1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/bitset.h> 62 #include <sys/domainset.h> 63 #include <sys/eventhandler.h> 64 #include <sys/kernel.h> 65 #include <sys/types.h> 66 #include <sys/limits.h> 67 #include <sys/queue.h> 68 #include <sys/malloc.h> 69 #include <sys/ktr.h> 70 #include <sys/lock.h> 71 #include <sys/sysctl.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/random.h> 75 #include <sys/rwlock.h> 76 #include <sys/sbuf.h> 77 #include <sys/sched.h> 78 #include <sys/smp.h> 79 #include <sys/taskqueue.h> 80 #include <sys/vmmeter.h> 81 82 #include <vm/vm.h> 83 #include <vm/vm_domainset.h> 84 #include <vm/vm_object.h> 85 #include <vm/vm_page.h> 86 #include <vm/vm_pageout.h> 87 #include <vm/vm_param.h> 88 #include <vm/vm_phys.h> 89 #include <vm/vm_pagequeue.h> 90 #include <vm/vm_map.h> 91 #include <vm/vm_kern.h> 92 #include <vm/vm_extern.h> 93 #include <vm/uma.h> 94 #include <vm/uma_int.h> 95 #include <vm/uma_dbg.h> 96 97 #include <ddb/ddb.h> 98 99 #ifdef DEBUG_MEMGUARD 100 #include <vm/memguard.h> 101 #endif 102 103 /* 104 * This is the zone and keg from which all zones are spawned. 105 */ 106 static uma_zone_t kegs; 107 static uma_zone_t zones; 108 109 /* This is the zone from which all offpage uma_slab_ts are allocated. */ 110 static uma_zone_t slabzone; 111 112 /* 113 * The initial hash tables come out of this zone so they can be allocated 114 * prior to malloc coming up. 115 */ 116 static uma_zone_t hashzone; 117 118 /* The boot-time adjusted value for cache line alignment. */ 119 int uma_align_cache = 64 - 1; 120 121 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 122 static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc"); 123 124 /* 125 * Are we allowed to allocate buckets? 126 */ 127 static int bucketdisable = 1; 128 129 /* Linked list of all kegs in the system */ 130 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 131 132 /* Linked list of all cache-only zones in the system */ 133 static LIST_HEAD(,uma_zone) uma_cachezones = 134 LIST_HEAD_INITIALIZER(uma_cachezones); 135 136 /* This RW lock protects the keg list */ 137 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 138 139 /* 140 * Pointer and counter to pool of pages, that is preallocated at 141 * startup to bootstrap UMA. 142 */ 143 static char *bootmem; 144 static int boot_pages; 145 146 static struct sx uma_reclaim_lock; 147 148 /* 149 * kmem soft limit, initialized by uma_set_limit(). Ensure that early 150 * allocations don't trigger a wakeup of the reclaim thread. 151 */ 152 unsigned long uma_kmem_limit = LONG_MAX; 153 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0, 154 "UMA kernel memory soft limit"); 155 unsigned long uma_kmem_total; 156 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0, 157 "UMA kernel memory usage"); 158 159 /* Is the VM done starting up? */ 160 static enum { BOOT_COLD = 0, BOOT_STRAPPED, BOOT_PAGEALLOC, BOOT_BUCKETS, 161 BOOT_RUNNING } booted = BOOT_COLD; 162 163 /* 164 * This is the handle used to schedule events that need to happen 165 * outside of the allocation fast path. 166 */ 167 static struct callout uma_callout; 168 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 169 170 /* 171 * This structure is passed as the zone ctor arg so that I don't have to create 172 * a special allocation function just for zones. 173 */ 174 struct uma_zctor_args { 175 const char *name; 176 size_t size; 177 uma_ctor ctor; 178 uma_dtor dtor; 179 uma_init uminit; 180 uma_fini fini; 181 uma_import import; 182 uma_release release; 183 void *arg; 184 uma_keg_t keg; 185 int align; 186 uint32_t flags; 187 }; 188 189 struct uma_kctor_args { 190 uma_zone_t zone; 191 size_t size; 192 uma_init uminit; 193 uma_fini fini; 194 int align; 195 uint32_t flags; 196 }; 197 198 struct uma_bucket_zone { 199 uma_zone_t ubz_zone; 200 char *ubz_name; 201 int ubz_entries; /* Number of items it can hold. */ 202 int ubz_maxsize; /* Maximum allocation size per-item. */ 203 }; 204 205 /* 206 * Compute the actual number of bucket entries to pack them in power 207 * of two sizes for more efficient space utilization. 208 */ 209 #define BUCKET_SIZE(n) \ 210 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 211 212 #define BUCKET_MAX BUCKET_SIZE(256) 213 #define BUCKET_MIN BUCKET_SIZE(4) 214 215 struct uma_bucket_zone bucket_zones[] = { 216 { NULL, "4 Bucket", BUCKET_SIZE(4), 4096 }, 217 { NULL, "6 Bucket", BUCKET_SIZE(6), 3072 }, 218 { NULL, "8 Bucket", BUCKET_SIZE(8), 2048 }, 219 { NULL, "12 Bucket", BUCKET_SIZE(12), 1536 }, 220 { NULL, "16 Bucket", BUCKET_SIZE(16), 1024 }, 221 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 222 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 223 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 224 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 225 { NULL, NULL, 0} 226 }; 227 228 /* 229 * Flags and enumerations to be passed to internal functions. 230 */ 231 enum zfreeskip { 232 SKIP_NONE = 0, 233 SKIP_CNT = 0x00000001, 234 SKIP_DTOR = 0x00010000, 235 SKIP_FINI = 0x00020000, 236 }; 237 238 /* Prototypes.. */ 239 240 int uma_startup_count(int); 241 void uma_startup(void *, int); 242 void uma_startup1(void); 243 void uma_startup2(void); 244 245 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 246 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 247 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 248 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 249 static void page_free(void *, vm_size_t, uint8_t); 250 static void pcpu_page_free(void *, vm_size_t, uint8_t); 251 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int); 252 static void cache_drain(uma_zone_t); 253 static void bucket_drain(uma_zone_t, uma_bucket_t); 254 static void bucket_cache_reclaim(uma_zone_t zone, bool); 255 static int keg_ctor(void *, int, void *, int); 256 static void keg_dtor(void *, int, void *); 257 static int zone_ctor(void *, int, void *, int); 258 static void zone_dtor(void *, int, void *); 259 static int zero_init(void *, int, int); 260 static void keg_small_init(uma_keg_t keg); 261 static void keg_large_init(uma_keg_t keg); 262 static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *); 263 static void zone_timeout(uma_zone_t zone, void *); 264 static int hash_alloc(struct uma_hash *, u_int); 265 static int hash_expand(struct uma_hash *, struct uma_hash *); 266 static void hash_free(struct uma_hash *hash); 267 static void uma_timeout(void *); 268 static void uma_startup3(void); 269 static void *zone_alloc_item(uma_zone_t, void *, int, int); 270 static void *zone_alloc_item_locked(uma_zone_t, void *, int, int); 271 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 272 static void bucket_enable(void); 273 static void bucket_init(void); 274 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 275 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 276 static void bucket_zone_drain(void); 277 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int); 278 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 279 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item); 280 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 281 uma_fini fini, int align, uint32_t flags); 282 static int zone_import(uma_zone_t, void **, int, int, int); 283 static void zone_release(uma_zone_t, void **, int); 284 static void uma_zero_item(void *, uma_zone_t); 285 static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int); 286 static bool cache_free(uma_zone_t, uma_cache_t, void *, void *, int); 287 288 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 289 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 290 static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS); 291 static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS); 292 293 #ifdef INVARIANTS 294 static bool uma_dbg_kskip(uma_keg_t keg, void *mem); 295 static bool uma_dbg_zskip(uma_zone_t zone, void *mem); 296 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 297 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 298 299 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD, 0, 300 "Memory allocation debugging"); 301 302 static u_int dbg_divisor = 1; 303 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor, 304 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0, 305 "Debug & thrash every this item in memory allocator"); 306 307 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER; 308 static counter_u64_t uma_skip_cnt = EARLY_COUNTER; 309 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD, 310 &uma_dbg_cnt, "memory items debugged"); 311 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD, 312 &uma_skip_cnt, "memory items skipped, not debugged"); 313 #endif 314 315 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 316 317 SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW, 0, "Universal Memory Allocator"); 318 319 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 320 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 321 322 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 323 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 324 325 static int zone_warnings = 1; 326 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 327 "Warn when UMA zones becomes full"); 328 329 /* 330 * This routine checks to see whether or not it's safe to enable buckets. 331 */ 332 static void 333 bucket_enable(void) 334 { 335 bucketdisable = vm_page_count_min(); 336 } 337 338 /* 339 * Initialize bucket_zones, the array of zones of buckets of various sizes. 340 * 341 * For each zone, calculate the memory required for each bucket, consisting 342 * of the header and an array of pointers. 343 */ 344 static void 345 bucket_init(void) 346 { 347 struct uma_bucket_zone *ubz; 348 int size; 349 350 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 351 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 352 size += sizeof(void *) * ubz->ubz_entries; 353 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 354 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 355 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | UMA_ZONE_NUMA); 356 } 357 } 358 359 /* 360 * Given a desired number of entries for a bucket, return the zone from which 361 * to allocate the bucket. 362 */ 363 static struct uma_bucket_zone * 364 bucket_zone_lookup(int entries) 365 { 366 struct uma_bucket_zone *ubz; 367 368 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 369 if (ubz->ubz_entries >= entries) 370 return (ubz); 371 ubz--; 372 return (ubz); 373 } 374 375 static struct uma_bucket_zone * 376 bucket_zone_max(uma_zone_t zone, int nitems) 377 { 378 struct uma_bucket_zone *ubz; 379 int bpcpu; 380 381 bpcpu = 2; 382 #ifdef UMA_XDOMAIN 383 if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) 384 /* Count the cross-domain bucket. */ 385 bpcpu++; 386 #endif 387 388 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 389 if (ubz->ubz_entries * bpcpu * mp_ncpus > nitems) 390 break; 391 if (ubz == &bucket_zones[0]) 392 ubz = NULL; 393 else 394 ubz--; 395 return (ubz); 396 } 397 398 static int 399 bucket_select(int size) 400 { 401 struct uma_bucket_zone *ubz; 402 403 ubz = &bucket_zones[0]; 404 if (size > ubz->ubz_maxsize) 405 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 406 407 for (; ubz->ubz_entries != 0; ubz++) 408 if (ubz->ubz_maxsize < size) 409 break; 410 ubz--; 411 return (ubz->ubz_entries); 412 } 413 414 static uma_bucket_t 415 bucket_alloc(uma_zone_t zone, void *udata, int flags) 416 { 417 struct uma_bucket_zone *ubz; 418 uma_bucket_t bucket; 419 420 /* 421 * This is to stop us from allocating per cpu buckets while we're 422 * running out of vm.boot_pages. Otherwise, we would exhaust the 423 * boot pages. This also prevents us from allocating buckets in 424 * low memory situations. 425 */ 426 if (bucketdisable) 427 return (NULL); 428 /* 429 * To limit bucket recursion we store the original zone flags 430 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 431 * NOVM flag to persist even through deep recursions. We also 432 * store ZFLAG_BUCKET once we have recursed attempting to allocate 433 * a bucket for a bucket zone so we do not allow infinite bucket 434 * recursion. This cookie will even persist to frees of unused 435 * buckets via the allocation path or bucket allocations in the 436 * free path. 437 */ 438 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 439 udata = (void *)(uintptr_t)zone->uz_flags; 440 else { 441 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 442 return (NULL); 443 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 444 } 445 if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY) 446 flags |= M_NOVM; 447 ubz = bucket_zone_lookup(zone->uz_bucket_size); 448 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 449 ubz++; 450 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 451 if (bucket) { 452 #ifdef INVARIANTS 453 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 454 #endif 455 bucket->ub_cnt = 0; 456 bucket->ub_entries = ubz->ubz_entries; 457 } 458 459 return (bucket); 460 } 461 462 static void 463 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 464 { 465 struct uma_bucket_zone *ubz; 466 467 KASSERT(bucket->ub_cnt == 0, 468 ("bucket_free: Freeing a non free bucket.")); 469 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 470 udata = (void *)(uintptr_t)zone->uz_flags; 471 ubz = bucket_zone_lookup(bucket->ub_entries); 472 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 473 } 474 475 static void 476 bucket_zone_drain(void) 477 { 478 struct uma_bucket_zone *ubz; 479 480 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 481 uma_zone_reclaim(ubz->ubz_zone, UMA_RECLAIM_DRAIN); 482 } 483 484 /* 485 * Attempt to satisfy an allocation by retrieving a full bucket from one of the 486 * zone's caches. 487 */ 488 static uma_bucket_t 489 zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom) 490 { 491 uma_bucket_t bucket; 492 493 ZONE_LOCK_ASSERT(zone); 494 495 if ((bucket = TAILQ_FIRST(&zdom->uzd_buckets)) != NULL) { 496 MPASS(zdom->uzd_nitems >= bucket->ub_cnt); 497 TAILQ_REMOVE(&zdom->uzd_buckets, bucket, ub_link); 498 zdom->uzd_nitems -= bucket->ub_cnt; 499 if (zdom->uzd_imin > zdom->uzd_nitems) 500 zdom->uzd_imin = zdom->uzd_nitems; 501 zone->uz_bkt_count -= bucket->ub_cnt; 502 } 503 return (bucket); 504 } 505 506 /* 507 * Insert a full bucket into the specified cache. The "ws" parameter indicates 508 * whether the bucket's contents should be counted as part of the zone's working 509 * set. 510 */ 511 static void 512 zone_put_bucket(uma_zone_t zone, uma_zone_domain_t zdom, uma_bucket_t bucket, 513 const bool ws) 514 { 515 516 ZONE_LOCK_ASSERT(zone); 517 KASSERT(!ws || zone->uz_bkt_count < zone->uz_bkt_max, 518 ("%s: zone %p overflow", __func__, zone)); 519 520 if (ws) 521 TAILQ_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); 522 else 523 TAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link); 524 zdom->uzd_nitems += bucket->ub_cnt; 525 if (ws && zdom->uzd_imax < zdom->uzd_nitems) 526 zdom->uzd_imax = zdom->uzd_nitems; 527 zone->uz_bkt_count += bucket->ub_cnt; 528 } 529 530 static void 531 zone_log_warning(uma_zone_t zone) 532 { 533 static const struct timeval warninterval = { 300, 0 }; 534 535 if (!zone_warnings || zone->uz_warning == NULL) 536 return; 537 538 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 539 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 540 } 541 542 static inline void 543 zone_maxaction(uma_zone_t zone) 544 { 545 546 if (zone->uz_maxaction.ta_func != NULL) 547 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 548 } 549 550 /* 551 * Routine called by timeout which is used to fire off some time interval 552 * based calculations. (stats, hash size, etc.) 553 * 554 * Arguments: 555 * arg Unused 556 * 557 * Returns: 558 * Nothing 559 */ 560 static void 561 uma_timeout(void *unused) 562 { 563 bucket_enable(); 564 zone_foreach(zone_timeout, NULL); 565 566 /* Reschedule this event */ 567 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 568 } 569 570 /* 571 * Update the working set size estimate for the zone's bucket cache. 572 * The constants chosen here are somewhat arbitrary. With an update period of 573 * 20s (UMA_TIMEOUT), this estimate is dominated by zone activity over the 574 * last 100s. 575 */ 576 static void 577 zone_domain_update_wss(uma_zone_domain_t zdom) 578 { 579 long wss; 580 581 MPASS(zdom->uzd_imax >= zdom->uzd_imin); 582 wss = zdom->uzd_imax - zdom->uzd_imin; 583 zdom->uzd_imax = zdom->uzd_imin = zdom->uzd_nitems; 584 zdom->uzd_wss = (4 * wss + zdom->uzd_wss) / 5; 585 } 586 587 /* 588 * Routine to perform timeout driven calculations. This expands the 589 * hashes and does per cpu statistics aggregation. 