1 /*- 2 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org> 3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 4 * Copyright (c) 2004-2006 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /* 30 * uma_core.c Implementation of the Universal Memory allocator 31 * 32 * This allocator is intended to replace the multitude of similar object caches 33 * in the standard FreeBSD kernel. The intent is to be flexible as well as 34 * effecient. A primary design goal is to return unused memory to the rest of 35 * the system. This will make the system as a whole more flexible due to the 36 * ability to move memory to subsystems which most need it instead of leaving 37 * pools of reserved memory unused. 38 * 39 * The basic ideas stem from similar slab/zone based allocators whose algorithms 40 * are well known. 41 * 42 */ 43 44 /* 45 * TODO: 46 * - Improve memory usage for large allocations 47 * - Investigate cache size adjustments 48 */ 49 50 #include <sys/cdefs.h> 51 __FBSDID("$FreeBSD$"); 52 53 /* I should really use ktr.. */ 54 /* 55 #define UMA_DEBUG 1 56 #define UMA_DEBUG_ALLOC 1 57 #define UMA_DEBUG_ALLOC_1 1 58 */ 59 60 #include "opt_ddb.h" 61 #include "opt_param.h" 62 #include "opt_vm.h" 63 64 #include <sys/param.h> 65 #include <sys/systm.h> 66 #include <sys/bitset.h> 67 #include <sys/kernel.h> 68 #include <sys/types.h> 69 #include <sys/queue.h> 70 #include <sys/malloc.h> 71 #include <sys/ktr.h> 72 #include <sys/lock.h> 73 #include <sys/sysctl.h> 74 #include <sys/mutex.h> 75 #include <sys/proc.h> 76 #include <sys/random.h> 77 #include <sys/rwlock.h> 78 #include <sys/sbuf.h> 79 #include <sys/sched.h> 80 #include <sys/smp.h> 81 #include <sys/taskqueue.h> 82 #include <sys/vmmeter.h> 83 84 #include <vm/vm.h> 85 #include <vm/vm_object.h> 86 #include <vm/vm_page.h> 87 #include <vm/vm_pageout.h> 88 #include <vm/vm_param.h> 89 #include <vm/vm_map.h> 90 #include <vm/vm_kern.h> 91 #include <vm/vm_extern.h> 92 #include <vm/uma.h> 93 #include <vm/uma_int.h> 94 #include <vm/uma_dbg.h> 95 96 #include <ddb/ddb.h> 97 98 #ifdef DEBUG_MEMGUARD 99 #include <vm/memguard.h> 100 #endif 101 102 /* 103 * This is the zone and keg from which all zones are spawned. The idea is that 104 * even the zone & keg heads are allocated from the allocator, so we use the 105 * bss section to bootstrap us. 106 */ 107 static struct uma_keg masterkeg; 108 static struct uma_zone masterzone_k; 109 static struct uma_zone masterzone_z; 110 static uma_zone_t kegs = &masterzone_k; 111 static uma_zone_t zones = &masterzone_z; 112 113 /* This is the zone from which all of uma_slab_t's are allocated. */ 114 static uma_zone_t slabzone; 115 static uma_zone_t slabrefzone; /* With refcounters (for UMA_ZONE_REFCNT) */ 116 117 /* 118 * The initial hash tables come out of this zone so they can be allocated 119 * prior to malloc coming up. 120 */ 121 static uma_zone_t hashzone; 122 123 /* The boot-time adjusted value for cache line alignment. */ 124 int uma_align_cache = 64 - 1; 125 126 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 127 128 /* 129 * Are we allowed to allocate buckets? 130 */ 131 static int bucketdisable = 1; 132 133 /* Linked list of all kegs in the system */ 134 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 135 136 /* Linked list of all cache-only zones in the system */ 137 static LIST_HEAD(,uma_zone) uma_cachezones = 138 LIST_HEAD_INITIALIZER(uma_cachezones); 139 140 /* This RW lock protects the keg list */ 141 static struct rwlock_padalign uma_rwlock; 142 143 /* Linked list of boot time pages */ 144 static LIST_HEAD(,uma_slab) uma_boot_pages = 145 LIST_HEAD_INITIALIZER(uma_boot_pages); 146 147 /* This mutex protects the boot time pages list */ 148 static struct mtx_padalign uma_boot_pages_mtx; 149 150 static struct sx uma_drain_lock; 151 152 /* Is the VM done starting up? */ 153 static int booted = 0; 154 #define UMA_STARTUP 1 155 #define UMA_STARTUP2 2 156 157 /* 158 * Only mbuf clusters use ref zones. Just provide enough references 159 * to support the one user. New code should not use the ref facility. 160 */ 161 static const u_int uma_max_ipers_ref = PAGE_SIZE / MCLBYTES; 162 163 /* 164 * This is the handle used to schedule events that need to happen 165 * outside of the allocation fast path. 166 */ 167 static struct callout uma_callout; 168 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 169 170 /* 171 * This structure is passed as the zone ctor arg so that I don't have to create 172 * a special allocation function just for zones. 173 */ 174 struct uma_zctor_args { 175 const char *name; 176 size_t size; 177 uma_ctor ctor; 178 uma_dtor dtor; 179 uma_init uminit; 180 uma_fini fini; 181 uma_import import; 182 uma_release release; 183 void *arg; 184 uma_keg_t keg; 185 int align; 186 uint32_t flags; 187 }; 188 189 struct uma_kctor_args { 190 uma_zone_t zone; 191 size_t size; 192 uma_init uminit; 193 uma_fini fini; 194 int align; 195 uint32_t flags; 196 }; 197 198 struct uma_bucket_zone { 199 uma_zone_t ubz_zone; 200 char *ubz_name; 201 int ubz_entries; /* Number of items it can hold. */ 202 int ubz_maxsize; /* Maximum allocation size per-item. */ 203 }; 204 205 /* 206 * Compute the actual number of bucket entries to pack them in power 207 * of two sizes for more efficient space utilization. 208 */ 209 #define BUCKET_SIZE(n) \ 210 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 211 212 #define BUCKET_MAX BUCKET_SIZE(256) 213 214 struct uma_bucket_zone bucket_zones[] = { 215 { NULL, "4 Bucket", BUCKET_SIZE(4), 4096 }, 216 { NULL, "6 Bucket", BUCKET_SIZE(6), 3072 }, 217 { NULL, "8 Bucket", BUCKET_SIZE(8), 2048 }, 218 { NULL, "12 Bucket", BUCKET_SIZE(12), 1536 }, 219 { NULL, "16 Bucket", BUCKET_SIZE(16), 1024 }, 220 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 221 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 222 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 223 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 224 { NULL, NULL, 0} 225 }; 226 227 /* 228 * Flags and enumerations to be passed to internal functions. 229 */ 230 enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI }; 231 232 /* Prototypes.. */ 233 234 static void *noobj_alloc(uma_zone_t, vm_size_t, uint8_t *, int); 235 static void *page_alloc(uma_zone_t, vm_size_t, uint8_t *, int); 236 static void *startup_alloc(uma_zone_t, vm_size_t, uint8_t *, int); 237 static void page_free(void *, vm_size_t, uint8_t); 238 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int); 239 static void cache_drain(uma_zone_t); 240 static void bucket_drain(uma_zone_t, uma_bucket_t); 241 static void bucket_cache_drain(uma_zone_t zone); 242 static int keg_ctor(void *, int, void *, int); 243 static void keg_dtor(void *, int, void *); 244 static int zone_ctor(void *, int, void *, int); 245 static void zone_dtor(void *, int, void *); 246 static int zero_init(void *, int, int); 247 static void keg_small_init(uma_keg_t keg); 248 static void keg_large_init(uma_keg_t keg); 249 static void zone_foreach(void (*zfunc)(uma_zone_t)); 250 static void zone_timeout(uma_zone_t zone); 251 static int hash_alloc(struct uma_hash *); 252 static int hash_expand(struct uma_hash *, struct uma_hash *); 253 static void hash_free(struct uma_hash *hash); 254 static void uma_timeout(void *); 255 static void uma_startup3(void); 256 static void *zone_alloc_item(uma_zone_t, void *, int); 257 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 258 static void bucket_enable(void); 259 static void bucket_init(void); 260 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 261 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 262 static void bucket_zone_drain(void); 263 static uma_bucket_t zone_alloc_bucket(uma_zone_t zone, void *, int flags); 264 static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags); 265 static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags); 266 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 267 static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item); 268 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 269 uma_fini fini, int align, uint32_t flags); 270 static int zone_import(uma_zone_t zone, void **bucket, int max, int flags); 271 static void zone_release(uma_zone_t zone, void **bucket, int cnt); 272 static void uma_zero_item(void *item, uma_zone_t zone); 273 274 void uma_print_zone(uma_zone_t); 275 void uma_print_stats(void); 276 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 277 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 278 279 #ifdef INVARIANTS 280 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 281 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 282 #endif 283 284 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 285 286 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 287 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 288 289 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 290 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 291 292 static int zone_warnings = 1; 293 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 294 "Warn when UMA zones becomes full"); 295 296 /* 297 * This routine checks to see whether or not it's safe to enable buckets. 298 */ 299 static void 300 bucket_enable(void) 301 { 302 bucketdisable = vm_page_count_min(); 303 } 304 305 /* 306 * Initialize bucket_zones, the array of zones of buckets of various sizes. 307 * 308 * For each zone, calculate the memory required for each bucket, consisting 309 * of the header and an array of pointers. 310 */ 311 static void 312 bucket_init(void) 313 { 314 struct uma_bucket_zone *ubz; 315 int size; 316 317 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 318 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 319 size += sizeof(void *) * ubz->ubz_entries; 320 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 321 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 322 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET); 323 } 324 } 325 326 /* 327 * Given a desired number of entries for a bucket, return the zone from which 328 * to allocate the bucket. 329 */ 330 static struct uma_bucket_zone * 331 bucket_zone_lookup(int entries) 332 { 333 struct uma_bucket_zone *ubz; 334 335 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 336 if (ubz->ubz_entries >= entries) 337 return (ubz); 338 ubz--; 339 return (ubz); 340 } 341 342 static int 343 bucket_select(int size) 344 { 345 struct uma_bucket_zone *ubz; 346 347 ubz = &bucket_zones[0]; 348 if (size > ubz->ubz_maxsize) 349 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 350 351 for (; ubz->ubz_entries != 0; ubz++) 352 if (ubz->ubz_maxsize < size) 353 break; 354 ubz--; 355 return (ubz->ubz_entries); 356 } 357 358 static uma_bucket_t 359 bucket_alloc(uma_zone_t zone, void *udata, int flags) 360 { 361 struct uma_bucket_zone *ubz; 362 uma_bucket_t bucket; 363 364 /* 365 * This is to stop us from allocating per cpu buckets while we're 366 * running out of vm.boot_pages. Otherwise, we would exhaust the 367 * boot pages. This also prevents us from allocating buckets in 368 * low memory situations. 369 */ 370 if (bucketdisable) 371 return (NULL); 372 /* 373 * To limit bucket recursion we store the original zone flags 374 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 375 * NOVM flag to persist even through deep recursions. We also 376 * store ZFLAG_BUCKET once we have recursed attempting to allocate 377 * a bucket for a bucket zone so we do not allow infinite bucket 378 * recursion. This cookie will even persist to frees of unused 379 * buckets via the allocation path or bucket allocations in the 380 * free path. 381 */ 382 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 383 udata = (void *)(uintptr_t)zone->uz_flags; 384 else { 385 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 386 return (NULL); 387 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 388 } 389 if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY) 390 flags |= M_NOVM; 391 ubz = bucket_zone_lookup(zone->uz_count); 392 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 393 ubz++; 394 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 395 if (bucket) { 396 #ifdef INVARIANTS 397 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 398 #endif 399 bucket->ub_cnt = 0; 400 bucket->ub_entries = ubz->ubz_entries; 401 } 402 403 return (bucket); 404 } 405 406 static void 407 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 408 { 409 struct uma_bucket_zone *ubz; 410 411 KASSERT(bucket->ub_cnt == 0, 412 ("bucket_free: Freeing a non free bucket.")); 413 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 414 udata = (void *)(uintptr_t)zone->uz_flags; 415 ubz = bucket_zone_lookup(bucket->ub_entries); 416 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 417 } 418 419 static void 420 bucket_zone_drain(void) 421 { 422 struct uma_bucket_zone *ubz; 423 424 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 425 zone_drain(ubz->ubz_zone); 426 } 427 428 static void 429 zone_log_warning(uma_zone_t zone) 430 { 431 static const struct timeval warninterval = { 300, 0 }; 432 433 if (!zone_warnings || zone->uz_warning == NULL) 434 return; 435 436 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 437 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 438 } 439 440 static inline void 441 zone_maxaction(uma_zone_t zone) 442 { 443 444 if (zone->uz_maxaction.ta_func != NULL) 445 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 446 } 447 448 static void 449 zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t)) 450 { 451 uma_klink_t klink; 452 453 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) 454 kegfn(klink->kl_keg); 455 } 456 457 /* 458 * Routine called by timeout which is used to fire off some time interval 459 * based calculations. (stats, hash size, etc.) 460 * 461 * Arguments: 462 * arg Unused 463 * 464 * Returns: 465 * Nothing 466 */ 467 static void 468 uma_timeout(void *unused) 469 { 470 bucket_enable(); 471 zone_foreach(zone_timeout); 472 473 /* Reschedule this event */ 474 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 475 } 476 477 /* 478 * Routine to perform timeout driven calculations. This expands the 479 * hashes and does per cpu statistics aggregation. 