1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/bitset.h> 62 #include <sys/domainset.h> 63 #include <sys/eventhandler.h> 64 #include <sys/kernel.h> 65 #include <sys/types.h> 66 #include <sys/limits.h> 67 #include <sys/queue.h> 68 #include <sys/malloc.h> 69 #include <sys/ktr.h> 70 #include <sys/lock.h> 71 #include <sys/sysctl.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/random.h> 75 #include <sys/rwlock.h> 76 #include <sys/sbuf.h> 77 #include <sys/sched.h> 78 #include <sys/sleepqueue.h> 79 #include <sys/smp.h> 80 #include <sys/smr.h> 81 #include <sys/taskqueue.h> 82 #include <sys/vmmeter.h> 83 84 #include <vm/vm.h> 85 #include <vm/vm_domainset.h> 86 #include <vm/vm_object.h> 87 #include <vm/vm_page.h> 88 #include <vm/vm_pageout.h> 89 #include <vm/vm_param.h> 90 #include <vm/vm_phys.h> 91 #include <vm/vm_pagequeue.h> 92 #include <vm/vm_map.h> 93 #include <vm/vm_kern.h> 94 #include <vm/vm_extern.h> 95 #include <vm/uma.h> 96 #include <vm/uma_int.h> 97 #include <vm/uma_dbg.h> 98 99 #include <ddb/ddb.h> 100 101 #ifdef DEBUG_MEMGUARD 102 #include <vm/memguard.h> 103 #endif 104 105 #include <machine/md_var.h> 106 107 #ifdef INVARIANTS 108 #define UMA_ALWAYS_CTORDTOR 1 109 #else 110 #define UMA_ALWAYS_CTORDTOR 0 111 #endif 112 113 /* 114 * This is the zone and keg from which all zones are spawned. 115 */ 116 static uma_zone_t kegs; 117 static uma_zone_t zones; 118 119 /* 120 * On INVARIANTS builds, the slab contains a second bitset of the same size, 121 * "dbg_bits", which is laid out immediately after us_free. 122 */ 123 #ifdef INVARIANTS 124 #define SLAB_BITSETS 2 125 #else 126 #define SLAB_BITSETS 1 127 #endif 128 129 /* 130 * These are the two zones from which all offpage uma_slab_ts are allocated. 131 * 132 * One zone is for slab headers that can represent a larger number of items, 133 * making the slabs themselves more efficient, and the other zone is for 134 * headers that are smaller and represent fewer items, making the headers more 135 * efficient. 136 */ 137 #define SLABZONE_SIZE(setsize) \ 138 (sizeof(struct uma_hash_slab) + BITSET_SIZE(setsize) * SLAB_BITSETS) 139 #define SLABZONE0_SETSIZE (PAGE_SIZE / 16) 140 #define SLABZONE1_SETSIZE SLAB_MAX_SETSIZE 141 #define SLABZONE0_SIZE SLABZONE_SIZE(SLABZONE0_SETSIZE) 142 #define SLABZONE1_SIZE SLABZONE_SIZE(SLABZONE1_SETSIZE) 143 static uma_zone_t slabzones[2]; 144 145 /* 146 * The initial hash tables come out of this zone so they can be allocated 147 * prior to malloc coming up. 148 */ 149 static uma_zone_t hashzone; 150 151 /* The boot-time adjusted value for cache line alignment. */ 152 int uma_align_cache = 64 - 1; 153 154 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 155 static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc"); 156 157 /* 158 * Are we allowed to allocate buckets? 159 */ 160 static int bucketdisable = 1; 161 162 /* Linked list of all kegs in the system */ 163 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 164 165 /* Linked list of all cache-only zones in the system */ 166 static LIST_HEAD(,uma_zone) uma_cachezones = 167 LIST_HEAD_INITIALIZER(uma_cachezones); 168 169 /* This RW lock protects the keg list */ 170 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 171 172 /* 173 * First available virual address for boot time allocations. 174 */ 175 static vm_offset_t bootstart; 176 static vm_offset_t bootmem; 177 178 static struct sx uma_reclaim_lock; 179 180 /* 181 * kmem soft limit, initialized by uma_set_limit(). Ensure that early 182 * allocations don't trigger a wakeup of the reclaim thread. 183 */ 184 unsigned long uma_kmem_limit = LONG_MAX; 185 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0, 186 "UMA kernel memory soft limit"); 187 unsigned long uma_kmem_total; 188 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0, 189 "UMA kernel memory usage"); 190 191 /* Is the VM done starting up? */ 192 static enum { 193 BOOT_COLD, 194 BOOT_KVA, 195 BOOT_PCPU, 196 BOOT_RUNNING, 197 BOOT_SHUTDOWN, 198 } booted = BOOT_COLD; 199 200 /* 201 * This is the handle used to schedule events that need to happen 202 * outside of the allocation fast path. 203 */ 204 static struct callout uma_callout; 205 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 206 207 /* 208 * This structure is passed as the zone ctor arg so that I don't have to create 209 * a special allocation function just for zones. 210 */ 211 struct uma_zctor_args { 212 const char *name; 213 size_t size; 214 uma_ctor ctor; 215 uma_dtor dtor; 216 uma_init uminit; 217 uma_fini fini; 218 uma_import import; 219 uma_release release; 220 void *arg; 221 uma_keg_t keg; 222 int align; 223 uint32_t flags; 224 }; 225 226 struct uma_kctor_args { 227 uma_zone_t zone; 228 size_t size; 229 uma_init uminit; 230 uma_fini fini; 231 int align; 232 uint32_t flags; 233 }; 234 235 struct uma_bucket_zone { 236 uma_zone_t ubz_zone; 237 const char *ubz_name; 238 int ubz_entries; /* Number of items it can hold. */ 239 int ubz_maxsize; /* Maximum allocation size per-item. */ 240 }; 241 242 /* 243 * Compute the actual number of bucket entries to pack them in power 244 * of two sizes for more efficient space utilization. 245 */ 246 #define BUCKET_SIZE(n) \ 247 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 248 249 #define BUCKET_MAX BUCKET_SIZE(256) 250 #define BUCKET_MIN 2 251 252 struct uma_bucket_zone bucket_zones[] = { 253 /* Literal bucket sizes. */ 254 { NULL, "2 Bucket", 2, 4096 }, 255 { NULL, "4 Bucket", 4, 3072 }, 256 { NULL, "8 Bucket", 8, 2048 }, 257 { NULL, "16 Bucket", 16, 1024 }, 258 /* Rounded down power of 2 sizes for efficiency. */ 259 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 260 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 261 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 262 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 263 { NULL, NULL, 0} 264 }; 265 266 /* 267 * Flags and enumerations to be passed to internal functions. 268 */ 269 enum zfreeskip { 270 SKIP_NONE = 0, 271 SKIP_CNT = 0x00000001, 272 SKIP_DTOR = 0x00010000, 273 SKIP_FINI = 0x00020000, 274 }; 275 276 /* Prototypes.. */ 277 278 void uma_startup1(vm_offset_t); 279 void uma_startup2(void); 280 281 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 282 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 283 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 284 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 285 static void *contig_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 286 static void page_free(void *, vm_size_t, uint8_t); 287 static void pcpu_page_free(void *, vm_size_t, uint8_t); 288 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int); 289 static void cache_drain(uma_zone_t); 290 static void bucket_drain(uma_zone_t, uma_bucket_t); 291 static void bucket_cache_reclaim(uma_zone_t zone, bool); 292 static int keg_ctor(void *, int, void *, int); 293 static void keg_dtor(void *, int, void *); 294 static int zone_ctor(void *, int, void *, int); 295 static void zone_dtor(void *, int, void *); 296 static inline void item_dtor(uma_zone_t zone, void *item, int size, 297 void *udata, enum zfreeskip skip); 298 static int zero_init(void *, int, int); 299 static void zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 300 int itemdomain, bool ws); 301 static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *); 302 static void zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *), void *); 303 static void zone_timeout(uma_zone_t zone, void *); 304 static int hash_alloc(struct uma_hash *, u_int); 305 static int hash_expand(struct uma_hash *, struct uma_hash *); 306 static void hash_free(struct uma_hash *hash); 307 static void uma_timeout(void *); 308 static void uma_shutdown(void); 309 static void *zone_alloc_item(uma_zone_t, void *, int, int); 310 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 311 static int zone_alloc_limit(uma_zone_t zone, int count, int flags); 312 static void zone_free_limit(uma_zone_t zone, int count); 313 static void bucket_enable(void); 314 static void bucket_init(void); 315 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 316 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 317 static void bucket_zone_drain(void); 318 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int); 319 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 320 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item); 321 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 322 uma_fini fini, int align, uint32_t flags); 323 static int zone_import(void *, void **, int, int, int); 324 static void zone_release(void *, void **, int); 325 static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int); 326 static bool cache_free(uma_zone_t, uma_cache_t, void *, void *, int); 327 328 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 329 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 330 static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS); 331 static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS); 332 static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS); 333 static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS); 334 static int sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS); 335 336 static uint64_t uma_zone_get_allocs(uma_zone_t zone); 337 338 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 339 "Memory allocation debugging"); 340 341 #ifdef INVARIANTS 342 static uint64_t uma_keg_get_allocs(uma_keg_t zone); 343 static inline struct noslabbits *slab_dbg_bits(uma_slab_t slab, uma_keg_t keg); 344 345 static bool uma_dbg_kskip(uma_keg_t keg, void *mem); 346 static bool uma_dbg_zskip(uma_zone_t zone, void *mem); 347 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 348 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 349 350 static u_int dbg_divisor = 1; 351 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor, 352 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0, 353 "Debug & thrash every this item in memory allocator"); 354 355 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER; 356 static counter_u64_t uma_skip_cnt = EARLY_COUNTER; 357 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD, 358 &uma_dbg_cnt, "memory items debugged"); 359 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD, 360 &uma_skip_cnt, "memory items skipped, not debugged"); 361 #endif 362 363 SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 364 "Universal Memory Allocator"); 365 366 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_INT, 367 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 368 369 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_STRUCT, 370 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 371 372 static int zone_warnings = 1; 373 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 374 "Warn when UMA zones becomes full"); 375 376 static int multipage_slabs = 1; 377 TUNABLE_INT("vm.debug.uma_multipage_slabs", &multipage_slabs); 378 SYSCTL_INT(_vm_debug, OID_AUTO, uma_multipage_slabs, 379 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &multipage_slabs, 0, 380 "UMA may choose larger slab sizes for better efficiency"); 381 382 /* 383 * Select the slab zone for an offpage slab with the given maximum item count. 384 */ 385 static inline uma_zone_t 386 slabzone(int ipers) 387 { 388 389 return (slabzones[ipers > SLABZONE0_SETSIZE]); 390 } 391 392 /* 393 * This routine checks to see whether or not it's safe to enable buckets. 394 */ 395 static void 396 bucket_enable(void) 397 { 398 399 KASSERT(booted >= BOOT_KVA, ("Bucket enable before init")); 400 bucketdisable = vm_page_count_min(); 401 } 402 403 /* 404 * Initialize bucket_zones, the array of zones of buckets of various sizes. 405 * 406 * For each zone, calculate the memory required for each bucket, consisting 407 * of the header and an array of pointers. 408 */ 409 static void 410 bucket_init(void) 411 { 412 struct uma_bucket_zone *ubz; 413 int size; 414 415 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 416 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 417 size += sizeof(void *) * ubz->ubz_entries; 418 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 419 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 420 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | 421 UMA_ZONE_FIRSTTOUCH); 422 } 423 } 424 425 /* 426 * Given a desired number of entries for a bucket, return the zone from which 427 * to allocate the bucket. 