590 * 591 * Returns nothing. 592 */ 593 static void 594 zone_timeout(uma_zone_t zone, void *unused) 595 { 596 uma_keg_t keg; 597 u_int slabs; 598 599 if ((zone->uz_flags & UMA_ZONE_HASH) == 0) 600 goto update_wss; 601 602 keg = zone->uz_keg; 603 KEG_LOCK(keg); 604 /* 605 * Expand the keg hash table. 606 * 607 * This is done if the number of slabs is larger than the hash size. 608 * What I'm trying to do here is completely reduce collisions. This 609 * may be a little aggressive. Should I allow for two collisions max? 610 */ 611 if (keg->uk_flags & UMA_ZONE_HASH && 612 (slabs = keg->uk_pages / keg->uk_ppera) > 613 keg->uk_hash.uh_hashsize) { 614 struct uma_hash newhash; 615 struct uma_hash oldhash; 616 int ret; 617 618 /* 619 * This is so involved because allocating and freeing 620 * while the keg lock is held will lead to deadlock. 621 * I have to do everything in stages and check for 622 * races. 623 */ 624 KEG_UNLOCK(keg); 625 ret = hash_alloc(&newhash, 1 << fls(slabs)); 626 KEG_LOCK(keg); 627 if (ret) { 628 if (hash_expand(&keg->uk_hash, &newhash)) { 629 oldhash = keg->uk_hash; 630 keg->uk_hash = newhash; 631 } else 632 oldhash = newhash; 633 634 KEG_UNLOCK(keg); 635 hash_free(&oldhash); 636 return; 637 } 638 } 639 KEG_UNLOCK(keg); 640 641 update_wss: 642 ZONE_LOCK(zone); 643 for (int i = 0; i < vm_ndomains; i++) 644 zone_domain_update_wss(&zone->uz_domain[i]); 645 ZONE_UNLOCK(zone); 646 } 647 648 /* 649 * Allocate and zero fill the next sized hash table from the appropriate 650 * backing store. 651 * 652 * Arguments: 653 * hash A new hash structure with the old hash size in uh_hashsize 654 * 655 * Returns: 656 * 1 on success and 0 on failure. 657 */ 658 static int 659 hash_alloc(struct uma_hash *hash, u_int size) 660 { 661 size_t alloc; 662 663 KASSERT(powerof2(size), ("hash size must be power of 2")); 664 if (size > UMA_HASH_SIZE_INIT) { 665 hash->uh_hashsize = size; 666 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 667 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 668 M_UMAHASH, M_NOWAIT); 669 } else { 670 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 671 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 672 UMA_ANYDOMAIN, M_WAITOK); 673 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 674 } 675 if (hash->uh_slab_hash) { 676 bzero(hash->uh_slab_hash, alloc); 677 hash->uh_hashmask = hash->uh_hashsize - 1; 678 return (1); 679 } 680 681 return (0); 682 } 683 684 /* 685 * Expands the hash table for HASH zones. This is done from zone_timeout 686 * to reduce collisions. This must not be done in the regular allocation 687 * path, otherwise, we can recurse on the vm while allocating pages. 688 * 689 * Arguments: 690 * oldhash The hash you want to expand 691 * newhash The hash structure for the new table 692 * 693 * Returns: 694 * Nothing 695 * 696 * Discussion: 697 */ 698 static int 699 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 700 { 701 uma_slab_t slab; 702 u_int hval; 703 u_int idx; 704 705 if (!newhash->uh_slab_hash) 706 return (0); 707 708 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 709 return (0); 710 711 /* 712 * I need to investigate hash algorithms for resizing without a 713 * full rehash. 714 */ 715 716 for (idx = 0; idx < oldhash->uh_hashsize; idx++) 717 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[idx])) { 718 slab = SLIST_FIRST(&oldhash->uh_slab_hash[idx]); 719 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[idx], us_hlink); 720 hval = UMA_HASH(newhash, slab->us_data); 721 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 722 slab, us_hlink); 723 } 724 725 return (1); 726 } 727 728 /* 729 * Free the hash bucket to the appropriate backing store. 730 * 731 * Arguments: 732 * slab_hash The hash bucket we're freeing 733 * hashsize The number of entries in that hash bucket 734 * 735 * Returns: 736 * Nothing 737 */ 738 static void 739 hash_free(struct uma_hash *hash) 740 { 741 if (hash->uh_slab_hash == NULL) 742 return; 743 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 744 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 745 else 746 free(hash->uh_slab_hash, M_UMAHASH); 747 } 748 749 /* 750 * Frees all outstanding items in a bucket 751 * 752 * Arguments: 753 * zone The zone to free to, must be unlocked. 754 * bucket The free/alloc bucket with items, cpu queue must be locked. 755 * 756 * Returns: 757 * Nothing 758 */ 759 760 static void 761 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 762 { 763 int i; 764 765 if (bucket == NULL) 766 return; 767 768 if (zone->uz_fini) 769 for (i = 0; i < bucket->ub_cnt; i++) 770 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 771 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 772 if (zone->uz_max_items > 0) { 773 ZONE_LOCK(zone); 774 zone->uz_items -= bucket->ub_cnt; 775 if (zone->uz_sleepers && zone->uz_items < zone->uz_max_items) 776 wakeup_one(zone); 777 ZONE_UNLOCK(zone); 778 } 779 bucket->ub_cnt = 0; 780 } 781 782 /* 783 * Drains the per cpu caches for a zone. 784 * 785 * NOTE: This may only be called while the zone is being turn down, and not 786 * during normal operation. This is necessary in order that we do not have 787 * to migrate CPUs to drain the per-CPU caches. 788 * 789 * Arguments: 790 * zone The zone to drain, must be unlocked. 791 * 792 * Returns: 793 * Nothing 794 */ 795 static void 796 cache_drain(uma_zone_t zone) 797 { 798 uma_cache_t cache; 799 int cpu; 800 801 /* 802 * XXX: It is safe to not lock the per-CPU caches, because we're 803 * tearing down the zone anyway. I.e., there will be no further use 804 * of the caches at this point. 805 * 806 * XXX: It would good to be able to assert that the zone is being 807 * torn down to prevent improper use of cache_drain(). 808 * 809 * XXX: We lock the zone before passing into bucket_cache_reclaim() as 810 * it is used elsewhere. Should the tear-down path be made special 811 * there in some form? 812 */ 813 CPU_FOREACH(cpu) { 814 cache = &zone->uz_cpu[cpu]; 815 bucket_drain(zone, cache->uc_allocbucket); 816 if (cache->uc_allocbucket != NULL) 817 bucket_free(zone, cache->uc_allocbucket, NULL); 818 cache->uc_allocbucket = NULL; 819 bucket_drain(zone, cache->uc_freebucket); 820 if (cache->uc_freebucket != NULL) 821 bucket_free(zone, cache->uc_freebucket, NULL); 822 cache->uc_freebucket = NULL; 823 bucket_drain(zone, cache->uc_crossbucket); 824 if (cache->uc_crossbucket != NULL) 825 bucket_free(zone, cache->uc_crossbucket, NULL); 826 cache->uc_crossbucket = NULL; 827 } 828 ZONE_LOCK(zone); 829 bucket_cache_reclaim(zone, true); 830 ZONE_UNLOCK(zone); 831 } 832 833 static void 834 cache_shrink(uma_zone_t zone, void *unused) 835 { 836 837 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 838 return; 839 840 ZONE_LOCK(zone); 841 zone->uz_bucket_size = 842 (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2; 843 ZONE_UNLOCK(zone); 844 } 845 846 static void 847 cache_drain_safe_cpu(uma_zone_t zone, void *unused) 848 { 849 uma_cache_t cache; 850 uma_bucket_t b1, b2, b3; 851 int domain; 852 853 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 854 return; 855 856 b1 = b2 = b3 = NULL; 857 ZONE_LOCK(zone); 858 critical_enter(); 859 if (zone->uz_flags & UMA_ZONE_NUMA) 860 domain = PCPU_GET(domain); 861 else 862 domain = 0; 863 cache = &zone->uz_cpu[curcpu]; 864 if (cache->uc_allocbucket) { 865 if (cache->uc_allocbucket->ub_cnt != 0) 866 zone_put_bucket(zone, &zone->uz_domain[domain], 867 cache->uc_allocbucket, false); 868 else 869 b1 = cache->uc_allocbucket; 870 cache->uc_allocbucket = NULL; 871 } 872 if (cache->uc_freebucket) { 873 if (cache->uc_freebucket->ub_cnt != 0) 874 zone_put_bucket(zone, &zone->uz_domain[domain], 875 cache->uc_freebucket, false); 876 else 877 b2 = cache->uc_freebucket; 878 cache->uc_freebucket = NULL; 879 } 880 b3 = cache->uc_crossbucket; 881 cache->uc_crossbucket = NULL; 882 critical_exit(); 883 ZONE_UNLOCK(zone); 884 if (b1) 885 bucket_free(zone, b1, NULL); 886 if (b2) 887 bucket_free(zone, b2, NULL); 888 if (b3) { 889 bucket_drain(zone, b3); 890 bucket_free(zone, b3, NULL); 891 } 892 } 893 894 /* 895 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 896 * This is an expensive call because it needs to bind to all CPUs 897 * one by one and enter a critical section on each of them in order 898 * to safely access their cache buckets. 899 * Zone lock must not be held on call this function. 900 */ 901 static void 902 pcpu_cache_drain_safe(uma_zone_t zone) 903 { 904 int cpu; 905 906 /* 907 * Polite bucket sizes shrinking was not enouth, shrink aggressively. 908 */ 909 if (zone) 910 cache_shrink(zone, NULL); 911 else 912 zone_foreach(cache_shrink, NULL); 913 914 CPU_FOREACH(cpu) { 915 thread_lock(curthread); 916 sched_bind(curthread, cpu); 917 thread_unlock(curthread); 918 919 if (zone) 920 cache_drain_safe_cpu(zone, NULL); 921 else 922 zone_foreach(cache_drain_safe_cpu, NULL); 923 } 924 thread_lock(curthread); 925 sched_unbind(curthread); 926 thread_unlock(curthread); 927 } 928 929 /* 930 * Reclaim cached buckets from a zone. All buckets are reclaimed if the caller 931 * requested a drain, otherwise the per-domain caches are trimmed to either 932 * estimated working set size. 933 */ 934 static void 935 bucket_cache_reclaim(uma_zone_t zone, bool drain) 936 { 937 uma_zone_domain_t zdom; 938 uma_bucket_t bucket; 939 long target, tofree; 940 int i; 941 942 for (i = 0; i < vm_ndomains; i++) { 943 zdom = &zone->uz_domain[i]; 944 945 /* 946 * If we were asked to drain the zone, we are done only once 947 * this bucket cache is empty. Otherwise, we reclaim items in 948 * excess of the zone's estimated working set size. If the 949 * difference nitems - imin is larger than the WSS estimate, 950 * then the estimate will grow at the end of this interval and 951 * we ignore the historical average. 952 */ 953 target = drain ? 0 : lmax(zdom->uzd_wss, zdom->uzd_nitems - 954 zdom->uzd_imin); 955 while (zdom->uzd_nitems > target) { 956 bucket = TAILQ_LAST(&zdom->uzd_buckets, uma_bucketlist); 957 if (bucket == NULL) 958 break; 959 tofree = bucket->ub_cnt; 960 TAILQ_REMOVE(&zdom->uzd_buckets, bucket, ub_link); 961 zdom->uzd_nitems -= tofree; 962 963 /* 964 * Shift the bounds of the current WSS interval to avoid 965 * perturbing the estimate. 966 */ 967 zdom->uzd_imax -= lmin(zdom->uzd_imax, tofree); 968 zdom->uzd_imin -= lmin(zdom->uzd_imin, tofree); 969 970 ZONE_UNLOCK(zone); 971 bucket_drain(zone, bucket); 972 bucket_free(zone, bucket, NULL); 973 ZONE_LOCK(zone); 974 } 975 } 976 977 /* 978 * Shrink the zone bucket size to ensure that the per-CPU caches 979 * don't grow too large. 980 */ 981 if (zone->uz_bucket_size > zone->uz_bucket_size_min) 982 zone->uz_bucket_size--; 983 } 984 985 static void 986 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 987 { 988 uint8_t *mem; 989 int i; 990 uint8_t flags; 991 992 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 993 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 994 995 mem = slab->us_data; 996 flags = slab->us_flags; 997 i = start; 998 if (keg->uk_fini != NULL) { 999 for (i--; i > -1; i--) 1000 #ifdef INVARIANTS 1001 /* 1002 * trash_fini implies that dtor was trash_dtor. trash_fini 1003 * would check that memory hasn't been modified since free, 1004 * which executed trash_dtor. 1005 * That's why we need to run uma_dbg_kskip() check here, 1006 * albeit we don't make skip check for other init/fini 1007 * invocations. 1008 */ 1009 if (!uma_dbg_kskip(keg, slab->us_data + (keg->uk_rsize * i)) || 1010 keg->uk_fini != trash_fini) 1011 #endif 1012 keg->uk_fini(slab->us_data + (keg->uk_rsize * i), 1013 keg->uk_size); 1014 } 1015 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1016 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 1017 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 1018 uma_total_dec(PAGE_SIZE * keg->uk_ppera); 1019 } 1020 1021 /* 1022 * Frees pages from a keg back to the system. This is done on demand from 1023 * the pageout daemon. 1024 * 1025 * Returns nothing. 1026 */ 1027 static void 1028 keg_drain(uma_keg_t keg) 1029 { 1030 struct slabhead freeslabs = { 0 }; 1031 uma_domain_t dom; 1032 uma_slab_t slab, tmp; 1033 int i; 1034 1035 /* 1036 * We don't want to take pages from statically allocated kegs at this 1037 * time 1038 */ 1039 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 1040 return; 1041 1042 CTR3(KTR_UMA, "keg_drain %s(%p) free items: %u", 1043 keg->uk_name, keg, keg->uk_free); 1044 KEG_LOCK(keg); 1045 if (keg->uk_free == 0) 1046 goto finished; 1047 1048 for (i = 0; i < vm_ndomains; i++) { 1049 dom = &keg->uk_domain[i]; 1050 LIST_FOREACH_SAFE(slab, &dom->ud_free_slab, us_link, tmp) { 1051 /* We have nowhere to free these to. */ 1052 if (slab->us_flags & UMA_SLAB_BOOT) 1053 continue; 1054 1055 LIST_REMOVE(slab, us_link); 1056 keg->uk_pages -= keg->uk_ppera; 1057 keg->uk_free -= keg->uk_ipers; 1058 1059 if (keg->uk_flags & UMA_ZONE_HASH) 1060 UMA_HASH_REMOVE(&keg->uk_hash, slab, 1061 slab->us_data); 1062 1063 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 1064 } 1065 } 1066 1067 finished: 1068 KEG_UNLOCK(keg); 1069 1070 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 1071 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 1072 keg_free_slab(keg, slab, keg->uk_ipers); 1073 } 1074 } 1075 1076 static void 1077 zone_reclaim(uma_zone_t zone, int waitok, bool drain) 1078 { 1079 1080 /* 1081 * Set draining to interlock with zone_dtor() so we can release our 1082 * locks as we go. Only dtor() should do a WAITOK call since it 1083 * is the only call that knows the structure will still be available 1084 * when it wakes up. 1085 */ 1086 ZONE_LOCK(zone); 1087 while (zone->uz_flags & UMA_ZFLAG_RECLAIMING) { 1088 if (waitok == M_NOWAIT) 1089 goto out; 1090 msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1); 1091 } 1092 zone->uz_flags |= UMA_ZFLAG_RECLAIMING; 1093 bucket_cache_reclaim(zone, drain); 1094 ZONE_UNLOCK(zone); 1095 1096 /* 1097 * The DRAINING flag protects us from being freed while 1098 * we're running. Normally the uma_rwlock would protect us but we 1099 * must be able to release and acquire the right lock for each keg. 1100 */ 1101 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) 1102 keg_drain(zone->uz_keg); 1103 ZONE_LOCK(zone); 1104 zone->uz_flags &= ~UMA_ZFLAG_RECLAIMING; 1105 wakeup(zone); 1106 out: 1107 ZONE_UNLOCK(zone); 1108 } 1109 1110 static void 1111 zone_drain(uma_zone_t zone, void *unused) 1112 { 1113 1114 zone_reclaim(zone, M_NOWAIT, true); 1115 } 1116 1117 static void 1118 zone_trim(uma_zone_t zone, void *unused) 1119 { 1120 1121 zone_reclaim(zone, M_NOWAIT, false); 1122 } 1123 1124 /* 1125 * Allocate a new slab for a keg. This does not insert the slab onto a list. 1126 * If the allocation was successful, the keg lock will be held upon return, 1127 * otherwise the keg will be left unlocked. 1128 * 1129 * Arguments: 1130 * flags Wait flags for the item initialization routine 1131 * aflags Wait flags for the slab allocation 1132 * 1133 * Returns: 1134 * The slab that was allocated or NULL if there is no memory and the 1135 * caller specified M_NOWAIT. 1136 */ 1137 static uma_slab_t 1138 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags, 1139 int aflags) 1140 { 1141 uma_alloc allocf; 1142 uma_slab_t slab; 1143 unsigned long size; 1144 uint8_t *mem; 1145 uint8_t sflags; 1146 int i; 1147 1148 KASSERT(domain >= 0 && domain < vm_ndomains, 1149 ("keg_alloc_slab: domain %d out of range", domain)); 1150 KEG_LOCK_ASSERT(keg); 1151 MPASS(zone->uz_lockptr == &keg->uk_lock); 1152 1153 allocf = keg->uk_allocf; 1154 KEG_UNLOCK(keg); 1155 1156 slab = NULL; 1157 mem = NULL; 1158 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 1159 slab = zone_alloc_item(keg->uk_slabzone, NULL, domain, aflags); 1160 if (slab == NULL) 1161 goto out; 1162 } 1163 1164 /* 1165 * This reproduces the old vm_zone behavior of zero filling pages the 1166 * first time they are added to a zone. 1167 * 1168 * Malloced items are zeroed in uma_zalloc. 