480 * 481 * Returns nothing. 482 */ 483 static void 484 keg_timeout(uma_keg_t keg) 485 { 486 487 KEG_LOCK(keg); 488 /* 489 * Expand the keg hash table. 490 * 491 * This is done if the number of slabs is larger than the hash size. 492 * What I'm trying to do here is completely reduce collisions. This 493 * may be a little aggressive. Should I allow for two collisions max? 494 */ 495 if (keg->uk_flags & UMA_ZONE_HASH && 496 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) { 497 struct uma_hash newhash; 498 struct uma_hash oldhash; 499 int ret; 500 501 /* 502 * This is so involved because allocating and freeing 503 * while the keg lock is held will lead to deadlock. 504 * I have to do everything in stages and check for 505 * races. 506 */ 507 newhash = keg->uk_hash; 508 KEG_UNLOCK(keg); 509 ret = hash_alloc(&newhash); 510 KEG_LOCK(keg); 511 if (ret) { 512 if (hash_expand(&keg->uk_hash, &newhash)) { 513 oldhash = keg->uk_hash; 514 keg->uk_hash = newhash; 515 } else 516 oldhash = newhash; 517 518 KEG_UNLOCK(keg); 519 hash_free(&oldhash); 520 return; 521 } 522 } 523 KEG_UNLOCK(keg); 524 } 525 526 static void 527 zone_timeout(uma_zone_t zone) 528 { 529 530 zone_foreach_keg(zone, &keg_timeout); 531 } 532 533 /* 534 * Allocate and zero fill the next sized hash table from the appropriate 535 * backing store. 536 * 537 * Arguments: 538 * hash A new hash structure with the old hash size in uh_hashsize 539 * 540 * Returns: 541 * 1 on sucess and 0 on failure. 542 */ 543 static int 544 hash_alloc(struct uma_hash *hash) 545 { 546 int oldsize; 547 int alloc; 548 549 oldsize = hash->uh_hashsize; 550 551 /* We're just going to go to a power of two greater */ 552 if (oldsize) { 553 hash->uh_hashsize = oldsize * 2; 554 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 555 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 556 M_UMAHASH, M_NOWAIT); 557 } else { 558 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 559 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 560 M_WAITOK); 561 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 562 } 563 if (hash->uh_slab_hash) { 564 bzero(hash->uh_slab_hash, alloc); 565 hash->uh_hashmask = hash->uh_hashsize - 1; 566 return (1); 567 } 568 569 return (0); 570 } 571 572 /* 573 * Expands the hash table for HASH zones. This is done from zone_timeout 574 * to reduce collisions. This must not be done in the regular allocation 575 * path, otherwise, we can recurse on the vm while allocating pages. 576 * 577 * Arguments: 578 * oldhash The hash you want to expand 579 * newhash The hash structure for the new table 580 * 581 * Returns: 582 * Nothing 583 * 584 * Discussion: 585 */ 586 static int 587 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 588 { 589 uma_slab_t slab; 590 int hval; 591 int i; 592 593 if (!newhash->uh_slab_hash) 594 return (0); 595 596 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 597 return (0); 598 599 /* 600 * I need to investigate hash algorithms for resizing without a 601 * full rehash. 602 */ 603 604 for (i = 0; i < oldhash->uh_hashsize; i++) 605 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) { 606 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]); 607 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink); 608 hval = UMA_HASH(newhash, slab->us_data); 609 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 610 slab, us_hlink); 611 } 612 613 return (1); 614 } 615 616 /* 617 * Free the hash bucket to the appropriate backing store. 618 * 619 * Arguments: 620 * slab_hash The hash bucket we're freeing 621 * hashsize The number of entries in that hash bucket 622 * 623 * Returns: 624 * Nothing 625 */ 626 static void 627 hash_free(struct uma_hash *hash) 628 { 629 if (hash->uh_slab_hash == NULL) 630 return; 631 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 632 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 633 else 634 free(hash->uh_slab_hash, M_UMAHASH); 635 } 636 637 /* 638 * Frees all outstanding items in a bucket 639 * 640 * Arguments: 641 * zone The zone to free to, must be unlocked. 642 * bucket The free/alloc bucket with items, cpu queue must be locked. 643 * 644 * Returns: 645 * Nothing 646 */ 647 648 static void 649 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 650 { 651 int i; 652 653 if (bucket == NULL) 654 return; 655 656 if (zone->uz_fini) 657 for (i = 0; i < bucket->ub_cnt; i++) 658 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 659 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 660 bucket->ub_cnt = 0; 661 } 662 663 /* 664 * Drains the per cpu caches for a zone. 665 * 666 * NOTE: This may only be called while the zone is being turn down, and not 667 * during normal operation. This is necessary in order that we do not have 668 * to migrate CPUs to drain the per-CPU caches. 669 * 670 * Arguments: 671 * zone The zone to drain, must be unlocked. 672 * 673 * Returns: 674 * Nothing 675 */ 676 static void 677 cache_drain(uma_zone_t zone) 678 { 679 uma_cache_t cache; 680 int cpu; 681 682 /* 683 * XXX: It is safe to not lock the per-CPU caches, because we're 684 * tearing down the zone anyway. I.e., there will be no further use 685 * of the caches at this point. 686 * 687 * XXX: It would good to be able to assert that the zone is being 688 * torn down to prevent improper use of cache_drain(). 689 * 690 * XXX: We lock the zone before passing into bucket_cache_drain() as 691 * it is used elsewhere. Should the tear-down path be made special 692 * there in some form? 693 */ 694 CPU_FOREACH(cpu) { 695 cache = &zone->uz_cpu[cpu]; 696 bucket_drain(zone, cache->uc_allocbucket); 697 bucket_drain(zone, cache->uc_freebucket); 698 if (cache->uc_allocbucket != NULL) 699 bucket_free(zone, cache->uc_allocbucket, NULL); 700 if (cache->uc_freebucket != NULL) 701 bucket_free(zone, cache->uc_freebucket, NULL); 702 cache->uc_allocbucket = cache->uc_freebucket = NULL; 703 } 704 ZONE_LOCK(zone); 705 bucket_cache_drain(zone); 706 ZONE_UNLOCK(zone); 707 } 708 709 static void 710 cache_shrink(uma_zone_t zone) 711 { 712 713 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 714 return; 715 716 ZONE_LOCK(zone); 717 zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2; 718 ZONE_UNLOCK(zone); 719 } 720 721 static void 722 cache_drain_safe_cpu(uma_zone_t zone) 723 { 724 uma_cache_t cache; 725 uma_bucket_t b1, b2; 726 727 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 728 return; 729 730 b1 = b2 = NULL; 731 ZONE_LOCK(zone); 732 critical_enter(); 733 cache = &zone->uz_cpu[curcpu]; 734 if (cache->uc_allocbucket) { 735 if (cache->uc_allocbucket->ub_cnt != 0) 736 LIST_INSERT_HEAD(&zone->uz_buckets, 737 cache->uc_allocbucket, ub_link); 738 else 739 b1 = cache->uc_allocbucket; 740 cache->uc_allocbucket = NULL; 741 } 742 if (cache->uc_freebucket) { 743 if (cache->uc_freebucket->ub_cnt != 0) 744 LIST_INSERT_HEAD(&zone->uz_buckets, 745 cache->uc_freebucket, ub_link); 746 else 747 b2 = cache->uc_freebucket; 748 cache->uc_freebucket = NULL; 749 } 750 critical_exit(); 751 ZONE_UNLOCK(zone); 752 if (b1) 753 bucket_free(zone, b1, NULL); 754 if (b2) 755 bucket_free(zone, b2, NULL); 756 } 757 758 /* 759 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 760 * This is an expensive call because it needs to bind to all CPUs 761 * one by one and enter a critical section on each of them in order 762 * to safely access their cache buckets. 763 * Zone lock must not be held on call this function. 764 */ 765 static void 766 cache_drain_safe(uma_zone_t zone) 767 { 768 int cpu; 769 770 /* 771 * Polite bucket sizes shrinking was not enouth, shrink aggressively. 772 */ 773 if (zone) 774 cache_shrink(zone); 775 else 776 zone_foreach(cache_shrink); 777 778 CPU_FOREACH(cpu) { 779 thread_lock(curthread); 780 sched_bind(curthread, cpu); 781 thread_unlock(curthread); 782 783 if (zone) 784 cache_drain_safe_cpu(zone); 785 else 786 zone_foreach(cache_drain_safe_cpu); 787 } 788 thread_lock(curthread); 789 sched_unbind(curthread); 790 thread_unlock(curthread); 791 } 792 793 /* 794 * Drain the cached buckets from a zone. Expects a locked zone on entry. 795 */ 796 static void 797 bucket_cache_drain(uma_zone_t zone) 798 { 799 uma_bucket_t bucket; 800 801 /* 802 * Drain the bucket queues and free the buckets, we just keep two per 803 * cpu (alloc/free). 804 */ 805 while ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) { 806 LIST_REMOVE(bucket, ub_link); 807 ZONE_UNLOCK(zone); 808 bucket_drain(zone, bucket); 809 bucket_free(zone, bucket, NULL); 810 ZONE_LOCK(zone); 811 } 812 813 /* 814 * Shrink further bucket sizes. Price of single zone lock collision 815 * is probably lower then price of global cache drain. 816 */ 817 if (zone->uz_count > zone->uz_count_min) 818 zone->uz_count--; 819 } 820 821 static void 822 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 823 { 824 uint8_t *mem; 825 int i; 826 uint8_t flags; 827 828 mem = slab->us_data; 829 flags = slab->us_flags; 830 i = start; 831 if (keg->uk_fini != NULL) { 832 for (i--; i > -1; i--) 833 keg->uk_fini(slab->us_data + (keg->uk_rsize * i), 834 keg->uk_size); 835 } 836 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 837 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 838 #ifdef UMA_DEBUG 839 printf("%s: Returning %d bytes.\n", keg->uk_name, 840 PAGE_SIZE * keg->uk_ppera); 841 #endif 842 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 843 } 844 845 /* 846 * Frees pages from a keg back to the system. This is done on demand from 847 * the pageout daemon. 848 * 849 * Returns nothing. 850 */ 851 static void 852 keg_drain(uma_keg_t keg) 853 { 854 struct slabhead freeslabs = { 0 }; 855 uma_slab_t slab; 856 uma_slab_t n; 857 858 /* 859 * We don't want to take pages from statically allocated kegs at this 860 * time 861 */ 862 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 863 return; 864 865 #ifdef UMA_DEBUG 866 printf("%s free items: %u\n", keg->uk_name, keg->uk_free); 867 #endif 868 KEG_LOCK(keg); 869 if (keg->uk_free == 0) 870 goto finished; 871 872 slab = LIST_FIRST(&keg->uk_free_slab); 873 while (slab) { 874 n = LIST_NEXT(slab, us_link); 875 876 /* We have no where to free these to */ 877 if (slab->us_flags & UMA_SLAB_BOOT) { 878 slab = n; 879 continue; 880 } 881 882 LIST_REMOVE(slab, us_link); 883 keg->uk_pages -= keg->uk_ppera; 884 keg->uk_free -= keg->uk_ipers; 885 886 if (keg->uk_flags & UMA_ZONE_HASH) 887 UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data); 888 889 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 890 891 slab = n; 892 } 893 finished: 894 KEG_UNLOCK(keg); 895 896 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 897 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 898 keg_free_slab(keg, slab, keg->uk_ipers); 899 } 900 } 901 902 static void 903 zone_drain_wait(uma_zone_t zone, int waitok) 904 { 905 906 /* 907 * Set draining to interlock with zone_dtor() so we can release our 908 * locks as we go. Only dtor() should do a WAITOK call since it 909 * is the only call that knows the structure will still be available 910 * when it wakes up. 911 */ 912 ZONE_LOCK(zone); 913 while (zone->uz_flags & UMA_ZFLAG_DRAINING) { 914 if (waitok == M_NOWAIT) 915 goto out; 916 msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1); 917 } 918 zone->uz_flags |= UMA_ZFLAG_DRAINING; 919 bucket_cache_drain(zone); 920 ZONE_UNLOCK(zone); 921 /* 922 * The DRAINING flag protects us from being freed while 923 * we're running. Normally the uma_rwlock would protect us but we 924 * must be able to release and acquire the right lock for each keg. 925 */ 926 zone_foreach_keg(zone, &keg_drain); 927 ZONE_LOCK(zone); 928 zone->uz_flags &= ~UMA_ZFLAG_DRAINING; 929 wakeup(zone); 930 out: 931 ZONE_UNLOCK(zone); 932 } 933 934 void 935 zone_drain(uma_zone_t zone) 936 { 937 938 zone_drain_wait(zone, M_NOWAIT); 939 } 940 941 /* 942 * Allocate a new slab for a keg. This does not insert the slab onto a list. 943 * 944 * Arguments: 945 * wait Shall we wait? 946 * 947 * Returns: 948 * The slab that was allocated or NULL if there is no memory and the 949 * caller specified M_NOWAIT. 