1 /*- 2 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org> 3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 4 * Copyright (c) 2004-2006 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /* 30 * uma_core.c Implementation of the Universal Memory allocator 31 * 32 * This allocator is intended to replace the multitude of similar object caches 33 * in the standard FreeBSD kernel. The intent is to be flexible as well as 34 * effecient. A primary design goal is to return unused memory to the rest of 35 * the system. This will make the system as a whole more flexible due to the 36 * ability to move memory to subsystems which most need it instead of leaving 37 * pools of reserved memory unused. 38 * 39 * The basic ideas stem from similar slab/zone based allocators whose algorithms 40 * are well known. 41 * 42 */ 43 44 /* 45 * TODO: 46 * - Improve memory usage for large allocations 47 * - Investigate cache size adjustments 48 */ 49 50 #include <sys/cdefs.h> 51 __FBSDID("$FreeBSD$"); 52 53 /* I should really use ktr.. */ 54 /* 55 #define UMA_DEBUG 1 56 #define UMA_DEBUG_ALLOC 1 57 #define UMA_DEBUG_ALLOC_1 1 58 */ 59 60 #include "opt_ddb.h" 61 #include "opt_param.h" 62 #include "opt_vm.h" 63 64 #include <sys/param.h> 65 #include <sys/systm.h> 66 #include <sys/bitset.h> 67 #include <sys/kernel.h> 68 #include <sys/types.h> 69 #include <sys/queue.h> 70 #include <sys/malloc.h> 71 #include <sys/ktr.h> 72 #include <sys/lock.h> 73 #include <sys/sysctl.h> 74 #include <sys/mutex.h> 75 #include <sys/proc.h> 76 #include <sys/rwlock.h> 77 #include <sys/sbuf.h> 78 #include <sys/sched.h> 79 #include <sys/smp.h> 80 #include <sys/vmmeter.h> 81 82 #include <vm/vm.h> 83 #include <vm/vm_object.h> 84 #include <vm/vm_page.h> 85 #include <vm/vm_pageout.h> 86 #include <vm/vm_param.h> 87 #include <vm/vm_map.h> 88 #include <vm/vm_kern.h> 89 #include <vm/vm_extern.h> 90 #include <vm/uma.h> 91 #include <vm/uma_int.h> 92 #include <vm/uma_dbg.h> 93 94 #include <ddb/ddb.h> 95 96 #ifdef DEBUG_MEMGUARD 97 #include <vm/memguard.h> 98 #endif 99 100 /* 101 * This is the zone and keg from which all zones are spawned. The idea is that 102 * even the zone & keg heads are allocated from the allocator, so we use the 103 * bss section to bootstrap us. 104 */ 105 static struct uma_keg masterkeg; 106 static struct uma_zone masterzone_k; 107 static struct uma_zone masterzone_z; 108 static uma_zone_t kegs = &masterzone_k; 109 static uma_zone_t zones = &masterzone_z; 110 111 /* This is the zone from which all of uma_slab_t's are allocated. */ 112 static uma_zone_t slabzone; 113 static uma_zone_t slabrefzone; /* With refcounters (for UMA_ZONE_REFCNT) */ 114 115 /* 116 * The initial hash tables come out of this zone so they can be allocated 117 * prior to malloc coming up. 118 */ 119 static uma_zone_t hashzone; 120 121 /* The boot-time adjusted value for cache line alignment. */ 122 int uma_align_cache = 64 - 1; 123 124 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 125 126 /* 127 * Are we allowed to allocate buckets? 128 */ 129 static int bucketdisable = 1; 130 131 /* Linked list of all kegs in the system */ 132 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 133 134 /* Linked list of all cache-only zones in the system */ 135 static LIST_HEAD(,uma_zone) uma_cachezones = 136 LIST_HEAD_INITIALIZER(uma_cachezones); 137 138 /* This mutex protects the keg list */ 139 static struct mtx_padalign uma_mtx; 140 141 /* Linked list of boot time pages */ 142 static LIST_HEAD(,uma_slab) uma_boot_pages = 143 LIST_HEAD_INITIALIZER(uma_boot_pages); 144 145 /* This mutex protects the boot time pages list */ 146 static struct mtx_padalign uma_boot_pages_mtx; 147 148 /* Is the VM done starting up? */ 149 static int booted = 0; 150 #define UMA_STARTUP 1 151 #define UMA_STARTUP2 2 152 153 /* 154 * Only mbuf clusters use ref zones. Just provide enough references 155 * to support the one user. New code should not use the ref facility. 156 */ 157 static const u_int uma_max_ipers_ref = PAGE_SIZE / MCLBYTES; 158 159 /* 160 * This is the handle used to schedule events that need to happen 161 * outside of the allocation fast path. 162 */ 163 static struct callout uma_callout; 164 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 165 166 /* 167 * This structure is passed as the zone ctor arg so that I don't have to create 168 * a special allocation function just for zones. 169 */ 170 struct uma_zctor_args { 171 const char *name; 172 size_t size; 173 uma_ctor ctor; 174 uma_dtor dtor; 175 uma_init uminit; 176 uma_fini fini; 177 uma_import import; 178 uma_release release; 179 void *arg; 180 uma_keg_t keg; 181 int align; 182 uint32_t flags; 183 }; 184 185 struct uma_kctor_args { 186 uma_zone_t zone; 187 size_t size; 188 uma_init uminit; 189 uma_fini fini; 190 int align; 191 uint32_t flags; 192 }; 193 194 struct uma_bucket_zone { 195 uma_zone_t ubz_zone; 196 char *ubz_name; 197 int ubz_entries; /* Number of items it can hold. */ 198 int ubz_maxsize; /* Maximum allocation size per-item. */ 199 }; 200 201 /* 202 * Compute the actual number of bucket entries to pack them in power 203 * of two sizes for more efficient space utilization. 204 */ 205 #define BUCKET_SIZE(n) \ 206 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 207 208 #define BUCKET_MAX BUCKET_SIZE(256) 209 210 struct uma_bucket_zone bucket_zones[] = { 211 { NULL, "4 Bucket", BUCKET_SIZE(4), 4096 }, 212 { NULL, "6 Bucket", BUCKET_SIZE(6), 3072 }, 213 { NULL, "8 Bucket", BUCKET_SIZE(8), 2048 }, 214 { NULL, "12 Bucket", BUCKET_SIZE(12), 1536 }, 215 { NULL, "16 Bucket", BUCKET_SIZE(16), 1024 }, 216 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 217 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 218 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 219 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 220 { NULL, NULL, 0} 221 }; 222 223 /* 224 * Flags and enumerations to be passed to internal functions. 225 */ 226 enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI }; 227 228 /* Prototypes.. */ 229 230 static void *noobj_alloc(uma_zone_t, int, uint8_t *, int); 231 static void *page_alloc(uma_zone_t, int, uint8_t *, int); 232 static void *startup_alloc(uma_zone_t, int, uint8_t *, int); 233 static void page_free(void *, int, uint8_t); 234 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int); 235 static void cache_drain(uma_zone_t); 236 static void bucket_drain(uma_zone_t, uma_bucket_t); 237 static void bucket_cache_drain(uma_zone_t zone); 238 static int keg_ctor(void *, int, void *, int); 239 static void keg_dtor(void *, int, void *); 240 static int zone_ctor(void *, int, void *, int); 241 static void zone_dtor(void *, int, void *); 242 static int zero_init(void *, int, int); 243 static void keg_small_init(uma_keg_t keg); 244 static void keg_large_init(uma_keg_t keg); 245 static void zone_foreach(void (*zfunc)(uma_zone_t)); 246 static void zone_timeout(uma_zone_t zone); 247 static int hash_alloc(struct uma_hash *); 248 static int hash_expand(struct uma_hash *, struct uma_hash *); 249 static void hash_free(struct uma_hash *hash); 250 static void uma_timeout(void *); 251 static void uma_startup3(void); 252 static void *zone_alloc_item(uma_zone_t, void *, int); 253 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 254 static void bucket_enable(void); 255 static void bucket_init(void); 256 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 257 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 258 static void bucket_zone_drain(void); 259 static uma_bucket_t zone_alloc_bucket(uma_zone_t zone, void *, int flags); 260 static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags); 261 static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags); 262 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 263 static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item); 264 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 265 uma_fini fini, int align, uint32_t flags); 266 static int zone_import(uma_zone_t zone, void **bucket, int max, int flags); 267 static void zone_release(uma_zone_t zone, void **bucket, int cnt); 268 static void uma_zero_item(void *item, uma_zone_t zone); 269 270 void uma_print_zone(uma_zone_t); 271 void uma_print_stats(void); 272 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 273 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 274 275 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 276 277 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 278 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 279 280 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 281 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 282 283 static int zone_warnings = 1; 284 TUNABLE_INT("vm.zone_warnings", &zone_warnings); 285 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RW, &zone_warnings, 0, 286 "Warn when UMA zones becomes full"); 287 288 /* 289 * This routine checks to see whether or not it's safe to enable buckets. 290 */ 291 static void 292 bucket_enable(void) 293 { 294 bucketdisable = vm_page_count_min(); 295 } 296 297 /* 298 * Initialize bucket_zones, the array of zones of buckets of various sizes. 299 * 300 * For each zone, calculate the memory required for each bucket, consisting 301 * of the header and an array of pointers. 302 */ 303 static void 304 bucket_init(void) 305 { 306 struct uma_bucket_zone *ubz; 307 int size; 308 int i; 309 310 for (i = 0, ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 311 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 312 size += sizeof(void *) * ubz->ubz_entries; 313 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 314 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 315 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET); 316 } 317 } 318 319 /* 320 * Given a desired number of entries for a bucket, return the zone from which 321 * to allocate the bucket. 322 */ 323 static struct uma_bucket_zone * 324 bucket_zone_lookup(int entries) 325 { 326 struct uma_bucket_zone *ubz; 327 328 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 329 if (ubz->ubz_entries >= entries) 330 return (ubz); 331 ubz--; 332 return (ubz); 333 } 334 335 static int 336 bucket_select(int size) 337 { 338 struct uma_bucket_zone *ubz; 339 340 ubz = &bucket_zones[0]; 341 if (size > ubz->ubz_maxsize) 342 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 343 344 for (; ubz->ubz_entries != 0; ubz++) 345 if (ubz->ubz_maxsize < size) 346 break; 347 ubz--; 348 return (ubz->ubz_entries); 349 } 350 351 static uma_bucket_t 352 bucket_alloc(uma_zone_t zone, void *udata, int flags) 353 { 354 struct uma_bucket_zone *ubz; 355 uma_bucket_t bucket; 356 357 /* 358 * This is to stop us from allocating per cpu buckets while we're 359 * running out of vm.boot_pages. Otherwise, we would exhaust the 360 * boot pages. This also prevents us from allocating buckets in 361 * low memory situations. 