428 */ 429 static struct uma_bucket_zone * 430 bucket_zone_lookup(int entries) 431 { 432 struct uma_bucket_zone *ubz; 433 434 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 435 if (ubz->ubz_entries >= entries) 436 return (ubz); 437 ubz--; 438 return (ubz); 439 } 440 441 static struct uma_bucket_zone * 442 bucket_zone_max(uma_zone_t zone, int nitems) 443 { 444 struct uma_bucket_zone *ubz; 445 int bpcpu; 446 447 bpcpu = 2; 448 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 449 /* Count the cross-domain bucket. */ 450 bpcpu++; 451 452 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 453 if (ubz->ubz_entries * bpcpu * mp_ncpus > nitems) 454 break; 455 if (ubz == &bucket_zones[0]) 456 ubz = NULL; 457 else 458 ubz--; 459 return (ubz); 460 } 461 462 static int 463 bucket_select(int size) 464 { 465 struct uma_bucket_zone *ubz; 466 467 ubz = &bucket_zones[0]; 468 if (size > ubz->ubz_maxsize) 469 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 470 471 for (; ubz->ubz_entries != 0; ubz++) 472 if (ubz->ubz_maxsize < size) 473 break; 474 ubz--; 475 return (ubz->ubz_entries); 476 } 477 478 static uma_bucket_t 479 bucket_alloc(uma_zone_t zone, void *udata, int flags) 480 { 481 struct uma_bucket_zone *ubz; 482 uma_bucket_t bucket; 483 484 /* 485 * Don't allocate buckets early in boot. 486 */ 487 if (__predict_false(booted < BOOT_KVA)) 488 return (NULL); 489 490 /* 491 * To limit bucket recursion we store the original zone flags 492 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 493 * NOVM flag to persist even through deep recursions. We also 494 * store ZFLAG_BUCKET once we have recursed attempting to allocate 495 * a bucket for a bucket zone so we do not allow infinite bucket 496 * recursion. This cookie will even persist to frees of unused 497 * buckets via the allocation path or bucket allocations in the 498 * free path. 499 */ 500 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 501 udata = (void *)(uintptr_t)zone->uz_flags; 502 else { 503 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 504 return (NULL); 505 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 506 } 507 if (((uintptr_t)udata & UMA_ZONE_VM) != 0) 508 flags |= M_NOVM; 509 ubz = bucket_zone_lookup(zone->uz_bucket_size); 510 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 511 ubz++; 512 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 513 if (bucket) { 514 #ifdef INVARIANTS 515 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 516 #endif 517 bucket->ub_cnt = 0; 518 bucket->ub_entries = ubz->ubz_entries; 519 bucket->ub_seq = SMR_SEQ_INVALID; 520 CTR3(KTR_UMA, "bucket_alloc: zone %s(%p) allocated bucket %p", 521 zone->uz_name, zone, bucket); 522 } 523 524 return (bucket); 525 } 526 527 static void 528 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 529 { 530 struct uma_bucket_zone *ubz; 531 532 if (bucket->ub_cnt != 0) 533 bucket_drain(zone, bucket); 534 535 KASSERT(bucket->ub_cnt == 0, 536 ("bucket_free: Freeing a non free bucket.")); 537 KASSERT(bucket->ub_seq == SMR_SEQ_INVALID, 538 ("bucket_free: Freeing an SMR bucket.")); 539 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 540 udata = (void *)(uintptr_t)zone->uz_flags; 541 ubz = bucket_zone_lookup(bucket->ub_entries); 542 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 543 } 544 545 static void 546 bucket_zone_drain(void) 547 { 548 struct uma_bucket_zone *ubz; 549 550 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 551 uma_zone_reclaim(ubz->ubz_zone, UMA_RECLAIM_DRAIN); 552 } 553 554 /* 555 * Acquire the domain lock and record contention. 556 */ 557 static uma_zone_domain_t 558 zone_domain_lock(uma_zone_t zone, int domain) 559 { 560 uma_zone_domain_t zdom; 561 bool lockfail; 562 563 zdom = ZDOM_GET(zone, domain); 564 lockfail = false; 565 if (ZDOM_OWNED(zdom)) 566 lockfail = true; 567 ZDOM_LOCK(zdom); 568 /* This is unsynchronized. The counter does not need to be precise. */ 569 if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max) 570 zone->uz_bucket_size++; 571 return (zdom); 572 } 573 574 /* 575 * Search for the domain with the least cached items and return it if it 576 * is out of balance with the preferred domain. 577 */ 578 static __noinline int 579 zone_domain_lowest(uma_zone_t zone, int pref) 580 { 581 long least, nitems, prefitems; 582 int domain; 583 int i; 584 585 prefitems = least = LONG_MAX; 586 domain = 0; 587 for (i = 0; i < vm_ndomains; i++) { 588 nitems = ZDOM_GET(zone, i)->uzd_nitems; 589 if (nitems < least) { 590 domain = i; 591 least = nitems; 592 } 593 if (domain == pref) 594 prefitems = nitems; 595 } 596 if (prefitems < least * 2) 597 return (pref); 598 599 return (domain); 600 } 601 602 /* 603 * Search for the domain with the most cached items and return it or the 604 * preferred domain if it has enough to proceed. 605 */ 606 static __noinline int 607 zone_domain_highest(uma_zone_t zone, int pref) 608 { 609 long most, nitems; 610 int domain; 611 int i; 612 613 if (ZDOM_GET(zone, pref)->uzd_nitems > BUCKET_MAX) 614 return (pref); 615 616 most = 0; 617 domain = 0; 618 for (i = 0; i < vm_ndomains; i++) { 619 nitems = ZDOM_GET(zone, i)->uzd_nitems; 620 if (nitems > most) { 621 domain = i; 622 most = nitems; 623 } 624 } 625 626 return (domain); 627 } 628 629 /* 630 * Safely subtract cnt from imax. 631 */ 632 static void 633 zone_domain_imax_sub(uma_zone_domain_t zdom, int cnt) 634 { 635 long new; 636 long old; 637 638 old = zdom->uzd_imax; 639 do { 640 if (old <= cnt) 641 new = 0; 642 else 643 new = old - cnt; 644 } while (atomic_fcmpset_long(&zdom->uzd_imax, &old, new) == 0); 645 } 646 647 /* 648 * Set the maximum imax value. 649 */ 650 static void 651 zone_domain_imax_set(uma_zone_domain_t zdom, int nitems) 652 { 653 long old; 654 655 old = zdom->uzd_imax; 656 do { 657 if (old >= nitems) 658 break; 659 } while (atomic_fcmpset_long(&zdom->uzd_imax, &old, nitems) == 0); 660 } 661 662 /* 663 * Attempt to satisfy an allocation by retrieving a full bucket from one of the 664 * zone's caches. If a bucket is found the zone is not locked on return. 665 */ 666 static uma_bucket_t 667 zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom, bool reclaim) 668 { 669 uma_bucket_t bucket; 670 int i; 671 bool dtor = false; 672 673 ZDOM_LOCK_ASSERT(zdom); 674 675 if ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) == NULL) 676 return (NULL); 677 678 /* SMR Buckets can not be re-used until readers expire. */ 679 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 680 bucket->ub_seq != SMR_SEQ_INVALID) { 681 if (!smr_poll(zone->uz_smr, bucket->ub_seq, false)) 682 return (NULL); 683 bucket->ub_seq = SMR_SEQ_INVALID; 684 dtor = (zone->uz_dtor != NULL) || UMA_ALWAYS_CTORDTOR; 685 if (STAILQ_NEXT(bucket, ub_link) != NULL) 686 zdom->uzd_seq = STAILQ_NEXT(bucket, ub_link)->ub_seq; 687 } 688 STAILQ_REMOVE_HEAD(&zdom->uzd_buckets, ub_link); 689 690 KASSERT(zdom->uzd_nitems >= bucket->ub_cnt, 691 ("%s: item count underflow (%ld, %d)", 692 __func__, zdom->uzd_nitems, bucket->ub_cnt)); 693 KASSERT(bucket->ub_cnt > 0, 694 ("%s: empty bucket in bucket cache", __func__)); 695 zdom->uzd_nitems -= bucket->ub_cnt; 696 697 /* 698 * Shift the bounds of the current WSS interval to avoid 699 * perturbing the estimate. 700 */ 701 if (reclaim) { 702 zdom->uzd_imin -= lmin(zdom->uzd_imin, bucket->ub_cnt); 703 zone_domain_imax_sub(zdom, bucket->ub_cnt); 704 } else if (zdom->uzd_imin > zdom->uzd_nitems) 705 zdom->uzd_imin = zdom->uzd_nitems; 706 707 ZDOM_UNLOCK(zdom); 708 if (dtor) 709 for (i = 0; i < bucket->ub_cnt; i++) 710 item_dtor(zone, bucket->ub_bucket[i], zone->uz_size, 711 NULL, SKIP_NONE); 712 713 return (bucket); 714 } 715 716 /* 717 * Insert a full bucket into the specified cache. The "ws" parameter indicates 718 * whether the bucket's contents should be counted as part of the zone's working 719 * set. The bucket may be freed if it exceeds the bucket limit. 720 */ 721 static void 722 zone_put_bucket(uma_zone_t zone, int domain, uma_bucket_t bucket, void *udata, 723 const bool ws) 724 { 725 uma_zone_domain_t zdom; 726 727 /* We don't cache empty buckets. This can happen after a reclaim. */ 728 if (bucket->ub_cnt == 0) 729 goto out; 730 zdom = zone_domain_lock(zone, domain); 731 732 /* 733 * Conditionally set the maximum number of items. 734 */ 735 zdom->uzd_nitems += bucket->ub_cnt; 736 if (__predict_true(zdom->uzd_nitems < zone->uz_bucket_max)) { 737 if (ws) 738 zone_domain_imax_set(zdom, zdom->uzd_nitems); 739 if (STAILQ_EMPTY(&zdom->uzd_buckets)) 740 zdom->uzd_seq = bucket->ub_seq; 741 742 /* 743 * Try to promote reuse of recently used items. For items 744 * protected by SMR, try to defer reuse to minimize polling. 745 */ 746 if (bucket->ub_seq == SMR_SEQ_INVALID) 747 STAILQ_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); 748 else 749 STAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link); 750 ZDOM_UNLOCK(zdom); 751 return; 752 } 753 zdom->uzd_nitems -= bucket->ub_cnt; 754 ZDOM_UNLOCK(zdom); 755 out: 756 bucket_free(zone, bucket, udata); 757 } 758 759 /* Pops an item out of a per-cpu cache bucket. */ 760 static inline void * 761 cache_bucket_pop(uma_cache_t cache, uma_cache_bucket_t bucket) 762 { 763 void *item; 764 765 CRITICAL_ASSERT(curthread); 766 767 bucket->ucb_cnt--; 768 item = bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt]; 769 #ifdef INVARIANTS 770 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = NULL; 771 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 772 #endif 773 cache->uc_allocs++; 774 775 return (item); 776 } 777 778 /* Pushes an item into a per-cpu cache bucket. */ 779 static inline void 780 cache_bucket_push(uma_cache_t cache, uma_cache_bucket_t bucket, void *item) 781 { 782 783 CRITICAL_ASSERT(curthread); 784 KASSERT(bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] == NULL, 785 ("uma_zfree: Freeing to non free bucket index.")); 786 787 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = item; 788 bucket->ucb_cnt++; 789 cache->uc_frees++; 790 } 791 792 /* 793 * Unload a UMA bucket from a per-cpu cache. 794 */ 795 static inline uma_bucket_t 796 cache_bucket_unload(uma_cache_bucket_t bucket) 797 { 798 uma_bucket_t b; 799 800 b = bucket->ucb_bucket; 801 if (b != NULL) { 802 MPASS(b->ub_entries == bucket->ucb_entries); 803 b->ub_cnt = bucket->ucb_cnt; 804 bucket->ucb_bucket = NULL; 805 bucket->ucb_entries = bucket->ucb_cnt = 0; 806 } 807 808 return (b); 809 } 810 811 static inline uma_bucket_t 812 cache_bucket_unload_alloc(uma_cache_t cache) 813 { 814 815 return (cache_bucket_unload(&cache->uc_allocbucket)); 816 } 817 818 static inline uma_bucket_t 819 cache_bucket_unload_free(uma_cache_t cache) 820 { 821 822 return (cache_bucket_unload(&cache->uc_freebucket)); 823 } 824 825 static inline uma_bucket_t 826 cache_bucket_unload_cross(uma_cache_t cache) 827 { 828 829 return (cache_bucket_unload(&cache->uc_crossbucket)); 830 } 831 832 /* 833 * Load a bucket into a per-cpu cache bucket. 834 */ 835 static inline void 836 cache_bucket_load(uma_cache_bucket_t bucket, uma_bucket_t b) 837 { 838 839 CRITICAL_ASSERT(curthread); 840 MPASS(bucket->ucb_bucket == NULL); 841 MPASS(b->ub_seq == SMR_SEQ_INVALID); 842 843 bucket->ucb_bucket = b; 844 bucket->ucb_cnt = b->ub_cnt; 845 bucket->ucb_entries = b->ub_entries; 846 } 847 848 static inline void 849 cache_bucket_load_alloc(uma_cache_t cache, uma_bucket_t b) 850 { 851 852 cache_bucket_load(&cache->uc_allocbucket, b); 853 } 854 855 static inline void 856 cache_bucket_load_free(uma_cache_t cache, uma_bucket_t b) 857 { 858 859 cache_bucket_load(&cache->uc_freebucket, b); 860 } 861 862 #ifdef NUMA 863 static inline void 864 cache_bucket_load_cross(uma_cache_t cache, uma_bucket_t b) 865 { 866 867 cache_bucket_load(&cache->uc_crossbucket, b); 868 } 869 #endif 870 871 /* 872 * Copy and preserve ucb_spare. 873 */ 874 static inline void 875 cache_bucket_copy(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 876 { 877 878 b1->ucb_bucket = b2->ucb_bucket; 879 b1->ucb_entries = b2->ucb_entries; 880 b1->ucb_cnt = b2->ucb_cnt; 881 } 882 883 /* 884 * Swap two cache buckets. 885 */ 886 static inline void 887 cache_bucket_swap(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 888 { 889 struct uma_cache_bucket b3; 890 891 CRITICAL_ASSERT(curthread); 892 893 cache_bucket_copy(&b3, b1); 894 cache_bucket_copy(b1, b2); 895 cache_bucket_copy(b2, &b3); 896 } 897 898 /* 899 * Attempt to fetch a bucket from a zone on behalf of the current cpu cache. 900 */ 901 static uma_bucket_t 902 cache_fetch_bucket(uma_zone_t zone, uma_cache_t cache, int domain) 903 { 904 uma_zone_domain_t zdom; 905 uma_bucket_t bucket; 906 907 /* 908 * Avoid the lock if possible. 909 */ 910 zdom = ZDOM_GET(zone, domain); 911 if (zdom->uzd_nitems == 0) 912 return (NULL); 913 914 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) != 0 && 915 !smr_poll(zone->uz_smr, zdom->uzd_seq, false)) 916 return (NULL); 917 918 /* 919 * Check the zone's cache of buckets. 920 */ 921 zdom = zone_domain_lock(zone, domain); 922 if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) 923 return (bucket); 924 ZDOM_UNLOCK(zdom); 925 926 return (NULL); 927 } 928 929 static void 930 zone_log_warning(uma_zone_t zone) 931 { 932 static const struct timeval warninterval = { 300, 0 }; 933 934 if (!zone_warnings || zone->uz_warning == NULL) 935 return; 936 937 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 938 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 939 } 940 941 static inline void 942 zone_maxaction(uma_zone_t zone) 943 { 944 945 if (zone->uz_maxaction.ta_func != NULL) 946 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 947 } 948 949 /* 950 * Routine called by timeout which is used to fire off some time interval 951 * based calculations. (stats, hash size, etc.) 952 * 953 * Arguments: 954 * arg Unused 955 * 956 * Returns: 957 * Nothing 958 */ 959 static void 960 uma_timeout(void *unused) 961 { 962 bucket_enable(); 963 zone_foreach(zone_timeout, NULL); 964 965 /* Reschedule this event */ 966 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 967 } 968 969 /* 970 * Update the working set size estimate for the zone's bucket cache. 971 * The constants chosen here are somewhat arbitrary. With an update period of 972 * 20s (UMA_TIMEOUT), this estimate is dominated by zone activity over the 973 * last 100s. 974 */ 975 static void 976 zone_domain_update_wss(uma_zone_domain_t zdom) 977 { 978 long wss; 979 980 ZDOM_LOCK(zdom); 981 MPASS(zdom->uzd_imax >= zdom->uzd_imin); 982 wss = zdom->uzd_imax - zdom->uzd_imin; 983 zdom->uzd_imax = zdom->uzd_imin = zdom->uzd_nitems; 984 zdom->uzd_wss = (4 * wss + zdom->uzd_wss) / 5; 985 ZDOM_UNLOCK(zdom); 986 } 987 988 /* 989 * Routine to perform timeout driven calculations. This expands the 990 * hashes and does per cpu statistics aggregation. 991 * 992 * Returns nothing. 993 */ 994 static void 995 zone_timeout(uma_zone_t zone, void *unused) 996 { 997 uma_keg_t keg; 998 u_int slabs, pages; 999 1000 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 1001 goto update_wss; 1002 1003 keg = zone->uz_keg; 1004 1005 /* 1006 * Hash zones are non-numa by definition so the first domain 1007 * is the only one present. 