1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/bitset.h> 62 #include <sys/domainset.h> 63 #include <sys/eventhandler.h> 64 #include <sys/kernel.h> 65 #include <sys/types.h> 66 #include <sys/limits.h> 67 #include <sys/queue.h> 68 #include <sys/malloc.h> 69 #include <sys/ktr.h> 70 #include <sys/lock.h> 71 #include <sys/sysctl.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/random.h> 75 #include <sys/rwlock.h> 76 #include <sys/sbuf.h> 77 #include <sys/sched.h> 78 #include <sys/smp.h> 79 #include <sys/taskqueue.h> 80 #include <sys/vmmeter.h> 81 82 #include <vm/vm.h> 83 #include <vm/vm_domainset.h> 84 #include <vm/vm_object.h> 85 #include <vm/vm_page.h> 86 #include <vm/vm_pageout.h> 87 #include <vm/vm_param.h> 88 #include <vm/vm_phys.h> 89 #include <vm/vm_pagequeue.h> 90 #include <vm/vm_map.h> 91 #include <vm/vm_kern.h> 92 #include <vm/vm_extern.h> 93 #include <vm/uma.h> 94 #include <vm/uma_int.h> 95 #include <vm/uma_dbg.h> 96 97 #include <ddb/ddb.h> 98 99 #ifdef DEBUG_MEMGUARD 100 #include <vm/memguard.h> 101 #endif 102 103 /* 104 * This is the zone and keg from which all zones are spawned. 105 */ 106 static uma_zone_t kegs; 107 static uma_zone_t zones; 108 109 /* This is the zone from which all offpage uma_slab_ts are allocated. */ 110 static uma_zone_t slabzone; 111 112 /* 113 * The initial hash tables come out of this zone so they can be allocated 114 * prior to malloc coming up. 115 */ 116 static uma_zone_t hashzone; 117 118 /* The boot-time adjusted value for cache line alignment. */ 119 int uma_align_cache = 64 - 1; 120 121 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 122 static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc"); 123 124 /* 125 * Are we allowed to allocate buckets? 126 */ 127 static int bucketdisable = 1; 128 129 /* Linked list of all kegs in the system */ 130 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 131 132 /* Linked list of all cache-only zones in the system */ 133 static LIST_HEAD(,uma_zone) uma_cachezones = 134 LIST_HEAD_INITIALIZER(uma_cachezones); 135 136 /* This RW lock protects the keg list */ 137 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 138 139 /* 140 * Pointer and counter to pool of pages, that is preallocated at 141 * startup to bootstrap UMA. 142 */ 143 static char *bootmem; 144 static int boot_pages; 145 146 static struct sx uma_reclaim_lock; 147 148 /* 149 * kmem soft limit, initialized by uma_set_limit(). Ensure that early 150 * allocations don't trigger a wakeup of the reclaim thread. 151 */ 152 unsigned long uma_kmem_limit = LONG_MAX; 153 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0, 154 "UMA kernel memory soft limit"); 155 unsigned long uma_kmem_total; 156 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0, 157 "UMA kernel memory usage"); 158 159 /* Is the VM done starting up? */ 160 static enum { BOOT_COLD = 0, BOOT_STRAPPED, BOOT_PAGEALLOC, BOOT_BUCKETS, 161 BOOT_RUNNING } booted = BOOT_COLD; 162 163 /* 164 * This is the handle used to schedule events that need to happen 165 * outside of the allocation fast path. 166 */ 167 static struct callout uma_callout; 168 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 169 170 /* 171 * This structure is passed as the zone ctor arg so that I don't have to create 172 * a special allocation function just for zones. 173 */ 174 struct uma_zctor_args { 175 const char *name; 176 size_t size; 177 uma_ctor ctor; 178 uma_dtor dtor; 179 uma_init uminit; 180 uma_fini fini; 181 uma_import import; 182 uma_release release; 183 void *arg; 184 uma_keg_t keg; 185 int align; 186 uint32_t flags; 187 }; 188 189 struct uma_kctor_args { 190 uma_zone_t zone; 191 size_t size; 192 uma_init uminit; 193 uma_fini fini; 194 int align; 195 uint32_t flags; 196 }; 197 198 struct uma_bucket_zone { 199 uma_zone_t ubz_zone; 200 char *ubz_name; 201 int ubz_entries; /* Number of items it can hold. */ 202 int ubz_maxsize; /* Maximum allocation size per-item. */ 203 }; 204 205 /* 206 * Compute the actual number of bucket entries to pack them in power 207 * of two sizes for more efficient space utilization. 208 */ 209 #define BUCKET_SIZE(n) \ 210 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 211 212 #define BUCKET_MAX BUCKET_SIZE(256) 213 #define BUCKET_MIN BUCKET_SIZE(4) 214 215 struct uma_bucket_zone bucket_zones[] = { 216 { NULL, "4 Bucket", BUCKET_SIZE(4), 4096 }, 217 { NULL, "6 Bucket", BUCKET_SIZE(6), 3072 }, 218 { NULL, "8 Bucket", BUCKET_SIZE(8), 2048 }, 219 { NULL, "12 Bucket", BUCKET_SIZE(12), 1536 }, 220 { NULL, "16 Bucket", BUCKET_SIZE(16), 1024 }, 221 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 222 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 223 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 224 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 225 { NULL, NULL, 0} 226 }; 227 228 /* 229 * Flags and enumerations to be passed to internal functions. 230 */ 231 enum zfreeskip { 232 SKIP_NONE = 0, 233 SKIP_CNT = 0x00000001, 234 SKIP_DTOR = 0x00010000, 235 SKIP_FINI = 0x00020000, 236 }; 237 238 /* Prototypes.. */ 239 240 int uma_startup_count(int); 241 void uma_startup(void *, int); 242 void uma_startup1(void); 243 void uma_startup2(void); 244 245 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 246 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 247 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 248 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 249 static void page_free(void *, vm_size_t, uint8_t); 250 static void pcpu_page_free(void *, vm_size_t, uint8_t); 251 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int); 252 static void cache_drain(uma_zone_t); 253 static void bucket_drain(uma_zone_t, uma_bucket_t); 254 static void bucket_cache_reclaim(uma_zone_t zone, bool); 255 static int keg_ctor(void *, int, void *, int); 256 static void keg_dtor(void *, int, void *); 257 static int zone_ctor(void *, int, void *, int); 258 static void zone_dtor(void *, int, void *); 259 static int zero_init(void *, int, int); 260 static void keg_small_init(uma_keg_t keg); 261 static void keg_large_init(uma_keg_t keg); 262 static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *); 263 static void zone_timeout(uma_zone_t zone, void *); 264 static int hash_alloc(struct uma_hash *, u_int); 265 static int hash_expand(struct uma_hash *, struct uma_hash *); 266 static void hash_free(struct uma_hash *hash); 267 static void uma_timeout(void *); 268 static void uma_startup3(void); 269 static void *zone_alloc_item(uma_zone_t, void *, int, int); 270 static void *zone_alloc_item_locked(uma_zone_t, void *, int, int); 271 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 272 static void bucket_enable(void); 273 static void bucket_init(void); 274 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 275 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 276 static void bucket_zone_drain(void); 277 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int); 278 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 279 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item); 280 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 281 uma_fini fini, int align, uint32_t flags); 282 static int zone_import(void *, void **, int, int, int); 283 static void zone_release(void *, void **, int); 284 static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int); 285 static bool cache_free(uma_zone_t, uma_cache_t, void *, void *, int); 286 287 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 288 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 289 static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS); 290 static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS); 291 static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS); 292 static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS); 293 294 #ifdef INVARIANTS 295 static inline struct noslabbits *slab_dbg_bits(uma_slab_t slab, uma_keg_t keg); 296 297 static bool uma_dbg_kskip(uma_keg_t keg, void *mem); 298 static bool uma_dbg_zskip(uma_zone_t zone, void *mem); 299 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 300 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 301 302 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD, 0, 303 "Memory allocation debugging"); 304 305 static u_int dbg_divisor = 1; 306 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor, 307 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0, 308 "Debug & thrash every this item in memory allocator"); 309 310 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER; 311 static counter_u64_t uma_skip_cnt = EARLY_COUNTER; 312 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD, 313 &uma_dbg_cnt, "memory items debugged"); 314 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD, 315 &uma_skip_cnt, "memory items skipped, not debugged"); 316 #endif 317 318 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 319 320 SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW, 0, "Universal Memory Allocator"); 321 322 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 323 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 324 325 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 326 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 327 328 static int zone_warnings = 1; 329 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 330 "Warn when UMA zones becomes full"); 331 332 /* 333 * This routine checks to see whether or not it's safe to enable buckets. 334 */ 335 static void 336 bucket_enable(void) 337 { 338 339 KASSERT(booted >= BOOT_BUCKETS, ("Bucket enable before init")); 340 bucketdisable = vm_page_count_min(); 341 } 342 343 /* 344 * Initialize bucket_zones, the array of zones of buckets of various sizes. 345 * 346 * For each zone, calculate the memory required for each bucket, consisting 347 * of the header and an array of pointers. 348 */ 349 static void 350 bucket_init(void) 351 { 352 struct uma_bucket_zone *ubz; 353 int size; 354 355 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 356 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 357 size += sizeof(void *) * ubz->ubz_entries; 358 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 359 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 360 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | UMA_ZONE_NUMA); 361 } 362 } 363 364 /* 365 * Given a desired number of entries for a bucket, return the zone from which 366 * to allocate the bucket. 367 */ 368 static struct uma_bucket_zone * 369 bucket_zone_lookup(int entries) 370 { 371 struct uma_bucket_zone *ubz; 372 373 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 374 if (ubz->ubz_entries >= entries) 375 return (ubz); 376 ubz--; 377 return (ubz); 378 } 379 380 static struct uma_bucket_zone * 381 bucket_zone_max(uma_zone_t zone, int nitems) 382 { 383 struct uma_bucket_zone *ubz; 384 int bpcpu; 385 386 bpcpu = 2; 387 #ifdef UMA_XDOMAIN 388 if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) 389 /* Count the cross-domain bucket. */ 390 bpcpu++; 391 #endif 392 393 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 394 if (ubz->ubz_entries * bpcpu * mp_ncpus > nitems) 395 break; 396 if (ubz == &bucket_zones[0]) 397 ubz = NULL; 398 else 399 ubz--; 400 return (ubz); 401 } 402 403 static int 404 bucket_select(int size) 405 { 406 struct uma_bucket_zone *ubz; 407 408 ubz = &bucket_zones[0]; 409 if (size > ubz->ubz_maxsize) 410 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 411 412 for (; ubz->ubz_entries != 0; ubz++) 413 if (ubz->ubz_maxsize < size) 414 break; 415 ubz--; 416 return (ubz->ubz_entries); 417 } 418 419 static uma_bucket_t 420 bucket_alloc(uma_zone_t zone, void *udata, int flags) 421 { 422 struct uma_bucket_zone *ubz; 423 uma_bucket_t bucket; 424 425 /* 426 * This is to stop us from allocating per cpu buckets while we're 427 * running out of vm.boot_pages. Otherwise, we would exhaust the 428 * boot pages. This also prevents us from allocating buckets in 429 * low memory situations. 430 */ 431 if (bucketdisable) 432 return (NULL); 433 /* 434 * To limit bucket recursion we store the original zone flags 435 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 436 * NOVM flag to persist even through deep recursions. We also 437 * store ZFLAG_BUCKET once we have recursed attempting to allocate 438 * a bucket for a bucket zone so we do not allow infinite bucket 439 * recursion. This cookie will even persist to frees of unused 440 * buckets via the allocation path or bucket allocations in the 441 * free path. 442 */ 443 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 444 udata = (void *)(uintptr_t)zone->uz_flags; 445 else { 446 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 447 return (NULL); 448 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 449 } 450 if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY) 451 flags |= M_NOVM; 452 ubz = bucket_zone_lookup(zone->uz_bucket_size); 453 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 454 ubz++; 455 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 456 if (bucket) { 457 #ifdef INVARIANTS 458 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 459 #endif 460 bucket->ub_cnt = 0; 461 bucket->ub_entries = ubz->ubz_entries; 462 } 463 464 return (bucket); 465 } 466 467 static void 468 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 469 { 470 struct uma_bucket_zone *ubz; 471 472 KASSERT(bucket->ub_cnt == 0, 473 ("bucket_free: Freeing a non free bucket.")); 474 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 475 udata = (void *)(uintptr_t)zone->uz_flags; 476 ubz = bucket_zone_lookup(bucket->ub_entries); 477 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 478 } 479 480 static void 481 bucket_zone_drain(void) 482 { 483 struct uma_bucket_zone *ubz; 484 485 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 486 uma_zone_reclaim(ubz->ubz_zone, UMA_RECLAIM_DRAIN); 487 } 488 489 /* 490 * Attempt to satisfy an allocation by retrieving a full bucket from one of the 491 * zone's caches. 492 */ 493 static uma_bucket_t 494 zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom) 495 { 496 uma_bucket_t bucket; 497 498 ZONE_LOCK_ASSERT(zone); 499 500 if ((bucket = TAILQ_FIRST(&zdom->uzd_buckets)) != NULL) { 501 MPASS(zdom->uzd_nitems >= bucket->ub_cnt); 502 TAILQ_REMOVE(&zdom->uzd_buckets, bucket, ub_link); 503 zdom->uzd_nitems -= bucket->ub_cnt; 504 if (zdom->uzd_imin > zdom->uzd_nitems) 505 zdom->uzd_imin = zdom->uzd_nitems; 506 zone->uz_bkt_count -= bucket->ub_cnt; 507 } 508 return (bucket); 509 } 510 511 /* 512 * Insert a full bucket into the specified cache. The "ws" parameter indicates 513 * whether the bucket's contents should be counted as part of the zone's working 514 * set. 515 */ 516 static void 517 zone_put_bucket(uma_zone_t zone, uma_zone_domain_t zdom, uma_bucket_t bucket, 518 const bool ws) 519 { 520 521 ZONE_LOCK_ASSERT(zone); 522 KASSERT(!ws || zone->uz_bkt_count < zone->uz_bkt_max, 523 ("%s: zone %p overflow", __func__, zone)); 524 525 if (ws) 526 TAILQ_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); 527 else 528 TAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link); 529 zdom->uzd_nitems += bucket->ub_cnt; 530 if (ws && zdom->uzd_imax < zdom->uzd_nitems) 531 zdom->uzd_imax = zdom->uzd_nitems; 532 zone->uz_bkt_count += bucket->ub_cnt; 533 } 534 535 /* Pops an item out of a per-cpu cache bucket. */ 536 static inline void * 537 cache_bucket_pop(uma_cache_t cache, uma_cache_bucket_t bucket) 538 { 539 void *item; 540 541 CRITICAL_ASSERT(curthread); 542 543 bucket->ucb_cnt--; 544 item = bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt]; 545 #ifdef INVARIANTS 546 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = NULL; 547 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 548 #endif 549 cache->uc_allocs++; 550 551 return (item); 552 } 553 554 /* Pushes an item into a per-cpu cache bucket. */ 555 static inline void 556 cache_bucket_push(uma_cache_t cache, uma_cache_bucket_t bucket, void *item) 557 { 558 559 CRITICAL_ASSERT(curthread); 560 KASSERT(bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] == NULL, 561 ("uma_zfree: Freeing to non free bucket index.")); 562 563 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = item; 564 bucket->ucb_cnt++; 565 cache->uc_frees++; 566 } 567 568 /* 569 * Unload a UMA bucket from a per-cpu cache. 570 */ 571 static inline uma_bucket_t 572 cache_bucket_unload(uma_cache_bucket_t bucket) 573 { 574 uma_bucket_t b; 575 576 b = bucket->ucb_bucket; 577 if (b != NULL) { 578 MPASS(b->ub_entries == bucket->ucb_entries); 579 b->ub_cnt = bucket->ucb_cnt; 580 bucket->ucb_bucket = NULL; 581 bucket->ucb_entries = bucket->ucb_cnt = 0; 582 } 583 584 return (b); 585 } 586 587 static inline uma_bucket_t 588 cache_bucket_unload_alloc(uma_cache_t cache) 589 { 590 591 return (cache_bucket_unload(&cache->uc_allocbucket)); 592 } 593 594 static inline uma_bucket_t 595 cache_bucket_unload_free(uma_cache_t cache) 596 { 597 598 return (cache_bucket_unload(&cache->uc_freebucket)); 599 } 600 601 static inline uma_bucket_t 602 cache_bucket_unload_cross(uma_cache_t cache) 603 { 604 605 return (cache_bucket_unload(&cache->uc_crossbucket)); 606 } 607 608 /* 609 * Load a bucket into a per-cpu cache bucket. 