362 */ 363 if (bucketdisable) 364 return (NULL); 365 /* 366 * To limit bucket recursion we store the original zone flags 367 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 368 * NOVM flag to persist even through deep recursions. We also 369 * store ZFLAG_BUCKET once we have recursed attempting to allocate 370 * a bucket for a bucket zone so we do not allow infinite bucket 371 * recursion. This cookie will even persist to frees of unused 372 * buckets via the allocation path or bucket allocations in the 373 * free path. 374 */ 375 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 376 udata = (void *)(uintptr_t)zone->uz_flags; 377 else { 378 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 379 return (NULL); 380 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 381 } 382 if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY) 383 flags |= M_NOVM; 384 ubz = bucket_zone_lookup(zone->uz_count); 385 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 386 ubz++; 387 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 388 if (bucket) { 389 #ifdef INVARIANTS 390 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 391 #endif 392 bucket->ub_cnt = 0; 393 bucket->ub_entries = ubz->ubz_entries; 394 } 395 396 return (bucket); 397 } 398 399 static void 400 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 401 { 402 struct uma_bucket_zone *ubz; 403 404 KASSERT(bucket->ub_cnt == 0, 405 ("bucket_free: Freeing a non free bucket.")); 406 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 407 udata = (void *)(uintptr_t)zone->uz_flags; 408 ubz = bucket_zone_lookup(bucket->ub_entries); 409 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 410 } 411 412 static void 413 bucket_zone_drain(void) 414 { 415 struct uma_bucket_zone *ubz; 416 417 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 418 zone_drain(ubz->ubz_zone); 419 } 420 421 static void 422 zone_log_warning(uma_zone_t zone) 423 { 424 static const struct timeval warninterval = { 300, 0 }; 425 426 if (!zone_warnings || zone->uz_warning == NULL) 427 return; 428 429 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 430 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 431 } 432 433 static void 434 zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t)) 435 { 436 uma_klink_t klink; 437 438 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) 439 kegfn(klink->kl_keg); 440 } 441 442 /* 443 * Routine called by timeout which is used to fire off some time interval 444 * based calculations. (stats, hash size, etc.) 445 * 446 * Arguments: 447 * arg Unused 448 * 449 * Returns: 450 * Nothing 451 */ 452 static void 453 uma_timeout(void *unused) 454 { 455 bucket_enable(); 456 zone_foreach(zone_timeout); 457 458 /* Reschedule this event */ 459 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 460 } 461 462 /* 463 * Routine to perform timeout driven calculations. This expands the 464 * hashes and does per cpu statistics aggregation. 465 * 466 * Returns nothing. 467 */ 468 static void 469 keg_timeout(uma_keg_t keg) 470 { 471 472 KEG_LOCK(keg); 473 /* 474 * Expand the keg hash table. 475 * 476 * This is done if the number of slabs is larger than the hash size. 477 * What I'm trying to do here is completely reduce collisions. This 478 * may be a little aggressive. Should I allow for two collisions max? 479 */ 480 if (keg->uk_flags & UMA_ZONE_HASH && 481 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) { 482 struct uma_hash newhash; 483 struct uma_hash oldhash; 484 int ret; 485 486 /* 487 * This is so involved because allocating and freeing 488 * while the keg lock is held will lead to deadlock. 489 * I have to do everything in stages and check for 490 * races. 491 */ 492 newhash = keg->uk_hash; 493 KEG_UNLOCK(keg); 494 ret = hash_alloc(&newhash); 495 KEG_LOCK(keg); 496 if (ret) { 497 if (hash_expand(&keg->uk_hash, &newhash)) { 498 oldhash = keg->uk_hash; 499 keg->uk_hash = newhash; 500 } else 501 oldhash = newhash; 502 503 KEG_UNLOCK(keg); 504 hash_free(&oldhash); 505 return; 506 } 507 } 508 KEG_UNLOCK(keg); 509 } 510 511 static void 512 zone_timeout(uma_zone_t zone) 513 { 514 515 zone_foreach_keg(zone, &keg_timeout); 516 } 517 518 /* 519 * Allocate and zero fill the next sized hash table from the appropriate 520 * backing store. 521 * 522 * Arguments: 523 * hash A new hash structure with the old hash size in uh_hashsize 524 * 525 * Returns: 526 * 1 on sucess and 0 on failure. 527 */ 528 static int 529 hash_alloc(struct uma_hash *hash) 530 { 531 int oldsize; 532 int alloc; 533 534 oldsize = hash->uh_hashsize; 535 536 /* We're just going to go to a power of two greater */ 537 if (oldsize) { 538 hash->uh_hashsize = oldsize * 2; 539 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 540 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 541 M_UMAHASH, M_NOWAIT); 542 } else { 543 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 544 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 545 M_WAITOK); 546 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 547 } 548 if (hash->uh_slab_hash) { 549 bzero(hash->uh_slab_hash, alloc); 550 hash->uh_hashmask = hash->uh_hashsize - 1; 551 return (1); 552 } 553 554 return (0); 555 } 556 557 /* 558 * Expands the hash table for HASH zones. This is done from zone_timeout 559 * to reduce collisions. This must not be done in the regular allocation 560 * path, otherwise, we can recurse on the vm while allocating pages. 561 * 562 * Arguments: 563 * oldhash The hash you want to expand 564 * newhash The hash structure for the new table 565 * 566 * Returns: 567 * Nothing 568 * 569 * Discussion: 570 */ 571 static int 572 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 573 { 574 uma_slab_t slab; 575 int hval; 576 int i; 577 578 if (!newhash->uh_slab_hash) 579 return (0); 580 581 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 582 return (0); 583 584 /* 585 * I need to investigate hash algorithms for resizing without a 586 * full rehash. 587 */ 588 589 for (i = 0; i < oldhash->uh_hashsize; i++) 590 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) { 591 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]); 592 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink); 593 hval = UMA_HASH(newhash, slab->us_data); 594 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 595 slab, us_hlink); 596 } 597 598 return (1); 599 } 600 601 /* 602 * Free the hash bucket to the appropriate backing store. 603 * 604 * Arguments: 605 * slab_hash The hash bucket we're freeing 606 * hashsize The number of entries in that hash bucket 607 * 608 * Returns: 609 * Nothing 610 */ 611 static void 612 hash_free(struct uma_hash *hash) 613 { 614 if (hash->uh_slab_hash == NULL) 615 return; 616 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 617 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 618 else 619 free(hash->uh_slab_hash, M_UMAHASH); 620 } 621 622 /* 623 * Frees all outstanding items in a bucket 624 * 625 * Arguments: 626 * zone The zone to free to, must be unlocked. 627 * bucket The free/alloc bucket with items, cpu queue must be locked. 628 * 629 * Returns: 630 * Nothing 631 */ 632 633 static void 634 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 635 { 636 int i; 637 638 if (bucket == NULL) 639 return; 640 641 if (zone->uz_fini) 642 for (i = 0; i < bucket->ub_cnt; i++) 643 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 644 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 645 bucket->ub_cnt = 0; 646 } 647 648 /* 649 * Drains the per cpu caches for a zone. 650 * 651 * NOTE: This may only be called while the zone is being turn down, and not 652 * during normal operation. This is necessary in order that we do not have 653 * to migrate CPUs to drain the per-CPU caches. 654 * 655 * Arguments: 656 * zone The zone to drain, must be unlocked. 657 * 658 * Returns: 659 * Nothing 660 */ 661 static void 662 cache_drain(uma_zone_t zone) 663 { 664 uma_cache_t cache; 665 int cpu; 666 667 /* 668 * XXX: It is safe to not lock the per-CPU caches, because we're 669 * tearing down the zone anyway. I.e., there will be no further use 670 * of the caches at this point. 671 * 672 * XXX: It would good to be able to assert that the zone is being 673 * torn down to prevent improper use of cache_drain(). 674 * 675 * XXX: We lock the zone before passing into bucket_cache_drain() as 676 * it is used elsewhere. Should the tear-down path be made special 677 * there in some form? 678 */ 679 CPU_FOREACH(cpu) { 680 cache = &zone->uz_cpu[cpu]; 681 bucket_drain(zone, cache->uc_allocbucket); 682 bucket_drain(zone, cache->uc_freebucket); 683 if (cache->uc_allocbucket != NULL) 684 bucket_free(zone, cache->uc_allocbucket, NULL); 685 if (cache->uc_freebucket != NULL) 686 bucket_free(zone, cache->uc_freebucket, NULL); 687 cache->uc_allocbucket = cache->uc_freebucket = NULL; 688 } 689 ZONE_LOCK(zone); 690 bucket_cache_drain(zone); 691 ZONE_UNLOCK(zone); 692 } 693 694 static void 695 cache_shrink(uma_zone_t zone) 696 { 697 698 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 699 return; 700 701 ZONE_LOCK(zone); 702 zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2; 703 ZONE_UNLOCK(zone); 704 } 705 706 static void 707 cache_drain_safe_cpu(uma_zone_t zone) 708 { 709 uma_cache_t cache; 710 uma_bucket_t b1, b2; 711 712 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 713 return; 714 715 b1 = b2 = NULL; 716 ZONE_LOCK(zone); 717 critical_enter(); 718 cache = &zone->uz_cpu[curcpu]; 719 if (cache->uc_allocbucket) { 720 if (cache->uc_allocbucket->ub_cnt != 0) 721 LIST_INSERT_HEAD(&zone->uz_buckets, 722 cache->uc_allocbucket, ub_link); 723 else 724 b1 = cache->uc_allocbucket; 725 cache->uc_allocbucket = NULL; 726 } 727 if (cache->uc_freebucket) { 728 if (cache->uc_freebucket->ub_cnt != 0) 729 LIST_INSERT_HEAD(&zone->uz_buckets, 730 cache->uc_freebucket, ub_link); 731 else 732 b2 = cache->uc_freebucket; 733 cache->uc_freebucket = NULL; 734 } 735 critical_exit(); 736 ZONE_UNLOCK(zone); 737 if (b1) 738 bucket_free(zone, b1, NULL); 739 if (b2) 740 bucket_free(zone, b2, NULL); 741 } 742 743 /* 744 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 745 * This is an expensive call because it needs to bind to all CPUs 746 * one by one and enter a critical section on each of them in order 747 * to safely access their cache buckets. 748 * Zone lock must not be held on call this function. 749 */ 750 static void 751 cache_drain_safe(uma_zone_t zone) 752 { 753 int cpu; 754 755 /* 756 * Polite bucket sizes shrinking was not enouth, shrink aggressively. 757 */ 758 if (zone) 759 cache_shrink(zone); 760 else 761 zone_foreach(cache_shrink); 762 763 CPU_FOREACH(cpu) { 764 thread_lock(curthread); 765 sched_bind(curthread, cpu); 766 thread_unlock(curthread); 767 768 if (zone) 769 cache_drain_safe_cpu(zone); 770 else 771 zone_foreach(cache_drain_safe_cpu); 772 } 773 thread_lock(curthread); 774 sched_unbind(curthread); 775 thread_unlock(curthread); 776 } 777 778 /* 779 * Drain the cached buckets from a zone. Expects a locked zone on entry. 780 */ 781 static void 782 bucket_cache_drain(uma_zone_t zone) 783 { 784 uma_bucket_t bucket; 785 786 /* 787 * Drain the bucket queues and free the buckets, we just keep two per 788 * cpu (alloc/free). 789 */ 790 while ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) { 791 LIST_REMOVE(bucket, ub_link); 792 ZONE_UNLOCK(zone); 793 bucket_drain(zone, bucket); 794 bucket_free(zone, bucket, NULL); 795 ZONE_LOCK(zone); 796 } 797 798 /* 799 * Shrink further bucket sizes. Price of single zone lock collision 800 * is probably lower then price of global cache drain. 801 */ 802 if (zone->uz_count > zone->uz_count_min) 803 zone->uz_count--; 804 } 805 806 static void 807 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 808 { 809 uint8_t *mem; 810 int i; 811 uint8_t flags; 812 813 mem = slab->us_data; 814 flags = slab->us_flags; 815 i = start; 816 if (keg->uk_fini != NULL) { 817 for (i--; i > -1; i--) 818 keg->uk_fini(slab->us_data + (keg->uk_rsize * i), 819 keg->uk_size); 820 } 821 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 822 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 823 #ifdef UMA_DEBUG 824 printf("%s: Returning %d bytes.\n", keg->uk_name, 825 PAGE_SIZE * keg->uk_ppera); 826 #endif 827 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 828 } 829 830 /* 831 * Frees pages from a keg back to the system. This is done on demand from 832 * the pageout daemon. 833 * 834 * Returns nothing. 835 */ 836 static void 837 keg_drain(uma_keg_t keg) 838 { 839 struct slabhead freeslabs = { 0 }; 840 uma_slab_t slab; 841 uma_slab_t n; 842 843 /* 844 * We don't want to take pages from statically allocated kegs at this 845 * time 846 */ 847 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 848 return; 849 850 #ifdef UMA_DEBUG 851 printf("%s free items: %u\n", keg->uk_name, keg->uk_free); 852 #endif 853 KEG_LOCK(keg); 854 if (keg->uk_free == 0) 855 goto finished; 856 857 slab = LIST_FIRST(&keg->uk_free_slab); 858 while (slab) { 859 n = LIST_NEXT(slab, us_link); 860 861 /* We have no where to free these to */ 862 if (slab->us_flags & UMA_SLAB_BOOT) { 863 slab = n; 864 continue; 865 } 866 867 LIST_REMOVE(slab, us_link); 868 keg->uk_pages -= keg->uk_ppera; 869 keg->uk_free -= keg->uk_ipers; 870 871 if (keg->uk_flags & UMA_ZONE_HASH) 872 UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data); 873 874 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 875 876 slab = n; 877 } 878 finished: 879 KEG_UNLOCK(keg); 880 881 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 882 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 883 keg_free_slab(keg, slab, keg->uk_ipers); 884 } 885 } 886 887 static void 888 zone_drain_wait(uma_zone_t zone, int waitok) 889 { 890 891 /* 892 * Set draining to interlock with zone_dtor() so we can release our 893 * locks as we go. Only dtor() should do a WAITOK call since it 894 * is the only call that knows the structure will still be available 895 * when it wakes up. 896 */ 897 ZONE_LOCK(zone); 898 while (zone->uz_flags & UMA_ZFLAG_DRAINING) { 899 if (waitok == M_NOWAIT) 900 goto out; 901 mtx_unlock(&uma_mtx); 902 msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1); 903 mtx_lock(&uma_mtx); 904 } 905 zone->uz_flags |= UMA_ZFLAG_DRAINING; 906 bucket_cache_drain(zone); 907 ZONE_UNLOCK(zone); 908 /* 909 * The DRAINING flag protects us from being freed while 910 * we're running. Normally the uma_mtx would protect us but we 911 * must be able to release and acquire the right lock for each keg. 912 */ 913 zone_foreach_keg(zone, &keg_drain); 914 ZONE_LOCK(zone); 915 zone->uz_flags &= ~UMA_ZFLAG_DRAINING; 916 wakeup(zone); 917 out: 918 ZONE_UNLOCK(zone); 919 } 920 921 void 922 zone_drain(uma_zone_t zone) 923 { 924 925 zone_drain_wait(zone, M_NOWAIT); 926 } 927 928 /* 929 * Allocate a new slab for a keg. This does not insert the slab onto a list. 930 * 931 * Arguments: 932 * wait Shall we wait? 933 * 934 * Returns: 935 * The slab that was allocated or NULL if there is no memory and the 936 * caller specified M_NOWAIT. 