1169 */ 1170 1171 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1172 aflags |= M_ZERO; 1173 else 1174 aflags &= ~M_ZERO; 1175 1176 if (keg->uk_flags & UMA_ZONE_NODUMP) 1177 aflags |= M_NODUMP; 1178 1179 /* zone is passed for legacy reasons. */ 1180 size = keg->uk_ppera * PAGE_SIZE; 1181 mem = allocf(zone, size, domain, &sflags, aflags); 1182 if (mem == NULL) { 1183 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1184 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 1185 slab = NULL; 1186 goto out; 1187 } 1188 uma_total_inc(size); 1189 1190 /* Point the slab into the allocated memory */ 1191 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 1192 slab = (uma_slab_t )(mem + keg->uk_pgoff); 1193 1194 if (keg->uk_flags & UMA_ZONE_VTOSLAB) 1195 for (i = 0; i < keg->uk_ppera; i++) 1196 vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE), 1197 zone, slab); 1198 1199 slab->us_data = mem; 1200 slab->us_freecount = keg->uk_ipers; 1201 slab->us_flags = sflags; 1202 slab->us_domain = domain; 1203 BIT_FILL(SLAB_SETSIZE, &slab->us_free); 1204 #ifdef INVARIANTS 1205 BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree); 1206 #endif 1207 1208 if (keg->uk_init != NULL) { 1209 for (i = 0; i < keg->uk_ipers; i++) 1210 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 1211 keg->uk_size, flags) != 0) 1212 break; 1213 if (i != keg->uk_ipers) { 1214 keg_free_slab(keg, slab, i); 1215 slab = NULL; 1216 goto out; 1217 } 1218 } 1219 KEG_LOCK(keg); 1220 1221 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1222 slab, keg->uk_name, keg); 1223 1224 if (keg->uk_flags & UMA_ZONE_HASH) 1225 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1226 1227 keg->uk_pages += keg->uk_ppera; 1228 keg->uk_free += keg->uk_ipers; 1229 1230 out: 1231 return (slab); 1232 } 1233 1234 /* 1235 * This function is intended to be used early on in place of page_alloc() so 1236 * that we may use the boot time page cache to satisfy allocations before 1237 * the VM is ready. 1238 */ 1239 static void * 1240 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1241 int wait) 1242 { 1243 uma_keg_t keg; 1244 void *mem; 1245 int pages; 1246 1247 keg = zone->uz_keg; 1248 /* 1249 * If we are in BOOT_BUCKETS or higher, than switch to real 1250 * allocator. Zones with page sized slabs switch at BOOT_PAGEALLOC. 1251 */ 1252 switch (booted) { 1253 case BOOT_COLD: 1254 case BOOT_STRAPPED: 1255 break; 1256 case BOOT_PAGEALLOC: 1257 if (keg->uk_ppera > 1) 1258 break; 1259 case BOOT_BUCKETS: 1260 case BOOT_RUNNING: 1261 #ifdef UMA_MD_SMALL_ALLOC 1262 keg->uk_allocf = (keg->uk_ppera > 1) ? 1263 page_alloc : uma_small_alloc; 1264 #else 1265 keg->uk_allocf = page_alloc; 1266 #endif 1267 return keg->uk_allocf(zone, bytes, domain, pflag, wait); 1268 } 1269 1270 /* 1271 * Check our small startup cache to see if it has pages remaining. 1272 */ 1273 pages = howmany(bytes, PAGE_SIZE); 1274 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1275 if (pages > boot_pages) 1276 panic("UMA zone \"%s\": Increase vm.boot_pages", zone->uz_name); 1277 #ifdef DIAGNOSTIC 1278 printf("%s from \"%s\", %d boot pages left\n", __func__, zone->uz_name, 1279 boot_pages); 1280 #endif 1281 mem = bootmem; 1282 boot_pages -= pages; 1283 bootmem += pages * PAGE_SIZE; 1284 *pflag = UMA_SLAB_BOOT; 1285 1286 return (mem); 1287 } 1288 1289 /* 1290 * Allocates a number of pages from the system 1291 * 1292 * Arguments: 1293 * bytes The number of bytes requested 1294 * wait Shall we wait? 1295 * 1296 * Returns: 1297 * A pointer to the alloced memory or possibly 1298 * NULL if M_NOWAIT is set. 1299 */ 1300 static void * 1301 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1302 int wait) 1303 { 1304 void *p; /* Returned page */ 1305 1306 *pflag = UMA_SLAB_KERNEL; 1307 p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait); 1308 1309 return (p); 1310 } 1311 1312 static void * 1313 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1314 int wait) 1315 { 1316 struct pglist alloctail; 1317 vm_offset_t addr, zkva; 1318 int cpu, flags; 1319 vm_page_t p, p_next; 1320 #ifdef NUMA 1321 struct pcpu *pc; 1322 #endif 1323 1324 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE); 1325 1326 TAILQ_INIT(&alloctail); 1327 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1328 malloc2vm_flags(wait); 1329 *pflag = UMA_SLAB_KERNEL; 1330 for (cpu = 0; cpu <= mp_maxid; cpu++) { 1331 if (CPU_ABSENT(cpu)) { 1332 p = vm_page_alloc(NULL, 0, flags); 1333 } else { 1334 #ifndef NUMA 1335 p = vm_page_alloc(NULL, 0, flags); 1336 #else 1337 pc = pcpu_find(cpu); 1338 p = vm_page_alloc_domain(NULL, 0, pc->pc_domain, flags); 1339 if (__predict_false(p == NULL)) 1340 p = vm_page_alloc(NULL, 0, flags); 1341 #endif 1342 } 1343 if (__predict_false(p == NULL)) 1344 goto fail; 1345 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1346 } 1347 if ((addr = kva_alloc(bytes)) == 0) 1348 goto fail; 1349 zkva = addr; 1350 TAILQ_FOREACH(p, &alloctail, listq) { 1351 pmap_qenter(zkva, &p, 1); 1352 zkva += PAGE_SIZE; 1353 } 1354 return ((void*)addr); 1355 fail: 1356 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1357 vm_page_unwire_noq(p); 1358 vm_page_free(p); 1359 } 1360 return (NULL); 1361 } 1362 1363 /* 1364 * Allocates a number of pages from within an object 1365 * 1366 * Arguments: 1367 * bytes The number of bytes requested 1368 * wait Shall we wait? 1369 * 1370 * Returns: 1371 * A pointer to the alloced memory or possibly 1372 * NULL if M_NOWAIT is set. 1373 */ 1374 static void * 1375 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 1376 int wait) 1377 { 1378 TAILQ_HEAD(, vm_page) alloctail; 1379 u_long npages; 1380 vm_offset_t retkva, zkva; 1381 vm_page_t p, p_next; 1382 uma_keg_t keg; 1383 1384 TAILQ_INIT(&alloctail); 1385 keg = zone->uz_keg; 1386 1387 npages = howmany(bytes, PAGE_SIZE); 1388 while (npages > 0) { 1389 p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT | 1390 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1391 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK : 1392 VM_ALLOC_NOWAIT)); 1393 if (p != NULL) { 1394 /* 1395 * Since the page does not belong to an object, its 1396 * listq is unused. 1397 */ 1398 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1399 npages--; 1400 continue; 1401 } 1402 /* 1403 * Page allocation failed, free intermediate pages and 1404 * exit. 1405 */ 1406 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1407 vm_page_unwire_noq(p); 1408 vm_page_free(p); 1409 } 1410 return (NULL); 1411 } 1412 *flags = UMA_SLAB_PRIV; 1413 zkva = keg->uk_kva + 1414 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1415 retkva = zkva; 1416 TAILQ_FOREACH(p, &alloctail, listq) { 1417 pmap_qenter(zkva, &p, 1); 1418 zkva += PAGE_SIZE; 1419 } 1420 1421 return ((void *)retkva); 1422 } 1423 1424 /* 1425 * Frees a number of pages to the system 1426 * 1427 * Arguments: 1428 * mem A pointer to the memory to be freed 1429 * size The size of the memory being freed 1430 * flags The original p->us_flags field 1431 * 1432 * Returns: 1433 * Nothing 1434 */ 1435 static void 1436 page_free(void *mem, vm_size_t size, uint8_t flags) 1437 { 1438 1439 if ((flags & UMA_SLAB_KERNEL) == 0) 1440 panic("UMA: page_free used with invalid flags %x", flags); 1441 1442 kmem_free((vm_offset_t)mem, size); 1443 } 1444 1445 /* 1446 * Frees pcpu zone allocations 1447 * 1448 * Arguments: 1449 * mem A pointer to the memory to be freed 1450 * size The size of the memory being freed 1451 * flags The original p->us_flags field 1452 * 1453 * Returns: 1454 * Nothing 1455 */ 1456 static void 1457 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags) 1458 { 1459 vm_offset_t sva, curva; 1460 vm_paddr_t paddr; 1461 vm_page_t m; 1462 1463 MPASS(size == (mp_maxid+1)*PAGE_SIZE); 1464 sva = (vm_offset_t)mem; 1465 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) { 1466 paddr = pmap_kextract(curva); 1467 m = PHYS_TO_VM_PAGE(paddr); 1468 vm_page_unwire_noq(m); 1469 vm_page_free(m); 1470 } 1471 pmap_qremove(sva, size >> PAGE_SHIFT); 1472 kva_free(sva, size); 1473 } 1474 1475 1476 /* 1477 * Zero fill initializer 1478 * 1479 * Arguments/Returns follow uma_init specifications 1480 */ 1481 static int 1482 zero_init(void *mem, int size, int flags) 1483 { 1484 bzero(mem, size); 1485 return (0); 1486 } 1487 1488 /* 1489 * Finish creating a small uma keg. This calculates ipers, and the keg size. 1490 * 1491 * Arguments 1492 * keg The zone we should initialize 1493 * 1494 * Returns 1495 * Nothing 1496 */ 1497 static void 1498 keg_small_init(uma_keg_t keg) 1499 { 1500 u_int rsize; 1501 u_int memused; 1502 u_int wastedspace; 1503 u_int shsize; 1504 u_int slabsize; 1505 1506 if (keg->uk_flags & UMA_ZONE_PCPU) { 1507 u_int ncpus = (mp_maxid + 1) ? (mp_maxid + 1) : MAXCPU; 1508 1509 slabsize = UMA_PCPU_ALLOC_SIZE; 1510 keg->uk_ppera = ncpus; 1511 } else { 1512 slabsize = UMA_SLAB_SIZE; 1513 keg->uk_ppera = 1; 1514 } 1515 1516 /* 1517 * Calculate the size of each allocation (rsize) according to 1518 * alignment. If the requested size is smaller than we have 1519 * allocation bits for we round it up. 1520 */ 1521 rsize = keg->uk_size; 1522 if (rsize < slabsize / SLAB_SETSIZE) 1523 rsize = slabsize / SLAB_SETSIZE; 1524 if (rsize & keg->uk_align) 1525 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1526 keg->uk_rsize = rsize; 1527 1528 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 1529 keg->uk_rsize < UMA_PCPU_ALLOC_SIZE, 1530 ("%s: size %u too large", __func__, keg->uk_rsize)); 1531 1532 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1533 shsize = 0; 1534 else 1535 shsize = SIZEOF_UMA_SLAB; 1536 1537 if (rsize <= slabsize - shsize) 1538 keg->uk_ipers = (slabsize - shsize) / rsize; 1539 else { 1540 /* Handle special case when we have 1 item per slab, so 1541 * alignment requirement can be relaxed. */ 1542 KASSERT(keg->uk_size <= slabsize - shsize, 1543 ("%s: size %u greater than slab", __func__, keg->uk_size)); 1544 keg->uk_ipers = 1; 1545 } 1546 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1547 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1548 1549 memused = keg->uk_ipers * rsize + shsize; 1550 wastedspace = slabsize - memused; 1551 1552 /* 1553 * We can't do OFFPAGE if we're internal or if we've been 1554 * asked to not go to the VM for buckets. If we do this we 1555 * may end up going to the VM for slabs which we do not 1556 * want to do if we're UMA_ZFLAG_CACHEONLY as a result 1557 * of UMA_ZONE_VM, which clearly forbids it. 1558 */ 1559 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1560 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1561 return; 1562 1563 /* 1564 * See if using an OFFPAGE slab will limit our waste. Only do 1565 * this if it permits more items per-slab. 1566 * 1567 * XXX We could try growing slabsize to limit max waste as well. 1568 * Historically this was not done because the VM could not 1569 * efficiently handle contiguous allocations. 1570 */ 1571 if ((wastedspace >= slabsize / UMA_MAX_WASTE) && 1572 (keg->uk_ipers < (slabsize / keg->uk_rsize))) { 1573 keg->uk_ipers = slabsize / keg->uk_rsize; 1574 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1575 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1576 CTR6(KTR_UMA, "UMA decided we need offpage slab headers for " 1577 "keg: %s(%p), calculated wastedspace = %d, " 1578 "maximum wasted space allowed = %d, " 1579 "calculated ipers = %d, " 1580 "new wasted space = %d\n", keg->uk_name, keg, wastedspace, 1581 slabsize / UMA_MAX_WASTE, keg->uk_ipers, 1582 slabsize - keg->uk_ipers * keg->uk_rsize); 1583 /* 1584 * If we had access to memory to embed a slab header we 1585 * also have a page structure to use vtoslab() instead of 1586 * hash to find slabs. If the zone was explicitly created 1587 * OFFPAGE we can't necessarily touch the memory. 1588 */ 1589 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) 1590 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1591 } 1592 1593 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1594 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1595 keg->uk_flags |= UMA_ZONE_HASH; 1596 } 1597 1598 /* 1599 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do 1600 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1601 * more complicated. 1602 * 1603 * Arguments 1604 * keg The keg we should initialize 1605 * 1606 * Returns 1607 * Nothing 1608 */ 1609 static void 1610 keg_large_init(uma_keg_t keg) 1611 { 1612 1613 KASSERT(keg != NULL, ("Keg is null in keg_large_init")); 1614 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1615 ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__)); 1616 1617 keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE); 1618 keg->uk_ipers = 1; 1619 keg->uk_rsize = keg->uk_size; 1620 1621 /* Check whether we have enough space to not do OFFPAGE. */ 1622 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0 && 1623 PAGE_SIZE * keg->uk_ppera - keg->uk_rsize < SIZEOF_UMA_SLAB) { 1624 /* 1625 * We can't do OFFPAGE if we're internal, in which case 1626 * we need an extra page per allocation to contain the 1627 * slab header. 1628 */ 1629 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) == 0) 1630 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1631 else 1632 keg->uk_ppera++; 1633 } 1634 1635 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1636 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1637 keg->uk_flags |= UMA_ZONE_HASH; 1638 } 1639 1640 static void 1641 keg_cachespread_init(uma_keg_t keg) 1642 { 1643 int alignsize; 1644 int trailer; 1645 int pages; 1646 int rsize; 1647 1648 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1649 ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__)); 1650 1651 alignsize = keg->uk_align + 1; 1652 rsize = keg->uk_size; 1653 /* 1654 * We want one item to start on every align boundary in a page. To 1655 * do this we will span pages. We will also extend the item by the 1656 * size of align if it is an even multiple of align. Otherwise, it 1657 * would fall on the same boundary every time. 1658 */ 1659 if (rsize & keg->uk_align) 1660 rsize = (rsize & ~keg->uk_align) + alignsize; 1661 if ((rsize & alignsize) == 0) 1662 rsize += alignsize; 1663 trailer = rsize - keg->uk_size; 1664 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE; 1665 pages = MIN(pages, (128 * 1024) / PAGE_SIZE); 1666 keg->uk_rsize = rsize; 1667 keg->uk_ppera = pages; 1668 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize; 1669 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1670 KASSERT(keg->uk_ipers <= SLAB_SETSIZE, 1671 ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__, 1672 keg->uk_ipers)); 1673 } 1674 1675 /* 1676 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1677 * the keg onto the global keg list. 1678 * 1679 * Arguments/Returns follow uma_ctor specifications 1680 * udata Actually uma_kctor_args 1681 */ 1682 static int 1683 keg_ctor(void *mem, int size, void *udata, int flags) 1684 { 1685 struct uma_kctor_args *arg = udata; 1686 uma_keg_t keg = mem; 1687 uma_zone_t zone; 1688 1689 bzero(keg, size); 1690 keg->uk_size = arg->size; 1691 keg->uk_init = arg->uminit; 1692 keg->uk_fini = arg->fini; 1693 keg->uk_align = arg->align; 1694 keg->uk_free = 0; 1695 keg->uk_reserve = 0; 1696 keg->uk_pages = 0; 1697 keg->uk_flags = arg->flags; 1698 keg->uk_slabzone = NULL; 1699 1700 /* 1701 * We use a global round-robin policy by default. Zones with 1702 * UMA_ZONE_NUMA set will use first-touch instead, in which case the 1703 * iterator is never run. 1704 */ 1705 keg->uk_dr.dr_policy = DOMAINSET_RR(); 1706 keg->uk_dr.dr_iter = 0; 1707 1708 /* 1709 * The master zone is passed to us at keg-creation time. 1710 */ 1711 zone = arg->zone; 1712 keg->uk_name = zone->uz_name; 1713 1714 if (arg->flags & UMA_ZONE_VM) 1715 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1716 1717 if (arg->flags & UMA_ZONE_ZINIT) 1718 keg->uk_init = zero_init; 1719 1720 if (arg->flags & UMA_ZONE_MALLOC) 1721 keg->uk_flags |= UMA_ZONE_VTOSLAB; 1722 1723 if (arg->flags & UMA_ZONE_PCPU) 1724 #ifdef SMP 1725 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1726 #else 1727 keg->uk_flags &= ~UMA_ZONE_PCPU; 1728 #endif 1729 1730 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) { 1731 keg_cachespread_init(keg); 1732 } else { 1733 if (keg->uk_size > UMA_SLAB_SPACE) 1734 keg_large_init(keg); 1735 else 1736 keg_small_init(keg); 1737 } 1738 1739 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1740 keg->uk_slabzone = slabzone; 1741 1742 /* 1743 * If we haven't booted yet we need allocations to go through the 1744 * startup cache until the vm is ready. 