950 */ 951 static uma_slab_t 952 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait) 953 { 954 uma_slabrefcnt_t slabref; 955 uma_alloc allocf; 956 uma_slab_t slab; 957 uint8_t *mem; 958 uint8_t flags; 959 int i; 960 961 mtx_assert(&keg->uk_lock, MA_OWNED); 962 slab = NULL; 963 mem = NULL; 964 965 #ifdef UMA_DEBUG 966 printf("alloc_slab: Allocating a new slab for %s\n", keg->uk_name); 967 #endif 968 allocf = keg->uk_allocf; 969 KEG_UNLOCK(keg); 970 971 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 972 slab = zone_alloc_item(keg->uk_slabzone, NULL, wait); 973 if (slab == NULL) 974 goto out; 975 } 976 977 /* 978 * This reproduces the old vm_zone behavior of zero filling pages the 979 * first time they are added to a zone. 980 * 981 * Malloced items are zeroed in uma_zalloc. 982 */ 983 984 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 985 wait |= M_ZERO; 986 else 987 wait &= ~M_ZERO; 988 989 if (keg->uk_flags & UMA_ZONE_NODUMP) 990 wait |= M_NODUMP; 991 992 /* zone is passed for legacy reasons. */ 993 mem = allocf(zone, keg->uk_ppera * PAGE_SIZE, &flags, wait); 994 if (mem == NULL) { 995 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 996 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 997 slab = NULL; 998 goto out; 999 } 1000 1001 /* Point the slab into the allocated memory */ 1002 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 1003 slab = (uma_slab_t )(mem + keg->uk_pgoff); 1004 1005 if (keg->uk_flags & UMA_ZONE_VTOSLAB) 1006 for (i = 0; i < keg->uk_ppera; i++) 1007 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 1008 1009 slab->us_keg = keg; 1010 slab->us_data = mem; 1011 slab->us_freecount = keg->uk_ipers; 1012 slab->us_flags = flags; 1013 BIT_FILL(SLAB_SETSIZE, &slab->us_free); 1014 #ifdef INVARIANTS 1015 BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree); 1016 #endif 1017 if (keg->uk_flags & UMA_ZONE_REFCNT) { 1018 slabref = (uma_slabrefcnt_t)slab; 1019 for (i = 0; i < keg->uk_ipers; i++) 1020 slabref->us_refcnt[i] = 0; 1021 } 1022 1023 if (keg->uk_init != NULL) { 1024 for (i = 0; i < keg->uk_ipers; i++) 1025 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 1026 keg->uk_size, wait) != 0) 1027 break; 1028 if (i != keg->uk_ipers) { 1029 keg_free_slab(keg, slab, i); 1030 slab = NULL; 1031 goto out; 1032 } 1033 } 1034 out: 1035 KEG_LOCK(keg); 1036 1037 if (slab != NULL) { 1038 if (keg->uk_flags & UMA_ZONE_HASH) 1039 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1040 1041 keg->uk_pages += keg->uk_ppera; 1042 keg->uk_free += keg->uk_ipers; 1043 } 1044 1045 return (slab); 1046 } 1047 1048 /* 1049 * This function is intended to be used early on in place of page_alloc() so 1050 * that we may use the boot time page cache to satisfy allocations before 1051 * the VM is ready. 1052 */ 1053 static void * 1054 startup_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait) 1055 { 1056 uma_keg_t keg; 1057 uma_slab_t tmps; 1058 int pages, check_pages; 1059 1060 keg = zone_first_keg(zone); 1061 pages = howmany(bytes, PAGE_SIZE); 1062 check_pages = pages - 1; 1063 KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n")); 1064 1065 /* 1066 * Check our small startup cache to see if it has pages remaining. 1067 */ 1068 mtx_lock(&uma_boot_pages_mtx); 1069 1070 /* First check if we have enough room. */ 1071 tmps = LIST_FIRST(&uma_boot_pages); 1072 while (tmps != NULL && check_pages-- > 0) 1073 tmps = LIST_NEXT(tmps, us_link); 1074 if (tmps != NULL) { 1075 /* 1076 * It's ok to lose tmps references. The last one will 1077 * have tmps->us_data pointing to the start address of 1078 * "pages" contiguous pages of memory. 1079 */ 1080 while (pages-- > 0) { 1081 tmps = LIST_FIRST(&uma_boot_pages); 1082 LIST_REMOVE(tmps, us_link); 1083 } 1084 mtx_unlock(&uma_boot_pages_mtx); 1085 *pflag = tmps->us_flags; 1086 return (tmps->us_data); 1087 } 1088 mtx_unlock(&uma_boot_pages_mtx); 1089 if (booted < UMA_STARTUP2) 1090 panic("UMA: Increase vm.boot_pages"); 1091 /* 1092 * Now that we've booted reset these users to their real allocator. 1093 */ 1094 #ifdef UMA_MD_SMALL_ALLOC 1095 keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc; 1096 #else 1097 keg->uk_allocf = page_alloc; 1098 #endif 1099 return keg->uk_allocf(zone, bytes, pflag, wait); 1100 } 1101 1102 /* 1103 * Allocates a number of pages from the system 1104 * 1105 * Arguments: 1106 * bytes The number of bytes requested 1107 * wait Shall we wait? 1108 * 1109 * Returns: 1110 * A pointer to the alloced memory or possibly 1111 * NULL if M_NOWAIT is set. 1112 */ 1113 static void * 1114 page_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait) 1115 { 1116 void *p; /* Returned page */ 1117 1118 *pflag = UMA_SLAB_KMEM; 1119 p = (void *) kmem_malloc(kmem_arena, bytes, wait); 1120 1121 return (p); 1122 } 1123 1124 /* 1125 * Allocates a number of pages from within an object 1126 * 1127 * Arguments: 1128 * bytes The number of bytes requested 1129 * wait Shall we wait? 1130 * 1131 * Returns: 1132 * A pointer to the alloced memory or possibly 1133 * NULL if M_NOWAIT is set. 1134 */ 1135 static void * 1136 noobj_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *flags, int wait) 1137 { 1138 TAILQ_HEAD(, vm_page) alloctail; 1139 u_long npages; 1140 vm_offset_t retkva, zkva; 1141 vm_page_t p, p_next; 1142 uma_keg_t keg; 1143 1144 TAILQ_INIT(&alloctail); 1145 keg = zone_first_keg(zone); 1146 1147 npages = howmany(bytes, PAGE_SIZE); 1148 while (npages > 0) { 1149 p = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT | 1150 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ); 1151 if (p != NULL) { 1152 /* 1153 * Since the page does not belong to an object, its 1154 * listq is unused. 1155 */ 1156 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1157 npages--; 1158 continue; 1159 } 1160 if (wait & M_WAITOK) { 1161 VM_WAIT; 1162 continue; 1163 } 1164 1165 /* 1166 * Page allocation failed, free intermediate pages and 1167 * exit. 1168 */ 1169 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1170 vm_page_unwire(p, PQ_NONE); 1171 vm_page_free(p); 1172 } 1173 return (NULL); 1174 } 1175 *flags = UMA_SLAB_PRIV; 1176 zkva = keg->uk_kva + 1177 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1178 retkva = zkva; 1179 TAILQ_FOREACH(p, &alloctail, listq) { 1180 pmap_qenter(zkva, &p, 1); 1181 zkva += PAGE_SIZE; 1182 } 1183 1184 return ((void *)retkva); 1185 } 1186 1187 /* 1188 * Frees a number of pages to the system 1189 * 1190 * Arguments: 1191 * mem A pointer to the memory to be freed 1192 * size The size of the memory being freed 1193 * flags The original p->us_flags field 1194 * 1195 * Returns: 1196 * Nothing 1197 */ 1198 static void 1199 page_free(void *mem, vm_size_t size, uint8_t flags) 1200 { 1201 struct vmem *vmem; 1202 1203 if (flags & UMA_SLAB_KMEM) 1204 vmem = kmem_arena; 1205 else if (flags & UMA_SLAB_KERNEL) 1206 vmem = kernel_arena; 1207 else 1208 panic("UMA: page_free used with invalid flags %d", flags); 1209 1210 kmem_free(vmem, (vm_offset_t)mem, size); 1211 } 1212 1213 /* 1214 * Zero fill initializer 1215 * 1216 * Arguments/Returns follow uma_init specifications 1217 */ 1218 static int 1219 zero_init(void *mem, int size, int flags) 1220 { 1221 bzero(mem, size); 1222 return (0); 1223 } 1224 1225 /* 1226 * Finish creating a small uma keg. This calculates ipers, and the keg size. 1227 * 1228 * Arguments 1229 * keg The zone we should initialize 1230 * 1231 * Returns 1232 * Nothing 1233 */ 1234 static void 1235 keg_small_init(uma_keg_t keg) 1236 { 1237 u_int rsize; 1238 u_int memused; 1239 u_int wastedspace; 1240 u_int shsize; 1241 1242 if (keg->uk_flags & UMA_ZONE_PCPU) { 1243 u_int ncpus = mp_ncpus ? mp_ncpus : MAXCPU; 1244 1245 keg->uk_slabsize = sizeof(struct pcpu); 1246 keg->uk_ppera = howmany(ncpus * sizeof(struct pcpu), 1247 PAGE_SIZE); 1248 } else { 1249 keg->uk_slabsize = UMA_SLAB_SIZE; 1250 keg->uk_ppera = 1; 1251 } 1252 1253 /* 1254 * Calculate the size of each allocation (rsize) according to 1255 * alignment. If the requested size is smaller than we have 1256 * allocation bits for we round it up. 1257 */ 1258 rsize = keg->uk_size; 1259 if (rsize < keg->uk_slabsize / SLAB_SETSIZE) 1260 rsize = keg->uk_slabsize / SLAB_SETSIZE; 1261 if (rsize & keg->uk_align) 1262 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1263 keg->uk_rsize = rsize; 1264 1265 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 1266 keg->uk_rsize < sizeof(struct pcpu), 1267 ("%s: size %u too large", __func__, keg->uk_rsize)); 1268 1269 if (keg->uk_flags & UMA_ZONE_REFCNT) 1270 rsize += sizeof(uint32_t); 1271 1272 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1273 shsize = 0; 1274 else 1275 shsize = sizeof(struct uma_slab); 1276 1277 keg->uk_ipers = (keg->uk_slabsize - shsize) / rsize; 1278 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1279 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1280 1281 memused = keg->uk_ipers * rsize + shsize; 1282 wastedspace = keg->uk_slabsize - memused; 1283 1284 /* 1285 * We can't do OFFPAGE if we're internal or if we've been 1286 * asked to not go to the VM for buckets. If we do this we 1287 * may end up going to the VM for slabs which we do not 1288 * want to do if we're UMA_ZFLAG_CACHEONLY as a result 1289 * of UMA_ZONE_VM, which clearly forbids it. 1290 */ 1291 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1292 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1293 return; 1294 1295 /* 1296 * See if using an OFFPAGE slab will limit our waste. Only do 1297 * this if it permits more items per-slab. 1298 * 1299 * XXX We could try growing slabsize to limit max waste as well. 1300 * Historically this was not done because the VM could not 1301 * efficiently handle contiguous allocations. 1302 */ 1303 if ((wastedspace >= keg->uk_slabsize / UMA_MAX_WASTE) && 1304 (keg->uk_ipers < (keg->uk_slabsize / keg->uk_rsize))) { 1305 keg->uk_ipers = keg->uk_slabsize / keg->uk_rsize; 1306 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1307 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1308 #ifdef UMA_DEBUG 1309 printf("UMA decided we need offpage slab headers for " 1310 "keg: %s, calculated wastedspace = %d, " 1311 "maximum wasted space allowed = %d, " 1312 "calculated ipers = %d, " 1313 "new wasted space = %d\n", keg->uk_name, wastedspace, 1314 keg->uk_slabsize / UMA_MAX_WASTE, keg->uk_ipers, 1315 keg->uk_slabsize - keg->uk_ipers * keg->uk_rsize); 1316 #endif 1317 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1318 } 1319 1320 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1321 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1322 keg->uk_flags |= UMA_ZONE_HASH; 1323 } 1324 1325 /* 1326 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do 1327 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1328 * more complicated. 1329 * 1330 * Arguments 1331 * keg The keg we should initialize 1332 * 1333 * Returns 1334 * Nothing 1335 */ 1336 static void 1337 keg_large_init(uma_keg_t keg) 1338 { 1339 u_int shsize; 1340 1341 KASSERT(keg != NULL, ("Keg is null in keg_large_init")); 1342 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0, 1343 ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg")); 1344 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1345 ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__)); 1346 1347 keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE); 1348 keg->uk_slabsize = keg->uk_ppera * PAGE_SIZE; 1349 keg->uk_ipers = 1; 1350 keg->uk_rsize = keg->uk_size; 1351 1352 /* We can't do OFFPAGE if we're internal, bail out here. */ 1353 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) 1354 return; 1355 1356 /* Check whether we have enough space to not do OFFPAGE. */ 1357 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) { 1358 shsize = sizeof(struct uma_slab); 1359 if (keg->uk_flags & UMA_ZONE_REFCNT) 1360 shsize += keg->uk_ipers * sizeof(uint32_t); 1361 if (shsize & UMA_ALIGN_PTR) 1362 shsize = (shsize & ~UMA_ALIGN_PTR) + 1363 (UMA_ALIGN_PTR + 1); 1364 1365 if ((PAGE_SIZE * keg->uk_ppera) - keg->uk_rsize < shsize) 1366 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1367 } 1368 1369 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1370 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1371 keg->uk_flags |= UMA_ZONE_HASH; 1372 } 1373 1374 static void 1375 keg_cachespread_init(uma_keg_t keg) 1376 { 1377 int alignsize; 1378 int trailer; 1379 int pages; 1380 int rsize; 1381 1382 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1383 ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__)); 1384 1385 alignsize = keg->uk_align + 1; 1386 rsize = keg->uk_size; 1387 /* 1388 * We want one item to start on every align boundary in a page. To 1389 * do this we will span pages. We will also extend the item by the 1390 * size of align if it is an even multiple of align. Otherwise, it 1391 * would fall on the same boundary every time. 1392 */ 1393 if (rsize & keg->uk_align) 1394 rsize = (rsize & ~keg->uk_align) + alignsize; 