 				{
5877 					cur_size = size;
5878 					cur_zone = z;
5879 					cur_keg = kz;
5880 				}
5881 			}
5882 		}
5883 		if (cur_zone == NULL)
5884 			break;
5885 
5886 		size = get_uma_stats(cur_keg, cur_zone, &allocs, &used,
5887 		    &sleeps, &cachefree, &xdomain);
5888 		db_printf(fmt_entry, cur_zone->uz_name,
5889 		    (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree,
5890 		    (uintmax_t)allocs, (uintmax_t)sleeps,
5891 		    (unsigned)cur_zone->uz_bucket_size, (intmax_t)size,
5892 		    xdomain);
5893 
5894 		if (db_pager_quit)
5895 			return;
5896 		last_zone = cur_zone;
5897 		last_size = cur_size;
5898 	}
5899 }
5900 
5901 DB_SHOW_COMMAND_FLAGS(umacache, db_show_umacache, DB_CMD_MEMSAFE)
5902 {
5903 	uma_zone_t z;
5904 	uint64_t allocs, frees;
5905 	long cachefree;
5906 	int i;
5907 
5908 	db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free",
5909 	    "Requests", "Bucket");
5910 	LIST_FOREACH(z, &uma_cachezones, uz_link) {
5911 		uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL);
5912 		for (i = 0; i < vm_ndomains; i++)
5913 			cachefree += ZDOM_GET(z, i)->uzd_nitems;
5914 		db_printf("%18s %8ju %8jd %8ld %12ju %8u\n",
5915 		    z->uz_name, (uintmax_t)z->uz_size,
5916 		    (intmax_t)(allocs - frees), cachefree,
5917 		    (uintmax_t)allocs, z->uz_bucket_size);
5918 		if (db_pager_quit)
5919 			return;
5920 	}
5921 }
5922 #endif	/* DDB */
5923