610 */ 611 static inline void 612 cache_bucket_load(uma_cache_bucket_t bucket, uma_bucket_t b) 613 { 614 615 CRITICAL_ASSERT(curthread); 616 MPASS(bucket->ucb_bucket == NULL); 617 618 bucket->ucb_bucket = b; 619 bucket->ucb_cnt = b->ub_cnt; 620 bucket->ucb_entries = b->ub_entries; 621 } 622 623 static inline void 624 cache_bucket_load_alloc(uma_cache_t cache, uma_bucket_t b) 625 { 626 627 cache_bucket_load(&cache->uc_allocbucket, b); 628 } 629 630 static inline void 631 cache_bucket_load_free(uma_cache_t cache, uma_bucket_t b) 632 { 633 634 cache_bucket_load(&cache->uc_freebucket, b); 635 } 636 637 #ifdef UMA_XDOMAIN 638 static inline void 639 cache_bucket_load_cross(uma_cache_t cache, uma_bucket_t b) 640 { 641 642 cache_bucket_load(&cache->uc_crossbucket, b); 643 } 644 #endif 645 646 /* 647 * Copy and preserve ucb_spare. 648 */ 649 static inline void 650 cache_bucket_copy(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 651 { 652 653 b1->ucb_bucket = b2->ucb_bucket; 654 b1->ucb_entries = b2->ucb_entries; 655 b1->ucb_cnt = b2->ucb_cnt; 656 } 657 658 /* 659 * Swap two cache buckets. 660 */ 661 static inline void 662 cache_bucket_swap(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 663 { 664 struct uma_cache_bucket b3; 665 666 CRITICAL_ASSERT(curthread); 667 668 cache_bucket_copy(&b3, b1); 669 cache_bucket_copy(b1, b2); 670 cache_bucket_copy(b2, &b3); 671 } 672 673 static void 674 zone_log_warning(uma_zone_t zone) 675 { 676 static const struct timeval warninterval = { 300, 0 }; 677 678 if (!zone_warnings || zone->uz_warning == NULL) 679 return; 680 681 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 682 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 683 } 684 685 static inline void 686 zone_maxaction(uma_zone_t zone) 687 { 688 689 if (zone->uz_maxaction.ta_func != NULL) 690 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 691 } 692 693 /* 694 * Routine called by timeout which is used to fire off some time interval 695 * based calculations. (stats, hash size, etc.) 696 * 697 * Arguments: 698 * arg Unused 699 * 700 * Returns: 701 * Nothing 702 */ 703 static void 704 uma_timeout(void *unused) 705 { 706 bucket_enable(); 707 zone_foreach(zone_timeout, NULL); 708 709 /* Reschedule this event */ 710 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 711 } 712 713 /* 714 * Update the working set size estimate for the zone's bucket cache. 715 * The constants chosen here are somewhat arbitrary. With an update period of 716 * 20s (UMA_TIMEOUT), this estimate is dominated by zone activity over the 717 * last 100s. 718 */ 719 static void 720 zone_domain_update_wss(uma_zone_domain_t zdom) 721 { 722 long wss; 723 724 MPASS(zdom->uzd_imax >= zdom->uzd_imin); 725 wss = zdom->uzd_imax - zdom->uzd_imin; 726 zdom->uzd_imax = zdom->uzd_imin = zdom->uzd_nitems; 727 zdom->uzd_wss = (4 * wss + zdom->uzd_wss) / 5; 728 } 729 730 /* 731 * Routine to perform timeout driven calculations. This expands the 732 * hashes and does per cpu statistics aggregation. 733 * 734 * Returns nothing. 735 */ 736 static void 737 zone_timeout(uma_zone_t zone, void *unused) 738 { 739 uma_keg_t keg; 740 u_int slabs; 741 742 if ((zone->uz_flags & UMA_ZONE_HASH) == 0) 743 goto update_wss; 744 745 keg = zone->uz_keg; 746 KEG_LOCK(keg); 747 /* 748 * Expand the keg hash table. 749 * 750 * This is done if the number of slabs is larger than the hash size. 751 * What I'm trying to do here is completely reduce collisions. This 752 * may be a little aggressive. Should I allow for two collisions max? 753 */ 754 if (keg->uk_flags & UMA_ZONE_HASH && 755 (slabs = keg->uk_pages / keg->uk_ppera) > 756 keg->uk_hash.uh_hashsize) { 757 struct uma_hash newhash; 758 struct uma_hash oldhash; 759 int ret; 760 761 /* 762 * This is so involved because allocating and freeing 763 * while the keg lock is held will lead to deadlock. 764 * I have to do everything in stages and check for 765 * races. 766 */ 767 KEG_UNLOCK(keg); 768 ret = hash_alloc(&newhash, 1 << fls(slabs)); 769 KEG_LOCK(keg); 770 if (ret) { 771 if (hash_expand(&keg->uk_hash, &newhash)) { 772 oldhash = keg->uk_hash; 773 keg->uk_hash = newhash; 774 } else 775 oldhash = newhash; 776 777 KEG_UNLOCK(keg); 778 hash_free(&oldhash); 779 return; 780 } 781 } 782 KEG_UNLOCK(keg); 783 784 update_wss: 785 ZONE_LOCK(zone); 786 for (int i = 0; i < vm_ndomains; i++) 787 zone_domain_update_wss(&zone->uz_domain[i]); 788 ZONE_UNLOCK(zone); 789 } 790 791 /* 792 * Allocate and zero fill the next sized hash table from the appropriate 793 * backing store. 794 * 795 * Arguments: 796 * hash A new hash structure with the old hash size in uh_hashsize 797 * 798 * Returns: 799 * 1 on success and 0 on failure. 800 */ 801 static int 802 hash_alloc(struct uma_hash *hash, u_int size) 803 { 804 size_t alloc; 805 806 KASSERT(powerof2(size), ("hash size must be power of 2")); 807 if (size > UMA_HASH_SIZE_INIT) { 808 hash->uh_hashsize = size; 809 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 810 hash->uh_slab_hash = malloc(alloc, M_UMAHASH, M_NOWAIT); 811 } else { 812 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 813 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 814 UMA_ANYDOMAIN, M_WAITOK); 815 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 816 } 817 if (hash->uh_slab_hash) { 818 bzero(hash->uh_slab_hash, alloc); 819 hash->uh_hashmask = hash->uh_hashsize - 1; 820 return (1); 821 } 822 823 return (0); 824 } 825 826 /* 827 * Expands the hash table for HASH zones. This is done from zone_timeout 828 * to reduce collisions. This must not be done in the regular allocation 829 * path, otherwise, we can recurse on the vm while allocating pages. 830 * 831 * Arguments: 832 * oldhash The hash you want to expand 833 * newhash The hash structure for the new table 834 * 835 * Returns: 836 * Nothing 837 * 838 * Discussion: 839 */ 840 static int 841 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 842 { 843 uma_hash_slab_t slab; 844 u_int hval; 845 u_int idx; 846 847 if (!newhash->uh_slab_hash) 848 return (0); 849 850 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 851 return (0); 852 853 /* 854 * I need to investigate hash algorithms for resizing without a 855 * full rehash. 856 */ 857 858 for (idx = 0; idx < oldhash->uh_hashsize; idx++) 859 while (!LIST_EMPTY(&oldhash->uh_slab_hash[idx])) { 860 slab = LIST_FIRST(&oldhash->uh_slab_hash[idx]); 861 LIST_REMOVE(slab, uhs_hlink); 862 hval = UMA_HASH(newhash, slab->uhs_data); 863 LIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 864 slab, uhs_hlink); 865 } 866 867 return (1); 868 } 869 870 /* 871 * Free the hash bucket to the appropriate backing store. 872 * 873 * Arguments: 874 * slab_hash The hash bucket we're freeing 875 * hashsize The number of entries in that hash bucket 876 * 877 * Returns: 878 * Nothing 879 */ 880 static void 881 hash_free(struct uma_hash *hash) 882 { 883 if (hash->uh_slab_hash == NULL) 884 return; 885 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 886 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 887 else 888 free(hash->uh_slab_hash, M_UMAHASH); 889 } 890 891 /* 892 * Frees all outstanding items in a bucket 893 * 894 * Arguments: 895 * zone The zone to free to, must be unlocked. 896 * bucket The free/alloc bucket with items, cpu queue must be locked. 897 * 898 * Returns: 899 * Nothing 900 */ 901 902 static void 903 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 904 { 905 int i; 906 907 if (bucket == NULL) 908 return; 909 910 if (zone->uz_fini) 911 for (i = 0; i < bucket->ub_cnt; i++) 912 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 913 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 914 if (zone->uz_max_items > 0) { 915 ZONE_LOCK(zone); 916 zone->uz_items -= bucket->ub_cnt; 917 if (zone->uz_sleepers && zone->uz_items < zone->uz_max_items) 918 wakeup_one(zone); 919 ZONE_UNLOCK(zone); 920 } 921 bucket->ub_cnt = 0; 922 } 923 924 /* 925 * Drains the per cpu caches for a zone. 926 * 927 * NOTE: This may only be called while the zone is being turn down, and not 928 * during normal operation. This is necessary in order that we do not have 929 * to migrate CPUs to drain the per-CPU caches. 930 * 931 * Arguments: 932 * zone The zone to drain, must be unlocked. 933 * 934 * Returns: 935 * Nothing 936 */ 937 static void 938 cache_drain(uma_zone_t zone) 939 { 940 uma_cache_t cache; 941 uma_bucket_t bucket; 942 int cpu; 943 944 /* 945 * XXX: It is safe to not lock the per-CPU caches, because we're 946 * tearing down the zone anyway. I.e., there will be no further use 947 * of the caches at this point. 948 * 949 * XXX: It would good to be able to assert that the zone is being 950 * torn down to prevent improper use of cache_drain(). 951 * 952 * XXX: We lock the zone before passing into bucket_cache_reclaim() as 953 * it is used elsewhere. Should the tear-down path be made special 954 * there in some form? 955 */ 956 CPU_FOREACH(cpu) { 957 cache = &zone->uz_cpu[cpu]; 958 bucket = cache_bucket_unload_alloc(cache); 959 if (bucket != NULL) { 960 bucket_drain(zone, bucket); 961 bucket_free(zone, bucket, NULL); 962 } 963 bucket = cache_bucket_unload_free(cache); 964 if (bucket != NULL) { 965 bucket_drain(zone, bucket); 966 bucket_free(zone, bucket, NULL); 967 } 968 bucket = cache_bucket_unload_cross(cache); 969 if (bucket != NULL) { 970 bucket_drain(zone, bucket); 971 bucket_free(zone, bucket, NULL); 972 } 973 } 974 ZONE_LOCK(zone); 975 bucket_cache_reclaim(zone, true); 976 ZONE_UNLOCK(zone); 977 } 978 979 static void 980 cache_shrink(uma_zone_t zone, void *unused) 981 { 982 983 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 984 return; 985 986 ZONE_LOCK(zone); 987 zone->uz_bucket_size = 988 (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2; 989 ZONE_UNLOCK(zone); 990 } 991 992 static void 993 cache_drain_safe_cpu(uma_zone_t zone, void *unused) 994 { 995 uma_cache_t cache; 996 uma_bucket_t b1, b2, b3; 997 int domain; 998 999 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1000 return; 1001 1002 b1 = b2 = b3 = NULL; 1003 ZONE_LOCK(zone); 1004 critical_enter(); 1005 if (zone->uz_flags & UMA_ZONE_NUMA) 1006 domain = PCPU_GET(domain); 1007 else 1008 domain = 0; 1009 cache = &zone->uz_cpu[curcpu]; 1010 b1 = cache_bucket_unload_alloc(cache); 1011 if (b1 != NULL && b1->ub_cnt != 0) { 1012 zone_put_bucket(zone, &zone->uz_domain[domain], b1, false); 1013 b1 = NULL; 1014 } 1015 b2 = cache_bucket_unload_free(cache); 1016 if (b2 != NULL && b2->ub_cnt != 0) { 1017 zone_put_bucket(zone, &zone->uz_domain[domain], b2, false); 1018 b2 = NULL; 1019 } 1020 b3 = cache_bucket_unload_cross(cache); 1021 critical_exit(); 1022 ZONE_UNLOCK(zone); 1023 if (b1) 1024 bucket_free(zone, b1, NULL); 1025 if (b2) 1026 bucket_free(zone, b2, NULL); 1027 if (b3) { 1028 bucket_drain(zone, b3); 1029 bucket_free(zone, b3, NULL); 1030 } 1031 } 1032 1033 /* 1034 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 1035 * This is an expensive call because it needs to bind to all CPUs 1036 * one by one and enter a critical section on each of them in order 1037 * to safely access their cache buckets. 1038 * Zone lock must not be held on call this function. 1039 */ 1040 static void 1041 pcpu_cache_drain_safe(uma_zone_t zone) 1042 { 1043 int cpu; 1044 1045 /* 1046 * Polite bucket sizes shrinking was not enouth, shrink aggressively. 1047 */ 1048 if (zone) 1049 cache_shrink(zone, NULL); 1050 else 1051 zone_foreach(cache_shrink, NULL); 1052 1053 CPU_FOREACH(cpu) { 1054 thread_lock(curthread); 1055 sched_bind(curthread, cpu); 1056 thread_unlock(curthread); 1057 1058 if (zone) 1059 cache_drain_safe_cpu(zone, NULL); 1060 else 1061 zone_foreach(cache_drain_safe_cpu, NULL); 1062 } 1063 thread_lock(curthread); 1064 sched_unbind(curthread); 1065 thread_unlock(curthread); 1066 } 1067 1068 /* 1069 * Reclaim cached buckets from a zone. All buckets are reclaimed if the caller 1070 * requested a drain, otherwise the per-domain caches are trimmed to either 1071 * estimated working set size. 1072 */ 1073 static void 1074 bucket_cache_reclaim(uma_zone_t zone, bool drain) 1075 { 1076 uma_zone_domain_t zdom; 1077 uma_bucket_t bucket; 1078 long target, tofree; 1079 int i; 1080 1081 for (i = 0; i < vm_ndomains; i++) { 1082 zdom = &zone->uz_domain[i]; 1083 1084 /* 1085 * If we were asked to drain the zone, we are done only once 1086 * this bucket cache is empty. Otherwise, we reclaim items in 1087 * excess of the zone's estimated working set size. If the 1088 * difference nitems - imin is larger than the WSS estimate, 1089 * then the estimate will grow at the end of this interval and 1090 * we ignore the historical average. 1091 */ 1092 target = drain ? 0 : lmax(zdom->uzd_wss, zdom->uzd_nitems - 1093 zdom->uzd_imin); 1094 while (zdom->uzd_nitems > target) { 1095 bucket = TAILQ_LAST(&zdom->uzd_buckets, uma_bucketlist); 1096 if (bucket == NULL) 1097 break; 1098 tofree = bucket->ub_cnt; 1099 TAILQ_REMOVE(&zdom->uzd_buckets, bucket, ub_link); 1100 zdom->uzd_nitems -= tofree; 1101 1102 /* 1103 * Shift the bounds of the current WSS interval to avoid 1104 * perturbing the estimate. 1105 */ 1106 zdom->uzd_imax -= lmin(zdom->uzd_imax, tofree); 1107 zdom->uzd_imin -= lmin(zdom->uzd_imin, tofree); 1108 1109 ZONE_UNLOCK(zone); 1110 bucket_drain(zone, bucket); 1111 bucket_free(zone, bucket, NULL); 1112 ZONE_LOCK(zone); 1113 } 1114 } 1115 1116 /* 1117 * Shrink the zone bucket size to ensure that the per-CPU caches 1118 * don't grow too large. 1119 */ 1120 if (zone->uz_bucket_size > zone->uz_bucket_size_min) 1121 zone->uz_bucket_size--; 1122 } 1123 1124 static void 1125 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 1126 { 1127 uint8_t *mem; 1128 int i; 1129 uint8_t flags; 1130 1131 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 1132 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 1133 1134 mem = slab_data(slab, keg); 1135 flags = slab->us_flags; 1136 i = start; 1137 if (keg->uk_fini != NULL) { 1138 for (i--; i > -1; i--) 1139 #ifdef INVARIANTS 1140 /* 1141 * trash_fini implies that dtor was trash_dtor. trash_fini 1142 * would check that memory hasn't been modified since free, 1143 * which executed trash_dtor. 1144 * That's why we need to run uma_dbg_kskip() check here, 1145 * albeit we don't make skip check for other init/fini 1146 * invocations. 1147 */ 1148 if (!uma_dbg_kskip(keg, slab_item(slab, keg, i)) || 1149 keg->uk_fini != trash_fini) 1150 #endif 1151 keg->uk_fini(slab_item(slab, keg, i), keg->uk_size); 1152 } 1153 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1154 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 1155 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 1156 uma_total_dec(PAGE_SIZE * keg->uk_ppera); 1157 } 1158 1159 /* 1160 * Frees pages from a keg back to the system. This is done on demand from 1161 * the pageout daemon. 1162 * 1163 * Returns nothing. 1164 */ 1165 static void 1166 keg_drain(uma_keg_t keg) 1167 { 1168 struct slabhead freeslabs = { 0 }; 1169 uma_domain_t dom; 1170 uma_slab_t slab, tmp; 1171 int i; 1172 1173 /* 1174 * We don't want to take pages from statically allocated kegs at this 1175 * time 1176 */ 1177 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 1178 return; 1179 1180 CTR3(KTR_UMA, "keg_drain %s(%p) free items: %u", 1181 keg->uk_name, keg, keg->uk_free); 1182 KEG_LOCK(keg); 1183 if (keg->uk_free == 0) 1184 goto finished; 1185 1186 for (i = 0; i < vm_ndomains; i++) { 1187 dom = &keg->uk_domain[i]; 1188 LIST_FOREACH_SAFE(slab, &dom->ud_free_slab, us_link, tmp) { 1189 /* We have nowhere to free these to. */ 1190 if (slab->us_flags & UMA_SLAB_BOOT) 1191 continue; 1192 1193 LIST_REMOVE(slab, us_link); 1194 keg->uk_pages -= keg->uk_ppera; 1195 keg->uk_free -= keg->uk_ipers; 1196 1197 if (keg->uk_flags & UMA_ZONE_HASH) 1198 UMA_HASH_REMOVE(&keg->uk_hash, slab); 1199 1200 LIST_INSERT_HEAD(&freeslabs, slab, us_link); 1201 } 1202 } 1203 1204 finished: 1205 KEG_UNLOCK(keg); 1206 1207 while ((slab = LIST_FIRST(&freeslabs)) != NULL) { 1208 LIST_REMOVE(slab, us_link); 1209 keg_free_slab(keg, slab, keg->uk_ipers); 1210 } 1211 } 1212 1213 static void 1214 zone_reclaim(uma_zone_t zone, int waitok, bool drain) 1215 { 1216 1217 /* 1218 * Set draining to interlock with zone_dtor() so we can release our 1219 * locks as we go. Only dtor() should do a WAITOK call since it 1220 * is the only call that knows the structure will still be available 1221 * when it wakes up. 1222 */ 1223 ZONE_LOCK(zone); 1224 while (zone->uz_flags & UMA_ZFLAG_RECLAIMING) { 1225 if (waitok == M_NOWAIT) 1226 goto out; 1227 msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1); 1228 } 1229 zone->uz_flags |= UMA_ZFLAG_RECLAIMING; 1230 bucket_cache_reclaim(zone, drain); 1231 ZONE_UNLOCK(zone); 1232 1233 /* 1234 * The DRAINING flag protects us from being freed while 1235 * we're running. Normally the uma_rwlock would protect us but we 1236 * must be able to release and acquire the right lock for each keg. 1237 */ 1238 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) 1239 keg_drain(zone->uz_keg); 1240 ZONE_LOCK(zone); 1241 zone->uz_flags &= ~UMA_ZFLAG_RECLAIMING; 1242 wakeup(zone); 1243 out: 1244 ZONE_UNLOCK(zone); 1245 } 1246 1247 static void 1248 zone_drain(uma_zone_t zone, void *unused) 1249 { 1250 1251 zone_reclaim(zone, M_NOWAIT, true); 1252 } 1253 1254 static void 1255 zone_trim(uma_zone_t zone, void *unused) 1256 { 1257 1258 zone_reclaim(zone, M_NOWAIT, false); 1259 } 1260 1261 /* 1262 * Allocate a new slab for a keg. This does not insert the slab onto a list. 1263 * If the allocation was successful, the keg lock will be held upon return, 1264 * otherwise the keg will be left unlocked. 