1395 if ((rsize & alignsize) == 0) 1396 rsize += alignsize; 1397 trailer = rsize - keg->uk_size; 1398 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE; 1399 pages = MIN(pages, (128 * 1024) / PAGE_SIZE); 1400 keg->uk_rsize = rsize; 1401 keg->uk_ppera = pages; 1402 keg->uk_slabsize = UMA_SLAB_SIZE; 1403 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize; 1404 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1405 KASSERT(keg->uk_ipers <= SLAB_SETSIZE, 1406 ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__, 1407 keg->uk_ipers)); 1408 } 1409 1410 /* 1411 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1412 * the keg onto the global keg list. 1413 * 1414 * Arguments/Returns follow uma_ctor specifications 1415 * udata Actually uma_kctor_args 1416 */ 1417 static int 1418 keg_ctor(void *mem, int size, void *udata, int flags) 1419 { 1420 struct uma_kctor_args *arg = udata; 1421 uma_keg_t keg = mem; 1422 uma_zone_t zone; 1423 1424 bzero(keg, size); 1425 keg->uk_size = arg->size; 1426 keg->uk_init = arg->uminit; 1427 keg->uk_fini = arg->fini; 1428 keg->uk_align = arg->align; 1429 keg->uk_free = 0; 1430 keg->uk_reserve = 0; 1431 keg->uk_pages = 0; 1432 keg->uk_flags = arg->flags; 1433 keg->uk_allocf = page_alloc; 1434 keg->uk_freef = page_free; 1435 keg->uk_slabzone = NULL; 1436 1437 /* 1438 * The master zone is passed to us at keg-creation time. 1439 */ 1440 zone = arg->zone; 1441 keg->uk_name = zone->uz_name; 1442 1443 if (arg->flags & UMA_ZONE_VM) 1444 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1445 1446 if (arg->flags & UMA_ZONE_ZINIT) 1447 keg->uk_init = zero_init; 1448 1449 if (arg->flags & UMA_ZONE_REFCNT || arg->flags & UMA_ZONE_MALLOC) 1450 keg->uk_flags |= UMA_ZONE_VTOSLAB; 1451 1452 if (arg->flags & UMA_ZONE_PCPU) 1453 #ifdef SMP 1454 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1455 #else 1456 keg->uk_flags &= ~UMA_ZONE_PCPU; 1457 #endif 1458 1459 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) { 1460 keg_cachespread_init(keg); 1461 } else if (keg->uk_flags & UMA_ZONE_REFCNT) { 1462 if (keg->uk_size > 1463 (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt) - 1464 sizeof(uint32_t))) 1465 keg_large_init(keg); 1466 else 1467 keg_small_init(keg); 1468 } else { 1469 if (keg->uk_size > (UMA_SLAB_SIZE - sizeof(struct uma_slab))) 1470 keg_large_init(keg); 1471 else 1472 keg_small_init(keg); 1473 } 1474 1475 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 1476 if (keg->uk_flags & UMA_ZONE_REFCNT) { 1477 if (keg->uk_ipers > uma_max_ipers_ref) 1478 panic("Too many ref items per zone: %d > %d\n", 1479 keg->uk_ipers, uma_max_ipers_ref); 1480 keg->uk_slabzone = slabrefzone; 1481 } else 1482 keg->uk_slabzone = slabzone; 1483 } 1484 1485 /* 1486 * If we haven't booted yet we need allocations to go through the 1487 * startup cache until the vm is ready. 1488 */ 1489 if (keg->uk_ppera == 1) { 1490 #ifdef UMA_MD_SMALL_ALLOC 1491 keg->uk_allocf = uma_small_alloc; 1492 keg->uk_freef = uma_small_free; 1493 1494 if (booted < UMA_STARTUP) 1495 keg->uk_allocf = startup_alloc; 1496 #else 1497 if (booted < UMA_STARTUP2) 1498 keg->uk_allocf = startup_alloc; 1499 #endif 1500 } else if (booted < UMA_STARTUP2 && 1501 (keg->uk_flags & UMA_ZFLAG_INTERNAL)) 1502 keg->uk_allocf = startup_alloc; 1503 1504 /* 1505 * Initialize keg's lock 1506 */ 1507 KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS)); 1508 1509 /* 1510 * If we're putting the slab header in the actual page we need to 1511 * figure out where in each page it goes. This calculates a right 1512 * justified offset into the memory on an ALIGN_PTR boundary. 1513 */ 1514 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1515 u_int totsize; 1516 1517 /* Size of the slab struct and free list */ 1518 totsize = sizeof(struct uma_slab); 1519 1520 /* Size of the reference counts. */ 1521 if (keg->uk_flags & UMA_ZONE_REFCNT) 1522 totsize += keg->uk_ipers * sizeof(uint32_t); 1523 1524 if (totsize & UMA_ALIGN_PTR) 1525 totsize = (totsize & ~UMA_ALIGN_PTR) + 1526 (UMA_ALIGN_PTR + 1); 1527 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize; 1528 1529 /* 1530 * The only way the following is possible is if with our 1531 * UMA_ALIGN_PTR adjustments we are now bigger than 1532 * UMA_SLAB_SIZE. I haven't checked whether this is 1533 * mathematically possible for all cases, so we make 1534 * sure here anyway. 1535 */ 1536 totsize = keg->uk_pgoff + sizeof(struct uma_slab); 1537 if (keg->uk_flags & UMA_ZONE_REFCNT) 1538 totsize += keg->uk_ipers * sizeof(uint32_t); 1539 if (totsize > PAGE_SIZE * keg->uk_ppera) { 1540 printf("zone %s ipers %d rsize %d size %d\n", 1541 zone->uz_name, keg->uk_ipers, keg->uk_rsize, 1542 keg->uk_size); 1543 panic("UMA slab won't fit."); 1544 } 1545 } 1546 1547 if (keg->uk_flags & UMA_ZONE_HASH) 1548 hash_alloc(&keg->uk_hash); 1549 1550 #ifdef UMA_DEBUG 1551 printf("UMA: %s(%p) size %d(%d) flags %#x ipers %d ppera %d out %d free %d\n", 1552 zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags, 1553 keg->uk_ipers, keg->uk_ppera, 1554 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free); 1555 #endif 1556 1557 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1558 1559 rw_wlock(&uma_rwlock); 1560 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1561 rw_wunlock(&uma_rwlock); 1562 return (0); 1563 } 1564 1565 /* 1566 * Zone header ctor. This initializes all fields, locks, etc. 1567 * 1568 * Arguments/Returns follow uma_ctor specifications 1569 * udata Actually uma_zctor_args 1570 */ 1571 static int 1572 zone_ctor(void *mem, int size, void *udata, int flags) 1573 { 1574 struct uma_zctor_args *arg = udata; 1575 uma_zone_t zone = mem; 1576 uma_zone_t z; 1577 uma_keg_t keg; 1578 1579 bzero(zone, size); 1580 zone->uz_name = arg->name; 1581 zone->uz_ctor = arg->ctor; 1582 zone->uz_dtor = arg->dtor; 1583 zone->uz_slab = zone_fetch_slab; 1584 zone->uz_init = NULL; 1585 zone->uz_fini = NULL; 1586 zone->uz_allocs = 0; 1587 zone->uz_frees = 0; 1588 zone->uz_fails = 0; 1589 zone->uz_sleeps = 0; 1590 zone->uz_count = 0; 1591 zone->uz_count_min = 0; 1592 zone->uz_flags = 0; 1593 zone->uz_warning = NULL; 1594 timevalclear(&zone->uz_ratecheck); 1595 keg = arg->keg; 1596 1597 ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS)); 1598 1599 /* 1600 * This is a pure cache zone, no kegs. 1601 */ 1602 if (arg->import) { 1603 if (arg->flags & UMA_ZONE_VM) 1604 arg->flags |= UMA_ZFLAG_CACHEONLY; 1605 zone->uz_flags = arg->flags; 1606 zone->uz_size = arg->size; 1607 zone->uz_import = arg->import; 1608 zone->uz_release = arg->release; 1609 zone->uz_arg = arg->arg; 1610 zone->uz_lockptr = &zone->uz_lock; 1611 rw_wlock(&uma_rwlock); 1612 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 1613 rw_wunlock(&uma_rwlock); 1614 goto out; 1615 } 1616 1617 /* 1618 * Use the regular zone/keg/slab allocator. 1619 */ 1620 zone->uz_import = (uma_import)zone_import; 1621 zone->uz_release = (uma_release)zone_release; 1622 zone->uz_arg = zone; 1623 1624 if (arg->flags & UMA_ZONE_SECONDARY) { 1625 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 1626 zone->uz_init = arg->uminit; 1627 zone->uz_fini = arg->fini; 1628 zone->uz_lockptr = &keg->uk_lock; 1629 zone->uz_flags |= UMA_ZONE_SECONDARY; 1630 rw_wlock(&uma_rwlock); 1631 ZONE_LOCK(zone); 1632 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 1633 if (LIST_NEXT(z, uz_link) == NULL) { 1634 LIST_INSERT_AFTER(z, zone, uz_link); 1635 break; 1636 } 1637 } 1638 ZONE_UNLOCK(zone); 1639 rw_wunlock(&uma_rwlock); 1640 } else if (keg == NULL) { 1641 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 1642 arg->align, arg->flags)) == NULL) 1643 return (ENOMEM); 1644 } else { 1645 struct uma_kctor_args karg; 1646 int error; 1647 1648 /* We should only be here from uma_startup() */ 1649 karg.size = arg->size; 1650 karg.uminit = arg->uminit; 1651 karg.fini = arg->fini; 1652 karg.align = arg->align; 1653 karg.flags = arg->flags; 1654 karg.zone = zone; 1655 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 1656 flags); 1657 if (error) 1658 return (error); 1659 } 1660 1661 /* 1662 * Link in the first keg. 1663 */ 1664 zone->uz_klink.kl_keg = keg; 1665 LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link); 1666 zone->uz_lockptr = &keg->uk_lock; 1667 zone->uz_size = keg->uk_size; 1668 zone->uz_flags |= (keg->uk_flags & 1669 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 1670 1671 /* 1672 * Some internal zones don't have room allocated for the per cpu 1673 * caches. If we're internal, bail out here. 1674 */ 1675 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { 1676 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 1677 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 1678 return (0); 1679 } 1680 1681 out: 1682 if ((arg->flags & UMA_ZONE_MAXBUCKET) == 0) 1683 zone->uz_count = bucket_select(zone->uz_size); 1684 else 1685 zone->uz_count = BUCKET_MAX; 1686 zone->uz_count_min = zone->uz_count; 1687 1688 return (0); 1689 } 1690 1691 /* 1692 * Keg header dtor. This frees all data, destroys locks, frees the hash 1693 * table and removes the keg from the global list. 1694 * 1695 * Arguments/Returns follow uma_dtor specifications 1696 * udata unused 1697 */ 1698 static void 1699 keg_dtor(void *arg, int size, void *udata) 1700 { 1701 uma_keg_t keg; 1702 1703 keg = (uma_keg_t)arg; 1704 KEG_LOCK(keg); 1705 if (keg->uk_free != 0) { 1706 printf("Freed UMA keg (%s) was not empty (%d items). " 1707 " Lost %d pages of memory.\n", 1708 keg->uk_name ? keg->uk_name : "", 1709 keg->uk_free, keg->uk_pages); 1710 } 1711 KEG_UNLOCK(keg); 1712 1713 hash_free(&keg->uk_hash); 1714 1715 KEG_LOCK_FINI(keg); 1716 } 1717 1718 /* 1719 * Zone header dtor. 1720 * 1721 * Arguments/Returns follow uma_dtor specifications 1722 * udata unused 1723 */ 1724 static void 1725 zone_dtor(void *arg, int size, void *udata) 1726 { 1727 uma_klink_t klink; 1728 uma_zone_t zone; 1729 uma_keg_t keg; 1730 1731 zone = (uma_zone_t)arg; 1732 keg = zone_first_keg(zone); 1733 1734 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 1735 cache_drain(zone); 1736 1737 rw_wlock(&uma_rwlock); 1738 LIST_REMOVE(zone, uz_link); 1739 rw_wunlock(&uma_rwlock); 1740 /* 1741 * XXX there are some races here where 1742 * the zone can be drained but zone lock 1743 * released and then refilled before we 1744 * remove it... we dont care for now 1745 */ 1746 zone_drain_wait(zone, M_WAITOK); 1747 /* 1748 * Unlink all of our kegs. 1749 */ 1750 while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) { 1751 klink->kl_keg = NULL; 1752 LIST_REMOVE(klink, kl_link); 1753 if (klink == &zone->uz_klink) 1754 continue; 1755 free(klink, M_TEMP); 1756 } 1757 /* 1758 * We only destroy kegs from non secondary zones. 1759 */ 1760 if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0) { 1761 rw_wlock(&uma_rwlock); 1762 LIST_REMOVE(keg, uk_link); 1763 rw_wunlock(&uma_rwlock); 1764 zone_free_item(kegs, keg, NULL, SKIP_NONE); 1765 } 1766 ZONE_LOCK_FINI(zone); 1767 } 1768 1769 /* 1770 * Traverses every zone in the system and calls a callback 1771 * 1772 * Arguments: 1773 * zfunc A pointer to a function which accepts a zone 1774 * as an argument. 1775 * 1776 * Returns: 1777 * Nothing 1778 */ 1779 static void 1780 zone_foreach(void (*zfunc)(uma_zone_t)) 1781 { 1782 uma_keg_t keg; 1783 uma_zone_t zone; 1784 1785 rw_rlock(&uma_rwlock); 1786 LIST_FOREACH(keg, &uma_kegs, uk_link) { 1787 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 1788 zfunc(zone); 1789 } 1790 rw_runlock(&uma_rwlock); 1791 } 1792 1793 /* Public functions */ 1794 /* See uma.h */ 1795 void 1796 uma_startup(void *bootmem, int boot_pages) 1797 { 1798 struct uma_zctor_args args; 1799 uma_slab_t slab; 1800 u_int slabsize; 1801 int i; 1802 1803 #ifdef UMA_DEBUG 1804 printf("Creating uma keg headers zone and keg.\n"); 1805 #endif 1806 rw_init(&uma_rwlock, "UMA lock"); 1807 1808 /* "manually" create the initial zone */ 1809 memset(&args, 0, sizeof(args)); 1810 args.name = "UMA Kegs"; 1811 args.size = sizeof(struct uma_keg); 1812 args.ctor = keg_ctor; 1813 args.dtor = keg_dtor; 1814 args.uminit = zero_init; 1815 args.fini = NULL; 1816 args.keg = &masterkeg; 1817 args.align = 32 - 1; 1818 args.flags = UMA_ZFLAG_INTERNAL; 1819 /* The initial zone has no Per cpu queues so it's smaller */ 1820 zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK); 1821 1822 #ifdef UMA_DEBUG 1823 printf("Filling boot free list.\n"); 1824 #endif 1825 for (i = 0; i < boot_pages; i++) { 1826 slab = (uma_slab_t)((uint8_t *)bootmem + (i * UMA_SLAB_SIZE)); 1827 slab->us_data = (uint8_t *)slab; 1828 slab->us_flags = UMA_SLAB_BOOT; 1829 LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link); 1830 } 1831 mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF); 1832 1833 #ifdef UMA_DEBUG 1834 printf("Creating uma zone headers zone and keg.\n"); 1835 #endif 1836 args.name = "UMA Zones"; 1837 args.size = sizeof(struct uma_zone) + 1838 (sizeof(struct uma_cache) * (mp_maxid + 1)); 1839 args.ctor = zone_ctor; 1840 args.dtor = zone_dtor; 1841 args.uminit = zero_init; 1842 args.fini = NULL; 1843 args.keg = NULL; 1844 args.align = 32 - 1; 1845 args.flags = UMA_ZFLAG_INTERNAL; 1846 /* The initial zone has no Per cpu queues so it's smaller */ 1847 zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK); 1848 1849 #ifdef UMA_DEBUG 1850 printf("Creating slab and hash zones.