1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/bitset.h> 62 #include <sys/eventhandler.h> 63 #include <sys/kernel.h> 64 #include <sys/types.h> 65 #include <sys/limits.h> 66 #include <sys/queue.h> 67 #include <sys/malloc.h> 68 #include <sys/ktr.h> 69 #include <sys/lock.h> 70 #include <sys/sysctl.h> 71 #include <sys/mutex.h> 72 #include <sys/proc.h> 73 #include <sys/random.h> 74 #include <sys/rwlock.h> 75 #include <sys/sbuf.h> 76 #include <sys/sched.h> 77 #include <sys/smp.h> 78 #include <sys/taskqueue.h> 79 #include <sys/vmmeter.h> 80 81 #include <vm/vm.h> 82 #include <vm/vm_object.h> 83 #include <vm/vm_page.h> 84 #include <vm/vm_pageout.h> 85 #include <vm/vm_param.h> 86 #include <vm/vm_phys.h> 87 #include <vm/vm_map.h> 88 #include <vm/vm_kern.h> 89 #include <vm/vm_extern.h> 90 #include <vm/uma.h> 91 #include <vm/uma_int.h> 92 #include <vm/uma_dbg.h> 93 94 #include <ddb/ddb.h> 95 96 #ifdef DEBUG_MEMGUARD 97 #include <vm/memguard.h> 98 #endif 99 100 /* 101 * This is the zone and keg from which all zones are spawned. 102 */ 103 static uma_zone_t kegs; 104 static uma_zone_t zones; 105 106 /* This is the zone from which all offpage uma_slab_ts are allocated. */ 107 static uma_zone_t slabzone; 108 109 /* 110 * The initial hash tables come out of this zone so they can be allocated 111 * prior to malloc coming up. 112 */ 113 static uma_zone_t hashzone; 114 115 /* The boot-time adjusted value for cache line alignment. */ 116 int uma_align_cache = 64 - 1; 117 118 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 119 120 /* 121 * Are we allowed to allocate buckets? 122 */ 123 static int bucketdisable = 1; 124 125 /* Linked list of all kegs in the system */ 126 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 127 128 /* Linked list of all cache-only zones in the system */ 129 static LIST_HEAD(,uma_zone) uma_cachezones = 130 LIST_HEAD_INITIALIZER(uma_cachezones); 131 132 /* This RW lock protects the keg list */ 133 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 134 135 /* 136 * Pointer and counter to pool of pages, that is preallocated at 137 * startup to bootstrap UMA. 138 */ 139 static char *bootmem; 140 static int boot_pages; 141 142 static struct sx uma_drain_lock; 143 144 /* kmem soft limit. */ 145 static unsigned long uma_kmem_limit = LONG_MAX; 146 static volatile unsigned long uma_kmem_total; 147 148 /* Is the VM done starting up? */ 149 static enum { BOOT_COLD = 0, BOOT_STRAPPED, BOOT_PAGEALLOC, BOOT_BUCKETS, 150 BOOT_RUNNING } booted = BOOT_COLD; 151 152 /* 153 * This is the handle used to schedule events that need to happen 154 * outside of the allocation fast path. 155 */ 156 static struct callout uma_callout; 157 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 158 159 /* 160 * This structure is passed as the zone ctor arg so that I don't have to create 161 * a special allocation function just for zones. 162 */ 163 struct uma_zctor_args { 164 const char *name; 165 size_t size; 166 uma_ctor ctor; 167 uma_dtor dtor; 168 uma_init uminit; 169 uma_fini fini; 170 uma_import import; 171 uma_release release; 172 void *arg; 173 uma_keg_t keg; 174 int align; 175 uint32_t flags; 176 }; 177 178 struct uma_kctor_args { 179 uma_zone_t zone; 180 size_t size; 181 uma_init uminit; 182 uma_fini fini; 183 int align; 184 uint32_t flags; 185 }; 186 187 struct uma_bucket_zone { 188 uma_zone_t ubz_zone; 189 char *ubz_name; 190 int ubz_entries; /* Number of items it can hold. */ 191 int ubz_maxsize; /* Maximum allocation size per-item. */ 192 }; 193 194 /* 195 * Compute the actual number of bucket entries to pack them in power 196 * of two sizes for more efficient space utilization. 197 */ 198 #define BUCKET_SIZE(n) \ 199 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 200 201 #define BUCKET_MAX BUCKET_SIZE(256) 202 203 struct uma_bucket_zone bucket_zones[] = { 204 { NULL, "4 Bucket", BUCKET_SIZE(4), 4096 }, 205 { NULL, "6 Bucket", BUCKET_SIZE(6), 3072 }, 206 { NULL, "8 Bucket", BUCKET_SIZE(8), 2048 }, 207 { NULL, "12 Bucket", BUCKET_SIZE(12), 1536 }, 208 { NULL, "16 Bucket", BUCKET_SIZE(16), 1024 }, 209 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 210 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 211 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 212 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 213 { NULL, NULL, 0} 214 }; 215 216 /* 217 * Flags and enumerations to be passed to internal functions. 218 */ 219 enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI }; 220 221 #define UMA_ANYDOMAIN -1 /* Special value for domain search. */ 222 223 /* Prototypes.. */ 224 225 int uma_startup_count(int); 226 void uma_startup(void *, int); 227 void uma_startup1(void); 228 void uma_startup2(void); 229 230 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 231 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 232 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 233 static void page_free(void *, vm_size_t, uint8_t); 234 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int); 235 static void cache_drain(uma_zone_t); 236 static void bucket_drain(uma_zone_t, uma_bucket_t); 237 static void bucket_cache_drain(uma_zone_t zone); 238 static int keg_ctor(void *, int, void *, int); 239 static void keg_dtor(void *, int, void *); 240 static int zone_ctor(void *, int, void *, int); 241 static void zone_dtor(void *, int, void *); 242 static int zero_init(void *, int, int); 243 static void keg_small_init(uma_keg_t keg); 244 static void keg_large_init(uma_keg_t keg); 245 static void zone_foreach(void (*zfunc)(uma_zone_t)); 246 static void zone_timeout(uma_zone_t zone); 247 static int hash_alloc(struct uma_hash *); 248 static int hash_expand(struct uma_hash *, struct uma_hash *); 249 static void hash_free(struct uma_hash *hash); 250 static void uma_timeout(void *); 251 static void uma_startup3(void); 252 static void *zone_alloc_item(uma_zone_t, void *, int, int); 253 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 254 static void bucket_enable(void); 255 static void bucket_init(void); 256 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 257 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 258 static void bucket_zone_drain(void); 259 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int); 260 static uma_slab_t zone_fetch_slab(uma_zone_t, uma_keg_t, int, int); 261 static uma_slab_t zone_fetch_slab_multi(uma_zone_t, uma_keg_t, int, int); 262 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 263 static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item); 264 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 265 uma_fini fini, int align, uint32_t flags); 266 static int zone_import(uma_zone_t, void **, int, int, int); 267 static void zone_release(uma_zone_t, void **, int); 268 static void uma_zero_item(void *, uma_zone_t); 269 270 void uma_print_zone(uma_zone_t); 271 void uma_print_stats(void); 272 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 273 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 274 275 #ifdef INVARIANTS 276 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 277 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 278 #endif 279 280 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 281 282 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 283 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 284 285 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 286 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 287 288 static int zone_warnings = 1; 289 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 290 "Warn when UMA zones becomes full"); 291 292 /* Adjust bytes under management by UMA. */ 293 static inline void 294 uma_total_dec(unsigned long size) 295 { 296 297 atomic_subtract_long(&uma_kmem_total, size); 298 } 299 300 static inline void 301 uma_total_inc(unsigned long size) 302 { 303 304 if (atomic_fetchadd_long(&uma_kmem_total, size) > uma_kmem_limit) 305 uma_reclaim_wakeup(); 306 } 307 308 /* 309 * This routine checks to see whether or not it's safe to enable buckets. 310 */ 311 static void 312 bucket_enable(void) 313 { 314 bucketdisable = vm_page_count_min(); 315 } 316 317 /* 318 * Initialize bucket_zones, the array of zones of buckets of various sizes. 319 * 320 * For each zone, calculate the memory required for each bucket, consisting 321 * of the header and an array of pointers. 322 */ 323 static void 324 bucket_init(void) 325 { 326 struct uma_bucket_zone *ubz; 327 int size; 328 329 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 330 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 331 size += sizeof(void *) * ubz->ubz_entries; 332 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 333 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 334 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | UMA_ZONE_NUMA); 335 } 336 } 337 338 /* 339 * Given a desired number of entries for a bucket, return the zone from which 340 * to allocate the bucket. 341 */ 342 static struct uma_bucket_zone * 343 bucket_zone_lookup(int entries) 344 { 345 struct uma_bucket_zone *ubz; 346 347 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 348 if (ubz->ubz_entries >= entries) 349 return (ubz); 350 ubz--; 351 return (ubz); 352 } 353 354 static int 355 bucket_select(int size) 356 { 357 struct uma_bucket_zone *ubz; 358 359 ubz = &bucket_zones[0]; 360 if (size > ubz->ubz_maxsize) 361 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 362 363 for (; ubz->ubz_entries != 0; ubz++) 364 if (ubz->ubz_maxsize < size) 365 break; 366 ubz--; 367 return (ubz->ubz_entries); 368 } 369 370 static uma_bucket_t 371 bucket_alloc(uma_zone_t zone, void *udata, int flags) 372 { 373 struct uma_bucket_zone *ubz; 374 uma_bucket_t bucket; 375 376 /* 377 * This is to stop us from allocating per cpu buckets while we're 378 * running out of vm.boot_pages. Otherwise, we would exhaust the 379 * boot pages. This also prevents us from allocating buckets in 380 * low memory situations. 381 */ 382 if (bucketdisable) 383 return (NULL); 384 /* 385 * To limit bucket recursion we store the original zone flags 386 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 387 * NOVM flag to persist even through deep recursions. We also 388 * store ZFLAG_BUCKET once we have recursed attempting to allocate 389 * a bucket for a bucket zone so we do not allow infinite bucket 390 * recursion. This cookie will even persist to frees of unused 391 * buckets via the allocation path or bucket allocations in the 392 * free path. 393 */ 394 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 395 udata = (void *)(uintptr_t)zone->uz_flags; 396 else { 397 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 398 return (NULL); 399 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 400 } 401 if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY) 402 flags |= M_NOVM; 403 ubz = bucket_zone_lookup(zone->uz_count); 404 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 405 ubz++; 406 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 407 if (bucket) { 408 #ifdef INVARIANTS 409 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 410 #endif 411 bucket->ub_cnt = 0; 412 bucket->ub_entries = ubz->ubz_entries; 413 } 414 415 return (bucket); 416 } 417 418 static void 419 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 420 { 421 struct uma_bucket_zone *ubz; 422 423 KASSERT(bucket->ub_cnt == 0, 424 ("bucket_free: Freeing a non free bucket.")); 425 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 426 udata = (void *)(uintptr_t)zone->uz_flags; 427 ubz = bucket_zone_lookup(bucket->ub_entries); 428 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 429 } 430 431 static void 432 bucket_zone_drain(void) 433 { 434 struct uma_bucket_zone *ubz; 435 436 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 437 zone_drain(ubz->ubz_zone); 438 } 439 440 static void 441 zone_log_warning(uma_zone_t zone) 442 { 443 static const struct timeval warninterval = { 300, 0 }; 444 445 if (!zone_warnings || zone->uz_warning == NULL) 446 return; 447 448 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 449 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 450 } 451 452 static inline void 453 zone_maxaction(uma_zone_t zone) 454 { 455 456 if (zone->uz_maxaction.ta_func != NULL) 457 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 458 } 459 460 static void 461 zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t)) 462 { 463 uma_klink_t klink; 464 465 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) 466 kegfn(klink->kl_keg); 467 } 468 469 /* 470 * Routine called by timeout which is used to fire off some time interval 471 * based calculations. (stats, hash size, etc.) 472 * 473 * Arguments: 474 * arg Unused 475 * 476 * Returns: 477 * Nothing 478 */ 479 static void 480 uma_timeout(void *unused) 481 { 482 bucket_enable(); 483 zone_foreach(zone_timeout); 484 485 /* Reschedule this event */ 486 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 487 } 488 489 /* 490 * Routine to perform timeout driven calculations. This expands the 491 * hashes and does per cpu statistics aggregation. 492 * 493 * Returns nothing. 494 */ 495 static void 496 keg_timeout(uma_keg_t keg) 497 { 498 499 KEG_LOCK(keg); 500 /* 501 * Expand the keg hash table. 502 * 503 * This is done if the number of slabs is larger than the hash size. 504 * What I'm trying to do here is completely reduce collisions. This 505 * may be a little aggressive. Should I allow for two collisions max? 506 */ 507 if (keg->uk_flags & UMA_ZONE_HASH && 508 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) { 509 struct uma_hash newhash; 510 struct uma_hash oldhash; 511 int ret; 512 513 /* 514 * This is so involved because allocating and freeing 515 * while the keg lock is held will lead to deadlock. 