937 */ 938 static uma_slab_t 939 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait) 940 { 941 uma_slabrefcnt_t slabref; 942 uma_alloc allocf; 943 uma_slab_t slab; 944 uint8_t *mem; 945 uint8_t flags; 946 int i; 947 948 mtx_assert(&keg->uk_lock, MA_OWNED); 949 slab = NULL; 950 mem = NULL; 951 952 #ifdef UMA_DEBUG 953 printf("alloc_slab: Allocating a new slab for %s\n", keg->uk_name); 954 #endif 955 allocf = keg->uk_allocf; 956 KEG_UNLOCK(keg); 957 958 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 959 slab = zone_alloc_item(keg->uk_slabzone, NULL, wait); 960 if (slab == NULL) 961 goto out; 962 } 963 964 /* 965 * This reproduces the old vm_zone behavior of zero filling pages the 966 * first time they are added to a zone. 967 * 968 * Malloced items are zeroed in uma_zalloc. 969 */ 970 971 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 972 wait |= M_ZERO; 973 else 974 wait &= ~M_ZERO; 975 976 if (keg->uk_flags & UMA_ZONE_NODUMP) 977 wait |= M_NODUMP; 978 979 /* zone is passed for legacy reasons. */ 980 mem = allocf(zone, keg->uk_ppera * PAGE_SIZE, &flags, wait); 981 if (mem == NULL) { 982 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 983 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 984 slab = NULL; 985 goto out; 986 } 987 988 /* Point the slab into the allocated memory */ 989 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 990 slab = (uma_slab_t )(mem + keg->uk_pgoff); 991 992 if (keg->uk_flags & UMA_ZONE_VTOSLAB) 993 for (i = 0; i < keg->uk_ppera; i++) 994 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 995 996 slab->us_keg = keg; 997 slab->us_data = mem; 998 slab->us_freecount = keg->uk_ipers; 999 slab->us_flags = flags; 1000 BIT_FILL(SLAB_SETSIZE, &slab->us_free); 1001 #ifdef INVARIANTS 1002 BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree); 1003 #endif 1004 if (keg->uk_flags & UMA_ZONE_REFCNT) { 1005 slabref = (uma_slabrefcnt_t)slab; 1006 for (i = 0; i < keg->uk_ipers; i++) 1007 slabref->us_refcnt[i] = 0; 1008 } 1009 1010 if (keg->uk_init != NULL) { 1011 for (i = 0; i < keg->uk_ipers; i++) 1012 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 1013 keg->uk_size, wait) != 0) 1014 break; 1015 if (i != keg->uk_ipers) { 1016 keg_free_slab(keg, slab, i); 1017 slab = NULL; 1018 goto out; 1019 } 1020 } 1021 out: 1022 KEG_LOCK(keg); 1023 1024 if (slab != NULL) { 1025 if (keg->uk_flags & UMA_ZONE_HASH) 1026 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1027 1028 keg->uk_pages += keg->uk_ppera; 1029 keg->uk_free += keg->uk_ipers; 1030 } 1031 1032 return (slab); 1033 } 1034 1035 /* 1036 * This function is intended to be used early on in place of page_alloc() so 1037 * that we may use the boot time page cache to satisfy allocations before 1038 * the VM is ready. 1039 */ 1040 static void * 1041 startup_alloc(uma_zone_t zone, int bytes, uint8_t *pflag, int wait) 1042 { 1043 uma_keg_t keg; 1044 uma_slab_t tmps; 1045 int pages, check_pages; 1046 1047 keg = zone_first_keg(zone); 1048 pages = howmany(bytes, PAGE_SIZE); 1049 check_pages = pages - 1; 1050 KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n")); 1051 1052 /* 1053 * Check our small startup cache to see if it has pages remaining. 1054 */ 1055 mtx_lock(&uma_boot_pages_mtx); 1056 1057 /* First check if we have enough room. */ 1058 tmps = LIST_FIRST(&uma_boot_pages); 1059 while (tmps != NULL && check_pages-- > 0) 1060 tmps = LIST_NEXT(tmps, us_link); 1061 if (tmps != NULL) { 1062 /* 1063 * It's ok to lose tmps references. The last one will 1064 * have tmps->us_data pointing to the start address of 1065 * "pages" contiguous pages of memory. 1066 */ 1067 while (pages-- > 0) { 1068 tmps = LIST_FIRST(&uma_boot_pages); 1069 LIST_REMOVE(tmps, us_link); 1070 } 1071 mtx_unlock(&uma_boot_pages_mtx); 1072 *pflag = tmps->us_flags; 1073 return (tmps->us_data); 1074 } 1075 mtx_unlock(&uma_boot_pages_mtx); 1076 if (booted < UMA_STARTUP2) 1077 panic("UMA: Increase vm.boot_pages"); 1078 /* 1079 * Now that we've booted reset these users to their real allocator. 1080 */ 1081 #ifdef UMA_MD_SMALL_ALLOC 1082 keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc; 1083 #else 1084 keg->uk_allocf = page_alloc; 1085 #endif 1086 return keg->uk_allocf(zone, bytes, pflag, wait); 1087 } 1088 1089 /* 1090 * Allocates a number of pages from the system 1091 * 1092 * Arguments: 1093 * bytes The number of bytes requested 1094 * wait Shall we wait? 1095 * 1096 * Returns: 1097 * A pointer to the alloced memory or possibly 1098 * NULL if M_NOWAIT is set. 1099 */ 1100 static void * 1101 page_alloc(uma_zone_t zone, int bytes, uint8_t *pflag, int wait) 1102 { 1103 void *p; /* Returned page */ 1104 1105 *pflag = UMA_SLAB_KMEM; 1106 p = (void *) kmem_malloc(kmem_arena, bytes, wait); 1107 1108 return (p); 1109 } 1110 1111 /* 1112 * Allocates a number of pages from within an object 1113 * 1114 * Arguments: 1115 * bytes The number of bytes requested 1116 * wait Shall we wait? 1117 * 1118 * Returns: 1119 * A pointer to the alloced memory or possibly 1120 * NULL if M_NOWAIT is set. 1121 */ 1122 static void * 1123 noobj_alloc(uma_zone_t zone, int bytes, uint8_t *flags, int wait) 1124 { 1125 TAILQ_HEAD(, vm_page) alloctail; 1126 u_long npages; 1127 vm_offset_t retkva, zkva; 1128 vm_page_t p, p_next; 1129 uma_keg_t keg; 1130 1131 TAILQ_INIT(&alloctail); 1132 keg = zone_first_keg(zone); 1133 1134 npages = howmany(bytes, PAGE_SIZE); 1135 while (npages > 0) { 1136 p = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT | 1137 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ); 1138 if (p != NULL) { 1139 /* 1140 * Since the page does not belong to an object, its 1141 * listq is unused. 1142 */ 1143 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1144 npages--; 1145 continue; 1146 } 1147 if (wait & M_WAITOK) { 1148 VM_WAIT; 1149 continue; 1150 } 1151 1152 /* 1153 * Page allocation failed, free intermediate pages and 1154 * exit. 1155 */ 1156 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1157 vm_page_unwire(p, PQ_INACTIVE); 1158 vm_page_free(p); 1159 } 1160 return (NULL); 1161 } 1162 *flags = UMA_SLAB_PRIV; 1163 zkva = keg->uk_kva + 1164 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1165 retkva = zkva; 1166 TAILQ_FOREACH(p, &alloctail, listq) { 1167 pmap_qenter(zkva, &p, 1); 1168 zkva += PAGE_SIZE; 1169 } 1170 1171 return ((void *)retkva); 1172 } 1173 1174 /* 1175 * Frees a number of pages to the system 1176 * 1177 * Arguments: 1178 * mem A pointer to the memory to be freed 1179 * size The size of the memory being freed 1180 * flags The original p->us_flags field 1181 * 1182 * Returns: 1183 * Nothing 1184 */ 1185 static void 1186 page_free(void *mem, int size, uint8_t flags) 1187 { 1188 struct vmem *vmem; 1189 1190 if (flags & UMA_SLAB_KMEM) 1191 vmem = kmem_arena; 1192 else if (flags & UMA_SLAB_KERNEL) 1193 vmem = kernel_arena; 1194 else 1195 panic("UMA: page_free used with invalid flags %d", flags); 1196 1197 kmem_free(vmem, (vm_offset_t)mem, size); 1198 } 1199 1200 /* 1201 * Zero fill initializer 1202 * 1203 * Arguments/Returns follow uma_init specifications 1204 */ 1205 static int 1206 zero_init(void *mem, int size, int flags) 1207 { 1208 bzero(mem, size); 1209 return (0); 1210 } 1211 1212 /* 1213 * Finish creating a small uma keg. This calculates ipers, and the keg size. 1214 * 1215 * Arguments 1216 * keg The zone we should initialize 1217 * 1218 * Returns 1219 * Nothing 1220 */ 1221 static void 1222 keg_small_init(uma_keg_t keg) 1223 { 1224 u_int rsize; 1225 u_int memused; 1226 u_int wastedspace; 1227 u_int shsize; 1228 1229 if (keg->uk_flags & UMA_ZONE_PCPU) { 1230 u_int ncpus = mp_ncpus ? mp_ncpus : MAXCPU; 1231 1232 keg->uk_slabsize = sizeof(struct pcpu); 1233 keg->uk_ppera = howmany(ncpus * sizeof(struct pcpu), 1234 PAGE_SIZE); 1235 } else { 1236 keg->uk_slabsize = UMA_SLAB_SIZE; 1237 keg->uk_ppera = 1; 1238 } 1239 1240 /* 1241 * Calculate the size of each allocation (rsize) according to 1242 * alignment. If the requested size is smaller than we have 1243 * allocation bits for we round it up. 1244 */ 1245 rsize = keg->uk_size; 1246 if (rsize < keg->uk_slabsize / SLAB_SETSIZE) 1247 rsize = keg->uk_slabsize / SLAB_SETSIZE; 1248 if (rsize & keg->uk_align) 1249 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1250 keg->uk_rsize = rsize; 1251 1252 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 1253 keg->uk_rsize < sizeof(struct pcpu), 1254 ("%s: size %u too large", __func__, keg->uk_rsize)); 1255 1256 if (keg->uk_flags & UMA_ZONE_REFCNT) 1257 rsize += sizeof(uint32_t); 1258 1259 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1260 shsize = 0; 1261 else 1262 shsize = sizeof(struct uma_slab); 1263 1264 keg->uk_ipers = (keg->uk_slabsize - shsize) / rsize; 1265 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1266 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1267 1268 memused = keg->uk_ipers * rsize + shsize; 1269 wastedspace = keg->uk_slabsize - memused; 1270 1271 /* 1272 * We can't do OFFPAGE if we're internal or if we've been 1273 * asked to not go to the VM for buckets. If we do this we 1274 * may end up going to the VM for slabs which we do not 1275 * want to do if we're UMA_ZFLAG_CACHEONLY as a result 1276 * of UMA_ZONE_VM, which clearly forbids it. 1277 */ 1278 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1279 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1280 return; 1281 1282 /* 1283 * See if using an OFFPAGE slab will limit our waste. Only do 1284 * this if it permits more items per-slab. 1285 * 1286 * XXX We could try growing slabsize to limit max waste as well. 1287 * Historically this was not done because the VM could not 1288 * efficiently handle contiguous allocations. 1289 */ 1290 if ((wastedspace >= keg->uk_slabsize / UMA_MAX_WASTE) && 1291 (keg->uk_ipers < (keg->uk_slabsize / keg->uk_rsize))) { 1292 keg->uk_ipers = keg->uk_slabsize / keg->uk_rsize; 1293 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1294 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1295 #ifdef UMA_DEBUG 1296 printf("UMA decided we need offpage slab headers for " 1297 "keg: %s, calculated wastedspace = %d, " 1298 "maximum wasted space allowed = %d, " 1299 "calculated ipers = %d, " 1300 "new wasted space = %d\n", keg->uk_name, wastedspace, 1301 keg->uk_slabsize / UMA_MAX_WASTE, keg->uk_ipers, 1302 keg->uk_slabsize - keg->uk_ipers * keg->uk_rsize); 1303 #endif 1304 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1305 } 1306 1307 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1308 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1309 keg->uk_flags |= UMA_ZONE_HASH; 1310 } 1311 1312 /* 1313 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do 1314 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1315 * more complicated. 