1008 */ 1009 KEG_LOCK(keg, 0); 1010 pages = keg->uk_domain[0].ud_pages; 1011 1012 /* 1013 * Expand the keg hash table. 1014 * 1015 * This is done if the number of slabs is larger than the hash size. 1016 * What I'm trying to do here is completely reduce collisions. This 1017 * may be a little aggressive. Should I allow for two collisions max? 1018 */ 1019 if ((slabs = pages / keg->uk_ppera) > keg->uk_hash.uh_hashsize) { 1020 struct uma_hash newhash; 1021 struct uma_hash oldhash; 1022 int ret; 1023 1024 /* 1025 * This is so involved because allocating and freeing 1026 * while the keg lock is held will lead to deadlock. 1027 * I have to do everything in stages and check for 1028 * races. 1029 */ 1030 KEG_UNLOCK(keg, 0); 1031 ret = hash_alloc(&newhash, 1 << fls(slabs)); 1032 KEG_LOCK(keg, 0); 1033 if (ret) { 1034 if (hash_expand(&keg->uk_hash, &newhash)) { 1035 oldhash = keg->uk_hash; 1036 keg->uk_hash = newhash; 1037 } else 1038 oldhash = newhash; 1039 1040 KEG_UNLOCK(keg, 0); 1041 hash_free(&oldhash); 1042 goto update_wss; 1043 } 1044 } 1045 KEG_UNLOCK(keg, 0); 1046 1047 update_wss: 1048 for (int i = 0; i < vm_ndomains; i++) 1049 zone_domain_update_wss(ZDOM_GET(zone, i)); 1050 } 1051 1052 /* 1053 * Allocate and zero fill the next sized hash table from the appropriate 1054 * backing store. 1055 * 1056 * Arguments: 1057 * hash A new hash structure with the old hash size in uh_hashsize 1058 * 1059 * Returns: 1060 * 1 on success and 0 on failure. 1061 */ 1062 static int 1063 hash_alloc(struct uma_hash *hash, u_int size) 1064 { 1065 size_t alloc; 1066 1067 KASSERT(powerof2(size), ("hash size must be power of 2")); 1068 if (size > UMA_HASH_SIZE_INIT) { 1069 hash->uh_hashsize = size; 1070 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 1071 hash->uh_slab_hash = malloc(alloc, M_UMAHASH, M_NOWAIT); 1072 } else { 1073 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 1074 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 1075 UMA_ANYDOMAIN, M_WAITOK); 1076 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 1077 } 1078 if (hash->uh_slab_hash) { 1079 bzero(hash->uh_slab_hash, alloc); 1080 hash->uh_hashmask = hash->uh_hashsize - 1; 1081 return (1); 1082 } 1083 1084 return (0); 1085 } 1086 1087 /* 1088 * Expands the hash table for HASH zones. This is done from zone_timeout 1089 * to reduce collisions. This must not be done in the regular allocation 1090 * path, otherwise, we can recurse on the vm while allocating pages. 1091 * 1092 * Arguments: 1093 * oldhash The hash you want to expand 1094 * newhash The hash structure for the new table 1095 * 1096 * Returns: 1097 * Nothing 1098 * 1099 * Discussion: 1100 */ 1101 static int 1102 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 1103 { 1104 uma_hash_slab_t slab; 1105 u_int hval; 1106 u_int idx; 1107 1108 if (!newhash->uh_slab_hash) 1109 return (0); 1110 1111 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 1112 return (0); 1113 1114 /* 1115 * I need to investigate hash algorithms for resizing without a 1116 * full rehash. 1117 */ 1118 1119 for (idx = 0; idx < oldhash->uh_hashsize; idx++) 1120 while (!LIST_EMPTY(&oldhash->uh_slab_hash[idx])) { 1121 slab = LIST_FIRST(&oldhash->uh_slab_hash[idx]); 1122 LIST_REMOVE(slab, uhs_hlink); 1123 hval = UMA_HASH(newhash, slab->uhs_data); 1124 LIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 1125 slab, uhs_hlink); 1126 } 1127 1128 return (1); 1129 } 1130 1131 /* 1132 * Free the hash bucket to the appropriate backing store. 1133 * 1134 * Arguments: 1135 * slab_hash The hash bucket we're freeing 1136 * hashsize The number of entries in that hash bucket 1137 * 1138 * Returns: 1139 * Nothing 1140 */ 1141 static void 1142 hash_free(struct uma_hash *hash) 1143 { 1144 if (hash->uh_slab_hash == NULL) 1145 return; 1146 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 1147 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 1148 else 1149 free(hash->uh_slab_hash, M_UMAHASH); 1150 } 1151 1152 /* 1153 * Frees all outstanding items in a bucket 1154 * 1155 * Arguments: 1156 * zone The zone to free to, must be unlocked. 1157 * bucket The free/alloc bucket with items. 1158 * 1159 * Returns: 1160 * Nothing 1161 */ 1162 static void 1163 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 1164 { 1165 int i; 1166 1167 if (bucket->ub_cnt == 0) 1168 return; 1169 1170 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 1171 bucket->ub_seq != SMR_SEQ_INVALID) { 1172 smr_wait(zone->uz_smr, bucket->ub_seq); 1173 bucket->ub_seq = SMR_SEQ_INVALID; 1174 for (i = 0; i < bucket->ub_cnt; i++) 1175 item_dtor(zone, bucket->ub_bucket[i], 1176 zone->uz_size, NULL, SKIP_NONE); 1177 } 1178 if (zone->uz_fini) 1179 for (i = 0; i < bucket->ub_cnt; i++) 1180 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 1181 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 1182 if (zone->uz_max_items > 0) 1183 zone_free_limit(zone, bucket->ub_cnt); 1184 #ifdef INVARIANTS 1185 bzero(bucket->ub_bucket, sizeof(void *) * bucket->ub_cnt); 1186 #endif 1187 bucket->ub_cnt = 0; 1188 } 1189 1190 /* 1191 * Drains the per cpu caches for a zone. 1192 * 1193 * NOTE: This may only be called while the zone is being torn down, and not 1194 * during normal operation. This is necessary in order that we do not have 1195 * to migrate CPUs to drain the per-CPU caches. 1196 * 1197 * Arguments: 1198 * zone The zone to drain, must be unlocked. 1199 * 1200 * Returns: 1201 * Nothing 1202 */ 1203 static void 1204 cache_drain(uma_zone_t zone) 1205 { 1206 uma_cache_t cache; 1207 uma_bucket_t bucket; 1208 smr_seq_t seq; 1209 int cpu; 1210 1211 /* 1212 * XXX: It is safe to not lock the per-CPU caches, because we're 1213 * tearing down the zone anyway. I.e., there will be no further use 1214 * of the caches at this point. 1215 * 1216 * XXX: It would good to be able to assert that the zone is being 1217 * torn down to prevent improper use of cache_drain(). 1218 */ 1219 seq = SMR_SEQ_INVALID; 1220 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 1221 seq = smr_advance(zone->uz_smr); 1222 CPU_FOREACH(cpu) { 1223 cache = &zone->uz_cpu[cpu]; 1224 bucket = cache_bucket_unload_alloc(cache); 1225 if (bucket != NULL) 1226 bucket_free(zone, bucket, NULL); 1227 bucket = cache_bucket_unload_free(cache); 1228 if (bucket != NULL) { 1229 bucket->ub_seq = seq; 1230 bucket_free(zone, bucket, NULL); 1231 } 1232 bucket = cache_bucket_unload_cross(cache); 1233 if (bucket != NULL) { 1234 bucket->ub_seq = seq; 1235 bucket_free(zone, bucket, NULL); 1236 } 1237 } 1238 bucket_cache_reclaim(zone, true); 1239 } 1240 1241 static void 1242 cache_shrink(uma_zone_t zone, void *unused) 1243 { 1244 1245 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1246 return; 1247 1248 zone->uz_bucket_size = 1249 (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2; 1250 } 1251 1252 static void 1253 cache_drain_safe_cpu(uma_zone_t zone, void *unused) 1254 { 1255 uma_cache_t cache; 1256 uma_bucket_t b1, b2, b3; 1257 int domain; 1258 1259 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1260 return; 1261 1262 b1 = b2 = b3 = NULL; 1263 critical_enter(); 1264 cache = &zone->uz_cpu[curcpu]; 1265 domain = PCPU_GET(domain); 1266 b1 = cache_bucket_unload_alloc(cache); 1267 1268 /* 1269 * Don't flush SMR zone buckets. This leaves the zone without a 1270 * bucket and forces every free to synchronize(). 1271 */ 1272 if ((zone->uz_flags & UMA_ZONE_SMR) == 0) { 1273 b2 = cache_bucket_unload_free(cache); 1274 b3 = cache_bucket_unload_cross(cache); 1275 } 1276 critical_exit(); 1277 1278 if (b1 != NULL) 1279 zone_free_bucket(zone, b1, NULL, domain, false); 1280 if (b2 != NULL) 1281 zone_free_bucket(zone, b2, NULL, domain, false); 1282 if (b3 != NULL) { 1283 /* Adjust the domain so it goes to zone_free_cross. */ 1284 domain = (domain + 1) % vm_ndomains; 1285 zone_free_bucket(zone, b3, NULL, domain, false); 1286 } 1287 } 1288 1289 /* 1290 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 1291 * This is an expensive call because it needs to bind to all CPUs 1292 * one by one and enter a critical section on each of them in order 1293 * to safely access their cache buckets. 1294 * Zone lock must not be held on call this function. 1295 */ 1296 static void 1297 pcpu_cache_drain_safe(uma_zone_t zone) 1298 { 1299 int cpu; 1300 1301 /* 1302 * Polite bucket sizes shrinking was not enough, shrink aggressively. 1303 */ 1304 if (zone) 1305 cache_shrink(zone, NULL); 1306 else 1307 zone_foreach(cache_shrink, NULL); 1308 1309 CPU_FOREACH(cpu) { 1310 thread_lock(curthread); 1311 sched_bind(curthread, cpu); 1312 thread_unlock(curthread); 1313 1314 if (zone) 1315 cache_drain_safe_cpu(zone, NULL); 1316 else 1317 zone_foreach(cache_drain_safe_cpu, NULL); 1318 } 1319 thread_lock(curthread); 1320 sched_unbind(curthread); 1321 thread_unlock(curthread); 1322 } 1323 1324 /* 1325 * Reclaim cached buckets from a zone. All buckets are reclaimed if the caller 1326 * requested a drain, otherwise the per-domain caches are trimmed to either 1327 * estimated working set size. 1328 */ 1329 static void 1330 bucket_cache_reclaim(uma_zone_t zone, bool drain) 1331 { 1332 uma_zone_domain_t zdom; 1333 uma_bucket_t bucket; 1334 long target; 1335 int i; 1336 1337 /* 1338 * Shrink the zone bucket size to ensure that the per-CPU caches 1339 * don't grow too large. 1340 */ 1341 if (zone->uz_bucket_size > zone->uz_bucket_size_min) 1342 zone->uz_bucket_size--; 1343 1344 for (i = 0; i < vm_ndomains; i++) { 1345 /* 1346 * The cross bucket is partially filled and not part of 1347 * the item count. Reclaim it individually here. 1348 */ 1349 zdom = ZDOM_GET(zone, i); 1350 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 || drain) { 1351 ZONE_CROSS_LOCK(zone); 1352 bucket = zdom->uzd_cross; 1353 zdom->uzd_cross = NULL; 1354 ZONE_CROSS_UNLOCK(zone); 1355 if (bucket != NULL) 1356 bucket_free(zone, bucket, NULL); 1357 } 1358 1359 /* 1360 * If we were asked to drain the zone, we are done only once 1361 * this bucket cache is empty. Otherwise, we reclaim items in 1362 * excess of the zone's estimated working set size. If the 1363 * difference nitems - imin is larger than the WSS estimate, 1364 * then the estimate will grow at the end of this interval and 1365 * we ignore the historical average. 1366 */ 1367 ZDOM_LOCK(zdom); 1368 target = drain ? 0 : lmax(zdom->uzd_wss, zdom->uzd_nitems - 1369 zdom->uzd_imin); 1370 while (zdom->uzd_nitems > target) { 1371 bucket = zone_fetch_bucket(zone, zdom, true); 1372 if (bucket == NULL) 1373 break; 1374 bucket_free(zone, bucket, NULL); 1375 ZDOM_LOCK(zdom); 1376 } 1377 ZDOM_UNLOCK(zdom); 1378 } 1379 } 1380 1381 static void 1382 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 1383 { 1384 uint8_t *mem; 1385 int i; 1386 uint8_t flags; 1387 1388 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 1389 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 1390 1391 mem = slab_data(slab, keg); 1392 flags = slab->us_flags; 1393 i = start; 1394 if (keg->uk_fini != NULL) { 1395 for (i--; i > -1; i--) 1396 #ifdef INVARIANTS 1397 /* 1398 * trash_fini implies that dtor was trash_dtor. trash_fini 1399 * would check that memory hasn't been modified since free, 1400 * which executed trash_dtor. 1401 * That's why we need to run uma_dbg_kskip() check here, 1402 * albeit we don't make skip check for other init/fini 1403 * invocations. 1404 */ 1405 if (!uma_dbg_kskip(keg, slab_item(slab, keg, i)) || 1406 keg->uk_fini != trash_fini) 1407 #endif 1408 keg->uk_fini(slab_item(slab, keg, i), keg->uk_size); 1409 } 1410 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) 1411 zone_free_item(slabzone(keg->uk_ipers), slab_tohashslab(slab), 1412 NULL, SKIP_NONE); 1413 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 1414 uma_total_dec(PAGE_SIZE * keg->uk_ppera); 1415 } 1416 1417 /* 1418 * Frees pages from a keg back to the system. This is done on demand from 1419 * the pageout daemon. 1420 * 1421 * Returns nothing. 1422 */ 1423 static void 1424 keg_drain(uma_keg_t keg) 1425 { 1426 struct slabhead freeslabs; 1427 uma_domain_t dom; 1428 uma_slab_t slab, tmp; 1429 int i, n; 1430 1431 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 1432 return; 1433 1434 for (i = 0; i < vm_ndomains; i++) { 1435 CTR4(KTR_UMA, "keg_drain %s(%p) domain %d free items: %u", 1436 keg->uk_name, keg, i, dom->ud_free_items); 1437 dom = &keg->uk_domain[i]; 1438 LIST_INIT(&freeslabs); 1439 1440 KEG_LOCK(keg, i); 1441 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) { 1442 LIST_FOREACH(slab, &dom->ud_free_slab, us_link) 1443 UMA_HASH_REMOVE(&keg->uk_hash, slab); 1444 } 1445 n = dom->ud_free_slabs; 1446 LIST_SWAP(&freeslabs, &dom->ud_free_slab, uma_slab, us_link); 1447 dom->ud_free_slabs = 0; 1448 dom->ud_free_items -= n * keg->uk_ipers; 1449 dom->ud_pages -= n * keg->uk_ppera; 1450 KEG_UNLOCK(keg, i); 1451 1452 LIST_FOREACH_SAFE(slab, &freeslabs, us_link, tmp) 1453 keg_free_slab(keg, slab, keg->uk_ipers); 1454 } 1455 } 1456 1457 static void 1458 zone_reclaim(uma_zone_t zone, int waitok, bool drain) 1459 { 1460 1461 /* 1462 * Set draining to interlock with zone_dtor() so we can release our 1463 * locks as we go. Only dtor() should do a WAITOK call since it 1464 * is the only call that knows the structure will still be available 1465 * when it wakes up. 1466 */ 1467 ZONE_LOCK(zone); 1468 while (zone->uz_flags & UMA_ZFLAG_RECLAIMING) { 1469 if (waitok == M_NOWAIT) 1470 goto out; 1471 msleep(zone, &ZDOM_GET(zone, 0)->uzd_lock, PVM, "zonedrain", 1472 1); 1473 } 1474 zone->uz_flags |= UMA_ZFLAG_RECLAIMING; 1475 ZONE_UNLOCK(zone); 1476 bucket_cache_reclaim(zone, drain); 1477 1478 /* 1479 * The DRAINING flag protects us from being freed while 1480 * we're running. Normally the uma_rwlock would protect us but we 1481 * must be able to release and acquire the right lock for each keg. 1482 */ 1483 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) 1484 keg_drain(zone->uz_keg); 1485 ZONE_LOCK(zone); 1486 zone->uz_flags &= ~UMA_ZFLAG_RECLAIMING; 1487 wakeup(zone); 1488 out: 1489 ZONE_UNLOCK(zone); 1490 } 1491 1492 static void 1493 zone_drain(uma_zone_t zone, void *unused) 1494 { 1495 1496 zone_reclaim(zone, M_NOWAIT, true); 1497 } 1498 1499 static void 1500 zone_trim(uma_zone_t zone, void *unused) 1501 { 1502 1503 zone_reclaim(zone, M_NOWAIT, false); 1504 } 1505 1506 /* 1507 * Allocate a new slab for a keg and inserts it into the partial slab list. 1508 * The keg should be unlocked on entry. If the allocation succeeds it will 1509 * be locked on return. 