1745 */ 1746 if (booted < BOOT_PAGEALLOC) 1747 keg->uk_allocf = startup_alloc; 1748 #ifdef UMA_MD_SMALL_ALLOC 1749 else if (keg->uk_ppera == 1) 1750 keg->uk_allocf = uma_small_alloc; 1751 #endif 1752 else if (keg->uk_flags & UMA_ZONE_PCPU) 1753 keg->uk_allocf = pcpu_page_alloc; 1754 else 1755 keg->uk_allocf = page_alloc; 1756 #ifdef UMA_MD_SMALL_ALLOC 1757 if (keg->uk_ppera == 1) 1758 keg->uk_freef = uma_small_free; 1759 else 1760 #endif 1761 if (keg->uk_flags & UMA_ZONE_PCPU) 1762 keg->uk_freef = pcpu_page_free; 1763 else 1764 keg->uk_freef = page_free; 1765 1766 /* 1767 * Initialize keg's lock 1768 */ 1769 KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS)); 1770 1771 /* 1772 * If we're putting the slab header in the actual page we need to 1773 * figure out where in each page it goes. See SIZEOF_UMA_SLAB 1774 * macro definition. 1775 */ 1776 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1777 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - SIZEOF_UMA_SLAB; 1778 /* 1779 * The only way the following is possible is if with our 1780 * UMA_ALIGN_PTR adjustments we are now bigger than 1781 * UMA_SLAB_SIZE. I haven't checked whether this is 1782 * mathematically possible for all cases, so we make 1783 * sure here anyway. 1784 */ 1785 KASSERT(keg->uk_pgoff + sizeof(struct uma_slab) <= 1786 PAGE_SIZE * keg->uk_ppera, 1787 ("zone %s ipers %d rsize %d size %d slab won't fit", 1788 zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size)); 1789 } 1790 1791 if (keg->uk_flags & UMA_ZONE_HASH) 1792 hash_alloc(&keg->uk_hash, 0); 1793 1794 CTR5(KTR_UMA, "keg_ctor %p zone %s(%p) out %d free %d\n", 1795 keg, zone->uz_name, zone, 1796 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 1797 keg->uk_free); 1798 1799 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1800 1801 rw_wlock(&uma_rwlock); 1802 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1803 rw_wunlock(&uma_rwlock); 1804 return (0); 1805 } 1806 1807 static void 1808 zone_alloc_counters(uma_zone_t zone, void *unused) 1809 { 1810 1811 zone->uz_allocs = counter_u64_alloc(M_WAITOK); 1812 zone->uz_frees = counter_u64_alloc(M_WAITOK); 1813 zone->uz_fails = counter_u64_alloc(M_WAITOK); 1814 } 1815 1816 #define UMA_MAX_DUP 999 1817 static void 1818 zone_alloc_sysctl(uma_zone_t zone, void *unused) 1819 { 1820 uma_zone_domain_t zdom; 1821 uma_keg_t keg; 1822 struct sysctl_oid *oid, *domainoid; 1823 int domains, i; 1824 static const char *nokeg = "cache zone"; 1825 char *c; 1826 1827 /* 1828 * Make a sysctl safe copy of the zone name by removing 1829 * any special characters and handling dups by appending 1830 * an index. 1831 */ 1832 if (zone->uz_namecnt != 0) { 1833 if (zone->uz_namecnt > UMA_MAX_DUP) 1834 zone->uz_namecnt = UMA_MAX_DUP; 1835 zone->uz_ctlname = malloc(strlen(zone->uz_name) + 1836 sizeof(__XSTRING(UMA_MAX_DUP)) + 1 , M_UMA, M_WAITOK); 1837 sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name, 1838 zone->uz_namecnt); 1839 } else 1840 zone->uz_ctlname = strdup(zone->uz_name, M_UMA); 1841 for (c = zone->uz_ctlname; *c != '\0'; c++) 1842 if (strchr("./\\ -", *c) != NULL) 1843 *c = '_'; 1844 1845 /* 1846 * Basic parameters at the root. 1847 */ 1848 zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma), 1849 OID_AUTO, zone->uz_ctlname, CTLFLAG_RD, NULL, ""); 1850 oid = zone->uz_oid; 1851 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1852 "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size"); 1853 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1854 "flags", CTLFLAG_RD, &zone->uz_flags, 0, 1855 "Allocator configuration flags"); 1856 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1857 "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0, 1858 "Desired per-cpu cache size"); 1859 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1860 "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0, 1861 "Maximum allowed per-cpu cache size"); 1862 1863 /* 1864 * keg if present. 1865 */ 1866 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 1867 "keg", CTLFLAG_RD, NULL, ""); 1868 keg = zone->uz_keg; 1869 if ((zone->uz_flags & UMA_ZFLAG_CACHEONLY) == 0) { 1870 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1871 "name", CTLFLAG_RD, keg->uk_name, "Keg name"); 1872 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1873 "rsize", CTLFLAG_RD, &keg->uk_rsize, 0, 1874 "Real object size with alignment"); 1875 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1876 "ppera", CTLFLAG_RD, &keg->uk_ppera, 0, 1877 "pages per-slab allocation"); 1878 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1879 "ipers", CTLFLAG_RD, &keg->uk_ipers, 0, 1880 "items available per-slab"); 1881 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1882 "align", CTLFLAG_RD, &keg->uk_align, 0, 1883 "item alignment mask"); 1884 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1885 "pages", CTLFLAG_RD, &keg->uk_pages, 0, 1886 "Total pages currently allocated from VM"); 1887 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1888 "free", CTLFLAG_RD, &keg->uk_free, 0, 1889 "items free in the slab layer"); 1890 } else 1891 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1892 "name", CTLFLAG_RD, nokeg, "Keg name"); 1893 1894 /* 1895 * Information about zone limits. 1896 */ 1897 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 1898 "limit", CTLFLAG_RD, NULL, ""); 1899 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1900 "items", CTLFLAG_RD, &zone->uz_items, 0, 1901 "current number of cached items"); 1902 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1903 "max_items", CTLFLAG_RD, &zone->uz_max_items, 0, 1904 "Maximum number of cached items"); 1905 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1906 "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0, 1907 "Number of threads sleeping at limit"); 1908 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1909 "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0, 1910 "Total zone limit sleeps"); 1911 1912 /* 1913 * Per-domain information. 1914 */ 1915 if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) 1916 domains = vm_ndomains; 1917 else 1918 domains = 1; 1919 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), 1920 OID_AUTO, "domain", CTLFLAG_RD, NULL, ""); 1921 for (i = 0; i < domains; i++) { 1922 zdom = &zone->uz_domain[i]; 1923 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 1924 OID_AUTO, VM_DOMAIN(i)->vmd_name, CTLFLAG_RD, NULL, ""); 1925 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1926 "nitems", CTLFLAG_RD, &zdom->uzd_nitems, 1927 "number of items in this domain"); 1928 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1929 "imax", CTLFLAG_RD, &zdom->uzd_imax, 1930 "maximum item count in this period"); 1931 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1932 "imin", CTLFLAG_RD, &zdom->uzd_imin, 1933 "minimum item count in this period"); 1934 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1935 "wss", CTLFLAG_RD, &zdom->uzd_wss, 1936 "Working set size"); 1937 } 1938 1939 /* 1940 * General statistics. 1941 */ 1942 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 1943 "stats", CTLFLAG_RD, NULL, ""); 1944 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1945 "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 1946 zone, 1, sysctl_handle_uma_zone_cur, "I", 1947 "Current number of allocated items"); 1948 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1949 "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 1950 zone, 0, sysctl_handle_uma_zone_allocs, "QU", 1951 "Total allocation calls"); 1952 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1953 "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 1954 zone, 0, sysctl_handle_uma_zone_frees, "QU", 1955 "Total free calls"); 1956 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1957 "fails", CTLFLAG_RD, &zone->uz_fails, 1958 "Number of allocation failures"); 1959 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1960 "xdomain", CTLFLAG_RD, &zone->uz_xdomain, 0, 1961 "Free calls from the wrong domain"); 1962 } 1963 1964 struct uma_zone_count { 1965 const char *name; 1966 int count; 1967 }; 1968 1969 static void 1970 zone_count(uma_zone_t zone, void *arg) 1971 { 1972 struct uma_zone_count *cnt; 1973 1974 cnt = arg; 1975 if (strcmp(zone->uz_name, cnt->name) == 0) 1976 cnt->count++; 1977 } 1978 1979 /* 1980 * Zone header ctor. This initializes all fields, locks, etc. 1981 * 1982 * Arguments/Returns follow uma_ctor specifications 1983 * udata Actually uma_zctor_args 1984 */ 1985 static int 1986 zone_ctor(void *mem, int size, void *udata, int flags) 1987 { 1988 struct uma_zone_count cnt; 1989 struct uma_zctor_args *arg = udata; 1990 uma_zone_t zone = mem; 1991 uma_zone_t z; 1992 uma_keg_t keg; 1993 int i; 1994 1995 bzero(zone, size); 1996 zone->uz_name = arg->name; 1997 zone->uz_ctor = arg->ctor; 1998 zone->uz_dtor = arg->dtor; 1999 zone->uz_init = NULL; 2000 zone->uz_fini = NULL; 2001 zone->uz_sleeps = 0; 2002 zone->uz_xdomain = 0; 2003 zone->uz_bucket_size = 0; 2004 zone->uz_bucket_size_min = 0; 2005 zone->uz_bucket_size_max = BUCKET_MAX; 2006 zone->uz_flags = 0; 2007 zone->uz_warning = NULL; 2008 /* The domain structures follow the cpu structures. */ 2009 zone->uz_domain = (struct uma_zone_domain *)&zone->uz_cpu[mp_ncpus]; 2010 zone->uz_bkt_max = ULONG_MAX; 2011 timevalclear(&zone->uz_ratecheck); 2012 2013 /* Count the number of duplicate names. */ 2014 cnt.name = arg->name; 2015 cnt.count = 0; 2016 zone_foreach(zone_count, &cnt); 2017 zone->uz_namecnt = cnt.count; 2018 2019 for (i = 0; i < vm_ndomains; i++) 2020 TAILQ_INIT(&zone->uz_domain[i].uzd_buckets); 2021 2022 #ifdef INVARIANTS 2023 if (arg->uminit == trash_init && arg->fini == trash_fini) 2024 zone->uz_flags |= UMA_ZFLAG_TRASH; 2025 #endif 2026 2027 /* 2028 * This is a pure cache zone, no kegs. 2029 */ 2030 if (arg->import) { 2031 if (arg->flags & UMA_ZONE_VM) 2032 arg->flags |= UMA_ZFLAG_CACHEONLY; 2033 zone->uz_flags = arg->flags; 2034 zone->uz_size = arg->size; 2035 zone->uz_import = arg->import; 2036 zone->uz_release = arg->release; 2037 zone->uz_arg = arg->arg; 2038 zone->uz_lockptr = &zone->uz_lock; 2039 ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS)); 2040 rw_wlock(&uma_rwlock); 2041 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 2042 rw_wunlock(&uma_rwlock); 2043 goto out; 2044 } 2045 2046 /* 2047 * Use the regular zone/keg/slab allocator. 2048 */ 2049 zone->uz_import = (uma_import)zone_import; 2050 zone->uz_release = (uma_release)zone_release; 2051 zone->uz_arg = zone; 2052 keg = arg->keg; 2053 2054 if (arg->flags & UMA_ZONE_SECONDARY) { 2055 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 2056 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 2057 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 2058 zone->uz_init = arg->uminit; 2059 zone->uz_fini = arg->fini; 2060 zone->uz_lockptr = &keg->uk_lock; 2061 zone->uz_flags |= UMA_ZONE_SECONDARY; 2062 rw_wlock(&uma_rwlock); 2063 ZONE_LOCK(zone); 2064 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 2065 if (LIST_NEXT(z, uz_link) == NULL) { 2066 LIST_INSERT_AFTER(z, zone, uz_link); 2067 break; 2068 } 2069 } 2070 ZONE_UNLOCK(zone); 2071 rw_wunlock(&uma_rwlock); 2072 } else if (keg == NULL) { 2073 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 2074 arg->align, arg->flags)) == NULL) 2075 return (ENOMEM); 2076 } else { 2077 struct uma_kctor_args karg; 2078 int error; 2079 2080 /* We should only be here from uma_startup() */ 2081 karg.size = arg->size; 2082 karg.uminit = arg->uminit; 2083 karg.fini = arg->fini; 2084 karg.align = arg->align; 2085 karg.flags = arg->flags; 2086 karg.zone = zone; 2087 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 2088 flags); 2089 if (error) 2090 return (error); 2091 } 2092 2093 /* Inherit properties from the keg. */ 2094 zone->uz_keg = keg; 2095 zone->uz_size = keg->uk_size; 2096 zone->uz_flags |= (keg->uk_flags & 2097 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 2098 2099 out: 2100 if (__predict_true(booted == BOOT_RUNNING)) { 2101 zone_alloc_counters(zone, NULL); 2102 zone_alloc_sysctl(zone, NULL); 2103 } else { 2104 zone->uz_allocs = EARLY_COUNTER; 2105 zone->uz_frees = EARLY_COUNTER; 2106 zone->uz_fails = EARLY_COUNTER; 2107 } 2108 2109 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != 2110 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), 2111 ("Invalid zone flag combination")); 2112 if (arg->flags & UMA_ZFLAG_INTERNAL) 2113 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 2114 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) 2115 zone->uz_bucket_size = BUCKET_MAX; 2116 else if ((arg->flags & UMA_ZONE_MINBUCKET) != 0) 2117 zone->uz_bucket_size_max = zone->uz_bucket_size = BUCKET_MIN; 2118 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) 2119 zone->uz_bucket_size = 0; 2120 else 2121 zone->uz_bucket_size = bucket_select(zone->uz_size); 2122 zone->uz_bucket_size_min = zone->uz_bucket_size; 2123 2124 return (0); 2125 } 2126 2127 /* 2128 * Keg header dtor. This frees all data, destroys locks, frees the hash 2129 * table and removes the keg from the global list. 2130 * 2131 * Arguments/Returns follow uma_dtor specifications 2132 * udata unused 2133 */ 2134 static void 2135 keg_dtor(void *arg, int size, void *udata) 2136 { 2137 uma_keg_t keg; 2138 2139 keg = (uma_keg_t)arg; 2140 KEG_LOCK(keg); 2141 if (keg->uk_free != 0) { 2142 printf("Freed UMA keg (%s) was not empty (%d items). " 2143 " Lost %d pages of memory.\n", 2144 keg->uk_name ? keg->uk_name : "", 2145 keg->uk_free, keg->uk_pages); 2146 } 2147 KEG_UNLOCK(keg); 2148 2149 hash_free(&keg->uk_hash); 2150 2151 KEG_LOCK_FINI(keg); 2152 } 2153 2154 /* 2155 * Zone header dtor. 2156 * 2157 * Arguments/Returns follow uma_dtor specifications 2158 * udata unused 2159 */ 2160 static void 2161 zone_dtor(void *arg, int size, void *udata) 2162 { 2163 uma_zone_t zone; 2164 uma_keg_t keg; 2165 2166 zone = (uma_zone_t)arg; 2167 2168 sysctl_remove_oid(zone->uz_oid, 1, 1); 2169 2170 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 2171 cache_drain(zone); 2172 2173 rw_wlock(&uma_rwlock); 2174 LIST_REMOVE(zone, uz_link); 2175 rw_wunlock(&uma_rwlock); 2176 /* 2177 * XXX there are some races here where 2178 * the zone can be drained but zone lock 2179 * released and then refilled before we 2180 * remove it... we dont care for now 2181 */ 2182 zone_reclaim(zone, M_WAITOK, true); 2183 /* 2184 * We only destroy kegs from non secondary/non cache zones. 2185 */ 2186 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { 2187 keg = zone->uz_keg; 2188 rw_wlock(&uma_rwlock); 2189 LIST_REMOVE(keg, uk_link); 2190 rw_wunlock(&uma_rwlock); 2191 zone_free_item(kegs, keg, NULL, SKIP_NONE); 2192 } 2193 counter_u64_free(zone->uz_allocs); 2194 counter_u64_free(zone->uz_frees); 2195 counter_u64_free(zone->uz_fails); 2196 free(zone->uz_ctlname, M_UMA); 2197 if (zone->uz_lockptr == &zone->uz_lock) 2198 ZONE_LOCK_FINI(zone); 2199 } 2200 2201 /* 2202 * Traverses every zone in the system and calls a callback 2203 * 2204 * Arguments: 2205 * zfunc A pointer to a function which accepts a zone 2206 * as an argument. 2207 * 2208 * Returns: 2209 * Nothing 2210 */ 2211 static void 2212 zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg) 2213 { 2214 uma_keg_t keg; 2215 uma_zone_t zone; 2216 2217 /* 2218 * Before BOOT_RUNNING we are guaranteed to be single 2219 * threaded, so locking isn't needed. Startup functions 2220 * are allowed to use M_WAITOK. 2221 */ 2222 if (__predict_true(booted == BOOT_RUNNING)) 2223 rw_rlock(&uma_rwlock); 2224 LIST_FOREACH(keg, &uma_kegs, uk_link) { 2225 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 2226 zfunc(zone, arg); 2227 } 2228 LIST_FOREACH(zone, &uma_cachezones, uz_link) 2229 zfunc(zone, arg); 2230 if (__predict_true(booted == BOOT_RUNNING)) 2231 rw_runlock(&uma_rwlock); 2232 } 2233 2234 /* 2235 * Count how many pages do we need to bootstrap. VM supplies 2236 * its need in early zones in the argument, we add up our zones, 2237 * which consist of: UMA Slabs, UMA Hash and 9 Bucket zones. The 2238 * zone of zones and zone of kegs are accounted separately. 2239 */ 2240 #define UMA_BOOT_ZONES 11 2241 /* Zone of zones and zone of kegs have arbitrary alignment. */ 2242 #define UMA_BOOT_ALIGN 32 2243 static int zsize, ksize; 2244 int 2245 uma_startup_count(int vm_zones) 2246 { 2247 int zones, pages; 2248 2249 ksize = sizeof(struct uma_keg) + 2250 (sizeof(struct uma_domain) * vm_ndomains); 2251 zsize = sizeof(struct uma_zone) + 2252 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 2253 (sizeof(struct uma_zone_domain) * vm_ndomains); 2254 2255 /* 2256 * Memory for the zone of kegs and its keg, 2257 * and for zone of zones. 