1316 * 1317 * Arguments 1318 * keg The keg we should initialize 1319 * 1320 * Returns 1321 * Nothing 1322 */ 1323 static void 1324 keg_large_init(uma_keg_t keg) 1325 { 1326 u_int shsize; 1327 1328 KASSERT(keg != NULL, ("Keg is null in keg_large_init")); 1329 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0, 1330 ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg")); 1331 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1332 ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__)); 1333 1334 keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE); 1335 keg->uk_slabsize = keg->uk_ppera * PAGE_SIZE; 1336 keg->uk_ipers = 1; 1337 keg->uk_rsize = keg->uk_size; 1338 1339 /* We can't do OFFPAGE if we're internal, bail out here. */ 1340 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) 1341 return; 1342 1343 /* Check whether we have enough space to not do OFFPAGE. */ 1344 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) { 1345 shsize = sizeof(struct uma_slab); 1346 if (keg->uk_flags & UMA_ZONE_REFCNT) 1347 shsize += keg->uk_ipers * sizeof(uint32_t); 1348 if (shsize & UMA_ALIGN_PTR) 1349 shsize = (shsize & ~UMA_ALIGN_PTR) + 1350 (UMA_ALIGN_PTR + 1); 1351 1352 if ((PAGE_SIZE * keg->uk_ppera) - keg->uk_rsize < shsize) 1353 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1354 } 1355 1356 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1357 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1358 keg->uk_flags |= UMA_ZONE_HASH; 1359 } 1360 1361 static void 1362 keg_cachespread_init(uma_keg_t keg) 1363 { 1364 int alignsize; 1365 int trailer; 1366 int pages; 1367 int rsize; 1368 1369 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1370 ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__)); 1371 1372 alignsize = keg->uk_align + 1; 1373 rsize = keg->uk_size; 1374 /* 1375 * We want one item to start on every align boundary in a page. To 1376 * do this we will span pages. We will also extend the item by the 1377 * size of align if it is an even multiple of align. Otherwise, it 1378 * would fall on the same boundary every time. 1379 */ 1380 if (rsize & keg->uk_align) 1381 rsize = (rsize & ~keg->uk_align) + alignsize; 1382 if ((rsize & alignsize) == 0) 1383 rsize += alignsize; 1384 trailer = rsize - keg->uk_size; 1385 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE; 1386 pages = MIN(pages, (128 * 1024) / PAGE_SIZE); 1387 keg->uk_rsize = rsize; 1388 keg->uk_ppera = pages; 1389 keg->uk_slabsize = UMA_SLAB_SIZE; 1390 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize; 1391 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1392 KASSERT(keg->uk_ipers <= SLAB_SETSIZE, 1393 ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__, 1394 keg->uk_ipers)); 1395 } 1396 1397 /* 1398 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1399 * the keg onto the global keg list. 1400 * 1401 * Arguments/Returns follow uma_ctor specifications 1402 * udata Actually uma_kctor_args 1403 */ 1404 static int 1405 keg_ctor(void *mem, int size, void *udata, int flags) 1406 { 1407 struct uma_kctor_args *arg = udata; 1408 uma_keg_t keg = mem; 1409 uma_zone_t zone; 1410 1411 bzero(keg, size); 1412 keg->uk_size = arg->size; 1413 keg->uk_init = arg->uminit; 1414 keg->uk_fini = arg->fini; 1415 keg->uk_align = arg->align; 1416 keg->uk_free = 0; 1417 keg->uk_reserve = 0; 1418 keg->uk_pages = 0; 1419 keg->uk_flags = arg->flags; 1420 keg->uk_allocf = page_alloc; 1421 keg->uk_freef = page_free; 1422 keg->uk_slabzone = NULL; 1423 1424 /* 1425 * The master zone is passed to us at keg-creation time. 1426 */ 1427 zone = arg->zone; 1428 keg->uk_name = zone->uz_name; 1429 1430 if (arg->flags & UMA_ZONE_VM) 1431 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1432 1433 if (arg->flags & UMA_ZONE_ZINIT) 1434 keg->uk_init = zero_init; 1435 1436 if (arg->flags & UMA_ZONE_REFCNT || arg->flags & UMA_ZONE_MALLOC) 1437 keg->uk_flags |= UMA_ZONE_VTOSLAB; 1438 1439 if (arg->flags & UMA_ZONE_PCPU) 1440 #ifdef SMP 1441 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1442 #else 1443 keg->uk_flags &= ~UMA_ZONE_PCPU; 1444 #endif 1445 1446 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) { 1447 keg_cachespread_init(keg); 1448 } else if (keg->uk_flags & UMA_ZONE_REFCNT) { 1449 if (keg->uk_size > 1450 (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt) - 1451 sizeof(uint32_t))) 1452 keg_large_init(keg); 1453 else 1454 keg_small_init(keg); 1455 } else { 1456 if (keg->uk_size > (UMA_SLAB_SIZE - sizeof(struct uma_slab))) 1457 keg_large_init(keg); 1458 else 1459 keg_small_init(keg); 1460 } 1461 1462 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 1463 if (keg->uk_flags & UMA_ZONE_REFCNT) { 1464 if (keg->uk_ipers > uma_max_ipers_ref) 1465 panic("Too many ref items per zone: %d > %d\n", 1466 keg->uk_ipers, uma_max_ipers_ref); 1467 keg->uk_slabzone = slabrefzone; 1468 } else 1469 keg->uk_slabzone = slabzone; 1470 } 1471 1472 /* 1473 * If we haven't booted yet we need allocations to go through the 1474 * startup cache until the vm is ready. 1475 */ 1476 if (keg->uk_ppera == 1) { 1477 #ifdef UMA_MD_SMALL_ALLOC 1478 keg->uk_allocf = uma_small_alloc; 1479 keg->uk_freef = uma_small_free; 1480 1481 if (booted < UMA_STARTUP) 1482 keg->uk_allocf = startup_alloc; 1483 #else 1484 if (booted < UMA_STARTUP2) 1485 keg->uk_allocf = startup_alloc; 1486 #endif 1487 } else if (booted < UMA_STARTUP2 && 1488 (keg->uk_flags & UMA_ZFLAG_INTERNAL)) 1489 keg->uk_allocf = startup_alloc; 1490 1491 /* 1492 * Initialize keg's lock 1493 */ 1494 KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS)); 1495 1496 /* 1497 * If we're putting the slab header in the actual page we need to 1498 * figure out where in each page it goes. This calculates a right 1499 * justified offset into the memory on an ALIGN_PTR boundary. 1500 */ 1501 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1502 u_int totsize; 1503 1504 /* Size of the slab struct and free list */ 1505 totsize = sizeof(struct uma_slab); 1506 1507 /* Size of the reference counts. */ 1508 if (keg->uk_flags & UMA_ZONE_REFCNT) 1509 totsize += keg->uk_ipers * sizeof(uint32_t); 1510 1511 if (totsize & UMA_ALIGN_PTR) 1512 totsize = (totsize & ~UMA_ALIGN_PTR) + 1513 (UMA_ALIGN_PTR + 1); 1514 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize; 1515 1516 /* 1517 * The only way the following is possible is if with our 1518 * UMA_ALIGN_PTR adjustments we are now bigger than 1519 * UMA_SLAB_SIZE. I haven't checked whether this is 1520 * mathematically possible for all cases, so we make 1521 * sure here anyway. 1522 */ 1523 totsize = keg->uk_pgoff + sizeof(struct uma_slab); 1524 if (keg->uk_flags & UMA_ZONE_REFCNT) 1525 totsize += keg->uk_ipers * sizeof(uint32_t); 1526 if (totsize > PAGE_SIZE * keg->uk_ppera) { 1527 printf("zone %s ipers %d rsize %d size %d\n", 1528 zone->uz_name, keg->uk_ipers, keg->uk_rsize, 1529 keg->uk_size); 1530 panic("UMA slab won't fit."); 1531 } 1532 } 1533 1534 if (keg->uk_flags & UMA_ZONE_HASH) 1535 hash_alloc(&keg->uk_hash); 1536 1537 #ifdef UMA_DEBUG 1538 printf("UMA: %s(%p) size %d(%d) flags %#x ipers %d ppera %d out %d free %d\n", 1539 zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags, 1540 keg->uk_ipers, keg->uk_ppera, 1541 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free); 1542 #endif 1543 1544 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1545 1546 mtx_lock(&uma_mtx); 1547 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1548 mtx_unlock(&uma_mtx); 1549 return (0); 1550 } 1551 1552 /* 1553 * Zone header ctor. This initializes all fields, locks, etc. 1554 * 1555 * Arguments/Returns follow uma_ctor specifications 1556 * udata Actually uma_zctor_args 1557 */ 1558 static int 1559 zone_ctor(void *mem, int size, void *udata, int flags) 1560 { 1561 struct uma_zctor_args *arg = udata; 1562 uma_zone_t zone = mem; 1563 uma_zone_t z; 1564 uma_keg_t keg; 1565 1566 bzero(zone, size); 1567 zone->uz_name = arg->name; 1568 zone->uz_ctor = arg->ctor; 1569 zone->uz_dtor = arg->dtor; 1570 zone->uz_slab = zone_fetch_slab; 1571 zone->uz_init = NULL; 1572 zone->uz_fini = NULL; 1573 zone->uz_allocs = 0; 1574 zone->uz_frees = 0; 1575 zone->uz_fails = 0; 1576 zone->uz_sleeps = 0; 1577 zone->uz_count = 0; 1578 zone->uz_count_min = 0; 1579 zone->uz_flags = 0; 1580 zone->uz_warning = NULL; 1581 timevalclear(&zone->uz_ratecheck); 1582 keg = arg->keg; 1583 1584 ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS)); 1585 1586 /* 1587 * This is a pure cache zone, no kegs. 1588 */ 1589 if (arg->import) { 1590 if (arg->flags & UMA_ZONE_VM) 1591 arg->flags |= UMA_ZFLAG_CACHEONLY; 1592 zone->uz_flags = arg->flags; 1593 zone->uz_size = arg->size; 1594 zone->uz_import = arg->import; 1595 zone->uz_release = arg->release; 1596 zone->uz_arg = arg->arg; 1597 zone->uz_lockptr = &zone->uz_lock; 1598 mtx_lock(&uma_mtx); 1599 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 1600 mtx_unlock(&uma_mtx); 1601 goto out; 1602 } 1603 1604 /* 1605 * Use the regular zone/keg/slab allocator. 1606 */ 1607 zone->uz_import = (uma_import)zone_import; 1608 zone->uz_release = (uma_release)zone_release; 1609 zone->uz_arg = zone; 1610 1611 if (arg->flags & UMA_ZONE_SECONDARY) { 1612 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 1613 zone->uz_init = arg->uminit; 1614 zone->uz_fini = arg->fini; 1615 zone->uz_lockptr = &keg->uk_lock; 1616 zone->uz_flags |= UMA_ZONE_SECONDARY; 1617 mtx_lock(&uma_mtx); 1618 ZONE_LOCK(zone); 1619 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 1620 if (LIST_NEXT(z, uz_link) == NULL) { 1621 LIST_INSERT_AFTER(z, zone, uz_link); 1622 break; 1623 } 1624 } 1625 ZONE_UNLOCK(zone); 1626 mtx_unlock(&uma_mtx); 1627 } else if (keg == NULL) { 1628 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 1629 arg->align, arg->flags)) == NULL) 1630 return (ENOMEM); 1631 } else { 1632 struct uma_kctor_args karg; 1633 int error; 1634 1635 /* We should only be here from uma_startup() */ 1636 karg.size = arg->size; 1637 karg.uminit = arg->uminit; 1638 karg.fini = arg->fini; 1639 karg.align = arg->align; 1640 karg.flags = arg->flags; 1641 karg.zone = zone; 1642 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 1643 flags); 1644 if (error) 1645 return (error); 1646 } 1647 1648 /* 1649 * Link in the first keg. 1650 */ 1651 zone->uz_klink.kl_keg = keg; 1652 LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link); 1653 zone->uz_lockptr = &keg->uk_lock; 1654 zone->uz_size = keg->uk_size; 1655 zone->uz_flags |= (keg->uk_flags & 1656 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 1657 1658 /* 1659 * Some internal zones don't have room allocated for the per cpu 1660 * caches. If we're internal, bail out here. 1661 */ 1662 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { 1663 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 1664 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 1665 return (0); 1666 } 1667 1668 out: 1669 if ((arg->flags & UMA_ZONE_MAXBUCKET) == 0) 1670 zone->uz_count = bucket_select(zone->uz_size); 1671 else 1672 zone->uz_count = BUCKET_MAX; 1673 zone->uz_count_min = zone->uz_count; 1674 1675 return (0); 1676 } 1677 1678 /* 1679 * Keg header dtor. This frees all data, destroys locks, frees the hash 1680 * table and removes the keg from the global list. 1681 * 1682 * Arguments/Returns follow uma_dtor specifications 1683 * udata unused 1684 */ 1685 static void 1686 keg_dtor(void *arg, int size, void *udata) 1687 { 1688 uma_keg_t keg; 1689 1690 keg = (uma_keg_t)arg; 1691 KEG_LOCK(keg); 1692 if (keg->uk_free != 0) { 1693 printf("Freed UMA keg (%s) was not empty (%d items). " 1694 " Lost %d pages of memory.\n", 1695 keg->uk_name ? keg->uk_name : "", 1696 keg->uk_free, keg->uk_pages); 1697 } 1698 KEG_UNLOCK(keg); 1699 1700 hash_free(&keg->uk_hash); 1701 1702 KEG_LOCK_FINI(keg); 1703 } 1704 1705 /* 1706 * Zone header dtor. 1707 * 1708 * Arguments/Returns follow uma_dtor specifications 1709 * udata unused 1710 */ 1711 static void 1712 zone_dtor(void *arg, int size, void *udata) 1713 { 1714 uma_klink_t klink; 1715 uma_zone_t zone; 1716 uma_keg_t keg; 1717 1718 zone = (uma_zone_t)arg; 1719 keg = zone_first_keg(zone); 1720 1721 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 1722 cache_drain(zone); 1723 1724 mtx_lock(&uma_mtx); 1725 LIST_REMOVE(zone, uz_link); 1726 mtx_unlock(&uma_mtx); 1727 /* 1728 * XXX there are some races here where 1729 * the zone can be drained but zone lock 1730 * released and then refilled before we 1731 * remove it... we dont care for now 1732 */ 1733 zone_drain_wait(zone, M_WAITOK); 1734 /* 1735 * Unlink all of our kegs. 1736 */ 1737 while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) { 1738 klink->kl_keg = NULL; 1739 LIST_REMOVE(klink, kl_link); 1740 if (klink == &zone->uz_klink) 1741 continue; 1742 free(klink, M_TEMP); 1743 } 1744 /* 1745 * We only destroy kegs from non secondary zones. 