1510 * 1511 * Arguments: 1512 * flags Wait flags for the item initialization routine 1513 * aflags Wait flags for the slab allocation 1514 * 1515 * Returns: 1516 * The slab that was allocated or NULL if there is no memory and the 1517 * caller specified M_NOWAIT. 1518 */ 1519 static uma_slab_t 1520 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags, 1521 int aflags) 1522 { 1523 uma_domain_t dom; 1524 uma_alloc allocf; 1525 uma_slab_t slab; 1526 unsigned long size; 1527 uint8_t *mem; 1528 uint8_t sflags; 1529 int i; 1530 1531 KASSERT(domain >= 0 && domain < vm_ndomains, 1532 ("keg_alloc_slab: domain %d out of range", domain)); 1533 1534 allocf = keg->uk_allocf; 1535 slab = NULL; 1536 mem = NULL; 1537 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) { 1538 uma_hash_slab_t hslab; 1539 hslab = zone_alloc_item(slabzone(keg->uk_ipers), NULL, 1540 domain, aflags); 1541 if (hslab == NULL) 1542 goto fail; 1543 slab = &hslab->uhs_slab; 1544 } 1545 1546 /* 1547 * This reproduces the old vm_zone behavior of zero filling pages the 1548 * first time they are added to a zone. 1549 * 1550 * Malloced items are zeroed in uma_zalloc. 1551 */ 1552 1553 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1554 aflags |= M_ZERO; 1555 else 1556 aflags &= ~M_ZERO; 1557 1558 if (keg->uk_flags & UMA_ZONE_NODUMP) 1559 aflags |= M_NODUMP; 1560 1561 /* zone is passed for legacy reasons. */ 1562 size = keg->uk_ppera * PAGE_SIZE; 1563 mem = allocf(zone, size, domain, &sflags, aflags); 1564 if (mem == NULL) { 1565 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) 1566 zone_free_item(slabzone(keg->uk_ipers), 1567 slab_tohashslab(slab), NULL, SKIP_NONE); 1568 goto fail; 1569 } 1570 uma_total_inc(size); 1571 1572 /* For HASH zones all pages go to the same uma_domain. */ 1573 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 1574 domain = 0; 1575 1576 /* Point the slab into the allocated memory */ 1577 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) 1578 slab = (uma_slab_t )(mem + keg->uk_pgoff); 1579 else 1580 slab_tohashslab(slab)->uhs_data = mem; 1581 1582 if (keg->uk_flags & UMA_ZFLAG_VTOSLAB) 1583 for (i = 0; i < keg->uk_ppera; i++) 1584 vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE), 1585 zone, slab); 1586 1587 slab->us_freecount = keg->uk_ipers; 1588 slab->us_flags = sflags; 1589 slab->us_domain = domain; 1590 1591 BIT_FILL(keg->uk_ipers, &slab->us_free); 1592 #ifdef INVARIANTS 1593 BIT_ZERO(keg->uk_ipers, slab_dbg_bits(slab, keg)); 1594 #endif 1595 1596 if (keg->uk_init != NULL) { 1597 for (i = 0; i < keg->uk_ipers; i++) 1598 if (keg->uk_init(slab_item(slab, keg, i), 1599 keg->uk_size, flags) != 0) 1600 break; 1601 if (i != keg->uk_ipers) { 1602 keg_free_slab(keg, slab, i); 1603 goto fail; 1604 } 1605 } 1606 KEG_LOCK(keg, domain); 1607 1608 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1609 slab, keg->uk_name, keg); 1610 1611 if (keg->uk_flags & UMA_ZFLAG_HASH) 1612 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1613 1614 /* 1615 * If we got a slab here it's safe to mark it partially used 1616 * and return. We assume that the caller is going to remove 1617 * at least one item. 1618 */ 1619 dom = &keg->uk_domain[domain]; 1620 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 1621 dom->ud_pages += keg->uk_ppera; 1622 dom->ud_free_items += keg->uk_ipers; 1623 1624 return (slab); 1625 1626 fail: 1627 return (NULL); 1628 } 1629 1630 /* 1631 * This function is intended to be used early on in place of page_alloc() so 1632 * that we may use the boot time page cache to satisfy allocations before 1633 * the VM is ready. 1634 */ 1635 static void * 1636 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1637 int wait) 1638 { 1639 vm_paddr_t pa; 1640 vm_page_t m; 1641 void *mem; 1642 int pages; 1643 int i; 1644 1645 pages = howmany(bytes, PAGE_SIZE); 1646 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1647 1648 *pflag = UMA_SLAB_BOOT; 1649 m = vm_page_alloc_contig_domain(NULL, 0, domain, 1650 malloc2vm_flags(wait) | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED, pages, 1651 (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT); 1652 if (m == NULL) 1653 return (NULL); 1654 1655 pa = VM_PAGE_TO_PHYS(m); 1656 for (i = 0; i < pages; i++, pa += PAGE_SIZE) { 1657 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 1658 defined(__riscv) || defined(__powerpc64__) 1659 if ((wait & M_NODUMP) == 0) 1660 dump_add_page(pa); 1661 #endif 1662 } 1663 /* Allocate KVA and indirectly advance bootmem. */ 1664 mem = (void *)pmap_map(&bootmem, m->phys_addr, 1665 m->phys_addr + (pages * PAGE_SIZE), VM_PROT_READ | VM_PROT_WRITE); 1666 if ((wait & M_ZERO) != 0) 1667 bzero(mem, pages * PAGE_SIZE); 1668 1669 return (mem); 1670 } 1671 1672 static void 1673 startup_free(void *mem, vm_size_t bytes) 1674 { 1675 vm_offset_t va; 1676 vm_page_t m; 1677 1678 va = (vm_offset_t)mem; 1679 m = PHYS_TO_VM_PAGE(pmap_kextract(va)); 1680 pmap_remove(kernel_pmap, va, va + bytes); 1681 for (; bytes != 0; bytes -= PAGE_SIZE, m++) { 1682 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 1683 defined(__riscv) || defined(__powerpc64__) 1684 dump_drop_page(VM_PAGE_TO_PHYS(m)); 1685 #endif 1686 vm_page_unwire_noq(m); 1687 vm_page_free(m); 1688 } 1689 } 1690 1691 /* 1692 * Allocates a number of pages from the system 1693 * 1694 * Arguments: 1695 * bytes The number of bytes requested 1696 * wait Shall we wait? 1697 * 1698 * Returns: 1699 * A pointer to the alloced memory or possibly 1700 * NULL if M_NOWAIT is set. 1701 */ 1702 static void * 1703 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1704 int wait) 1705 { 1706 void *p; /* Returned page */ 1707 1708 *pflag = UMA_SLAB_KERNEL; 1709 p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait); 1710 1711 return (p); 1712 } 1713 1714 static void * 1715 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1716 int wait) 1717 { 1718 struct pglist alloctail; 1719 vm_offset_t addr, zkva; 1720 int cpu, flags; 1721 vm_page_t p, p_next; 1722 #ifdef NUMA 1723 struct pcpu *pc; 1724 #endif 1725 1726 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE); 1727 1728 TAILQ_INIT(&alloctail); 1729 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1730 malloc2vm_flags(wait); 1731 *pflag = UMA_SLAB_KERNEL; 1732 for (cpu = 0; cpu <= mp_maxid; cpu++) { 1733 if (CPU_ABSENT(cpu)) { 1734 p = vm_page_alloc(NULL, 0, flags); 1735 } else { 1736 #ifndef NUMA 1737 p = vm_page_alloc(NULL, 0, flags); 1738 #else 1739 pc = pcpu_find(cpu); 1740 if (__predict_false(VM_DOMAIN_EMPTY(pc->pc_domain))) 1741 p = NULL; 1742 else 1743 p = vm_page_alloc_domain(NULL, 0, 1744 pc->pc_domain, flags); 1745 if (__predict_false(p == NULL)) 1746 p = vm_page_alloc(NULL, 0, flags); 1747 #endif 1748 } 1749 if (__predict_false(p == NULL)) 1750 goto fail; 1751 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1752 } 1753 if ((addr = kva_alloc(bytes)) == 0) 1754 goto fail; 1755 zkva = addr; 1756 TAILQ_FOREACH(p, &alloctail, listq) { 1757 pmap_qenter(zkva, &p, 1); 1758 zkva += PAGE_SIZE; 1759 } 1760 return ((void*)addr); 1761 fail: 1762 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1763 vm_page_unwire_noq(p); 1764 vm_page_free(p); 1765 } 1766 return (NULL); 1767 } 1768 1769 /* 1770 * Allocates a number of pages from within an object 1771 * 1772 * Arguments: 1773 * bytes The number of bytes requested 1774 * wait Shall we wait? 1775 * 1776 * Returns: 1777 * A pointer to the alloced memory or possibly 1778 * NULL if M_NOWAIT is set. 1779 */ 1780 static void * 1781 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 1782 int wait) 1783 { 1784 TAILQ_HEAD(, vm_page) alloctail; 1785 u_long npages; 1786 vm_offset_t retkva, zkva; 1787 vm_page_t p, p_next; 1788 uma_keg_t keg; 1789 1790 TAILQ_INIT(&alloctail); 1791 keg = zone->uz_keg; 1792 1793 npages = howmany(bytes, PAGE_SIZE); 1794 while (npages > 0) { 1795 p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT | 1796 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1797 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK : 1798 VM_ALLOC_NOWAIT)); 1799 if (p != NULL) { 1800 /* 1801 * Since the page does not belong to an object, its 1802 * listq is unused. 1803 */ 1804 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1805 npages--; 1806 continue; 1807 } 1808 /* 1809 * Page allocation failed, free intermediate pages and 1810 * exit. 1811 */ 1812 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1813 vm_page_unwire_noq(p); 1814 vm_page_free(p); 1815 } 1816 return (NULL); 1817 } 1818 *flags = UMA_SLAB_PRIV; 1819 zkva = keg->uk_kva + 1820 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1821 retkva = zkva; 1822 TAILQ_FOREACH(p, &alloctail, listq) { 1823 pmap_qenter(zkva, &p, 1); 1824 zkva += PAGE_SIZE; 1825 } 1826 1827 return ((void *)retkva); 1828 } 1829 1830 /* 1831 * Allocate physically contiguous pages. 1832 */ 1833 static void * 1834 contig_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1835 int wait) 1836 { 1837 1838 *pflag = UMA_SLAB_KERNEL; 1839 return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain), 1840 bytes, wait, 0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT)); 1841 } 1842 1843 /* 1844 * Frees a number of pages to the system 1845 * 1846 * Arguments: 1847 * mem A pointer to the memory to be freed 1848 * size The size of the memory being freed 1849 * flags The original p->us_flags field 1850 * 1851 * Returns: 1852 * Nothing 1853 */ 1854 static void 1855 page_free(void *mem, vm_size_t size, uint8_t flags) 1856 { 1857 1858 if ((flags & UMA_SLAB_BOOT) != 0) { 1859 startup_free(mem, size); 1860 return; 1861 } 1862 1863 KASSERT((flags & UMA_SLAB_KERNEL) != 0, 1864 ("UMA: page_free used with invalid flags %x", flags)); 1865 1866 kmem_free((vm_offset_t)mem, size); 1867 } 1868 1869 /* 1870 * Frees pcpu zone allocations 1871 * 1872 * Arguments: 1873 * mem A pointer to the memory to be freed 1874 * size The size of the memory being freed 1875 * flags The original p->us_flags field 1876 * 1877 * Returns: 1878 * Nothing 1879 */ 1880 static void 1881 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags) 1882 { 1883 vm_offset_t sva, curva; 1884 vm_paddr_t paddr; 1885 vm_page_t m; 1886 1887 MPASS(size == (mp_maxid+1)*PAGE_SIZE); 1888 1889 if ((flags & UMA_SLAB_BOOT) != 0) { 1890 startup_free(mem, size); 1891 return; 1892 } 1893 1894 sva = (vm_offset_t)mem; 1895 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) { 1896 paddr = pmap_kextract(curva); 1897 m = PHYS_TO_VM_PAGE(paddr); 1898 vm_page_unwire_noq(m); 1899 vm_page_free(m); 1900 } 1901 pmap_qremove(sva, size >> PAGE_SHIFT); 1902 kva_free(sva, size); 1903 } 1904 1905 /* 1906 * Zero fill initializer 1907 * 1908 * Arguments/Returns follow uma_init specifications 1909 */ 1910 static int 1911 zero_init(void *mem, int size, int flags) 1912 { 1913 bzero(mem, size); 1914 return (0); 1915 } 1916 1917 #ifdef INVARIANTS 1918 static struct noslabbits * 1919 slab_dbg_bits(uma_slab_t slab, uma_keg_t keg) 1920 { 1921 1922 return ((void *)((char *)&slab->us_free + BITSET_SIZE(keg->uk_ipers))); 1923 } 1924 #endif 1925 1926 /* 1927 * Actual size of embedded struct slab (!OFFPAGE). 1928 */ 1929 static size_t 1930 slab_sizeof(int nitems) 1931 { 1932 size_t s; 1933 1934 s = sizeof(struct uma_slab) + BITSET_SIZE(nitems) * SLAB_BITSETS; 1935 return (roundup(s, UMA_ALIGN_PTR + 1)); 1936 } 1937 1938 #define UMA_FIXPT_SHIFT 31 1939 #define UMA_FRAC_FIXPT(n, d) \ 1940 ((uint32_t)(((uint64_t)(n) << UMA_FIXPT_SHIFT) / (d))) 1941 #define UMA_FIXPT_PCT(f) \ 1942 ((u_int)(((uint64_t)100 * (f)) >> UMA_FIXPT_SHIFT)) 1943 #define UMA_PCT_FIXPT(pct) UMA_FRAC_FIXPT((pct), 100) 1944 #define UMA_MIN_EFF UMA_PCT_FIXPT(100 - UMA_MAX_WASTE) 1945 1946 /* 1947 * Compute the number of items that will fit in a slab. If hdr is true, the 1948 * item count may be limited to provide space in the slab for an inline slab 1949 * header. Otherwise, all slab space will be provided for item storage. 1950 */ 1951 static u_int 1952 slab_ipers_hdr(u_int size, u_int rsize, u_int slabsize, bool hdr) 1953 { 1954 u_int ipers; 1955 u_int padpi; 1956 1957 /* The padding between items is not needed after the last item. */ 1958 padpi = rsize - size; 1959 1960 if (hdr) { 1961 /* 1962 * Start with the maximum item count and remove items until 1963 * the slab header first alongside the allocatable memory. 1964 */ 1965 for (ipers = MIN(SLAB_MAX_SETSIZE, 1966 (slabsize + padpi - slab_sizeof(1)) / rsize); 1967 ipers > 0 && 1968 ipers * rsize - padpi + slab_sizeof(ipers) > slabsize; 1969 ipers--) 1970 continue; 1971 } else { 1972 ipers = MIN((slabsize + padpi) / rsize, SLAB_MAX_SETSIZE); 1973 } 1974 1975 return (ipers); 1976 } 1977 1978 struct keg_layout_result { 1979 u_int format; 1980 u_int slabsize; 1981 u_int ipers; 1982 u_int eff; 1983 }; 1984 1985 static void 1986 keg_layout_one(uma_keg_t keg, u_int rsize, u_int slabsize, u_int fmt, 1987 struct keg_layout_result *kl) 1988 { 1989 u_int total; 1990 1991 kl->format = fmt; 1992 kl->slabsize = slabsize; 1993 1994 /* Handle INTERNAL as inline with an extra page. */ 1995 if ((fmt & UMA_ZFLAG_INTERNAL) != 0) { 1996 kl->format &= ~UMA_ZFLAG_INTERNAL; 1997 kl->slabsize += PAGE_SIZE; 1998 } 1999 2000 kl->ipers = slab_ipers_hdr(keg->uk_size, rsize, kl->slabsize, 2001 (fmt & UMA_ZFLAG_OFFPAGE) == 0); 2002 2003 /* Account for memory used by an offpage slab header. */ 2004 total = kl->slabsize; 2005 if ((fmt & UMA_ZFLAG_OFFPAGE) != 0) 2006 total += slabzone(kl->ipers)->uz_keg->uk_rsize; 2007 2008 kl->eff = UMA_FRAC_FIXPT(kl->ipers * rsize, total); 2009 } 2010 2011 /* 2012 * Determine the format of a uma keg. This determines where the slab header 2013 * will be placed (inline or offpage) and calculates ipers, rsize, and ppera. 