2258 */ 2259 pages = howmany(roundup(zsize, CACHE_LINE_SIZE) * 2 + 2260 roundup(ksize, CACHE_LINE_SIZE), PAGE_SIZE); 2261 2262 #ifdef UMA_MD_SMALL_ALLOC 2263 zones = UMA_BOOT_ZONES; 2264 #else 2265 zones = UMA_BOOT_ZONES + vm_zones; 2266 vm_zones = 0; 2267 #endif 2268 2269 /* Memory for the rest of startup zones, UMA and VM, ... */ 2270 if (zsize > UMA_SLAB_SPACE) { 2271 /* See keg_large_init(). */ 2272 u_int ppera; 2273 2274 ppera = howmany(roundup2(zsize, UMA_BOOT_ALIGN), PAGE_SIZE); 2275 if (PAGE_SIZE * ppera - roundup2(zsize, UMA_BOOT_ALIGN) < 2276 SIZEOF_UMA_SLAB) 2277 ppera++; 2278 pages += (zones + vm_zones) * ppera; 2279 } else if (roundup2(zsize, UMA_BOOT_ALIGN) > UMA_SLAB_SPACE) 2280 /* See keg_small_init() special case for uk_ppera = 1. */ 2281 pages += zones; 2282 else 2283 pages += howmany(zones, 2284 UMA_SLAB_SPACE / roundup2(zsize, UMA_BOOT_ALIGN)); 2285 2286 /* ... and their kegs. Note that zone of zones allocates a keg! */ 2287 pages += howmany(zones + 1, 2288 UMA_SLAB_SPACE / roundup2(ksize, UMA_BOOT_ALIGN)); 2289 2290 /* 2291 * Most of startup zones are not going to be offpages, that's 2292 * why we use UMA_SLAB_SPACE instead of UMA_SLAB_SIZE in all 2293 * calculations. Some large bucket zones will be offpage, and 2294 * thus will allocate hashes. We take conservative approach 2295 * and assume that all zones may allocate hash. This may give 2296 * us some positive inaccuracy, usually an extra single page. 2297 */ 2298 pages += howmany(zones, UMA_SLAB_SPACE / 2299 (sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT)); 2300 2301 return (pages); 2302 } 2303 2304 void 2305 uma_startup(void *mem, int npages) 2306 { 2307 struct uma_zctor_args args; 2308 uma_keg_t masterkeg; 2309 uintptr_t m; 2310 2311 #ifdef DIAGNOSTIC 2312 printf("Entering %s with %d boot pages configured\n", __func__, npages); 2313 #endif 2314 2315 rw_init(&uma_rwlock, "UMA lock"); 2316 2317 /* Use bootpages memory for the zone of zones and zone of kegs. */ 2318 m = (uintptr_t)mem; 2319 zones = (uma_zone_t)m; 2320 m += roundup(zsize, CACHE_LINE_SIZE); 2321 kegs = (uma_zone_t)m; 2322 m += roundup(zsize, CACHE_LINE_SIZE); 2323 masterkeg = (uma_keg_t)m; 2324 m += roundup(ksize, CACHE_LINE_SIZE); 2325 m = roundup(m, PAGE_SIZE); 2326 npages -= (m - (uintptr_t)mem) / PAGE_SIZE; 2327 mem = (void *)m; 2328 2329 /* "manually" create the initial zone */ 2330 memset(&args, 0, sizeof(args)); 2331 args.name = "UMA Kegs"; 2332 args.size = ksize; 2333 args.ctor = keg_ctor; 2334 args.dtor = keg_dtor; 2335 args.uminit = zero_init; 2336 args.fini = NULL; 2337 args.keg = masterkeg; 2338 args.align = UMA_BOOT_ALIGN - 1; 2339 args.flags = UMA_ZFLAG_INTERNAL; 2340 zone_ctor(kegs, zsize, &args, M_WAITOK); 2341 2342 bootmem = mem; 2343 boot_pages = npages; 2344 2345 args.name = "UMA Zones"; 2346 args.size = zsize; 2347 args.ctor = zone_ctor; 2348 args.dtor = zone_dtor; 2349 args.uminit = zero_init; 2350 args.fini = NULL; 2351 args.keg = NULL; 2352 args.align = UMA_BOOT_ALIGN - 1; 2353 args.flags = UMA_ZFLAG_INTERNAL; 2354 zone_ctor(zones, zsize, &args, M_WAITOK); 2355 2356 /* Now make a zone for slab headers */ 2357 slabzone = uma_zcreate("UMA Slabs", 2358 sizeof(struct uma_slab), 2359 NULL, NULL, NULL, NULL, 2360 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2361 2362 hashzone = uma_zcreate("UMA Hash", 2363 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 2364 NULL, NULL, NULL, NULL, 2365 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2366 2367 bucket_init(); 2368 2369 booted = BOOT_STRAPPED; 2370 } 2371 2372 void 2373 uma_startup1(void) 2374 { 2375 2376 #ifdef DIAGNOSTIC 2377 printf("Entering %s with %d boot pages left\n", __func__, boot_pages); 2378 #endif 2379 booted = BOOT_PAGEALLOC; 2380 } 2381 2382 void 2383 uma_startup2(void) 2384 { 2385 2386 #ifdef DIAGNOSTIC 2387 printf("Entering %s with %d boot pages left\n", __func__, boot_pages); 2388 #endif 2389 booted = BOOT_BUCKETS; 2390 sx_init(&uma_reclaim_lock, "umareclaim"); 2391 bucket_enable(); 2392 } 2393 2394 /* 2395 * Initialize our callout handle 2396 * 2397 */ 2398 static void 2399 uma_startup3(void) 2400 { 2401 2402 #ifdef INVARIANTS 2403 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor); 2404 uma_dbg_cnt = counter_u64_alloc(M_WAITOK); 2405 uma_skip_cnt = counter_u64_alloc(M_WAITOK); 2406 #endif 2407 zone_foreach(zone_alloc_counters, NULL); 2408 zone_foreach(zone_alloc_sysctl, NULL); 2409 callout_init(&uma_callout, 1); 2410 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 2411 booted = BOOT_RUNNING; 2412 } 2413 2414 static uma_keg_t 2415 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 2416 int align, uint32_t flags) 2417 { 2418 struct uma_kctor_args args; 2419 2420 args.size = size; 2421 args.uminit = uminit; 2422 args.fini = fini; 2423 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 2424 args.flags = flags; 2425 args.zone = zone; 2426 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 2427 } 2428 2429 /* Public functions */ 2430 /* See uma.h */ 2431 void 2432 uma_set_align(int align) 2433 { 2434 2435 if (align != UMA_ALIGN_CACHE) 2436 uma_align_cache = align; 2437 } 2438 2439 /* See uma.h */ 2440 uma_zone_t 2441 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 2442 uma_init uminit, uma_fini fini, int align, uint32_t flags) 2443 2444 { 2445 struct uma_zctor_args args; 2446 uma_zone_t res; 2447 bool locked; 2448 2449 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 2450 align, name)); 2451 2452 /* Sets all zones to a first-touch domain policy. */ 2453 #ifdef UMA_FIRSTTOUCH 2454 flags |= UMA_ZONE_NUMA; 2455 #endif 2456 2457 /* This stuff is essential for the zone ctor */ 2458 memset(&args, 0, sizeof(args)); 2459 args.name = name; 2460 args.size = size; 2461 args.ctor = ctor; 2462 args.dtor = dtor; 2463 args.uminit = uminit; 2464 args.fini = fini; 2465 #ifdef INVARIANTS 2466 /* 2467 * Inject procedures which check for memory use after free if we are 2468 * allowed to scramble the memory while it is not allocated. This 2469 * requires that: UMA is actually able to access the memory, no init 2470 * or fini procedures, no dependency on the initial value of the 2471 * memory, and no (legitimate) use of the memory after free. Note, 2472 * the ctor and dtor do not need to be empty. 2473 * 2474 * XXX UMA_ZONE_OFFPAGE. 2475 */ 2476 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOFREE))) && 2477 uminit == NULL && fini == NULL) { 2478 args.uminit = trash_init; 2479 args.fini = trash_fini; 2480 } 2481 #endif 2482 args.align = align; 2483 args.flags = flags; 2484 args.keg = NULL; 2485 2486 if (booted < BOOT_BUCKETS) { 2487 locked = false; 2488 } else { 2489 sx_slock(&uma_reclaim_lock); 2490 locked = true; 2491 } 2492 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2493 if (locked) 2494 sx_sunlock(&uma_reclaim_lock); 2495 return (res); 2496 } 2497 2498 /* See uma.h */ 2499 uma_zone_t 2500 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 2501 uma_init zinit, uma_fini zfini, uma_zone_t master) 2502 { 2503 struct uma_zctor_args args; 2504 uma_keg_t keg; 2505 uma_zone_t res; 2506 bool locked; 2507 2508 keg = master->uz_keg; 2509 memset(&args, 0, sizeof(args)); 2510 args.name = name; 2511 args.size = keg->uk_size; 2512 args.ctor = ctor; 2513 args.dtor = dtor; 2514 args.uminit = zinit; 2515 args.fini = zfini; 2516 args.align = keg->uk_align; 2517 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 2518 args.keg = keg; 2519 2520 if (booted < BOOT_BUCKETS) { 2521 locked = false; 2522 } else { 2523 sx_slock(&uma_reclaim_lock); 2524 locked = true; 2525 } 2526 /* XXX Attaches only one keg of potentially many. */ 2527 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2528 if (locked) 2529 sx_sunlock(&uma_reclaim_lock); 2530 return (res); 2531 } 2532 2533 /* See uma.h */ 2534 uma_zone_t 2535 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor, 2536 uma_init zinit, uma_fini zfini, uma_import zimport, 2537 uma_release zrelease, void *arg, int flags) 2538 { 2539 struct uma_zctor_args args; 2540 2541 memset(&args, 0, sizeof(args)); 2542 args.name = name; 2543 args.size = size; 2544 args.ctor = ctor; 2545 args.dtor = dtor; 2546 args.uminit = zinit; 2547 args.fini = zfini; 2548 args.import = zimport; 2549 args.release = zrelease; 2550 args.arg = arg; 2551 args.align = 0; 2552 args.flags = flags | UMA_ZFLAG_CACHE; 2553 2554 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 2555 } 2556 2557 /* See uma.h */ 2558 void 2559 uma_zdestroy(uma_zone_t zone) 2560 { 2561 2562 sx_slock(&uma_reclaim_lock); 2563 zone_free_item(zones, zone, NULL, SKIP_NONE); 2564 sx_sunlock(&uma_reclaim_lock); 2565 } 2566 2567 void 2568 uma_zwait(uma_zone_t zone) 2569 { 2570 void *item; 2571 2572 item = uma_zalloc_arg(zone, NULL, M_WAITOK); 2573 uma_zfree(zone, item); 2574 } 2575 2576 void * 2577 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags) 2578 { 2579 void *item; 2580 #ifdef SMP 2581 int i; 2582 2583 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 2584 #endif 2585 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO); 2586 if (item != NULL && (flags & M_ZERO)) { 2587 #ifdef SMP 2588 for (i = 0; i <= mp_maxid; i++) 2589 bzero(zpcpu_get_cpu(item, i), zone->uz_size); 2590 #else 2591 bzero(item, zone->uz_size); 2592 #endif 2593 } 2594 return (item); 2595 } 2596 2597 /* 2598 * A stub while both regular and pcpu cases are identical. 2599 */ 2600 void 2601 uma_zfree_pcpu_arg(uma_zone_t zone, void *item, void *udata) 2602 { 2603 2604 #ifdef SMP 2605 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 2606 #endif 2607 uma_zfree_arg(zone, item, udata); 2608 } 2609 2610 static inline void * 2611 bucket_pop(uma_zone_t zone, uma_cache_t cache, uma_bucket_t bucket) 2612 { 2613 void *item; 2614 2615 bucket->ub_cnt--; 2616 item = bucket->ub_bucket[bucket->ub_cnt]; 2617 #ifdef INVARIANTS 2618 bucket->ub_bucket[bucket->ub_cnt] = NULL; 2619 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 2620 #endif 2621 cache->uc_allocs++; 2622 2623 return (item); 2624 } 2625 2626 static inline void 2627 bucket_push(uma_zone_t zone, uma_cache_t cache, uma_bucket_t bucket, 2628 void *item) 2629 { 2630 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 2631 ("uma_zfree: Freeing to non free bucket index.")); 2632 bucket->ub_bucket[bucket->ub_cnt] = item; 2633 bucket->ub_cnt++; 2634 cache->uc_frees++; 2635 } 2636 2637 static void * 2638 item_ctor(uma_zone_t zone, void *udata, int flags, void *item) 2639 { 2640 #ifdef INVARIANTS 2641 bool skipdbg; 2642 2643 skipdbg = uma_dbg_zskip(zone, item); 2644 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 2645 zone->uz_ctor != trash_ctor) 2646 trash_ctor(item, zone->uz_size, udata, flags); 2647 #endif 2648 if (__predict_false(zone->uz_ctor != NULL) && 2649 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2650 counter_u64_add(zone->uz_fails, 1); 2651 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT); 2652 return (NULL); 2653 } 2654 #ifdef INVARIANTS 2655 if (!skipdbg) 2656 uma_dbg_alloc(zone, NULL, item); 2657 #endif 2658 if (flags & M_ZERO) 2659 uma_zero_item(item, zone); 2660 2661 return (item); 2662 } 2663 2664 static inline void 2665 item_dtor(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 2666 { 2667 #ifdef INVARIANTS 2668 bool skipdbg; 2669 2670 skipdbg = uma_dbg_zskip(zone, item); 2671 if (skip == SKIP_NONE && !skipdbg) { 2672 if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0) 2673 uma_dbg_free(zone, udata, item); 2674 else 2675 uma_dbg_free(zone, NULL, item); 2676 } 2677 #endif 2678 if (skip < SKIP_DTOR) { 2679 if (zone->uz_dtor != NULL) 2680 zone->uz_dtor(item, zone->uz_size, udata); 2681 #ifdef INVARIANTS 2682 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 2683 zone->uz_dtor != trash_dtor) 2684 trash_dtor(item, zone->uz_size, udata); 2685 #endif 2686 } 2687 } 2688 2689 /* See uma.h */ 2690 void * 2691 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 2692 { 2693 uma_bucket_t bucket; 2694 uma_cache_t cache; 2695 void *item; 2696 int cpu, domain; 2697 2698 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2699 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 2700 2701 /* This is the fast path allocation */ 2702 CTR4(KTR_UMA, "uma_zalloc_arg thread %x zone %s(%p) flags %d", 2703 curthread, zone->uz_name, zone, flags); 2704 2705 if (flags & M_WAITOK) { 2706 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2707 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 2708 } 2709 KASSERT((flags & M_EXEC) == 0, ("uma_zalloc_arg: called with M_EXEC")); 2710 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2711 ("uma_zalloc_arg: called with spinlock or critical section held")); 2712 if (zone->uz_flags & UMA_ZONE_PCPU) 2713 KASSERT((flags & M_ZERO) == 0, ("allocating from a pcpu zone " 2714 "with M_ZERO passed")); 2715 2716 #ifdef DEBUG_MEMGUARD 2717 if (memguard_cmp_zone(zone)) { 2718 item = memguard_alloc(zone->uz_size, flags); 2719 if (item != NULL) { 2720 if (zone->uz_init != NULL && 2721 zone->uz_init(item, zone->uz_size, flags) != 0) 2722 return (NULL); 2723 if (zone->uz_ctor != NULL && 2724 zone->uz_ctor(item, zone->uz_size, udata, 2725 flags) != 0) { 2726 counter_u64_add(zone->uz_fails, 1); 2727 zone->uz_fini(item, zone->uz_size); 2728 return (NULL); 2729 } 2730 return (item); 2731 } 2732 /* This is unfortunate but should not be fatal. */ 2733 } 2734 #endif 2735 /* 2736 * If possible, allocate from the per-CPU cache. There are two 2737 * requirements for safe access to the per-CPU cache: (1) the thread 2738 * accessing the cache must not be preempted or yield during access, 2739 * and (2) the thread must not migrate CPUs without switching which 2740 * cache it accesses. We rely on a critical section to prevent 2741 * preemption and migration. We release the critical section in 2742 * order to acquire the zone mutex if we are unable to allocate from 2743 * the current cache; when we re-acquire the critical section, we 2744 * must detect and handle migration if it has occurred. 2745 */ 2746 critical_enter(); 2747 do { 2748 cpu = curcpu; 2749 cache = &zone->uz_cpu[cpu]; 2750 bucket = cache->uc_allocbucket; 2751 if (__predict_true(bucket != NULL && bucket->ub_cnt != 0)) { 2752 item = bucket_pop(zone, cache, bucket); 2753 critical_exit(); 2754 return (item_ctor(zone, udata, flags, item)); 2755 } 2756 } while (cache_alloc(zone, cache, udata, flags)); 2757 critical_exit(); 2758 2759 /* 2760 * We can not get a bucket so try to return a single item. 2761 */ 2762 if (zone->uz_flags & UMA_ZONE_NUMA) 2763 domain = PCPU_GET(domain); 2764 else 2765 domain = UMA_ANYDOMAIN; 2766 return (zone_alloc_item_locked(zone, udata, domain, flags)); 2767 } 2768 2769 /* 2770 * Replenish an alloc bucket and possibly restore an old one. Called in 2771 * a critical section. Returns in a critical section. 2772 * 2773 * A false return value indicates failure and returns with the zone lock 2774 * held. A true return value indicates success and the caller should retry. 2775 */ 2776 static __noinline bool 2777 cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 2778 { 2779 uma_zone_domain_t zdom; 2780 uma_bucket_t bucket; 2781 int cpu, domain; 2782 bool lockfail; 2783 2784 CRITICAL_ASSERT(curthread); 2785 2786 /* 2787 * If we have run out of items in our alloc bucket see 2788 * if we can switch with the free bucket. 2789 */ 2790 bucket = cache->uc_freebucket; 2791 if (bucket != NULL && bucket->ub_cnt != 0) { 2792 cache->uc_freebucket = cache->uc_allocbucket; 2793 cache->uc_allocbucket = bucket; 2794 return (true); 2795 } 2796 2797 /* 2798 * Discard any empty allocation bucket while we hold no locks. 2799 */ 2800 bucket = cache->uc_allocbucket; 2801 cache->uc_allocbucket = NULL; 2802 critical_exit(); 2803 if (bucket != NULL) 2804 bucket_free(zone, bucket, udata); 2805 2806 /* 2807 * Attempt to retrieve the item from the per-CPU cache has failed, so 2808 * we must go back to the zone. This requires the zone lock, so we 2809 * must drop the critical section, then re-acquire it when we go back 2810 * to the cache. Since the critical section is released, we may be 2811 * preempted or migrate. As such, make sure not to maintain any 2812 * thread-local state specific to the cache from prior to releasing 2813 * the critical section. 