516 * I have to do everything in stages and check for 517 * races. 518 */ 519 newhash = keg->uk_hash; 520 KEG_UNLOCK(keg); 521 ret = hash_alloc(&newhash); 522 KEG_LOCK(keg); 523 if (ret) { 524 if (hash_expand(&keg->uk_hash, &newhash)) { 525 oldhash = keg->uk_hash; 526 keg->uk_hash = newhash; 527 } else 528 oldhash = newhash; 529 530 KEG_UNLOCK(keg); 531 hash_free(&oldhash); 532 return; 533 } 534 } 535 KEG_UNLOCK(keg); 536 } 537 538 static void 539 zone_timeout(uma_zone_t zone) 540 { 541 542 zone_foreach_keg(zone, &keg_timeout); 543 } 544 545 /* 546 * Allocate and zero fill the next sized hash table from the appropriate 547 * backing store. 548 * 549 * Arguments: 550 * hash A new hash structure with the old hash size in uh_hashsize 551 * 552 * Returns: 553 * 1 on success and 0 on failure. 554 */ 555 static int 556 hash_alloc(struct uma_hash *hash) 557 { 558 int oldsize; 559 int alloc; 560 561 oldsize = hash->uh_hashsize; 562 563 /* We're just going to go to a power of two greater */ 564 if (oldsize) { 565 hash->uh_hashsize = oldsize * 2; 566 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 567 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 568 M_UMAHASH, M_NOWAIT); 569 } else { 570 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 571 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 572 UMA_ANYDOMAIN, M_WAITOK); 573 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 574 } 575 if (hash->uh_slab_hash) { 576 bzero(hash->uh_slab_hash, alloc); 577 hash->uh_hashmask = hash->uh_hashsize - 1; 578 return (1); 579 } 580 581 return (0); 582 } 583 584 /* 585 * Expands the hash table for HASH zones. This is done from zone_timeout 586 * to reduce collisions. This must not be done in the regular allocation 587 * path, otherwise, we can recurse on the vm while allocating pages. 588 * 589 * Arguments: 590 * oldhash The hash you want to expand 591 * newhash The hash structure for the new table 592 * 593 * Returns: 594 * Nothing 595 * 596 * Discussion: 597 */ 598 static int 599 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 600 { 601 uma_slab_t slab; 602 int hval; 603 int i; 604 605 if (!newhash->uh_slab_hash) 606 return (0); 607 608 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 609 return (0); 610 611 /* 612 * I need to investigate hash algorithms for resizing without a 613 * full rehash. 614 */ 615 616 for (i = 0; i < oldhash->uh_hashsize; i++) 617 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) { 618 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]); 619 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink); 620 hval = UMA_HASH(newhash, slab->us_data); 621 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 622 slab, us_hlink); 623 } 624 625 return (1); 626 } 627 628 /* 629 * Free the hash bucket to the appropriate backing store. 630 * 631 * Arguments: 632 * slab_hash The hash bucket we're freeing 633 * hashsize The number of entries in that hash bucket 634 * 635 * Returns: 636 * Nothing 637 */ 638 static void 639 hash_free(struct uma_hash *hash) 640 { 641 if (hash->uh_slab_hash == NULL) 642 return; 643 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 644 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 645 else 646 free(hash->uh_slab_hash, M_UMAHASH); 647 } 648 649 /* 650 * Frees all outstanding items in a bucket 651 * 652 * Arguments: 653 * zone The zone to free to, must be unlocked. 654 * bucket The free/alloc bucket with items, cpu queue must be locked. 655 * 656 * Returns: 657 * Nothing 658 */ 659 660 static void 661 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 662 { 663 int i; 664 665 if (bucket == NULL) 666 return; 667 668 if (zone->uz_fini) 669 for (i = 0; i < bucket->ub_cnt; i++) 670 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 671 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 672 bucket->ub_cnt = 0; 673 } 674 675 /* 676 * Drains the per cpu caches for a zone. 677 * 678 * NOTE: This may only be called while the zone is being turn down, and not 679 * during normal operation. This is necessary in order that we do not have 680 * to migrate CPUs to drain the per-CPU caches. 681 * 682 * Arguments: 683 * zone The zone to drain, must be unlocked. 684 * 685 * Returns: 686 * Nothing 687 */ 688 static void 689 cache_drain(uma_zone_t zone) 690 { 691 uma_cache_t cache; 692 int cpu; 693 694 /* 695 * XXX: It is safe to not lock the per-CPU caches, because we're 696 * tearing down the zone anyway. I.e., there will be no further use 697 * of the caches at this point. 698 * 699 * XXX: It would good to be able to assert that the zone is being 700 * torn down to prevent improper use of cache_drain(). 701 * 702 * XXX: We lock the zone before passing into bucket_cache_drain() as 703 * it is used elsewhere. Should the tear-down path be made special 704 * there in some form? 705 */ 706 CPU_FOREACH(cpu) { 707 cache = &zone->uz_cpu[cpu]; 708 bucket_drain(zone, cache->uc_allocbucket); 709 bucket_drain(zone, cache->uc_freebucket); 710 if (cache->uc_allocbucket != NULL) 711 bucket_free(zone, cache->uc_allocbucket, NULL); 712 if (cache->uc_freebucket != NULL) 713 bucket_free(zone, cache->uc_freebucket, NULL); 714 cache->uc_allocbucket = cache->uc_freebucket = NULL; 715 } 716 ZONE_LOCK(zone); 717 bucket_cache_drain(zone); 718 ZONE_UNLOCK(zone); 719 } 720 721 static void 722 cache_shrink(uma_zone_t zone) 723 { 724 725 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 726 return; 727 728 ZONE_LOCK(zone); 729 zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2; 730 ZONE_UNLOCK(zone); 731 } 732 733 static void 734 cache_drain_safe_cpu(uma_zone_t zone) 735 { 736 uma_cache_t cache; 737 uma_bucket_t b1, b2; 738 int domain; 739 740 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 741 return; 742 743 b1 = b2 = NULL; 744 ZONE_LOCK(zone); 745 critical_enter(); 746 if (zone->uz_flags & UMA_ZONE_NUMA) 747 domain = PCPU_GET(domain); 748 else 749 domain = 0; 750 cache = &zone->uz_cpu[curcpu]; 751 if (cache->uc_allocbucket) { 752 if (cache->uc_allocbucket->ub_cnt != 0) 753 LIST_INSERT_HEAD(&zone->uz_domain[domain].uzd_buckets, 754 cache->uc_allocbucket, ub_link); 755 else 756 b1 = cache->uc_allocbucket; 757 cache->uc_allocbucket = NULL; 758 } 759 if (cache->uc_freebucket) { 760 if (cache->uc_freebucket->ub_cnt != 0) 761 LIST_INSERT_HEAD(&zone->uz_domain[domain].uzd_buckets, 762 cache->uc_freebucket, ub_link); 763 else 764 b2 = cache->uc_freebucket; 765 cache->uc_freebucket = NULL; 766 } 767 critical_exit(); 768 ZONE_UNLOCK(zone); 769 if (b1) 770 bucket_free(zone, b1, NULL); 771 if (b2) 772 bucket_free(zone, b2, NULL); 773 } 774 775 /* 776 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 777 * This is an expensive call because it needs to bind to all CPUs 778 * one by one and enter a critical section on each of them in order 779 * to safely access their cache buckets. 780 * Zone lock must not be held on call this function. 781 */ 782 static void 783 cache_drain_safe(uma_zone_t zone) 784 { 785 int cpu; 786 787 /* 788 * Polite bucket sizes shrinking was not enouth, shrink aggressively. 789 */ 790 if (zone) 791 cache_shrink(zone); 792 else 793 zone_foreach(cache_shrink); 794 795 CPU_FOREACH(cpu) { 796 thread_lock(curthread); 797 sched_bind(curthread, cpu); 798 thread_unlock(curthread); 799 800 if (zone) 801 cache_drain_safe_cpu(zone); 802 else 803 zone_foreach(cache_drain_safe_cpu); 804 } 805 thread_lock(curthread); 806 sched_unbind(curthread); 807 thread_unlock(curthread); 808 } 809 810 /* 811 * Drain the cached buckets from a zone. Expects a locked zone on entry. 812 */ 813 static void 814 bucket_cache_drain(uma_zone_t zone) 815 { 816 uma_zone_domain_t zdom; 817 uma_bucket_t bucket; 818 int i; 819 820 /* 821 * Drain the bucket queues and free the buckets. 822 */ 823 for (i = 0; i < vm_ndomains; i++) { 824 zdom = &zone->uz_domain[i]; 825 while ((bucket = LIST_FIRST(&zdom->uzd_buckets)) != NULL) { 826 LIST_REMOVE(bucket, ub_link); 827 ZONE_UNLOCK(zone); 828 bucket_drain(zone, bucket); 829 bucket_free(zone, bucket, NULL); 830 ZONE_LOCK(zone); 831 } 832 } 833 834 /* 835 * Shrink further bucket sizes. Price of single zone lock collision 836 * is probably lower then price of global cache drain. 837 */ 838 if (zone->uz_count > zone->uz_count_min) 839 zone->uz_count--; 840 } 841 842 static void 843 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 844 { 845 uint8_t *mem; 846 int i; 847 uint8_t flags; 848 849 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 850 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 851 852 mem = slab->us_data; 853 flags = slab->us_flags; 854 i = start; 855 if (keg->uk_fini != NULL) { 856 for (i--; i > -1; i--) 857 keg->uk_fini(slab->us_data + (keg->uk_rsize * i), 858 keg->uk_size); 859 } 860 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 861 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 862 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 863 uma_total_dec(PAGE_SIZE * keg->uk_ppera); 864 } 865 866 /* 867 * Frees pages from a keg back to the system. This is done on demand from 868 * the pageout daemon. 869 * 870 * Returns nothing. 871 */ 872 static void 873 keg_drain(uma_keg_t keg) 874 { 875 struct slabhead freeslabs = { 0 }; 876 uma_domain_t dom; 877 uma_slab_t slab, tmp; 878 int i; 879 880 /* 881 * We don't want to take pages from statically allocated kegs at this 882 * time 883 */ 884 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 885 return; 886 887 CTR3(KTR_UMA, "keg_drain %s(%p) free items: %u", 888 keg->uk_name, keg, keg->uk_free); 889 KEG_LOCK(keg); 890 if (keg->uk_free == 0) 891 goto finished; 892 893 for (i = 0; i < vm_ndomains; i++) { 894 dom = &keg->uk_domain[i]; 895 LIST_FOREACH_SAFE(slab, &dom->ud_free_slab, us_link, tmp) { 896 /* We have nowhere to free these to. */ 897 if (slab->us_flags & UMA_SLAB_BOOT) 898 continue; 899 900 LIST_REMOVE(slab, us_link); 901 keg->uk_pages -= keg->uk_ppera; 902 keg->uk_free -= keg->uk_ipers; 903 904 if (keg->uk_flags & UMA_ZONE_HASH) 905 UMA_HASH_REMOVE(&keg->uk_hash, slab, 906 slab->us_data); 907 908 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 909 } 910 } 911 912 finished: 913 KEG_UNLOCK(keg); 914 915 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 916 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 917 keg_free_slab(keg, slab, keg->uk_ipers); 918 } 919 } 920 921 static void 922 zone_drain_wait(uma_zone_t zone, int waitok) 923 { 924 925 /* 926 * Set draining to interlock with zone_dtor() so we can release our 927 * locks as we go. Only dtor() should do a WAITOK call since it 928 * is the only call that knows the structure will still be available 929 * when it wakes up. 930 */ 931 ZONE_LOCK(zone); 932 while (zone->uz_flags & UMA_ZFLAG_DRAINING) { 933 if (waitok == M_NOWAIT) 934 goto out; 935 msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1); 936 } 937 zone->uz_flags |= UMA_ZFLAG_DRAINING; 938 bucket_cache_drain(zone); 939 ZONE_UNLOCK(zone); 940 /* 941 * The DRAINING flag protects us from being freed while 942 * we're running. Normally the uma_rwlock would protect us but we 943 * must be able to release and acquire the right lock for each keg. 944 */ 945 zone_foreach_keg(zone, &keg_drain); 946 ZONE_LOCK(zone); 947 zone->uz_flags &= ~UMA_ZFLAG_DRAINING; 948 wakeup(zone); 949 out: 950 ZONE_UNLOCK(zone); 951 } 952 953 void 954 zone_drain(uma_zone_t zone) 955 { 956 957 zone_drain_wait(zone, M_NOWAIT); 958 } 959 960 /* 961 * Allocate a new slab for a keg. This does not insert the slab onto a list. 962 * 963 * Arguments: 964 * wait Shall we wait? 965 * 966 * Returns: 967 * The slab that was allocated or NULL if there is no memory and the 968 * caller specified M_NOWAIT. 969 */ 970 static uma_slab_t 971 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int wait) 972 { 973 uma_alloc allocf; 974 uma_slab_t slab; 975 unsigned long size; 976 uint8_t *mem; 977 uint8_t flags; 978 int i; 979 980 KASSERT(domain >= 0 && domain < vm_ndomains, 981 ("keg_alloc_slab: domain %d out of range", domain)); 982 mtx_assert(&keg->uk_lock, MA_OWNED); 983 slab = NULL; 984 mem = NULL; 985 986 allocf = keg->uk_allocf; 987 KEG_UNLOCK(keg); 988 size = keg->uk_ppera * PAGE_SIZE; 989 990 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 991 slab = zone_alloc_item(keg->uk_slabzone, NULL, domain, wait); 992 if (slab == NULL) 993 goto out; 994 } 995 996 /* 997 * This reproduces the old vm_zone behavior of zero filling pages the 998 * first time they are added to a zone. 999 * 1000 * Malloced items are zeroed in uma_zalloc. 1001 */ 1002 1003 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1004 wait |= M_ZERO; 1005 else 1006 wait &= ~M_ZERO; 1007 1008 if (keg->uk_flags & UMA_ZONE_NODUMP) 1009 wait |= M_NODUMP; 1010 1011 /* zone is passed for legacy reasons. */ 1012 mem = allocf(zone, size, domain, &flags, wait); 1013 if (mem == NULL) { 1014 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1015 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 1016 slab = NULL; 1017 goto out; 1018 } 1019 uma_total_inc(size); 1020 1021 /* Point the slab into the allocated memory */ 1022 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 1023 slab = (uma_slab_t )(mem + keg->uk_pgoff); 1024 1025 if (keg->uk_flags & UMA_ZONE_VTOSLAB) 1026 for (i = 0; i < keg->uk_ppera; i++) 1027 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 1028 1029 slab->us_keg = keg; 1030 slab->us_data = mem; 1031 slab->us_freecount = keg->uk_ipers; 1032 slab->us_flags = flags; 1033 slab->us_domain = domain; 1034 BIT_FILL(SLAB_SETSIZE, &slab->us_free); 1035 #ifdef INVARIANTS 1036 BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree); 1037 #endif 1038 1039 if (keg->uk_init != NULL) { 1040 for (i = 0; i < keg->uk_ipers; i++) 1041 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 1042 keg->uk_size, wait) != 0) 1043 break; 1044 if (i != keg->uk_ipers) { 1045 keg_free_slab(keg, slab, i); 1046 slab = NULL; 1047 goto out; 1048 } 1049 } 1050 out: 1051 KEG_LOCK(keg); 1052 1053 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1054 slab, keg->uk_name, keg); 1055 1056 if (slab != NULL) { 1057 if (keg->uk_flags & UMA_ZONE_HASH) 1058 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1059 1060 keg->uk_pages += keg->uk_ppera; 1061 keg->uk_free += keg->uk_ipers; 1062 } 1063 1064 return (slab); 1065 } 1066 1067 /* 1068 * This function is intended to be used early on in place of page_alloc() so 1069 * that we may use the boot time page cache to satisfy allocations before 1070 * the VM is ready. 