1265 * 1266 * Arguments: 1267 * flags Wait flags for the item initialization routine 1268 * aflags Wait flags for the slab allocation 1269 * 1270 * Returns: 1271 * The slab that was allocated or NULL if there is no memory and the 1272 * caller specified M_NOWAIT. 1273 */ 1274 static uma_slab_t 1275 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags, 1276 int aflags) 1277 { 1278 uma_alloc allocf; 1279 uma_slab_t slab; 1280 unsigned long size; 1281 uint8_t *mem; 1282 uint8_t sflags; 1283 int i; 1284 1285 KASSERT(domain >= 0 && domain < vm_ndomains, 1286 ("keg_alloc_slab: domain %d out of range", domain)); 1287 KEG_LOCK_ASSERT(keg); 1288 MPASS(zone->uz_lockptr == &keg->uk_lock); 1289 1290 allocf = keg->uk_allocf; 1291 KEG_UNLOCK(keg); 1292 1293 slab = NULL; 1294 mem = NULL; 1295 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 1296 slab = zone_alloc_item(keg->uk_slabzone, NULL, domain, aflags); 1297 if (slab == NULL) 1298 goto out; 1299 } 1300 1301 /* 1302 * This reproduces the old vm_zone behavior of zero filling pages the 1303 * first time they are added to a zone. 1304 * 1305 * Malloced items are zeroed in uma_zalloc. 1306 */ 1307 1308 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1309 aflags |= M_ZERO; 1310 else 1311 aflags &= ~M_ZERO; 1312 1313 if (keg->uk_flags & UMA_ZONE_NODUMP) 1314 aflags |= M_NODUMP; 1315 1316 /* zone is passed for legacy reasons. */ 1317 size = keg->uk_ppera * PAGE_SIZE; 1318 mem = allocf(zone, size, domain, &sflags, aflags); 1319 if (mem == NULL) { 1320 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1321 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 1322 slab = NULL; 1323 goto out; 1324 } 1325 uma_total_inc(size); 1326 1327 /* Point the slab into the allocated memory */ 1328 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 1329 slab = (uma_slab_t )(mem + keg->uk_pgoff); 1330 else 1331 ((uma_hash_slab_t)slab)->uhs_data = mem; 1332 1333 if (keg->uk_flags & UMA_ZONE_VTOSLAB) 1334 for (i = 0; i < keg->uk_ppera; i++) 1335 vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE), 1336 zone, slab); 1337 1338 slab->us_freecount = keg->uk_ipers; 1339 slab->us_flags = sflags; 1340 slab->us_domain = domain; 1341 BIT_FILL(keg->uk_ipers, &slab->us_free); 1342 #ifdef INVARIANTS 1343 BIT_ZERO(keg->uk_ipers, slab_dbg_bits(slab, keg)); 1344 #endif 1345 1346 if (keg->uk_init != NULL) { 1347 for (i = 0; i < keg->uk_ipers; i++) 1348 if (keg->uk_init(slab_item(slab, keg, i), 1349 keg->uk_size, flags) != 0) 1350 break; 1351 if (i != keg->uk_ipers) { 1352 keg_free_slab(keg, slab, i); 1353 slab = NULL; 1354 goto out; 1355 } 1356 } 1357 KEG_LOCK(keg); 1358 1359 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1360 slab, keg->uk_name, keg); 1361 1362 if (keg->uk_flags & UMA_ZONE_HASH) 1363 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1364 1365 keg->uk_pages += keg->uk_ppera; 1366 keg->uk_free += keg->uk_ipers; 1367 1368 out: 1369 return (slab); 1370 } 1371 1372 /* 1373 * This function is intended to be used early on in place of page_alloc() so 1374 * that we may use the boot time page cache to satisfy allocations before 1375 * the VM is ready. 1376 */ 1377 static void * 1378 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1379 int wait) 1380 { 1381 uma_keg_t keg; 1382 void *mem; 1383 int pages; 1384 1385 keg = zone->uz_keg; 1386 /* 1387 * If we are in BOOT_BUCKETS or higher, than switch to real 1388 * allocator. Zones with page sized slabs switch at BOOT_PAGEALLOC. 1389 */ 1390 switch (booted) { 1391 case BOOT_COLD: 1392 case BOOT_STRAPPED: 1393 break; 1394 case BOOT_PAGEALLOC: 1395 if (keg->uk_ppera > 1) 1396 break; 1397 case BOOT_BUCKETS: 1398 case BOOT_RUNNING: 1399 #ifdef UMA_MD_SMALL_ALLOC 1400 keg->uk_allocf = (keg->uk_ppera > 1) ? 1401 page_alloc : uma_small_alloc; 1402 #else 1403 keg->uk_allocf = page_alloc; 1404 #endif 1405 return keg->uk_allocf(zone, bytes, domain, pflag, wait); 1406 } 1407 1408 /* 1409 * Check our small startup cache to see if it has pages remaining. 1410 */ 1411 pages = howmany(bytes, PAGE_SIZE); 1412 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1413 if (pages > boot_pages) 1414 panic("UMA zone \"%s\": Increase vm.boot_pages", zone->uz_name); 1415 #ifdef DIAGNOSTIC 1416 printf("%s from \"%s\", %d boot pages left\n", __func__, zone->uz_name, 1417 boot_pages); 1418 #endif 1419 mem = bootmem; 1420 boot_pages -= pages; 1421 bootmem += pages * PAGE_SIZE; 1422 *pflag = UMA_SLAB_BOOT; 1423 1424 return (mem); 1425 } 1426 1427 /* 1428 * Allocates a number of pages from the system 1429 * 1430 * Arguments: 1431 * bytes The number of bytes requested 1432 * wait Shall we wait? 1433 * 1434 * Returns: 1435 * A pointer to the alloced memory or possibly 1436 * NULL if M_NOWAIT is set. 1437 */ 1438 static void * 1439 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1440 int wait) 1441 { 1442 void *p; /* Returned page */ 1443 1444 *pflag = UMA_SLAB_KERNEL; 1445 p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait); 1446 1447 return (p); 1448 } 1449 1450 static void * 1451 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1452 int wait) 1453 { 1454 struct pglist alloctail; 1455 vm_offset_t addr, zkva; 1456 int cpu, flags; 1457 vm_page_t p, p_next; 1458 #ifdef NUMA 1459 struct pcpu *pc; 1460 #endif 1461 1462 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE); 1463 1464 TAILQ_INIT(&alloctail); 1465 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1466 malloc2vm_flags(wait); 1467 *pflag = UMA_SLAB_KERNEL; 1468 for (cpu = 0; cpu <= mp_maxid; cpu++) { 1469 if (CPU_ABSENT(cpu)) { 1470 p = vm_page_alloc(NULL, 0, flags); 1471 } else { 1472 #ifndef NUMA 1473 p = vm_page_alloc(NULL, 0, flags); 1474 #else 1475 pc = pcpu_find(cpu); 1476 p = vm_page_alloc_domain(NULL, 0, pc->pc_domain, flags); 1477 if (__predict_false(p == NULL)) 1478 p = vm_page_alloc(NULL, 0, flags); 1479 #endif 1480 } 1481 if (__predict_false(p == NULL)) 1482 goto fail; 1483 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1484 } 1485 if ((addr = kva_alloc(bytes)) == 0) 1486 goto fail; 1487 zkva = addr; 1488 TAILQ_FOREACH(p, &alloctail, listq) { 1489 pmap_qenter(zkva, &p, 1); 1490 zkva += PAGE_SIZE; 1491 } 1492 return ((void*)addr); 1493 fail: 1494 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1495 vm_page_unwire_noq(p); 1496 vm_page_free(p); 1497 } 1498 return (NULL); 1499 } 1500 1501 /* 1502 * Allocates a number of pages from within an object 1503 * 1504 * Arguments: 1505 * bytes The number of bytes requested 1506 * wait Shall we wait? 1507 * 1508 * Returns: 1509 * A pointer to the alloced memory or possibly 1510 * NULL if M_NOWAIT is set. 1511 */ 1512 static void * 1513 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 1514 int wait) 1515 { 1516 TAILQ_HEAD(, vm_page) alloctail; 1517 u_long npages; 1518 vm_offset_t retkva, zkva; 1519 vm_page_t p, p_next; 1520 uma_keg_t keg; 1521 1522 TAILQ_INIT(&alloctail); 1523 keg = zone->uz_keg; 1524 1525 npages = howmany(bytes, PAGE_SIZE); 1526 while (npages > 0) { 1527 p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT | 1528 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1529 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK : 1530 VM_ALLOC_NOWAIT)); 1531 if (p != NULL) { 1532 /* 1533 * Since the page does not belong to an object, its 1534 * listq is unused. 1535 */ 1536 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1537 npages--; 1538 continue; 1539 } 1540 /* 1541 * Page allocation failed, free intermediate pages and 1542 * exit. 1543 */ 1544 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1545 vm_page_unwire_noq(p); 1546 vm_page_free(p); 1547 } 1548 return (NULL); 1549 } 1550 *flags = UMA_SLAB_PRIV; 1551 zkva = keg->uk_kva + 1552 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1553 retkva = zkva; 1554 TAILQ_FOREACH(p, &alloctail, listq) { 1555 pmap_qenter(zkva, &p, 1); 1556 zkva += PAGE_SIZE; 1557 } 1558 1559 return ((void *)retkva); 1560 } 1561 1562 /* 1563 * Frees a number of pages to the system 1564 * 1565 * Arguments: 1566 * mem A pointer to the memory to be freed 1567 * size The size of the memory being freed 1568 * flags The original p->us_flags field 1569 * 1570 * Returns: 1571 * Nothing 1572 */ 1573 static void 1574 page_free(void *mem, vm_size_t size, uint8_t flags) 1575 { 1576 1577 if ((flags & UMA_SLAB_KERNEL) == 0) 1578 panic("UMA: page_free used with invalid flags %x", flags); 1579 1580 kmem_free((vm_offset_t)mem, size); 1581 } 1582 1583 /* 1584 * Frees pcpu zone allocations 1585 * 1586 * Arguments: 1587 * mem A pointer to the memory to be freed 1588 * size The size of the memory being freed 1589 * flags The original p->us_flags field 1590 * 1591 * Returns: 1592 * Nothing 1593 */ 1594 static void 1595 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags) 1596 { 1597 vm_offset_t sva, curva; 1598 vm_paddr_t paddr; 1599 vm_page_t m; 1600 1601 MPASS(size == (mp_maxid+1)*PAGE_SIZE); 1602 sva = (vm_offset_t)mem; 1603 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) { 1604 paddr = pmap_kextract(curva); 1605 m = PHYS_TO_VM_PAGE(paddr); 1606 vm_page_unwire_noq(m); 1607 vm_page_free(m); 1608 } 1609 pmap_qremove(sva, size >> PAGE_SHIFT); 1610 kva_free(sva, size); 1611 } 1612 1613 1614 /* 1615 * Zero fill initializer 1616 * 1617 * Arguments/Returns follow uma_init specifications 1618 */ 1619 static int 1620 zero_init(void *mem, int size, int flags) 1621 { 1622 bzero(mem, size); 1623 return (0); 1624 } 1625 1626 #ifdef INVARIANTS 1627 struct noslabbits * 1628 slab_dbg_bits(uma_slab_t slab, uma_keg_t keg) 1629 { 1630 1631 return ((void *)((char *)&slab->us_free + BITSET_SIZE(keg->uk_ipers))); 1632 } 1633 #endif 1634 1635 /* 1636 * Actual size of embedded struct slab (!OFFPAGE). 1637 */ 1638 size_t 1639 slab_sizeof(int nitems) 1640 { 1641 size_t s; 1642 1643 s = sizeof(struct uma_slab) + BITSET_SIZE(nitems) * SLAB_BITSETS; 1644 return (roundup(s, UMA_ALIGN_PTR + 1)); 1645 } 1646 1647 /* 1648 * Size of memory for embedded slabs (!OFFPAGE). 1649 */ 1650 size_t 1651 slab_space(int nitems) 1652 { 1653 return (UMA_SLAB_SIZE - slab_sizeof(nitems)); 1654 } 1655 1656 /* 1657 * Compute the number of items that will fit in an embedded (!OFFPAGE) slab 1658 * with a given size and alignment. 1659 */ 1660 int 1661 slab_ipers(size_t size, int align) 1662 { 1663 int rsize; 1664 int nitems; 1665 1666 /* 1667 * Compute the ideal number of items that will fit in a page and 1668 * then compute the actual number based on a bitset nitems wide. 1669 */ 1670 rsize = roundup(size, align + 1); 1671 nitems = UMA_SLAB_SIZE / rsize; 1672 return (slab_space(nitems) / rsize); 1673 } 1674 1675 /* 1676 * Finish creating a small uma keg. This calculates ipers, and the keg size. 1677 * 1678 * Arguments 1679 * keg The zone we should initialize 1680 * 1681 * Returns 1682 * Nothing 1683 */ 1684 static void 1685 keg_small_init(uma_keg_t keg) 1686 { 1687 u_int rsize; 1688 u_int memused; 1689 u_int wastedspace; 1690 u_int shsize; 1691 u_int slabsize; 1692 1693 if (keg->uk_flags & UMA_ZONE_PCPU) { 1694 u_int ncpus = (mp_maxid + 1) ? (mp_maxid + 1) : MAXCPU; 1695 1696 slabsize = UMA_PCPU_ALLOC_SIZE; 1697 keg->uk_ppera = ncpus; 1698 } else { 1699 slabsize = UMA_SLAB_SIZE; 1700 keg->uk_ppera = 1; 1701 } 1702 1703 /* 1704 * Calculate the size of each allocation (rsize) according to 1705 * alignment. If the requested size is smaller than we have 1706 * allocation bits for we round it up. 1707 */ 1708 rsize = keg->uk_size; 1709 if (rsize < slabsize / SLAB_MAX_SETSIZE) 1710 rsize = slabsize / SLAB_MAX_SETSIZE; 1711 if (rsize & keg->uk_align) 1712 rsize = roundup(rsize, keg->uk_align + 1); 1713 keg->uk_rsize = rsize; 1714 1715 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 1716 keg->uk_rsize < UMA_PCPU_ALLOC_SIZE, 1717 ("%s: size %u too large", __func__, keg->uk_rsize)); 1718 1719 /* 1720 * Use a pessimistic bit count for shsize. It may be possible to 1721 * squeeze one more item in for very particular sizes if we were 1722 * to loop and reduce the bitsize if there is waste. 1723 */ 1724 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1725 shsize = 0; 1726 else 1727 shsize = slab_sizeof(slabsize / rsize); 1728 1729 if (rsize <= slabsize - shsize) 1730 keg->uk_ipers = (slabsize - shsize) / rsize; 1731 else { 1732 /* Handle special case when we have 1 item per slab, so 1733 * alignment requirement can be relaxed. */ 1734 KASSERT(keg->uk_size <= slabsize - shsize, 1735 ("%s: size %u greater than slab", __func__, keg->uk_size)); 1736 keg->uk_ipers = 1; 1737 } 1738 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE, 1739 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1740 1741 memused = keg->uk_ipers * rsize + shsize; 1742 wastedspace = slabsize - memused; 1743 1744 /* 1745 * We can't do OFFPAGE if we're internal or if we've been 1746 * asked to not go to the VM for buckets. If we do this we 1747 * may end up going to the VM for slabs which we do not 1748 * want to do if we're UMA_ZFLAG_CACHEONLY as a result 1749 * of UMA_ZONE_VM, which clearly forbids it. 1750 */ 1751 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1752 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1753 return; 1754 1755 /* 1756 * See if using an OFFPAGE slab will limit our waste. Only do 1757 * this if it permits more items per-slab. 1758 * 1759 * XXX We could try growing slabsize to limit max waste as well. 1760 * Historically this was not done because the VM could not 1761 * efficiently handle contiguous allocations. 1762 */ 1763 if ((wastedspace >= slabsize / UMA_MAX_WASTE) && 1764 (keg->uk_ipers < (slabsize / keg->uk_rsize))) { 1765 keg->uk_ipers = slabsize / keg->uk_rsize; 1766 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE, 1767 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1768 CTR6(KTR_UMA, "UMA decided we need offpage slab headers for " 1769 "keg: %s(%p), calculated wastedspace = %d, " 1770 "maximum wasted space allowed = %d, " 1771 "calculated ipers = %d, " 1772 "new wasted space = %d\n", keg->uk_name, keg, wastedspace, 1773 slabsize / UMA_MAX_WASTE, keg->uk_ipers, 1774 slabsize - keg->uk_ipers * keg->uk_rsize); 1775 /* 1776 * If we had access to memory to embed a slab header we 1777 * also have a page structure to use vtoslab() instead of 1778 * hash to find slabs. If the zone was explicitly created 1779 * OFFPAGE we can't necessarily touch the memory. 1780 */ 1781 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) 1782 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1783 } 1784 1785 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1786 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1787 keg->uk_flags |= UMA_ZONE_HASH; 1788 } 1789 1790 /* 1791 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do 1792 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1793 * more complicated. 1794 * 1795 * Arguments 1796 * keg The keg we should initialize 1797 * 1798 * Returns 1799 * Nothing 1800 */ 1801 static void 1802 keg_large_init(uma_keg_t keg) 1803 { 1804 1805 KASSERT(keg != NULL, ("Keg is null in keg_large_init")); 1806 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1807 ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__)); 1808 1809 keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE); 1810 keg->uk_ipers = 1; 1811 keg->uk_rsize = keg->uk_size; 1812 1813 /* Check whether we have enough space to not do OFFPAGE. */ 1814 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0 && 1815 PAGE_SIZE * keg->uk_ppera - keg->uk_rsize < 1816 slab_sizeof(SLAB_MIN_SETSIZE)) { 1817 /* 1818 * We can't do OFFPAGE if we're internal, in which case 1819 * we need an extra page per allocation to contain the 1820 * slab header. 