2814 */ 2815 lockfail = 0; 2816 if (ZONE_TRYLOCK(zone) == 0) { 2817 /* Record contention to size the buckets. */ 2818 ZONE_LOCK(zone); 2819 lockfail = 1; 2820 } 2821 2822 critical_enter(); 2823 /* Short-circuit for zones without buckets and low memory. */ 2824 if (zone->uz_bucket_size == 0 || bucketdisable) 2825 return (false); 2826 2827 cpu = curcpu; 2828 cache = &zone->uz_cpu[cpu]; 2829 2830 /* See if we lost the race to fill the cache. */ 2831 if (cache->uc_allocbucket != NULL) { 2832 ZONE_UNLOCK(zone); 2833 return (true); 2834 } 2835 2836 /* 2837 * Check the zone's cache of buckets. 2838 */ 2839 if (zone->uz_flags & UMA_ZONE_NUMA) { 2840 domain = PCPU_GET(domain); 2841 zdom = &zone->uz_domain[domain]; 2842 } else { 2843 domain = UMA_ANYDOMAIN; 2844 zdom = &zone->uz_domain[0]; 2845 } 2846 2847 if ((bucket = zone_fetch_bucket(zone, zdom)) != NULL) { 2848 ZONE_UNLOCK(zone); 2849 KASSERT(bucket->ub_cnt != 0, 2850 ("uma_zalloc_arg: Returning an empty bucket.")); 2851 cache->uc_allocbucket = bucket; 2852 return (true); 2853 } 2854 /* We are no longer associated with this CPU. */ 2855 critical_exit(); 2856 2857 /* 2858 * We bump the uz count when the cache size is insufficient to 2859 * handle the working set. 2860 */ 2861 if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max) 2862 zone->uz_bucket_size++; 2863 2864 /* 2865 * Fill a bucket and attempt to use it as the alloc bucket. 2866 */ 2867 bucket = zone_alloc_bucket(zone, udata, domain, flags); 2868 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 2869 zone->uz_name, zone, bucket); 2870 critical_enter(); 2871 if (bucket == NULL) 2872 return (false); 2873 2874 /* 2875 * See if we lost the race or were migrated. Cache the 2876 * initialized bucket to make this less likely or claim 2877 * the memory directly. 2878 */ 2879 cpu = curcpu; 2880 cache = &zone->uz_cpu[cpu]; 2881 if (cache->uc_allocbucket == NULL && 2882 ((zone->uz_flags & UMA_ZONE_NUMA) == 0 || 2883 domain == PCPU_GET(domain))) { 2884 cache->uc_allocbucket = bucket; 2885 zdom->uzd_imax += bucket->ub_cnt; 2886 } else if (zone->uz_bkt_count >= zone->uz_bkt_max) { 2887 critical_exit(); 2888 ZONE_UNLOCK(zone); 2889 bucket_drain(zone, bucket); 2890 bucket_free(zone, bucket, udata); 2891 critical_enter(); 2892 return (true); 2893 } else 2894 zone_put_bucket(zone, zdom, bucket, false); 2895 ZONE_UNLOCK(zone); 2896 return (true); 2897 } 2898 2899 void * 2900 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 2901 { 2902 2903 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2904 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 2905 2906 /* This is the fast path allocation */ 2907 CTR5(KTR_UMA, 2908 "uma_zalloc_domain thread %x zone %s(%p) domain %d flags %d", 2909 curthread, zone->uz_name, zone, domain, flags); 2910 2911 if (flags & M_WAITOK) { 2912 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2913 "uma_zalloc_domain: zone \"%s\"", zone->uz_name); 2914 } 2915 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2916 ("uma_zalloc_domain: called with spinlock or critical section held")); 2917 2918 return (zone_alloc_item(zone, udata, domain, flags)); 2919 } 2920 2921 /* 2922 * Find a slab with some space. Prefer slabs that are partially used over those 2923 * that are totally full. This helps to reduce fragmentation. 2924 * 2925 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 2926 * only 'domain'. 2927 */ 2928 static uma_slab_t 2929 keg_first_slab(uma_keg_t keg, int domain, bool rr) 2930 { 2931 uma_domain_t dom; 2932 uma_slab_t slab; 2933 int start; 2934 2935 KASSERT(domain >= 0 && domain < vm_ndomains, 2936 ("keg_first_slab: domain %d out of range", domain)); 2937 KEG_LOCK_ASSERT(keg); 2938 2939 slab = NULL; 2940 start = domain; 2941 do { 2942 dom = &keg->uk_domain[domain]; 2943 if (!LIST_EMPTY(&dom->ud_part_slab)) 2944 return (LIST_FIRST(&dom->ud_part_slab)); 2945 if (!LIST_EMPTY(&dom->ud_free_slab)) { 2946 slab = LIST_FIRST(&dom->ud_free_slab); 2947 LIST_REMOVE(slab, us_link); 2948 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 2949 return (slab); 2950 } 2951 if (rr) 2952 domain = (domain + 1) % vm_ndomains; 2953 } while (domain != start); 2954 2955 return (NULL); 2956 } 2957 2958 static uma_slab_t 2959 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags) 2960 { 2961 uint32_t reserve; 2962 2963 KEG_LOCK_ASSERT(keg); 2964 2965 reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve; 2966 if (keg->uk_free <= reserve) 2967 return (NULL); 2968 return (keg_first_slab(keg, domain, rr)); 2969 } 2970 2971 static uma_slab_t 2972 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags) 2973 { 2974 struct vm_domainset_iter di; 2975 uma_domain_t dom; 2976 uma_slab_t slab; 2977 int aflags, domain; 2978 bool rr; 2979 2980 restart: 2981 KEG_LOCK_ASSERT(keg); 2982 2983 /* 2984 * Use the keg's policy if upper layers haven't already specified a 2985 * domain (as happens with first-touch zones). 2986 * 2987 * To avoid races we run the iterator with the keg lock held, but that 2988 * means that we cannot allow the vm_domainset layer to sleep. Thus, 2989 * clear M_WAITOK and handle low memory conditions locally. 2990 */ 2991 rr = rdomain == UMA_ANYDOMAIN; 2992 if (rr) { 2993 aflags = (flags & ~M_WAITOK) | M_NOWAIT; 2994 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 2995 &aflags); 2996 } else { 2997 aflags = flags; 2998 domain = rdomain; 2999 } 3000 3001 for (;;) { 3002 slab = keg_fetch_free_slab(keg, domain, rr, flags); 3003 if (slab != NULL) 3004 return (slab); 3005 3006 /* 3007 * M_NOVM means don't ask at all! 3008 */ 3009 if (flags & M_NOVM) 3010 break; 3011 3012 KASSERT(zone->uz_max_items == 0 || 3013 zone->uz_items <= zone->uz_max_items, 3014 ("%s: zone %p overflow", __func__, zone)); 3015 3016 slab = keg_alloc_slab(keg, zone, domain, flags, aflags); 3017 /* 3018 * If we got a slab here it's safe to mark it partially used 3019 * and return. We assume that the caller is going to remove 3020 * at least one item. 3021 */ 3022 if (slab) { 3023 dom = &keg->uk_domain[slab->us_domain]; 3024 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3025 return (slab); 3026 } 3027 KEG_LOCK(keg); 3028 if (rr && vm_domainset_iter_policy(&di, &domain) != 0) { 3029 if ((flags & M_WAITOK) != 0) { 3030 KEG_UNLOCK(keg); 3031 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask); 3032 KEG_LOCK(keg); 3033 goto restart; 3034 } 3035 break; 3036 } 3037 } 3038 3039 /* 3040 * We might not have been able to get a slab but another cpu 3041 * could have while we were unlocked. Check again before we 3042 * fail. 3043 */ 3044 if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL) { 3045 return (slab); 3046 } 3047 return (NULL); 3048 } 3049 3050 static void * 3051 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 3052 { 3053 uma_domain_t dom; 3054 void *item; 3055 uint8_t freei; 3056 3057 KEG_LOCK_ASSERT(keg); 3058 3059 freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1; 3060 BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free); 3061 item = slab->us_data + (keg->uk_rsize * freei); 3062 slab->us_freecount--; 3063 keg->uk_free--; 3064 3065 /* Move this slab to the full list */ 3066 if (slab->us_freecount == 0) { 3067 LIST_REMOVE(slab, us_link); 3068 dom = &keg->uk_domain[slab->us_domain]; 3069 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 3070 } 3071 3072 return (item); 3073 } 3074 3075 static int 3076 zone_import(uma_zone_t zone, void **bucket, int max, int domain, int flags) 3077 { 3078 uma_slab_t slab; 3079 uma_keg_t keg; 3080 #ifdef NUMA 3081 int stripe; 3082 #endif 3083 int i; 3084 3085 slab = NULL; 3086 keg = zone->uz_keg; 3087 KEG_LOCK(keg); 3088 /* Try to keep the buckets totally full */ 3089 for (i = 0; i < max; ) { 3090 if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL) 3091 break; 3092 #ifdef NUMA 3093 stripe = howmany(max, vm_ndomains); 3094 #endif 3095 while (slab->us_freecount && i < max) { 3096 bucket[i++] = slab_alloc_item(keg, slab); 3097 if (keg->uk_free <= keg->uk_reserve) 3098 break; 3099 #ifdef NUMA 3100 /* 3101 * If the zone is striped we pick a new slab for every 3102 * N allocations. Eliminating this conditional will 3103 * instead pick a new domain for each bucket rather 3104 * than stripe within each bucket. The current option 3105 * produces more fragmentation and requires more cpu 3106 * time but yields better distribution. 3107 */ 3108 if ((zone->uz_flags & UMA_ZONE_NUMA) == 0 && 3109 vm_ndomains > 1 && --stripe == 0) 3110 break; 3111 #endif 3112 } 3113 /* Don't block if we allocated any successfully. */ 3114 flags &= ~M_WAITOK; 3115 flags |= M_NOWAIT; 3116 } 3117 KEG_UNLOCK(keg); 3118 3119 return i; 3120 } 3121 3122 static uma_bucket_t 3123 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags) 3124 { 3125 uma_bucket_t bucket; 3126 int maxbucket, cnt; 3127 3128 CTR1(KTR_UMA, "zone_alloc:_bucket domain %d)", domain); 3129 3130 /* Avoid allocs targeting empty domains. */ 3131 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 3132 domain = UMA_ANYDOMAIN; 3133 3134 if (zone->uz_max_items > 0) { 3135 if (zone->uz_items >= zone->uz_max_items) 3136 return (false); 3137 maxbucket = MIN(zone->uz_bucket_size, 3138 zone->uz_max_items - zone->uz_items); 3139 zone->uz_items += maxbucket; 3140 } else 3141 maxbucket = zone->uz_bucket_size; 3142 ZONE_UNLOCK(zone); 3143 3144 /* Don't wait for buckets, preserve caller's NOVM setting. */ 3145 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 3146 if (bucket == NULL) { 3147 cnt = 0; 3148 goto out; 3149 } 3150 3151 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 3152 MIN(maxbucket, bucket->ub_entries), domain, flags); 3153 3154 /* 3155 * Initialize the memory if necessary. 3156 */ 3157 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 3158 int i; 3159 3160 for (i = 0; i < bucket->ub_cnt; i++) 3161 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 3162 flags) != 0) 3163 break; 3164 /* 3165 * If we couldn't initialize the whole bucket, put the 3166 * rest back onto the freelist. 3167 */ 3168 if (i != bucket->ub_cnt) { 3169 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 3170 bucket->ub_cnt - i); 3171 #ifdef INVARIANTS 3172 bzero(&bucket->ub_bucket[i], 3173 sizeof(void *) * (bucket->ub_cnt - i)); 3174 #endif 3175 bucket->ub_cnt = i; 3176 } 3177 } 3178 3179 cnt = bucket->ub_cnt; 3180 if (bucket->ub_cnt == 0) { 3181 bucket_free(zone, bucket, udata); 3182 counter_u64_add(zone->uz_fails, 1); 3183 bucket = NULL; 3184 } 3185 out: 3186 ZONE_LOCK(zone); 3187 if (zone->uz_max_items > 0 && cnt < maxbucket) { 3188 MPASS(zone->uz_items >= maxbucket - cnt); 3189 zone->uz_items -= maxbucket - cnt; 3190 if (zone->uz_sleepers > 0 && 3191 (cnt == 0 ? zone->uz_items + 1 : zone->uz_items) < 3192 zone->uz_max_items) 3193 wakeup_one(zone); 3194 } 3195 3196 return (bucket); 3197 } 3198 3199 /* 3200 * Allocates a single item from a zone. 3201 * 3202 * Arguments 3203 * zone The zone to alloc for. 3204 * udata The data to be passed to the constructor. 3205 * domain The domain to allocate from or UMA_ANYDOMAIN. 3206 * flags M_WAITOK, M_NOWAIT, M_ZERO. 3207 * 3208 * Returns 3209 * NULL if there is no memory and M_NOWAIT is set 3210 * An item if successful 3211 */ 3212 3213 static void * 3214 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 3215 { 3216 3217 ZONE_LOCK(zone); 3218 return (zone_alloc_item_locked(zone, udata, domain, flags)); 3219 } 3220 3221 /* 3222 * Returns with zone unlocked. 3223 */ 3224 static void * 3225 zone_alloc_item_locked(uma_zone_t zone, void *udata, int domain, int flags) 3226 { 3227 void *item; 3228 3229 ZONE_LOCK_ASSERT(zone); 3230 3231 if (zone->uz_max_items > 0) { 3232 if (zone->uz_items >= zone->uz_max_items) { 3233 zone_log_warning(zone); 3234 zone_maxaction(zone); 3235 if (flags & M_NOWAIT) { 3236 ZONE_UNLOCK(zone); 3237 return (NULL); 3238 } 3239 zone->uz_sleeps++; 3240 zone->uz_sleepers++; 3241 while (zone->uz_items >= zone->uz_max_items) 3242 mtx_sleep(zone, zone->uz_lockptr, PVM, 3243 "zonelimit", 0); 3244 zone->uz_sleepers--; 3245 if (zone->uz_sleepers > 0 && 3246 zone->uz_items + 1 < zone->uz_max_items) 3247 wakeup_one(zone); 3248 } 3249 zone->uz_items++; 3250 } 3251 ZONE_UNLOCK(zone); 3252 3253 /* Avoid allocs targeting empty domains. */ 3254 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 3255 domain = UMA_ANYDOMAIN; 3256 3257 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 3258 goto fail_cnt; 3259 3260 /* 3261 * We have to call both the zone's init (not the keg's init) 3262 * and the zone's ctor. This is because the item is going from 3263 * a keg slab directly to the user, and the user is expecting it 3264 * to be both zone-init'd as well as zone-ctor'd. 3265 */ 3266 if (zone->uz_init != NULL) { 3267 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 3268 zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT); 3269 goto fail_cnt; 3270 } 3271 } 3272 item = item_ctor(zone, udata, flags, item); 3273 if (item == NULL) 3274 goto fail; 3275 3276 counter_u64_add(zone->uz_allocs, 1); 3277 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 3278 zone->uz_name, zone); 3279 3280 return (item); 3281 3282 fail_cnt: 3283 counter_u64_add(zone->uz_fails, 1); 3284 fail: 3285 if (zone->uz_max_items > 0) { 3286 ZONE_LOCK(zone); 3287 /* XXX Decrement without wakeup */ 3288 zone->uz_items--; 3289 ZONE_UNLOCK(zone); 3290 } 3291 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 3292 zone->uz_name, zone); 3293 return (NULL); 3294 } 3295 3296 /* See uma.h */ 3297 void 3298 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 3299 { 3300 uma_cache_t cache; 3301 uma_bucket_t bucket; 3302 int cpu, domain, itemdomain; 3303 3304 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3305 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3306 3307 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 3308 zone->uz_name); 3309 3310 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3311 ("uma_zfree_arg: called with spinlock or critical section held")); 3312 3313 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 3314 if (item == NULL) 3315 return; 3316 #ifdef DEBUG_MEMGUARD 3317 if (is_memguard_addr(item)) { 3318 if (zone->uz_dtor != NULL) 3319 zone->uz_dtor(item, zone->uz_size, udata); 3320 if (zone->uz_fini != NULL) 3321 zone->uz_fini(item, zone->uz_size); 3322 memguard_free(item); 3323 return; 3324 } 3325 #endif 3326 item_dtor(zone, item, udata, SKIP_NONE); 3327 3328 /* 3329 * The race here is acceptable. If we miss it we'll just have to wait 3330 * a little longer for the limits to be reset. 3331 */ 3332 if (zone->uz_sleepers > 0) 3333 goto zfree_item; 3334 3335 /* 3336 * If possible, free to the per-CPU cache. There are two 3337 * requirements for safe access to the per-CPU cache: (1) the thread 3338 * accessing the cache must not be preempted or yield during access, 3339 * and (2) the thread must not migrate CPUs without switching which 3340 * cache it accesses. We rely on a critical section to prevent 3341 * preemption and migration. We release the critical section in 3342 * order to acquire the zone mutex if we are unable to free to the 3343 * current cache; when we re-acquire the critical section, we must 3344 * detect and handle migration if it has occurred. 3345 */ 3346 domain = itemdomain = 0; 3347 critical_enter(); 3348 do { 3349 cpu = curcpu; 3350 cache = &zone->uz_cpu[cpu]; 3351 bucket = cache->uc_allocbucket; 3352 #ifdef UMA_XDOMAIN 3353 if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) { 3354 itemdomain = _vm_phys_domain(pmap_kextract((vm_offset_t)item)); 3355 domain = PCPU_GET(domain); 3356 } 3357 if ((zone->uz_flags & UMA_ZONE_NUMA) != 0 && 3358 domain != itemdomain) { 3359 bucket = cache->uc_crossbucket; 3360 } else 3361 #endif 3362 3363 /* 3364 * Try to free into the allocbucket first to give LIFO ordering 3365 * for cache-hot datastructures. Spill over into the freebucket 3366 * if necessary. Alloc will swap them if one runs dry. 3367 */ 3368 if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries) 3369 bucket = cache->uc_freebucket; 3370 if (__predict_true(bucket != NULL && 3371 bucket->ub_cnt < bucket->ub_entries)) { 3372 bucket_push(zone, cache, bucket, item); 3373 critical_exit(); 3374 return; 3375 } 3376 } while (cache_free(zone, cache, udata, item, itemdomain)); 3377 critical_exit(); 3378 3379 /* 3380 * If nothing else caught this, we'll just do an internal free. 3381 */ 3382 zfree_item: 3383 zone_free_item(zone, item, udata, SKIP_DTOR); 3384 } 3385 3386 static void 3387 zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 3388 int domain, int itemdomain) 3389 { 3390 uma_zone_domain_t zdom; 3391 3392 #ifdef UMA_XDOMAIN 3393 /* 3394 * Buckets coming from the wrong domain will be entirely for the 3395 * only other domain on two domain systems. In this case we can 3396 * simply cache them. Otherwise we need to sort them back to 3397 * correct domains by freeing the contents to the slab layer. 