1071 */ 1072 static void * 1073 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1074 int wait) 1075 { 1076 uma_keg_t keg; 1077 void *mem; 1078 int pages; 1079 1080 keg = zone_first_keg(zone); 1081 1082 /* 1083 * If we are in BOOT_BUCKETS or higher, than switch to real 1084 * allocator. Zones with page sized slabs switch at BOOT_PAGEALLOC. 1085 */ 1086 switch (booted) { 1087 case BOOT_COLD: 1088 case BOOT_STRAPPED: 1089 break; 1090 case BOOT_PAGEALLOC: 1091 if (keg->uk_ppera > 1) 1092 break; 1093 case BOOT_BUCKETS: 1094 case BOOT_RUNNING: 1095 #ifdef UMA_MD_SMALL_ALLOC 1096 keg->uk_allocf = (keg->uk_ppera > 1) ? 1097 page_alloc : uma_small_alloc; 1098 #else 1099 keg->uk_allocf = page_alloc; 1100 #endif 1101 return keg->uk_allocf(zone, bytes, domain, pflag, wait); 1102 } 1103 1104 /* 1105 * Check our small startup cache to see if it has pages remaining. 1106 */ 1107 pages = howmany(bytes, PAGE_SIZE); 1108 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1109 if (pages > boot_pages) 1110 panic("UMA zone \"%s\": Increase vm.boot_pages", zone->uz_name); 1111 #ifdef DIAGNOSTIC 1112 printf("%s from \"%s\", %d boot pages left\n", __func__, zone->uz_name, 1113 boot_pages); 1114 #endif 1115 mem = bootmem; 1116 boot_pages -= pages; 1117 bootmem += pages * PAGE_SIZE; 1118 *pflag = UMA_SLAB_BOOT; 1119 1120 return (mem); 1121 } 1122 1123 /* 1124 * Allocates a number of pages from the system 1125 * 1126 * Arguments: 1127 * bytes The number of bytes requested 1128 * wait Shall we wait? 1129 * 1130 * Returns: 1131 * A pointer to the alloced memory or possibly 1132 * NULL if M_NOWAIT is set. 1133 */ 1134 static void * 1135 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1136 int wait) 1137 { 1138 void *p; /* Returned page */ 1139 1140 *pflag = UMA_SLAB_KERNEL; 1141 p = (void *) kmem_malloc_domain(domain, bytes, wait); 1142 1143 return (p); 1144 } 1145 1146 /* 1147 * Allocates a number of pages from within an object 1148 * 1149 * Arguments: 1150 * bytes The number of bytes requested 1151 * wait Shall we wait? 1152 * 1153 * Returns: 1154 * A pointer to the alloced memory or possibly 1155 * NULL if M_NOWAIT is set. 1156 */ 1157 static void * 1158 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 1159 int wait) 1160 { 1161 TAILQ_HEAD(, vm_page) alloctail; 1162 u_long npages; 1163 vm_offset_t retkva, zkva; 1164 vm_page_t p, p_next; 1165 uma_keg_t keg; 1166 1167 TAILQ_INIT(&alloctail); 1168 keg = zone_first_keg(zone); 1169 1170 npages = howmany(bytes, PAGE_SIZE); 1171 while (npages > 0) { 1172 p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT | 1173 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1174 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK : 1175 VM_ALLOC_NOWAIT)); 1176 if (p != NULL) { 1177 /* 1178 * Since the page does not belong to an object, its 1179 * listq is unused. 1180 */ 1181 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1182 npages--; 1183 continue; 1184 } 1185 /* 1186 * Page allocation failed, free intermediate pages and 1187 * exit. 1188 */ 1189 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1190 vm_page_unwire(p, PQ_NONE); 1191 vm_page_free(p); 1192 } 1193 return (NULL); 1194 } 1195 *flags = UMA_SLAB_PRIV; 1196 zkva = keg->uk_kva + 1197 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1198 retkva = zkva; 1199 TAILQ_FOREACH(p, &alloctail, listq) { 1200 pmap_qenter(zkva, &p, 1); 1201 zkva += PAGE_SIZE; 1202 } 1203 1204 return ((void *)retkva); 1205 } 1206 1207 /* 1208 * Frees a number of pages to the system 1209 * 1210 * Arguments: 1211 * mem A pointer to the memory to be freed 1212 * size The size of the memory being freed 1213 * flags The original p->us_flags field 1214 * 1215 * Returns: 1216 * Nothing 1217 */ 1218 static void 1219 page_free(void *mem, vm_size_t size, uint8_t flags) 1220 { 1221 struct vmem *vmem; 1222 1223 if (flags & UMA_SLAB_KERNEL) 1224 vmem = kernel_arena; 1225 else 1226 panic("UMA: page_free used with invalid flags %x", flags); 1227 1228 kmem_free(vmem, (vm_offset_t)mem, size); 1229 } 1230 1231 /* 1232 * Zero fill initializer 1233 * 1234 * Arguments/Returns follow uma_init specifications 1235 */ 1236 static int 1237 zero_init(void *mem, int size, int flags) 1238 { 1239 bzero(mem, size); 1240 return (0); 1241 } 1242 1243 /* 1244 * Finish creating a small uma keg. This calculates ipers, and the keg size. 1245 * 1246 * Arguments 1247 * keg The zone we should initialize 1248 * 1249 * Returns 1250 * Nothing 1251 */ 1252 static void 1253 keg_small_init(uma_keg_t keg) 1254 { 1255 u_int rsize; 1256 u_int memused; 1257 u_int wastedspace; 1258 u_int shsize; 1259 u_int slabsize; 1260 1261 if (keg->uk_flags & UMA_ZONE_PCPU) { 1262 u_int ncpus = (mp_maxid + 1) ? (mp_maxid + 1) : MAXCPU; 1263 1264 slabsize = sizeof(struct pcpu); 1265 keg->uk_ppera = howmany(ncpus * sizeof(struct pcpu), 1266 PAGE_SIZE); 1267 } else { 1268 slabsize = UMA_SLAB_SIZE; 1269 keg->uk_ppera = 1; 1270 } 1271 1272 /* 1273 * Calculate the size of each allocation (rsize) according to 1274 * alignment. If the requested size is smaller than we have 1275 * allocation bits for we round it up. 1276 */ 1277 rsize = keg->uk_size; 1278 if (rsize < slabsize / SLAB_SETSIZE) 1279 rsize = slabsize / SLAB_SETSIZE; 1280 if (rsize & keg->uk_align) 1281 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1282 keg->uk_rsize = rsize; 1283 1284 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 1285 keg->uk_rsize < sizeof(struct pcpu), 1286 ("%s: size %u too large", __func__, keg->uk_rsize)); 1287 1288 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1289 shsize = 0; 1290 else 1291 shsize = sizeof(struct uma_slab); 1292 1293 if (rsize <= slabsize - shsize) 1294 keg->uk_ipers = (slabsize - shsize) / rsize; 1295 else { 1296 /* Handle special case when we have 1 item per slab, so 1297 * alignment requirement can be relaxed. */ 1298 KASSERT(keg->uk_size <= slabsize - shsize, 1299 ("%s: size %u greater than slab", __func__, keg->uk_size)); 1300 keg->uk_ipers = 1; 1301 } 1302 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1303 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1304 1305 memused = keg->uk_ipers * rsize + shsize; 1306 wastedspace = slabsize - memused; 1307 1308 /* 1309 * We can't do OFFPAGE if we're internal or if we've been 1310 * asked to not go to the VM for buckets. If we do this we 1311 * may end up going to the VM for slabs which we do not 1312 * want to do if we're UMA_ZFLAG_CACHEONLY as a result 1313 * of UMA_ZONE_VM, which clearly forbids it. 1314 */ 1315 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1316 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1317 return; 1318 1319 /* 1320 * See if using an OFFPAGE slab will limit our waste. Only do 1321 * this if it permits more items per-slab. 1322 * 1323 * XXX We could try growing slabsize to limit max waste as well. 1324 * Historically this was not done because the VM could not 1325 * efficiently handle contiguous allocations. 1326 */ 1327 if ((wastedspace >= slabsize / UMA_MAX_WASTE) && 1328 (keg->uk_ipers < (slabsize / keg->uk_rsize))) { 1329 keg->uk_ipers = slabsize / keg->uk_rsize; 1330 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1331 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1332 CTR6(KTR_UMA, "UMA decided we need offpage slab headers for " 1333 "keg: %s(%p), calculated wastedspace = %d, " 1334 "maximum wasted space allowed = %d, " 1335 "calculated ipers = %d, " 1336 "new wasted space = %d\n", keg->uk_name, keg, wastedspace, 1337 slabsize / UMA_MAX_WASTE, keg->uk_ipers, 1338 slabsize - keg->uk_ipers * keg->uk_rsize); 1339 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1340 } 1341 1342 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1343 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1344 keg->uk_flags |= UMA_ZONE_HASH; 1345 } 1346 1347 /* 1348 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do 1349 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1350 * more complicated. 1351 * 1352 * Arguments 1353 * keg The keg we should initialize 1354 * 1355 * Returns 1356 * Nothing 1357 */ 1358 static void 1359 keg_large_init(uma_keg_t keg) 1360 { 1361 u_int shsize; 1362 1363 KASSERT(keg != NULL, ("Keg is null in keg_large_init")); 1364 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0, 1365 ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg")); 1366 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1367 ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__)); 1368 1369 keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE); 1370 keg->uk_ipers = 1; 1371 keg->uk_rsize = keg->uk_size; 1372 1373 /* Check whether we have enough space to not do OFFPAGE. */ 1374 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) { 1375 shsize = sizeof(struct uma_slab); 1376 if (shsize & UMA_ALIGN_PTR) 1377 shsize = (shsize & ~UMA_ALIGN_PTR) + 1378 (UMA_ALIGN_PTR + 1); 1379 1380 if (PAGE_SIZE * keg->uk_ppera - keg->uk_rsize < shsize) { 1381 /* 1382 * We can't do OFFPAGE if we're internal, in which case 1383 * we need an extra page per allocation to contain the 1384 * slab header. 1385 */ 1386 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) == 0) 1387 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1388 else 1389 keg->uk_ppera++; 1390 } 1391 } 1392 1393 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1394 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1395 keg->uk_flags |= UMA_ZONE_HASH; 1396 } 1397 1398 static void 1399 keg_cachespread_init(uma_keg_t keg) 1400 { 1401 int alignsize; 1402 int trailer; 1403 int pages; 1404 int rsize; 1405 1406 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1407 ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__)); 1408 1409 alignsize = keg->uk_align + 1; 1410 rsize = keg->uk_size; 1411 /* 1412 * We want one item to start on every align boundary in a page. To 1413 * do this we will span pages. We will also extend the item by the 1414 * size of align if it is an even multiple of align. Otherwise, it 1415 * would fall on the same boundary every time. 1416 */ 1417 if (rsize & keg->uk_align) 1418 rsize = (rsize & ~keg->uk_align) + alignsize; 1419 if ((rsize & alignsize) == 0) 1420 rsize += alignsize; 1421 trailer = rsize - keg->uk_size; 1422 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE; 1423 pages = MIN(pages, (128 * 1024) / PAGE_SIZE); 1424 keg->uk_rsize = rsize; 1425 keg->uk_ppera = pages; 1426 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize; 1427 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1428 KASSERT(keg->uk_ipers <= SLAB_SETSIZE, 1429 ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__, 1430 keg->uk_ipers)); 1431 } 1432 1433 /* 1434 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1435 * the keg onto the global keg list. 1436 * 1437 * Arguments/Returns follow uma_ctor specifications 1438 * udata Actually uma_kctor_args 1439 */ 1440 static int 1441 keg_ctor(void *mem, int size, void *udata, int flags) 1442 { 1443 struct uma_kctor_args *arg = udata; 1444 uma_keg_t keg = mem; 1445 uma_zone_t zone; 1446 1447 bzero(keg, size); 1448 keg->uk_size = arg->size; 1449 keg->uk_init = arg->uminit; 1450 keg->uk_fini = arg->fini; 1451 keg->uk_align = arg->align; 1452 keg->uk_cursor = 0; 1453 keg->uk_free = 0; 1454 keg->uk_reserve = 0; 1455 keg->uk_pages = 0; 1456 keg->uk_flags = arg->flags; 1457 keg->uk_slabzone = NULL; 1458 1459 /* 1460 * The master zone is passed to us at keg-creation time. 1461 */ 1462 zone = arg->zone; 1463 keg->uk_name = zone->uz_name; 1464 1465 if (arg->flags & UMA_ZONE_VM) 1466 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1467 1468 if (arg->flags & UMA_ZONE_ZINIT) 1469 keg->uk_init = zero_init; 1470 1471 if (arg->flags & UMA_ZONE_MALLOC) 1472 keg->uk_flags |= UMA_ZONE_VTOSLAB; 1473 1474 if (arg->flags & UMA_ZONE_PCPU) 1475 #ifdef SMP 1476 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1477 #else 1478 keg->uk_flags &= ~UMA_ZONE_PCPU; 1479 #endif 1480 1481 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) { 1482 keg_cachespread_init(keg); 1483 } else { 1484 if (keg->uk_size > UMA_SLAB_SPACE) 1485 keg_large_init(keg); 1486 else 1487 keg_small_init(keg); 1488 } 1489 1490 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1491 keg->uk_slabzone = slabzone; 1492 1493 /* 1494 * If we haven't booted yet we need allocations to go through the 1495 * startup cache until the vm is ready. 1496 */ 1497 if (booted < BOOT_PAGEALLOC) 1498 keg->uk_allocf = startup_alloc; 1499 #ifdef UMA_MD_SMALL_ALLOC 1500 else if (keg->uk_ppera == 1) 1501 keg->uk_allocf = uma_small_alloc; 1502 #endif 1503 else 1504 keg->uk_allocf = page_alloc; 1505 #ifdef UMA_MD_SMALL_ALLOC 1506 if (keg->uk_ppera == 1) 1507 keg->uk_freef = uma_small_free; 1508 else 1509 #endif 1510 keg->uk_freef = page_free; 1511 1512 /* 1513 * Initialize keg's lock 1514 */ 1515 KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS)); 1516 1517 /* 1518 * If we're putting the slab header in the actual page we need to 1519 * figure out where in each page it goes. This calculates a right 1520 * justified offset into the memory on an ALIGN_PTR boundary. 