1746 */ 1747 if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0) { 1748 mtx_lock(&uma_mtx); 1749 LIST_REMOVE(keg, uk_link); 1750 mtx_unlock(&uma_mtx); 1751 zone_free_item(kegs, keg, NULL, SKIP_NONE); 1752 } 1753 ZONE_LOCK_FINI(zone); 1754 } 1755 1756 /* 1757 * Traverses every zone in the system and calls a callback 1758 * 1759 * Arguments: 1760 * zfunc A pointer to a function which accepts a zone 1761 * as an argument. 1762 * 1763 * Returns: 1764 * Nothing 1765 */ 1766 static void 1767 zone_foreach(void (*zfunc)(uma_zone_t)) 1768 { 1769 uma_keg_t keg; 1770 uma_zone_t zone; 1771 1772 mtx_lock(&uma_mtx); 1773 LIST_FOREACH(keg, &uma_kegs, uk_link) { 1774 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 1775 zfunc(zone); 1776 } 1777 mtx_unlock(&uma_mtx); 1778 } 1779 1780 /* Public functions */ 1781 /* See uma.h */ 1782 void 1783 uma_startup(void *bootmem, int boot_pages) 1784 { 1785 struct uma_zctor_args args; 1786 uma_slab_t slab; 1787 u_int slabsize; 1788 int i; 1789 1790 #ifdef UMA_DEBUG 1791 printf("Creating uma keg headers zone and keg.\n"); 1792 #endif 1793 mtx_init(&uma_mtx, "UMA lock", NULL, MTX_DEF); 1794 1795 /* "manually" create the initial zone */ 1796 memset(&args, 0, sizeof(args)); 1797 args.name = "UMA Kegs"; 1798 args.size = sizeof(struct uma_keg); 1799 args.ctor = keg_ctor; 1800 args.dtor = keg_dtor; 1801 args.uminit = zero_init; 1802 args.fini = NULL; 1803 args.keg = &masterkeg; 1804 args.align = 32 - 1; 1805 args.flags = UMA_ZFLAG_INTERNAL; 1806 /* The initial zone has no Per cpu queues so it's smaller */ 1807 zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK); 1808 1809 #ifdef UMA_DEBUG 1810 printf("Filling boot free list.\n"); 1811 #endif 1812 for (i = 0; i < boot_pages; i++) { 1813 slab = (uma_slab_t)((uint8_t *)bootmem + (i * UMA_SLAB_SIZE)); 1814 slab->us_data = (uint8_t *)slab; 1815 slab->us_flags = UMA_SLAB_BOOT; 1816 LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link); 1817 } 1818 mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF); 1819 1820 #ifdef UMA_DEBUG 1821 printf("Creating uma zone headers zone and keg.\n"); 1822 #endif 1823 args.name = "UMA Zones"; 1824 args.size = sizeof(struct uma_zone) + 1825 (sizeof(struct uma_cache) * (mp_maxid + 1)); 1826 args.ctor = zone_ctor; 1827 args.dtor = zone_dtor; 1828 args.uminit = zero_init; 1829 args.fini = NULL; 1830 args.keg = NULL; 1831 args.align = 32 - 1; 1832 args.flags = UMA_ZFLAG_INTERNAL; 1833 /* The initial zone has no Per cpu queues so it's smaller */ 1834 zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK); 1835 1836 #ifdef UMA_DEBUG 1837 printf("Initializing pcpu cache locks.\n"); 1838 #endif 1839 #ifdef UMA_DEBUG 1840 printf("Creating slab and hash zones.\n"); 1841 #endif 1842 1843 /* Now make a zone for slab headers */ 1844 slabzone = uma_zcreate("UMA Slabs", 1845 sizeof(struct uma_slab), 1846 NULL, NULL, NULL, NULL, 1847 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1848 1849 /* 1850 * We also create a zone for the bigger slabs with reference 1851 * counts in them, to accomodate UMA_ZONE_REFCNT zones. 1852 */ 1853 slabsize = sizeof(struct uma_slab_refcnt); 1854 slabsize += uma_max_ipers_ref * sizeof(uint32_t); 1855 slabrefzone = uma_zcreate("UMA RCntSlabs", 1856 slabsize, 1857 NULL, NULL, NULL, NULL, 1858 UMA_ALIGN_PTR, 1859 UMA_ZFLAG_INTERNAL); 1860 1861 hashzone = uma_zcreate("UMA Hash", 1862 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 1863 NULL, NULL, NULL, NULL, 1864 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1865 1866 bucket_init(); 1867 1868 booted = UMA_STARTUP; 1869 1870 #ifdef UMA_DEBUG 1871 printf("UMA startup complete.\n"); 1872 #endif 1873 } 1874 1875 /* see uma.h */ 1876 void 1877 uma_startup2(void) 1878 { 1879 booted = UMA_STARTUP2; 1880 bucket_enable(); 1881 #ifdef UMA_DEBUG 1882 printf("UMA startup2 complete.\n"); 1883 #endif 1884 } 1885 1886 /* 1887 * Initialize our callout handle 1888 * 1889 */ 1890 1891 static void 1892 uma_startup3(void) 1893 { 1894 #ifdef UMA_DEBUG 1895 printf("Starting callout.\n"); 1896 #endif 1897 callout_init(&uma_callout, CALLOUT_MPSAFE); 1898 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 1899 #ifdef UMA_DEBUG 1900 printf("UMA startup3 complete.\n"); 1901 #endif 1902 } 1903 1904 static uma_keg_t 1905 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 1906 int align, uint32_t flags) 1907 { 1908 struct uma_kctor_args args; 1909 1910 args.size = size; 1911 args.uminit = uminit; 1912 args.fini = fini; 1913 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 1914 args.flags = flags; 1915 args.zone = zone; 1916 return (zone_alloc_item(kegs, &args, M_WAITOK)); 1917 } 1918 1919 /* See uma.h */ 1920 void 1921 uma_set_align(int align) 1922 { 1923 1924 if (align != UMA_ALIGN_CACHE) 1925 uma_align_cache = align; 1926 } 1927 1928 /* See uma.h */ 1929 uma_zone_t 1930 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 1931 uma_init uminit, uma_fini fini, int align, uint32_t flags) 1932 1933 { 1934 struct uma_zctor_args args; 1935 1936 /* This stuff is essential for the zone ctor */ 1937 memset(&args, 0, sizeof(args)); 1938 args.name = name; 1939 args.size = size; 1940 args.ctor = ctor; 1941 args.dtor = dtor; 1942 args.uminit = uminit; 1943 args.fini = fini; 1944 args.align = align; 1945 args.flags = flags; 1946 args.keg = NULL; 1947 1948 return (zone_alloc_item(zones, &args, M_WAITOK)); 1949 } 1950 1951 /* See uma.h */ 1952 uma_zone_t 1953 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 1954 uma_init zinit, uma_fini zfini, uma_zone_t master) 1955 { 1956 struct uma_zctor_args args; 1957 uma_keg_t keg; 1958 1959 keg = zone_first_keg(master); 1960 memset(&args, 0, sizeof(args)); 1961 args.name = name; 1962 args.size = keg->uk_size; 1963 args.ctor = ctor; 1964 args.dtor = dtor; 1965 args.uminit = zinit; 1966 args.fini = zfini; 1967 args.align = keg->uk_align; 1968 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 1969 args.keg = keg; 1970 1971 /* XXX Attaches only one keg of potentially many. */ 1972 return (zone_alloc_item(zones, &args, M_WAITOK)); 1973 } 1974 1975 /* See uma.h */ 1976 uma_zone_t 1977 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor, 1978 uma_init zinit, uma_fini zfini, uma_import zimport, 1979 uma_release zrelease, void *arg, int flags) 1980 { 1981 struct uma_zctor_args args; 1982 1983 memset(&args, 0, sizeof(args)); 1984 args.name = name; 1985 args.size = size; 1986 args.ctor = ctor; 1987 args.dtor = dtor; 1988 args.uminit = zinit; 1989 args.fini = zfini; 1990 args.import = zimport; 1991 args.release = zrelease; 1992 args.arg = arg; 1993 args.align = 0; 1994 args.flags = flags; 1995 1996 return (zone_alloc_item(zones, &args, M_WAITOK)); 1997 } 1998 1999 static void 2000 zone_lock_pair(uma_zone_t a, uma_zone_t b) 2001 { 2002 if (a < b) { 2003 ZONE_LOCK(a); 2004 mtx_lock_flags(b->uz_lockptr, MTX_DUPOK); 2005 } else { 2006 ZONE_LOCK(b); 2007 mtx_lock_flags(a->uz_lockptr, MTX_DUPOK); 2008 } 2009 } 2010 2011 static void 2012 zone_unlock_pair(uma_zone_t a, uma_zone_t b) 2013 { 2014 2015 ZONE_UNLOCK(a); 2016 ZONE_UNLOCK(b); 2017 } 2018 2019 int 2020 uma_zsecond_add(uma_zone_t zone, uma_zone_t master) 2021 { 2022 uma_klink_t klink; 2023 uma_klink_t kl; 2024 int error; 2025 2026 error = 0; 2027 klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO); 2028 2029 zone_lock_pair(zone, master); 2030 /* 2031 * zone must use vtoslab() to resolve objects and must already be 2032 * a secondary. 2033 */ 2034 if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) 2035 != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) { 2036 error = EINVAL; 2037 goto out; 2038 } 2039 /* 2040 * The new master must also use vtoslab(). 2041 */ 2042 if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) { 2043 error = EINVAL; 2044 goto out; 2045 } 2046 /* 2047 * Both must either be refcnt, or not be refcnt. 2048 */ 2049 if ((zone->uz_flags & UMA_ZONE_REFCNT) != 2050 (master->uz_flags & UMA_ZONE_REFCNT)) { 2051 error = EINVAL; 2052 goto out; 2053 } 2054 /* 2055 * The underlying object must be the same size. rsize 2056 * may be different. 2057 */ 2058 if (master->uz_size != zone->uz_size) { 2059 error = E2BIG; 2060 goto out; 2061 } 2062 /* 2063 * Put it at the end of the list. 2064 */ 2065 klink->kl_keg = zone_first_keg(master); 2066 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) { 2067 if (LIST_NEXT(kl, kl_link) == NULL) { 2068 LIST_INSERT_AFTER(kl, klink, kl_link); 2069 break; 2070 } 2071 } 2072 klink = NULL; 2073 zone->uz_flags |= UMA_ZFLAG_MULTI; 2074 zone->uz_slab = zone_fetch_slab_multi; 2075 2076 out: 2077 zone_unlock_pair(zone, master); 2078 if (klink != NULL) 2079 free(klink, M_TEMP); 2080 2081 return (error); 2082 } 2083 2084 2085 /* See uma.h */ 2086 void 2087 uma_zdestroy(uma_zone_t zone) 2088 { 2089 2090 zone_free_item(zones, zone, NULL, SKIP_NONE); 2091 } 2092 2093 /* See uma.h */ 2094 void * 2095 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 2096 { 2097 void *item; 2098 uma_cache_t cache; 2099 uma_bucket_t bucket; 2100 int lockfail; 2101 int cpu; 2102 2103 /* This is the fast path allocation */ 2104 #ifdef UMA_DEBUG_ALLOC_1 2105 printf("Allocating one item from %s(%p)\n", zone->uz_name, zone); 2106 #endif 2107 CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread, 2108 zone->uz_name, flags); 2109 2110 if (flags & M_WAITOK) { 2111 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2112 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 2113 } 2114 #ifdef DEBUG_MEMGUARD 2115 if (memguard_cmp_zone(zone)) { 2116 item = memguard_alloc(zone->uz_size, flags); 2117 if (item != NULL) { 2118 /* 2119 * Avoid conflict with the use-after-free 2120 * protecting infrastructure from INVARIANTS. 2121 */ 2122 if (zone->uz_init != NULL && 2123 zone->uz_init != mtrash_init && 2124 zone->uz_init(item, zone->uz_size, flags) != 0) 2125 return (NULL); 2126 if (zone->uz_ctor != NULL && 2127 zone->uz_ctor != mtrash_ctor && 2128 zone->uz_ctor(item, zone->uz_size, udata, 2129 flags) != 0) { 2130 zone->uz_fini(item, zone->uz_size); 2131 return (NULL); 2132 } 2133 return (item); 2134 } 2135 /* This is unfortunate but should not be fatal. */ 2136 } 2137 #endif 2138 /* 2139 * If possible, allocate from the per-CPU cache. There are two 2140 * requirements for safe access to the per-CPU cache: (1) the thread 2141 * accessing the cache must not be preempted or yield during access, 2142 * and (2) the thread must not migrate CPUs without switching which 2143 * cache it accesses. We rely on a critical section to prevent 2144 * preemption and migration. We release the critical section in 2145 * order to acquire the zone mutex if we are unable to allocate from 2146 * the current cache; when we re-acquire the critical section, we 2147 * must detect and handle migration if it has occurred. 2148 */ 2149 critical_enter(); 2150 cpu = curcpu; 2151 cache = &zone->uz_cpu[cpu]; 2152 2153 zalloc_start: 2154 bucket = cache->uc_allocbucket; 2155 if (bucket != NULL && bucket->ub_cnt > 0) { 2156 bucket->ub_cnt--; 2157 item = bucket->ub_bucket[bucket->ub_cnt]; 2158 #ifdef INVARIANTS 2159 bucket->ub_bucket[bucket->ub_cnt] = NULL; 2160 #endif 2161 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 2162 cache->uc_allocs++; 2163 critical_exit(); 2164 if (zone->uz_ctor != NULL && 2165 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2166 atomic_add_long(&zone->uz_fails, 1); 2167 zone_free_item(zone, item, udata, SKIP_DTOR); 2168 return (NULL); 2169 } 2170 #ifdef INVARIANTS 2171 uma_dbg_alloc(zone, NULL, item); 2172 #endif 2173 if (flags & M_ZERO) 2174 uma_zero_item(item, zone); 2175 return (item); 2176 } 2177 2178 /* 2179 * We have run out of items in our alloc bucket. 2180 * See if we can switch with our free bucket. 2181 */ 2182 bucket = cache->uc_freebucket; 2183 if (bucket != NULL && bucket->ub_cnt > 0) { 2184 #ifdef UMA_DEBUG_ALLOC 2185 printf("uma_zalloc: Swapping empty with alloc.\n"); 2186 #endif 2187 cache->uc_freebucket = cache->uc_allocbucket; 2188 cache->uc_allocbucket = bucket; 2189 goto zalloc_start; 2190 } 2191 2192 /* 2193 * Discard any empty allocation bucket while we hold no locks. 