2014 * 2015 * Arguments 2016 * keg The zone we should initialize 2017 * 2018 * Returns 2019 * Nothing 2020 */ 2021 static void 2022 keg_layout(uma_keg_t keg) 2023 { 2024 struct keg_layout_result kl = {}, kl_tmp; 2025 u_int fmts[2]; 2026 u_int alignsize; 2027 u_int nfmt; 2028 u_int pages; 2029 u_int rsize; 2030 u_int slabsize; 2031 u_int i, j; 2032 2033 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 2034 (keg->uk_size <= UMA_PCPU_ALLOC_SIZE && 2035 (keg->uk_flags & UMA_ZONE_CACHESPREAD) == 0), 2036 ("%s: cannot configure for PCPU: keg=%s, size=%u, flags=0x%b", 2037 __func__, keg->uk_name, keg->uk_size, keg->uk_flags, 2038 PRINT_UMA_ZFLAGS)); 2039 KASSERT((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) == 0 || 2040 (keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0, 2041 ("%s: incompatible flags 0x%b", __func__, keg->uk_flags, 2042 PRINT_UMA_ZFLAGS)); 2043 2044 alignsize = keg->uk_align + 1; 2045 2046 /* 2047 * Calculate the size of each allocation (rsize) according to 2048 * alignment. If the requested size is smaller than we have 2049 * allocation bits for we round it up. 2050 */ 2051 rsize = MAX(keg->uk_size, UMA_SMALLEST_UNIT); 2052 rsize = roundup2(rsize, alignsize); 2053 2054 if ((keg->uk_flags & UMA_ZONE_CACHESPREAD) != 0) { 2055 /* 2056 * We want one item to start on every align boundary in a page. 2057 * To do this we will span pages. We will also extend the item 2058 * by the size of align if it is an even multiple of align. 2059 * Otherwise, it would fall on the same boundary every time. 2060 */ 2061 if ((rsize & alignsize) == 0) 2062 rsize += alignsize; 2063 slabsize = rsize * (PAGE_SIZE / alignsize); 2064 slabsize = MIN(slabsize, rsize * SLAB_MAX_SETSIZE); 2065 slabsize = MIN(slabsize, UMA_CACHESPREAD_MAX_SIZE); 2066 slabsize = round_page(slabsize); 2067 } else { 2068 /* 2069 * Start with a slab size of as many pages as it takes to 2070 * represent a single item. We will try to fit as many 2071 * additional items into the slab as possible. 2072 */ 2073 slabsize = round_page(keg->uk_size); 2074 } 2075 2076 /* Build a list of all of the available formats for this keg. */ 2077 nfmt = 0; 2078 2079 /* Evaluate an inline slab layout. */ 2080 if ((keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0) 2081 fmts[nfmt++] = 0; 2082 2083 /* TODO: vm_page-embedded slab. */ 2084 2085 /* 2086 * We can't do OFFPAGE if we're internal or if we've been 2087 * asked to not go to the VM for buckets. If we do this we 2088 * may end up going to the VM for slabs which we do not want 2089 * to do if we're UMA_ZONE_VM, which clearly forbids it. 2090 * In those cases, evaluate a pseudo-format called INTERNAL 2091 * which has an inline slab header and one extra page to 2092 * guarantee that it fits. 2093 * 2094 * Otherwise, see if using an OFFPAGE slab will improve our 2095 * efficiency. 2096 */ 2097 if ((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) != 0) 2098 fmts[nfmt++] = UMA_ZFLAG_INTERNAL; 2099 else 2100 fmts[nfmt++] = UMA_ZFLAG_OFFPAGE; 2101 2102 /* 2103 * Choose a slab size and format which satisfy the minimum efficiency. 2104 * Prefer the smallest slab size that meets the constraints. 2105 * 2106 * Start with a minimum slab size, to accommodate CACHESPREAD. Then, 2107 * for small items (up to PAGE_SIZE), the iteration increment is one 2108 * page; and for large items, the increment is one item. 2109 */ 2110 i = (slabsize + rsize - keg->uk_size) / MAX(PAGE_SIZE, rsize); 2111 KASSERT(i >= 1, ("keg %s(%p) flags=0x%b slabsize=%u, rsize=%u, i=%u", 2112 keg->uk_name, keg, keg->uk_flags, PRINT_UMA_ZFLAGS, slabsize, 2113 rsize, i)); 2114 for ( ; ; i++) { 2115 slabsize = (rsize <= PAGE_SIZE) ? ptoa(i) : 2116 round_page(rsize * (i - 1) + keg->uk_size); 2117 2118 for (j = 0; j < nfmt; j++) { 2119 /* Only if we have no viable format yet. */ 2120 if ((fmts[j] & UMA_ZFLAG_INTERNAL) != 0 && 2121 kl.ipers > 0) 2122 continue; 2123 2124 keg_layout_one(keg, rsize, slabsize, fmts[j], &kl_tmp); 2125 if (kl_tmp.eff <= kl.eff) 2126 continue; 2127 2128 kl = kl_tmp; 2129 2130 CTR6(KTR_UMA, "keg %s layout: format %#x " 2131 "(ipers %u * rsize %u) / slabsize %#x = %u%% eff", 2132 keg->uk_name, kl.format, kl.ipers, rsize, 2133 kl.slabsize, UMA_FIXPT_PCT(kl.eff)); 2134 2135 /* Stop when we reach the minimum efficiency. */ 2136 if (kl.eff >= UMA_MIN_EFF) 2137 break; 2138 } 2139 2140 if (kl.eff >= UMA_MIN_EFF || !multipage_slabs || 2141 slabsize >= SLAB_MAX_SETSIZE * rsize || 2142 (keg->uk_flags & (UMA_ZONE_PCPU | UMA_ZONE_CONTIG)) != 0) 2143 break; 2144 } 2145 2146 pages = atop(kl.slabsize); 2147 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 2148 pages *= mp_maxid + 1; 2149 2150 keg->uk_rsize = rsize; 2151 keg->uk_ipers = kl.ipers; 2152 keg->uk_ppera = pages; 2153 keg->uk_flags |= kl.format; 2154 2155 /* 2156 * How do we find the slab header if it is offpage or if not all item 2157 * start addresses are in the same page? We could solve the latter 2158 * case with vaddr alignment, but we don't. 2159 */ 2160 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0 || 2161 (keg->uk_ipers - 1) * rsize >= PAGE_SIZE) { 2162 if ((keg->uk_flags & UMA_ZONE_NOTPAGE) != 0) 2163 keg->uk_flags |= UMA_ZFLAG_HASH; 2164 else 2165 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2166 } 2167 2168 CTR6(KTR_UMA, "%s: keg=%s, flags=%#x, rsize=%u, ipers=%u, ppera=%u", 2169 __func__, keg->uk_name, keg->uk_flags, rsize, keg->uk_ipers, 2170 pages); 2171 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE, 2172 ("%s: keg=%s, flags=0x%b, rsize=%u, ipers=%u, ppera=%u", __func__, 2173 keg->uk_name, keg->uk_flags, PRINT_UMA_ZFLAGS, rsize, 2174 keg->uk_ipers, pages)); 2175 } 2176 2177 /* 2178 * Keg header ctor. This initializes all fields, locks, etc. And inserts 2179 * the keg onto the global keg list. 2180 * 2181 * Arguments/Returns follow uma_ctor specifications 2182 * udata Actually uma_kctor_args 2183 */ 2184 static int 2185 keg_ctor(void *mem, int size, void *udata, int flags) 2186 { 2187 struct uma_kctor_args *arg = udata; 2188 uma_keg_t keg = mem; 2189 uma_zone_t zone; 2190 int i; 2191 2192 bzero(keg, size); 2193 keg->uk_size = arg->size; 2194 keg->uk_init = arg->uminit; 2195 keg->uk_fini = arg->fini; 2196 keg->uk_align = arg->align; 2197 keg->uk_reserve = 0; 2198 keg->uk_flags = arg->flags; 2199 2200 /* 2201 * We use a global round-robin policy by default. Zones with 2202 * UMA_ZONE_FIRSTTOUCH set will use first-touch instead, in which 2203 * case the iterator is never run. 2204 */ 2205 keg->uk_dr.dr_policy = DOMAINSET_RR(); 2206 keg->uk_dr.dr_iter = 0; 2207 2208 /* 2209 * The primary zone is passed to us at keg-creation time. 2210 */ 2211 zone = arg->zone; 2212 keg->uk_name = zone->uz_name; 2213 2214 if (arg->flags & UMA_ZONE_ZINIT) 2215 keg->uk_init = zero_init; 2216 2217 if (arg->flags & UMA_ZONE_MALLOC) 2218 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2219 2220 #ifndef SMP 2221 keg->uk_flags &= ~UMA_ZONE_PCPU; 2222 #endif 2223 2224 keg_layout(keg); 2225 2226 /* 2227 * Use a first-touch NUMA policy for kegs that pmap_extract() will 2228 * work on. Use round-robin for everything else. 2229 * 2230 * Zones may override the default by specifying either. 2231 */ 2232 #ifdef NUMA 2233 if ((keg->uk_flags & 2234 (UMA_ZONE_ROUNDROBIN | UMA_ZFLAG_CACHE | UMA_ZONE_NOTPAGE)) == 0) 2235 keg->uk_flags |= UMA_ZONE_FIRSTTOUCH; 2236 else if ((keg->uk_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2237 keg->uk_flags |= UMA_ZONE_ROUNDROBIN; 2238 #endif 2239 2240 /* 2241 * If we haven't booted yet we need allocations to go through the 2242 * startup cache until the vm is ready. 2243 */ 2244 #ifdef UMA_MD_SMALL_ALLOC 2245 if (keg->uk_ppera == 1) 2246 keg->uk_allocf = uma_small_alloc; 2247 else 2248 #endif 2249 if (booted < BOOT_KVA) 2250 keg->uk_allocf = startup_alloc; 2251 else if (keg->uk_flags & UMA_ZONE_PCPU) 2252 keg->uk_allocf = pcpu_page_alloc; 2253 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && keg->uk_ppera > 1) 2254 keg->uk_allocf = contig_alloc; 2255 else 2256 keg->uk_allocf = page_alloc; 2257 #ifdef UMA_MD_SMALL_ALLOC 2258 if (keg->uk_ppera == 1) 2259 keg->uk_freef = uma_small_free; 2260 else 2261 #endif 2262 if (keg->uk_flags & UMA_ZONE_PCPU) 2263 keg->uk_freef = pcpu_page_free; 2264 else 2265 keg->uk_freef = page_free; 2266 2267 /* 2268 * Initialize keg's locks. 2269 */ 2270 for (i = 0; i < vm_ndomains; i++) 2271 KEG_LOCK_INIT(keg, i, (arg->flags & UMA_ZONE_MTXCLASS)); 2272 2273 /* 2274 * If we're putting the slab header in the actual page we need to 2275 * figure out where in each page it goes. See slab_sizeof 2276 * definition. 2277 */ 2278 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) { 2279 size_t shsize; 2280 2281 shsize = slab_sizeof(keg->uk_ipers); 2282 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize; 2283 /* 2284 * The only way the following is possible is if with our 2285 * UMA_ALIGN_PTR adjustments we are now bigger than 2286 * UMA_SLAB_SIZE. I haven't checked whether this is 2287 * mathematically possible for all cases, so we make 2288 * sure here anyway. 2289 */ 2290 KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera, 2291 ("zone %s ipers %d rsize %d size %d slab won't fit", 2292 zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size)); 2293 } 2294 2295 if (keg->uk_flags & UMA_ZFLAG_HASH) 2296 hash_alloc(&keg->uk_hash, 0); 2297 2298 CTR3(KTR_UMA, "keg_ctor %p zone %s(%p)", keg, zone->uz_name, zone); 2299 2300 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 2301 2302 rw_wlock(&uma_rwlock); 2303 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 2304 rw_wunlock(&uma_rwlock); 2305 return (0); 2306 } 2307 2308 static void 2309 zone_kva_available(uma_zone_t zone, void *unused) 2310 { 2311 uma_keg_t keg; 2312 2313 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 2314 return; 2315 KEG_GET(zone, keg); 2316 2317 if (keg->uk_allocf == startup_alloc) { 2318 /* Switch to the real allocator. */ 2319 if (keg->uk_flags & UMA_ZONE_PCPU) 2320 keg->uk_allocf = pcpu_page_alloc; 2321 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && 2322 keg->uk_ppera > 1) 2323 keg->uk_allocf = contig_alloc; 2324 else 2325 keg->uk_allocf = page_alloc; 2326 } 2327 } 2328 2329 static void 2330 zone_alloc_counters(uma_zone_t zone, void *unused) 2331 { 2332 2333 zone->uz_allocs = counter_u64_alloc(M_WAITOK); 2334 zone->uz_frees = counter_u64_alloc(M_WAITOK); 2335 zone->uz_fails = counter_u64_alloc(M_WAITOK); 2336 zone->uz_xdomain = counter_u64_alloc(M_WAITOK); 2337 } 2338 2339 static void 2340 zone_alloc_sysctl(uma_zone_t zone, void *unused) 2341 { 2342 uma_zone_domain_t zdom; 2343 uma_domain_t dom; 2344 uma_keg_t keg; 2345 struct sysctl_oid *oid, *domainoid; 2346 int domains, i, cnt; 2347 static const char *nokeg = "cache zone"; 2348 char *c; 2349 2350 /* 2351 * Make a sysctl safe copy of the zone name by removing 2352 * any special characters and handling dups by appending 2353 * an index. 2354 */ 2355 if (zone->uz_namecnt != 0) { 2356 /* Count the number of decimal digits and '_' separator. */ 2357 for (i = 1, cnt = zone->uz_namecnt; cnt != 0; i++) 2358 cnt /= 10; 2359 zone->uz_ctlname = malloc(strlen(zone->uz_name) + i + 1, 2360 M_UMA, M_WAITOK); 2361 sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name, 2362 zone->uz_namecnt); 2363 } else 2364 zone->uz_ctlname = strdup(zone->uz_name, M_UMA); 2365 for (c = zone->uz_ctlname; *c != '\0'; c++) 2366 if (strchr("./\\ -", *c) != NULL) 2367 *c = '_'; 2368 2369 /* 2370 * Basic parameters at the root. 2371 */ 2372 zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma), 2373 OID_AUTO, zone->uz_ctlname, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2374 oid = zone->uz_oid; 2375 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2376 "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size"); 2377 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2378 "flags", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE, 2379 zone, 0, sysctl_handle_uma_zone_flags, "A", 2380 "Allocator configuration flags"); 2381 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2382 "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0, 2383 "Desired per-cpu cache size"); 2384 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2385 "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0, 2386 "Maximum allowed per-cpu cache size"); 2387 2388 /* 2389 * keg if present. 