1521 */ 1522 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1523 u_int totsize; 1524 1525 /* Size of the slab struct and free list */ 1526 totsize = sizeof(struct uma_slab); 1527 1528 if (totsize & UMA_ALIGN_PTR) 1529 totsize = (totsize & ~UMA_ALIGN_PTR) + 1530 (UMA_ALIGN_PTR + 1); 1531 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize; 1532 1533 /* 1534 * The only way the following is possible is if with our 1535 * UMA_ALIGN_PTR adjustments we are now bigger than 1536 * UMA_SLAB_SIZE. I haven't checked whether this is 1537 * mathematically possible for all cases, so we make 1538 * sure here anyway. 1539 */ 1540 totsize = keg->uk_pgoff + sizeof(struct uma_slab); 1541 if (totsize > PAGE_SIZE * keg->uk_ppera) { 1542 printf("zone %s ipers %d rsize %d size %d\n", 1543 zone->uz_name, keg->uk_ipers, keg->uk_rsize, 1544 keg->uk_size); 1545 panic("UMA slab won't fit."); 1546 } 1547 } 1548 1549 if (keg->uk_flags & UMA_ZONE_HASH) 1550 hash_alloc(&keg->uk_hash); 1551 1552 CTR5(KTR_UMA, "keg_ctor %p zone %s(%p) out %d free %d\n", 1553 keg, zone->uz_name, zone, 1554 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 1555 keg->uk_free); 1556 1557 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1558 1559 rw_wlock(&uma_rwlock); 1560 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1561 rw_wunlock(&uma_rwlock); 1562 return (0); 1563 } 1564 1565 /* 1566 * Zone header ctor. This initializes all fields, locks, etc. 1567 * 1568 * Arguments/Returns follow uma_ctor specifications 1569 * udata Actually uma_zctor_args 1570 */ 1571 static int 1572 zone_ctor(void *mem, int size, void *udata, int flags) 1573 { 1574 struct uma_zctor_args *arg = udata; 1575 uma_zone_t zone = mem; 1576 uma_zone_t z; 1577 uma_keg_t keg; 1578 1579 bzero(zone, size); 1580 zone->uz_name = arg->name; 1581 zone->uz_ctor = arg->ctor; 1582 zone->uz_dtor = arg->dtor; 1583 zone->uz_slab = zone_fetch_slab; 1584 zone->uz_init = NULL; 1585 zone->uz_fini = NULL; 1586 zone->uz_allocs = 0; 1587 zone->uz_frees = 0; 1588 zone->uz_fails = 0; 1589 zone->uz_sleeps = 0; 1590 zone->uz_count = 0; 1591 zone->uz_count_min = 0; 1592 zone->uz_flags = 0; 1593 zone->uz_warning = NULL; 1594 /* The domain structures follow the cpu structures. */ 1595 zone->uz_domain = (struct uma_zone_domain *)&zone->uz_cpu[mp_ncpus]; 1596 timevalclear(&zone->uz_ratecheck); 1597 keg = arg->keg; 1598 1599 ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS)); 1600 1601 /* 1602 * This is a pure cache zone, no kegs. 1603 */ 1604 if (arg->import) { 1605 if (arg->flags & UMA_ZONE_VM) 1606 arg->flags |= UMA_ZFLAG_CACHEONLY; 1607 zone->uz_flags = arg->flags; 1608 zone->uz_size = arg->size; 1609 zone->uz_import = arg->import; 1610 zone->uz_release = arg->release; 1611 zone->uz_arg = arg->arg; 1612 zone->uz_lockptr = &zone->uz_lock; 1613 rw_wlock(&uma_rwlock); 1614 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 1615 rw_wunlock(&uma_rwlock); 1616 goto out; 1617 } 1618 1619 /* 1620 * Use the regular zone/keg/slab allocator. 1621 */ 1622 zone->uz_import = (uma_import)zone_import; 1623 zone->uz_release = (uma_release)zone_release; 1624 zone->uz_arg = zone; 1625 1626 if (arg->flags & UMA_ZONE_SECONDARY) { 1627 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 1628 zone->uz_init = arg->uminit; 1629 zone->uz_fini = arg->fini; 1630 zone->uz_lockptr = &keg->uk_lock; 1631 zone->uz_flags |= UMA_ZONE_SECONDARY; 1632 rw_wlock(&uma_rwlock); 1633 ZONE_LOCK(zone); 1634 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 1635 if (LIST_NEXT(z, uz_link) == NULL) { 1636 LIST_INSERT_AFTER(z, zone, uz_link); 1637 break; 1638 } 1639 } 1640 ZONE_UNLOCK(zone); 1641 rw_wunlock(&uma_rwlock); 1642 } else if (keg == NULL) { 1643 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 1644 arg->align, arg->flags)) == NULL) 1645 return (ENOMEM); 1646 } else { 1647 struct uma_kctor_args karg; 1648 int error; 1649 1650 /* We should only be here from uma_startup() */ 1651 karg.size = arg->size; 1652 karg.uminit = arg->uminit; 1653 karg.fini = arg->fini; 1654 karg.align = arg->align; 1655 karg.flags = arg->flags; 1656 karg.zone = zone; 1657 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 1658 flags); 1659 if (error) 1660 return (error); 1661 } 1662 1663 /* 1664 * Link in the first keg. 1665 */ 1666 zone->uz_klink.kl_keg = keg; 1667 LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link); 1668 zone->uz_lockptr = &keg->uk_lock; 1669 zone->uz_size = keg->uk_size; 1670 zone->uz_flags |= (keg->uk_flags & 1671 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 1672 1673 /* 1674 * Some internal zones don't have room allocated for the per cpu 1675 * caches. If we're internal, bail out here. 1676 */ 1677 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { 1678 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 1679 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 1680 return (0); 1681 } 1682 1683 out: 1684 if ((arg->flags & UMA_ZONE_MAXBUCKET) == 0) 1685 zone->uz_count = bucket_select(zone->uz_size); 1686 else 1687 zone->uz_count = BUCKET_MAX; 1688 zone->uz_count_min = zone->uz_count; 1689 1690 return (0); 1691 } 1692 1693 /* 1694 * Keg header dtor. This frees all data, destroys locks, frees the hash 1695 * table and removes the keg from the global list. 1696 * 1697 * Arguments/Returns follow uma_dtor specifications 1698 * udata unused 1699 */ 1700 static void 1701 keg_dtor(void *arg, int size, void *udata) 1702 { 1703 uma_keg_t keg; 1704 1705 keg = (uma_keg_t)arg; 1706 KEG_LOCK(keg); 1707 if (keg->uk_free != 0) { 1708 printf("Freed UMA keg (%s) was not empty (%d items). " 1709 " Lost %d pages of memory.\n", 1710 keg->uk_name ? keg->uk_name : "", 1711 keg->uk_free, keg->uk_pages); 1712 } 1713 KEG_UNLOCK(keg); 1714 1715 hash_free(&keg->uk_hash); 1716 1717 KEG_LOCK_FINI(keg); 1718 } 1719 1720 /* 1721 * Zone header dtor. 1722 * 1723 * Arguments/Returns follow uma_dtor specifications 1724 * udata unused 1725 */ 1726 static void 1727 zone_dtor(void *arg, int size, void *udata) 1728 { 1729 uma_klink_t klink; 1730 uma_zone_t zone; 1731 uma_keg_t keg; 1732 1733 zone = (uma_zone_t)arg; 1734 keg = zone_first_keg(zone); 1735 1736 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 1737 cache_drain(zone); 1738 1739 rw_wlock(&uma_rwlock); 1740 LIST_REMOVE(zone, uz_link); 1741 rw_wunlock(&uma_rwlock); 1742 /* 1743 * XXX there are some races here where 1744 * the zone can be drained but zone lock 1745 * released and then refilled before we 1746 * remove it... we dont care for now 1747 */ 1748 zone_drain_wait(zone, M_WAITOK); 1749 /* 1750 * Unlink all of our kegs. 1751 */ 1752 while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) { 1753 klink->kl_keg = NULL; 1754 LIST_REMOVE(klink, kl_link); 1755 if (klink == &zone->uz_klink) 1756 continue; 1757 free(klink, M_TEMP); 1758 } 1759 /* 1760 * We only destroy kegs from non secondary zones. 1761 */ 1762 if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0) { 1763 rw_wlock(&uma_rwlock); 1764 LIST_REMOVE(keg, uk_link); 1765 rw_wunlock(&uma_rwlock); 1766 zone_free_item(kegs, keg, NULL, SKIP_NONE); 1767 } 1768 ZONE_LOCK_FINI(zone); 1769 } 1770 1771 /* 1772 * Traverses every zone in the system and calls a callback 1773 * 1774 * Arguments: 1775 * zfunc A pointer to a function which accepts a zone 1776 * as an argument. 1777 * 1778 * Returns: 1779 * Nothing 1780 */ 1781 static void 1782 zone_foreach(void (*zfunc)(uma_zone_t)) 1783 { 1784 uma_keg_t keg; 1785 uma_zone_t zone; 1786 1787 rw_rlock(&uma_rwlock); 1788 LIST_FOREACH(keg, &uma_kegs, uk_link) { 1789 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 1790 zfunc(zone); 1791 } 1792 rw_runlock(&uma_rwlock); 1793 } 1794 1795 /* 1796 * Count how many pages do we need to bootstrap. VM supplies 1797 * its need in early zones in the argument, we add up our zones, 1798 * which consist of: UMA Slabs, UMA Hash and 9 Bucket zones. The 1799 * zone of zones and zone of kegs are accounted separately. 1800 */ 1801 #define UMA_BOOT_ZONES 11 1802 /* Zone of zones and zone of kegs have arbitrary alignment. */ 1803 #define UMA_BOOT_ALIGN 32 1804 static int zsize, ksize; 1805 int 1806 uma_startup_count(int vm_zones) 1807 { 1808 int zones, pages; 1809 1810 ksize = sizeof(struct uma_keg) + 1811 (sizeof(struct uma_domain) * vm_ndomains); 1812 zsize = sizeof(struct uma_zone) + 1813 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 1814 (sizeof(struct uma_zone_domain) * vm_ndomains); 1815 1816 /* 1817 * Memory for the zone of kegs and its keg, 1818 * and for zone of zones. 1819 */ 1820 pages = howmany(roundup(zsize, CACHE_LINE_SIZE) * 2 + 1821 roundup(ksize, CACHE_LINE_SIZE), PAGE_SIZE); 1822 1823 #ifdef UMA_MD_SMALL_ALLOC 1824 zones = UMA_BOOT_ZONES; 1825 #else 1826 zones = UMA_BOOT_ZONES + vm_zones; 1827 vm_zones = 0; 1828 #endif 1829 1830 /* Memory for the rest of startup zones, UMA and VM, ... */ 1831 if (zsize > UMA_SLAB_SPACE) 1832 pages += (zones + vm_zones) * 1833 howmany(roundup2(zsize, UMA_BOOT_ALIGN), UMA_SLAB_SIZE); 1834 else if (roundup2(zsize, UMA_BOOT_ALIGN) > UMA_SLAB_SPACE) 1835 pages += zones; 1836 else 1837 pages += howmany(zones, 1838 UMA_SLAB_SPACE / roundup2(zsize, UMA_BOOT_ALIGN)); 1839 1840 /* ... and their kegs. Note that zone of zones allocates a keg! */ 1841 pages += howmany(zones + 1, 1842 UMA_SLAB_SPACE / roundup2(ksize, UMA_BOOT_ALIGN)); 1843 1844 /* 1845 * Most of startup zones are not going to be offpages, that's 1846 * why we use UMA_SLAB_SPACE instead of UMA_SLAB_SIZE in all 1847 * calculations. Some large bucket zones will be offpage, and 1848 * thus will allocate hashes. We take conservative approach 1849 * and assume that all zones may allocate hash. This may give 1850 * us some positive inaccuracy, usually an extra single page. 1851 */ 1852 pages += howmany(zones, UMA_SLAB_SPACE / 1853 (sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT)); 1854 1855 return (pages); 1856 } 1857 1858 void 1859 uma_startup(void *mem, int npages) 1860 { 1861 struct uma_zctor_args args; 1862 uma_keg_t masterkeg; 1863 uintptr_t m; 1864 1865 #ifdef DIAGNOSTIC 1866 printf("Entering %s with %d boot pages configured\n", __func__, npages); 1867 #endif 1868 1869 rw_init(&uma_rwlock, "UMA lock"); 1870 1871 /* Use bootpages memory for the zone of zones and zone of kegs. */ 1872 m = (uintptr_t)mem; 1873 zones = (uma_zone_t)m; 1874 m += roundup(zsize, CACHE_LINE_SIZE); 1875 kegs = (uma_zone_t)m; 1876 m += roundup(zsize, CACHE_LINE_SIZE); 1877 masterkeg = (uma_keg_t)m; 1878 m += roundup(ksize, CACHE_LINE_SIZE); 1879 m = roundup(m, PAGE_SIZE); 1880 npages -= (m - (uintptr_t)mem) / PAGE_SIZE; 1881 mem = (void *)m; 1882 1883 /* "manually" create the initial zone */ 1884 memset(&args, 0, sizeof(args)); 1885 args.name = "UMA Kegs"; 1886 args.size = ksize; 1887 args.ctor = keg_ctor; 1888 args.dtor = keg_dtor; 1889 args.uminit = zero_init; 1890 args.fini = NULL; 1891 args.keg = masterkeg; 1892 args.align = UMA_BOOT_ALIGN - 1; 1893 args.flags = UMA_ZFLAG_INTERNAL; 1894 zone_ctor(kegs, zsize, &args, M_WAITOK); 1895 1896 bootmem = mem; 1897 boot_pages = npages; 1898 1899 args.name = "UMA Zones"; 1900 args.size = zsize; 1901 args.ctor = zone_ctor; 1902 args.dtor = zone_dtor; 1903 args.uminit = zero_init; 1904 args.fini = NULL; 1905 args.keg = NULL; 1906 args.align = UMA_BOOT_ALIGN - 1; 1907 args.flags = UMA_ZFLAG_INTERNAL; 1908 zone_ctor(zones, zsize, &args, M_WAITOK); 1909 1910 /* Now make a zone for slab headers */ 1911 slabzone = uma_zcreate("UMA Slabs", 1912 sizeof(struct uma_slab), 1913 NULL, NULL, NULL, NULL, 1914 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1915 1916 hashzone = uma_zcreate("UMA Hash", 1917 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 1918 NULL, NULL, NULL, NULL, 1919 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1920 1921 bucket_init(); 1922 1923 booted = BOOT_STRAPPED; 1924 } 1925 1926 void 1927 uma_startup1(void) 1928 { 1929 1930 #ifdef DIAGNOSTIC 1931 printf("Entering %s with %d boot pages left\n", __func__, boot_pages); 1932 #endif 1933 booted = BOOT_PAGEALLOC; 1934 } 1935 1936 void 1937 uma_startup2(void) 1938 { 1939 1940 #ifdef DIAGNOSTIC 1941 printf("Entering %s with %d boot pages left\n", __func__, boot_pages); 1942 #endif 1943 booted = BOOT_BUCKETS; 1944 sx_init(&uma_drain_lock, "umadrain"); 1945 bucket_enable(); 1946 } 1947 1948 /* 1949 * Initialize our callout handle 1950 * 1951 */ 1952 static void 1953 uma_startup3(void) 1954 { 1955 1956 booted = BOOT_RUNNING; 1957 callout_init(&uma_callout, 1); 1958 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 1959 } 1960 1961 static uma_keg_t 1962 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 1963 int align, uint32_t flags) 1964 { 1965 struct uma_kctor_args args; 1966 1967 args.size = size; 1968 args.uminit = uminit; 1969 args.fini = fini; 1970 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 1971 args.flags = flags; 1972 args.zone = zone; 1973 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 1974 } 1975 1976 /* Public functions */ 1977 /* See uma.h */ 1978 void 1979 uma_set_align(int align) 1980 { 1981 1982 if (align != UMA_ALIGN_CACHE) 1983 uma_align_cache = align; 1984 } 1985 1986 /* See uma.h */ 1987 uma_zone_t 1988 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 1989 uma_init uminit, uma_fini fini, int align, uint32_t flags) 1990 1991 { 1992 struct uma_zctor_args args; 1993 uma_zone_t res; 1994 bool locked; 1995 1996 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 1997 align, name)); 1998 1999 /* This stuff is essential for the zone ctor */ 2000 memset(&args, 0, sizeof(args)); 2001 args.name = name; 2002 args.size = size; 2003 args.ctor = ctor; 2004 args.dtor = dtor; 2005 args.uminit = uminit; 2006 args.fini = fini; 2007 #ifdef INVARIANTS 