3398 */ 3399 if (domain != itemdomain && vm_ndomains > 2) { 3400 CTR3(KTR_UMA, 3401 "uma_zfree: zone %s(%p) draining cross bucket %p", 3402 zone->uz_name, zone, bucket); 3403 bucket_drain(zone, bucket); 3404 bucket_free(zone, bucket, udata); 3405 return; 3406 } 3407 #endif 3408 /* 3409 * Attempt to save the bucket in the zone's domain bucket cache. 3410 * 3411 * We bump the uz count when the cache size is insufficient to 3412 * handle the working set. 3413 */ 3414 if (ZONE_TRYLOCK(zone) == 0) { 3415 /* Record contention to size the buckets. */ 3416 ZONE_LOCK(zone); 3417 if (zone->uz_bucket_size < zone->uz_bucket_size_max) 3418 zone->uz_bucket_size++; 3419 } 3420 3421 CTR3(KTR_UMA, 3422 "uma_zfree: zone %s(%p) putting bucket %p on free list", 3423 zone->uz_name, zone, bucket); 3424 /* ub_cnt is pointing to the last free item */ 3425 KASSERT(bucket->ub_cnt == bucket->ub_entries, 3426 ("uma_zfree: Attempting to insert partial bucket onto the full list.\n")); 3427 if (zone->uz_bkt_count >= zone->uz_bkt_max) { 3428 ZONE_UNLOCK(zone); 3429 bucket_drain(zone, bucket); 3430 bucket_free(zone, bucket, udata); 3431 } else { 3432 zdom = &zone->uz_domain[itemdomain]; 3433 zone_put_bucket(zone, zdom, bucket, true); 3434 ZONE_UNLOCK(zone); 3435 } 3436 } 3437 3438 /* 3439 * Populate a free or cross bucket for the current cpu cache. Free any 3440 * existing full bucket either to the zone cache or back to the slab layer. 3441 * 3442 * Enters and returns in a critical section. false return indicates that 3443 * we can not satisfy this free in the cache layer. true indicates that 3444 * the caller should retry. 3445 */ 3446 static __noinline bool 3447 cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, void *item, 3448 int itemdomain) 3449 { 3450 uma_bucket_t bucket; 3451 int cpu, domain; 3452 3453 CRITICAL_ASSERT(curthread); 3454 3455 if (zone->uz_bucket_size == 0 || bucketdisable) 3456 return false; 3457 3458 cpu = curcpu; 3459 cache = &zone->uz_cpu[cpu]; 3460 3461 /* 3462 * NUMA domains need to free to the correct zdom. When XDOMAIN 3463 * is enabled this is the zdom of the item and the bucket may be 3464 * the cross bucket if they do not match. 3465 */ 3466 if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) 3467 #ifdef UMA_XDOMAIN 3468 domain = PCPU_GET(domain); 3469 #else 3470 itemdomain = domain = PCPU_GET(domain); 3471 #endif 3472 else 3473 itemdomain = domain = 0; 3474 #ifdef UMA_XDOMAIN 3475 if (domain != itemdomain) { 3476 bucket = cache->uc_crossbucket; 3477 cache->uc_crossbucket = NULL; 3478 if (bucket != NULL) 3479 atomic_add_64(&zone->uz_xdomain, bucket->ub_cnt); 3480 } else 3481 #endif 3482 { 3483 bucket = cache->uc_freebucket; 3484 cache->uc_freebucket = NULL; 3485 } 3486 3487 3488 /* We are no longer associated with this CPU. */ 3489 critical_exit(); 3490 3491 if (bucket != NULL) 3492 zone_free_bucket(zone, bucket, udata, domain, itemdomain); 3493 3494 bucket = bucket_alloc(zone, udata, M_NOWAIT); 3495 CTR3(KTR_UMA, "uma_zfree: zone %s(%p) allocated bucket %p", 3496 zone->uz_name, zone, bucket); 3497 critical_enter(); 3498 if (bucket == NULL) 3499 return (false); 3500 cpu = curcpu; 3501 cache = &zone->uz_cpu[cpu]; 3502 #ifdef UMA_XDOMAIN 3503 /* 3504 * Check to see if we should be populating the cross bucket. If it 3505 * is already populated we will fall through and attempt to populate 3506 * the free bucket. 3507 */ 3508 if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) { 3509 domain = PCPU_GET(domain); 3510 if (domain != itemdomain && cache->uc_crossbucket == NULL) { 3511 cache->uc_crossbucket = bucket; 3512 return (true); 3513 } 3514 } 3515 #endif 3516 /* 3517 * We may have lost the race to fill the bucket or switched CPUs. 3518 */ 3519 if (cache->uc_freebucket != NULL) { 3520 critical_exit(); 3521 bucket_free(zone, bucket, udata); 3522 critical_enter(); 3523 } else 3524 cache->uc_freebucket = bucket; 3525 3526 return (true); 3527 } 3528 3529 void 3530 uma_zfree_domain(uma_zone_t zone, void *item, void *udata) 3531 { 3532 3533 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3534 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3535 3536 CTR2(KTR_UMA, "uma_zfree_domain thread %x zone %s", curthread, 3537 zone->uz_name); 3538 3539 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3540 ("uma_zfree_domain: called with spinlock or critical section held")); 3541 3542 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 3543 if (item == NULL) 3544 return; 3545 zone_free_item(zone, item, udata, SKIP_NONE); 3546 } 3547 3548 static void 3549 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item) 3550 { 3551 uma_keg_t keg; 3552 uma_domain_t dom; 3553 uint8_t freei; 3554 3555 keg = zone->uz_keg; 3556 MPASS(zone->uz_lockptr == &keg->uk_lock); 3557 KEG_LOCK_ASSERT(keg); 3558 3559 dom = &keg->uk_domain[slab->us_domain]; 3560 3561 /* Do we need to remove from any lists? */ 3562 if (slab->us_freecount+1 == keg->uk_ipers) { 3563 LIST_REMOVE(slab, us_link); 3564 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 3565 } else if (slab->us_freecount == 0) { 3566 LIST_REMOVE(slab, us_link); 3567 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3568 } 3569 3570 /* Slab management. */ 3571 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3572 BIT_SET(SLAB_SETSIZE, freei, &slab->us_free); 3573 slab->us_freecount++; 3574 3575 /* Keg statistics. */ 3576 keg->uk_free++; 3577 } 3578 3579 static void 3580 zone_release(uma_zone_t zone, void **bucket, int cnt) 3581 { 3582 void *item; 3583 uma_slab_t slab; 3584 uma_keg_t keg; 3585 uint8_t *mem; 3586 int i; 3587 3588 keg = zone->uz_keg; 3589 KEG_LOCK(keg); 3590 for (i = 0; i < cnt; i++) { 3591 item = bucket[i]; 3592 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) { 3593 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 3594 if (zone->uz_flags & UMA_ZONE_HASH) { 3595 slab = hash_sfind(&keg->uk_hash, mem); 3596 } else { 3597 mem += keg->uk_pgoff; 3598 slab = (uma_slab_t)mem; 3599 } 3600 } else 3601 slab = vtoslab((vm_offset_t)item); 3602 slab_free_item(zone, slab, item); 3603 } 3604 KEG_UNLOCK(keg); 3605 } 3606 3607 /* 3608 * Frees a single item to any zone. 3609 * 3610 * Arguments: 3611 * zone The zone to free to 3612 * item The item we're freeing 3613 * udata User supplied data for the dtor 3614 * skip Skip dtors and finis 3615 */ 3616 static void 3617 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 3618 { 3619 3620 item_dtor(zone, item, udata, skip); 3621 3622 if (skip < SKIP_FINI && zone->uz_fini) 3623 zone->uz_fini(item, zone->uz_size); 3624 3625 zone->uz_release(zone->uz_arg, &item, 1); 3626 3627 if (skip & SKIP_CNT) 3628 return; 3629 3630 counter_u64_add(zone->uz_frees, 1); 3631 3632 if (zone->uz_max_items > 0) { 3633 ZONE_LOCK(zone); 3634 zone->uz_items--; 3635 if (zone->uz_sleepers > 0 && 3636 zone->uz_items < zone->uz_max_items) 3637 wakeup_one(zone); 3638 ZONE_UNLOCK(zone); 3639 } 3640 } 3641 3642 /* See uma.h */ 3643 int 3644 uma_zone_set_max(uma_zone_t zone, int nitems) 3645 { 3646 struct uma_bucket_zone *ubz; 3647 int count; 3648 3649 ZONE_LOCK(zone); 3650 ubz = bucket_zone_max(zone, nitems); 3651 count = ubz != NULL ? ubz->ubz_entries : 0; 3652 zone->uz_bucket_size_max = zone->uz_bucket_size = count; 3653 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 3654 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 3655 zone->uz_max_items = nitems; 3656 ZONE_UNLOCK(zone); 3657 3658 return (nitems); 3659 } 3660 3661 /* See uma.h */ 3662 void 3663 uma_zone_set_maxcache(uma_zone_t zone, int nitems) 3664 { 3665 struct uma_bucket_zone *ubz; 3666 int bpcpu; 3667 3668 ZONE_LOCK(zone); 3669 ubz = bucket_zone_max(zone, nitems); 3670 if (ubz != NULL) { 3671 bpcpu = 2; 3672 #ifdef UMA_XDOMAIN 3673 if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) 3674 /* Count the cross-domain bucket. */ 3675 bpcpu++; 3676 #endif 3677 nitems -= ubz->ubz_entries * bpcpu * mp_ncpus; 3678 zone->uz_bucket_size_max = ubz->ubz_entries; 3679 } else { 3680 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 3681 } 3682 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 3683 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 3684 zone->uz_bkt_max = nitems; 3685 ZONE_UNLOCK(zone); 3686 } 3687 3688 /* See uma.h */ 3689 int 3690 uma_zone_get_max(uma_zone_t zone) 3691 { 3692 int nitems; 3693 3694 ZONE_LOCK(zone); 3695 nitems = zone->uz_max_items; 3696 ZONE_UNLOCK(zone); 3697 3698 return (nitems); 3699 } 3700 3701 /* See uma.h */ 3702 void 3703 uma_zone_set_warning(uma_zone_t zone, const char *warning) 3704 { 3705 3706 ZONE_LOCK(zone); 3707 zone->uz_warning = warning; 3708 ZONE_UNLOCK(zone); 3709 } 3710 3711 /* See uma.h */ 3712 void 3713 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 3714 { 3715 3716 ZONE_LOCK(zone); 3717 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 3718 ZONE_UNLOCK(zone); 3719 } 3720 3721 /* See uma.h */ 3722 int 3723 uma_zone_get_cur(uma_zone_t zone) 3724 { 3725 int64_t nitems; 3726 u_int i; 3727 3728 ZONE_LOCK(zone); 3729 nitems = counter_u64_fetch(zone->uz_allocs) - 3730 counter_u64_fetch(zone->uz_frees); 3731 if ((zone->uz_flags & UMA_ZFLAG_INTERNAL) == 0) { 3732 CPU_FOREACH(i) { 3733 /* 3734 * See the comment in uma_vm_zone_stats() regarding 3735 * the safety of accessing the per-cpu caches. With 3736 * the zone lock held, it is safe, but can potentially 3737 * result in stale data. 3738 */ 3739 nitems += zone->uz_cpu[i].uc_allocs - 3740 zone->uz_cpu[i].uc_frees; 3741 } 3742 } 3743 ZONE_UNLOCK(zone); 3744 3745 return (nitems < 0 ? 0 : nitems); 3746 } 3747 3748 static uint64_t 3749 uma_zone_get_allocs(uma_zone_t zone) 3750 { 3751 uint64_t nitems; 3752 u_int i; 3753 3754 ZONE_LOCK(zone); 3755 nitems = counter_u64_fetch(zone->uz_allocs); 3756 if ((zone->uz_flags & UMA_ZFLAG_INTERNAL) == 0) { 3757 CPU_FOREACH(i) { 3758 /* 3759 * See the comment in uma_vm_zone_stats() regarding 3760 * the safety of accessing the per-cpu caches. With 3761 * the zone lock held, it is safe, but can potentially 3762 * result in stale data. 3763 */ 3764 nitems += zone->uz_cpu[i].uc_allocs; 3765 } 3766 } 3767 ZONE_UNLOCK(zone); 3768 3769 return (nitems); 3770 } 3771 3772 static uint64_t 3773 uma_zone_get_frees(uma_zone_t zone) 3774 { 3775 uint64_t nitems; 3776 u_int i; 3777 3778 ZONE_LOCK(zone); 3779 nitems = counter_u64_fetch(zone->uz_frees); 3780 if ((zone->uz_flags & UMA_ZFLAG_INTERNAL) == 0) { 3781 CPU_FOREACH(i) { 3782 /* 3783 * See the comment in uma_vm_zone_stats() regarding 3784 * the safety of accessing the per-cpu caches. With 3785 * the zone lock held, it is safe, but can potentially 3786 * result in stale data. 3787 */ 3788 nitems += zone->uz_cpu[i].uc_frees; 3789 } 3790 } 3791 ZONE_UNLOCK(zone); 3792 3793 return (nitems); 3794 } 3795 3796 /* See uma.h */ 3797 void 3798 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 3799 { 3800 uma_keg_t keg; 3801 3802 KEG_GET(zone, keg); 3803 KEG_LOCK(keg); 3804 KASSERT(keg->uk_pages == 0, 3805 ("uma_zone_set_init on non-empty keg")); 3806 keg->uk_init = uminit; 3807 KEG_UNLOCK(keg); 3808 } 3809 3810 /* See uma.h */ 3811 void 3812 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 3813 { 3814 uma_keg_t keg; 3815 3816 KEG_GET(zone, keg); 3817 KEG_LOCK(keg); 3818 KASSERT(keg->uk_pages == 0, 3819 ("uma_zone_set_fini on non-empty keg")); 3820 keg->uk_fini = fini; 3821 KEG_UNLOCK(keg); 3822 } 3823 3824 /* See uma.h */ 3825 void 3826 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 3827 { 3828 3829 ZONE_LOCK(zone); 3830 KASSERT(zone->uz_keg->uk_pages == 0, 3831 ("uma_zone_set_zinit on non-empty keg")); 3832 zone->uz_init = zinit; 3833 ZONE_UNLOCK(zone); 3834 } 3835 3836 /* See uma.h */ 3837 void 3838 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 3839 { 3840 3841 ZONE_LOCK(zone); 3842 KASSERT(zone->uz_keg->uk_pages == 0, 3843 ("uma_zone_set_zfini on non-empty keg")); 3844 zone->uz_fini = zfini; 3845 ZONE_UNLOCK(zone); 3846 } 3847 3848 /* See uma.h */ 3849 /* XXX uk_freef is not actually used with the zone locked */ 3850 void 3851 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 3852 { 3853 uma_keg_t keg; 3854 3855 KEG_GET(zone, keg); 3856 KASSERT(keg != NULL, ("uma_zone_set_freef: Invalid zone type")); 3857 KEG_LOCK(keg); 3858 keg->uk_freef = freef; 3859 KEG_UNLOCK(keg); 3860 } 3861 3862 /* See uma.h */ 3863 /* XXX uk_allocf is not actually used with the zone locked */ 3864 void 3865 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 3866 { 3867 uma_keg_t keg; 3868 3869 KEG_GET(zone, keg); 3870 KEG_LOCK(keg); 3871 keg->uk_allocf = allocf; 3872 KEG_UNLOCK(keg); 3873 } 3874 3875 /* See uma.h */ 3876 void 3877 uma_zone_reserve(uma_zone_t zone, int items) 3878 { 3879 uma_keg_t keg; 3880 3881 KEG_GET(zone, keg); 3882 KEG_LOCK(keg); 3883 keg->uk_reserve = items; 3884 KEG_UNLOCK(keg); 3885 } 3886 3887 /* See uma.h */ 3888 int 3889 uma_zone_reserve_kva(uma_zone_t zone, int count) 3890 { 3891 uma_keg_t keg; 3892 vm_offset_t kva; 3893 u_int pages; 3894 3895 KEG_GET(zone, keg); 3896 3897 pages = count / keg->uk_ipers; 3898 if (pages * keg->uk_ipers < count) 3899 pages++; 3900 pages *= keg->uk_ppera; 3901 3902 #ifdef UMA_MD_SMALL_ALLOC 3903 if (keg->uk_ppera > 1) { 3904 #else 3905 if (1) { 3906 #endif 3907 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 3908 if (kva == 0) 3909 return (0); 3910 } else 3911 kva = 0; 3912 3913 ZONE_LOCK(zone); 3914 MPASS(keg->uk_kva == 0); 3915 keg->uk_kva = kva; 3916 keg->uk_offset = 0; 3917 zone->uz_max_items = pages * keg->uk_ipers; 3918 #ifdef UMA_MD_SMALL_ALLOC 3919 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 3920 #else 3921 keg->uk_allocf = noobj_alloc; 3922 #endif 3923 keg->uk_flags |= UMA_ZONE_NOFREE; 3924 ZONE_UNLOCK(zone); 3925 3926 return (1); 3927 } 3928 3929 /* See uma.h */ 3930 void 3931 uma_prealloc(uma_zone_t zone, int items) 3932 { 3933 struct vm_domainset_iter di; 3934 uma_domain_t dom; 3935 uma_slab_t slab; 3936 uma_keg_t keg; 3937 int aflags, domain, slabs; 3938 3939 KEG_GET(zone, keg); 3940 KEG_LOCK(keg); 3941 slabs = items / keg->uk_ipers; 3942 if (slabs * keg->uk_ipers < items) 3943 slabs++; 3944 while (slabs-- > 0) { 3945 aflags = M_NOWAIT; 3946 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 3947 &aflags); 3948 for (;;) { 3949 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK, 3950 aflags); 3951 if (slab != NULL) { 3952 dom = &keg->uk_domain[slab->us_domain]; 3953 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, 3954 us_link); 3955 break; 3956 } 3957 KEG_LOCK(keg); 3958 if (vm_domainset_iter_policy(&di, &domain) != 0) { 3959 KEG_UNLOCK(keg); 3960 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask); 3961 KEG_LOCK(keg); 3962 } 3963 } 3964 } 3965 KEG_UNLOCK(keg); 3966 } 3967 3968 /* See uma.h */ 3969 void 3970 uma_reclaim(int req) 3971 { 3972 3973 CTR0(KTR_UMA, "UMA: vm asked us to release pages!"); 3974 sx_xlock(&uma_reclaim_lock); 3975 bucket_enable(); 3976 3977 switch (req) { 3978 case UMA_RECLAIM_TRIM: 3979 zone_foreach(zone_trim, NULL); 3980 break; 3981 case UMA_RECLAIM_DRAIN: 3982 case UMA_RECLAIM_DRAIN_CPU: 3983 zone_foreach(zone_drain, NULL); 3984 if (req == UMA_RECLAIM_DRAIN_CPU) { 3985 pcpu_cache_drain_safe(NULL); 3986 zone_foreach(zone_drain, NULL); 3987 } 3988 break; 3989 default: 3990 panic("unhandled reclamation request %d", req); 3991 } 3992 3993 /* 3994 * Some slabs may have been freed but this zone will be visited early 3995 * we visit again so that we can free pages that are empty once other 3996 * zones are drained. We have to do the same for buckets. 