\n"); 1851 #endif 1852 1853 /* Now make a zone for slab headers */ 1854 slabzone = uma_zcreate("UMA Slabs", 1855 sizeof(struct uma_slab), 1856 NULL, NULL, NULL, NULL, 1857 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1858 1859 /* 1860 * We also create a zone for the bigger slabs with reference 1861 * counts in them, to accomodate UMA_ZONE_REFCNT zones. 1862 */ 1863 slabsize = sizeof(struct uma_slab_refcnt); 1864 slabsize += uma_max_ipers_ref * sizeof(uint32_t); 1865 slabrefzone = uma_zcreate("UMA RCntSlabs", 1866 slabsize, 1867 NULL, NULL, NULL, NULL, 1868 UMA_ALIGN_PTR, 1869 UMA_ZFLAG_INTERNAL); 1870 1871 hashzone = uma_zcreate("UMA Hash", 1872 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 1873 NULL, NULL, NULL, NULL, 1874 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1875 1876 bucket_init(); 1877 1878 booted = UMA_STARTUP; 1879 1880 #ifdef UMA_DEBUG 1881 printf("UMA startup complete.\n"); 1882 #endif 1883 } 1884 1885 /* see uma.h */ 1886 void 1887 uma_startup2(void) 1888 { 1889 booted = UMA_STARTUP2; 1890 bucket_enable(); 1891 sx_init(&uma_drain_lock, "umadrain"); 1892 #ifdef UMA_DEBUG 1893 printf("UMA startup2 complete.\n"); 1894 #endif 1895 } 1896 1897 /* 1898 * Initialize our callout handle 1899 * 1900 */ 1901 1902 static void 1903 uma_startup3(void) 1904 { 1905 #ifdef UMA_DEBUG 1906 printf("Starting callout.\n"); 1907 #endif 1908 callout_init(&uma_callout, 1); 1909 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 1910 #ifdef UMA_DEBUG 1911 printf("UMA startup3 complete.\n"); 1912 #endif 1913 } 1914 1915 static uma_keg_t 1916 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 1917 int align, uint32_t flags) 1918 { 1919 struct uma_kctor_args args; 1920 1921 args.size = size; 1922 args.uminit = uminit; 1923 args.fini = fini; 1924 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 1925 args.flags = flags; 1926 args.zone = zone; 1927 return (zone_alloc_item(kegs, &args, M_WAITOK)); 1928 } 1929 1930 /* See uma.h */ 1931 void 1932 uma_set_align(int align) 1933 { 1934 1935 if (align != UMA_ALIGN_CACHE) 1936 uma_align_cache = align; 1937 } 1938 1939 /* See uma.h */ 1940 uma_zone_t 1941 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 1942 uma_init uminit, uma_fini fini, int align, uint32_t flags) 1943 1944 { 1945 struct uma_zctor_args args; 1946 uma_zone_t res; 1947 bool locked; 1948 1949 /* This stuff is essential for the zone ctor */ 1950 memset(&args, 0, sizeof(args)); 1951 args.name = name; 1952 args.size = size; 1953 args.ctor = ctor; 1954 args.dtor = dtor; 1955 args.uminit = uminit; 1956 args.fini = fini; 1957 #ifdef INVARIANTS 1958 /* 1959 * If a zone is being created with an empty constructor and 1960 * destructor, pass UMA constructor/destructor which checks for 1961 * memory use after free. 1962 */ 1963 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOFREE))) && 1964 ctor == NULL && dtor == NULL && uminit == NULL && fini == NULL) { 1965 args.ctor = trash_ctor; 1966 args.dtor = trash_dtor; 1967 args.uminit = trash_init; 1968 args.fini = trash_fini; 1969 } 1970 #endif 1971 args.align = align; 1972 args.flags = flags; 1973 args.keg = NULL; 1974 1975 if (booted < UMA_STARTUP2) { 1976 locked = false; 1977 } else { 1978 sx_slock(&uma_drain_lock); 1979 locked = true; 1980 } 1981 res = zone_alloc_item(zones, &args, M_WAITOK); 1982 if (locked) 1983 sx_sunlock(&uma_drain_lock); 1984 return (res); 1985 } 1986 1987 /* See uma.h */ 1988 uma_zone_t 1989 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 1990 uma_init zinit, uma_fini zfini, uma_zone_t master) 1991 { 1992 struct uma_zctor_args args; 1993 uma_keg_t keg; 1994 uma_zone_t res; 1995 bool locked; 1996 1997 keg = zone_first_keg(master); 1998 memset(&args, 0, sizeof(args)); 1999 args.name = name; 2000 args.size = keg->uk_size; 2001 args.ctor = ctor; 2002 args.dtor = dtor; 2003 args.uminit = zinit; 2004 args.fini = zfini; 2005 args.align = keg->uk_align; 2006 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 2007 args.keg = keg; 2008 2009 if (booted < UMA_STARTUP2) { 2010 locked = false; 2011 } else { 2012 sx_slock(&uma_drain_lock); 2013 locked = true; 2014 } 2015 /* XXX Attaches only one keg of potentially many. */ 2016 res = zone_alloc_item(zones, &args, M_WAITOK); 2017 if (locked) 2018 sx_sunlock(&uma_drain_lock); 2019 return (res); 2020 } 2021 2022 /* See uma.h */ 2023 uma_zone_t 2024 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor, 2025 uma_init zinit, uma_fini zfini, uma_import zimport, 2026 uma_release zrelease, void *arg, int flags) 2027 { 2028 struct uma_zctor_args args; 2029 2030 memset(&args, 0, sizeof(args)); 2031 args.name = name; 2032 args.size = size; 2033 args.ctor = ctor; 2034 args.dtor = dtor; 2035 args.uminit = zinit; 2036 args.fini = zfini; 2037 args.import = zimport; 2038 args.release = zrelease; 2039 args.arg = arg; 2040 args.align = 0; 2041 args.flags = flags; 2042 2043 return (zone_alloc_item(zones, &args, M_WAITOK)); 2044 } 2045 2046 static void 2047 zone_lock_pair(uma_zone_t a, uma_zone_t b) 2048 { 2049 if (a < b) { 2050 ZONE_LOCK(a); 2051 mtx_lock_flags(b->uz_lockptr, MTX_DUPOK); 2052 } else { 2053 ZONE_LOCK(b); 2054 mtx_lock_flags(a->uz_lockptr, MTX_DUPOK); 2055 } 2056 } 2057 2058 static void 2059 zone_unlock_pair(uma_zone_t a, uma_zone_t b) 2060 { 2061 2062 ZONE_UNLOCK(a); 2063 ZONE_UNLOCK(b); 2064 } 2065 2066 int 2067 uma_zsecond_add(uma_zone_t zone, uma_zone_t master) 2068 { 2069 uma_klink_t klink; 2070 uma_klink_t kl; 2071 int error; 2072 2073 error = 0; 2074 klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO); 2075 2076 zone_lock_pair(zone, master); 2077 /* 2078 * zone must use vtoslab() to resolve objects and must already be 2079 * a secondary. 2080 */ 2081 if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) 2082 != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) { 2083 error = EINVAL; 2084 goto out; 2085 } 2086 /* 2087 * The new master must also use vtoslab(). 2088 */ 2089 if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) { 2090 error = EINVAL; 2091 goto out; 2092 } 2093 /* 2094 * Both must either be refcnt, or not be refcnt. 2095 */ 2096 if ((zone->uz_flags & UMA_ZONE_REFCNT) != 2097 (master->uz_flags & UMA_ZONE_REFCNT)) { 2098 error = EINVAL; 2099 goto out; 2100 } 2101 /* 2102 * The underlying object must be the same size. rsize 2103 * may be different. 2104 */ 2105 if (master->uz_size != zone->uz_size) { 2106 error = E2BIG; 2107 goto out; 2108 } 2109 /* 2110 * Put it at the end of the list. 2111 */ 2112 klink->kl_keg = zone_first_keg(master); 2113 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) { 2114 if (LIST_NEXT(kl, kl_link) == NULL) { 2115 LIST_INSERT_AFTER(kl, klink, kl_link); 2116 break; 2117 } 2118 } 2119 klink = NULL; 2120 zone->uz_flags |= UMA_ZFLAG_MULTI; 2121 zone->uz_slab = zone_fetch_slab_multi; 2122 2123 out: 2124 zone_unlock_pair(zone, master); 2125 if (klink != NULL) 2126 free(klink, M_TEMP); 2127 2128 return (error); 2129 } 2130 2131 2132 /* See uma.h */ 2133 void 2134 uma_zdestroy(uma_zone_t zone) 2135 { 2136 2137 sx_slock(&uma_drain_lock); 2138 zone_free_item(zones, zone, NULL, SKIP_NONE); 2139 sx_sunlock(&uma_drain_lock); 2140 } 2141 2142 /* See uma.h */ 2143 void * 2144 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 2145 { 2146 void *item; 2147 uma_cache_t cache; 2148 uma_bucket_t bucket; 2149 int lockfail; 2150 int cpu; 2151 2152 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2153 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 2154 2155 /* This is the fast path allocation */ 2156 #ifdef UMA_DEBUG_ALLOC_1 2157 printf("Allocating one item from %s(%p)\n", zone->uz_name, zone); 2158 #endif 2159 CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread, 2160 zone->uz_name, flags); 2161 2162 if (flags & M_WAITOK) { 2163 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2164 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 2165 } 2166 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2167 ("uma_zalloc_arg: called with spinlock or critical section held")); 2168 2169 #ifdef DEBUG_MEMGUARD 2170 if (memguard_cmp_zone(zone)) { 2171 item = memguard_alloc(zone->uz_size, flags); 2172 if (item != NULL) { 2173 /* 2174 * Avoid conflict with the use-after-free 2175 * protecting infrastructure from INVARIANTS. 2176 */ 2177 if (zone->uz_init != NULL && 2178 zone->uz_init != mtrash_init && 2179 zone->uz_init(item, zone->uz_size, flags) != 0) 2180 return (NULL); 2181 if (zone->uz_ctor != NULL && 2182 zone->uz_ctor != mtrash_ctor && 2183 zone->uz_ctor(item, zone->uz_size, udata, 2184 flags) != 0) { 2185 zone->uz_fini(item, zone->uz_size); 2186 return (NULL); 2187 } 2188 return (item); 2189 } 2190 /* This is unfortunate but should not be fatal. */ 2191 } 2192 #endif 2193 /* 2194 * If possible, allocate from the per-CPU cache. There are two 2195 * requirements for safe access to the per-CPU cache: (1) the thread 2196 * accessing the cache must not be preempted or yield during access, 2197 * and (2) the thread must not migrate CPUs without switching which 2198 * cache it accesses. We rely on a critical section to prevent 2199 * preemption and migration. We release the critical section in 2200 * order to acquire the zone mutex if we are unable to allocate from 2201 * the current cache; when we re-acquire the critical section, we 2202 * must detect and handle migration if it has occurred. 2203 */ 2204 critical_enter(); 2205 cpu = curcpu; 2206 cache = &zone->uz_cpu[cpu]; 2207 2208 zalloc_start: 2209 bucket = cache->uc_allocbucket; 2210 if (bucket != NULL && bucket->ub_cnt > 0) { 2211 bucket->ub_cnt--; 2212 item = bucket->ub_bucket[bucket->ub_cnt]; 2213 #ifdef INVARIANTS 2214 bucket->ub_bucket[bucket->ub_cnt] = NULL; 2215 #endif 2216 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 2217 cache->uc_allocs++; 2218 critical_exit(); 2219 if (zone->uz_ctor != NULL && 2220 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2221 atomic_add_long(&zone->uz_fails, 1); 2222 zone_free_item(zone, item, udata, SKIP_DTOR); 2223 return (NULL); 2224 } 2225 #ifdef INVARIANTS 2226 uma_dbg_alloc(zone, NULL, item); 2227 #endif 2228 if (flags & M_ZERO) 2229 uma_zero_item(item, zone); 2230 return (item); 2231 } 2232 2233 /* 2234 * We have run out of items in our alloc bucket. 2235 * See if we can switch with our free bucket. 2236 */ 2237 bucket = cache->uc_freebucket; 2238 if (bucket != NULL && bucket->ub_cnt > 0) { 2239 #ifdef UMA_DEBUG_ALLOC 2240 printf("uma_zalloc: Swapping empty with alloc.\n"); 2241 #endif 2242 cache->uc_freebucket = cache->uc_allocbucket; 2243 cache->uc_allocbucket = bucket; 2244 goto zalloc_start; 2245 } 2246 2247 /* 2248 * Discard any empty allocation bucket while we hold no locks. 2249 */ 2250 bucket = cache->uc_allocbucket; 2251 cache->uc_allocbucket = NULL; 2252 critical_exit(); 2253 if (bucket != NULL) 2254 bucket_free(zone, bucket, udata); 2255 2256 /* Short-circuit for zones without buckets and low memory. */ 2257 if (zone->uz_count == 0 || bucketdisable) 2258 goto zalloc_item; 2259 2260 /* 2261 * Attempt to retrieve the item from the per-CPU cache has failed, so 2262 * we must go back to the zone. This requires the zone lock, so we 2263 * must drop the critical section, then re-acquire it when we go back 2264 * to the cache. Since the critical section is released, we may be 2265 * preempted or migrate. As such, make sure not to maintain any 2266 * thread-local state specific to the cache from prior to releasing 2267 * the critical section. 2268 */ 2269 lockfail = 0; 2270 if (ZONE_TRYLOCK(zone) == 0) { 2271 /* Record contention to size the buckets. */ 2272 ZONE_LOCK(zone); 2273 lockfail = 1; 2274 } 2275 critical_enter(); 2276 cpu = curcpu; 2277 cache = &zone->uz_cpu[cpu]; 2278 2279 /* 2280 * Since we have locked the zone we may as well send back our stats. 2281 */ 2282 atomic_add_long(&zone->uz_allocs, cache->uc_allocs); 2283 atomic_add_long(&zone->uz_frees, cache->uc_frees); 2284 cache->uc_allocs = 0; 2285 cache->uc_frees = 0; 2286 2287 /* See if we lost the race to fill the cache. */ 2288 if (cache->uc_allocbucket != NULL) { 2289 ZONE_UNLOCK(zone); 2290 goto zalloc_start; 2291 } 2292 2293 /* 2294 * Check the zone's cache of buckets. 2295 */ 2296 if ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) { 2297 KASSERT(bucket->ub_cnt != 0, 2298 ("uma_zalloc_arg: Returning an empty bucket.")); 2299 2300 LIST_REMOVE(bucket, ub_link); 2301 cache->uc_allocbucket = bucket; 2302 ZONE_UNLOCK(zone); 2303 goto zalloc_start; 2304 } 2305 /* We are no longer associated with this CPU. */ 2306 critical_exit(); 2307 2308 /* 2309 * We bump the uz count when the cache size is insufficient to 2310 * handle the working set. 2311 */ 2312 if (lockfail && zone->uz_count < BUCKET_MAX) 2313 zone->uz_count++; 2314 ZONE_UNLOCK(zone); 2315 2316 /* 2317 * Now lets just fill a bucket and put it on the free list. If that 2318 * works we'll restart the allocation from the begining and it 2319 * will use the just filled bucket. 