2008 /* 2009 * If a zone is being created with an empty constructor and 2010 * destructor, pass UMA constructor/destructor which checks for 2011 * memory use after free. 2012 */ 2013 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOFREE))) && 2014 ctor == NULL && dtor == NULL && uminit == NULL && fini == NULL) { 2015 args.ctor = trash_ctor; 2016 args.dtor = trash_dtor; 2017 args.uminit = trash_init; 2018 args.fini = trash_fini; 2019 } 2020 #endif 2021 args.align = align; 2022 args.flags = flags; 2023 args.keg = NULL; 2024 2025 if (booted < BOOT_BUCKETS) { 2026 locked = false; 2027 } else { 2028 sx_slock(&uma_drain_lock); 2029 locked = true; 2030 } 2031 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2032 if (locked) 2033 sx_sunlock(&uma_drain_lock); 2034 return (res); 2035 } 2036 2037 /* See uma.h */ 2038 uma_zone_t 2039 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 2040 uma_init zinit, uma_fini zfini, uma_zone_t master) 2041 { 2042 struct uma_zctor_args args; 2043 uma_keg_t keg; 2044 uma_zone_t res; 2045 bool locked; 2046 2047 keg = zone_first_keg(master); 2048 memset(&args, 0, sizeof(args)); 2049 args.name = name; 2050 args.size = keg->uk_size; 2051 args.ctor = ctor; 2052 args.dtor = dtor; 2053 args.uminit = zinit; 2054 args.fini = zfini; 2055 args.align = keg->uk_align; 2056 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 2057 args.keg = keg; 2058 2059 if (booted < BOOT_BUCKETS) { 2060 locked = false; 2061 } else { 2062 sx_slock(&uma_drain_lock); 2063 locked = true; 2064 } 2065 /* XXX Attaches only one keg of potentially many. */ 2066 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2067 if (locked) 2068 sx_sunlock(&uma_drain_lock); 2069 return (res); 2070 } 2071 2072 /* See uma.h */ 2073 uma_zone_t 2074 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor, 2075 uma_init zinit, uma_fini zfini, uma_import zimport, 2076 uma_release zrelease, void *arg, int flags) 2077 { 2078 struct uma_zctor_args args; 2079 2080 memset(&args, 0, sizeof(args)); 2081 args.name = name; 2082 args.size = size; 2083 args.ctor = ctor; 2084 args.dtor = dtor; 2085 args.uminit = zinit; 2086 args.fini = zfini; 2087 args.import = zimport; 2088 args.release = zrelease; 2089 args.arg = arg; 2090 args.align = 0; 2091 args.flags = flags; 2092 2093 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 2094 } 2095 2096 static void 2097 zone_lock_pair(uma_zone_t a, uma_zone_t b) 2098 { 2099 if (a < b) { 2100 ZONE_LOCK(a); 2101 mtx_lock_flags(b->uz_lockptr, MTX_DUPOK); 2102 } else { 2103 ZONE_LOCK(b); 2104 mtx_lock_flags(a->uz_lockptr, MTX_DUPOK); 2105 } 2106 } 2107 2108 static void 2109 zone_unlock_pair(uma_zone_t a, uma_zone_t b) 2110 { 2111 2112 ZONE_UNLOCK(a); 2113 ZONE_UNLOCK(b); 2114 } 2115 2116 int 2117 uma_zsecond_add(uma_zone_t zone, uma_zone_t master) 2118 { 2119 uma_klink_t klink; 2120 uma_klink_t kl; 2121 int error; 2122 2123 error = 0; 2124 klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO); 2125 2126 zone_lock_pair(zone, master); 2127 /* 2128 * zone must use vtoslab() to resolve objects and must already be 2129 * a secondary. 2130 */ 2131 if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) 2132 != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) { 2133 error = EINVAL; 2134 goto out; 2135 } 2136 /* 2137 * The new master must also use vtoslab(). 2138 */ 2139 if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) { 2140 error = EINVAL; 2141 goto out; 2142 } 2143 2144 /* 2145 * The underlying object must be the same size. rsize 2146 * may be different. 2147 */ 2148 if (master->uz_size != zone->uz_size) { 2149 error = E2BIG; 2150 goto out; 2151 } 2152 /* 2153 * Put it at the end of the list. 2154 */ 2155 klink->kl_keg = zone_first_keg(master); 2156 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) { 2157 if (LIST_NEXT(kl, kl_link) == NULL) { 2158 LIST_INSERT_AFTER(kl, klink, kl_link); 2159 break; 2160 } 2161 } 2162 klink = NULL; 2163 zone->uz_flags |= UMA_ZFLAG_MULTI; 2164 zone->uz_slab = zone_fetch_slab_multi; 2165 2166 out: 2167 zone_unlock_pair(zone, master); 2168 if (klink != NULL) 2169 free(klink, M_TEMP); 2170 2171 return (error); 2172 } 2173 2174 2175 /* See uma.h */ 2176 void 2177 uma_zdestroy(uma_zone_t zone) 2178 { 2179 2180 sx_slock(&uma_drain_lock); 2181 zone_free_item(zones, zone, NULL, SKIP_NONE); 2182 sx_sunlock(&uma_drain_lock); 2183 } 2184 2185 void 2186 uma_zwait(uma_zone_t zone) 2187 { 2188 void *item; 2189 2190 item = uma_zalloc_arg(zone, NULL, M_WAITOK); 2191 uma_zfree(zone, item); 2192 } 2193 2194 /* See uma.h */ 2195 void * 2196 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 2197 { 2198 uma_zone_domain_t zdom; 2199 uma_bucket_t bucket; 2200 uma_cache_t cache; 2201 void *item; 2202 int cpu, domain, lockfail; 2203 2204 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2205 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 2206 2207 /* This is the fast path allocation */ 2208 CTR4(KTR_UMA, "uma_zalloc_arg thread %x zone %s(%p) flags %d", 2209 curthread, zone->uz_name, zone, flags); 2210 2211 if (flags & M_WAITOK) { 2212 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2213 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 2214 } 2215 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2216 ("uma_zalloc_arg: called with spinlock or critical section held")); 2217 2218 #ifdef DEBUG_MEMGUARD 2219 if (memguard_cmp_zone(zone)) { 2220 item = memguard_alloc(zone->uz_size, flags); 2221 if (item != NULL) { 2222 if (zone->uz_init != NULL && 2223 zone->uz_init(item, zone->uz_size, flags) != 0) 2224 return (NULL); 2225 if (zone->uz_ctor != NULL && 2226 zone->uz_ctor(item, zone->uz_size, udata, 2227 flags) != 0) { 2228 zone->uz_fini(item, zone->uz_size); 2229 return (NULL); 2230 } 2231 return (item); 2232 } 2233 /* This is unfortunate but should not be fatal. */ 2234 } 2235 #endif 2236 /* 2237 * If possible, allocate from the per-CPU cache. There are two 2238 * requirements for safe access to the per-CPU cache: (1) the thread 2239 * accessing the cache must not be preempted or yield during access, 2240 * and (2) the thread must not migrate CPUs without switching which 2241 * cache it accesses. We rely on a critical section to prevent 2242 * preemption and migration. We release the critical section in 2243 * order to acquire the zone mutex if we are unable to allocate from 2244 * the current cache; when we re-acquire the critical section, we 2245 * must detect and handle migration if it has occurred. 2246 */ 2247 critical_enter(); 2248 cpu = curcpu; 2249 cache = &zone->uz_cpu[cpu]; 2250 2251 zalloc_start: 2252 bucket = cache->uc_allocbucket; 2253 if (bucket != NULL && bucket->ub_cnt > 0) { 2254 bucket->ub_cnt--; 2255 item = bucket->ub_bucket[bucket->ub_cnt]; 2256 #ifdef INVARIANTS 2257 bucket->ub_bucket[bucket->ub_cnt] = NULL; 2258 #endif 2259 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 2260 cache->uc_allocs++; 2261 critical_exit(); 2262 if (zone->uz_ctor != NULL && 2263 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2264 atomic_add_long(&zone->uz_fails, 1); 2265 zone_free_item(zone, item, udata, SKIP_DTOR); 2266 return (NULL); 2267 } 2268 #ifdef INVARIANTS 2269 uma_dbg_alloc(zone, NULL, item); 2270 #endif 2271 if (flags & M_ZERO) 2272 uma_zero_item(item, zone); 2273 return (item); 2274 } 2275 2276 /* 2277 * We have run out of items in our alloc bucket. 2278 * See if we can switch with our free bucket. 2279 */ 2280 bucket = cache->uc_freebucket; 2281 if (bucket != NULL && bucket->ub_cnt > 0) { 2282 CTR2(KTR_UMA, 2283 "uma_zalloc: zone %s(%p) swapping empty with alloc", 2284 zone->uz_name, zone); 2285 cache->uc_freebucket = cache->uc_allocbucket; 2286 cache->uc_allocbucket = bucket; 2287 goto zalloc_start; 2288 } 2289 2290 /* 2291 * Discard any empty allocation bucket while we hold no locks. 2292 */ 2293 bucket = cache->uc_allocbucket; 2294 cache->uc_allocbucket = NULL; 2295 critical_exit(); 2296 if (bucket != NULL) 2297 bucket_free(zone, bucket, udata); 2298 2299 if (zone->uz_flags & UMA_ZONE_NUMA) 2300 domain = PCPU_GET(domain); 2301 else 2302 domain = UMA_ANYDOMAIN; 2303 2304 /* Short-circuit for zones without buckets and low memory. */ 2305 if (zone->uz_count == 0 || bucketdisable) 2306 goto zalloc_item; 2307 2308 /* 2309 * Attempt to retrieve the item from the per-CPU cache has failed, so 2310 * we must go back to the zone. This requires the zone lock, so we 2311 * must drop the critical section, then re-acquire it when we go back 2312 * to the cache. Since the critical section is released, we may be 2313 * preempted or migrate. As such, make sure not to maintain any 2314 * thread-local state specific to the cache from prior to releasing 2315 * the critical section. 2316 */ 2317 lockfail = 0; 2318 if (ZONE_TRYLOCK(zone) == 0) { 2319 /* Record contention to size the buckets. */ 2320 ZONE_LOCK(zone); 2321 lockfail = 1; 2322 } 2323 critical_enter(); 2324 cpu = curcpu; 2325 cache = &zone->uz_cpu[cpu]; 2326 2327 /* 2328 * Since we have locked the zone we may as well send back our stats. 2329 */ 2330 atomic_add_long(&zone->uz_allocs, cache->uc_allocs); 2331 atomic_add_long(&zone->uz_frees, cache->uc_frees); 2332 cache->uc_allocs = 0; 2333 cache->uc_frees = 0; 2334 2335 /* See if we lost the race to fill the cache. */ 2336 if (cache->uc_allocbucket != NULL) { 2337 ZONE_UNLOCK(zone); 2338 goto zalloc_start; 2339 } 2340 2341 /* 2342 * Check the zone's cache of buckets. 2343 */ 2344 if (domain == UMA_ANYDOMAIN) 2345 zdom = &zone->uz_domain[0]; 2346 else 2347 zdom = &zone->uz_domain[domain]; 2348 if ((bucket = LIST_FIRST(&zdom->uzd_buckets)) != NULL) { 2349 KASSERT(bucket->ub_cnt != 0, 2350 ("uma_zalloc_arg: Returning an empty bucket.")); 2351 2352 LIST_REMOVE(bucket, ub_link); 2353 cache->uc_allocbucket = bucket; 2354 ZONE_UNLOCK(zone); 2355 goto zalloc_start; 2356 } 2357 /* We are no longer associated with this CPU. */ 2358 critical_exit(); 2359 2360 /* 2361 * We bump the uz count when the cache size is insufficient to 2362 * handle the working set. 2363 */ 2364 if (lockfail && zone->uz_count < BUCKET_MAX) 2365 zone->uz_count++; 2366 ZONE_UNLOCK(zone); 2367 2368 /* 2369 * Now lets just fill a bucket and put it on the free list. If that 2370 * works we'll restart the allocation from the beginning and it 2371 * will use the just filled bucket. 2372 */ 2373 bucket = zone_alloc_bucket(zone, udata, domain, flags); 2374 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 2375 zone->uz_name, zone, bucket); 2376 if (bucket != NULL) { 2377 ZONE_LOCK(zone); 2378 critical_enter(); 2379 cpu = curcpu; 2380 cache = &zone->uz_cpu[cpu]; 2381 /* 2382 * See if we lost the race or were migrated. Cache the 2383 * initialized bucket to make this less likely or claim 2384 * the memory directly. 2385 */ 2386 if (cache->uc_allocbucket != NULL || 2387 (zone->uz_flags & UMA_ZONE_NUMA && 2388 domain != PCPU_GET(domain))) 2389 LIST_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); 2390 else 2391 cache->uc_allocbucket = bucket; 2392 ZONE_UNLOCK(zone); 2393 goto zalloc_start; 2394 } 2395 2396 /* 2397 * We may not be able to get a bucket so return an actual item. 2398 */ 2399 zalloc_item: 2400 item = zone_alloc_item(zone, udata, domain, flags); 2401 2402 return (item); 2403 } 2404 2405 void * 2406 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 2407 { 2408 2409 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2410 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 2411 2412 /* This is the fast path allocation */ 2413 CTR5(KTR_UMA, 2414 "uma_zalloc_domain thread %x zone %s(%p) domain %d flags %d", 2415 curthread, zone->uz_name, zone, domain, flags); 2416 2417 if (flags & M_WAITOK) { 2418 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2419 "uma_zalloc_domain: zone \"%s\"", zone->uz_name); 2420 } 2421 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2422 ("uma_zalloc_domain: called with spinlock or critical section held")); 2423 2424 return (zone_alloc_item(zone, udata, domain, flags)); 2425 } 2426 2427 /* 2428 * Find a slab with some space. Prefer slabs that are partially used over those 2429 * that are totally full. This helps to reduce fragmentation. 2430 * 2431 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 2432 * only 'domain'. 2433 */ 2434 static uma_slab_t 2435 keg_first_slab(uma_keg_t keg, int domain, int rr) 2436 { 2437 uma_domain_t dom; 2438 uma_slab_t slab; 2439 int start; 2440 2441 KASSERT(domain >= 0 && domain < vm_ndomains, 2442 ("keg_first_slab: domain %d out of range", domain)); 2443 2444 slab = NULL; 2445 start = domain; 2446 do { 2447 dom = &keg->uk_domain[domain]; 2448 if (!LIST_EMPTY(&dom->ud_part_slab)) 2449 return (LIST_FIRST(&dom->ud_part_slab)); 2450 if (!LIST_EMPTY(&dom->ud_free_slab)) { 2451 slab = LIST_FIRST(&dom->ud_free_slab); 2452 LIST_REMOVE(slab, us_link); 2453 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 2454 return (slab); 2455 } 2456 if (rr) 2457 domain = (domain + 1) % vm_ndomains; 2458 } while (domain != start); 2459 2460 return (NULL); 2461 } 2462 2463 static uma_slab_t 2464 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, int flags) 2465 { 2466 uma_domain_t dom; 2467 uma_slab_t slab; 2468 int allocflags, domain, reserve, rr, start; 2469 2470 mtx_assert(&keg->uk_lock, MA_OWNED); 2471 slab = NULL; 2472 reserve = 0; 2473 allocflags = flags; 2474 if ((flags & M_USE_RESERVE) == 0) 2475 reserve = keg->uk_reserve; 2476 2477 /* 2478 * Round-robin for non first-touch zones when there is more than one 2479 * domain. 