2194 */ 2195 bucket = cache->uc_allocbucket; 2196 cache->uc_allocbucket = NULL; 2197 critical_exit(); 2198 if (bucket != NULL) 2199 bucket_free(zone, bucket, udata); 2200 2201 /* Short-circuit for zones without buckets and low memory. */ 2202 if (zone->uz_count == 0 || bucketdisable) 2203 goto zalloc_item; 2204 2205 /* 2206 * Attempt to retrieve the item from the per-CPU cache has failed, so 2207 * we must go back to the zone. This requires the zone lock, so we 2208 * must drop the critical section, then re-acquire it when we go back 2209 * to the cache. Since the critical section is released, we may be 2210 * preempted or migrate. As such, make sure not to maintain any 2211 * thread-local state specific to the cache from prior to releasing 2212 * the critical section. 2213 */ 2214 lockfail = 0; 2215 if (ZONE_TRYLOCK(zone) == 0) { 2216 /* Record contention to size the buckets. */ 2217 ZONE_LOCK(zone); 2218 lockfail = 1; 2219 } 2220 critical_enter(); 2221 cpu = curcpu; 2222 cache = &zone->uz_cpu[cpu]; 2223 2224 /* 2225 * Since we have locked the zone we may as well send back our stats. 2226 */ 2227 atomic_add_long(&zone->uz_allocs, cache->uc_allocs); 2228 atomic_add_long(&zone->uz_frees, cache->uc_frees); 2229 cache->uc_allocs = 0; 2230 cache->uc_frees = 0; 2231 2232 /* See if we lost the race to fill the cache. */ 2233 if (cache->uc_allocbucket != NULL) { 2234 ZONE_UNLOCK(zone); 2235 goto zalloc_start; 2236 } 2237 2238 /* 2239 * Check the zone's cache of buckets. 2240 */ 2241 if ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) { 2242 KASSERT(bucket->ub_cnt != 0, 2243 ("uma_zalloc_arg: Returning an empty bucket.")); 2244 2245 LIST_REMOVE(bucket, ub_link); 2246 cache->uc_allocbucket = bucket; 2247 ZONE_UNLOCK(zone); 2248 goto zalloc_start; 2249 } 2250 /* We are no longer associated with this CPU. */ 2251 critical_exit(); 2252 2253 /* 2254 * We bump the uz count when the cache size is insufficient to 2255 * handle the working set. 2256 */ 2257 if (lockfail && zone->uz_count < BUCKET_MAX) 2258 zone->uz_count++; 2259 ZONE_UNLOCK(zone); 2260 2261 /* 2262 * Now lets just fill a bucket and put it on the free list. If that 2263 * works we'll restart the allocation from the begining and it 2264 * will use the just filled bucket. 2265 */ 2266 bucket = zone_alloc_bucket(zone, udata, flags); 2267 if (bucket != NULL) { 2268 ZONE_LOCK(zone); 2269 critical_enter(); 2270 cpu = curcpu; 2271 cache = &zone->uz_cpu[cpu]; 2272 /* 2273 * See if we lost the race or were migrated. Cache the 2274 * initialized bucket to make this less likely or claim 2275 * the memory directly. 2276 */ 2277 if (cache->uc_allocbucket == NULL) 2278 cache->uc_allocbucket = bucket; 2279 else 2280 LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link); 2281 ZONE_UNLOCK(zone); 2282 goto zalloc_start; 2283 } 2284 2285 /* 2286 * We may not be able to get a bucket so return an actual item. 2287 */ 2288 #ifdef UMA_DEBUG 2289 printf("uma_zalloc_arg: Bucketzone returned NULL\n"); 2290 #endif 2291 2292 zalloc_item: 2293 item = zone_alloc_item(zone, udata, flags); 2294 2295 return (item); 2296 } 2297 2298 static uma_slab_t 2299 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags) 2300 { 2301 uma_slab_t slab; 2302 int reserve; 2303 2304 mtx_assert(&keg->uk_lock, MA_OWNED); 2305 slab = NULL; 2306 reserve = 0; 2307 if ((flags & M_USE_RESERVE) == 0) 2308 reserve = keg->uk_reserve; 2309 2310 for (;;) { 2311 /* 2312 * Find a slab with some space. Prefer slabs that are partially 2313 * used over those that are totally full. This helps to reduce 2314 * fragmentation. 2315 */ 2316 if (keg->uk_free > reserve) { 2317 if (!LIST_EMPTY(&keg->uk_part_slab)) { 2318 slab = LIST_FIRST(&keg->uk_part_slab); 2319 } else { 2320 slab = LIST_FIRST(&keg->uk_free_slab); 2321 LIST_REMOVE(slab, us_link); 2322 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, 2323 us_link); 2324 } 2325 MPASS(slab->us_keg == keg); 2326 return (slab); 2327 } 2328 2329 /* 2330 * M_NOVM means don't ask at all! 2331 */ 2332 if (flags & M_NOVM) 2333 break; 2334 2335 if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) { 2336 keg->uk_flags |= UMA_ZFLAG_FULL; 2337 /* 2338 * If this is not a multi-zone, set the FULL bit. 2339 * Otherwise slab_multi() takes care of it. 2340 */ 2341 if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) { 2342 zone->uz_flags |= UMA_ZFLAG_FULL; 2343 zone_log_warning(zone); 2344 } 2345 if (flags & M_NOWAIT) 2346 break; 2347 zone->uz_sleeps++; 2348 msleep(keg, &keg->uk_lock, PVM, "keglimit", 0); 2349 continue; 2350 } 2351 slab = keg_alloc_slab(keg, zone, flags); 2352 /* 2353 * If we got a slab here it's safe to mark it partially used 2354 * and return. We assume that the caller is going to remove 2355 * at least one item. 2356 */ 2357 if (slab) { 2358 MPASS(slab->us_keg == keg); 2359 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2360 return (slab); 2361 } 2362 /* 2363 * We might not have been able to get a slab but another cpu 2364 * could have while we were unlocked. Check again before we 2365 * fail. 2366 */ 2367 flags |= M_NOVM; 2368 } 2369 return (slab); 2370 } 2371 2372 static uma_slab_t 2373 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags) 2374 { 2375 uma_slab_t slab; 2376 2377 if (keg == NULL) { 2378 keg = zone_first_keg(zone); 2379 KEG_LOCK(keg); 2380 } 2381 2382 for (;;) { 2383 slab = keg_fetch_slab(keg, zone, flags); 2384 if (slab) 2385 return (slab); 2386 if (flags & (M_NOWAIT | M_NOVM)) 2387 break; 2388 } 2389 KEG_UNLOCK(keg); 2390 return (NULL); 2391 } 2392 2393 /* 2394 * uma_zone_fetch_slab_multi: Fetches a slab from one available keg. Returns 2395 * with the keg locked. On NULL no lock is held. 2396 * 2397 * The last pointer is used to seed the search. It is not required. 2398 */ 2399 static uma_slab_t 2400 zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags) 2401 { 2402 uma_klink_t klink; 2403 uma_slab_t slab; 2404 uma_keg_t keg; 2405 int flags; 2406 int empty; 2407 int full; 2408 2409 /* 2410 * Don't wait on the first pass. This will skip limit tests 2411 * as well. We don't want to block if we can find a provider 2412 * without blocking. 2413 */ 2414 flags = (rflags & ~M_WAITOK) | M_NOWAIT; 2415 /* 2416 * Use the last slab allocated as a hint for where to start 2417 * the search. 2418 */ 2419 if (last != NULL) { 2420 slab = keg_fetch_slab(last, zone, flags); 2421 if (slab) 2422 return (slab); 2423 KEG_UNLOCK(last); 2424 } 2425 /* 2426 * Loop until we have a slab incase of transient failures 2427 * while M_WAITOK is specified. I'm not sure this is 100% 2428 * required but we've done it for so long now. 2429 */ 2430 for (;;) { 2431 empty = 0; 2432 full = 0; 2433 /* 2434 * Search the available kegs for slabs. Be careful to hold the 2435 * correct lock while calling into the keg layer. 2436 */ 2437 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) { 2438 keg = klink->kl_keg; 2439 KEG_LOCK(keg); 2440 if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) { 2441 slab = keg_fetch_slab(keg, zone, flags); 2442 if (slab) 2443 return (slab); 2444 } 2445 if (keg->uk_flags & UMA_ZFLAG_FULL) 2446 full++; 2447 else 2448 empty++; 2449 KEG_UNLOCK(keg); 2450 } 2451 if (rflags & (M_NOWAIT | M_NOVM)) 2452 break; 2453 flags = rflags; 2454 /* 2455 * All kegs are full. XXX We can't atomically check all kegs 2456 * and sleep so just sleep for a short period and retry. 2457 */ 2458 if (full && !empty) { 2459 ZONE_LOCK(zone); 2460 zone->uz_flags |= UMA_ZFLAG_FULL; 2461 zone->uz_sleeps++; 2462 zone_log_warning(zone); 2463 msleep(zone, zone->uz_lockptr, PVM, 2464 "zonelimit", hz/100); 2465 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2466 ZONE_UNLOCK(zone); 2467 continue; 2468 } 2469 } 2470 return (NULL); 2471 } 2472 2473 static void * 2474 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 2475 { 2476 void *item; 2477 uint8_t freei; 2478 2479 MPASS(keg == slab->us_keg); 2480 mtx_assert(&keg->uk_lock, MA_OWNED); 2481 2482 freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1; 2483 BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free); 2484 item = slab->us_data + (keg->uk_rsize * freei); 2485 slab->us_freecount--; 2486 keg->uk_free--; 2487 2488 /* Move this slab to the full list */ 2489 if (slab->us_freecount == 0) { 2490 LIST_REMOVE(slab, us_link); 2491 LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link); 2492 } 2493 2494 return (item); 2495 } 2496 2497 static int 2498 zone_import(uma_zone_t zone, void **bucket, int max, int flags) 2499 { 2500 uma_slab_t slab; 2501 uma_keg_t keg; 2502 int i; 2503 2504 slab = NULL; 2505 keg = NULL; 2506 /* Try to keep the buckets totally full */ 2507 for (i = 0; i < max; ) { 2508 if ((slab = zone->uz_slab(zone, keg, flags)) == NULL) 2509 break; 2510 keg = slab->us_keg; 2511 while (slab->us_freecount && i < max) { 2512 bucket[i++] = slab_alloc_item(keg, slab); 2513 if (keg->uk_free <= keg->uk_reserve) 2514 break; 2515 } 2516 /* Don't grab more than one slab at a time. */ 2517 flags &= ~M_WAITOK; 2518 flags |= M_NOWAIT; 2519 } 2520 if (slab != NULL) 2521 KEG_UNLOCK(keg); 2522 2523 return i; 2524 } 2525 2526 static uma_bucket_t 2527 zone_alloc_bucket(uma_zone_t zone, void *udata, int flags) 2528 { 2529 uma_bucket_t bucket; 2530 int max; 2531 2532 /* Don't wait for buckets, preserve caller's NOVM setting. */ 2533 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 2534 if (bucket == NULL) 2535 return (NULL); 2536 2537 max = MIN(bucket->ub_entries, zone->uz_count); 2538 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 2539 max, flags); 2540 2541 /* 2542 * Initialize the memory if necessary. 2543 */ 2544 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 2545 int i; 2546 2547 for (i = 0; i < bucket->ub_cnt; i++) 2548 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 2549 flags) != 0) 2550 break; 2551 /* 2552 * If we couldn't initialize the whole bucket, put the 2553 * rest back onto the freelist. 2554 */ 2555 if (i != bucket->ub_cnt) { 2556 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 2557 bucket->ub_cnt - i); 2558 #ifdef INVARIANTS 2559 bzero(&bucket->ub_bucket[i], 2560 sizeof(void *) * (bucket->ub_cnt - i)); 2561 #endif 2562 bucket->ub_cnt = i; 2563 } 2564 } 2565 2566 if (bucket->ub_cnt == 0) { 2567 bucket_free(zone, bucket, udata); 2568 atomic_add_long(&zone->uz_fails, 1); 2569 return (NULL); 2570 } 2571 2572 return (bucket); 2573 } 2574 2575 /* 2576 * Allocates a single item from a zone. 2577 * 2578 * Arguments 2579 * zone The zone to alloc for. 2580 * udata The data to be passed to the constructor. 2581 * flags M_WAITOK, M_NOWAIT, M_ZERO. 2582 * 2583 * Returns 2584 * NULL if there is no memory and M_NOWAIT is set 2585 * An item if successful 2586 */ 2587 2588 static void * 2589 zone_alloc_item(uma_zone_t zone, void *udata, int flags) 2590 { 2591 void *item; 2592 2593 item = NULL; 2594 2595 #ifdef UMA_DEBUG_ALLOC 2596 printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone); 2597 #endif 2598 if (zone->uz_import(zone->uz_arg, &item, 1, flags) != 1) 2599 goto fail; 2600 atomic_add_long(&zone->uz_allocs, 1); 2601 2602 /* 2603 * We have to call both the zone's init (not the keg's init) 2604 * and the zone's ctor. This is because the item is going from 2605 * a keg slab directly to the user, and the user is expecting it 2606 * to be both zone-init'd as well as zone-ctor'd. 2607 */ 2608 if (zone->uz_init != NULL) { 2609 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 2610 zone_free_item(zone, item, udata, SKIP_FINI); 2611 goto fail; 2612 } 2613 } 2614 if (zone->uz_ctor != NULL) { 2615 if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2616 zone_free_item(zone, item, udata, SKIP_DTOR); 2617 goto fail; 2618 } 2619 } 2620 #ifdef INVARIANTS 2621 uma_dbg_alloc(zone, NULL, item); 2622 #endif 2623 if (flags & M_ZERO) 2624 uma_zero_item(item, zone); 2625 2626 return (item); 2627 2628 fail: 2629 atomic_add_long(&zone->uz_fails, 1); 2630 return (NULL); 2631 } 2632 2633 /* See uma.h */ 2634 void 2635 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 2636 { 2637 uma_cache_t cache; 2638 uma_bucket_t bucket; 2639 int lockfail; 2640 int cpu; 2641 2642 #ifdef UMA_DEBUG_ALLOC_1 2643 printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone); 2644 #endif 2645 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 2646 zone->uz_name); 2647 2648 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 2649 if (item == NULL) 2650 return; 2651 #ifdef DEBUG_MEMGUARD 2652 if (is_memguard_addr(item)) { 2653 if (zone->uz_dtor != NULL && zone->uz_dtor != mtrash_dtor) 2654 zone->uz_dtor(item, zone->uz_size, udata); 2655 if (zone->uz_fini != NULL && zone->uz_fini != mtrash_fini) 2656 zone->uz_fini(item, zone->uz_size); 2657 memguard_free(item); 2658 return; 2659 } 2660 #endif 2661 #ifdef INVARIANTS 2662 if (zone->uz_flags & UMA_ZONE_MALLOC) 2663 uma_dbg_free(zone, udata, item); 2664 else 2665 uma_dbg_free(zone, NULL, item); 2666 #endif 2667 if (zone->uz_dtor != NULL) 2668 zone->uz_dtor(item, zone->uz_size, udata); 2669 2670 /* 2671 * The race here is acceptable. If we miss it we'll just have to wait 2672 * a little longer for the limits to be reset. 