2320 */ 2321 bucket = zone_alloc_bucket(zone, udata, flags); 2322 if (bucket != NULL) { 2323 ZONE_LOCK(zone); 2324 critical_enter(); 2325 cpu = curcpu; 2326 cache = &zone->uz_cpu[cpu]; 2327 /* 2328 * See if we lost the race or were migrated. Cache the 2329 * initialized bucket to make this less likely or claim 2330 * the memory directly. 2331 */ 2332 if (cache->uc_allocbucket == NULL) 2333 cache->uc_allocbucket = bucket; 2334 else 2335 LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link); 2336 ZONE_UNLOCK(zone); 2337 goto zalloc_start; 2338 } 2339 2340 /* 2341 * We may not be able to get a bucket so return an actual item. 2342 */ 2343 #ifdef UMA_DEBUG 2344 printf("uma_zalloc_arg: Bucketzone returned NULL\n"); 2345 #endif 2346 2347 zalloc_item: 2348 item = zone_alloc_item(zone, udata, flags); 2349 2350 return (item); 2351 } 2352 2353 static uma_slab_t 2354 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags) 2355 { 2356 uma_slab_t slab; 2357 int reserve; 2358 2359 mtx_assert(&keg->uk_lock, MA_OWNED); 2360 slab = NULL; 2361 reserve = 0; 2362 if ((flags & M_USE_RESERVE) == 0) 2363 reserve = keg->uk_reserve; 2364 2365 for (;;) { 2366 /* 2367 * Find a slab with some space. Prefer slabs that are partially 2368 * used over those that are totally full. This helps to reduce 2369 * fragmentation. 2370 */ 2371 if (keg->uk_free > reserve) { 2372 if (!LIST_EMPTY(&keg->uk_part_slab)) { 2373 slab = LIST_FIRST(&keg->uk_part_slab); 2374 } else { 2375 slab = LIST_FIRST(&keg->uk_free_slab); 2376 LIST_REMOVE(slab, us_link); 2377 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, 2378 us_link); 2379 } 2380 MPASS(slab->us_keg == keg); 2381 return (slab); 2382 } 2383 2384 /* 2385 * M_NOVM means don't ask at all! 2386 */ 2387 if (flags & M_NOVM) 2388 break; 2389 2390 if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) { 2391 keg->uk_flags |= UMA_ZFLAG_FULL; 2392 /* 2393 * If this is not a multi-zone, set the FULL bit. 2394 * Otherwise slab_multi() takes care of it. 2395 */ 2396 if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) { 2397 zone->uz_flags |= UMA_ZFLAG_FULL; 2398 zone_log_warning(zone); 2399 zone_maxaction(zone); 2400 } 2401 if (flags & M_NOWAIT) 2402 break; 2403 zone->uz_sleeps++; 2404 msleep(keg, &keg->uk_lock, PVM, "keglimit", 0); 2405 continue; 2406 } 2407 slab = keg_alloc_slab(keg, zone, flags); 2408 /* 2409 * If we got a slab here it's safe to mark it partially used 2410 * and return. We assume that the caller is going to remove 2411 * at least one item. 2412 */ 2413 if (slab) { 2414 MPASS(slab->us_keg == keg); 2415 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2416 return (slab); 2417 } 2418 /* 2419 * We might not have been able to get a slab but another cpu 2420 * could have while we were unlocked. Check again before we 2421 * fail. 2422 */ 2423 flags |= M_NOVM; 2424 } 2425 return (slab); 2426 } 2427 2428 static uma_slab_t 2429 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags) 2430 { 2431 uma_slab_t slab; 2432 2433 if (keg == NULL) { 2434 keg = zone_first_keg(zone); 2435 KEG_LOCK(keg); 2436 } 2437 2438 for (;;) { 2439 slab = keg_fetch_slab(keg, zone, flags); 2440 if (slab) 2441 return (slab); 2442 if (flags & (M_NOWAIT | M_NOVM)) 2443 break; 2444 } 2445 KEG_UNLOCK(keg); 2446 return (NULL); 2447 } 2448 2449 /* 2450 * uma_zone_fetch_slab_multi: Fetches a slab from one available keg. Returns 2451 * with the keg locked. On NULL no lock is held. 2452 * 2453 * The last pointer is used to seed the search. It is not required. 2454 */ 2455 static uma_slab_t 2456 zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags) 2457 { 2458 uma_klink_t klink; 2459 uma_slab_t slab; 2460 uma_keg_t keg; 2461 int flags; 2462 int empty; 2463 int full; 2464 2465 /* 2466 * Don't wait on the first pass. This will skip limit tests 2467 * as well. We don't want to block if we can find a provider 2468 * without blocking. 2469 */ 2470 flags = (rflags & ~M_WAITOK) | M_NOWAIT; 2471 /* 2472 * Use the last slab allocated as a hint for where to start 2473 * the search. 2474 */ 2475 if (last != NULL) { 2476 slab = keg_fetch_slab(last, zone, flags); 2477 if (slab) 2478 return (slab); 2479 KEG_UNLOCK(last); 2480 } 2481 /* 2482 * Loop until we have a slab incase of transient failures 2483 * while M_WAITOK is specified. I'm not sure this is 100% 2484 * required but we've done it for so long now. 2485 */ 2486 for (;;) { 2487 empty = 0; 2488 full = 0; 2489 /* 2490 * Search the available kegs for slabs. Be careful to hold the 2491 * correct lock while calling into the keg layer. 2492 */ 2493 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) { 2494 keg = klink->kl_keg; 2495 KEG_LOCK(keg); 2496 if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) { 2497 slab = keg_fetch_slab(keg, zone, flags); 2498 if (slab) 2499 return (slab); 2500 } 2501 if (keg->uk_flags & UMA_ZFLAG_FULL) 2502 full++; 2503 else 2504 empty++; 2505 KEG_UNLOCK(keg); 2506 } 2507 if (rflags & (M_NOWAIT | M_NOVM)) 2508 break; 2509 flags = rflags; 2510 /* 2511 * All kegs are full. XXX We can't atomically check all kegs 2512 * and sleep so just sleep for a short period and retry. 2513 */ 2514 if (full && !empty) { 2515 ZONE_LOCK(zone); 2516 zone->uz_flags |= UMA_ZFLAG_FULL; 2517 zone->uz_sleeps++; 2518 zone_log_warning(zone); 2519 zone_maxaction(zone); 2520 msleep(zone, zone->uz_lockptr, PVM, 2521 "zonelimit", hz/100); 2522 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2523 ZONE_UNLOCK(zone); 2524 continue; 2525 } 2526 } 2527 return (NULL); 2528 } 2529 2530 static void * 2531 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 2532 { 2533 void *item; 2534 uint8_t freei; 2535 2536 MPASS(keg == slab->us_keg); 2537 mtx_assert(&keg->uk_lock, MA_OWNED); 2538 2539 freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1; 2540 BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free); 2541 item = slab->us_data + (keg->uk_rsize * freei); 2542 slab->us_freecount--; 2543 keg->uk_free--; 2544 2545 /* Move this slab to the full list */ 2546 if (slab->us_freecount == 0) { 2547 LIST_REMOVE(slab, us_link); 2548 LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link); 2549 } 2550 2551 return (item); 2552 } 2553 2554 static int 2555 zone_import(uma_zone_t zone, void **bucket, int max, int flags) 2556 { 2557 uma_slab_t slab; 2558 uma_keg_t keg; 2559 int i; 2560 2561 slab = NULL; 2562 keg = NULL; 2563 /* Try to keep the buckets totally full */ 2564 for (i = 0; i < max; ) { 2565 if ((slab = zone->uz_slab(zone, keg, flags)) == NULL) 2566 break; 2567 keg = slab->us_keg; 2568 while (slab->us_freecount && i < max) { 2569 bucket[i++] = slab_alloc_item(keg, slab); 2570 if (keg->uk_free <= keg->uk_reserve) 2571 break; 2572 } 2573 /* Don't grab more than one slab at a time. */ 2574 flags &= ~M_WAITOK; 2575 flags |= M_NOWAIT; 2576 } 2577 if (slab != NULL) 2578 KEG_UNLOCK(keg); 2579 2580 return i; 2581 } 2582 2583 static uma_bucket_t 2584 zone_alloc_bucket(uma_zone_t zone, void *udata, int flags) 2585 { 2586 uma_bucket_t bucket; 2587 int max; 2588 2589 /* Don't wait for buckets, preserve caller's NOVM setting. */ 2590 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 2591 if (bucket == NULL) 2592 return (NULL); 2593 2594 max = MIN(bucket->ub_entries, zone->uz_count); 2595 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 2596 max, flags); 2597 2598 /* 2599 * Initialize the memory if necessary. 2600 */ 2601 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 2602 int i; 2603 2604 for (i = 0; i < bucket->ub_cnt; i++) 2605 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 2606 flags) != 0) 2607 break; 2608 /* 2609 * If we couldn't initialize the whole bucket, put the 2610 * rest back onto the freelist. 2611 */ 2612 if (i != bucket->ub_cnt) { 2613 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 2614 bucket->ub_cnt - i); 2615 #ifdef INVARIANTS 2616 bzero(&bucket->ub_bucket[i], 2617 sizeof(void *) * (bucket->ub_cnt - i)); 2618 #endif 2619 bucket->ub_cnt = i; 2620 } 2621 } 2622 2623 if (bucket->ub_cnt == 0) { 2624 bucket_free(zone, bucket, udata); 2625 atomic_add_long(&zone->uz_fails, 1); 2626 return (NULL); 2627 } 2628 2629 return (bucket); 2630 } 2631 2632 /* 2633 * Allocates a single item from a zone. 2634 * 2635 * Arguments 2636 * zone The zone to alloc for. 2637 * udata The data to be passed to the constructor. 2638 * flags M_WAITOK, M_NOWAIT, M_ZERO. 2639 * 2640 * Returns 2641 * NULL if there is no memory and M_NOWAIT is set 2642 * An item if successful 2643 */ 2644 2645 static void * 2646 zone_alloc_item(uma_zone_t zone, void *udata, int flags) 2647 { 2648 void *item; 2649 2650 item = NULL; 2651 2652 #ifdef UMA_DEBUG_ALLOC 2653 printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone); 2654 #endif 2655 if (zone->uz_import(zone->uz_arg, &item, 1, flags) != 1) 2656 goto fail; 2657 atomic_add_long(&zone->uz_allocs, 1); 2658 2659 /* 2660 * We have to call both the zone's init (not the keg's init) 2661 * and the zone's ctor. This is because the item is going from 2662 * a keg slab directly to the user, and the user is expecting it 2663 * to be both zone-init'd as well as zone-ctor'd. 2664 */ 2665 if (zone->uz_init != NULL) { 2666 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 2667 zone_free_item(zone, item, udata, SKIP_FINI); 2668 goto fail; 2669 } 2670 } 2671 if (zone->uz_ctor != NULL) { 2672 if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2673 zone_free_item(zone, item, udata, SKIP_DTOR); 2674 goto fail; 2675 } 2676 } 2677 #ifdef INVARIANTS 2678 uma_dbg_alloc(zone, NULL, item); 2679 #endif 2680 if (flags & M_ZERO) 2681 uma_zero_item(item, zone); 2682 2683 return (item); 2684 2685 fail: 2686 atomic_add_long(&zone->uz_fails, 1); 2687 return (NULL); 2688 } 2689 2690 /* See uma.h */ 2691 void 2692 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 2693 { 2694 uma_cache_t cache; 2695 uma_bucket_t bucket; 2696 int lockfail; 2697 int cpu; 2698 2699 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2700 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 2701 2702 #ifdef UMA_DEBUG_ALLOC_1 2703 printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone); 2704 #endif 2705 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 2706 zone->uz_name); 2707 2708 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2709 ("uma_zfree_arg: called with spinlock or critical section held")); 2710 2711 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 2712 if (item == NULL) 2713 return; 2714 #ifdef DEBUG_MEMGUARD 2715 if (is_memguard_addr(item)) { 2716 if (zone->uz_dtor != NULL && zone->uz_dtor != mtrash_dtor) 2717 zone->uz_dtor(item, zone->uz_size, udata); 2718 if (zone->uz_fini != NULL && zone->uz_fini != mtrash_fini) 2719 zone->uz_fini(item, zone->uz_size); 2720 memguard_free(item); 2721 return; 2722 } 2723 #endif 2724 #ifdef INVARIANTS 2725 if (zone->uz_flags & UMA_ZONE_MALLOC) 2726 uma_dbg_free(zone, udata, item); 2727 else 2728 uma_dbg_free(zone, NULL, item); 2729 #endif 2730 if (zone->uz_dtor != NULL) 2731 zone->uz_dtor(item, zone->uz_size, udata); 2732 2733 /* 2734 * The race here is acceptable. If we miss it we'll just have to wait 2735 * a little longer for the limits to be reset. 2736 */ 2737 if (zone->uz_flags & UMA_ZFLAG_FULL) 2738 goto zfree_item; 2739 2740 /* 2741 * If possible, free to the per-CPU cache. There are two 2742 * requirements for safe access to the per-CPU cache: (1) the thread 2743 * accessing the cache must not be preempted or yield during access, 2744 * and (2) the thread must not migrate CPUs without switching which 2745 * cache it accesses. We rely on a critical section to prevent 2746 * preemption and migration. We release the critical section in 2747 * order to acquire the zone mutex if we are unable to free to the 2748 * current cache; when we re-acquire the critical section, we must 2749 * detect and handle migration if it has occurred. 2750 */ 2751 zfree_restart: 2752 critical_enter(); 2753 cpu = curcpu; 2754 cache = &zone->uz_cpu[cpu]; 2755 2756 zfree_start: 2757 /* 2758 * Try to free into the allocbucket first to give LIFO ordering 2759 * for cache-hot datastructures. Spill over into the freebucket 2760 * if necessary. Alloc will swap them if one runs dry. 2761 */ 2762 bucket = cache->uc_allocbucket; 2763 if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries) 2764 bucket = cache->uc_freebucket; 2765 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 2766 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 2767 ("uma_zfree: Freeing to non free bucket index.")); 2768 bucket->ub_bucket[bucket->ub_cnt] = item; 2769 bucket->ub_cnt++; 2770 cache->uc_frees++; 2771 critical_exit(); 2772 return; 2773 } 2774 2775 /* 2776 * We must go back the zone, which requires acquiring the zone lock, 2777 * which in turn means we must release and re-acquire the critical 2778 * section. Since the critical section is released, we may be 2779 * preempted or migrate. As such, make sure not to maintain any 2780 * thread-local state specific to the cache from prior to releasing 2781 * the critical section. 