2480 */ 2481 if (vm_ndomains == 1) 2482 rdomain = 0; 2483 rr = rdomain == UMA_ANYDOMAIN; 2484 if (rr) { 2485 keg->uk_cursor = (keg->uk_cursor + 1) % vm_ndomains; 2486 domain = start = keg->uk_cursor; 2487 /* Only block on the second pass. */ 2488 if ((flags & (M_WAITOK | M_NOVM)) == M_WAITOK) 2489 allocflags = (allocflags & ~M_WAITOK) | M_NOWAIT; 2490 } else 2491 domain = start = rdomain; 2492 2493 again: 2494 do { 2495 if (keg->uk_free > reserve && 2496 (slab = keg_first_slab(keg, domain, rr)) != NULL) { 2497 MPASS(slab->us_keg == keg); 2498 return (slab); 2499 } 2500 2501 /* 2502 * M_NOVM means don't ask at all! 2503 */ 2504 if (flags & M_NOVM) 2505 break; 2506 2507 if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) { 2508 keg->uk_flags |= UMA_ZFLAG_FULL; 2509 /* 2510 * If this is not a multi-zone, set the FULL bit. 2511 * Otherwise slab_multi() takes care of it. 2512 */ 2513 if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) { 2514 zone->uz_flags |= UMA_ZFLAG_FULL; 2515 zone_log_warning(zone); 2516 zone_maxaction(zone); 2517 } 2518 if (flags & M_NOWAIT) 2519 return (NULL); 2520 zone->uz_sleeps++; 2521 msleep(keg, &keg->uk_lock, PVM, "keglimit", 0); 2522 continue; 2523 } 2524 slab = keg_alloc_slab(keg, zone, domain, allocflags); 2525 /* 2526 * If we got a slab here it's safe to mark it partially used 2527 * and return. We assume that the caller is going to remove 2528 * at least one item. 2529 */ 2530 if (slab) { 2531 MPASS(slab->us_keg == keg); 2532 dom = &keg->uk_domain[slab->us_domain]; 2533 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 2534 return (slab); 2535 } 2536 if (rr) { 2537 keg->uk_cursor = (keg->uk_cursor + 1) % vm_ndomains; 2538 domain = keg->uk_cursor; 2539 } 2540 } while (domain != start); 2541 2542 /* Retry domain scan with blocking. */ 2543 if (allocflags != flags) { 2544 allocflags = flags; 2545 goto again; 2546 } 2547 2548 /* 2549 * We might not have been able to get a slab but another cpu 2550 * could have while we were unlocked. Check again before we 2551 * fail. 2552 */ 2553 if (keg->uk_free > reserve && 2554 (slab = keg_first_slab(keg, domain, rr)) != NULL) { 2555 MPASS(slab->us_keg == keg); 2556 return (slab); 2557 } 2558 return (NULL); 2559 } 2560 2561 static uma_slab_t 2562 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int domain, int flags) 2563 { 2564 uma_slab_t slab; 2565 2566 if (keg == NULL) { 2567 keg = zone_first_keg(zone); 2568 KEG_LOCK(keg); 2569 } 2570 2571 for (;;) { 2572 slab = keg_fetch_slab(keg, zone, domain, flags); 2573 if (slab) 2574 return (slab); 2575 if (flags & (M_NOWAIT | M_NOVM)) 2576 break; 2577 } 2578 KEG_UNLOCK(keg); 2579 return (NULL); 2580 } 2581 2582 /* 2583 * uma_zone_fetch_slab_multi: Fetches a slab from one available keg. Returns 2584 * with the keg locked. On NULL no lock is held. 2585 * 2586 * The last pointer is used to seed the search. It is not required. 2587 */ 2588 static uma_slab_t 2589 zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int domain, int rflags) 2590 { 2591 uma_klink_t klink; 2592 uma_slab_t slab; 2593 uma_keg_t keg; 2594 int flags; 2595 int empty; 2596 int full; 2597 2598 /* 2599 * Don't wait on the first pass. This will skip limit tests 2600 * as well. We don't want to block if we can find a provider 2601 * without blocking. 2602 */ 2603 flags = (rflags & ~M_WAITOK) | M_NOWAIT; 2604 /* 2605 * Use the last slab allocated as a hint for where to start 2606 * the search. 2607 */ 2608 if (last != NULL) { 2609 slab = keg_fetch_slab(last, zone, domain, flags); 2610 if (slab) 2611 return (slab); 2612 KEG_UNLOCK(last); 2613 } 2614 /* 2615 * Loop until we have a slab incase of transient failures 2616 * while M_WAITOK is specified. I'm not sure this is 100% 2617 * required but we've done it for so long now. 2618 */ 2619 for (;;) { 2620 empty = 0; 2621 full = 0; 2622 /* 2623 * Search the available kegs for slabs. Be careful to hold the 2624 * correct lock while calling into the keg layer. 2625 */ 2626 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) { 2627 keg = klink->kl_keg; 2628 KEG_LOCK(keg); 2629 if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) { 2630 slab = keg_fetch_slab(keg, zone, domain, flags); 2631 if (slab) 2632 return (slab); 2633 } 2634 if (keg->uk_flags & UMA_ZFLAG_FULL) 2635 full++; 2636 else 2637 empty++; 2638 KEG_UNLOCK(keg); 2639 } 2640 if (rflags & (M_NOWAIT | M_NOVM)) 2641 break; 2642 flags = rflags; 2643 /* 2644 * All kegs are full. XXX We can't atomically check all kegs 2645 * and sleep so just sleep for a short period and retry. 2646 */ 2647 if (full && !empty) { 2648 ZONE_LOCK(zone); 2649 zone->uz_flags |= UMA_ZFLAG_FULL; 2650 zone->uz_sleeps++; 2651 zone_log_warning(zone); 2652 zone_maxaction(zone); 2653 msleep(zone, zone->uz_lockptr, PVM, 2654 "zonelimit", hz/100); 2655 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2656 ZONE_UNLOCK(zone); 2657 continue; 2658 } 2659 } 2660 return (NULL); 2661 } 2662 2663 static void * 2664 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 2665 { 2666 uma_domain_t dom; 2667 void *item; 2668 uint8_t freei; 2669 2670 MPASS(keg == slab->us_keg); 2671 mtx_assert(&keg->uk_lock, MA_OWNED); 2672 2673 freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1; 2674 BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free); 2675 item = slab->us_data + (keg->uk_rsize * freei); 2676 slab->us_freecount--; 2677 keg->uk_free--; 2678 2679 /* Move this slab to the full list */ 2680 if (slab->us_freecount == 0) { 2681 LIST_REMOVE(slab, us_link); 2682 dom = &keg->uk_domain[slab->us_domain]; 2683 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 2684 } 2685 2686 return (item); 2687 } 2688 2689 static int 2690 zone_import(uma_zone_t zone, void **bucket, int max, int domain, int flags) 2691 { 2692 uma_slab_t slab; 2693 uma_keg_t keg; 2694 int stripe; 2695 int i; 2696 2697 slab = NULL; 2698 keg = NULL; 2699 /* Try to keep the buckets totally full */ 2700 for (i = 0; i < max; ) { 2701 if ((slab = zone->uz_slab(zone, keg, domain, flags)) == NULL) 2702 break; 2703 keg = slab->us_keg; 2704 stripe = howmany(max, vm_ndomains); 2705 while (slab->us_freecount && i < max) { 2706 bucket[i++] = slab_alloc_item(keg, slab); 2707 if (keg->uk_free <= keg->uk_reserve) 2708 break; 2709 #ifdef NUMA 2710 /* 2711 * If the zone is striped we pick a new slab for every 2712 * N allocations. Eliminating this conditional will 2713 * instead pick a new domain for each bucket rather 2714 * than stripe within each bucket. The current option 2715 * produces more fragmentation and requires more cpu 2716 * time but yields better distribution. 2717 */ 2718 if ((zone->uz_flags & UMA_ZONE_NUMA) == 0 && 2719 vm_ndomains > 1 && --stripe == 0) 2720 break; 2721 #endif 2722 } 2723 /* Don't block if we allocated any successfully. */ 2724 flags &= ~M_WAITOK; 2725 flags |= M_NOWAIT; 2726 } 2727 if (slab != NULL) 2728 KEG_UNLOCK(keg); 2729 2730 return i; 2731 } 2732 2733 static uma_bucket_t 2734 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags) 2735 { 2736 uma_bucket_t bucket; 2737 int max; 2738 2739 /* Don't wait for buckets, preserve caller's NOVM setting. */ 2740 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 2741 if (bucket == NULL) 2742 return (NULL); 2743 2744 max = MIN(bucket->ub_entries, zone->uz_count); 2745 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 2746 max, domain, flags); 2747 2748 /* 2749 * Initialize the memory if necessary. 2750 */ 2751 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 2752 int i; 2753 2754 for (i = 0; i < bucket->ub_cnt; i++) 2755 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 2756 flags) != 0) 2757 break; 2758 /* 2759 * If we couldn't initialize the whole bucket, put the 2760 * rest back onto the freelist. 2761 */ 2762 if (i != bucket->ub_cnt) { 2763 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 2764 bucket->ub_cnt - i); 2765 #ifdef INVARIANTS 2766 bzero(&bucket->ub_bucket[i], 2767 sizeof(void *) * (bucket->ub_cnt - i)); 2768 #endif 2769 bucket->ub_cnt = i; 2770 } 2771 } 2772 2773 if (bucket->ub_cnt == 0) { 2774 bucket_free(zone, bucket, udata); 2775 atomic_add_long(&zone->uz_fails, 1); 2776 return (NULL); 2777 } 2778 2779 return (bucket); 2780 } 2781 2782 /* 2783 * Allocates a single item from a zone. 2784 * 2785 * Arguments 2786 * zone The zone to alloc for. 2787 * udata The data to be passed to the constructor. 2788 * domain The domain to allocate from or UMA_ANYDOMAIN. 2789 * flags M_WAITOK, M_NOWAIT, M_ZERO. 2790 * 2791 * Returns 2792 * NULL if there is no memory and M_NOWAIT is set 2793 * An item if successful 2794 */ 2795 2796 static void * 2797 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 2798 { 2799 void *item; 2800 2801 item = NULL; 2802 2803 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 2804 goto fail; 2805 atomic_add_long(&zone->uz_allocs, 1); 2806 2807 /* 2808 * We have to call both the zone's init (not the keg's init) 2809 * and the zone's ctor. This is because the item is going from 2810 * a keg slab directly to the user, and the user is expecting it 2811 * to be both zone-init'd as well as zone-ctor'd. 2812 */ 2813 if (zone->uz_init != NULL) { 2814 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 2815 zone_free_item(zone, item, udata, SKIP_FINI); 2816 goto fail; 2817 } 2818 } 2819 if (zone->uz_ctor != NULL) { 2820 if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2821 zone_free_item(zone, item, udata, SKIP_DTOR); 2822 goto fail; 2823 } 2824 } 2825 #ifdef INVARIANTS 2826 uma_dbg_alloc(zone, NULL, item); 2827 #endif 2828 if (flags & M_ZERO) 2829 uma_zero_item(item, zone); 2830 2831 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 2832 zone->uz_name, zone); 2833 2834 return (item); 2835 2836 fail: 2837 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 2838 zone->uz_name, zone); 2839 atomic_add_long(&zone->uz_fails, 1); 2840 return (NULL); 2841 } 2842 2843 /* See uma.h */ 2844 void 2845 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 2846 { 2847 uma_cache_t cache; 2848 uma_bucket_t bucket; 2849 uma_zone_domain_t zdom; 2850 int cpu, domain, lockfail; 2851 2852 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2853 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 2854 2855 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 2856 zone->uz_name); 2857 2858 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2859 ("uma_zfree_arg: called with spinlock or critical section held")); 2860 2861 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 2862 if (item == NULL) 2863 return; 2864 #ifdef DEBUG_MEMGUARD 2865 if (is_memguard_addr(item)) { 2866 if (zone->uz_dtor != NULL) 2867 zone->uz_dtor(item, zone->uz_size, udata); 2868 if (zone->uz_fini != NULL) 2869 zone->uz_fini(item, zone->uz_size); 2870 memguard_free(item); 2871 return; 2872 } 2873 #endif 2874 #ifdef INVARIANTS 2875 if (zone->uz_flags & UMA_ZONE_MALLOC) 2876 uma_dbg_free(zone, udata, item); 2877 else 2878 uma_dbg_free(zone, NULL, item); 2879 #endif 2880 if (zone->uz_dtor != NULL) 2881 zone->uz_dtor(item, zone->uz_size, udata); 2882 2883 /* 2884 * The race here is acceptable. If we miss it we'll just have to wait 2885 * a little longer for the limits to be reset. 2886 */ 2887 if (zone->uz_flags & UMA_ZFLAG_FULL) 2888 goto zfree_item; 2889 2890 /* 2891 * If possible, free to the per-CPU cache. There are two 2892 * requirements for safe access to the per-CPU cache: (1) the thread 2893 * accessing the cache must not be preempted or yield during access, 2894 * and (2) the thread must not migrate CPUs without switching which 2895 * cache it accesses. We rely on a critical section to prevent 2896 * preemption and migration. We release the critical section in 2897 * order to acquire the zone mutex if we are unable to free to the 2898 * current cache; when we re-acquire the critical section, we must 2899 * detect and handle migration if it has occurred. 2900 */ 2901 zfree_restart: 2902 critical_enter(); 2903 cpu = curcpu; 2904 cache = &zone->uz_cpu[cpu]; 2905 2906 zfree_start: 2907 /* 2908 * Try to free into the allocbucket first to give LIFO ordering 2909 * for cache-hot datastructures. Spill over into the freebucket 2910 * if necessary. Alloc will swap them if one runs dry. 2911 */ 2912 bucket = cache->uc_allocbucket; 2913 if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries) 2914 bucket = cache->uc_freebucket; 2915 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 2916 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 2917 ("uma_zfree: Freeing to non free bucket index.")); 2918 bucket->ub_bucket[bucket->ub_cnt] = item; 2919 bucket->ub_cnt++; 2920 cache->uc_frees++; 2921 critical_exit(); 2922 return; 2923 } 2924 2925 /* 2926 * We must go back the zone, which requires acquiring the zone lock, 2927 * which in turn means we must release and re-acquire the critical 2928 * section. Since the critical section is released, we may be 2929 * preempted or migrate. As such, make sure not to maintain any 2930 * thread-local state specific to the cache from prior to releasing 2931 * the critical section. 2932 */ 2933 critical_exit(); 2934 if (zone->uz_count == 0 || bucketdisable) 2935 goto zfree_item; 2936 2937 lockfail = 0; 2938 if (ZONE_TRYLOCK(zone) == 0) { 2939 /* Record contention to size the buckets. */ 2940 ZONE_LOCK(zone); 2941 lockfail = 1; 2942 } 2943 critical_enter(); 2944 cpu = curcpu; 2945 cache = &zone->uz_cpu[cpu]; 2946 2947 /* 2948 * Since we have locked the zone we may as well send back our stats. 