1821 */ 1822 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) == 0) 1823 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1824 else 1825 keg->uk_ppera++; 1826 } 1827 1828 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1829 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1830 keg->uk_flags |= UMA_ZONE_HASH; 1831 } 1832 1833 static void 1834 keg_cachespread_init(uma_keg_t keg) 1835 { 1836 int alignsize; 1837 int trailer; 1838 int pages; 1839 int rsize; 1840 1841 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1842 ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__)); 1843 1844 alignsize = keg->uk_align + 1; 1845 rsize = keg->uk_size; 1846 /* 1847 * We want one item to start on every align boundary in a page. To 1848 * do this we will span pages. We will also extend the item by the 1849 * size of align if it is an even multiple of align. Otherwise, it 1850 * would fall on the same boundary every time. 1851 */ 1852 if (rsize & keg->uk_align) 1853 rsize = (rsize & ~keg->uk_align) + alignsize; 1854 if ((rsize & alignsize) == 0) 1855 rsize += alignsize; 1856 trailer = rsize - keg->uk_size; 1857 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE; 1858 pages = MIN(pages, (128 * 1024) / PAGE_SIZE); 1859 keg->uk_rsize = rsize; 1860 keg->uk_ppera = pages; 1861 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize; 1862 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1863 KASSERT(keg->uk_ipers <= SLAB_MAX_SETSIZE, 1864 ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__, 1865 keg->uk_ipers)); 1866 } 1867 1868 /* 1869 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1870 * the keg onto the global keg list. 1871 * 1872 * Arguments/Returns follow uma_ctor specifications 1873 * udata Actually uma_kctor_args 1874 */ 1875 static int 1876 keg_ctor(void *mem, int size, void *udata, int flags) 1877 { 1878 struct uma_kctor_args *arg = udata; 1879 uma_keg_t keg = mem; 1880 uma_zone_t zone; 1881 1882 bzero(keg, size); 1883 keg->uk_size = arg->size; 1884 keg->uk_init = arg->uminit; 1885 keg->uk_fini = arg->fini; 1886 keg->uk_align = arg->align; 1887 keg->uk_free = 0; 1888 keg->uk_reserve = 0; 1889 keg->uk_pages = 0; 1890 keg->uk_flags = arg->flags; 1891 keg->uk_slabzone = NULL; 1892 1893 /* 1894 * We use a global round-robin policy by default. Zones with 1895 * UMA_ZONE_NUMA set will use first-touch instead, in which case the 1896 * iterator is never run. 1897 */ 1898 keg->uk_dr.dr_policy = DOMAINSET_RR(); 1899 keg->uk_dr.dr_iter = 0; 1900 1901 /* 1902 * The master zone is passed to us at keg-creation time. 1903 */ 1904 zone = arg->zone; 1905 keg->uk_name = zone->uz_name; 1906 1907 if (arg->flags & UMA_ZONE_VM) 1908 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1909 1910 if (arg->flags & UMA_ZONE_ZINIT) 1911 keg->uk_init = zero_init; 1912 1913 if (arg->flags & UMA_ZONE_MALLOC) 1914 keg->uk_flags |= UMA_ZONE_VTOSLAB; 1915 1916 if (arg->flags & UMA_ZONE_PCPU) 1917 #ifdef SMP 1918 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1919 #else 1920 keg->uk_flags &= ~UMA_ZONE_PCPU; 1921 #endif 1922 1923 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) { 1924 keg_cachespread_init(keg); 1925 } else { 1926 if (keg->uk_size > slab_space(SLAB_MIN_SETSIZE)) 1927 keg_large_init(keg); 1928 else 1929 keg_small_init(keg); 1930 } 1931 1932 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1933 keg->uk_slabzone = slabzone; 1934 1935 /* 1936 * If we haven't booted yet we need allocations to go through the 1937 * startup cache until the vm is ready. 1938 */ 1939 if (booted < BOOT_PAGEALLOC) 1940 keg->uk_allocf = startup_alloc; 1941 #ifdef UMA_MD_SMALL_ALLOC 1942 else if (keg->uk_ppera == 1) 1943 keg->uk_allocf = uma_small_alloc; 1944 #endif 1945 else if (keg->uk_flags & UMA_ZONE_PCPU) 1946 keg->uk_allocf = pcpu_page_alloc; 1947 else 1948 keg->uk_allocf = page_alloc; 1949 #ifdef UMA_MD_SMALL_ALLOC 1950 if (keg->uk_ppera == 1) 1951 keg->uk_freef = uma_small_free; 1952 else 1953 #endif 1954 if (keg->uk_flags & UMA_ZONE_PCPU) 1955 keg->uk_freef = pcpu_page_free; 1956 else 1957 keg->uk_freef = page_free; 1958 1959 /* 1960 * Initialize keg's lock 1961 */ 1962 KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS)); 1963 1964 /* 1965 * If we're putting the slab header in the actual page we need to 1966 * figure out where in each page it goes. See slab_sizeof 1967 * definition. 1968 */ 1969 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1970 size_t shsize; 1971 1972 shsize = slab_sizeof(keg->uk_ipers); 1973 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize; 1974 /* 1975 * The only way the following is possible is if with our 1976 * UMA_ALIGN_PTR adjustments we are now bigger than 1977 * UMA_SLAB_SIZE. I haven't checked whether this is 1978 * mathematically possible for all cases, so we make 1979 * sure here anyway. 1980 */ 1981 KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera, 1982 ("zone %s ipers %d rsize %d size %d slab won't fit", 1983 zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size)); 1984 } 1985 1986 if (keg->uk_flags & UMA_ZONE_HASH) 1987 hash_alloc(&keg->uk_hash, 0); 1988 1989 CTR5(KTR_UMA, "keg_ctor %p zone %s(%p) out %d free %d\n", 1990 keg, zone->uz_name, zone, 1991 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 1992 keg->uk_free); 1993 1994 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1995 1996 rw_wlock(&uma_rwlock); 1997 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1998 rw_wunlock(&uma_rwlock); 1999 return (0); 2000 } 2001 2002 static void 2003 zone_alloc_counters(uma_zone_t zone, void *unused) 2004 { 2005 2006 zone->uz_allocs = counter_u64_alloc(M_WAITOK); 2007 zone->uz_frees = counter_u64_alloc(M_WAITOK); 2008 zone->uz_fails = counter_u64_alloc(M_WAITOK); 2009 } 2010 2011 static void 2012 zone_alloc_sysctl(uma_zone_t zone, void *unused) 2013 { 2014 uma_zone_domain_t zdom; 2015 uma_keg_t keg; 2016 struct sysctl_oid *oid, *domainoid; 2017 int domains, i, cnt; 2018 static const char *nokeg = "cache zone"; 2019 char *c; 2020 2021 /* 2022 * Make a sysctl safe copy of the zone name by removing 2023 * any special characters and handling dups by appending 2024 * an index. 2025 */ 2026 if (zone->uz_namecnt != 0) { 2027 /* Count the number of decimal digits and '_' separator. */ 2028 for (i = 1, cnt = zone->uz_namecnt; cnt != 0; i++) 2029 cnt /= 10; 2030 zone->uz_ctlname = malloc(strlen(zone->uz_name) + i + 1, 2031 M_UMA, M_WAITOK); 2032 sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name, 2033 zone->uz_namecnt); 2034 } else 2035 zone->uz_ctlname = strdup(zone->uz_name, M_UMA); 2036 for (c = zone->uz_ctlname; *c != '\0'; c++) 2037 if (strchr("./\\ -", *c) != NULL) 2038 *c = '_'; 2039 2040 /* 2041 * Basic parameters at the root. 2042 */ 2043 zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma), 2044 OID_AUTO, zone->uz_ctlname, CTLFLAG_RD, NULL, ""); 2045 oid = zone->uz_oid; 2046 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2047 "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size"); 2048 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2049 "flags", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE, 2050 zone, 0, sysctl_handle_uma_zone_flags, "A", 2051 "Allocator configuration flags"); 2052 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2053 "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0, 2054 "Desired per-cpu cache size"); 2055 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2056 "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0, 2057 "Maximum allowed per-cpu cache size"); 2058 2059 /* 2060 * keg if present. 2061 */ 2062 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2063 "keg", CTLFLAG_RD, NULL, ""); 2064 keg = zone->uz_keg; 2065 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) { 2066 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2067 "name", CTLFLAG_RD, keg->uk_name, "Keg name"); 2068 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2069 "rsize", CTLFLAG_RD, &keg->uk_rsize, 0, 2070 "Real object size with alignment"); 2071 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2072 "ppera", CTLFLAG_RD, &keg->uk_ppera, 0, 2073 "pages per-slab allocation"); 2074 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2075 "ipers", CTLFLAG_RD, &keg->uk_ipers, 0, 2076 "items available per-slab"); 2077 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2078 "align", CTLFLAG_RD, &keg->uk_align, 0, 2079 "item alignment mask"); 2080 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2081 "pages", CTLFLAG_RD, &keg->uk_pages, 0, 2082 "Total pages currently allocated from VM"); 2083 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2084 "free", CTLFLAG_RD, &keg->uk_free, 0, 2085 "items free in the slab layer"); 2086 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2087 "efficiency", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2088 keg, 0, sysctl_handle_uma_slab_efficiency, "I", 2089 "Slab utilization (100 - internal fragmentation %)"); 2090 } else 2091 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2092 "name", CTLFLAG_RD, nokeg, "Keg name"); 2093 2094 /* 2095 * Information about zone limits. 2096 */ 2097 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2098 "limit", CTLFLAG_RD, NULL, ""); 2099 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2100 "items", CTLFLAG_RD, &zone->uz_items, 0, 2101 "current number of cached items"); 2102 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2103 "max_items", CTLFLAG_RD, &zone->uz_max_items, 0, 2104 "Maximum number of cached items"); 2105 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2106 "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0, 2107 "Number of threads sleeping at limit"); 2108 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2109 "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0, 2110 "Total zone limit sleeps"); 2111 2112 /* 2113 * Per-domain information. 2114 */ 2115 if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) 2116 domains = vm_ndomains; 2117 else 2118 domains = 1; 2119 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), 2120 OID_AUTO, "domain", CTLFLAG_RD, NULL, ""); 2121 for (i = 0; i < domains; i++) { 2122 zdom = &zone->uz_domain[i]; 2123 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2124 OID_AUTO, VM_DOMAIN(i)->vmd_name, CTLFLAG_RD, NULL, ""); 2125 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2126 "nitems", CTLFLAG_RD, &zdom->uzd_nitems, 2127 "number of items in this domain"); 2128 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2129 "imax", CTLFLAG_RD, &zdom->uzd_imax, 2130 "maximum item count in this period"); 2131 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2132 "imin", CTLFLAG_RD, &zdom->uzd_imin, 2133 "minimum item count in this period"); 2134 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2135 "wss", CTLFLAG_RD, &zdom->uzd_wss, 2136 "Working set size"); 2137 } 2138 2139 /* 2140 * General statistics. 2141 */ 2142 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2143 "stats", CTLFLAG_RD, NULL, ""); 2144 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2145 "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2146 zone, 1, sysctl_handle_uma_zone_cur, "I", 2147 "Current number of allocated items"); 2148 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2149 "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2150 zone, 0, sysctl_handle_uma_zone_allocs, "QU", 2151 "Total allocation calls"); 2152 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2153 "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2154 zone, 0, sysctl_handle_uma_zone_frees, "QU", 2155 "Total free calls"); 2156 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2157 "fails", CTLFLAG_RD, &zone->uz_fails, 2158 "Number of allocation failures"); 2159 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2160 "xdomain", CTLFLAG_RD, &zone->uz_xdomain, 0, 2161 "Free calls from the wrong domain"); 2162 } 2163 2164 struct uma_zone_count { 2165 const char *name; 2166 int count; 2167 }; 2168 2169 static void 2170 zone_count(uma_zone_t zone, void *arg) 2171 { 2172 struct uma_zone_count *cnt; 2173 2174 cnt = arg; 2175 /* 2176 * Some zones are rapidly created with identical names and 2177 * destroyed out of order. This can lead to gaps in the count. 2178 * Use one greater than the maximum observed for this name. 2179 */ 2180 if (strcmp(zone->uz_name, cnt->name) == 0) 2181 cnt->count = MAX(cnt->count, 2182 zone->uz_namecnt + 1); 2183 } 2184 2185 static void 2186 zone_update_caches(uma_zone_t zone) 2187 { 2188 int i; 2189 2190 for (i = 0; i <= mp_maxid; i++) { 2191 cache_set_uz_size(&zone->uz_cpu[i], zone->uz_size); 2192 cache_set_uz_flags(&zone->uz_cpu[i], zone->uz_flags); 2193 } 2194 } 2195 2196 /* 2197 * Zone header ctor. This initializes all fields, locks, etc. 2198 * 2199 * Arguments/Returns follow uma_ctor specifications 2200 * udata Actually uma_zctor_args 2201 */ 2202 static int 2203 zone_ctor(void *mem, int size, void *udata, int flags) 2204 { 2205 struct uma_zone_count cnt; 2206 struct uma_zctor_args *arg = udata; 2207 uma_zone_t zone = mem; 2208 uma_zone_t z; 2209 uma_keg_t keg; 2210 int i; 2211 2212 bzero(zone, size); 2213 zone->uz_name = arg->name; 2214 zone->uz_ctor = arg->ctor; 2215 zone->uz_dtor = arg->dtor; 2216 zone->uz_init = NULL; 2217 zone->uz_fini = NULL; 2218 zone->uz_sleeps = 0; 2219 zone->uz_xdomain = 0; 2220 zone->uz_bucket_size = 0; 2221 zone->uz_bucket_size_min = 0; 2222 zone->uz_bucket_size_max = BUCKET_MAX; 2223 zone->uz_flags = 0; 2224 zone->uz_warning = NULL; 2225 /* The domain structures follow the cpu structures. */ 2226 zone->uz_domain = (struct uma_zone_domain *)&zone->uz_cpu[mp_ncpus]; 2227 zone->uz_bkt_max = ULONG_MAX; 2228 timevalclear(&zone->uz_ratecheck); 2229 2230 /* Count the number of duplicate names. */ 2231 cnt.name = arg->name; 2232 cnt.count = 0; 2233 zone_foreach(zone_count, &cnt); 2234 zone->uz_namecnt = cnt.count; 2235 2236 for (i = 0; i < vm_ndomains; i++) 2237 TAILQ_INIT(&zone->uz_domain[i].uzd_buckets); 2238 2239 #ifdef INVARIANTS 2240 if (arg->uminit == trash_init && arg->fini == trash_fini) 2241 zone->uz_flags |= UMA_ZFLAG_TRASH | UMA_ZFLAG_CTORDTOR; 2242 #endif 2243 2244 /* 2245 * This is a pure cache zone, no kegs. 2246 */ 2247 if (arg->import) { 2248 if (arg->flags & UMA_ZONE_VM) 2249 arg->flags |= UMA_ZFLAG_CACHEONLY; 2250 zone->uz_flags = arg->flags; 2251 zone->uz_size = arg->size; 2252 zone->uz_import = arg->import; 2253 zone->uz_release = arg->release; 2254 zone->uz_arg = arg->arg; 2255 zone->uz_lockptr = &zone->uz_lock; 2256 ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS)); 2257 rw_wlock(&uma_rwlock); 2258 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 2259 rw_wunlock(&uma_rwlock); 2260 goto out; 2261 } 2262 2263 /* 2264 * Use the regular zone/keg/slab allocator. 2265 */ 2266 zone->uz_import = zone_import; 2267 zone->uz_release = zone_release; 2268 zone->uz_arg = zone; 2269 keg = arg->keg; 2270 2271 if (arg->flags & UMA_ZONE_SECONDARY) { 2272 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 2273 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 2274 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 2275 zone->uz_init = arg->uminit; 2276 zone->uz_fini = arg->fini; 2277 zone->uz_lockptr = &keg->uk_lock; 2278 zone->uz_flags |= UMA_ZONE_SECONDARY; 2279 rw_wlock(&uma_rwlock); 2280 ZONE_LOCK(zone); 2281 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 2282 if (LIST_NEXT(z, uz_link) == NULL) { 2283 LIST_INSERT_AFTER(z, zone, uz_link); 2284 break; 2285 } 2286 } 2287 ZONE_UNLOCK(zone); 2288 rw_wunlock(&uma_rwlock); 2289 } else if (keg == NULL) { 2290 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 2291 arg->align, arg->flags)) == NULL) 2292 return (ENOMEM); 2293 } else { 2294 struct uma_kctor_args karg; 2295 int error; 2296 2297 /* We should only be here from uma_startup() */ 2298 karg.size = arg->size; 2299 karg.uminit = arg->uminit; 2300 karg.fini = arg->fini; 2301 karg.align = arg->align; 2302 karg.flags = arg->flags; 2303 karg.zone = zone; 2304 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 2305 flags); 2306 if (error) 2307 return (error); 2308 } 2309 2310 /* Inherit properties from the keg. */ 2311 zone->uz_keg = keg; 2312 zone->uz_size = keg->uk_size; 2313 zone->uz_flags |= (keg->uk_flags & 2314 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 2315 2316 out: 2317 if (__predict_true(booted == BOOT_RUNNING)) { 2318 zone_alloc_counters(zone, NULL); 2319 zone_alloc_sysctl(zone, NULL); 2320 } else { 2321 zone->uz_allocs = EARLY_COUNTER; 2322 zone->uz_frees = EARLY_COUNTER; 2323 zone->uz_fails = EARLY_COUNTER; 2324 } 2325 2326 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != 2327 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), 2328 ("Invalid zone flag combination")); 2329 if (arg->flags & UMA_ZFLAG_INTERNAL) 2330 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 2331 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) 2332 zone->uz_bucket_size = BUCKET_MAX; 2333 else if ((arg->flags & UMA_ZONE_MINBUCKET) != 0) 2334 zone->uz_bucket_size_max = zone->uz_bucket_size = BUCKET_MIN; 2335 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) 2336 zone->uz_bucket_size = 0; 2337 else 2338 zone->uz_bucket_size = bucket_select(zone->uz_size); 2339 zone->uz_bucket_size_min = zone->uz_bucket_size; 2340 if (zone->uz_dtor != NULL || zone->uz_ctor != NULL) 2341 zone->uz_flags |= UMA_ZFLAG_CTORDTOR; 2342 zone_update_caches(zone); 2343 2344 return (0); 2345 } 2346 2347 /* 2348 * Keg header dtor. This frees all data, destroys locks, frees the hash 2349 * table and removes the keg from the global list. 2350 * 2351 * Arguments/Returns follow uma_dtor specifications 2352 * udata unused 2353 */ 2354 static void 2355 keg_dtor(void *arg, int size, void *udata) 2356 { 2357 uma_keg_t keg; 2358 2359 keg = (uma_keg_t)arg; 2360 KEG_LOCK(keg); 2361 if (keg->uk_free != 0) { 2362 printf("Freed UMA keg (%s) was not empty (%d items). " 2363 " Lost %d pages of memory.