2782 */ 2783 critical_exit(); 2784 if (zone->uz_count == 0 || bucketdisable) 2785 goto zfree_item; 2786 2787 lockfail = 0; 2788 if (ZONE_TRYLOCK(zone) == 0) { 2789 /* Record contention to size the buckets. */ 2790 ZONE_LOCK(zone); 2791 lockfail = 1; 2792 } 2793 critical_enter(); 2794 cpu = curcpu; 2795 cache = &zone->uz_cpu[cpu]; 2796 2797 /* 2798 * Since we have locked the zone we may as well send back our stats. 2799 */ 2800 atomic_add_long(&zone->uz_allocs, cache->uc_allocs); 2801 atomic_add_long(&zone->uz_frees, cache->uc_frees); 2802 cache->uc_allocs = 0; 2803 cache->uc_frees = 0; 2804 2805 bucket = cache->uc_freebucket; 2806 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 2807 ZONE_UNLOCK(zone); 2808 goto zfree_start; 2809 } 2810 cache->uc_freebucket = NULL; 2811 2812 /* Can we throw this on the zone full list? */ 2813 if (bucket != NULL) { 2814 #ifdef UMA_DEBUG_ALLOC 2815 printf("uma_zfree: Putting old bucket on the free list.\n"); 2816 #endif 2817 /* ub_cnt is pointing to the last free item */ 2818 KASSERT(bucket->ub_cnt != 0, 2819 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n")); 2820 LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link); 2821 } 2822 2823 /* We are no longer associated with this CPU. */ 2824 critical_exit(); 2825 2826 /* 2827 * We bump the uz count when the cache size is insufficient to 2828 * handle the working set. 2829 */ 2830 if (lockfail && zone->uz_count < BUCKET_MAX) 2831 zone->uz_count++; 2832 ZONE_UNLOCK(zone); 2833 2834 #ifdef UMA_DEBUG_ALLOC 2835 printf("uma_zfree: Allocating new free bucket.\n"); 2836 #endif 2837 bucket = bucket_alloc(zone, udata, M_NOWAIT); 2838 if (bucket) { 2839 critical_enter(); 2840 cpu = curcpu; 2841 cache = &zone->uz_cpu[cpu]; 2842 if (cache->uc_freebucket == NULL) { 2843 cache->uc_freebucket = bucket; 2844 goto zfree_start; 2845 } 2846 /* 2847 * We lost the race, start over. We have to drop our 2848 * critical section to free the bucket. 2849 */ 2850 critical_exit(); 2851 bucket_free(zone, bucket, udata); 2852 goto zfree_restart; 2853 } 2854 2855 /* 2856 * If nothing else caught this, we'll just do an internal free. 2857 */ 2858 zfree_item: 2859 zone_free_item(zone, item, udata, SKIP_DTOR); 2860 2861 return; 2862 } 2863 2864 static void 2865 slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item) 2866 { 2867 uint8_t freei; 2868 2869 mtx_assert(&keg->uk_lock, MA_OWNED); 2870 MPASS(keg == slab->us_keg); 2871 2872 /* Do we need to remove from any lists? */ 2873 if (slab->us_freecount+1 == keg->uk_ipers) { 2874 LIST_REMOVE(slab, us_link); 2875 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 2876 } else if (slab->us_freecount == 0) { 2877 LIST_REMOVE(slab, us_link); 2878 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2879 } 2880 2881 /* Slab management. */ 2882 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 2883 BIT_SET(SLAB_SETSIZE, freei, &slab->us_free); 2884 slab->us_freecount++; 2885 2886 /* Keg statistics. */ 2887 keg->uk_free++; 2888 } 2889 2890 static void 2891 zone_release(uma_zone_t zone, void **bucket, int cnt) 2892 { 2893 void *item; 2894 uma_slab_t slab; 2895 uma_keg_t keg; 2896 uint8_t *mem; 2897 int clearfull; 2898 int i; 2899 2900 clearfull = 0; 2901 keg = zone_first_keg(zone); 2902 KEG_LOCK(keg); 2903 for (i = 0; i < cnt; i++) { 2904 item = bucket[i]; 2905 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) { 2906 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 2907 if (zone->uz_flags & UMA_ZONE_HASH) { 2908 slab = hash_sfind(&keg->uk_hash, mem); 2909 } else { 2910 mem += keg->uk_pgoff; 2911 slab = (uma_slab_t)mem; 2912 } 2913 } else { 2914 slab = vtoslab((vm_offset_t)item); 2915 if (slab->us_keg != keg) { 2916 KEG_UNLOCK(keg); 2917 keg = slab->us_keg; 2918 KEG_LOCK(keg); 2919 } 2920 } 2921 slab_free_item(keg, slab, item); 2922 if (keg->uk_flags & UMA_ZFLAG_FULL) { 2923 if (keg->uk_pages < keg->uk_maxpages) { 2924 keg->uk_flags &= ~UMA_ZFLAG_FULL; 2925 clearfull = 1; 2926 } 2927 2928 /* 2929 * We can handle one more allocation. Since we're 2930 * clearing ZFLAG_FULL, wake up all procs blocked 2931 * on pages. This should be uncommon, so keeping this 2932 * simple for now (rather than adding count of blocked 2933 * threads etc). 2934 */ 2935 wakeup(keg); 2936 } 2937 } 2938 KEG_UNLOCK(keg); 2939 if (clearfull) { 2940 ZONE_LOCK(zone); 2941 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2942 wakeup(zone); 2943 ZONE_UNLOCK(zone); 2944 } 2945 2946 } 2947 2948 /* 2949 * Frees a single item to any zone. 2950 * 2951 * Arguments: 2952 * zone The zone to free to 2953 * item The item we're freeing 2954 * udata User supplied data for the dtor 2955 * skip Skip dtors and finis 2956 */ 2957 static void 2958 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 2959 { 2960 2961 #ifdef INVARIANTS 2962 if (skip == SKIP_NONE) { 2963 if (zone->uz_flags & UMA_ZONE_MALLOC) 2964 uma_dbg_free(zone, udata, item); 2965 else 2966 uma_dbg_free(zone, NULL, item); 2967 } 2968 #endif 2969 if (skip < SKIP_DTOR && zone->uz_dtor) 2970 zone->uz_dtor(item, zone->uz_size, udata); 2971 2972 if (skip < SKIP_FINI && zone->uz_fini) 2973 zone->uz_fini(item, zone->uz_size); 2974 2975 atomic_add_long(&zone->uz_frees, 1); 2976 zone->uz_release(zone->uz_arg, &item, 1); 2977 } 2978 2979 /* See uma.h */ 2980 int 2981 uma_zone_set_max(uma_zone_t zone, int nitems) 2982 { 2983 uma_keg_t keg; 2984 2985 keg = zone_first_keg(zone); 2986 if (keg == NULL) 2987 return (0); 2988 KEG_LOCK(keg); 2989 keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera; 2990 if (keg->uk_maxpages * keg->uk_ipers < nitems) 2991 keg->uk_maxpages += keg->uk_ppera; 2992 nitems = keg->uk_maxpages * keg->uk_ipers; 2993 KEG_UNLOCK(keg); 2994 2995 return (nitems); 2996 } 2997 2998 /* See uma.h */ 2999 int 3000 uma_zone_get_max(uma_zone_t zone) 3001 { 3002 int nitems; 3003 uma_keg_t keg; 3004 3005 keg = zone_first_keg(zone); 3006 if (keg == NULL) 3007 return (0); 3008 KEG_LOCK(keg); 3009 nitems = keg->uk_maxpages * keg->uk_ipers; 3010 KEG_UNLOCK(keg); 3011 3012 return (nitems); 3013 } 3014 3015 /* See uma.h */ 3016 void 3017 uma_zone_set_warning(uma_zone_t zone, const char *warning) 3018 { 3019 3020 ZONE_LOCK(zone); 3021 zone->uz_warning = warning; 3022 ZONE_UNLOCK(zone); 3023 } 3024 3025 /* See uma.h */ 3026 void 3027 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 3028 { 3029 3030 ZONE_LOCK(zone); 3031 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 3032 ZONE_UNLOCK(zone); 3033 } 3034 3035 /* See uma.h */ 3036 int 3037 uma_zone_get_cur(uma_zone_t zone) 3038 { 3039 int64_t nitems; 3040 u_int i; 3041 3042 ZONE_LOCK(zone); 3043 nitems = zone->uz_allocs - zone->uz_frees; 3044 CPU_FOREACH(i) { 3045 /* 3046 * See the comment in sysctl_vm_zone_stats() regarding the 3047 * safety of accessing the per-cpu caches. With the zone lock 3048 * held, it is safe, but can potentially result in stale data. 3049 */ 3050 nitems += zone->uz_cpu[i].uc_allocs - 3051 zone->uz_cpu[i].uc_frees; 3052 } 3053 ZONE_UNLOCK(zone); 3054 3055 return (nitems < 0 ? 0 : nitems); 3056 } 3057 3058 /* See uma.h */ 3059 void 3060 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 3061 { 3062 uma_keg_t keg; 3063 3064 keg = zone_first_keg(zone); 3065 KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type")); 3066 KEG_LOCK(keg); 3067 KASSERT(keg->uk_pages == 0, 3068 ("uma_zone_set_init on non-empty keg")); 3069 keg->uk_init = uminit; 3070 KEG_UNLOCK(keg); 3071 } 3072 3073 /* See uma.h */ 3074 void 3075 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 3076 { 3077 uma_keg_t keg; 3078 3079 keg = zone_first_keg(zone); 3080 KASSERT(keg != NULL, ("uma_zone_set_fini: Invalid zone type")); 3081 KEG_LOCK(keg); 3082 KASSERT(keg->uk_pages == 0, 3083 ("uma_zone_set_fini on non-empty keg")); 3084 keg->uk_fini = fini; 3085 KEG_UNLOCK(keg); 3086 } 3087 3088 /* See uma.h */ 3089 void 3090 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 3091 { 3092 3093 ZONE_LOCK(zone); 3094 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3095 ("uma_zone_set_zinit on non-empty keg")); 3096 zone->uz_init = zinit; 3097 ZONE_UNLOCK(zone); 3098 } 3099 3100 /* See uma.h */ 3101 void 3102 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 3103 { 3104 3105 ZONE_LOCK(zone); 3106 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3107 ("uma_zone_set_zfini on non-empty keg")); 3108 zone->uz_fini = zfini; 3109 ZONE_UNLOCK(zone); 3110 } 3111 3112 /* See uma.h */ 3113 /* XXX uk_freef is not actually used with the zone locked */ 3114 void 3115 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 3116 { 3117 uma_keg_t keg; 3118 3119 keg = zone_first_keg(zone); 3120 KASSERT(keg != NULL, ("uma_zone_set_freef: Invalid zone type")); 3121 KEG_LOCK(keg); 3122 keg->uk_freef = freef; 3123 KEG_UNLOCK(keg); 3124 } 3125 3126 /* See uma.h */ 3127 /* XXX uk_allocf is not actually used with the zone locked */ 3128 void 3129 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 3130 { 3131 uma_keg_t keg; 3132 3133 keg = zone_first_keg(zone); 3134 KEG_LOCK(keg); 3135 keg->uk_allocf = allocf; 3136 KEG_UNLOCK(keg); 3137 } 3138 3139 /* See uma.h */ 3140 void 3141 uma_zone_reserve(uma_zone_t zone, int items) 3142 { 3143 uma_keg_t keg; 3144 3145 keg = zone_first_keg(zone); 3146 if (keg == NULL) 3147 return; 3148 KEG_LOCK(keg); 3149 keg->uk_reserve = items; 3150 KEG_UNLOCK(keg); 3151 3152 return; 3153 } 3154 3155 /* See uma.h */ 3156 int 3157 uma_zone_reserve_kva(uma_zone_t zone, int count) 3158 { 3159 uma_keg_t keg; 3160 vm_offset_t kva; 3161 u_int pages; 3162 3163 keg = zone_first_keg(zone); 3164 if (keg == NULL) 3165 return (0); 3166 pages = count / keg->uk_ipers; 3167 3168 if (pages * keg->uk_ipers < count) 3169 pages++; 3170 3171 #ifdef UMA_MD_SMALL_ALLOC 3172 if (keg->uk_ppera > 1) { 3173 #else 3174 if (1) { 3175 #endif 3176 kva = kva_alloc((vm_size_t)pages * UMA_SLAB_SIZE); 3177 if (kva == 0) 3178 return (0); 3179 } else 3180 kva = 0; 3181 KEG_LOCK(keg); 3182 keg->uk_kva = kva; 3183 keg->uk_offset = 0; 3184 keg->uk_maxpages = pages; 3185 #ifdef UMA_MD_SMALL_ALLOC 3186 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 3187 #else 3188 keg->uk_allocf = noobj_alloc; 3189 #endif 3190 keg->uk_flags |= UMA_ZONE_NOFREE; 3191 KEG_UNLOCK(keg); 3192 3193 return (1); 3194 } 3195 3196 /* See uma.h */ 3197 void 3198 uma_prealloc(uma_zone_t zone, int items) 3199 { 3200 int slabs; 3201 uma_slab_t slab; 3202 uma_keg_t keg; 3203 3204 keg = zone_first_keg(zone); 3205 if (keg == NULL) 3206 return; 3207 KEG_LOCK(keg); 3208 slabs = items / keg->uk_ipers; 3209 if (slabs * keg->uk_ipers < items) 3210 slabs++; 3211 while (slabs > 0) { 3212 slab = keg_alloc_slab(keg, zone, M_WAITOK); 3213 if (slab == NULL) 3214 break; 3215 MPASS(slab->us_keg == keg); 3216 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 3217 slabs--; 3218 } 3219 KEG_UNLOCK(keg); 3220 } 3221 3222 /* See uma.h */ 3223 uint32_t * 3224 uma_find_refcnt(uma_zone_t zone, void *item) 3225 { 3226 uma_slabrefcnt_t slabref; 3227 uma_slab_t slab; 3228 uma_keg_t keg; 3229 uint32_t *refcnt; 3230 int idx; 3231 3232 slab = vtoslab((vm_offset_t)item & (~UMA_SLAB_MASK)); 3233 slabref = (uma_slabrefcnt_t)slab; 3234 keg = slab->us_keg; 3235 KASSERT(keg->uk_flags & UMA_ZONE_REFCNT, 3236 ("uma_find_refcnt(): zone possibly not UMA_ZONE_REFCNT")); 3237 idx = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3238 refcnt = &slabref->us_refcnt[idx]; 3239 return refcnt; 3240 } 3241 3242 /* See uma.h */ 3243 static void 3244 uma_reclaim_locked(bool kmem_danger) 3245 { 3246 3247 #ifdef UMA_DEBUG 3248 printf("UMA: vm asked us to release pages!\n"); 3249 #endif 3250 sx_assert(&uma_drain_lock, SA_XLOCKED); 3251 bucket_enable(); 3252 zone_foreach(zone_drain); 3253 if (vm_page_count_min() || kmem_danger) { 3254 cache_drain_safe(NULL); 3255 zone_foreach(zone_drain); 3256 } 3257 /* 3258 * Some slabs may have been freed but this zone will be visited early 3259 * we visit again so that we can free pages that are empty once other 3260 * zones are drained. We have to do the same for buckets. 