3997 */ 3998 zone_drain(slabzone, NULL); 3999 bucket_zone_drain(); 4000 sx_xunlock(&uma_reclaim_lock); 4001 } 4002 4003 static volatile int uma_reclaim_needed; 4004 4005 void 4006 uma_reclaim_wakeup(void) 4007 { 4008 4009 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 4010 wakeup(uma_reclaim); 4011 } 4012 4013 void 4014 uma_reclaim_worker(void *arg __unused) 4015 { 4016 4017 for (;;) { 4018 sx_xlock(&uma_reclaim_lock); 4019 while (atomic_load_int(&uma_reclaim_needed) == 0) 4020 sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl", 4021 hz); 4022 sx_xunlock(&uma_reclaim_lock); 4023 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 4024 uma_reclaim(UMA_RECLAIM_DRAIN_CPU); 4025 atomic_store_int(&uma_reclaim_needed, 0); 4026 /* Don't fire more than once per-second. */ 4027 pause("umarclslp", hz); 4028 } 4029 } 4030 4031 /* See uma.h */ 4032 void 4033 uma_zone_reclaim(uma_zone_t zone, int req) 4034 { 4035 4036 switch (req) { 4037 case UMA_RECLAIM_TRIM: 4038 zone_trim(zone, NULL); 4039 break; 4040 case UMA_RECLAIM_DRAIN: 4041 zone_drain(zone, NULL); 4042 break; 4043 case UMA_RECLAIM_DRAIN_CPU: 4044 pcpu_cache_drain_safe(zone); 4045 zone_drain(zone, NULL); 4046 break; 4047 default: 4048 panic("unhandled reclamation request %d", req); 4049 } 4050 } 4051 4052 /* See uma.h */ 4053 int 4054 uma_zone_exhausted(uma_zone_t zone) 4055 { 4056 int full; 4057 4058 ZONE_LOCK(zone); 4059 full = zone->uz_sleepers > 0; 4060 ZONE_UNLOCK(zone); 4061 return (full); 4062 } 4063 4064 int 4065 uma_zone_exhausted_nolock(uma_zone_t zone) 4066 { 4067 return (zone->uz_sleepers > 0); 4068 } 4069 4070 static void 4071 uma_zero_item(void *item, uma_zone_t zone) 4072 { 4073 4074 bzero(item, zone->uz_size); 4075 } 4076 4077 unsigned long 4078 uma_limit(void) 4079 { 4080 4081 return (uma_kmem_limit); 4082 } 4083 4084 void 4085 uma_set_limit(unsigned long limit) 4086 { 4087 4088 uma_kmem_limit = limit; 4089 } 4090 4091 unsigned long 4092 uma_size(void) 4093 { 4094 4095 return (atomic_load_long(&uma_kmem_total)); 4096 } 4097 4098 long 4099 uma_avail(void) 4100 { 4101 4102 return (uma_kmem_limit - uma_size()); 4103 } 4104 4105 #ifdef DDB 4106 /* 4107 * Generate statistics across both the zone and its per-cpu cache's. Return 4108 * desired statistics if the pointer is non-NULL for that statistic. 4109 * 4110 * Note: does not update the zone statistics, as it can't safely clear the 4111 * per-CPU cache statistic. 4112 * 4113 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't 4114 * safe from off-CPU; we should modify the caches to track this information 4115 * directly so that we don't have to. 4116 */ 4117 static void 4118 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp, 4119 uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp) 4120 { 4121 uma_cache_t cache; 4122 uint64_t allocs, frees, sleeps, xdomain; 4123 int cachefree, cpu; 4124 4125 allocs = frees = sleeps = xdomain = 0; 4126 cachefree = 0; 4127 CPU_FOREACH(cpu) { 4128 cache = &z->uz_cpu[cpu]; 4129 if (cache->uc_allocbucket != NULL) 4130 cachefree += cache->uc_allocbucket->ub_cnt; 4131 if (cache->uc_freebucket != NULL) 4132 cachefree += cache->uc_freebucket->ub_cnt; 4133 if (cache->uc_crossbucket != NULL) { 4134 xdomain += cache->uc_crossbucket->ub_cnt; 4135 cachefree += cache->uc_crossbucket->ub_cnt; 4136 } 4137 allocs += cache->uc_allocs; 4138 frees += cache->uc_frees; 4139 } 4140 allocs += counter_u64_fetch(z->uz_allocs); 4141 frees += counter_u64_fetch(z->uz_frees); 4142 sleeps += z->uz_sleeps; 4143 xdomain += z->uz_xdomain; 4144 if (cachefreep != NULL) 4145 *cachefreep = cachefree; 4146 if (allocsp != NULL) 4147 *allocsp = allocs; 4148 if (freesp != NULL) 4149 *freesp = frees; 4150 if (sleepsp != NULL) 4151 *sleepsp = sleeps; 4152 if (xdomainp != NULL) 4153 *xdomainp = xdomain; 4154 } 4155 #endif /* DDB */ 4156 4157 static int 4158 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 4159 { 4160 uma_keg_t kz; 4161 uma_zone_t z; 4162 int count; 4163 4164 count = 0; 4165 rw_rlock(&uma_rwlock); 4166 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4167 LIST_FOREACH(z, &kz->uk_zones, uz_link) 4168 count++; 4169 } 4170 LIST_FOREACH(z, &uma_cachezones, uz_link) 4171 count++; 4172 4173 rw_runlock(&uma_rwlock); 4174 return (sysctl_handle_int(oidp, &count, 0, req)); 4175 } 4176 4177 static void 4178 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf, 4179 struct uma_percpu_stat *ups, bool internal) 4180 { 4181 uma_zone_domain_t zdom; 4182 uma_bucket_t bucket; 4183 uma_cache_t cache; 4184 int i; 4185 4186 4187 for (i = 0; i < vm_ndomains; i++) { 4188 zdom = &z->uz_domain[i]; 4189 uth->uth_zone_free += zdom->uzd_nitems; 4190 } 4191 uth->uth_allocs = counter_u64_fetch(z->uz_allocs); 4192 uth->uth_frees = counter_u64_fetch(z->uz_frees); 4193 uth->uth_fails = counter_u64_fetch(z->uz_fails); 4194 uth->uth_sleeps = z->uz_sleeps; 4195 uth->uth_xdomain = z->uz_xdomain; 4196 4197 /* 4198 * While it is not normally safe to access the cache bucket pointers 4199 * while not on the CPU that owns the cache, we only allow the pointers 4200 * to be exchanged without the zone lock held, not invalidated, so 4201 * accept the possible race associated with bucket exchange during 4202 * monitoring. Use atomic_load_ptr() to ensure that the bucket pointers 4203 * are loaded only once. 4204 */ 4205 for (i = 0; i < mp_maxid + 1; i++) { 4206 bzero(&ups[i], sizeof(*ups)); 4207 if (internal || CPU_ABSENT(i)) 4208 continue; 4209 cache = &z->uz_cpu[i]; 4210 bucket = (uma_bucket_t)atomic_load_ptr(&cache->uc_allocbucket); 4211 if (bucket != NULL) 4212 ups[i].ups_cache_free += bucket->ub_cnt; 4213 bucket = (uma_bucket_t)atomic_load_ptr(&cache->uc_freebucket); 4214 if (bucket != NULL) 4215 ups[i].ups_cache_free += bucket->ub_cnt; 4216 bucket = (uma_bucket_t)atomic_load_ptr(&cache->uc_crossbucket); 4217 if (bucket != NULL) 4218 ups[i].ups_cache_free += bucket->ub_cnt; 4219 ups[i].ups_allocs = cache->uc_allocs; 4220 ups[i].ups_frees = cache->uc_frees; 4221 } 4222 } 4223 4224 static int 4225 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 4226 { 4227 struct uma_stream_header ush; 4228 struct uma_type_header uth; 4229 struct uma_percpu_stat *ups; 4230 struct sbuf sbuf; 4231 uma_keg_t kz; 4232 uma_zone_t z; 4233 int count, error, i; 4234 4235 error = sysctl_wire_old_buffer(req, 0); 4236 if (error != 0) 4237 return (error); 4238 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 4239 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 4240 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 4241 4242 count = 0; 4243 rw_rlock(&uma_rwlock); 4244 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4245 LIST_FOREACH(z, &kz->uk_zones, uz_link) 4246 count++; 4247 } 4248 4249 LIST_FOREACH(z, &uma_cachezones, uz_link) 4250 count++; 4251 4252 /* 4253 * Insert stream header. 4254 */ 4255 bzero(&ush, sizeof(ush)); 4256 ush.ush_version = UMA_STREAM_VERSION; 4257 ush.ush_maxcpus = (mp_maxid + 1); 4258 ush.ush_count = count; 4259 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 4260 4261 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4262 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 4263 bzero(&uth, sizeof(uth)); 4264 ZONE_LOCK(z); 4265 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 4266 uth.uth_align = kz->uk_align; 4267 uth.uth_size = kz->uk_size; 4268 uth.uth_rsize = kz->uk_rsize; 4269 if (z->uz_max_items > 0) 4270 uth.uth_pages = (z->uz_items / kz->uk_ipers) * 4271 kz->uk_ppera; 4272 else 4273 uth.uth_pages = kz->uk_pages; 4274 uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) * 4275 kz->uk_ppera; 4276 uth.uth_limit = z->uz_max_items; 4277 uth.uth_keg_free = z->uz_keg->uk_free; 4278 4279 /* 4280 * A zone is secondary is it is not the first entry 4281 * on the keg's zone list. 4282 */ 4283 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 4284 (LIST_FIRST(&kz->uk_zones) != z)) 4285 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 4286 uma_vm_zone_stats(&uth, z, &sbuf, ups, 4287 kz->uk_flags & UMA_ZFLAG_INTERNAL); 4288 ZONE_UNLOCK(z); 4289 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 4290 for (i = 0; i < mp_maxid + 1; i++) 4291 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 4292 } 4293 } 4294 LIST_FOREACH(z, &uma_cachezones, uz_link) { 4295 bzero(&uth, sizeof(uth)); 4296 ZONE_LOCK(z); 4297 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 4298 uth.uth_size = z->uz_size; 4299 uma_vm_zone_stats(&uth, z, &sbuf, ups, false); 4300 ZONE_UNLOCK(z); 4301 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 4302 for (i = 0; i < mp_maxid + 1; i++) 4303 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 4304 } 4305 4306 rw_runlock(&uma_rwlock); 4307 error = sbuf_finish(&sbuf); 4308 sbuf_delete(&sbuf); 4309 free(ups, M_TEMP); 4310 return (error); 4311 } 4312 4313 int 4314 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 4315 { 4316 uma_zone_t zone = *(uma_zone_t *)arg1; 4317 int error, max; 4318 4319 max = uma_zone_get_max(zone); 4320 error = sysctl_handle_int(oidp, &max, 0, req); 4321 if (error || !req->newptr) 4322 return (error); 4323 4324 uma_zone_set_max(zone, max); 4325 4326 return (0); 4327 } 4328 4329 int 4330 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 4331 { 4332 uma_zone_t zone; 4333 int cur; 4334 4335 /* 4336 * Some callers want to add sysctls for global zones that 4337 * may not yet exist so they pass a pointer to a pointer. 4338 */ 4339 if (arg2 == 0) 4340 zone = *(uma_zone_t *)arg1; 4341 else 4342 zone = arg1; 4343 cur = uma_zone_get_cur(zone); 4344 return (sysctl_handle_int(oidp, &cur, 0, req)); 4345 } 4346 4347 static int 4348 sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS) 4349 { 4350 uma_zone_t zone = arg1; 4351 uint64_t cur; 4352 4353 cur = uma_zone_get_allocs(zone); 4354 return (sysctl_handle_64(oidp, &cur, 0, req)); 4355 } 4356 4357 static int 4358 sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS) 4359 { 4360 uma_zone_t zone = arg1; 4361 uint64_t cur; 4362 4363 cur = uma_zone_get_frees(zone); 4364 return (sysctl_handle_64(oidp, &cur, 0, req)); 4365 } 4366 4367 #ifdef INVARIANTS 4368 static uma_slab_t 4369 uma_dbg_getslab(uma_zone_t zone, void *item) 4370 { 4371 uma_slab_t slab; 4372 uma_keg_t keg; 4373 uint8_t *mem; 4374 4375 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 4376 if (zone->uz_flags & UMA_ZONE_VTOSLAB) { 4377 slab = vtoslab((vm_offset_t)mem); 4378 } else { 4379 /* 4380 * It is safe to return the slab here even though the 4381 * zone is unlocked because the item's allocation state 4382 * essentially holds a reference. 4383 */ 4384 if (zone->uz_lockptr == &zone->uz_lock) 4385 return (NULL); 4386 ZONE_LOCK(zone); 4387 keg = zone->uz_keg; 4388 if (keg->uk_flags & UMA_ZONE_HASH) 4389 slab = hash_sfind(&keg->uk_hash, mem); 4390 else 4391 slab = (uma_slab_t)(mem + keg->uk_pgoff); 4392 ZONE_UNLOCK(zone); 4393 } 4394 4395 return (slab); 4396 } 4397 4398 static bool 4399 uma_dbg_zskip(uma_zone_t zone, void *mem) 4400 { 4401 4402 if (zone->uz_lockptr == &zone->uz_lock) 4403 return (true); 4404 4405 return (uma_dbg_kskip(zone->uz_keg, mem)); 4406 } 4407 4408 static bool 4409 uma_dbg_kskip(uma_keg_t keg, void *mem) 4410 { 4411 uintptr_t idx; 4412 4413 if (dbg_divisor == 0) 4414 return (true); 4415 4416 if (dbg_divisor == 1) 4417 return (false); 4418 4419 idx = (uintptr_t)mem >> PAGE_SHIFT; 4420 if (keg->uk_ipers > 1) { 4421 idx *= keg->uk_ipers; 4422 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize; 4423 } 4424 4425 if ((idx / dbg_divisor) * dbg_divisor != idx) { 4426 counter_u64_add(uma_skip_cnt, 1); 4427 return (true); 4428 } 4429 counter_u64_add(uma_dbg_cnt, 1); 4430 4431 return (false); 4432 } 4433 4434 /* 4435 * Set up the slab's freei data such that uma_dbg_free can function. 4436 * 4437 */ 4438 static void 4439 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 4440 { 4441 uma_keg_t keg; 4442 int freei; 4443 4444 if (slab == NULL) { 4445 slab = uma_dbg_getslab(zone, item); 4446 if (slab == NULL) 4447 panic("uma: item %p did not belong to zone %s\n", 4448 item, zone->uz_name); 4449 } 4450 keg = zone->uz_keg; 4451 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 4452 4453 if (BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 4454 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n", 4455 item, zone, zone->uz_name, slab, freei); 4456 BIT_SET_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 4457 4458 return; 4459 } 4460 4461 /* 4462 * Verifies freed addresses. Checks for alignment, valid slab membership 4463 * and duplicate frees. 4464 * 4465 */ 4466 static void 4467 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 4468 { 4469 uma_keg_t keg; 4470 int freei; 4471 4472 if (slab == NULL) { 4473 slab = uma_dbg_getslab(zone, item); 4474 if (slab == NULL) 4475 panic("uma: Freed item %p did not belong to zone %s\n", 4476 item, zone->uz_name); 4477 } 4478 keg = zone->uz_keg; 4479 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 4480 4481 if (freei >= keg->uk_ipers) 4482 panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n", 4483 item, zone, zone->uz_name, slab, freei); 4484 4485 if (((freei * keg->uk_rsize) + slab->us_data) != item) 4486 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n", 4487 item, zone, zone->uz_name, slab, freei); 4488 4489 if (!BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 4490 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n", 4491 item, zone, zone->uz_name, slab, freei); 4492 4493 BIT_CLR_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 4494 } 4495 #endif /* INVARIANTS */ 4496 4497 #ifdef DDB 4498 static int64_t 4499 get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used, 4500 uint64_t *sleeps, long *cachefree, uint64_t *xdomain) 4501 { 4502 uint64_t frees; 4503 int i; 4504 4505 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 4506 *allocs = counter_u64_fetch(z->uz_allocs); 4507 frees = counter_u64_fetch(z->uz_frees); 4508 *sleeps = z->uz_sleeps; 4509 *cachefree = 0; 4510 *xdomain = 0; 4511 } else 4512 uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps, 4513 xdomain); 4514 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 4515 (LIST_FIRST(&kz->uk_zones) != z))) 4516 *cachefree += kz->uk_free; 4517 for (i = 0; i < vm_ndomains; i++) 4518 *cachefree += z->uz_domain[i].uzd_nitems; 4519 *used = *allocs - frees; 4520 return (((int64_t)*used + *cachefree) * kz->uk_size); 4521 } 4522 4523 DB_SHOW_COMMAND(uma, db_show_uma) 4524 { 4525 const char *fmt_hdr, *fmt_entry; 4526 uma_keg_t kz; 4527 uma_zone_t z; 4528 uint64_t allocs, used, sleeps, xdomain; 4529 long cachefree; 4530 /* variables for sorting */ 4531 uma_keg_t cur_keg; 4532 uma_zone_t cur_zone, last_zone; 4533 int64_t cur_size, last_size, size; 4534 int ties; 4535 4536 /* /i option produces machine-parseable CSV output */ 4537 if (modif[0] == 'i') { 4538 fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n"; 4539 fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n"; 4540 } else { 4541 fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n"; 4542 fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n"; 4543 } 4544 4545 db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests", 4546 "Sleeps", "Bucket", "Total Mem", "XFree"); 4547 4548 /* Sort the zones with largest size first. */ 4549 last_zone = NULL; 4550 last_size = INT64_MAX; 4551 for (;;) { 4552 cur_zone = NULL; 4553 cur_size = -1; 4554 ties = 0; 4555 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4556 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 4557 /* 4558 * In the case of size ties, print out zones 4559 * in the order they are encountered. That is, 4560 * when we encounter the most recently output 4561 * zone, we have already printed all preceding 4562 * ties, and we must print all following ties. 4563 */ 4564 if (z == last_zone) { 4565 ties = 1; 4566 continue; 4567 } 4568 size = get_uma_stats(kz, z, &allocs, &used, 4569 &sleeps, &cachefree, &xdomain); 4570 if (size > cur_size && size < last_size + ties) 4571 { 4572 cur_size = size; 4573 cur_zone = z; 4574 cur_keg = kz; 4575 } 4576 } 4577 } 4578 if (cur_zone == NULL) 4579 break; 4580 4581 size = get_uma_stats(cur_keg, cur_zone, &allocs, &used, 4582 &sleeps, &cachefree, &xdomain); 4583 db_printf(fmt_entry, cur_zone->uz_name, 4584 (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree, 4585 (uintmax_t)allocs, (uintmax_t)sleeps, 4586 (unsigned)cur_zone->uz_bucket_size, (intmax_t)size, 4587 xdomain); 4588 4589 if (db_pager_quit) 4590 return; 4591 last_zone = cur_zone; 4592 last_size = cur_size; 4593 } 4594 } 4595 4596 DB_SHOW_COMMAND(umacache, db_show_umacache) 4597 { 4598 uma_zone_t z; 4599 uint64_t allocs, frees; 4600 long cachefree; 4601 int i; 4602 4603 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 4604 "Requests", "Bucket"); 4605 LIST_FOREACH(z, &uma_cachezones, uz_link) { 4606 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL); 4607 for (i = 0; i < vm_ndomains; i++) 4608 cachefree += z->uz_domain[i].uzd_nitems; 4609 db_printf("%18s %8ju %8jd %8ld %12ju %8u\n", 4610 z->uz_name, (uintmax_t)z->uz_size, 4611 (intmax_t)(allocs - frees), cachefree, 4612 (uintmax_t)allocs, z->uz_bucket_size); 4613 if (db_pager_quit) 4614 return; 4615 } 4616 } 4617 #endif /* DDB */ 4618