\n", 2364 keg->uk_name ? keg->uk_name : "", 2365 keg->uk_free, keg->uk_pages); 2366 } 2367 KEG_UNLOCK(keg); 2368 2369 hash_free(&keg->uk_hash); 2370 2371 KEG_LOCK_FINI(keg); 2372 } 2373 2374 /* 2375 * Zone header dtor. 2376 * 2377 * Arguments/Returns follow uma_dtor specifications 2378 * udata unused 2379 */ 2380 static void 2381 zone_dtor(void *arg, int size, void *udata) 2382 { 2383 uma_zone_t zone; 2384 uma_keg_t keg; 2385 2386 zone = (uma_zone_t)arg; 2387 2388 sysctl_remove_oid(zone->uz_oid, 1, 1); 2389 2390 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 2391 cache_drain(zone); 2392 2393 rw_wlock(&uma_rwlock); 2394 LIST_REMOVE(zone, uz_link); 2395 rw_wunlock(&uma_rwlock); 2396 /* 2397 * XXX there are some races here where 2398 * the zone can be drained but zone lock 2399 * released and then refilled before we 2400 * remove it... we dont care for now 2401 */ 2402 zone_reclaim(zone, M_WAITOK, true); 2403 /* 2404 * We only destroy kegs from non secondary/non cache zones. 2405 */ 2406 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { 2407 keg = zone->uz_keg; 2408 rw_wlock(&uma_rwlock); 2409 LIST_REMOVE(keg, uk_link); 2410 rw_wunlock(&uma_rwlock); 2411 zone_free_item(kegs, keg, NULL, SKIP_NONE); 2412 } 2413 counter_u64_free(zone->uz_allocs); 2414 counter_u64_free(zone->uz_frees); 2415 counter_u64_free(zone->uz_fails); 2416 free(zone->uz_ctlname, M_UMA); 2417 if (zone->uz_lockptr == &zone->uz_lock) 2418 ZONE_LOCK_FINI(zone); 2419 } 2420 2421 /* 2422 * Traverses every zone in the system and calls a callback 2423 * 2424 * Arguments: 2425 * zfunc A pointer to a function which accepts a zone 2426 * as an argument. 2427 * 2428 * Returns: 2429 * Nothing 2430 */ 2431 static void 2432 zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg) 2433 { 2434 uma_keg_t keg; 2435 uma_zone_t zone; 2436 2437 /* 2438 * Before BOOT_RUNNING we are guaranteed to be single 2439 * threaded, so locking isn't needed. Startup functions 2440 * are allowed to use M_WAITOK. 2441 */ 2442 if (__predict_true(booted == BOOT_RUNNING)) 2443 rw_rlock(&uma_rwlock); 2444 LIST_FOREACH(keg, &uma_kegs, uk_link) { 2445 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 2446 zfunc(zone, arg); 2447 } 2448 LIST_FOREACH(zone, &uma_cachezones, uz_link) 2449 zfunc(zone, arg); 2450 if (__predict_true(booted == BOOT_RUNNING)) 2451 rw_runlock(&uma_rwlock); 2452 } 2453 2454 /* 2455 * Count how many pages do we need to bootstrap. VM supplies 2456 * its need in early zones in the argument, we add up our zones, 2457 * which consist of the UMA Slabs, UMA Hash and 9 Bucket zones. The 2458 * zone of zones and zone of kegs are accounted separately. 2459 */ 2460 #define UMA_BOOT_ZONES 11 2461 /* Zone of zones and zone of kegs have arbitrary alignment. */ 2462 #define UMA_BOOT_ALIGN 32 2463 static int zsize, ksize; 2464 int 2465 uma_startup_count(int vm_zones) 2466 { 2467 int zones, pages; 2468 size_t space, size; 2469 2470 ksize = sizeof(struct uma_keg) + 2471 (sizeof(struct uma_domain) * vm_ndomains); 2472 zsize = sizeof(struct uma_zone) + 2473 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 2474 (sizeof(struct uma_zone_domain) * vm_ndomains); 2475 2476 /* 2477 * Memory for the zone of kegs and its keg, 2478 * and for zone of zones. 2479 */ 2480 pages = howmany(roundup(zsize, CACHE_LINE_SIZE) * 2 + 2481 roundup(ksize, CACHE_LINE_SIZE), PAGE_SIZE); 2482 2483 #ifdef UMA_MD_SMALL_ALLOC 2484 zones = UMA_BOOT_ZONES; 2485 #else 2486 zones = UMA_BOOT_ZONES + vm_zones; 2487 vm_zones = 0; 2488 #endif 2489 size = slab_sizeof(SLAB_MAX_SETSIZE); 2490 space = slab_space(SLAB_MAX_SETSIZE); 2491 2492 /* Memory for the rest of startup zones, UMA and VM, ... */ 2493 if (zsize > space) { 2494 /* See keg_large_init(). */ 2495 u_int ppera; 2496 2497 ppera = howmany(roundup2(zsize, UMA_BOOT_ALIGN), PAGE_SIZE); 2498 if (PAGE_SIZE * ppera - roundup2(zsize, UMA_BOOT_ALIGN) < size) 2499 ppera++; 2500 pages += (zones + vm_zones) * ppera; 2501 } else if (roundup2(zsize, UMA_BOOT_ALIGN) > space) 2502 /* See keg_small_init() special case for uk_ppera = 1. */ 2503 pages += zones; 2504 else 2505 pages += howmany(zones, 2506 space / roundup2(zsize, UMA_BOOT_ALIGN)); 2507 2508 /* ... and their kegs. Note that zone of zones allocates a keg! */ 2509 pages += howmany(zones + 1, 2510 space / roundup2(ksize, UMA_BOOT_ALIGN)); 2511 2512 return (pages); 2513 } 2514 2515 void 2516 uma_startup(void *mem, int npages) 2517 { 2518 struct uma_zctor_args args; 2519 uma_keg_t masterkeg; 2520 uintptr_t m; 2521 2522 #ifdef DIAGNOSTIC 2523 printf("Entering %s with %d boot pages configured\n", __func__, npages); 2524 #endif 2525 2526 rw_init(&uma_rwlock, "UMA lock"); 2527 2528 /* Use bootpages memory for the zone of zones and zone of kegs. */ 2529 m = (uintptr_t)mem; 2530 zones = (uma_zone_t)m; 2531 m += roundup(zsize, CACHE_LINE_SIZE); 2532 kegs = (uma_zone_t)m; 2533 m += roundup(zsize, CACHE_LINE_SIZE); 2534 masterkeg = (uma_keg_t)m; 2535 m += roundup(ksize, CACHE_LINE_SIZE); 2536 m = roundup(m, PAGE_SIZE); 2537 npages -= (m - (uintptr_t)mem) / PAGE_SIZE; 2538 mem = (void *)m; 2539 2540 /* "manually" create the initial zone */ 2541 memset(&args, 0, sizeof(args)); 2542 args.name = "UMA Kegs"; 2543 args.size = ksize; 2544 args.ctor = keg_ctor; 2545 args.dtor = keg_dtor; 2546 args.uminit = zero_init; 2547 args.fini = NULL; 2548 args.keg = masterkeg; 2549 args.align = UMA_BOOT_ALIGN - 1; 2550 args.flags = UMA_ZFLAG_INTERNAL; 2551 zone_ctor(kegs, zsize, &args, M_WAITOK); 2552 2553 bootmem = mem; 2554 boot_pages = npages; 2555 2556 args.name = "UMA Zones"; 2557 args.size = zsize; 2558 args.ctor = zone_ctor; 2559 args.dtor = zone_dtor; 2560 args.uminit = zero_init; 2561 args.fini = NULL; 2562 args.keg = NULL; 2563 args.align = UMA_BOOT_ALIGN - 1; 2564 args.flags = UMA_ZFLAG_INTERNAL; 2565 zone_ctor(zones, zsize, &args, M_WAITOK); 2566 2567 /* Now make a zone for slab headers */ 2568 slabzone = uma_zcreate("UMA Slabs", sizeof(struct uma_hash_slab), 2569 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2570 2571 hashzone = uma_zcreate("UMA Hash", 2572 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 2573 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2574 2575 booted = BOOT_STRAPPED; 2576 } 2577 2578 void 2579 uma_startup1(void) 2580 { 2581 2582 #ifdef DIAGNOSTIC 2583 printf("Entering %s with %d boot pages left\n", __func__, boot_pages); 2584 #endif 2585 booted = BOOT_PAGEALLOC; 2586 } 2587 2588 void 2589 uma_startup2(void) 2590 { 2591 2592 #ifdef DIAGNOSTIC 2593 printf("Entering %s with %d boot pages left\n", __func__, boot_pages); 2594 #endif 2595 sx_init(&uma_reclaim_lock, "umareclaim"); 2596 bucket_init(); 2597 booted = BOOT_BUCKETS; 2598 bucket_enable(); 2599 } 2600 2601 /* 2602 * Initialize our callout handle 2603 * 2604 */ 2605 static void 2606 uma_startup3(void) 2607 { 2608 2609 #ifdef INVARIANTS 2610 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor); 2611 uma_dbg_cnt = counter_u64_alloc(M_WAITOK); 2612 uma_skip_cnt = counter_u64_alloc(M_WAITOK); 2613 #endif 2614 zone_foreach(zone_alloc_counters, NULL); 2615 zone_foreach(zone_alloc_sysctl, NULL); 2616 callout_init(&uma_callout, 1); 2617 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 2618 booted = BOOT_RUNNING; 2619 } 2620 2621 static uma_keg_t 2622 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 2623 int align, uint32_t flags) 2624 { 2625 struct uma_kctor_args args; 2626 2627 args.size = size; 2628 args.uminit = uminit; 2629 args.fini = fini; 2630 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 2631 args.flags = flags; 2632 args.zone = zone; 2633 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 2634 } 2635 2636 /* Public functions */ 2637 /* See uma.h */ 2638 void 2639 uma_set_align(int align) 2640 { 2641 2642 if (align != UMA_ALIGN_CACHE) 2643 uma_align_cache = align; 2644 } 2645 2646 /* See uma.h */ 2647 uma_zone_t 2648 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 2649 uma_init uminit, uma_fini fini, int align, uint32_t flags) 2650 2651 { 2652 struct uma_zctor_args args; 2653 uma_zone_t res; 2654 bool locked; 2655 2656 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 2657 align, name)); 2658 2659 /* Sets all zones to a first-touch domain policy. */ 2660 #ifdef UMA_FIRSTTOUCH 2661 flags |= UMA_ZONE_NUMA; 2662 #endif 2663 2664 /* This stuff is essential for the zone ctor */ 2665 memset(&args, 0, sizeof(args)); 2666 args.name = name; 2667 args.size = size; 2668 args.ctor = ctor; 2669 args.dtor = dtor; 2670 args.uminit = uminit; 2671 args.fini = fini; 2672 #ifdef INVARIANTS 2673 /* 2674 * Inject procedures which check for memory use after free if we are 2675 * allowed to scramble the memory while it is not allocated. This 2676 * requires that: UMA is actually able to access the memory, no init 2677 * or fini procedures, no dependency on the initial value of the 2678 * memory, and no (legitimate) use of the memory after free. Note, 2679 * the ctor and dtor do not need to be empty. 2680 * 2681 * XXX UMA_ZONE_OFFPAGE. 2682 */ 2683 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOFREE))) && 2684 uminit == NULL && fini == NULL) { 2685 args.uminit = trash_init; 2686 args.fini = trash_fini; 2687 } 2688 #endif 2689 args.align = align; 2690 args.flags = flags; 2691 args.keg = NULL; 2692 2693 if (booted < BOOT_BUCKETS) { 2694 locked = false; 2695 } else { 2696 sx_slock(&uma_reclaim_lock); 2697 locked = true; 2698 } 2699 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2700 if (locked) 2701 sx_sunlock(&uma_reclaim_lock); 2702 return (res); 2703 } 2704 2705 /* See uma.h */ 2706 uma_zone_t 2707 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 2708 uma_init zinit, uma_fini zfini, uma_zone_t master) 2709 { 2710 struct uma_zctor_args args; 2711 uma_keg_t keg; 2712 uma_zone_t res; 2713 bool locked; 2714 2715 keg = master->uz_keg; 2716 memset(&args, 0, sizeof(args)); 2717 args.name = name; 2718 args.size = keg->uk_size; 2719 args.ctor = ctor; 2720 args.dtor = dtor; 2721 args.uminit = zinit; 2722 args.fini = zfini; 2723 args.align = keg->uk_align; 2724 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 2725 args.keg = keg; 2726 2727 if (booted < BOOT_BUCKETS) { 2728 locked = false; 2729 } else { 2730 sx_slock(&uma_reclaim_lock); 2731 locked = true; 2732 } 2733 /* XXX Attaches only one keg of potentially many. */ 2734 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2735 if (locked) 2736 sx_sunlock(&uma_reclaim_lock); 2737 return (res); 2738 } 2739 2740 /* See uma.h */ 2741 uma_zone_t 2742 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor, 2743 uma_init zinit, uma_fini zfini, uma_import zimport, 2744 uma_release zrelease, void *arg, int flags) 2745 { 2746 struct uma_zctor_args args; 2747 2748 memset(&args, 0, sizeof(args)); 2749 args.name = name; 2750 args.size = size; 2751 args.ctor = ctor; 2752 args.dtor = dtor; 2753 args.uminit = zinit; 2754 args.fini = zfini; 2755 args.import = zimport; 2756 args.release = zrelease; 2757 args.arg = arg; 2758 args.align = 0; 2759 args.flags = flags | UMA_ZFLAG_CACHE; 2760 2761 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 2762 } 2763 2764 /* See uma.h */ 2765 void 2766 uma_zdestroy(uma_zone_t zone) 2767 { 2768 2769 sx_slock(&uma_reclaim_lock); 2770 zone_free_item(zones, zone, NULL, SKIP_NONE); 2771 sx_sunlock(&uma_reclaim_lock); 2772 } 2773 2774 void 2775 uma_zwait(uma_zone_t zone) 2776 { 2777 void *item; 2778 2779 item = uma_zalloc_arg(zone, NULL, M_WAITOK); 2780 uma_zfree(zone, item); 2781 } 2782 2783 void * 2784 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags) 2785 { 2786 void *item; 2787 #ifdef SMP 2788 int i; 2789 2790 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 2791 #endif 2792 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO); 2793 if (item != NULL && (flags & M_ZERO)) { 2794 #ifdef SMP 2795 for (i = 0; i <= mp_maxid; i++) 2796 bzero(zpcpu_get_cpu(item, i), zone->uz_size); 2797 #else 2798 bzero(item, zone->uz_size); 2799 #endif 2800 } 2801 return (item); 2802 } 2803 2804 /* 2805 * A stub while both regular and pcpu cases are identical. 2806 */ 2807 void 2808 uma_zfree_pcpu_arg(uma_zone_t zone, void *item, void *udata) 2809 { 2810 2811 #ifdef SMP 2812 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 2813 #endif 2814 uma_zfree_arg(zone, item, udata); 2815 } 2816 2817 #ifdef INVARIANTS 2818 #define UMA_ALWAYS_CTORDTOR 1 2819 #else 2820 #define UMA_ALWAYS_CTORDTOR 0 2821 #endif 2822 2823 static void * 2824 item_ctor(uma_zone_t zone, int size, void *udata, int flags, void *item) 2825 { 2826 #ifdef INVARIANTS 2827 bool skipdbg; 2828 2829 skipdbg = uma_dbg_zskip(zone, item); 2830 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 2831 zone->uz_ctor != trash_ctor) 2832 trash_ctor(item, size, udata, flags); 2833 #endif 2834 if (__predict_false(zone->uz_ctor != NULL) && 2835 zone->uz_ctor(item, size, udata, flags) != 0) { 2836 counter_u64_add(zone->uz_fails, 1); 2837 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT); 2838 return (NULL); 2839 } 2840 #ifdef INVARIANTS 2841 if (!skipdbg) 2842 uma_dbg_alloc(zone, NULL, item); 2843 #endif 2844 if (flags & M_ZERO) 2845 bzero(item, size); 2846 2847 return (item); 2848 } 2849 2850 static inline void 2851 item_dtor(uma_zone_t zone, void *item, int size, void *udata, 2852 enum zfreeskip skip) 2853 { 2854 #ifdef INVARIANTS 2855 bool skipdbg; 2856 2857 skipdbg = uma_dbg_zskip(zone, item); 2858 if (skip == SKIP_NONE && !skipdbg) { 2859 if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0) 2860 uma_dbg_free(zone, udata, item); 2861 else 2862 uma_dbg_free(zone, NULL, item); 2863 } 2864 #endif 2865 if (__predict_true(skip < SKIP_DTOR)) { 2866 if (zone->uz_dtor != NULL) 2867 zone->uz_dtor(item, size, udata); 2868 #ifdef INVARIANTS 2869 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 2870 zone->uz_dtor != trash_dtor) 2871 trash_dtor(item, size, udata); 2872 #endif 2873 } 2874 } 2875 2876 /* See uma.h */ 2877 void * 2878 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 2879 { 2880 uma_cache_bucket_t bucket; 2881 uma_cache_t cache; 2882 void *item; 2883 int domain, size, uz_flags; 2884 2885 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2886 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 2887 2888 /* This is the fast path allocation */ 2889 CTR4(KTR_UMA, "uma_zalloc_arg thread %x zone %s(%p) flags %d", 2890 curthread, zone->uz_name, zone, flags); 2891 2892 #ifdef WITNESS 2893 if (flags & M_WAITOK) { 2894 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2895 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 2896 } 2897 #endif 2898 2899 #ifdef INVARIANTS 2900 KASSERT((flags & M_EXEC) == 0, ("uma_zalloc_arg: called with M_EXEC")); 2901 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2902 ("uma_zalloc_arg: called with spinlock or critical section held")); 2903 if (zone->uz_flags & UMA_ZONE_PCPU) 2904 KASSERT((flags & M_ZERO) == 0, ("allocating from a pcpu zone " 2905 "with M_ZERO passed")); 2906 #endif 2907 2908 #ifdef DEBUG_MEMGUARD 2909 if (memguard_cmp_zone(zone)) { 2910 item = memguard_alloc(zone->uz_size, flags); 2911 if (item != NULL) { 2912 if (zone->uz_init != NULL && 2913 zone->uz_init(item, zone->uz_size, flags) != 0) 2914 return (NULL); 2915 if (zone->uz_ctor != NULL && 2916 zone->uz_ctor(item, zone->uz_size, udata, 2917 flags) != 0) { 2918 counter_u64_add(zone->uz_fails, 1); 2919 zone->uz_fini(item, zone->uz_size); 2920 return (NULL); 2921 } 2922 return (item); 2923 } 2924 /* This is unfortunate but should not be fatal. */ 2925 } 2926 #endif 2927 /* 2928 * If possible, allocate from the per-CPU cache. There are two 2929 * requirements for safe access to the per-CPU cache: (1) the thread 2930 * accessing the cache must not be preempted or yield during access, 2931 * and (2) the thread must not migrate CPUs without switching which 2932 * cache it accesses. We rely on a critical section to prevent 2933 * preemption and migration. We release the critical section in 2934 * order to acquire the zone mutex if we are unable to allocate from 2935 * the current cache; when we re-acquire the critical section, we 2936 * must detect and handle migration if it has occurred. 2937 */ 2938 critical_enter(); 2939 do { 2940 cache = &zone->uz_cpu[curcpu]; 2941 bucket = &cache->uc_allocbucket; 2942 size = cache_uz_size(cache); 2943 uz_flags = cache_uz_flags(cache); 2944 if (__predict_true(bucket->ucb_cnt != 0)) { 2945 item = cache_bucket_pop(cache, bucket); 2946 critical_exit(); 2947 if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0 || 2948 UMA_ALWAYS_CTORDTOR)) 2949 return (item_ctor(zone, size, udata, flags, item)); 2950 if (flags & M_ZERO) 2951 bzero(item, size); 2952 return (item); 2953 } 2954 } while (cache_alloc(zone, cache, udata, flags)); 2955 critical_exit(); 2956 2957 /* 2958 * We can not get a bucket so try to return a single item. 2959 */ 2960 if (uz_flags & UMA_ZONE_NUMA) 2961 domain = PCPU_GET(domain); 2962 else 2963 domain = UMA_ANYDOMAIN; 2964 return (zone_alloc_item_locked(zone, udata, domain, flags)); 2965 } 2966 2967 /* 2968 * Replenish an alloc bucket and possibly restore an old one. Called in 2969 * a critical section. Returns in a critical section. 2970 * 2971 * A false return value indicates failure and returns with the zone lock 2972 * held. A true return value indicates success and the caller should retry. 2973 */ 2974 static __noinline bool 2975 cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 2976 { 2977 uma_zone_domain_t zdom; 2978 uma_bucket_t bucket; 2979 int domain; 2980 bool lockfail; 2981 2982 CRITICAL_ASSERT(curthread); 2983 2984 /* 2985 * If we have run out of items in our alloc bucket see 2986 * if we can switch with the free bucket. 