2673 */ 2674 if (zone->uz_flags & UMA_ZFLAG_FULL) 2675 goto zfree_item; 2676 2677 /* 2678 * If possible, free to the per-CPU cache. There are two 2679 * requirements for safe access to the per-CPU cache: (1) the thread 2680 * accessing the cache must not be preempted or yield during access, 2681 * and (2) the thread must not migrate CPUs without switching which 2682 * cache it accesses. We rely on a critical section to prevent 2683 * preemption and migration. We release the critical section in 2684 * order to acquire the zone mutex if we are unable to free to the 2685 * current cache; when we re-acquire the critical section, we must 2686 * detect and handle migration if it has occurred. 2687 */ 2688 zfree_restart: 2689 critical_enter(); 2690 cpu = curcpu; 2691 cache = &zone->uz_cpu[cpu]; 2692 2693 zfree_start: 2694 /* 2695 * Try to free into the allocbucket first to give LIFO ordering 2696 * for cache-hot datastructures. Spill over into the freebucket 2697 * if necessary. Alloc will swap them if one runs dry. 2698 */ 2699 bucket = cache->uc_allocbucket; 2700 if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries) 2701 bucket = cache->uc_freebucket; 2702 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 2703 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 2704 ("uma_zfree: Freeing to non free bucket index.")); 2705 bucket->ub_bucket[bucket->ub_cnt] = item; 2706 bucket->ub_cnt++; 2707 cache->uc_frees++; 2708 critical_exit(); 2709 return; 2710 } 2711 2712 /* 2713 * We must go back the zone, which requires acquiring the zone lock, 2714 * which in turn means we must release and re-acquire the critical 2715 * section. Since the critical section is released, we may be 2716 * preempted or migrate. As such, make sure not to maintain any 2717 * thread-local state specific to the cache from prior to releasing 2718 * the critical section. 2719 */ 2720 critical_exit(); 2721 if (zone->uz_count == 0 || bucketdisable) 2722 goto zfree_item; 2723 2724 lockfail = 0; 2725 if (ZONE_TRYLOCK(zone) == 0) { 2726 /* Record contention to size the buckets. */ 2727 ZONE_LOCK(zone); 2728 lockfail = 1; 2729 } 2730 critical_enter(); 2731 cpu = curcpu; 2732 cache = &zone->uz_cpu[cpu]; 2733 2734 /* 2735 * Since we have locked the zone we may as well send back our stats. 2736 */ 2737 atomic_add_long(&zone->uz_allocs, cache->uc_allocs); 2738 atomic_add_long(&zone->uz_frees, cache->uc_frees); 2739 cache->uc_allocs = 0; 2740 cache->uc_frees = 0; 2741 2742 bucket = cache->uc_freebucket; 2743 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 2744 ZONE_UNLOCK(zone); 2745 goto zfree_start; 2746 } 2747 cache->uc_freebucket = NULL; 2748 2749 /* Can we throw this on the zone full list? */ 2750 if (bucket != NULL) { 2751 #ifdef UMA_DEBUG_ALLOC 2752 printf("uma_zfree: Putting old bucket on the free list.\n"); 2753 #endif 2754 /* ub_cnt is pointing to the last free item */ 2755 KASSERT(bucket->ub_cnt != 0, 2756 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n")); 2757 LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link); 2758 } 2759 2760 /* We are no longer associated with this CPU. */ 2761 critical_exit(); 2762 2763 /* 2764 * We bump the uz count when the cache size is insufficient to 2765 * handle the working set. 2766 */ 2767 if (lockfail && zone->uz_count < BUCKET_MAX) 2768 zone->uz_count++; 2769 ZONE_UNLOCK(zone); 2770 2771 #ifdef UMA_DEBUG_ALLOC 2772 printf("uma_zfree: Allocating new free bucket.\n"); 2773 #endif 2774 bucket = bucket_alloc(zone, udata, M_NOWAIT); 2775 if (bucket) { 2776 critical_enter(); 2777 cpu = curcpu; 2778 cache = &zone->uz_cpu[cpu]; 2779 if (cache->uc_freebucket == NULL) { 2780 cache->uc_freebucket = bucket; 2781 goto zfree_start; 2782 } 2783 /* 2784 * We lost the race, start over. We have to drop our 2785 * critical section to free the bucket. 2786 */ 2787 critical_exit(); 2788 bucket_free(zone, bucket, udata); 2789 goto zfree_restart; 2790 } 2791 2792 /* 2793 * If nothing else caught this, we'll just do an internal free. 2794 */ 2795 zfree_item: 2796 zone_free_item(zone, item, udata, SKIP_DTOR); 2797 2798 return; 2799 } 2800 2801 static void 2802 slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item) 2803 { 2804 uint8_t freei; 2805 2806 mtx_assert(&keg->uk_lock, MA_OWNED); 2807 MPASS(keg == slab->us_keg); 2808 2809 /* Do we need to remove from any lists? */ 2810 if (slab->us_freecount+1 == keg->uk_ipers) { 2811 LIST_REMOVE(slab, us_link); 2812 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 2813 } else if (slab->us_freecount == 0) { 2814 LIST_REMOVE(slab, us_link); 2815 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2816 } 2817 2818 /* Slab management. */ 2819 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 2820 BIT_SET(SLAB_SETSIZE, freei, &slab->us_free); 2821 slab->us_freecount++; 2822 2823 /* Keg statistics. */ 2824 keg->uk_free++; 2825 } 2826 2827 static void 2828 zone_release(uma_zone_t zone, void **bucket, int cnt) 2829 { 2830 void *item; 2831 uma_slab_t slab; 2832 uma_keg_t keg; 2833 uint8_t *mem; 2834 int clearfull; 2835 int i; 2836 2837 clearfull = 0; 2838 keg = zone_first_keg(zone); 2839 KEG_LOCK(keg); 2840 for (i = 0; i < cnt; i++) { 2841 item = bucket[i]; 2842 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) { 2843 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 2844 if (zone->uz_flags & UMA_ZONE_HASH) { 2845 slab = hash_sfind(&keg->uk_hash, mem); 2846 } else { 2847 mem += keg->uk_pgoff; 2848 slab = (uma_slab_t)mem; 2849 } 2850 } else { 2851 slab = vtoslab((vm_offset_t)item); 2852 if (slab->us_keg != keg) { 2853 KEG_UNLOCK(keg); 2854 keg = slab->us_keg; 2855 KEG_LOCK(keg); 2856 } 2857 } 2858 slab_free_item(keg, slab, item); 2859 if (keg->uk_flags & UMA_ZFLAG_FULL) { 2860 if (keg->uk_pages < keg->uk_maxpages) { 2861 keg->uk_flags &= ~UMA_ZFLAG_FULL; 2862 clearfull = 1; 2863 } 2864 2865 /* 2866 * We can handle one more allocation. Since we're 2867 * clearing ZFLAG_FULL, wake up all procs blocked 2868 * on pages. This should be uncommon, so keeping this 2869 * simple for now (rather than adding count of blocked 2870 * threads etc). 2871 */ 2872 wakeup(keg); 2873 } 2874 } 2875 KEG_UNLOCK(keg); 2876 if (clearfull) { 2877 ZONE_LOCK(zone); 2878 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2879 wakeup(zone); 2880 ZONE_UNLOCK(zone); 2881 } 2882 2883 } 2884 2885 /* 2886 * Frees a single item to any zone. 2887 * 2888 * Arguments: 2889 * zone The zone to free to 2890 * item The item we're freeing 2891 * udata User supplied data for the dtor 2892 * skip Skip dtors and finis 2893 */ 2894 static void 2895 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 2896 { 2897 2898 #ifdef INVARIANTS 2899 if (skip == SKIP_NONE) { 2900 if (zone->uz_flags & UMA_ZONE_MALLOC) 2901 uma_dbg_free(zone, udata, item); 2902 else 2903 uma_dbg_free(zone, NULL, item); 2904 } 2905 #endif 2906 if (skip < SKIP_DTOR && zone->uz_dtor) 2907 zone->uz_dtor(item, zone->uz_size, udata); 2908 2909 if (skip < SKIP_FINI && zone->uz_fini) 2910 zone->uz_fini(item, zone->uz_size); 2911 2912 atomic_add_long(&zone->uz_frees, 1); 2913 zone->uz_release(zone->uz_arg, &item, 1); 2914 } 2915 2916 /* See uma.h */ 2917 int 2918 uma_zone_set_max(uma_zone_t zone, int nitems) 2919 { 2920 uma_keg_t keg; 2921 2922 keg = zone_first_keg(zone); 2923 if (keg == NULL) 2924 return (0); 2925 KEG_LOCK(keg); 2926 keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera; 2927 if (keg->uk_maxpages * keg->uk_ipers < nitems) 2928 keg->uk_maxpages += keg->uk_ppera; 2929 nitems = keg->uk_maxpages * keg->uk_ipers; 2930 KEG_UNLOCK(keg); 2931 2932 return (nitems); 2933 } 2934 2935 /* See uma.h */ 2936 int 2937 uma_zone_get_max(uma_zone_t zone) 2938 { 2939 int nitems; 2940 uma_keg_t keg; 2941 2942 keg = zone_first_keg(zone); 2943 if (keg == NULL) 2944 return (0); 2945 KEG_LOCK(keg); 2946 nitems = keg->uk_maxpages * keg->uk_ipers; 2947 KEG_UNLOCK(keg); 2948 2949 return (nitems); 2950 } 2951 2952 /* See uma.h */ 2953 void 2954 uma_zone_set_warning(uma_zone_t zone, const char *warning) 2955 { 2956 2957 ZONE_LOCK(zone); 2958 zone->uz_warning = warning; 2959 ZONE_UNLOCK(zone); 2960 } 2961 2962 /* See uma.h */ 2963 int 2964 uma_zone_get_cur(uma_zone_t zone) 2965 { 2966 int64_t nitems; 2967 u_int i; 2968 2969 ZONE_LOCK(zone); 2970 nitems = zone->uz_allocs - zone->uz_frees; 2971 CPU_FOREACH(i) { 2972 /* 2973 * See the comment in sysctl_vm_zone_stats() regarding the 2974 * safety of accessing the per-cpu caches. With the zone lock 2975 * held, it is safe, but can potentially result in stale data. 2976 */ 2977 nitems += zone->uz_cpu[i].uc_allocs - 2978 zone->uz_cpu[i].uc_frees; 2979 } 2980 ZONE_UNLOCK(zone); 2981 2982 return (nitems < 0 ? 0 : nitems); 2983 } 2984 2985 /* See uma.h */ 2986 void 2987 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 2988 { 2989 uma_keg_t keg; 2990 2991 keg = zone_first_keg(zone); 2992 KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type")); 2993 KEG_LOCK(keg); 2994 KASSERT(keg->uk_pages == 0, 2995 ("uma_zone_set_init on non-empty keg")); 2996 keg->uk_init = uminit; 2997 KEG_UNLOCK(keg); 2998 } 2999 3000 /* See uma.h */ 3001 void 3002 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 3003 { 3004 uma_keg_t keg; 3005 3006 keg = zone_first_keg(zone); 3007 KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type")); 3008 KEG_LOCK(keg); 3009 KASSERT(keg->uk_pages == 0, 3010 ("uma_zone_set_fini on non-empty keg")); 3011 keg->uk_fini = fini; 3012 KEG_UNLOCK(keg); 3013 } 3014 3015 /* See uma.h */ 3016 void 3017 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 3018 { 3019 3020 ZONE_LOCK(zone); 3021 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3022 ("uma_zone_set_zinit on non-empty keg")); 3023 zone->uz_init = zinit; 3024 ZONE_UNLOCK(zone); 3025 } 3026 3027 /* See uma.h */ 3028 void 3029 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 3030 { 3031 3032 ZONE_LOCK(zone); 3033 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3034 ("uma_zone_set_zfini on non-empty keg")); 3035 zone->uz_fini = zfini; 3036 ZONE_UNLOCK(zone); 3037 } 3038 3039 /* See uma.h */ 3040 /* XXX uk_freef is not actually used with the zone locked */ 3041 void 3042 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 3043 { 3044 uma_keg_t keg; 3045 3046 keg = zone_first_keg(zone); 3047 KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type")); 3048 KEG_LOCK(keg); 3049 keg->uk_freef = freef; 3050 KEG_UNLOCK(keg); 3051 } 3052 3053 /* See uma.h */ 3054 /* XXX uk_allocf is not actually used with the zone locked */ 3055 void 3056 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 3057 { 3058 uma_keg_t keg; 3059 3060 keg = zone_first_keg(zone); 3061 KEG_LOCK(keg); 3062 keg->uk_allocf = allocf; 3063 KEG_UNLOCK(keg); 3064 } 3065 3066 /* See uma.h */ 3067 void 3068 uma_zone_reserve(uma_zone_t zone, int items) 3069 { 3070 uma_keg_t keg; 3071 3072 keg = zone_first_keg(zone); 3073 if (keg == NULL) 3074 return; 3075 KEG_LOCK(keg); 3076 keg->uk_reserve = items; 3077 KEG_UNLOCK(keg); 3078 3079 return; 3080 } 3081 3082 /* See uma.h */ 3083 int 3084 uma_zone_reserve_kva(uma_zone_t zone, int count) 3085 { 3086 uma_keg_t keg; 3087 vm_offset_t kva; 3088 int pages; 3089 3090 keg = zone_first_keg(zone); 3091 if (keg == NULL) 3092 return (0); 3093 pages = count / keg->uk_ipers; 3094 3095 if (pages * keg->uk_ipers < count) 3096 pages++; 3097 3098 #ifdef UMA_MD_SMALL_ALLOC 3099 if (keg->uk_ppera > 1) { 3100 #else 3101 if (1) { 3102 #endif 3103 kva = kva_alloc(pages * UMA_SLAB_SIZE); 3104 if (kva == 0) 3105 return (0); 3106 } else 3107 kva = 0; 3108 KEG_LOCK(keg); 3109 keg->uk_kva = kva; 3110 keg->uk_offset = 0; 3111 keg->uk_maxpages = pages; 3112 #ifdef UMA_MD_SMALL_ALLOC 3113 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 3114 #else 3115 keg->uk_allocf = noobj_alloc; 3116 #endif 3117 keg->uk_flags |= UMA_ZONE_NOFREE; 3118 KEG_UNLOCK(keg); 3119 3120 return (1); 3121 } 3122 3123 /* See uma.h */ 3124 void 3125 uma_prealloc(uma_zone_t zone, int items) 3126 { 3127 int slabs; 3128 uma_slab_t slab; 3129 uma_keg_t keg; 3130 3131 keg = zone_first_keg(zone); 3132 if (keg == NULL) 3133 return; 3134 KEG_LOCK(keg); 3135 slabs = items / keg->uk_ipers; 3136 if (slabs * keg->uk_ipers < items) 3137 slabs++; 3138 while (slabs > 0) { 3139 slab = keg_alloc_slab(keg, zone, M_WAITOK); 3140 if (slab == NULL) 3141 break; 3142 MPASS(slab->us_keg == keg); 3143 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 3144 slabs--; 3145 } 3146 KEG_UNLOCK(keg); 3147 } 3148 3149 /* See uma.h */ 3150 uint32_t * 3151 uma_find_refcnt(uma_zone_t zone, void *item) 3152 { 3153 uma_slabrefcnt_t slabref; 3154 uma_slab_t slab; 3155 uma_keg_t keg; 3156 uint32_t *refcnt; 3157 int idx; 3158 3159 slab = vtoslab((vm_offset_t)item & (~UMA_SLAB_MASK)); 3160 slabref = (uma_slabrefcnt_t)slab; 3161 keg = slab->us_keg; 3162 KASSERT(keg->uk_flags & UMA_ZONE_REFCNT, 3163 ("uma_find_refcnt(): zone possibly not UMA_ZONE_REFCNT")); 3164 idx = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3165 refcnt = &slabref->us_refcnt[idx]; 3166 return refcnt; 3167 } 3168 3169 /* See uma.h */ 3170 void 3171 uma_reclaim(void) 3172 { 3173 #ifdef UMA_DEBUG 3174 printf("UMA: vm asked us to release pages!