2949 */ 2950 atomic_add_long(&zone->uz_allocs, cache->uc_allocs); 2951 atomic_add_long(&zone->uz_frees, cache->uc_frees); 2952 cache->uc_allocs = 0; 2953 cache->uc_frees = 0; 2954 2955 bucket = cache->uc_freebucket; 2956 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 2957 ZONE_UNLOCK(zone); 2958 goto zfree_start; 2959 } 2960 cache->uc_freebucket = NULL; 2961 /* We are no longer associated with this CPU. */ 2962 critical_exit(); 2963 2964 if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) 2965 domain = PCPU_GET(domain); 2966 else 2967 domain = 0; 2968 zdom = &zone->uz_domain[0]; 2969 2970 /* Can we throw this on the zone full list? */ 2971 if (bucket != NULL) { 2972 CTR3(KTR_UMA, 2973 "uma_zfree: zone %s(%p) putting bucket %p on free list", 2974 zone->uz_name, zone, bucket); 2975 /* ub_cnt is pointing to the last free item */ 2976 KASSERT(bucket->ub_cnt != 0, 2977 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n")); 2978 if ((zone->uz_flags & UMA_ZONE_NOBUCKETCACHE) != 0) { 2979 ZONE_UNLOCK(zone); 2980 bucket_drain(zone, bucket); 2981 bucket_free(zone, bucket, udata); 2982 goto zfree_restart; 2983 } else 2984 LIST_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); 2985 } 2986 2987 /* 2988 * We bump the uz count when the cache size is insufficient to 2989 * handle the working set. 2990 */ 2991 if (lockfail && zone->uz_count < BUCKET_MAX) 2992 zone->uz_count++; 2993 ZONE_UNLOCK(zone); 2994 2995 bucket = bucket_alloc(zone, udata, M_NOWAIT); 2996 CTR3(KTR_UMA, "uma_zfree: zone %s(%p) allocated bucket %p", 2997 zone->uz_name, zone, bucket); 2998 if (bucket) { 2999 critical_enter(); 3000 cpu = curcpu; 3001 cache = &zone->uz_cpu[cpu]; 3002 if (cache->uc_freebucket == NULL && 3003 ((zone->uz_flags & UMA_ZONE_NUMA) == 0 || 3004 domain == PCPU_GET(domain))) { 3005 cache->uc_freebucket = bucket; 3006 goto zfree_start; 3007 } 3008 /* 3009 * We lost the race, start over. We have to drop our 3010 * critical section to free the bucket. 3011 */ 3012 critical_exit(); 3013 bucket_free(zone, bucket, udata); 3014 goto zfree_restart; 3015 } 3016 3017 /* 3018 * If nothing else caught this, we'll just do an internal free. 3019 */ 3020 zfree_item: 3021 zone_free_item(zone, item, udata, SKIP_DTOR); 3022 3023 return; 3024 } 3025 3026 void 3027 uma_zfree_domain(uma_zone_t zone, void *item, void *udata) 3028 { 3029 3030 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3031 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 3032 3033 CTR2(KTR_UMA, "uma_zfree_domain thread %x zone %s", curthread, 3034 zone->uz_name); 3035 3036 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3037 ("uma_zfree_domain: called with spinlock or critical section held")); 3038 3039 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 3040 if (item == NULL) 3041 return; 3042 zone_free_item(zone, item, udata, SKIP_NONE); 3043 } 3044 3045 static void 3046 slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item) 3047 { 3048 uma_domain_t dom; 3049 uint8_t freei; 3050 3051 mtx_assert(&keg->uk_lock, MA_OWNED); 3052 MPASS(keg == slab->us_keg); 3053 3054 dom = &keg->uk_domain[slab->us_domain]; 3055 3056 /* Do we need to remove from any lists? */ 3057 if (slab->us_freecount+1 == keg->uk_ipers) { 3058 LIST_REMOVE(slab, us_link); 3059 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 3060 } else if (slab->us_freecount == 0) { 3061 LIST_REMOVE(slab, us_link); 3062 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3063 } 3064 3065 /* Slab management. */ 3066 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3067 BIT_SET(SLAB_SETSIZE, freei, &slab->us_free); 3068 slab->us_freecount++; 3069 3070 /* Keg statistics. */ 3071 keg->uk_free++; 3072 } 3073 3074 static void 3075 zone_release(uma_zone_t zone, void **bucket, int cnt) 3076 { 3077 void *item; 3078 uma_slab_t slab; 3079 uma_keg_t keg; 3080 uint8_t *mem; 3081 int clearfull; 3082 int i; 3083 3084 clearfull = 0; 3085 keg = zone_first_keg(zone); 3086 KEG_LOCK(keg); 3087 for (i = 0; i < cnt; i++) { 3088 item = bucket[i]; 3089 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) { 3090 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 3091 if (zone->uz_flags & UMA_ZONE_HASH) { 3092 slab = hash_sfind(&keg->uk_hash, mem); 3093 } else { 3094 mem += keg->uk_pgoff; 3095 slab = (uma_slab_t)mem; 3096 } 3097 } else { 3098 slab = vtoslab((vm_offset_t)item); 3099 if (slab->us_keg != keg) { 3100 KEG_UNLOCK(keg); 3101 keg = slab->us_keg; 3102 KEG_LOCK(keg); 3103 } 3104 } 3105 slab_free_item(keg, slab, item); 3106 if (keg->uk_flags & UMA_ZFLAG_FULL) { 3107 if (keg->uk_pages < keg->uk_maxpages) { 3108 keg->uk_flags &= ~UMA_ZFLAG_FULL; 3109 clearfull = 1; 3110 } 3111 3112 /* 3113 * We can handle one more allocation. Since we're 3114 * clearing ZFLAG_FULL, wake up all procs blocked 3115 * on pages. This should be uncommon, so keeping this 3116 * simple for now (rather than adding count of blocked 3117 * threads etc). 3118 */ 3119 wakeup(keg); 3120 } 3121 } 3122 KEG_UNLOCK(keg); 3123 if (clearfull) { 3124 ZONE_LOCK(zone); 3125 zone->uz_flags &= ~UMA_ZFLAG_FULL; 3126 wakeup(zone); 3127 ZONE_UNLOCK(zone); 3128 } 3129 3130 } 3131 3132 /* 3133 * Frees a single item to any zone. 3134 * 3135 * Arguments: 3136 * zone The zone to free to 3137 * item The item we're freeing 3138 * udata User supplied data for the dtor 3139 * skip Skip dtors and finis 3140 */ 3141 static void 3142 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 3143 { 3144 3145 #ifdef INVARIANTS 3146 if (skip == SKIP_NONE) { 3147 if (zone->uz_flags & UMA_ZONE_MALLOC) 3148 uma_dbg_free(zone, udata, item); 3149 else 3150 uma_dbg_free(zone, NULL, item); 3151 } 3152 #endif 3153 if (skip < SKIP_DTOR && zone->uz_dtor) 3154 zone->uz_dtor(item, zone->uz_size, udata); 3155 3156 if (skip < SKIP_FINI && zone->uz_fini) 3157 zone->uz_fini(item, zone->uz_size); 3158 3159 atomic_add_long(&zone->uz_frees, 1); 3160 zone->uz_release(zone->uz_arg, &item, 1); 3161 } 3162 3163 /* See uma.h */ 3164 int 3165 uma_zone_set_max(uma_zone_t zone, int nitems) 3166 { 3167 uma_keg_t keg; 3168 3169 keg = zone_first_keg(zone); 3170 if (keg == NULL) 3171 return (0); 3172 KEG_LOCK(keg); 3173 keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera; 3174 if (keg->uk_maxpages * keg->uk_ipers < nitems) 3175 keg->uk_maxpages += keg->uk_ppera; 3176 nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers; 3177 KEG_UNLOCK(keg); 3178 3179 return (nitems); 3180 } 3181 3182 /* See uma.h */ 3183 int 3184 uma_zone_get_max(uma_zone_t zone) 3185 { 3186 int nitems; 3187 uma_keg_t keg; 3188 3189 keg = zone_first_keg(zone); 3190 if (keg == NULL) 3191 return (0); 3192 KEG_LOCK(keg); 3193 nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers; 3194 KEG_UNLOCK(keg); 3195 3196 return (nitems); 3197 } 3198 3199 /* See uma.h */ 3200 void 3201 uma_zone_set_warning(uma_zone_t zone, const char *warning) 3202 { 3203 3204 ZONE_LOCK(zone); 3205 zone->uz_warning = warning; 3206 ZONE_UNLOCK(zone); 3207 } 3208 3209 /* See uma.h */ 3210 void 3211 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 3212 { 3213 3214 ZONE_LOCK(zone); 3215 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 3216 ZONE_UNLOCK(zone); 3217 } 3218 3219 /* See uma.h */ 3220 int 3221 uma_zone_get_cur(uma_zone_t zone) 3222 { 3223 int64_t nitems; 3224 u_int i; 3225 3226 ZONE_LOCK(zone); 3227 nitems = zone->uz_allocs - zone->uz_frees; 3228 CPU_FOREACH(i) { 3229 /* 3230 * See the comment in sysctl_vm_zone_stats() regarding the 3231 * safety of accessing the per-cpu caches. With the zone lock 3232 * held, it is safe, but can potentially result in stale data. 3233 */ 3234 nitems += zone->uz_cpu[i].uc_allocs - 3235 zone->uz_cpu[i].uc_frees; 3236 } 3237 ZONE_UNLOCK(zone); 3238 3239 return (nitems < 0 ? 0 : nitems); 3240 } 3241 3242 /* See uma.h */ 3243 void 3244 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 3245 { 3246 uma_keg_t keg; 3247 3248 keg = zone_first_keg(zone); 3249 KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type")); 3250 KEG_LOCK(keg); 3251 KASSERT(keg->uk_pages == 0, 3252 ("uma_zone_set_init on non-empty keg")); 3253 keg->uk_init = uminit; 3254 KEG_UNLOCK(keg); 3255 } 3256 3257 /* See uma.h */ 3258 void 3259 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 3260 { 3261 uma_keg_t keg; 3262 3263 keg = zone_first_keg(zone); 3264 KASSERT(keg != NULL, ("uma_zone_set_fini: Invalid zone type")); 3265 KEG_LOCK(keg); 3266 KASSERT(keg->uk_pages == 0, 3267 ("uma_zone_set_fini on non-empty keg")); 3268 keg->uk_fini = fini; 3269 KEG_UNLOCK(keg); 3270 } 3271 3272 /* See uma.h */ 3273 void 3274 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 3275 { 3276 3277 ZONE_LOCK(zone); 3278 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3279 ("uma_zone_set_zinit on non-empty keg")); 3280 zone->uz_init = zinit; 3281 ZONE_UNLOCK(zone); 3282 } 3283 3284 /* See uma.h */ 3285 void 3286 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 3287 { 3288 3289 ZONE_LOCK(zone); 3290 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3291 ("uma_zone_set_zfini on non-empty keg")); 3292 zone->uz_fini = zfini; 3293 ZONE_UNLOCK(zone); 3294 } 3295 3296 /* See uma.h */ 3297 /* XXX uk_freef is not actually used with the zone locked */ 3298 void 3299 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 3300 { 3301 uma_keg_t keg; 3302 3303 keg = zone_first_keg(zone); 3304 KASSERT(keg != NULL, ("uma_zone_set_freef: Invalid zone type")); 3305 KEG_LOCK(keg); 3306 keg->uk_freef = freef; 3307 KEG_UNLOCK(keg); 3308 } 3309 3310 /* See uma.h */ 3311 /* XXX uk_allocf is not actually used with the zone locked */ 3312 void 3313 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 3314 { 3315 uma_keg_t keg; 3316 3317 keg = zone_first_keg(zone); 3318 KEG_LOCK(keg); 3319 keg->uk_allocf = allocf; 3320 KEG_UNLOCK(keg); 3321 } 3322 3323 /* See uma.h */ 3324 void 3325 uma_zone_reserve(uma_zone_t zone, int items) 3326 { 3327 uma_keg_t keg; 3328 3329 keg = zone_first_keg(zone); 3330 if (keg == NULL) 3331 return; 3332 KEG_LOCK(keg); 3333 keg->uk_reserve = items; 3334 KEG_UNLOCK(keg); 3335 3336 return; 3337 } 3338 3339 /* See uma.h */ 3340 int 3341 uma_zone_reserve_kva(uma_zone_t zone, int count) 3342 { 3343 uma_keg_t keg; 3344 vm_offset_t kva; 3345 u_int pages; 3346 3347 keg = zone_first_keg(zone); 3348 if (keg == NULL) 3349 return (0); 3350 pages = count / keg->uk_ipers; 3351 3352 if (pages * keg->uk_ipers < count) 3353 pages++; 3354 pages *= keg->uk_ppera; 3355 3356 #ifdef UMA_MD_SMALL_ALLOC 3357 if (keg->uk_ppera > 1) { 3358 #else 3359 if (1) { 3360 #endif 3361 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 3362 if (kva == 0) 3363 return (0); 3364 } else 3365 kva = 0; 3366 KEG_LOCK(keg); 3367 keg->uk_kva = kva; 3368 keg->uk_offset = 0; 3369 keg->uk_maxpages = pages; 3370 #ifdef UMA_MD_SMALL_ALLOC 3371 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 3372 #else 3373 keg->uk_allocf = noobj_alloc; 3374 #endif 3375 keg->uk_flags |= UMA_ZONE_NOFREE; 3376 KEG_UNLOCK(keg); 3377 3378 return (1); 3379 } 3380 3381 /* See uma.h */ 3382 void 3383 uma_prealloc(uma_zone_t zone, int items) 3384 { 3385 uma_domain_t dom; 3386 uma_slab_t slab; 3387 uma_keg_t keg; 3388 int domain, slabs; 3389 3390 keg = zone_first_keg(zone); 3391 if (keg == NULL) 3392 return; 3393 KEG_LOCK(keg); 3394 slabs = items / keg->uk_ipers; 3395 domain = 0; 3396 if (slabs * keg->uk_ipers < items) 3397 slabs++; 3398 while (slabs > 0) { 3399 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK); 3400 if (slab == NULL) 3401 break; 3402 MPASS(slab->us_keg == keg); 3403 dom = &keg->uk_domain[slab->us_domain]; 3404 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 3405 slabs--; 3406 domain = (domain + 1) % vm_ndomains; 3407 } 3408 KEG_UNLOCK(keg); 3409 } 3410 3411 /* See uma.h */ 3412 static void 3413 uma_reclaim_locked(bool kmem_danger) 3414 { 3415 3416 CTR0(KTR_UMA, "UMA: vm asked us to release pages!"); 3417 sx_assert(&uma_drain_lock, SA_XLOCKED); 3418 bucket_enable(); 3419 zone_foreach(zone_drain); 3420 if (vm_page_count_min() || kmem_danger) { 3421 cache_drain_safe(NULL); 3422 zone_foreach(zone_drain); 3423 } 3424 /* 3425 * Some slabs may have been freed but this zone will be visited early 3426 * we visit again so that we can free pages that are empty once other 3427 * zones are drained. We have to do the same for buckets. 