2987 */ 2988 if (cache->uc_freebucket.ucb_cnt != 0) { 2989 cache_bucket_swap(&cache->uc_freebucket, &cache->uc_allocbucket); 2990 return (true); 2991 } 2992 2993 /* 2994 * Discard any empty allocation bucket while we hold no locks. 2995 */ 2996 bucket = cache_bucket_unload_alloc(cache); 2997 critical_exit(); 2998 if (bucket != NULL) 2999 bucket_free(zone, bucket, udata); 3000 3001 /* 3002 * Attempt to retrieve the item from the per-CPU cache has failed, so 3003 * we must go back to the zone. This requires the zone lock, so we 3004 * must drop the critical section, then re-acquire it when we go back 3005 * to the cache. Since the critical section is released, we may be 3006 * preempted or migrate. As such, make sure not to maintain any 3007 * thread-local state specific to the cache from prior to releasing 3008 * the critical section. 3009 */ 3010 lockfail = 0; 3011 if (ZONE_TRYLOCK(zone) == 0) { 3012 /* Record contention to size the buckets. */ 3013 ZONE_LOCK(zone); 3014 lockfail = 1; 3015 } 3016 3017 critical_enter(); 3018 /* Short-circuit for zones without buckets and low memory. */ 3019 if (zone->uz_bucket_size == 0 || bucketdisable) 3020 return (false); 3021 3022 cache = &zone->uz_cpu[curcpu]; 3023 3024 /* See if we lost the race to fill the cache. */ 3025 if (cache->uc_allocbucket.ucb_bucket != NULL) { 3026 ZONE_UNLOCK(zone); 3027 return (true); 3028 } 3029 3030 /* 3031 * Check the zone's cache of buckets. 3032 */ 3033 if (zone->uz_flags & UMA_ZONE_NUMA) { 3034 domain = PCPU_GET(domain); 3035 zdom = &zone->uz_domain[domain]; 3036 } else { 3037 domain = UMA_ANYDOMAIN; 3038 zdom = &zone->uz_domain[0]; 3039 } 3040 3041 if ((bucket = zone_fetch_bucket(zone, zdom)) != NULL) { 3042 ZONE_UNLOCK(zone); 3043 KASSERT(bucket->ub_cnt != 0, 3044 ("uma_zalloc_arg: Returning an empty bucket.")); 3045 cache_bucket_load_alloc(cache, bucket); 3046 return (true); 3047 } 3048 /* We are no longer associated with this CPU. */ 3049 critical_exit(); 3050 3051 /* 3052 * We bump the uz count when the cache size is insufficient to 3053 * handle the working set. 3054 */ 3055 if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max) 3056 zone->uz_bucket_size++; 3057 3058 /* 3059 * Fill a bucket and attempt to use it as the alloc bucket. 3060 */ 3061 bucket = zone_alloc_bucket(zone, udata, domain, flags); 3062 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 3063 zone->uz_name, zone, bucket); 3064 critical_enter(); 3065 if (bucket == NULL) 3066 return (false); 3067 3068 /* 3069 * See if we lost the race or were migrated. Cache the 3070 * initialized bucket to make this less likely or claim 3071 * the memory directly. 3072 */ 3073 cache = &zone->uz_cpu[curcpu]; 3074 if (cache->uc_allocbucket.ucb_bucket == NULL && 3075 ((zone->uz_flags & UMA_ZONE_NUMA) == 0 || 3076 domain == PCPU_GET(domain))) { 3077 cache_bucket_load_alloc(cache, bucket); 3078 zdom->uzd_imax += bucket->ub_cnt; 3079 } else if (zone->uz_bkt_count >= zone->uz_bkt_max) { 3080 critical_exit(); 3081 ZONE_UNLOCK(zone); 3082 bucket_drain(zone, bucket); 3083 bucket_free(zone, bucket, udata); 3084 critical_enter(); 3085 return (true); 3086 } else 3087 zone_put_bucket(zone, zdom, bucket, false); 3088 ZONE_UNLOCK(zone); 3089 return (true); 3090 } 3091 3092 void * 3093 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 3094 { 3095 3096 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3097 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3098 3099 /* This is the fast path allocation */ 3100 CTR5(KTR_UMA, 3101 "uma_zalloc_domain thread %x zone %s(%p) domain %d flags %d", 3102 curthread, zone->uz_name, zone, domain, flags); 3103 3104 if (flags & M_WAITOK) { 3105 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3106 "uma_zalloc_domain: zone \"%s\"", zone->uz_name); 3107 } 3108 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3109 ("uma_zalloc_domain: called with spinlock or critical section held")); 3110 3111 return (zone_alloc_item(zone, udata, domain, flags)); 3112 } 3113 3114 /* 3115 * Find a slab with some space. Prefer slabs that are partially used over those 3116 * that are totally full. This helps to reduce fragmentation. 3117 * 3118 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 3119 * only 'domain'. 3120 */ 3121 static uma_slab_t 3122 keg_first_slab(uma_keg_t keg, int domain, bool rr) 3123 { 3124 uma_domain_t dom; 3125 uma_slab_t slab; 3126 int start; 3127 3128 KASSERT(domain >= 0 && domain < vm_ndomains, 3129 ("keg_first_slab: domain %d out of range", domain)); 3130 KEG_LOCK_ASSERT(keg); 3131 3132 slab = NULL; 3133 start = domain; 3134 do { 3135 dom = &keg->uk_domain[domain]; 3136 if (!LIST_EMPTY(&dom->ud_part_slab)) 3137 return (LIST_FIRST(&dom->ud_part_slab)); 3138 if (!LIST_EMPTY(&dom->ud_free_slab)) { 3139 slab = LIST_FIRST(&dom->ud_free_slab); 3140 LIST_REMOVE(slab, us_link); 3141 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3142 return (slab); 3143 } 3144 if (rr) 3145 domain = (domain + 1) % vm_ndomains; 3146 } while (domain != start); 3147 3148 return (NULL); 3149 } 3150 3151 static uma_slab_t 3152 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags) 3153 { 3154 uint32_t reserve; 3155 3156 KEG_LOCK_ASSERT(keg); 3157 3158 reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve; 3159 if (keg->uk_free <= reserve) 3160 return (NULL); 3161 return (keg_first_slab(keg, domain, rr)); 3162 } 3163 3164 static uma_slab_t 3165 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags) 3166 { 3167 struct vm_domainset_iter di; 3168 uma_domain_t dom; 3169 uma_slab_t slab; 3170 int aflags, domain; 3171 bool rr; 3172 3173 restart: 3174 KEG_LOCK_ASSERT(keg); 3175 3176 /* 3177 * Use the keg's policy if upper layers haven't already specified a 3178 * domain (as happens with first-touch zones). 3179 * 3180 * To avoid races we run the iterator with the keg lock held, but that 3181 * means that we cannot allow the vm_domainset layer to sleep. Thus, 3182 * clear M_WAITOK and handle low memory conditions locally. 3183 */ 3184 rr = rdomain == UMA_ANYDOMAIN; 3185 if (rr) { 3186 aflags = (flags & ~M_WAITOK) | M_NOWAIT; 3187 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 3188 &aflags); 3189 } else { 3190 aflags = flags; 3191 domain = rdomain; 3192 } 3193 3194 for (;;) { 3195 slab = keg_fetch_free_slab(keg, domain, rr, flags); 3196 if (slab != NULL) 3197 return (slab); 3198 3199 /* 3200 * M_NOVM means don't ask at all! 3201 */ 3202 if (flags & M_NOVM) 3203 break; 3204 3205 KASSERT(zone->uz_max_items == 0 || 3206 zone->uz_items <= zone->uz_max_items, 3207 ("%s: zone %p overflow", __func__, zone)); 3208 3209 slab = keg_alloc_slab(keg, zone, domain, flags, aflags); 3210 /* 3211 * If we got a slab here it's safe to mark it partially used 3212 * and return. We assume that the caller is going to remove 3213 * at least one item. 3214 */ 3215 if (slab) { 3216 dom = &keg->uk_domain[slab->us_domain]; 3217 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3218 return (slab); 3219 } 3220 KEG_LOCK(keg); 3221 if (!rr && (flags & M_WAITOK) == 0) 3222 break; 3223 if (rr && vm_domainset_iter_policy(&di, &domain) != 0) { 3224 if ((flags & M_WAITOK) != 0) { 3225 KEG_UNLOCK(keg); 3226 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask); 3227 KEG_LOCK(keg); 3228 goto restart; 3229 } 3230 break; 3231 } 3232 } 3233 3234 /* 3235 * We might not have been able to get a slab but another cpu 3236 * could have while we were unlocked. Check again before we 3237 * fail. 3238 */ 3239 if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL) { 3240 return (slab); 3241 } 3242 return (NULL); 3243 } 3244 3245 static void * 3246 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 3247 { 3248 uma_domain_t dom; 3249 void *item; 3250 uint8_t freei; 3251 3252 KEG_LOCK_ASSERT(keg); 3253 3254 freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1; 3255 BIT_CLR(keg->uk_ipers, freei, &slab->us_free); 3256 item = slab_item(slab, keg, freei); 3257 slab->us_freecount--; 3258 keg->uk_free--; 3259 3260 /* Move this slab to the full list */ 3261 if (slab->us_freecount == 0) { 3262 LIST_REMOVE(slab, us_link); 3263 dom = &keg->uk_domain[slab->us_domain]; 3264 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 3265 } 3266 3267 return (item); 3268 } 3269 3270 static int 3271 zone_import(void *arg, void **bucket, int max, int domain, int flags) 3272 { 3273 uma_zone_t zone; 3274 uma_slab_t slab; 3275 uma_keg_t keg; 3276 #ifdef NUMA 3277 int stripe; 3278 #endif 3279 int i; 3280 3281 zone = arg; 3282 slab = NULL; 3283 keg = zone->uz_keg; 3284 KEG_LOCK(keg); 3285 /* Try to keep the buckets totally full */ 3286 for (i = 0; i < max; ) { 3287 if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL) 3288 break; 3289 #ifdef NUMA 3290 stripe = howmany(max, vm_ndomains); 3291 #endif 3292 while (slab->us_freecount && i < max) { 3293 bucket[i++] = slab_alloc_item(keg, slab); 3294 if (keg->uk_free <= keg->uk_reserve) 3295 break; 3296 #ifdef NUMA 3297 /* 3298 * If the zone is striped we pick a new slab for every 3299 * N allocations. Eliminating this conditional will 3300 * instead pick a new domain for each bucket rather 3301 * than stripe within each bucket. The current option 3302 * produces more fragmentation and requires more cpu 3303 * time but yields better distribution. 3304 */ 3305 if ((zone->uz_flags & UMA_ZONE_NUMA) == 0 && 3306 vm_ndomains > 1 && --stripe == 0) 3307 break; 3308 #endif 3309 } 3310 /* Don't block if we allocated any successfully. */ 3311 flags &= ~M_WAITOK; 3312 flags |= M_NOWAIT; 3313 } 3314 KEG_UNLOCK(keg); 3315 3316 return i; 3317 } 3318 3319 static uma_bucket_t 3320 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags) 3321 { 3322 uma_bucket_t bucket; 3323 int maxbucket, cnt; 3324 3325 CTR1(KTR_UMA, "zone_alloc:_bucket domain %d)", domain); 3326 3327 /* Avoid allocs targeting empty domains. */ 3328 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 3329 domain = UMA_ANYDOMAIN; 3330 3331 if (zone->uz_max_items > 0) { 3332 if (zone->uz_items >= zone->uz_max_items) 3333 return (false); 3334 maxbucket = MIN(zone->uz_bucket_size, 3335 zone->uz_max_items - zone->uz_items); 3336 zone->uz_items += maxbucket; 3337 } else 3338 maxbucket = zone->uz_bucket_size; 3339 ZONE_UNLOCK(zone); 3340 3341 /* Don't wait for buckets, preserve caller's NOVM setting. */ 3342 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 3343 if (bucket == NULL) { 3344 cnt = 0; 3345 goto out; 3346 } 3347 3348 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 3349 MIN(maxbucket, bucket->ub_entries), domain, flags); 3350 3351 /* 3352 * Initialize the memory if necessary. 3353 */ 3354 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 3355 int i; 3356 3357 for (i = 0; i < bucket->ub_cnt; i++) 3358 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 3359 flags) != 0) 3360 break; 3361 /* 3362 * If we couldn't initialize the whole bucket, put the 3363 * rest back onto the freelist. 3364 */ 3365 if (i != bucket->ub_cnt) { 3366 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 3367 bucket->ub_cnt - i); 3368 #ifdef INVARIANTS 3369 bzero(&bucket->ub_bucket[i], 3370 sizeof(void *) * (bucket->ub_cnt - i)); 3371 #endif 3372 bucket->ub_cnt = i; 3373 } 3374 } 3375 3376 cnt = bucket->ub_cnt; 3377 if (bucket->ub_cnt == 0) { 3378 bucket_free(zone, bucket, udata); 3379 counter_u64_add(zone->uz_fails, 1); 3380 bucket = NULL; 3381 } 3382 out: 3383 ZONE_LOCK(zone); 3384 if (zone->uz_max_items > 0 && cnt < maxbucket) { 3385 MPASS(zone->uz_items >= maxbucket - cnt); 3386 zone->uz_items -= maxbucket - cnt; 3387 if (zone->uz_sleepers > 0 && 3388 (cnt == 0 ? zone->uz_items + 1 : zone->uz_items) < 3389 zone->uz_max_items) 3390 wakeup_one(zone); 3391 } 3392 3393 return (bucket); 3394 } 3395 3396 /* 3397 * Allocates a single item from a zone. 3398 * 3399 * Arguments 3400 * zone The zone to alloc for. 3401 * udata The data to be passed to the constructor. 3402 * domain The domain to allocate from or UMA_ANYDOMAIN. 3403 * flags M_WAITOK, M_NOWAIT, M_ZERO. 3404 * 3405 * Returns 3406 * NULL if there is no memory and M_NOWAIT is set 3407 * An item if successful 3408 */ 3409 3410 static void * 3411 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 3412 { 3413 3414 ZONE_LOCK(zone); 3415 return (zone_alloc_item_locked(zone, udata, domain, flags)); 3416 } 3417 3418 /* 3419 * Returns with zone unlocked. 3420 */ 3421 static void * 3422 zone_alloc_item_locked(uma_zone_t zone, void *udata, int domain, int flags) 3423 { 3424 void *item; 3425 3426 ZONE_LOCK_ASSERT(zone); 3427 3428 if (zone->uz_max_items > 0) { 3429 if (zone->uz_items >= zone->uz_max_items) { 3430 zone_log_warning(zone); 3431 zone_maxaction(zone); 3432 if (flags & M_NOWAIT) { 3433 ZONE_UNLOCK(zone); 3434 return (NULL); 3435 } 3436 zone->uz_sleeps++; 3437 zone->uz_sleepers++; 3438 while (zone->uz_items >= zone->uz_max_items) 3439 mtx_sleep(zone, zone->uz_lockptr, PVM, 3440 "zonelimit", 0); 3441 zone->uz_sleepers--; 3442 if (zone->uz_sleepers > 0 && 3443 zone->uz_items + 1 < zone->uz_max_items) 3444 wakeup_one(zone); 3445 } 3446 zone->uz_items++; 3447 } 3448 ZONE_UNLOCK(zone); 3449 3450 /* Avoid allocs targeting empty domains. */ 3451 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 3452 domain = UMA_ANYDOMAIN; 3453 3454 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 3455 goto fail_cnt; 3456 3457 /* 3458 * We have to call both the zone's init (not the keg's init) 3459 * and the zone's ctor. This is because the item is going from 3460 * a keg slab directly to the user, and the user is expecting it 3461 * to be both zone-init'd as well as zone-ctor'd. 3462 */ 3463 if (zone->uz_init != NULL) { 3464 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 3465 zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT); 3466 goto fail_cnt; 3467 } 3468 } 3469 item = item_ctor(zone, zone->uz_size, udata, flags, item); 3470 if (item == NULL) 3471 goto fail; 3472 3473 counter_u64_add(zone->uz_allocs, 1); 3474 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 3475 zone->uz_name, zone); 3476 3477 return (item); 3478 3479 fail_cnt: 3480 counter_u64_add(zone->uz_fails, 1); 3481 fail: 3482 if (zone->uz_max_items > 0) { 3483 ZONE_LOCK(zone); 3484 /* XXX Decrement without wakeup */ 3485 zone->uz_items--; 3486 ZONE_UNLOCK(zone); 3487 } 3488 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 3489 zone->uz_name, zone); 3490 return (NULL); 3491 } 3492 3493 /* See uma.h */ 3494 void 3495 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 3496 { 3497 uma_cache_t cache; 3498 uma_cache_bucket_t bucket; 3499 int domain, itemdomain, uz_flags; 3500 3501 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3502 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3503 3504 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 3505 zone->uz_name); 3506 3507 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3508 ("uma_zfree_arg: called with spinlock or critical section held")); 3509 3510 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 3511 if (item == NULL) 3512 return; 3513 #ifdef DEBUG_MEMGUARD 3514 if (is_memguard_addr(item)) { 3515 if (zone->uz_dtor != NULL) 3516 zone->uz_dtor(item, zone->uz_size, udata); 3517 if (zone->uz_fini != NULL) 3518 zone->uz_fini(item, zone->uz_size); 3519 memguard_free(item); 3520 return; 3521 } 3522 #endif 3523 3524 /* 3525 * We are accessing the per-cpu cache without a critical section to 3526 * fetch size and flags. This is acceptable, if we are preempted we 3527 * will simply read another cpu's line. 3528 */ 3529 cache = &zone->uz_cpu[curcpu]; 3530 uz_flags = cache_uz_flags(cache); 3531 if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0 || 3532 UMA_ALWAYS_CTORDTOR)) 3533 item_dtor(zone, item, cache_uz_size(cache), udata, SKIP_NONE); 3534 3535 /* 3536 * The race here is acceptable. If we miss it we'll just have to wait 3537 * a little longer for the limits to be reset. 3538 */ 3539 if (__predict_false(uz_flags & UMA_ZFLAG_LIMIT)) { 3540 if (zone->uz_sleepers > 0) 3541 goto zfree_item; 3542 } 3543 3544 /* 3545 * If possible, free to the per-CPU cache. There are two 3546 * requirements for safe access to the per-CPU cache: (1) the thread 3547 * accessing the cache must not be preempted or yield during access, 3548 * and (2) the thread must not migrate CPUs without switching which 3549 * cache it accesses. We rely on a critical section to prevent 3550 * preemption and migration. We release the critical section in 3551 * order to acquire the zone mutex if we are unable to free to the 3552 * current cache; when we re-acquire the critical section, we must 3553 * detect and handle migration if it has occurred. 