3261 */ 3262 zone_drain(slabzone); 3263 zone_drain(slabrefzone); 3264 bucket_zone_drain(); 3265 } 3266 3267 void 3268 uma_reclaim(void) 3269 { 3270 3271 sx_xlock(&uma_drain_lock); 3272 uma_reclaim_locked(false); 3273 sx_xunlock(&uma_drain_lock); 3274 } 3275 3276 static int uma_reclaim_needed; 3277 3278 void 3279 uma_reclaim_wakeup(void) 3280 { 3281 3282 uma_reclaim_needed = 1; 3283 wakeup(&uma_reclaim_needed); 3284 } 3285 3286 void 3287 uma_reclaim_worker(void *arg __unused) 3288 { 3289 3290 sx_xlock(&uma_drain_lock); 3291 for (;;) { 3292 sx_sleep(&uma_reclaim_needed, &uma_drain_lock, PVM, 3293 "umarcl", 0); 3294 if (uma_reclaim_needed) { 3295 uma_reclaim_needed = 0; 3296 uma_reclaim_locked(true); 3297 } 3298 } 3299 } 3300 3301 /* See uma.h */ 3302 int 3303 uma_zone_exhausted(uma_zone_t zone) 3304 { 3305 int full; 3306 3307 ZONE_LOCK(zone); 3308 full = (zone->uz_flags & UMA_ZFLAG_FULL); 3309 ZONE_UNLOCK(zone); 3310 return (full); 3311 } 3312 3313 int 3314 uma_zone_exhausted_nolock(uma_zone_t zone) 3315 { 3316 return (zone->uz_flags & UMA_ZFLAG_FULL); 3317 } 3318 3319 void * 3320 uma_large_malloc(vm_size_t size, int wait) 3321 { 3322 void *mem; 3323 uma_slab_t slab; 3324 uint8_t flags; 3325 3326 slab = zone_alloc_item(slabzone, NULL, wait); 3327 if (slab == NULL) 3328 return (NULL); 3329 mem = page_alloc(NULL, size, &flags, wait); 3330 if (mem) { 3331 vsetslab((vm_offset_t)mem, slab); 3332 slab->us_data = mem; 3333 slab->us_flags = flags | UMA_SLAB_MALLOC; 3334 slab->us_size = size; 3335 } else { 3336 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3337 } 3338 3339 return (mem); 3340 } 3341 3342 void 3343 uma_large_free(uma_slab_t slab) 3344 { 3345 3346 page_free(slab->us_data, slab->us_size, slab->us_flags); 3347 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3348 } 3349 3350 static void 3351 uma_zero_item(void *item, uma_zone_t zone) 3352 { 3353 3354 if (zone->uz_flags & UMA_ZONE_PCPU) { 3355 for (int i = 0; i < mp_ncpus; i++) 3356 bzero(zpcpu_get_cpu(item, i), zone->uz_size); 3357 } else 3358 bzero(item, zone->uz_size); 3359 } 3360 3361 void 3362 uma_print_stats(void) 3363 { 3364 zone_foreach(uma_print_zone); 3365 } 3366 3367 static void 3368 slab_print(uma_slab_t slab) 3369 { 3370 printf("slab: keg %p, data %p, freecount %d\n", 3371 slab->us_keg, slab->us_data, slab->us_freecount); 3372 } 3373 3374 static void 3375 cache_print(uma_cache_t cache) 3376 { 3377 printf("alloc: %p(%d), free: %p(%d)\n", 3378 cache->uc_allocbucket, 3379 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, 3380 cache->uc_freebucket, 3381 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0); 3382 } 3383 3384 static void 3385 uma_print_keg(uma_keg_t keg) 3386 { 3387 uma_slab_t slab; 3388 3389 printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d " 3390 "out %d free %d limit %d\n", 3391 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags, 3392 keg->uk_ipers, keg->uk_ppera, 3393 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free, 3394 (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers); 3395 printf("Part slabs:\n"); 3396 LIST_FOREACH(slab, &keg->uk_part_slab, us_link) 3397 slab_print(slab); 3398 printf("Free slabs:\n"); 3399 LIST_FOREACH(slab, &keg->uk_free_slab, us_link) 3400 slab_print(slab); 3401 printf("Full slabs:\n"); 3402 LIST_FOREACH(slab, &keg->uk_full_slab, us_link) 3403 slab_print(slab); 3404 } 3405 3406 void 3407 uma_print_zone(uma_zone_t zone) 3408 { 3409 uma_cache_t cache; 3410 uma_klink_t kl; 3411 int i; 3412 3413 printf("zone: %s(%p) size %d flags %#x\n", 3414 zone->uz_name, zone, zone->uz_size, zone->uz_flags); 3415 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) 3416 uma_print_keg(kl->kl_keg); 3417 CPU_FOREACH(i) { 3418 cache = &zone->uz_cpu[i]; 3419 printf("CPU %d Cache:\n", i); 3420 cache_print(cache); 3421 } 3422 } 3423 3424 #ifdef DDB 3425 /* 3426 * Generate statistics across both the zone and its per-cpu cache's. Return 3427 * desired statistics if the pointer is non-NULL for that statistic. 3428 * 3429 * Note: does not update the zone statistics, as it can't safely clear the 3430 * per-CPU cache statistic. 3431 * 3432 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't 3433 * safe from off-CPU; we should modify the caches to track this information 3434 * directly so that we don't have to. 3435 */ 3436 static void 3437 uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp, 3438 uint64_t *freesp, uint64_t *sleepsp) 3439 { 3440 uma_cache_t cache; 3441 uint64_t allocs, frees, sleeps; 3442 int cachefree, cpu; 3443 3444 allocs = frees = sleeps = 0; 3445 cachefree = 0; 3446 CPU_FOREACH(cpu) { 3447 cache = &z->uz_cpu[cpu]; 3448 if (cache->uc_allocbucket != NULL) 3449 cachefree += cache->uc_allocbucket->ub_cnt; 3450 if (cache->uc_freebucket != NULL) 3451 cachefree += cache->uc_freebucket->ub_cnt; 3452 allocs += cache->uc_allocs; 3453 frees += cache->uc_frees; 3454 } 3455 allocs += z->uz_allocs; 3456 frees += z->uz_frees; 3457 sleeps += z->uz_sleeps; 3458 if (cachefreep != NULL) 3459 *cachefreep = cachefree; 3460 if (allocsp != NULL) 3461 *allocsp = allocs; 3462 if (freesp != NULL) 3463 *freesp = frees; 3464 if (sleepsp != NULL) 3465 *sleepsp = sleeps; 3466 } 3467 #endif /* DDB */ 3468 3469 static int 3470 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 3471 { 3472 uma_keg_t kz; 3473 uma_zone_t z; 3474 int count; 3475 3476 count = 0; 3477 rw_rlock(&uma_rwlock); 3478 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3479 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3480 count++; 3481 } 3482 rw_runlock(&uma_rwlock); 3483 return (sysctl_handle_int(oidp, &count, 0, req)); 3484 } 3485 3486 static int 3487 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 3488 { 3489 struct uma_stream_header ush; 3490 struct uma_type_header uth; 3491 struct uma_percpu_stat ups; 3492 uma_bucket_t bucket; 3493 struct sbuf sbuf; 3494 uma_cache_t cache; 3495 uma_klink_t kl; 3496 uma_keg_t kz; 3497 uma_zone_t z; 3498 uma_keg_t k; 3499 int count, error, i; 3500 3501 error = sysctl_wire_old_buffer(req, 0); 3502 if (error != 0) 3503 return (error); 3504 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 3505 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 3506 3507 count = 0; 3508 rw_rlock(&uma_rwlock); 3509 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3510 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3511 count++; 3512 } 3513 3514 /* 3515 * Insert stream header. 3516 */ 3517 bzero(&ush, sizeof(ush)); 3518 ush.ush_version = UMA_STREAM_VERSION; 3519 ush.ush_maxcpus = (mp_maxid + 1); 3520 ush.ush_count = count; 3521 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 3522 3523 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3524 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3525 bzero(&uth, sizeof(uth)); 3526 ZONE_LOCK(z); 3527 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 3528 uth.uth_align = kz->uk_align; 3529 uth.uth_size = kz->uk_size; 3530 uth.uth_rsize = kz->uk_rsize; 3531 LIST_FOREACH(kl, &z->uz_kegs, kl_link) { 3532 k = kl->kl_keg; 3533 uth.uth_maxpages += k->uk_maxpages; 3534 uth.uth_pages += k->uk_pages; 3535 uth.uth_keg_free += k->uk_free; 3536 uth.uth_limit = (k->uk_maxpages / k->uk_ppera) 3537 * k->uk_ipers; 3538 } 3539 3540 /* 3541 * A zone is secondary is it is not the first entry 3542 * on the keg's zone list. 3543 */ 3544 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 3545 (LIST_FIRST(&kz->uk_zones) != z)) 3546 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 3547 3548 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3549 uth.uth_zone_free += bucket->ub_cnt; 3550 uth.uth_allocs = z->uz_allocs; 3551 uth.uth_frees = z->uz_frees; 3552 uth.uth_fails = z->uz_fails; 3553 uth.uth_sleeps = z->uz_sleeps; 3554 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 3555 /* 3556 * While it is not normally safe to access the cache 3557 * bucket pointers while not on the CPU that owns the 3558 * cache, we only allow the pointers to be exchanged 3559 * without the zone lock held, not invalidated, so 3560 * accept the possible race associated with bucket 3561 * exchange during monitoring. 3562 */ 3563 for (i = 0; i < (mp_maxid + 1); i++) { 3564 bzero(&ups, sizeof(ups)); 3565 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) 3566 goto skip; 3567 if (CPU_ABSENT(i)) 3568 goto skip; 3569 cache = &z->uz_cpu[i]; 3570 if (cache->uc_allocbucket != NULL) 3571 ups.ups_cache_free += 3572 cache->uc_allocbucket->ub_cnt; 3573 if (cache->uc_freebucket != NULL) 3574 ups.ups_cache_free += 3575 cache->uc_freebucket->ub_cnt; 3576 ups.ups_allocs = cache->uc_allocs; 3577 ups.ups_frees = cache->uc_frees; 3578 skip: 3579 (void)sbuf_bcat(&sbuf, &ups, sizeof(ups)); 3580 } 3581 ZONE_UNLOCK(z); 3582 } 3583 } 3584 rw_runlock(&uma_rwlock); 3585 error = sbuf_finish(&sbuf); 3586 sbuf_delete(&sbuf); 3587 return (error); 3588 } 3589 3590 int 3591 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 3592 { 3593 uma_zone_t zone = *(uma_zone_t *)arg1; 3594 int error, max; 3595 3596 max = uma_zone_get_max(zone); 3597 error = sysctl_handle_int(oidp, &max, 0, req); 3598 if (error || !req->newptr) 3599 return (error); 3600 3601 uma_zone_set_max(zone, max); 3602 3603 return (0); 3604 } 3605 3606 int 3607 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 3608 { 3609 uma_zone_t zone = *(uma_zone_t *)arg1; 3610 int cur; 3611 3612 cur = uma_zone_get_cur(zone); 3613 return (sysctl_handle_int(oidp, &cur, 0, req)); 3614 } 3615 3616 #ifdef INVARIANTS 3617 static uma_slab_t 3618 uma_dbg_getslab(uma_zone_t zone, void *item) 3619 { 3620 uma_slab_t slab; 3621 uma_keg_t keg; 3622 uint8_t *mem; 3623 3624 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 3625 if (zone->uz_flags & UMA_ZONE_VTOSLAB) { 3626 slab = vtoslab((vm_offset_t)mem); 3627 } else { 3628 /* 3629 * It is safe to return the slab here even though the 3630 * zone is unlocked because the item's allocation state 3631 * essentially holds a reference. 3632 */ 3633 ZONE_LOCK(zone); 3634 keg = LIST_FIRST(&zone->uz_kegs)->kl_keg; 3635 if (keg->uk_flags & UMA_ZONE_HASH) 3636 slab = hash_sfind(&keg->uk_hash, mem); 3637 else 3638 slab = (uma_slab_t)(mem + keg->uk_pgoff); 3639 ZONE_UNLOCK(zone); 3640 } 3641 3642 return (slab); 3643 } 3644 3645 /* 3646 * Set up the slab's freei data such that uma_dbg_free can function. 3647 * 3648 */ 3649 static void 3650 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 3651 { 3652 uma_keg_t keg; 3653 int freei; 3654 3655 if (zone_first_keg(zone) == NULL) 3656 return; 3657 if (slab == NULL) { 3658 slab = uma_dbg_getslab(zone, item); 3659 if (slab == NULL) 3660 panic("uma: item %p did not belong to zone %s\n", 3661 item, zone->uz_name); 3662 } 3663 keg = slab->us_keg; 3664 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3665 3666 if (BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 3667 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n", 3668 item, zone, zone->uz_name, slab, freei); 3669 BIT_SET_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 3670 3671 return; 3672 } 3673 3674 /* 3675 * Verifies freed addresses. Checks for alignment, valid slab membership 3676 * and duplicate frees. 3677 * 3678 */ 3679 static void 3680 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 3681 { 3682 uma_keg_t keg; 3683 int freei; 3684 3685 if (zone_first_keg(zone) == NULL) 3686 return; 3687 if (slab == NULL) { 3688 slab = uma_dbg_getslab(zone, item); 3689 if (slab == NULL) 3690 panic("uma: Freed item %p did not belong to zone %s\n", 3691 item, zone->uz_name); 3692 } 3693 keg = slab->us_keg; 3694 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3695 3696 if (freei >= keg->uk_ipers) 3697 panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n", 3698 item, zone, zone->uz_name, slab, freei); 3699 3700 if (((freei * keg->uk_rsize) + slab->us_data) != item) 3701 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n", 3702 item, zone, zone->uz_name, slab, freei); 3703 3704 if (!BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 3705 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n", 3706 item, zone, zone->uz_name, slab, freei); 3707 3708 BIT_CLR_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 3709 } 3710 #endif /* INVARIANTS */ 3711 3712 #ifdef DDB 3713 DB_SHOW_COMMAND(uma, db_show_uma) 3714 { 3715 uint64_t allocs, frees, sleeps; 3716 uma_bucket_t bucket; 3717 uma_keg_t kz; 3718 uma_zone_t z; 3719 int cachefree; 3720 3721 db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used", 3722 "Free", "Requests", "Sleeps", "Bucket"); 3723 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3724 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3725 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 3726 allocs = z->uz_allocs; 3727 frees = z->uz_frees; 3728 sleeps = z->uz_sleeps; 3729 cachefree = 0; 3730 } else 3731 uma_zone_sumstat(z, &cachefree, &allocs, 3732 &frees, &sleeps); 3733 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 3734 (LIST_FIRST(&kz->uk_zones) != z))) 3735 cachefree += kz->uk_free; 3736 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3737 cachefree += bucket->ub_cnt; 3738 db_printf("%18s %8ju %8jd %8d %12ju %8ju %8u\n", 3739 z->uz_name, (uintmax_t)kz->uk_size, 3740 (intmax_t)(allocs - frees), cachefree, 3741 (uintmax_t)allocs, sleeps, z->uz_count); 3742 if (db_pager_quit) 3743 return; 3744 } 3745 } 3746 } 3747 3748 DB_SHOW_COMMAND(umacache, db_show_umacache) 3749 { 3750 uint64_t allocs, frees; 3751 uma_bucket_t bucket; 3752 uma_zone_t z; 3753 int cachefree; 3754 3755 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 3756 "Requests", "Bucket"); 3757 LIST_FOREACH(z, &uma_cachezones, uz_link) { 3758 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL); 3759 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3760 cachefree += bucket->ub_cnt; 3761 db_printf("%18s %8ju %8jd %8d %12ju %8u\n", 3762 z->uz_name, (uintmax_t)z->uz_size, 3763 (intmax_t)(allocs - frees), cachefree, 3764 (uintmax_t)allocs, z->uz_count); 3765 if (db_pager_quit) 3766 return; 3767 } 3768 } 3769 #endif /* DDB */ 3770