2390 */ 2391 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 2392 domains = vm_ndomains; 2393 else 2394 domains = 1; 2395 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2396 "keg", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2397 keg = zone->uz_keg; 2398 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) { 2399 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2400 "name", CTLFLAG_RD, keg->uk_name, "Keg name"); 2401 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2402 "rsize", CTLFLAG_RD, &keg->uk_rsize, 0, 2403 "Real object size with alignment"); 2404 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2405 "ppera", CTLFLAG_RD, &keg->uk_ppera, 0, 2406 "pages per-slab allocation"); 2407 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2408 "ipers", CTLFLAG_RD, &keg->uk_ipers, 0, 2409 "items available per-slab"); 2410 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2411 "align", CTLFLAG_RD, &keg->uk_align, 0, 2412 "item alignment mask"); 2413 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2414 "efficiency", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2415 keg, 0, sysctl_handle_uma_slab_efficiency, "I", 2416 "Slab utilization (100 - internal fragmentation %)"); 2417 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(oid), 2418 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2419 for (i = 0; i < domains; i++) { 2420 dom = &keg->uk_domain[i]; 2421 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2422 OID_AUTO, VM_DOMAIN(i)->vmd_name, 2423 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2424 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2425 "pages", CTLFLAG_RD, &dom->ud_pages, 0, 2426 "Total pages currently allocated from VM"); 2427 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2428 "free_items", CTLFLAG_RD, &dom->ud_free_items, 0, 2429 "items free in the slab layer"); 2430 } 2431 } else 2432 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2433 "name", CTLFLAG_RD, nokeg, "Keg name"); 2434 2435 /* 2436 * Information about zone limits. 2437 */ 2438 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2439 "limit", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2440 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2441 "items", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2442 zone, 0, sysctl_handle_uma_zone_items, "QU", 2443 "current number of allocated items if limit is set"); 2444 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2445 "max_items", CTLFLAG_RD, &zone->uz_max_items, 0, 2446 "Maximum number of cached items"); 2447 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2448 "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0, 2449 "Number of threads sleeping at limit"); 2450 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2451 "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0, 2452 "Total zone limit sleeps"); 2453 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2454 "bucket_max", CTLFLAG_RD, &zone->uz_bucket_max, 0, 2455 "Maximum number of items in each domain's bucket cache"); 2456 2457 /* 2458 * Per-domain zone information. 2459 */ 2460 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), 2461 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2462 for (i = 0; i < domains; i++) { 2463 zdom = ZDOM_GET(zone, i); 2464 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2465 OID_AUTO, VM_DOMAIN(i)->vmd_name, 2466 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2467 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2468 "nitems", CTLFLAG_RD, &zdom->uzd_nitems, 2469 "number of items in this domain"); 2470 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2471 "imax", CTLFLAG_RD, &zdom->uzd_imax, 2472 "maximum item count in this period"); 2473 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2474 "imin", CTLFLAG_RD, &zdom->uzd_imin, 2475 "minimum item count in this period"); 2476 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2477 "wss", CTLFLAG_RD, &zdom->uzd_wss, 2478 "Working set size"); 2479 } 2480 2481 /* 2482 * General statistics. 2483 */ 2484 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2485 "stats", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2486 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2487 "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2488 zone, 1, sysctl_handle_uma_zone_cur, "I", 2489 "Current number of allocated items"); 2490 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2491 "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2492 zone, 0, sysctl_handle_uma_zone_allocs, "QU", 2493 "Total allocation calls"); 2494 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2495 "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2496 zone, 0, sysctl_handle_uma_zone_frees, "QU", 2497 "Total free calls"); 2498 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2499 "fails", CTLFLAG_RD, &zone->uz_fails, 2500 "Number of allocation failures"); 2501 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2502 "xdomain", CTLFLAG_RD, &zone->uz_xdomain, 2503 "Free calls from the wrong domain"); 2504 } 2505 2506 struct uma_zone_count { 2507 const char *name; 2508 int count; 2509 }; 2510 2511 static void 2512 zone_count(uma_zone_t zone, void *arg) 2513 { 2514 struct uma_zone_count *cnt; 2515 2516 cnt = arg; 2517 /* 2518 * Some zones are rapidly created with identical names and 2519 * destroyed out of order. This can lead to gaps in the count. 2520 * Use one greater than the maximum observed for this name. 2521 */ 2522 if (strcmp(zone->uz_name, cnt->name) == 0) 2523 cnt->count = MAX(cnt->count, 2524 zone->uz_namecnt + 1); 2525 } 2526 2527 static void 2528 zone_update_caches(uma_zone_t zone) 2529 { 2530 int i; 2531 2532 for (i = 0; i <= mp_maxid; i++) { 2533 cache_set_uz_size(&zone->uz_cpu[i], zone->uz_size); 2534 cache_set_uz_flags(&zone->uz_cpu[i], zone->uz_flags); 2535 } 2536 } 2537 2538 /* 2539 * Zone header ctor. This initializes all fields, locks, etc. 2540 * 2541 * Arguments/Returns follow uma_ctor specifications 2542 * udata Actually uma_zctor_args 2543 */ 2544 static int 2545 zone_ctor(void *mem, int size, void *udata, int flags) 2546 { 2547 struct uma_zone_count cnt; 2548 struct uma_zctor_args *arg = udata; 2549 uma_zone_domain_t zdom; 2550 uma_zone_t zone = mem; 2551 uma_zone_t z; 2552 uma_keg_t keg; 2553 int i; 2554 2555 bzero(zone, size); 2556 zone->uz_name = arg->name; 2557 zone->uz_ctor = arg->ctor; 2558 zone->uz_dtor = arg->dtor; 2559 zone->uz_init = NULL; 2560 zone->uz_fini = NULL; 2561 zone->uz_sleeps = 0; 2562 zone->uz_bucket_size = 0; 2563 zone->uz_bucket_size_min = 0; 2564 zone->uz_bucket_size_max = BUCKET_MAX; 2565 zone->uz_flags = (arg->flags & UMA_ZONE_SMR); 2566 zone->uz_warning = NULL; 2567 /* The domain structures follow the cpu structures. */ 2568 zone->uz_bucket_max = ULONG_MAX; 2569 timevalclear(&zone->uz_ratecheck); 2570 2571 /* Count the number of duplicate names. */ 2572 cnt.name = arg->name; 2573 cnt.count = 0; 2574 zone_foreach(zone_count, &cnt); 2575 zone->uz_namecnt = cnt.count; 2576 ZONE_CROSS_LOCK_INIT(zone); 2577 2578 for (i = 0; i < vm_ndomains; i++) { 2579 zdom = ZDOM_GET(zone, i); 2580 ZDOM_LOCK_INIT(zone, zdom, (arg->flags & UMA_ZONE_MTXCLASS)); 2581 STAILQ_INIT(&zdom->uzd_buckets); 2582 } 2583 2584 #ifdef INVARIANTS 2585 if (arg->uminit == trash_init && arg->fini == trash_fini) 2586 zone->uz_flags |= UMA_ZFLAG_TRASH | UMA_ZFLAG_CTORDTOR; 2587 #endif 2588 2589 /* 2590 * This is a pure cache zone, no kegs. 2591 */ 2592 if (arg->import) { 2593 KASSERT((arg->flags & UMA_ZFLAG_CACHE) != 0, 2594 ("zone_ctor: Import specified for non-cache zone.")); 2595 zone->uz_flags = arg->flags; 2596 zone->uz_size = arg->size; 2597 zone->uz_import = arg->import; 2598 zone->uz_release = arg->release; 2599 zone->uz_arg = arg->arg; 2600 #ifdef NUMA 2601 /* 2602 * Cache zones are round-robin unless a policy is 2603 * specified because they may have incompatible 2604 * constraints. 2605 */ 2606 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2607 zone->uz_flags |= UMA_ZONE_ROUNDROBIN; 2608 #endif 2609 rw_wlock(&uma_rwlock); 2610 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 2611 rw_wunlock(&uma_rwlock); 2612 goto out; 2613 } 2614 2615 /* 2616 * Use the regular zone/keg/slab allocator. 2617 */ 2618 zone->uz_import = zone_import; 2619 zone->uz_release = zone_release; 2620 zone->uz_arg = zone; 2621 keg = arg->keg; 2622 2623 if (arg->flags & UMA_ZONE_SECONDARY) { 2624 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 2625 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 2626 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 2627 zone->uz_init = arg->uminit; 2628 zone->uz_fini = arg->fini; 2629 zone->uz_flags |= UMA_ZONE_SECONDARY; 2630 rw_wlock(&uma_rwlock); 2631 ZONE_LOCK(zone); 2632 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 2633 if (LIST_NEXT(z, uz_link) == NULL) { 2634 LIST_INSERT_AFTER(z, zone, uz_link); 2635 break; 2636 } 2637 } 2638 ZONE_UNLOCK(zone); 2639 rw_wunlock(&uma_rwlock); 2640 } else if (keg == NULL) { 2641 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 2642 arg->align, arg->flags)) == NULL) 2643 return (ENOMEM); 2644 } else { 2645 struct uma_kctor_args karg; 2646 int error; 2647 2648 /* We should only be here from uma_startup() */ 2649 karg.size = arg->size; 2650 karg.uminit = arg->uminit; 2651 karg.fini = arg->fini; 2652 karg.align = arg->align; 2653 karg.flags = (arg->flags & ~UMA_ZONE_SMR); 2654 karg.zone = zone; 2655 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 2656 flags); 2657 if (error) 2658 return (error); 2659 } 2660 2661 /* Inherit properties from the keg. */ 2662 zone->uz_keg = keg; 2663 zone->uz_size = keg->uk_size; 2664 zone->uz_flags |= (keg->uk_flags & 2665 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 2666 2667 out: 2668 if (booted >= BOOT_PCPU) { 2669 zone_alloc_counters(zone, NULL); 2670 if (booted >= BOOT_RUNNING) 2671 zone_alloc_sysctl(zone, NULL); 2672 } else { 2673 zone->uz_allocs = EARLY_COUNTER; 2674 zone->uz_frees = EARLY_COUNTER; 2675 zone->uz_fails = EARLY_COUNTER; 2676 } 2677 2678 /* Caller requests a private SMR context. */ 2679 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 2680 zone->uz_smr = smr_create(zone->uz_name, 0, 0); 2681 2682 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != 2683 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), 2684 ("Invalid zone flag combination")); 2685 if (arg->flags & UMA_ZFLAG_INTERNAL) 2686 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 2687 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) 2688 zone->uz_bucket_size = BUCKET_MAX; 2689 else if ((arg->flags & UMA_ZONE_MINBUCKET) != 0) 2690 zone->uz_bucket_size_max = zone->uz_bucket_size = BUCKET_MIN; 2691 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) 2692 zone->uz_bucket_size = 0; 2693 else 2694 zone->uz_bucket_size = bucket_select(zone->uz_size); 2695 zone->uz_bucket_size_min = zone->uz_bucket_size; 2696 if (zone->uz_dtor != NULL || zone->uz_ctor != NULL) 2697 zone->uz_flags |= UMA_ZFLAG_CTORDTOR; 2698 zone_update_caches(zone); 2699 2700 return (0); 2701 } 2702 2703 /* 2704 * Keg header dtor. This frees all data, destroys locks, frees the hash 2705 * table and removes the keg from the global list. 2706 * 2707 * Arguments/Returns follow uma_dtor specifications 2708 * udata unused 2709 */ 2710 static void 2711 keg_dtor(void *arg, int size, void *udata) 2712 { 2713 uma_keg_t keg; 2714 uint32_t free, pages; 2715 int i; 2716 2717 keg = (uma_keg_t)arg; 2718 free = pages = 0; 2719 for (i = 0; i < vm_ndomains; i++) { 2720 free += keg->uk_domain[i].ud_free_items; 2721 pages += keg->uk_domain[i].ud_pages; 2722 KEG_LOCK_FINI(keg, i); 2723 } 2724 if (pages != 0) 2725 printf("Freed UMA keg (%s) was not empty (%u items). " 2726 " Lost %u pages of memory.\n", 2727 keg->uk_name ? keg->uk_name : "", 2728 pages / keg->uk_ppera * keg->uk_ipers - free, pages); 2729 2730 hash_free(&keg->uk_hash); 2731 } 2732 2733 /* 2734 * Zone header dtor. 2735 * 2736 * Arguments/Returns follow uma_dtor specifications 2737 * udata unused 2738 */ 2739 static void 2740 zone_dtor(void *arg, int size, void *udata) 2741 { 2742 uma_zone_t zone; 2743 uma_keg_t keg; 2744 int i; 2745 2746 zone = (uma_zone_t)arg; 2747 2748 sysctl_remove_oid(zone->uz_oid, 1, 1); 2749 2750 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 2751 cache_drain(zone); 2752 2753 rw_wlock(&uma_rwlock); 2754 LIST_REMOVE(zone, uz_link); 2755 rw_wunlock(&uma_rwlock); 2756 zone_reclaim(zone, M_WAITOK, true); 2757 2758 /* 2759 * We only destroy kegs from non secondary/non cache zones. 2760 */ 2761 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { 2762 keg = zone->uz_keg; 2763 rw_wlock(&uma_rwlock); 2764 LIST_REMOVE(keg, uk_link); 2765 rw_wunlock(&uma_rwlock); 2766 zone_free_item(kegs, keg, NULL, SKIP_NONE); 2767 } 2768 counter_u64_free(zone->uz_allocs); 2769 counter_u64_free(zone->uz_frees); 2770 counter_u64_free(zone->uz_fails); 2771 counter_u64_free(zone->uz_xdomain); 2772 free(zone->uz_ctlname, M_UMA); 2773 for (i = 0; i < vm_ndomains; i++) 2774 ZDOM_LOCK_FINI(ZDOM_GET(zone, i)); 2775 ZONE_CROSS_LOCK_FINI(zone); 2776 } 2777 2778 static void 2779 zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *arg), void *arg) 2780 { 2781 uma_keg_t keg; 2782 uma_zone_t zone; 2783 2784 LIST_FOREACH(keg, &uma_kegs, uk_link) { 2785 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 2786 zfunc(zone, arg); 2787 } 2788 LIST_FOREACH(zone, &uma_cachezones, uz_link) 2789 zfunc(zone, arg); 2790 } 2791 2792 /* 2793 * Traverses every zone in the system and calls a callback 2794 * 2795 * Arguments: 2796 * zfunc A pointer to a function which accepts a zone 2797 * as an argument. 2798 * 2799 * Returns: 2800 * Nothing 2801 */ 2802 static void 2803 zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg) 2804 { 2805 2806 rw_rlock(&uma_rwlock); 2807 zone_foreach_unlocked(zfunc, arg); 2808 rw_runlock(&uma_rwlock); 2809 } 2810 2811 /* 2812 * Initialize the kernel memory allocator. This is done after pages can be 2813 * allocated but before general KVA is available. 