3554 */ 3555 domain = itemdomain = 0; 3556 critical_enter(); 3557 do { 3558 cache = &zone->uz_cpu[curcpu]; 3559 bucket = &cache->uc_allocbucket; 3560 #ifdef UMA_XDOMAIN 3561 if ((uz_flags & UMA_ZONE_NUMA) != 0) { 3562 itemdomain = _vm_phys_domain(pmap_kextract((vm_offset_t)item)); 3563 domain = PCPU_GET(domain); 3564 } 3565 if ((uz_flags & UMA_ZONE_NUMA) != 0 && domain != itemdomain) { 3566 bucket = &cache->uc_crossbucket; 3567 } else 3568 #endif 3569 3570 /* 3571 * Try to free into the allocbucket first to give LIFO ordering 3572 * for cache-hot datastructures. Spill over into the freebucket 3573 * if necessary. Alloc will swap them if one runs dry. 3574 */ 3575 if (__predict_false(bucket->ucb_cnt >= bucket->ucb_entries)) 3576 bucket = &cache->uc_freebucket; 3577 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 3578 cache_bucket_push(cache, bucket, item); 3579 critical_exit(); 3580 return; 3581 } 3582 } while (cache_free(zone, cache, udata, item, itemdomain)); 3583 critical_exit(); 3584 3585 /* 3586 * If nothing else caught this, we'll just do an internal free. 3587 */ 3588 zfree_item: 3589 zone_free_item(zone, item, udata, SKIP_DTOR); 3590 } 3591 3592 static void 3593 zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 3594 int domain, int itemdomain) 3595 { 3596 uma_zone_domain_t zdom; 3597 3598 #ifdef UMA_XDOMAIN 3599 /* 3600 * Buckets coming from the wrong domain will be entirely for the 3601 * only other domain on two domain systems. In this case we can 3602 * simply cache them. Otherwise we need to sort them back to 3603 * correct domains by freeing the contents to the slab layer. 3604 */ 3605 if (domain != itemdomain && vm_ndomains > 2) { 3606 CTR3(KTR_UMA, 3607 "uma_zfree: zone %s(%p) draining cross bucket %p", 3608 zone->uz_name, zone, bucket); 3609 bucket_drain(zone, bucket); 3610 bucket_free(zone, bucket, udata); 3611 return; 3612 } 3613 #endif 3614 /* 3615 * Attempt to save the bucket in the zone's domain bucket cache. 3616 * 3617 * We bump the uz count when the cache size is insufficient to 3618 * handle the working set. 3619 */ 3620 if (ZONE_TRYLOCK(zone) == 0) { 3621 /* Record contention to size the buckets. */ 3622 ZONE_LOCK(zone); 3623 if (zone->uz_bucket_size < zone->uz_bucket_size_max) 3624 zone->uz_bucket_size++; 3625 } 3626 3627 CTR3(KTR_UMA, 3628 "uma_zfree: zone %s(%p) putting bucket %p on free list", 3629 zone->uz_name, zone, bucket); 3630 /* ub_cnt is pointing to the last free item */ 3631 KASSERT(bucket->ub_cnt == bucket->ub_entries, 3632 ("uma_zfree: Attempting to insert partial bucket onto the full list.\n")); 3633 if (zone->uz_bkt_count >= zone->uz_bkt_max) { 3634 ZONE_UNLOCK(zone); 3635 bucket_drain(zone, bucket); 3636 bucket_free(zone, bucket, udata); 3637 } else { 3638 zdom = &zone->uz_domain[itemdomain]; 3639 zone_put_bucket(zone, zdom, bucket, true); 3640 ZONE_UNLOCK(zone); 3641 } 3642 } 3643 3644 /* 3645 * Populate a free or cross bucket for the current cpu cache. Free any 3646 * existing full bucket either to the zone cache or back to the slab layer. 3647 * 3648 * Enters and returns in a critical section. false return indicates that 3649 * we can not satisfy this free in the cache layer. true indicates that 3650 * the caller should retry. 3651 */ 3652 static __noinline bool 3653 cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, void *item, 3654 int itemdomain) 3655 { 3656 uma_bucket_t bucket; 3657 int domain; 3658 3659 CRITICAL_ASSERT(curthread); 3660 3661 if (zone->uz_bucket_size == 0 || bucketdisable) 3662 return false; 3663 3664 cache = &zone->uz_cpu[curcpu]; 3665 3666 /* 3667 * NUMA domains need to free to the correct zdom. When XDOMAIN 3668 * is enabled this is the zdom of the item and the bucket may be 3669 * the cross bucket if they do not match. 3670 */ 3671 if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) 3672 #ifdef UMA_XDOMAIN 3673 domain = PCPU_GET(domain); 3674 #else 3675 itemdomain = domain = PCPU_GET(domain); 3676 #endif 3677 else 3678 itemdomain = domain = 0; 3679 #ifdef UMA_XDOMAIN 3680 if (domain != itemdomain) { 3681 bucket = cache_bucket_unload_cross(cache); 3682 if (bucket != NULL) 3683 atomic_add_64(&zone->uz_xdomain, bucket->ub_cnt); 3684 } else 3685 #endif 3686 bucket = cache_bucket_unload_free(cache); 3687 3688 3689 /* We are no longer associated with this CPU. */ 3690 critical_exit(); 3691 3692 if (bucket != NULL) 3693 zone_free_bucket(zone, bucket, udata, domain, itemdomain); 3694 3695 bucket = bucket_alloc(zone, udata, M_NOWAIT); 3696 CTR3(KTR_UMA, "uma_zfree: zone %s(%p) allocated bucket %p", 3697 zone->uz_name, zone, bucket); 3698 critical_enter(); 3699 if (bucket == NULL) 3700 return (false); 3701 cache = &zone->uz_cpu[curcpu]; 3702 #ifdef UMA_XDOMAIN 3703 /* 3704 * Check to see if we should be populating the cross bucket. If it 3705 * is already populated we will fall through and attempt to populate 3706 * the free bucket. 3707 */ 3708 if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) { 3709 domain = PCPU_GET(domain); 3710 if (domain != itemdomain && 3711 cache->uc_crossbucket.ucb_bucket == NULL) { 3712 cache_bucket_load_cross(cache, bucket); 3713 return (true); 3714 } 3715 } 3716 #endif 3717 /* 3718 * We may have lost the race to fill the bucket or switched CPUs. 3719 */ 3720 if (cache->uc_freebucket.ucb_bucket != NULL) { 3721 critical_exit(); 3722 bucket_free(zone, bucket, udata); 3723 critical_enter(); 3724 } else 3725 cache_bucket_load_free(cache, bucket); 3726 3727 return (true); 3728 } 3729 3730 void 3731 uma_zfree_domain(uma_zone_t zone, void *item, void *udata) 3732 { 3733 3734 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3735 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3736 3737 CTR2(KTR_UMA, "uma_zfree_domain thread %x zone %s", curthread, 3738 zone->uz_name); 3739 3740 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3741 ("uma_zfree_domain: called with spinlock or critical section held")); 3742 3743 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 3744 if (item == NULL) 3745 return; 3746 zone_free_item(zone, item, udata, SKIP_NONE); 3747 } 3748 3749 static void 3750 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item) 3751 { 3752 uma_keg_t keg; 3753 uma_domain_t dom; 3754 uint8_t freei; 3755 3756 keg = zone->uz_keg; 3757 MPASS(zone->uz_lockptr == &keg->uk_lock); 3758 KEG_LOCK_ASSERT(keg); 3759 3760 dom = &keg->uk_domain[slab->us_domain]; 3761 3762 /* Do we need to remove from any lists? */ 3763 if (slab->us_freecount+1 == keg->uk_ipers) { 3764 LIST_REMOVE(slab, us_link); 3765 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 3766 } else if (slab->us_freecount == 0) { 3767 LIST_REMOVE(slab, us_link); 3768 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3769 } 3770 3771 /* Slab management. */ 3772 freei = slab_item_index(slab, keg, item); 3773 BIT_SET(keg->uk_ipers, freei, &slab->us_free); 3774 slab->us_freecount++; 3775 3776 /* Keg statistics. */ 3777 keg->uk_free++; 3778 } 3779 3780 static void 3781 zone_release(void *arg, void **bucket, int cnt) 3782 { 3783 uma_zone_t zone; 3784 void *item; 3785 uma_slab_t slab; 3786 uma_keg_t keg; 3787 uint8_t *mem; 3788 int i; 3789 3790 zone = arg; 3791 keg = zone->uz_keg; 3792 KEG_LOCK(keg); 3793 for (i = 0; i < cnt; i++) { 3794 item = bucket[i]; 3795 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) { 3796 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 3797 if (zone->uz_flags & UMA_ZONE_HASH) { 3798 slab = hash_sfind(&keg->uk_hash, mem); 3799 } else { 3800 mem += keg->uk_pgoff; 3801 slab = (uma_slab_t)mem; 3802 } 3803 } else 3804 slab = vtoslab((vm_offset_t)item); 3805 slab_free_item(zone, slab, item); 3806 } 3807 KEG_UNLOCK(keg); 3808 } 3809 3810 /* 3811 * Frees a single item to any zone. 3812 * 3813 * Arguments: 3814 * zone The zone to free to 3815 * item The item we're freeing 3816 * udata User supplied data for the dtor 3817 * skip Skip dtors and finis 3818 */ 3819 static void 3820 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 3821 { 3822 3823 item_dtor(zone, item, zone->uz_size, udata, skip); 3824 3825 if (skip < SKIP_FINI && zone->uz_fini) 3826 zone->uz_fini(item, zone->uz_size); 3827 3828 zone->uz_release(zone->uz_arg, &item, 1); 3829 3830 if (skip & SKIP_CNT) 3831 return; 3832 3833 counter_u64_add(zone->uz_frees, 1); 3834 3835 if (zone->uz_max_items > 0) { 3836 ZONE_LOCK(zone); 3837 zone->uz_items--; 3838 if (zone->uz_sleepers > 0 && 3839 zone->uz_items < zone->uz_max_items) 3840 wakeup_one(zone); 3841 ZONE_UNLOCK(zone); 3842 } 3843 } 3844 3845 /* See uma.h */ 3846 int 3847 uma_zone_set_max(uma_zone_t zone, int nitems) 3848 { 3849 struct uma_bucket_zone *ubz; 3850 int count; 3851 3852 ZONE_LOCK(zone); 3853 ubz = bucket_zone_max(zone, nitems); 3854 count = ubz != NULL ? ubz->ubz_entries : 0; 3855 zone->uz_bucket_size_max = zone->uz_bucket_size = count; 3856 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 3857 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 3858 zone->uz_max_items = nitems; 3859 zone->uz_flags |= UMA_ZFLAG_LIMIT; 3860 zone_update_caches(zone); 3861 ZONE_UNLOCK(zone); 3862 3863 return (nitems); 3864 } 3865 3866 /* See uma.h */ 3867 void 3868 uma_zone_set_maxcache(uma_zone_t zone, int nitems) 3869 { 3870 struct uma_bucket_zone *ubz; 3871 int bpcpu; 3872 3873 ZONE_LOCK(zone); 3874 ubz = bucket_zone_max(zone, nitems); 3875 if (ubz != NULL) { 3876 bpcpu = 2; 3877 #ifdef UMA_XDOMAIN 3878 if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) 3879 /* Count the cross-domain bucket. */ 3880 bpcpu++; 3881 #endif 3882 nitems -= ubz->ubz_entries * bpcpu * mp_ncpus; 3883 zone->uz_bucket_size_max = ubz->ubz_entries; 3884 } else { 3885 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 3886 } 3887 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 3888 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 3889 zone->uz_bkt_max = nitems; 3890 ZONE_UNLOCK(zone); 3891 } 3892 3893 /* See uma.h */ 3894 int 3895 uma_zone_get_max(uma_zone_t zone) 3896 { 3897 int nitems; 3898 3899 ZONE_LOCK(zone); 3900 nitems = zone->uz_max_items; 3901 ZONE_UNLOCK(zone); 3902 3903 return (nitems); 3904 } 3905 3906 /* See uma.h */ 3907 void 3908 uma_zone_set_warning(uma_zone_t zone, const char *warning) 3909 { 3910 3911 ZONE_LOCK(zone); 3912 zone->uz_warning = warning; 3913 ZONE_UNLOCK(zone); 3914 } 3915 3916 /* See uma.h */ 3917 void 3918 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 3919 { 3920 3921 ZONE_LOCK(zone); 3922 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 3923 ZONE_UNLOCK(zone); 3924 } 3925 3926 /* See uma.h */ 3927 int 3928 uma_zone_get_cur(uma_zone_t zone) 3929 { 3930 int64_t nitems; 3931 u_int i; 3932 3933 ZONE_LOCK(zone); 3934 nitems = counter_u64_fetch(zone->uz_allocs) - 3935 counter_u64_fetch(zone->uz_frees); 3936 if ((zone->uz_flags & UMA_ZFLAG_INTERNAL) == 0) { 3937 CPU_FOREACH(i) { 3938 /* 3939 * See the comment in uma_vm_zone_stats() regarding 3940 * the safety of accessing the per-cpu caches. With 3941 * the zone lock held, it is safe, but can potentially 3942 * result in stale data. 3943 */ 3944 nitems += zone->uz_cpu[i].uc_allocs - 3945 zone->uz_cpu[i].uc_frees; 3946 } 3947 } 3948 ZONE_UNLOCK(zone); 3949 3950 return (nitems < 0 ? 0 : nitems); 3951 } 3952 3953 static uint64_t 3954 uma_zone_get_allocs(uma_zone_t zone) 3955 { 3956 uint64_t nitems; 3957 u_int i; 3958 3959 ZONE_LOCK(zone); 3960 nitems = counter_u64_fetch(zone->uz_allocs); 3961 if ((zone->uz_flags & UMA_ZFLAG_INTERNAL) == 0) { 3962 CPU_FOREACH(i) { 3963 /* 3964 * See the comment in uma_vm_zone_stats() regarding 3965 * the safety of accessing the per-cpu caches. With 3966 * the zone lock held, it is safe, but can potentially 3967 * result in stale data. 3968 */ 3969 nitems += zone->uz_cpu[i].uc_allocs; 3970 } 3971 } 3972 ZONE_UNLOCK(zone); 3973 3974 return (nitems); 3975 } 3976 3977 static uint64_t 3978 uma_zone_get_frees(uma_zone_t zone) 3979 { 3980 uint64_t nitems; 3981 u_int i; 3982 3983 ZONE_LOCK(zone); 3984 nitems = counter_u64_fetch(zone->uz_frees); 3985 if ((zone->uz_flags & UMA_ZFLAG_INTERNAL) == 0) { 3986 CPU_FOREACH(i) { 3987 /* 3988 * See the comment in uma_vm_zone_stats() regarding 3989 * the safety of accessing the per-cpu caches. With 3990 * the zone lock held, it is safe, but can potentially 3991 * result in stale data. 3992 */ 3993 nitems += zone->uz_cpu[i].uc_frees; 3994 } 3995 } 3996 ZONE_UNLOCK(zone); 3997 3998 return (nitems); 3999 } 4000 4001 /* See uma.h */ 4002 void 4003 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 4004 { 4005 uma_keg_t keg; 4006 4007 KEG_GET(zone, keg); 4008 KEG_LOCK(keg); 4009 KASSERT(keg->uk_pages == 0, 4010 ("uma_zone_set_init on non-empty keg")); 4011 keg->uk_init = uminit; 4012 KEG_UNLOCK(keg); 4013 } 4014 4015 /* See uma.h */ 4016 void 4017 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 4018 { 4019 uma_keg_t keg; 4020 4021 KEG_GET(zone, keg); 4022 KEG_LOCK(keg); 4023 KASSERT(keg->uk_pages == 0, 4024 ("uma_zone_set_fini on non-empty keg")); 4025 keg->uk_fini = fini; 4026 KEG_UNLOCK(keg); 4027 } 4028 4029 /* See uma.h */ 4030 void 4031 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 4032 { 4033 4034 ZONE_LOCK(zone); 4035 KASSERT(zone->uz_keg->uk_pages == 0, 4036 ("uma_zone_set_zinit on non-empty keg")); 4037 zone->uz_init = zinit; 4038 ZONE_UNLOCK(zone); 4039 } 4040 4041 /* See uma.h */ 4042 void 4043 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 4044 { 4045 4046 ZONE_LOCK(zone); 4047 KASSERT(zone->uz_keg->uk_pages == 0, 4048 ("uma_zone_set_zfini on non-empty keg")); 4049 zone->uz_fini = zfini; 4050 ZONE_UNLOCK(zone); 4051 } 4052 4053 /* See uma.h */ 4054 /* XXX uk_freef is not actually used with the zone locked */ 4055 void 4056 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 4057 { 4058 uma_keg_t keg; 4059 4060 KEG_GET(zone, keg); 4061 KASSERT(keg != NULL, ("uma_zone_set_freef: Invalid zone type")); 4062 KEG_LOCK(keg); 4063 keg->uk_freef = freef; 4064 KEG_UNLOCK(keg); 4065 } 4066 4067 /* See uma.h */ 4068 /* XXX uk_allocf is not actually used with the zone locked */ 4069 void 4070 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 4071 { 4072 uma_keg_t keg; 4073 4074 KEG_GET(zone, keg); 4075 KEG_LOCK(keg); 4076 keg->uk_allocf = allocf; 4077 KEG_UNLOCK(keg); 4078 } 4079 4080 /* See uma.h */ 4081 void 4082 uma_zone_reserve(uma_zone_t zone, int items) 4083 { 4084 uma_keg_t keg; 4085 4086 KEG_GET(zone, keg); 4087 KEG_LOCK(keg); 4088 keg->uk_reserve = items; 4089 KEG_UNLOCK(keg); 4090 } 4091 4092 /* See uma.h */ 4093 int 4094 uma_zone_reserve_kva(uma_zone_t zone, int count) 4095 { 4096 uma_keg_t keg; 4097 vm_offset_t kva; 4098 u_int pages; 4099 4100 KEG_GET(zone, keg); 4101 4102 pages = count / keg->uk_ipers; 4103 if (pages * keg->uk_ipers < count) 4104 pages++; 4105 pages *= keg->uk_ppera; 4106 4107 #ifdef UMA_MD_SMALL_ALLOC 4108 if (keg->uk_ppera > 1) { 4109 #else 4110 if (1) { 4111 #endif 4112 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 4113 if (kva == 0) 4114 return (0); 4115 } else 4116 kva = 0; 4117 4118 ZONE_LOCK(zone); 4119 MPASS(keg->uk_kva == 0); 4120 keg->uk_kva = kva; 4121 keg->uk_offset = 0; 4122 zone->uz_max_items = pages * keg->uk_ipers; 4123 #ifdef UMA_MD_SMALL_ALLOC 4124 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 4125 #else 4126 keg->uk_allocf = noobj_alloc; 4127 #endif 4128 keg->uk_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 4129 zone->uz_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 4130 zone_update_caches(zone); 4131 ZONE_UNLOCK(zone); 4132 4133 return (1); 4134 } 4135 4136 /* See uma.h */ 4137 void 4138 uma_prealloc(uma_zone_t zone, int items) 4139 { 4140 struct vm_domainset_iter di; 4141 uma_domain_t dom; 4142 uma_slab_t slab; 4143 uma_keg_t keg; 4144 int aflags, domain, slabs; 4145 4146 KEG_GET(zone, keg); 4147 KEG_LOCK(keg); 4148 slabs = items / keg->uk_ipers; 4149 if (slabs * keg->uk_ipers < items) 4150 slabs++; 4151 while (slabs-- > 0) { 4152 aflags = M_NOWAIT; 4153 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 4154 &aflags); 4155 for (;;) { 4156 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK, 4157 aflags); 4158 if (slab != NULL) { 4159 dom = &keg->uk_domain[slab->us_domain]; 4160 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, 4161 us_link); 4162 break; 4163 } 4164 KEG_LOCK(keg); 4165 if (vm_domainset_iter_policy(&di, &domain) != 0) { 4166 KEG_UNLOCK(keg); 4167 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask); 4168 KEG_LOCK(keg); 4169 } 4170 } 4171 } 4172 KEG_UNLOCK(keg); 4173 } 4174 4175 /* See uma.h */ 4176 void 4177 uma_reclaim(int req) 4178 { 4179 4180 CTR0(KTR_UMA, "UMA: vm asked us to release pages!"); 4181 sx_xlock(&uma_reclaim_lock); 4182 bucket_enable(); 4183 4184 switch (req) { 4185 case UMA_RECLAIM_TRIM: 4186 zone_foreach(zone_trim, NULL); 4187 break; 4188 case UMA_RECLAIM_DRAIN: 4189 case UMA_RECLAIM_DRAIN_CPU: 4190 zone_foreach(zone_drain, NULL); 4191 if (req == UMA_RECLAIM_DRAIN_CPU) { 4192 pcpu_cache_drain_safe(NULL); 4193 zone_foreach(zone_drain, NULL); 4194 } 4195 break; 4196 default: 4197 panic("unhandled reclamation request %d", req); 4198 } 4199 4200 /* 4201 * Some slabs may have been freed but this zone will be visited early 4202 * we visit again so that we can free pages that are empty once other 4203 * zones are drained. We have to do the same for buckets. 