\n"); 3175 #endif 3176 bucket_enable(); 3177 zone_foreach(zone_drain); 3178 if (vm_page_count_min()) { 3179 cache_drain_safe(NULL); 3180 zone_foreach(zone_drain); 3181 } 3182 /* 3183 * Some slabs may have been freed but this zone will be visited early 3184 * we visit again so that we can free pages that are empty once other 3185 * zones are drained. We have to do the same for buckets. 3186 */ 3187 zone_drain(slabzone); 3188 zone_drain(slabrefzone); 3189 bucket_zone_drain(); 3190 } 3191 3192 /* See uma.h */ 3193 int 3194 uma_zone_exhausted(uma_zone_t zone) 3195 { 3196 int full; 3197 3198 ZONE_LOCK(zone); 3199 full = (zone->uz_flags & UMA_ZFLAG_FULL); 3200 ZONE_UNLOCK(zone); 3201 return (full); 3202 } 3203 3204 int 3205 uma_zone_exhausted_nolock(uma_zone_t zone) 3206 { 3207 return (zone->uz_flags & UMA_ZFLAG_FULL); 3208 } 3209 3210 void * 3211 uma_large_malloc(int size, int wait) 3212 { 3213 void *mem; 3214 uma_slab_t slab; 3215 uint8_t flags; 3216 3217 slab = zone_alloc_item(slabzone, NULL, wait); 3218 if (slab == NULL) 3219 return (NULL); 3220 mem = page_alloc(NULL, size, &flags, wait); 3221 if (mem) { 3222 vsetslab((vm_offset_t)mem, slab); 3223 slab->us_data = mem; 3224 slab->us_flags = flags | UMA_SLAB_MALLOC; 3225 slab->us_size = size; 3226 } else { 3227 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3228 } 3229 3230 return (mem); 3231 } 3232 3233 void 3234 uma_large_free(uma_slab_t slab) 3235 { 3236 3237 page_free(slab->us_data, slab->us_size, slab->us_flags); 3238 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3239 } 3240 3241 static void 3242 uma_zero_item(void *item, uma_zone_t zone) 3243 { 3244 3245 if (zone->uz_flags & UMA_ZONE_PCPU) { 3246 for (int i = 0; i < mp_ncpus; i++) 3247 bzero(zpcpu_get_cpu(item, i), zone->uz_size); 3248 } else 3249 bzero(item, zone->uz_size); 3250 } 3251 3252 void 3253 uma_print_stats(void) 3254 { 3255 zone_foreach(uma_print_zone); 3256 } 3257 3258 static void 3259 slab_print(uma_slab_t slab) 3260 { 3261 printf("slab: keg %p, data %p, freecount %d\n", 3262 slab->us_keg, slab->us_data, slab->us_freecount); 3263 } 3264 3265 static void 3266 cache_print(uma_cache_t cache) 3267 { 3268 printf("alloc: %p(%d), free: %p(%d)\n", 3269 cache->uc_allocbucket, 3270 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, 3271 cache->uc_freebucket, 3272 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0); 3273 } 3274 3275 static void 3276 uma_print_keg(uma_keg_t keg) 3277 { 3278 uma_slab_t slab; 3279 3280 printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d " 3281 "out %d free %d limit %d\n", 3282 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags, 3283 keg->uk_ipers, keg->uk_ppera, 3284 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free, 3285 (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers); 3286 printf("Part slabs:\n"); 3287 LIST_FOREACH(slab, &keg->uk_part_slab, us_link) 3288 slab_print(slab); 3289 printf("Free slabs:\n"); 3290 LIST_FOREACH(slab, &keg->uk_free_slab, us_link) 3291 slab_print(slab); 3292 printf("Full slabs:\n"); 3293 LIST_FOREACH(slab, &keg->uk_full_slab, us_link) 3294 slab_print(slab); 3295 } 3296 3297 void 3298 uma_print_zone(uma_zone_t zone) 3299 { 3300 uma_cache_t cache; 3301 uma_klink_t kl; 3302 int i; 3303 3304 printf("zone: %s(%p) size %d flags %#x\n", 3305 zone->uz_name, zone, zone->uz_size, zone->uz_flags); 3306 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) 3307 uma_print_keg(kl->kl_keg); 3308 CPU_FOREACH(i) { 3309 cache = &zone->uz_cpu[i]; 3310 printf("CPU %d Cache:\n", i); 3311 cache_print(cache); 3312 } 3313 } 3314 3315 #ifdef DDB 3316 /* 3317 * Generate statistics across both the zone and its per-cpu cache's. Return 3318 * desired statistics if the pointer is non-NULL for that statistic. 3319 * 3320 * Note: does not update the zone statistics, as it can't safely clear the 3321 * per-CPU cache statistic. 3322 * 3323 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't 3324 * safe from off-CPU; we should modify the caches to track this information 3325 * directly so that we don't have to. 3326 */ 3327 static void 3328 uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp, 3329 uint64_t *freesp, uint64_t *sleepsp) 3330 { 3331 uma_cache_t cache; 3332 uint64_t allocs, frees, sleeps; 3333 int cachefree, cpu; 3334 3335 allocs = frees = sleeps = 0; 3336 cachefree = 0; 3337 CPU_FOREACH(cpu) { 3338 cache = &z->uz_cpu[cpu]; 3339 if (cache->uc_allocbucket != NULL) 3340 cachefree += cache->uc_allocbucket->ub_cnt; 3341 if (cache->uc_freebucket != NULL) 3342 cachefree += cache->uc_freebucket->ub_cnt; 3343 allocs += cache->uc_allocs; 3344 frees += cache->uc_frees; 3345 } 3346 allocs += z->uz_allocs; 3347 frees += z->uz_frees; 3348 sleeps += z->uz_sleeps; 3349 if (cachefreep != NULL) 3350 *cachefreep = cachefree; 3351 if (allocsp != NULL) 3352 *allocsp = allocs; 3353 if (freesp != NULL) 3354 *freesp = frees; 3355 if (sleepsp != NULL) 3356 *sleepsp = sleeps; 3357 } 3358 #endif /* DDB */ 3359 3360 static int 3361 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 3362 { 3363 uma_keg_t kz; 3364 uma_zone_t z; 3365 int count; 3366 3367 count = 0; 3368 mtx_lock(&uma_mtx); 3369 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3370 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3371 count++; 3372 } 3373 mtx_unlock(&uma_mtx); 3374 return (sysctl_handle_int(oidp, &count, 0, req)); 3375 } 3376 3377 static int 3378 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 3379 { 3380 struct uma_stream_header ush; 3381 struct uma_type_header uth; 3382 struct uma_percpu_stat ups; 3383 uma_bucket_t bucket; 3384 struct sbuf sbuf; 3385 uma_cache_t cache; 3386 uma_klink_t kl; 3387 uma_keg_t kz; 3388 uma_zone_t z; 3389 uma_keg_t k; 3390 int count, error, i; 3391 3392 error = sysctl_wire_old_buffer(req, 0); 3393 if (error != 0) 3394 return (error); 3395 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 3396 3397 count = 0; 3398 mtx_lock(&uma_mtx); 3399 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3400 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3401 count++; 3402 } 3403 3404 /* 3405 * Insert stream header. 3406 */ 3407 bzero(&ush, sizeof(ush)); 3408 ush.ush_version = UMA_STREAM_VERSION; 3409 ush.ush_maxcpus = (mp_maxid + 1); 3410 ush.ush_count = count; 3411 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 3412 3413 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3414 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3415 bzero(&uth, sizeof(uth)); 3416 ZONE_LOCK(z); 3417 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 3418 uth.uth_align = kz->uk_align; 3419 uth.uth_size = kz->uk_size; 3420 uth.uth_rsize = kz->uk_rsize; 3421 LIST_FOREACH(kl, &z->uz_kegs, kl_link) { 3422 k = kl->kl_keg; 3423 uth.uth_maxpages += k->uk_maxpages; 3424 uth.uth_pages += k->uk_pages; 3425 uth.uth_keg_free += k->uk_free; 3426 uth.uth_limit = (k->uk_maxpages / k->uk_ppera) 3427 * k->uk_ipers; 3428 } 3429 3430 /* 3431 * A zone is secondary is it is not the first entry 3432 * on the keg's zone list. 3433 */ 3434 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 3435 (LIST_FIRST(&kz->uk_zones) != z)) 3436 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 3437 3438 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3439 uth.uth_zone_free += bucket->ub_cnt; 3440 uth.uth_allocs = z->uz_allocs; 3441 uth.uth_frees = z->uz_frees; 3442 uth.uth_fails = z->uz_fails; 3443 uth.uth_sleeps = z->uz_sleeps; 3444 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 3445 /* 3446 * While it is not normally safe to access the cache 3447 * bucket pointers while not on the CPU that owns the 3448 * cache, we only allow the pointers to be exchanged 3449 * without the zone lock held, not invalidated, so 3450 * accept the possible race associated with bucket 3451 * exchange during monitoring. 3452 */ 3453 for (i = 0; i < (mp_maxid + 1); i++) { 3454 bzero(&ups, sizeof(ups)); 3455 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) 3456 goto skip; 3457 if (CPU_ABSENT(i)) 3458 goto skip; 3459 cache = &z->uz_cpu[i]; 3460 if (cache->uc_allocbucket != NULL) 3461 ups.ups_cache_free += 3462 cache->uc_allocbucket->ub_cnt; 3463 if (cache->uc_freebucket != NULL) 3464 ups.ups_cache_free += 3465 cache->uc_freebucket->ub_cnt; 3466 ups.ups_allocs = cache->uc_allocs; 3467 ups.ups_frees = cache->uc_frees; 3468 skip: 3469 (void)sbuf_bcat(&sbuf, &ups, sizeof(ups)); 3470 } 3471 ZONE_UNLOCK(z); 3472 } 3473 } 3474 mtx_unlock(&uma_mtx); 3475 error = sbuf_finish(&sbuf); 3476 sbuf_delete(&sbuf); 3477 return (error); 3478 } 3479 3480 int 3481 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 3482 { 3483 uma_zone_t zone = *(uma_zone_t *)arg1; 3484 int error, max, old; 3485 3486 old = max = uma_zone_get_max(zone); 3487 error = sysctl_handle_int(oidp, &max, 0, req); 3488 if (error || !req->newptr) 3489 return (error); 3490 3491 if (max < old) 3492 return (EINVAL); 3493 3494 uma_zone_set_max(zone, max); 3495 3496 return (0); 3497 } 3498 3499 int 3500 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 3501 { 3502 uma_zone_t zone = *(uma_zone_t *)arg1; 3503 int cur; 3504 3505 cur = uma_zone_get_cur(zone); 3506 return (sysctl_handle_int(oidp, &cur, 0, req)); 3507 } 3508 3509 #ifdef DDB 3510 DB_SHOW_COMMAND(uma, db_show_uma) 3511 { 3512 uint64_t allocs, frees, sleeps; 3513 uma_bucket_t bucket; 3514 uma_keg_t kz; 3515 uma_zone_t z; 3516 int cachefree; 3517 3518 db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used", 3519 "Free", "Requests", "Sleeps", "Bucket"); 3520 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3521 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3522 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 3523 allocs = z->uz_allocs; 3524 frees = z->uz_frees; 3525 sleeps = z->uz_sleeps; 3526 cachefree = 0; 3527 } else 3528 uma_zone_sumstat(z, &cachefree, &allocs, 3529 &frees, &sleeps); 3530 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 3531 (LIST_FIRST(&kz->uk_zones) != z))) 3532 cachefree += kz->uk_free; 3533 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3534 cachefree += bucket->ub_cnt; 3535 db_printf("%18s %8ju %8jd %8d %12ju %8ju %8u\n", 3536 z->uz_name, (uintmax_t)kz->uk_size, 3537 (intmax_t)(allocs - frees), cachefree, 3538 (uintmax_t)allocs, sleeps, z->uz_count); 3539 if (db_pager_quit) 3540 return; 3541 } 3542 } 3543 } 3544 3545 DB_SHOW_COMMAND(umacache, db_show_umacache) 3546 { 3547 uint64_t allocs, frees; 3548 uma_bucket_t bucket; 3549 uma_zone_t z; 3550 int cachefree; 3551 3552 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 3553 "Requests", "Bucket"); 3554 LIST_FOREACH(z, &uma_cachezones, uz_link) { 3555 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL); 3556 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3557 cachefree += bucket->ub_cnt; 3558 db_printf("%18s %8ju %8jd %8d %12ju %8u\n", 3559 z->uz_name, (uintmax_t)z->uz_size, 3560 (intmax_t)(allocs - frees), cachefree, 3561 (uintmax_t)allocs, z->uz_count); 3562 if (db_pager_quit) 3563 return; 3564 } 3565 } 3566 #endif 3567