3428 */ 3429 zone_drain(slabzone); 3430 bucket_zone_drain(); 3431 } 3432 3433 void 3434 uma_reclaim(void) 3435 { 3436 3437 sx_xlock(&uma_drain_lock); 3438 uma_reclaim_locked(false); 3439 sx_xunlock(&uma_drain_lock); 3440 } 3441 3442 static volatile int uma_reclaim_needed; 3443 3444 void 3445 uma_reclaim_wakeup(void) 3446 { 3447 3448 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 3449 wakeup(uma_reclaim); 3450 } 3451 3452 void 3453 uma_reclaim_worker(void *arg __unused) 3454 { 3455 3456 for (;;) { 3457 sx_xlock(&uma_drain_lock); 3458 while (atomic_load_int(&uma_reclaim_needed) == 0) 3459 sx_sleep(uma_reclaim, &uma_drain_lock, PVM, "umarcl", 3460 hz); 3461 sx_xunlock(&uma_drain_lock); 3462 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 3463 sx_xlock(&uma_drain_lock); 3464 uma_reclaim_locked(true); 3465 atomic_store_int(&uma_reclaim_needed, 0); 3466 sx_xunlock(&uma_drain_lock); 3467 /* Don't fire more than once per-second. */ 3468 pause("umarclslp", hz); 3469 } 3470 } 3471 3472 /* See uma.h */ 3473 int 3474 uma_zone_exhausted(uma_zone_t zone) 3475 { 3476 int full; 3477 3478 ZONE_LOCK(zone); 3479 full = (zone->uz_flags & UMA_ZFLAG_FULL); 3480 ZONE_UNLOCK(zone); 3481 return (full); 3482 } 3483 3484 int 3485 uma_zone_exhausted_nolock(uma_zone_t zone) 3486 { 3487 return (zone->uz_flags & UMA_ZFLAG_FULL); 3488 } 3489 3490 void * 3491 uma_large_malloc_domain(vm_size_t size, int domain, int wait) 3492 { 3493 vm_offset_t addr; 3494 uma_slab_t slab; 3495 3496 slab = zone_alloc_item(slabzone, NULL, domain, wait); 3497 if (slab == NULL) 3498 return (NULL); 3499 if (domain == UMA_ANYDOMAIN) 3500 addr = kmem_malloc(kernel_arena, size, wait); 3501 else 3502 addr = kmem_malloc_domain(domain, size, wait); 3503 if (addr != 0) { 3504 vsetslab(addr, slab); 3505 slab->us_data = (void *)addr; 3506 slab->us_flags = UMA_SLAB_KERNEL | UMA_SLAB_MALLOC; 3507 slab->us_size = size; 3508 slab->us_domain = vm_phys_domain(PHYS_TO_VM_PAGE( 3509 pmap_kextract(addr))); 3510 uma_total_inc(size); 3511 } else { 3512 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3513 } 3514 3515 return ((void *)addr); 3516 } 3517 3518 void * 3519 uma_large_malloc(vm_size_t size, int wait) 3520 { 3521 3522 return uma_large_malloc_domain(size, UMA_ANYDOMAIN, wait); 3523 } 3524 3525 void 3526 uma_large_free(uma_slab_t slab) 3527 { 3528 3529 KASSERT((slab->us_flags & UMA_SLAB_KERNEL) != 0, 3530 ("uma_large_free: Memory not allocated with uma_large_malloc.")); 3531 kmem_free(kernel_arena, (vm_offset_t)slab->us_data, slab->us_size); 3532 uma_total_dec(slab->us_size); 3533 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3534 } 3535 3536 static void 3537 uma_zero_item(void *item, uma_zone_t zone) 3538 { 3539 int i; 3540 3541 if (zone->uz_flags & UMA_ZONE_PCPU) { 3542 CPU_FOREACH(i) 3543 bzero(zpcpu_get_cpu(item, i), zone->uz_size); 3544 } else 3545 bzero(item, zone->uz_size); 3546 } 3547 3548 unsigned long 3549 uma_limit(void) 3550 { 3551 3552 return (uma_kmem_limit); 3553 } 3554 3555 void 3556 uma_set_limit(unsigned long limit) 3557 { 3558 3559 uma_kmem_limit = limit; 3560 } 3561 3562 unsigned long 3563 uma_size(void) 3564 { 3565 3566 return (uma_kmem_total); 3567 } 3568 3569 long 3570 uma_avail(void) 3571 { 3572 3573 return (uma_kmem_limit - uma_kmem_total); 3574 } 3575 3576 void 3577 uma_print_stats(void) 3578 { 3579 zone_foreach(uma_print_zone); 3580 } 3581 3582 static void 3583 slab_print(uma_slab_t slab) 3584 { 3585 printf("slab: keg %p, data %p, freecount %d\n", 3586 slab->us_keg, slab->us_data, slab->us_freecount); 3587 } 3588 3589 static void 3590 cache_print(uma_cache_t cache) 3591 { 3592 printf("alloc: %p(%d), free: %p(%d)\n", 3593 cache->uc_allocbucket, 3594 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, 3595 cache->uc_freebucket, 3596 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0); 3597 } 3598 3599 static void 3600 uma_print_keg(uma_keg_t keg) 3601 { 3602 uma_domain_t dom; 3603 uma_slab_t slab; 3604 int i; 3605 3606 printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d " 3607 "out %d free %d limit %d\n", 3608 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags, 3609 keg->uk_ipers, keg->uk_ppera, 3610 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 3611 keg->uk_free, (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers); 3612 for (i = 0; i < vm_ndomains; i++) { 3613 dom = &keg->uk_domain[i]; 3614 printf("Part slabs:\n"); 3615 LIST_FOREACH(slab, &dom->ud_part_slab, us_link) 3616 slab_print(slab); 3617 printf("Free slabs:\n"); 3618 LIST_FOREACH(slab, &dom->ud_free_slab, us_link) 3619 slab_print(slab); 3620 printf("Full slabs:\n"); 3621 LIST_FOREACH(slab, &dom->ud_full_slab, us_link) 3622 slab_print(slab); 3623 } 3624 } 3625 3626 void 3627 uma_print_zone(uma_zone_t zone) 3628 { 3629 uma_cache_t cache; 3630 uma_klink_t kl; 3631 int i; 3632 3633 printf("zone: %s(%p) size %d flags %#x\n", 3634 zone->uz_name, zone, zone->uz_size, zone->uz_flags); 3635 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) 3636 uma_print_keg(kl->kl_keg); 3637 CPU_FOREACH(i) { 3638 cache = &zone->uz_cpu[i]; 3639 printf("CPU %d Cache:\n", i); 3640 cache_print(cache); 3641 } 3642 } 3643 3644 #ifdef DDB 3645 /* 3646 * Generate statistics across both the zone and its per-cpu cache's. Return 3647 * desired statistics if the pointer is non-NULL for that statistic. 3648 * 3649 * Note: does not update the zone statistics, as it can't safely clear the 3650 * per-CPU cache statistic. 3651 * 3652 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't 3653 * safe from off-CPU; we should modify the caches to track this information 3654 * directly so that we don't have to. 3655 */ 3656 static void 3657 uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp, 3658 uint64_t *freesp, uint64_t *sleepsp) 3659 { 3660 uma_cache_t cache; 3661 uint64_t allocs, frees, sleeps; 3662 int cachefree, cpu; 3663 3664 allocs = frees = sleeps = 0; 3665 cachefree = 0; 3666 CPU_FOREACH(cpu) { 3667 cache = &z->uz_cpu[cpu]; 3668 if (cache->uc_allocbucket != NULL) 3669 cachefree += cache->uc_allocbucket->ub_cnt; 3670 if (cache->uc_freebucket != NULL) 3671 cachefree += cache->uc_freebucket->ub_cnt; 3672 allocs += cache->uc_allocs; 3673 frees += cache->uc_frees; 3674 } 3675 allocs += z->uz_allocs; 3676 frees += z->uz_frees; 3677 sleeps += z->uz_sleeps; 3678 if (cachefreep != NULL) 3679 *cachefreep = cachefree; 3680 if (allocsp != NULL) 3681 *allocsp = allocs; 3682 if (freesp != NULL) 3683 *freesp = frees; 3684 if (sleepsp != NULL) 3685 *sleepsp = sleeps; 3686 } 3687 #endif /* DDB */ 3688 3689 static int 3690 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 3691 { 3692 uma_keg_t kz; 3693 uma_zone_t z; 3694 int count; 3695 3696 count = 0; 3697 rw_rlock(&uma_rwlock); 3698 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3699 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3700 count++; 3701 } 3702 rw_runlock(&uma_rwlock); 3703 return (sysctl_handle_int(oidp, &count, 0, req)); 3704 } 3705 3706 static int 3707 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 3708 { 3709 struct uma_stream_header ush; 3710 struct uma_type_header uth; 3711 struct uma_percpu_stat *ups; 3712 uma_bucket_t bucket; 3713 uma_zone_domain_t zdom; 3714 struct sbuf sbuf; 3715 uma_cache_t cache; 3716 uma_klink_t kl; 3717 uma_keg_t kz; 3718 uma_zone_t z; 3719 uma_keg_t k; 3720 int count, error, i; 3721 3722 error = sysctl_wire_old_buffer(req, 0); 3723 if (error != 0) 3724 return (error); 3725 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 3726 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 3727 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 3728 3729 count = 0; 3730 rw_rlock(&uma_rwlock); 3731 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3732 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3733 count++; 3734 } 3735 3736 /* 3737 * Insert stream header. 3738 */ 3739 bzero(&ush, sizeof(ush)); 3740 ush.ush_version = UMA_STREAM_VERSION; 3741 ush.ush_maxcpus = (mp_maxid + 1); 3742 ush.ush_count = count; 3743 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 3744 3745 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3746 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3747 bzero(&uth, sizeof(uth)); 3748 ZONE_LOCK(z); 3749 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 3750 uth.uth_align = kz->uk_align; 3751 uth.uth_size = kz->uk_size; 3752 uth.uth_rsize = kz->uk_rsize; 3753 LIST_FOREACH(kl, &z->uz_kegs, kl_link) { 3754 k = kl->kl_keg; 3755 uth.uth_maxpages += k->uk_maxpages; 3756 uth.uth_pages += k->uk_pages; 3757 uth.uth_keg_free += k->uk_free; 3758 uth.uth_limit = (k->uk_maxpages / k->uk_ppera) 3759 * k->uk_ipers; 3760 } 3761 3762 /* 3763 * A zone is secondary is it is not the first entry 3764 * on the keg's zone list. 3765 */ 3766 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 3767 (LIST_FIRST(&kz->uk_zones) != z)) 3768 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 3769 3770 for (i = 0; i < vm_ndomains; i++) { 3771 zdom = &z->uz_domain[i]; 3772 LIST_FOREACH(bucket, &zdom->uzd_buckets, 3773 ub_link) 3774 uth.uth_zone_free += bucket->ub_cnt; 3775 } 3776 uth.uth_allocs = z->uz_allocs; 3777 uth.uth_frees = z->uz_frees; 3778 uth.uth_fails = z->uz_fails; 3779 uth.uth_sleeps = z->uz_sleeps; 3780 /* 3781 * While it is not normally safe to access the cache 3782 * bucket pointers while not on the CPU that owns the 3783 * cache, we only allow the pointers to be exchanged 3784 * without the zone lock held, not invalidated, so 3785 * accept the possible race associated with bucket 3786 * exchange during monitoring. 3787 */ 3788 for (i = 0; i < mp_maxid + 1; i++) { 3789 bzero(&ups[i], sizeof(*ups)); 3790 if (kz->uk_flags & UMA_ZFLAG_INTERNAL || 3791 CPU_ABSENT(i)) 3792 continue; 3793 cache = &z->uz_cpu[i]; 3794 if (cache->uc_allocbucket != NULL) 3795 ups[i].ups_cache_free += 3796 cache->uc_allocbucket->ub_cnt; 3797 if (cache->uc_freebucket != NULL) 3798 ups[i].ups_cache_free += 3799 cache->uc_freebucket->ub_cnt; 3800 ups[i].ups_allocs = cache->uc_allocs; 3801 ups[i].ups_frees = cache->uc_frees; 3802 } 3803 ZONE_UNLOCK(z); 3804 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 3805 for (i = 0; i < mp_maxid + 1; i++) 3806 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 3807 } 3808 } 3809 rw_runlock(&uma_rwlock); 3810 error = sbuf_finish(&sbuf); 3811 sbuf_delete(&sbuf); 3812 free(ups, M_TEMP); 3813 return (error); 3814 } 3815 3816 int 3817 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 3818 { 3819 uma_zone_t zone = *(uma_zone_t *)arg1; 3820 int error, max; 3821 3822 max = uma_zone_get_max(zone); 3823 error = sysctl_handle_int(oidp, &max, 0, req); 3824 if (error || !req->newptr) 3825 return (error); 3826 3827 uma_zone_set_max(zone, max); 3828 3829 return (0); 3830 } 3831 3832 int 3833 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 3834 { 3835 uma_zone_t zone = *(uma_zone_t *)arg1; 3836 int cur; 3837 3838 cur = uma_zone_get_cur(zone); 3839 return (sysctl_handle_int(oidp, &cur, 0, req)); 3840 } 3841 3842 #ifdef INVARIANTS 3843 static uma_slab_t 3844 uma_dbg_getslab(uma_zone_t zone, void *item) 3845 { 3846 uma_slab_t slab; 3847 uma_keg_t keg; 3848 uint8_t *mem; 3849 3850 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 3851 if (zone->uz_flags & UMA_ZONE_VTOSLAB) { 3852 slab = vtoslab((vm_offset_t)mem); 3853 } else { 3854 /* 3855 * It is safe to return the slab here even though the 3856 * zone is unlocked because the item's allocation state 3857 * essentially holds a reference. 3858 */ 3859 ZONE_LOCK(zone); 3860 keg = LIST_FIRST(&zone->uz_kegs)->kl_keg; 3861 if (keg->uk_flags & UMA_ZONE_HASH) 3862 slab = hash_sfind(&keg->uk_hash, mem); 3863 else 3864 slab = (uma_slab_t)(mem + keg->uk_pgoff); 3865 ZONE_UNLOCK(zone); 3866 } 3867 3868 return (slab); 3869 } 3870 3871 /* 3872 * Set up the slab's freei data such that uma_dbg_free can function. 3873 * 3874 */ 3875 static void 3876 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 3877 { 3878 uma_keg_t keg; 3879 int freei; 3880 3881 if (zone_first_keg(zone) == NULL) 3882 return; 3883 if (slab == NULL) { 3884 slab = uma_dbg_getslab(zone, item); 3885 if (slab == NULL) 3886 panic("uma: item %p did not belong to zone %s\n", 3887 item, zone->uz_name); 3888 } 3889 keg = slab->us_keg; 3890 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3891 3892 if (BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 3893 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n", 3894 item, zone, zone->uz_name, slab, freei); 3895 BIT_SET_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 3896 3897 return; 3898 } 3899 3900 /* 3901 * Verifies freed addresses. Checks for alignment, valid slab membership 3902 * and duplicate frees. 3903 * 3904 */ 3905 static void 3906 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 3907 { 3908 uma_keg_t keg; 3909 int freei; 3910 3911 if (zone_first_keg(zone) == NULL) 3912 return; 3913 if (slab == NULL) { 3914 slab = uma_dbg_getslab(zone, item); 3915 if (slab == NULL) 3916 panic("uma: Freed item %p did not belong to zone %s\n", 3917 item, zone->uz_name); 3918 } 3919 keg = slab->us_keg; 3920 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3921 3922 if (freei >= keg->uk_ipers) 3923 panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n", 3924 item, zone, zone->uz_name, slab, freei); 3925 3926 if (((freei * keg->uk_rsize) + slab->us_data) != item) 3927 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n", 3928 item, zone, zone->uz_name, slab, freei); 3929 3930 if (!BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 3931 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n", 3932 item, zone, zone->uz_name, slab, freei); 3933 3934 BIT_CLR_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 3935 } 3936 #endif /* INVARIANTS */ 3937 3938 #ifdef DDB 3939 DB_SHOW_COMMAND(uma, db_show_uma) 3940 { 3941 uma_bucket_t bucket; 3942 uma_keg_t kz; 3943 uma_zone_t z; 3944 uma_zone_domain_t zdom; 3945 uint64_t allocs, frees, sleeps; 3946 int cachefree, i; 3947 3948 db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used", 3949 "Free", "Requests", "Sleeps", "Bucket"); 3950 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3951 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3952 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 3953 allocs = z->uz_allocs; 3954 frees = z->uz_frees; 3955 sleeps = z->uz_sleeps; 3956 cachefree = 0; 3957 } else 3958 uma_zone_sumstat(z, &cachefree, &allocs, 3959 &frees, &sleeps); 3960 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 3961 (LIST_FIRST(&kz->uk_zones) != z))) 3962 cachefree += kz->uk_free; 3963 for (i = 0; i < vm_ndomains; i++) { 3964 zdom = &z->uz_domain[i]; 3965 LIST_FOREACH(bucket, &zdom->uzd_buckets, 3966 ub_link) 3967 cachefree += bucket->ub_cnt; 3968 } 3969 db_printf("%18s %8ju %8jd %8d %12ju %8ju %8u\n", 3970 z->uz_name, (uintmax_t)kz->uk_size, 3971 (intmax_t)(allocs - frees), cachefree, 3972 (uintmax_t)allocs, sleeps, z->uz_count); 3973 if (db_pager_quit) 3974 return; 3975 } 3976 } 3977 } 3978 3979 DB_SHOW_COMMAND(umacache, db_show_umacache) 3980 { 3981 uma_bucket_t bucket; 3982 uma_zone_t z; 3983 uma_zone_domain_t zdom; 3984 uint64_t allocs, frees; 3985 int cachefree, i; 3986 3987 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 3988 "Requests", "Bucket"); 3989 LIST_FOREACH(z, &uma_cachezones, uz_link) { 3990 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL); 3991 for (i = 0; i < vm_ndomains; i++) { 3992 zdom = &z->uz_domain[i]; 3993 LIST_FOREACH(bucket, &zdom->uzd_buckets, ub_link) 3994 cachefree += bucket->ub_cnt; 3995 } 3996 db_printf("%18s %8ju %8jd %8d %12ju %8u\n", 3997 z->uz_name, (uintmax_t)z->uz_size, 3998 (intmax_t)(allocs - frees), cachefree, 3999 (uintmax_t)allocs, z->uz_count); 4000 if (db_pager_quit) 4001 return; 4002 } 4003 } 4004 #endif /* DDB */ 4005