4204 */ 4205 zone_drain(slabzone, NULL); 4206 bucket_zone_drain(); 4207 sx_xunlock(&uma_reclaim_lock); 4208 } 4209 4210 static volatile int uma_reclaim_needed; 4211 4212 void 4213 uma_reclaim_wakeup(void) 4214 { 4215 4216 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 4217 wakeup(uma_reclaim); 4218 } 4219 4220 void 4221 uma_reclaim_worker(void *arg __unused) 4222 { 4223 4224 for (;;) { 4225 sx_xlock(&uma_reclaim_lock); 4226 while (atomic_load_int(&uma_reclaim_needed) == 0) 4227 sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl", 4228 hz); 4229 sx_xunlock(&uma_reclaim_lock); 4230 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 4231 uma_reclaim(UMA_RECLAIM_DRAIN_CPU); 4232 atomic_store_int(&uma_reclaim_needed, 0); 4233 /* Don't fire more than once per-second. */ 4234 pause("umarclslp", hz); 4235 } 4236 } 4237 4238 /* See uma.h */ 4239 void 4240 uma_zone_reclaim(uma_zone_t zone, int req) 4241 { 4242 4243 switch (req) { 4244 case UMA_RECLAIM_TRIM: 4245 zone_trim(zone, NULL); 4246 break; 4247 case UMA_RECLAIM_DRAIN: 4248 zone_drain(zone, NULL); 4249 break; 4250 case UMA_RECLAIM_DRAIN_CPU: 4251 pcpu_cache_drain_safe(zone); 4252 zone_drain(zone, NULL); 4253 break; 4254 default: 4255 panic("unhandled reclamation request %d", req); 4256 } 4257 } 4258 4259 /* See uma.h */ 4260 int 4261 uma_zone_exhausted(uma_zone_t zone) 4262 { 4263 int full; 4264 4265 ZONE_LOCK(zone); 4266 full = zone->uz_sleepers > 0; 4267 ZONE_UNLOCK(zone); 4268 return (full); 4269 } 4270 4271 int 4272 uma_zone_exhausted_nolock(uma_zone_t zone) 4273 { 4274 return (zone->uz_sleepers > 0); 4275 } 4276 4277 unsigned long 4278 uma_limit(void) 4279 { 4280 4281 return (uma_kmem_limit); 4282 } 4283 4284 void 4285 uma_set_limit(unsigned long limit) 4286 { 4287 4288 uma_kmem_limit = limit; 4289 } 4290 4291 unsigned long 4292 uma_size(void) 4293 { 4294 4295 return (atomic_load_long(&uma_kmem_total)); 4296 } 4297 4298 long 4299 uma_avail(void) 4300 { 4301 4302 return (uma_kmem_limit - uma_size()); 4303 } 4304 4305 #ifdef DDB 4306 /* 4307 * Generate statistics across both the zone and its per-cpu cache's. Return 4308 * desired statistics if the pointer is non-NULL for that statistic. 4309 * 4310 * Note: does not update the zone statistics, as it can't safely clear the 4311 * per-CPU cache statistic. 4312 * 4313 */ 4314 static void 4315 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp, 4316 uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp) 4317 { 4318 uma_cache_t cache; 4319 uint64_t allocs, frees, sleeps, xdomain; 4320 int cachefree, cpu; 4321 4322 allocs = frees = sleeps = xdomain = 0; 4323 cachefree = 0; 4324 CPU_FOREACH(cpu) { 4325 cache = &z->uz_cpu[cpu]; 4326 cachefree += cache->uc_allocbucket.ucb_cnt; 4327 cachefree += cache->uc_freebucket.ucb_cnt; 4328 xdomain += cache->uc_crossbucket.ucb_cnt; 4329 cachefree += cache->uc_crossbucket.ucb_cnt; 4330 allocs += cache->uc_allocs; 4331 frees += cache->uc_frees; 4332 } 4333 allocs += counter_u64_fetch(z->uz_allocs); 4334 frees += counter_u64_fetch(z->uz_frees); 4335 sleeps += z->uz_sleeps; 4336 xdomain += z->uz_xdomain; 4337 if (cachefreep != NULL) 4338 *cachefreep = cachefree; 4339 if (allocsp != NULL) 4340 *allocsp = allocs; 4341 if (freesp != NULL) 4342 *freesp = frees; 4343 if (sleepsp != NULL) 4344 *sleepsp = sleeps; 4345 if (xdomainp != NULL) 4346 *xdomainp = xdomain; 4347 } 4348 #endif /* DDB */ 4349 4350 static int 4351 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 4352 { 4353 uma_keg_t kz; 4354 uma_zone_t z; 4355 int count; 4356 4357 count = 0; 4358 rw_rlock(&uma_rwlock); 4359 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4360 LIST_FOREACH(z, &kz->uk_zones, uz_link) 4361 count++; 4362 } 4363 LIST_FOREACH(z, &uma_cachezones, uz_link) 4364 count++; 4365 4366 rw_runlock(&uma_rwlock); 4367 return (sysctl_handle_int(oidp, &count, 0, req)); 4368 } 4369 4370 static void 4371 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf, 4372 struct uma_percpu_stat *ups, bool internal) 4373 { 4374 uma_zone_domain_t zdom; 4375 uma_cache_t cache; 4376 int i; 4377 4378 4379 for (i = 0; i < vm_ndomains; i++) { 4380 zdom = &z->uz_domain[i]; 4381 uth->uth_zone_free += zdom->uzd_nitems; 4382 } 4383 uth->uth_allocs = counter_u64_fetch(z->uz_allocs); 4384 uth->uth_frees = counter_u64_fetch(z->uz_frees); 4385 uth->uth_fails = counter_u64_fetch(z->uz_fails); 4386 uth->uth_sleeps = z->uz_sleeps; 4387 uth->uth_xdomain = z->uz_xdomain; 4388 4389 /* 4390 * While it is not normally safe to access the cache bucket pointers 4391 * while not on the CPU that owns the cache, we only allow the pointers 4392 * to be exchanged without the zone lock held, not invalidated, so 4393 * accept the possible race associated with bucket exchange during 4394 * monitoring. Use atomic_load_ptr() to ensure that the bucket pointers 4395 * are loaded only once. 4396 */ 4397 for (i = 0; i < mp_maxid + 1; i++) { 4398 bzero(&ups[i], sizeof(*ups)); 4399 if (internal || CPU_ABSENT(i)) 4400 continue; 4401 cache = &z->uz_cpu[i]; 4402 ups[i].ups_cache_free += cache->uc_allocbucket.ucb_cnt; 4403 ups[i].ups_cache_free += cache->uc_freebucket.ucb_cnt; 4404 ups[i].ups_cache_free += cache->uc_crossbucket.ucb_cnt; 4405 ups[i].ups_allocs = cache->uc_allocs; 4406 ups[i].ups_frees = cache->uc_frees; 4407 } 4408 } 4409 4410 static int 4411 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 4412 { 4413 struct uma_stream_header ush; 4414 struct uma_type_header uth; 4415 struct uma_percpu_stat *ups; 4416 struct sbuf sbuf; 4417 uma_keg_t kz; 4418 uma_zone_t z; 4419 int count, error, i; 4420 4421 error = sysctl_wire_old_buffer(req, 0); 4422 if (error != 0) 4423 return (error); 4424 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 4425 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 4426 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 4427 4428 count = 0; 4429 rw_rlock(&uma_rwlock); 4430 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4431 LIST_FOREACH(z, &kz->uk_zones, uz_link) 4432 count++; 4433 } 4434 4435 LIST_FOREACH(z, &uma_cachezones, uz_link) 4436 count++; 4437 4438 /* 4439 * Insert stream header. 4440 */ 4441 bzero(&ush, sizeof(ush)); 4442 ush.ush_version = UMA_STREAM_VERSION; 4443 ush.ush_maxcpus = (mp_maxid + 1); 4444 ush.ush_count = count; 4445 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 4446 4447 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4448 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 4449 bzero(&uth, sizeof(uth)); 4450 ZONE_LOCK(z); 4451 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 4452 uth.uth_align = kz->uk_align; 4453 uth.uth_size = kz->uk_size; 4454 uth.uth_rsize = kz->uk_rsize; 4455 if (z->uz_max_items > 0) 4456 uth.uth_pages = (z->uz_items / kz->uk_ipers) * 4457 kz->uk_ppera; 4458 else 4459 uth.uth_pages = kz->uk_pages; 4460 uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) * 4461 kz->uk_ppera; 4462 uth.uth_limit = z->uz_max_items; 4463 uth.uth_keg_free = z->uz_keg->uk_free; 4464 4465 /* 4466 * A zone is secondary is it is not the first entry 4467 * on the keg's zone list. 4468 */ 4469 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 4470 (LIST_FIRST(&kz->uk_zones) != z)) 4471 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 4472 uma_vm_zone_stats(&uth, z, &sbuf, ups, 4473 kz->uk_flags & UMA_ZFLAG_INTERNAL); 4474 ZONE_UNLOCK(z); 4475 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 4476 for (i = 0; i < mp_maxid + 1; i++) 4477 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 4478 } 4479 } 4480 LIST_FOREACH(z, &uma_cachezones, uz_link) { 4481 bzero(&uth, sizeof(uth)); 4482 ZONE_LOCK(z); 4483 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 4484 uth.uth_size = z->uz_size; 4485 uma_vm_zone_stats(&uth, z, &sbuf, ups, false); 4486 ZONE_UNLOCK(z); 4487 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 4488 for (i = 0; i < mp_maxid + 1; i++) 4489 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 4490 } 4491 4492 rw_runlock(&uma_rwlock); 4493 error = sbuf_finish(&sbuf); 4494 sbuf_delete(&sbuf); 4495 free(ups, M_TEMP); 4496 return (error); 4497 } 4498 4499 int 4500 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 4501 { 4502 uma_zone_t zone = *(uma_zone_t *)arg1; 4503 int error, max; 4504 4505 max = uma_zone_get_max(zone); 4506 error = sysctl_handle_int(oidp, &max, 0, req); 4507 if (error || !req->newptr) 4508 return (error); 4509 4510 uma_zone_set_max(zone, max); 4511 4512 return (0); 4513 } 4514 4515 int 4516 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 4517 { 4518 uma_zone_t zone; 4519 int cur; 4520 4521 /* 4522 * Some callers want to add sysctls for global zones that 4523 * may not yet exist so they pass a pointer to a pointer. 4524 */ 4525 if (arg2 == 0) 4526 zone = *(uma_zone_t *)arg1; 4527 else 4528 zone = arg1; 4529 cur = uma_zone_get_cur(zone); 4530 return (sysctl_handle_int(oidp, &cur, 0, req)); 4531 } 4532 4533 static int 4534 sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS) 4535 { 4536 uma_zone_t zone = arg1; 4537 uint64_t cur; 4538 4539 cur = uma_zone_get_allocs(zone); 4540 return (sysctl_handle_64(oidp, &cur, 0, req)); 4541 } 4542 4543 static int 4544 sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS) 4545 { 4546 uma_zone_t zone = arg1; 4547 uint64_t cur; 4548 4549 cur = uma_zone_get_frees(zone); 4550 return (sysctl_handle_64(oidp, &cur, 0, req)); 4551 } 4552 4553 static int 4554 sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS) 4555 { 4556 struct sbuf sbuf; 4557 uma_zone_t zone = arg1; 4558 int error; 4559 4560 sbuf_new_for_sysctl(&sbuf, NULL, 0, req); 4561 if (zone->uz_flags != 0) 4562 sbuf_printf(&sbuf, "0x%b", zone->uz_flags, PRINT_UMA_ZFLAGS); 4563 else 4564 sbuf_printf(&sbuf, "0"); 4565 error = sbuf_finish(&sbuf); 4566 sbuf_delete(&sbuf); 4567 4568 return (error); 4569 } 4570 4571 static int 4572 sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS) 4573 { 4574 uma_keg_t keg = arg1; 4575 int avail, effpct, total; 4576 4577 total = keg->uk_ppera * PAGE_SIZE; 4578 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) != 0) 4579 total += slab_sizeof(SLAB_MAX_SETSIZE); 4580 /* 4581 * We consider the client's requested size and alignment here, not the 4582 * real size determination uk_rsize, because we also adjust the real 4583 * size for internal implementation reasons (max bitset size). 4584 */ 4585 avail = keg->uk_ipers * roundup2(keg->uk_size, keg->uk_align + 1); 4586 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 4587 avail *= mp_maxid + 1; 4588 effpct = 100 * avail / total; 4589 return (sysctl_handle_int(oidp, &effpct, 0, req)); 4590 } 4591 4592 #ifdef INVARIANTS 4593 static uma_slab_t 4594 uma_dbg_getslab(uma_zone_t zone, void *item) 4595 { 4596 uma_slab_t slab; 4597 uma_keg_t keg; 4598 uint8_t *mem; 4599 4600 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 4601 if (zone->uz_flags & UMA_ZONE_VTOSLAB) { 4602 slab = vtoslab((vm_offset_t)mem); 4603 } else { 4604 /* 4605 * It is safe to return the slab here even though the 4606 * zone is unlocked because the item's allocation state 4607 * essentially holds a reference. 4608 */ 4609 if (zone->uz_lockptr == &zone->uz_lock) 4610 return (NULL); 4611 ZONE_LOCK(zone); 4612 keg = zone->uz_keg; 4613 if (keg->uk_flags & UMA_ZONE_HASH) 4614 slab = hash_sfind(&keg->uk_hash, mem); 4615 else 4616 slab = (uma_slab_t)(mem + keg->uk_pgoff); 4617 ZONE_UNLOCK(zone); 4618 } 4619 4620 return (slab); 4621 } 4622 4623 static bool 4624 uma_dbg_zskip(uma_zone_t zone, void *mem) 4625 { 4626 4627 if (zone->uz_lockptr == &zone->uz_lock) 4628 return (true); 4629 4630 return (uma_dbg_kskip(zone->uz_keg, mem)); 4631 } 4632 4633 static bool 4634 uma_dbg_kskip(uma_keg_t keg, void *mem) 4635 { 4636 uintptr_t idx; 4637 4638 if (dbg_divisor == 0) 4639 return (true); 4640 4641 if (dbg_divisor == 1) 4642 return (false); 4643 4644 idx = (uintptr_t)mem >> PAGE_SHIFT; 4645 if (keg->uk_ipers > 1) { 4646 idx *= keg->uk_ipers; 4647 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize; 4648 } 4649 4650 if ((idx / dbg_divisor) * dbg_divisor != idx) { 4651 counter_u64_add(uma_skip_cnt, 1); 4652 return (true); 4653 } 4654 counter_u64_add(uma_dbg_cnt, 1); 4655 4656 return (false); 4657 } 4658 4659 /* 4660 * Set up the slab's freei data such that uma_dbg_free can function. 4661 * 4662 */ 4663 static void 4664 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 4665 { 4666 uma_keg_t keg; 4667 int freei; 4668 4669 if (slab == NULL) { 4670 slab = uma_dbg_getslab(zone, item); 4671 if (slab == NULL) 4672 panic("uma: item %p did not belong to zone %s\n", 4673 item, zone->uz_name); 4674 } 4675 keg = zone->uz_keg; 4676 freei = slab_item_index(slab, keg, item); 4677 4678 if (BIT_ISSET(keg->uk_ipers, freei, slab_dbg_bits(slab, keg))) 4679 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n", 4680 item, zone, zone->uz_name, slab, freei); 4681 BIT_SET_ATOMIC(keg->uk_ipers, freei, slab_dbg_bits(slab, keg)); 4682 } 4683 4684 /* 4685 * Verifies freed addresses. Checks for alignment, valid slab membership 4686 * and duplicate frees. 4687 * 4688 */ 4689 static void 4690 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 4691 { 4692 uma_keg_t keg; 4693 int freei; 4694 4695 if (slab == NULL) { 4696 slab = uma_dbg_getslab(zone, item); 4697 if (slab == NULL) 4698 panic("uma: Freed item %p did not belong to zone %s\n", 4699 item, zone->uz_name); 4700 } 4701 keg = zone->uz_keg; 4702 freei = slab_item_index(slab, keg, item); 4703 4704 if (freei >= keg->uk_ipers) 4705 panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n", 4706 item, zone, zone->uz_name, slab, freei); 4707 4708 if (slab_item(slab, keg, freei) != item) 4709 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n", 4710 item, zone, zone->uz_name, slab, freei); 4711 4712 if (!BIT_ISSET(keg->uk_ipers, freei, slab_dbg_bits(slab, keg))) 4713 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n", 4714 item, zone, zone->uz_name, slab, freei); 4715 4716 BIT_CLR_ATOMIC(keg->uk_ipers, freei, slab_dbg_bits(slab, keg)); 4717 } 4718 #endif /* INVARIANTS */ 4719 4720 #ifdef DDB 4721 static int64_t 4722 get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used, 4723 uint64_t *sleeps, long *cachefree, uint64_t *xdomain) 4724 { 4725 uint64_t frees; 4726 int i; 4727 4728 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 4729 *allocs = counter_u64_fetch(z->uz_allocs); 4730 frees = counter_u64_fetch(z->uz_frees); 4731 *sleeps = z->uz_sleeps; 4732 *cachefree = 0; 4733 *xdomain = 0; 4734 } else 4735 uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps, 4736 xdomain); 4737 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 4738 (LIST_FIRST(&kz->uk_zones) != z))) 4739 *cachefree += kz->uk_free; 4740 for (i = 0; i < vm_ndomains; i++) 4741 *cachefree += z->uz_domain[i].uzd_nitems; 4742 *used = *allocs - frees; 4743 return (((int64_t)*used + *cachefree) * kz->uk_size); 4744 } 4745 4746 DB_SHOW_COMMAND(uma, db_show_uma) 4747 { 4748 const char *fmt_hdr, *fmt_entry; 4749 uma_keg_t kz; 4750 uma_zone_t z; 4751 uint64_t allocs, used, sleeps, xdomain; 4752 long cachefree; 4753 /* variables for sorting */ 4754 uma_keg_t cur_keg; 4755 uma_zone_t cur_zone, last_zone; 4756 int64_t cur_size, last_size, size; 4757 int ties; 4758 4759 /* /i option produces machine-parseable CSV output */ 4760 if (modif[0] == 'i') { 4761 fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n"; 4762 fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n"; 4763 } else { 4764 fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n"; 4765 fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n"; 4766 } 4767 4768 db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests", 4769 "Sleeps", "Bucket", "Total Mem", "XFree"); 4770 4771 /* Sort the zones with largest size first. */ 4772 last_zone = NULL; 4773 last_size = INT64_MAX; 4774 for (;;) { 4775 cur_zone = NULL; 4776 cur_size = -1; 4777 ties = 0; 4778 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4779 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 4780 /* 4781 * In the case of size ties, print out zones 4782 * in the order they are encountered. That is, 4783 * when we encounter the most recently output 4784 * zone, we have already printed all preceding 4785 * ties, and we must print all following ties. 4786 */ 4787 if (z == last_zone) { 4788 ties = 1; 4789 continue; 4790 } 4791 size = get_uma_stats(kz, z, &allocs, &used, 4792 &sleeps, &cachefree, &xdomain); 4793 if (size > cur_size && size < last_size + ties) 4794 { 4795 cur_size = size; 4796 cur_zone = z; 4797 cur_keg = kz; 4798 } 4799 } 4800 } 4801 if (cur_zone == NULL) 4802 break; 4803 4804 size = get_uma_stats(cur_keg, cur_zone, &allocs, &used, 4805 &sleeps, &cachefree, &xdomain); 4806 db_printf(fmt_entry, cur_zone->uz_name, 4807 (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree, 4808 (uintmax_t)allocs, (uintmax_t)sleeps, 4809 (unsigned)cur_zone->uz_bucket_size, (intmax_t)size, 4810 xdomain); 4811 4812 if (db_pager_quit) 4813 return; 4814 last_zone = cur_zone; 4815 last_size = cur_size; 4816 } 4817 } 4818 4819 DB_SHOW_COMMAND(umacache, db_show_umacache) 4820 { 4821 uma_zone_t z; 4822 uint64_t allocs, frees; 4823 long cachefree; 4824 int i; 4825 4826 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 4827 "Requests", "Bucket"); 4828 LIST_FOREACH(z, &uma_cachezones, uz_link) { 4829 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL); 4830 for (i = 0; i < vm_ndomains; i++) 4831 cachefree += z->uz_domain[i].uzd_nitems; 4832 db_printf("%18s %8ju %8jd %8ld %12ju %8u\n", 4833 z->uz_name, (uintmax_t)z->uz_size, 4834 (intmax_t)(allocs - frees), cachefree, 4835 (uintmax_t)allocs, z->uz_bucket_size); 4836 if (db_pager_quit) 4837 return; 4838 } 4839 } 4840 #endif /* DDB */ 4841