2814 */ 2815 void 2816 uma_startup1(vm_offset_t virtual_avail) 2817 { 2818 struct uma_zctor_args args; 2819 size_t ksize, zsize, size; 2820 uma_keg_t primarykeg; 2821 uintptr_t m; 2822 int domain; 2823 uint8_t pflag; 2824 2825 bootstart = bootmem = virtual_avail; 2826 2827 rw_init(&uma_rwlock, "UMA lock"); 2828 sx_init(&uma_reclaim_lock, "umareclaim"); 2829 2830 ksize = sizeof(struct uma_keg) + 2831 (sizeof(struct uma_domain) * vm_ndomains); 2832 ksize = roundup(ksize, UMA_SUPER_ALIGN); 2833 zsize = sizeof(struct uma_zone) + 2834 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 2835 (sizeof(struct uma_zone_domain) * vm_ndomains); 2836 zsize = roundup(zsize, UMA_SUPER_ALIGN); 2837 2838 /* Allocate the zone of zones, zone of kegs, and zone of zones keg. */ 2839 size = (zsize * 2) + ksize; 2840 for (domain = 0; domain < vm_ndomains; domain++) { 2841 m = (uintptr_t)startup_alloc(NULL, size, domain, &pflag, 2842 M_NOWAIT | M_ZERO); 2843 if (m != 0) 2844 break; 2845 } 2846 zones = (uma_zone_t)m; 2847 m += zsize; 2848 kegs = (uma_zone_t)m; 2849 m += zsize; 2850 primarykeg = (uma_keg_t)m; 2851 2852 /* "manually" create the initial zone */ 2853 memset(&args, 0, sizeof(args)); 2854 args.name = "UMA Kegs"; 2855 args.size = ksize; 2856 args.ctor = keg_ctor; 2857 args.dtor = keg_dtor; 2858 args.uminit = zero_init; 2859 args.fini = NULL; 2860 args.keg = primarykeg; 2861 args.align = UMA_SUPER_ALIGN - 1; 2862 args.flags = UMA_ZFLAG_INTERNAL; 2863 zone_ctor(kegs, zsize, &args, M_WAITOK); 2864 2865 args.name = "UMA Zones"; 2866 args.size = zsize; 2867 args.ctor = zone_ctor; 2868 args.dtor = zone_dtor; 2869 args.uminit = zero_init; 2870 args.fini = NULL; 2871 args.keg = NULL; 2872 args.align = UMA_SUPER_ALIGN - 1; 2873 args.flags = UMA_ZFLAG_INTERNAL; 2874 zone_ctor(zones, zsize, &args, M_WAITOK); 2875 2876 /* Now make zones for slab headers */ 2877 slabzones[0] = uma_zcreate("UMA Slabs 0", SLABZONE0_SIZE, 2878 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2879 slabzones[1] = uma_zcreate("UMA Slabs 1", SLABZONE1_SIZE, 2880 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2881 2882 hashzone = uma_zcreate("UMA Hash", 2883 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 2884 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2885 2886 bucket_init(); 2887 smr_init(); 2888 } 2889 2890 #ifndef UMA_MD_SMALL_ALLOC 2891 extern void vm_radix_reserve_kva(void); 2892 #endif 2893 2894 /* 2895 * Advertise the availability of normal kva allocations and switch to 2896 * the default back-end allocator. Marks the KVA we consumed on startup 2897 * as used in the map. 2898 */ 2899 void 2900 uma_startup2(void) 2901 { 2902 2903 if (bootstart != bootmem) { 2904 vm_map_lock(kernel_map); 2905 (void)vm_map_insert(kernel_map, NULL, 0, bootstart, bootmem, 2906 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT); 2907 vm_map_unlock(kernel_map); 2908 } 2909 2910 #ifndef UMA_MD_SMALL_ALLOC 2911 /* Set up radix zone to use noobj_alloc. */ 2912 vm_radix_reserve_kva(); 2913 #endif 2914 2915 booted = BOOT_KVA; 2916 zone_foreach_unlocked(zone_kva_available, NULL); 2917 bucket_enable(); 2918 } 2919 2920 /* 2921 * Allocate counters as early as possible so that boot-time allocations are 2922 * accounted more precisely. 2923 */ 2924 static void 2925 uma_startup_pcpu(void *arg __unused) 2926 { 2927 2928 zone_foreach_unlocked(zone_alloc_counters, NULL); 2929 booted = BOOT_PCPU; 2930 } 2931 SYSINIT(uma_startup_pcpu, SI_SUB_COUNTER, SI_ORDER_ANY, uma_startup_pcpu, NULL); 2932 2933 /* 2934 * Finish our initialization steps. 2935 */ 2936 static void 2937 uma_startup3(void *arg __unused) 2938 { 2939 2940 #ifdef INVARIANTS 2941 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor); 2942 uma_dbg_cnt = counter_u64_alloc(M_WAITOK); 2943 uma_skip_cnt = counter_u64_alloc(M_WAITOK); 2944 #endif 2945 zone_foreach_unlocked(zone_alloc_sysctl, NULL); 2946 callout_init(&uma_callout, 1); 2947 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 2948 booted = BOOT_RUNNING; 2949 2950 EVENTHANDLER_REGISTER(shutdown_post_sync, uma_shutdown, NULL, 2951 EVENTHANDLER_PRI_FIRST); 2952 } 2953 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 2954 2955 static void 2956 uma_shutdown(void) 2957 { 2958 2959 booted = BOOT_SHUTDOWN; 2960 } 2961 2962 static uma_keg_t 2963 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 2964 int align, uint32_t flags) 2965 { 2966 struct uma_kctor_args args; 2967 2968 args.size = size; 2969 args.uminit = uminit; 2970 args.fini = fini; 2971 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 2972 args.flags = flags; 2973 args.zone = zone; 2974 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 2975 } 2976 2977 /* Public functions */ 2978 /* See uma.h */ 2979 void 2980 uma_set_align(int align) 2981 { 2982 2983 if (align != UMA_ALIGN_CACHE) 2984 uma_align_cache = align; 2985 } 2986 2987 /* See uma.h */ 2988 uma_zone_t 2989 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 2990 uma_init uminit, uma_fini fini, int align, uint32_t flags) 2991 2992 { 2993 struct uma_zctor_args args; 2994 uma_zone_t res; 2995 2996 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 2997 align, name)); 2998 2999 /* This stuff is essential for the zone ctor */ 3000 memset(&args, 0, sizeof(args)); 3001 args.name = name; 3002 args.size = size; 3003 args.ctor = ctor; 3004 args.dtor = dtor; 3005 args.uminit = uminit; 3006 args.fini = fini; 3007 #ifdef INVARIANTS 3008 /* 3009 * Inject procedures which check for memory use after free if we are 3010 * allowed to scramble the memory while it is not allocated. This 3011 * requires that: UMA is actually able to access the memory, no init 3012 * or fini procedures, no dependency on the initial value of the 3013 * memory, and no (legitimate) use of the memory after free. Note, 3014 * the ctor and dtor do not need to be empty. 3015 */ 3016 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOTOUCH | 3017 UMA_ZONE_NOFREE))) && uminit == NULL && fini == NULL) { 3018 args.uminit = trash_init; 3019 args.fini = trash_fini; 3020 } 3021 #endif 3022 args.align = align; 3023 args.flags = flags; 3024 args.keg = NULL; 3025 3026 sx_slock(&uma_reclaim_lock); 3027 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 3028 sx_sunlock(&uma_reclaim_lock); 3029 3030 return (res); 3031 } 3032 3033 /* See uma.h */ 3034 uma_zone_t 3035 uma_zsecond_create(const char *name, uma_ctor ctor, uma_dtor dtor, 3036 uma_init zinit, uma_fini zfini, uma_zone_t primary) 3037 { 3038 struct uma_zctor_args args; 3039 uma_keg_t keg; 3040 uma_zone_t res; 3041 3042 keg = primary->uz_keg; 3043 memset(&args, 0, sizeof(args)); 3044 args.name = name; 3045 args.size = keg->uk_size; 3046 args.ctor = ctor; 3047 args.dtor = dtor; 3048 args.uminit = zinit; 3049 args.fini = zfini; 3050 args.align = keg->uk_align; 3051 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 3052 args.keg = keg; 3053 3054 sx_slock(&uma_reclaim_lock); 3055 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 3056 sx_sunlock(&uma_reclaim_lock); 3057 3058 return (res); 3059 } 3060 3061 /* See uma.h */ 3062 uma_zone_t 3063 uma_zcache_create(const char *name, int size, uma_ctor ctor, uma_dtor dtor, 3064 uma_init zinit, uma_fini zfini, uma_import zimport, uma_release zrelease, 3065 void *arg, int flags) 3066 { 3067 struct uma_zctor_args args; 3068 3069 memset(&args, 0, sizeof(args)); 3070 args.name = name; 3071 args.size = size; 3072 args.ctor = ctor; 3073 args.dtor = dtor; 3074 args.uminit = zinit; 3075 args.fini = zfini; 3076 args.import = zimport; 3077 args.release = zrelease; 3078 args.arg = arg; 3079 args.align = 0; 3080 args.flags = flags | UMA_ZFLAG_CACHE; 3081 3082 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 3083 } 3084 3085 /* See uma.h */ 3086 void 3087 uma_zdestroy(uma_zone_t zone) 3088 { 3089 3090 /* 3091 * Large slabs are expensive to reclaim, so don't bother doing 3092 * unnecessary work if we're shutting down. 3093 */ 3094 if (booted == BOOT_SHUTDOWN && 3095 zone->uz_fini == NULL && zone->uz_release == zone_release) 3096 return; 3097 sx_slock(&uma_reclaim_lock); 3098 zone_free_item(zones, zone, NULL, SKIP_NONE); 3099 sx_sunlock(&uma_reclaim_lock); 3100 } 3101 3102 void 3103 uma_zwait(uma_zone_t zone) 3104 { 3105 3106 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 3107 uma_zfree_smr(zone, uma_zalloc_smr(zone, M_WAITOK)); 3108 else if ((zone->uz_flags & UMA_ZONE_PCPU) != 0) 3109 uma_zfree_pcpu(zone, uma_zalloc_pcpu(zone, M_WAITOK)); 3110 else 3111 uma_zfree(zone, uma_zalloc(zone, M_WAITOK)); 3112 } 3113 3114 void * 3115 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags) 3116 { 3117 void *item, *pcpu_item; 3118 #ifdef SMP 3119 int i; 3120 3121 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 3122 #endif 3123 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO); 3124 if (item == NULL) 3125 return (NULL); 3126 pcpu_item = zpcpu_base_to_offset(item); 3127 if (flags & M_ZERO) { 3128 #ifdef SMP 3129 for (i = 0; i <= mp_maxid; i++) 3130 bzero(zpcpu_get_cpu(pcpu_item, i), zone->uz_size); 3131 #else 3132 bzero(item, zone->uz_size); 3133 #endif 3134 } 3135 return (pcpu_item); 3136 } 3137 3138 /* 3139 * A stub while both regular and pcpu cases are identical. 3140 */ 3141 void 3142 uma_zfree_pcpu_arg(uma_zone_t zone, void *pcpu_item, void *udata) 3143 { 3144 void *item; 3145 3146 #ifdef SMP 3147 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 3148 #endif 3149 item = zpcpu_offset_to_base(pcpu_item); 3150 uma_zfree_arg(zone, item, udata); 3151 } 3152 3153 static inline void * 3154 item_ctor(uma_zone_t zone, int uz_flags, int size, void *udata, int flags, 3155 void *item) 3156 { 3157 #ifdef INVARIANTS 3158 bool skipdbg; 3159 3160 skipdbg = uma_dbg_zskip(zone, item); 3161 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 3162 zone->uz_ctor != trash_ctor) 3163 trash_ctor(item, size, udata, flags); 3164 #endif 3165 /* Check flags before loading ctor pointer. */ 3166 if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0) && 3167 __predict_false(zone->uz_ctor != NULL) && 3168 zone->uz_ctor(item, size, udata, flags) != 0) { 3169 counter_u64_add(zone->uz_fails, 1); 3170 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT); 3171 return (NULL); 3172 } 3173 #ifdef INVARIANTS 3174 if (!skipdbg) 3175 uma_dbg_alloc(zone, NULL, item); 3176 #endif 3177 if (__predict_false(flags & M_ZERO)) 3178 return (memset(item, 0, size)); 3179 3180 return (item); 3181 } 3182 3183 static inline void 3184 item_dtor(uma_zone_t zone, void *item, int size, void *udata, 3185 enum zfreeskip skip) 3186 { 3187 #ifdef INVARIANTS 3188 bool skipdbg; 3189 3190 skipdbg = uma_dbg_zskip(zone, item); 3191 if (skip == SKIP_NONE && !skipdbg) { 3192 if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0) 3193 uma_dbg_free(zone, udata, item); 3194 else 3195 uma_dbg_free(zone, NULL, item); 3196 } 3197 #endif 3198 if (__predict_true(skip < SKIP_DTOR)) { 3199 if (zone->uz_dtor != NULL) 3200 zone->uz_dtor(item, size, udata); 3201 #ifdef INVARIANTS 3202 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 3203 zone->uz_dtor != trash_dtor) 3204 trash_dtor(item, size, udata); 3205 #endif 3206 } 3207 } 3208 3209 #ifdef NUMA 3210 static int 3211 item_domain(void *item) 3212 { 3213 int domain; 3214 3215 domain = _vm_phys_domain(vtophys(item)); 3216 KASSERT(domain >= 0 && domain < vm_ndomains, 3217 ("%s: unknown domain for item %p", __func__, item)); 3218 return (domain); 3219 } 3220 #endif 3221 3222 #if defined(INVARIANTS) || defined(DEBUG_MEMGUARD) || defined(WITNESS) 3223 #define UMA_ZALLOC_DEBUG 3224 static int 3225 uma_zalloc_debug(uma_zone_t zone, void **itemp, void *udata, int flags) 3226 { 3227 int error; 3228 3229 error = 0; 3230 #ifdef WITNESS 3231 if (flags & M_WAITOK) { 3232 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3233 "uma_zalloc_debug: zone \"%s\"", zone->uz_name); 3234 } 3235 #endif 3236 3237 #ifdef INVARIANTS 3238 KASSERT((flags & M_EXEC) == 0, 3239 ("uma_zalloc_debug: called with M_EXEC")); 3240 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3241 ("uma_zalloc_debug: called within spinlock or critical section")); 3242 KASSERT((zone->uz_flags & UMA_ZONE_PCPU) == 0 || (flags & M_ZERO) == 0, 3243 ("uma_zalloc_debug: allocating from a pcpu zone with M_ZERO")); 3244 #endif 3245 3246 #ifdef DEBUG_MEMGUARD 3247 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && memguard_cmp_zone(zone)) { 3248 void *item; 3249 item = memguard_alloc(zone->uz_size, flags); 3250 if (item != NULL) { 3251 error = EJUSTRETURN; 3252 if (zone->uz_init != NULL && 3253 zone->uz_init(item, zone->uz_size, flags) != 0) { 3254 *itemp = NULL; 3255 return (error); 3256 } 3257 if (zone->uz_ctor != NULL && 3258 zone->uz_ctor(item, zone->uz_size, udata, 3259 flags) != 0) { 3260 counter_u64_add(zone->uz_fails, 1); 3261 zone->uz_fini(item, zone->uz_size); 3262 *itemp = NULL; 3263 return (error); 3264 } 3265 *itemp = item; 3266 return (error); 3267 } 3268 /* This is unfortunate but should not be fatal. */ 3269 } 3270 #endif 3271 return (error); 3272 } 3273 3274 static int 3275 uma_zfree_debug(uma_zone_t zone, void *item, void *udata) 3276 { 3277 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3278 ("uma_zfree_debug: called with spinlock or critical section held")); 3279 3280 #ifdef DEBUG_MEMGUARD 3281 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && is_memguard_addr(item)) { 3282 if (zone->uz_dtor != NULL) 3283 zone->uz_dtor(item, zone->uz_size, udata); 3284 if (zone->uz_fini != NULL) 3285 zone->uz_fini(item, zone->uz_size); 3286 memguard_free(item); 3287 return (EJUSTRETURN); 3288 } 3289 #endif 3290 return (0); 3291 } 3292 #endif 3293 3294 static inline void * 3295 cache_alloc_item(uma_zone_t zone, uma_cache_t cache, uma_cache_bucket_t bucket, 3296 void *udata, int flags) 3297 { 3298 void *item; 3299 int size, uz_flags; 3300 3301 item = cache_bucket_pop(cache, bucket); 3302 size = cache_uz_size(cache); 3303 uz_flags = cache_uz_flags(cache); 3304 critical_exit(); 3305 return (item_ctor(zone, uz_flags, size, udata, flags, item)); 3306 } 3307 3308 static __noinline void * 3309 cache_alloc_retry(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3310 { 3311 uma_cache_bucket_t bucket; 3312 int domain; 3313 3314 while (cache_alloc(zone, cache, udata, flags)) { 3315 cache = &zone->uz_cpu[curcpu]; 3316 bucket = &cache->uc_allocbucket; 3317 if (__predict_false(bucket->ucb_cnt == 0)) 3318 continue; 3319 return (cache_alloc_item(zone, cache, bucket, udata, flags)); 3320 } 3321 critical_exit(); 3322 3323 /* 3324 * We can not get a bucket so try to return a single item. 3325 */ 3326 if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH) 3327 domain = PCPU_GET(domain); 3328 else 3329 domain = UMA_ANYDOMAIN; 3330 return (zone_alloc_item(zone, udata, domain, flags)); 3331 } 3332 3333 /* See uma.h */ 3334 void * 3335 uma_zalloc_smr(uma_zone_t zone, int flags) 3336 { 3337 uma_cache_bucket_t bucket; 3338 uma_cache_t cache; 3339 3340 #ifdef UMA_ZALLOC_DEBUG 3341 void *item; 3342 3343 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 3344 ("uma_zalloc_arg: called with non-SMR zone.")); 3345 if (uma_zalloc_debug(zone, &item, NULL, flags) == EJUSTRETURN) 3346 return (item); 3347 #endif 3348 3349 critical_enter(); 3350 cache = &zone->uz_cpu[curcpu]; 3351 bucket = &cache->uc_allocbucket; 3352 if (__predict_false(bucket->ucb_cnt == 0)) 3353 return (cache_alloc_retry(zone, cache, NULL, flags)); 3354 return (cache_alloc_item(zone, cache, bucket, NULL, flags)); 3355 } 3356 3357 /* See uma.h */ 3358 void * 3359 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 3360 { 3361 uma_cache_bucket_t bucket; 3362 uma_cache_t cache; 3363 3364 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3365 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3366 3367 /* This is the fast path allocation */ 3368 CTR3(KTR_UMA, "uma_zalloc_arg zone %s(%p) flags %d", zone->uz_name, 3369 zone, flags); 3370 3371 #ifdef UMA_ZALLOC_DEBUG 3372 void *item; 3373 3374 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 3375 ("uma_zalloc_arg: called with SMR zone.")); 3376 if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN) 3377 return (item); 3378 #endif 3379 3380 /* 3381 * If possible, allocate from the per-CPU cache. There are two 3382 * requirements for safe access to the per-CPU cache: (1) the thread 3383 * accessing the cache must not be preempted or yield during access, 3384 * and (2) the thread must not migrate CPUs without switching which 3385 * cache it accesses. We rely on a critical section to prevent 3386 * preemption and migration. We release the critical section in 3387 * order to acquire the zone mutex if we are unable to allocate from 3388 * the current cache; when we re-acquire the critical section, we 3389 * must detect and handle migration if it has occurred. 3390 */ 3391 critical_enter(); 3392 cache = &zone->uz_cpu[curcpu]; 3393 bucket = &cache->uc_allocbucket; 3394 if (__predict_false(bucket->ucb_cnt == 0)) 3395 return (cache_alloc_retry(zone, cache, udata, flags)); 3396 return (cache_alloc_item(zone, cache, bucket, udata, flags)); 3397 } 3398 3399 /* 3400 * Replenish an alloc bucket and possibly restore an old one. Called in 3401 * a critical section. Returns in a critical section. 3402 * 3403 * A false return value indicates an allocation failure. 3404 * A true return value indicates success and the caller should retry. 3405 */ 3406 static __noinline bool 3407 cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3408 { 3409 uma_bucket_t bucket; 3410 int curdomain, domain; 3411 bool new; 3412 3413 CRITICAL_ASSERT(curthread); 3414 3415 /* 3416 * If we have run out of items in our alloc bucket see 3417 * if we can switch with the free bucket. 3418 * 3419 * SMR Zones can't re-use the free bucket until the sequence has 3420 * expired. 3421 */ 3422 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) == 0 && 3423 cache->uc_freebucket.ucb_cnt != 0) { 3424 cache_bucket_swap(&cache->uc_freebucket, 3425 &cache->uc_allocbucket); 3426 return (true); 3427 } 3428 3429 /* 3430 * Discard any empty allocation bucket while we hold no locks. 3431 */ 3432 bucket = cache_bucket_unload_alloc(cache); 3433 critical_exit(); 3434 3435 if (bucket != NULL) { 3436 KASSERT(bucket->ub_cnt == 0, 3437 ("cache_alloc: Entered with non-empty alloc bucket.")); 3438 bucket_free(zone, bucket, udata); 3439 } 3440 3441 /* 3442 * Attempt to retrieve the item from the per-CPU cache has failed, so 3443 * we must go back to the zone. This requires the zdom lock, so we 3444 * must drop the critical section, then re-acquire it when we go back 3445 * to the cache. Since the critical section is released, we may be 3446 * preempted or migrate. As such, make sure not to maintain any 3447 * thread-local state specific to the cache from prior to releasing 3448 * the critical section. 3449 */ 3450 domain = PCPU_GET(domain); 3451 if ((cache_uz_flags(cache) & UMA_ZONE_ROUNDROBIN) != 0 || 3452 VM_DOMAIN_EMPTY(domain)) 3453 domain = zone_domain_highest(zone, domain); 3454 bucket = cache_fetch_bucket(zone, cache, domain); 3455 if (bucket == NULL && zone->uz_bucket_size != 0 && !bucketdisable) { 3456 bucket = zone_alloc_bucket(zone, udata, domain, flags); 3457 new = true; 3458 } else { 3459 new = false; 3460 } 3461 3462 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 3463 zone->uz_name, zone, bucket); 3464 if (bucket == NULL) { 3465 critical_enter(); 3466 return (false); 3467 } 3468 3469 /* 3470 * See if we lost the race or were migrated. Cache the 3471 * initialized bucket to make this less likely or claim 3472 * the memory directly. 3473 */ 3474 critical_enter(); 3475 cache = &zone->uz_cpu[curcpu]; 3476 if (cache->uc_allocbucket.ucb_bucket == NULL && 3477 ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) == 0 || 3478 (curdomain = PCPU_GET(domain)) == domain || 3479 VM_DOMAIN_EMPTY(curdomain))) { 3480 if (new) 3481 atomic_add_long(&ZDOM_GET(zone, domain)->uzd_imax, 3482 bucket->ub_cnt); 3483 cache_bucket_load_alloc(cache, bucket); 3484 return (true); 3485 } 3486 3487 /* 3488 * We lost the race, release this bucket and start over. 3489 */ 3490 critical_exit(); 3491 zone_put_bucket(zone, domain, bucket, udata, false); 3492 critical_enter(); 3493 3494 return (true); 3495 } 3496 3497 void * 3498 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 3499 { 3500 #ifdef NUMA 3501 uma_bucket_t bucket; 3502 uma_zone_domain_t zdom; 3503 void *item; 3504 #endif 3505 3506 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3507 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3508 3509 /* This is the fast path allocation */ 3510 CTR4(KTR_UMA, "uma_zalloc_domain zone %s(%p) domain %d flags %d", 3511 zone->uz_name, zone, domain, flags); 3512 3513 if (flags & M_WAITOK) { 3514 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3515 "uma_zalloc_domain: zone \"%s\"", zone->uz_name); 3516 } 3517 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3518 ("uma_zalloc_domain: called with spinlock or critical section held")); 3519 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 3520 ("uma_zalloc_domain: called with SMR zone.")); 3521 #ifdef NUMA 3522 KASSERT((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0, 3523 ("uma_zalloc_domain: called with non-FIRSTTOUCH zone.")); 3524 3525 if (vm_ndomains == 1) 3526 return (uma_zalloc_arg(zone, udata, flags)); 3527 3528 /* 3529 * Try to allocate from the bucket cache before falling back to the keg. 3530 * We could try harder and attempt to allocate from per-CPU caches or 3531 * the per-domain cross-domain buckets, but the complexity is probably 3532 * not worth it. It is more important that frees of previous 3533 * cross-domain allocations do not blow up the cache. 3534 */ 3535 zdom = zone_domain_lock(zone, domain); 3536 if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) { 3537 item = bucket->ub_bucket[bucket->ub_cnt - 1]; 3538 #ifdef INVARIANTS 3539 bucket->ub_bucket[bucket->ub_cnt - 1] = NULL; 3540 #endif 3541 bucket->ub_cnt--; 3542 zone_put_bucket(zone, domain, bucket, udata, true); 3543 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, 3544 flags, item); 3545 if (item != NULL) { 3546 KASSERT(item_domain(item) == domain, 3547 ("%s: bucket cache item %p from wrong domain", 3548 __func__, item)); 3549 counter_u64_add(zone->uz_allocs, 1); 3550 } 3551 return (item); 3552 } 3553 ZDOM_UNLOCK(zdom); 3554 return (zone_alloc_item(zone, udata, domain, flags)); 3555 #else 3556 return (uma_zalloc_arg(zone, udata, flags)); 3557 #endif 3558 } 3559 3560 /* 3561 * Find a slab with some space. Prefer slabs that are partially used over those 3562 * that are totally full. This helps to reduce fragmentation. 3563 * 3564 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 3565 * only 'domain'. 3566 */ 3567 static uma_slab_t 3568 keg_first_slab(uma_keg_t keg, int domain, bool rr) 3569 { 3570 uma_domain_t dom; 3571 uma_slab_t slab; 3572 int start; 3573 3574 KASSERT(domain >= 0 && domain < vm_ndomains, 3575 ("keg_first_slab: domain %d out of range", domain)); 3576 KEG_LOCK_ASSERT(keg, domain); 3577 3578 slab = NULL; 3579 start = domain; 3580 do { 3581 dom = &keg->uk_domain[domain]; 3582 if ((slab = LIST_FIRST(&dom->ud_part_slab)) != NULL) 3583 return (slab); 3584 if ((slab = LIST_FIRST(&dom->ud_free_slab)) != NULL) { 3585 LIST_REMOVE(slab, us_link); 3586 dom->ud_free_slabs--; 3587 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3588 return (slab); 3589 } 3590 if (rr) 3591 domain = (domain + 1) % vm_ndomains; 3592 } while (domain != start); 3593 3594 return (NULL); 3595 } 3596 3597 /* 3598 * Fetch an existing slab from a free or partial list. Returns with the 3599 * keg domain lock held if a slab was found or unlocked if not. 3600 */ 3601 static uma_slab_t 3602 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags) 3603 { 3604 uma_slab_t slab; 3605 uint32_t reserve; 3606 3607 /* HASH has a single free list. */ 3608 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 3609 domain = 0; 3610 3611 KEG_LOCK(keg, domain); 3612 reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve; 3613 if (keg->uk_domain[domain].ud_free_items <= reserve || 3614 (slab = keg_first_slab(keg, domain, rr)) == NULL) { 3615 KEG_UNLOCK(keg, domain); 3616 return (NULL); 3617 } 3618 return (slab); 3619 } 3620 3621 static uma_slab_t 3622 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags) 3623 { 3624 struct vm_domainset_iter di; 3625 uma_slab_t slab; 3626 int aflags, domain; 3627 bool rr; 3628 3629 restart: 3630 /* 3631 * Use the keg's policy if upper layers haven't already specified a 3632 * domain (as happens with first-touch zones). 3633 * 3634 * To avoid races we run the iterator with the keg lock held, but that 3635 * means that we cannot allow the vm_domainset layer to sleep. Thus, 3636 * clear M_WAITOK and handle low memory conditions locally. 3637 */ 3638 rr = rdomain == UMA_ANYDOMAIN; 3639 if (rr) { 3640 aflags = (flags & ~M_WAITOK) | M_NOWAIT; 3641 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 3642 &aflags); 3643 } else { 3644 aflags = flags; 3645 domain = rdomain; 3646 } 3647 3648 for (;;) { 3649 slab = keg_fetch_free_slab(keg, domain, rr, flags); 3650 if (slab != NULL) 3651 return (slab); 3652 3653 /* 3654 * M_NOVM means don't ask at all! 3655 */ 3656 if (flags & M_NOVM) 3657 break; 3658 3659 slab = keg_alloc_slab(keg, zone, domain, flags, aflags); 3660 if (slab != NULL) 3661 return (slab); 3662 if (!rr && (flags & M_WAITOK) == 0) 3663 break; 3664 if (rr && vm_domainset_iter_policy(&di, &domain) != 0) { 3665 if ((flags & M_WAITOK) != 0) { 3666 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0); 3667 goto restart; 3668 } 3669 break; 3670 } 3671 } 3672 3673 /* 3674 * We might not have been able to get a slab but another cpu 3675 * could have while we were unlocked. Check again before we 3676 * fail. 3677 */ 3678 if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL) 3679 return (slab); 3680 3681 return (NULL); 3682 } 3683 3684 static void * 3685 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 3686 { 3687 uma_domain_t dom; 3688 void *item; 3689 int freei; 3690 3691 KEG_LOCK_ASSERT(keg, slab->us_domain); 3692 3693 dom = &keg->uk_domain[slab->us_domain]; 3694 freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1; 3695 BIT_CLR(keg->uk_ipers, freei, &slab->us_free); 3696 item = slab_item(slab, keg, freei); 3697 slab->us_freecount--; 3698 dom->ud_free_items--; 3699 3700 /* 3701 * Move this slab to the full list. It must be on the partial list, so 3702 * we do not need to update the free slab count. In particular, 3703 * keg_fetch_slab() always returns slabs on the partial list. 3704 */ 3705 if (slab->us_freecount == 0) { 3706 LIST_REMOVE(slab, us_link); 3707 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 3708 } 3709 3710 return (item); 3711 } 3712 3713 static int 3714 zone_import(void *arg, void **bucket, int max, int domain, int flags) 3715 { 3716 uma_domain_t dom; 3717 uma_zone_t zone; 3718 uma_slab_t slab; 3719 uma_keg_t keg; 3720 #ifdef NUMA 3721 int stripe; 3722 #endif 3723 int i; 3724 3725 zone = arg; 3726 slab = NULL; 3727 keg = zone->uz_keg; 3728 /* Try to keep the buckets totally full */ 3729 for (i = 0; i < max; ) { 3730 if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL) 3731 break; 3732 #ifdef NUMA 3733 stripe = howmany(max, vm_ndomains); 3734 #endif 3735 dom = &keg->uk_domain[slab->us_domain]; 3736 while (slab->us_freecount && i < max) { 3737 bucket[i++] = slab_alloc_item(keg, slab); 3738 if (dom->ud_free_items <= keg->uk_reserve) 3739 break; 3740 #ifdef NUMA 3741 /* 3742 * If the zone is striped we pick a new slab for every 3743 * N allocations. Eliminating this conditional will 3744 * instead pick a new domain for each bucket rather 3745 * than stripe within each bucket. The current option 3746 * produces more fragmentation and requires more cpu 3747 * time but yields better distribution. 3748 */ 3749 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0 && 3750 vm_ndomains > 1 && --stripe == 0) 3751 break; 3752 #endif 3753 } 3754 KEG_UNLOCK(keg, slab->us_domain); 3755 /* Don't block if we allocated any successfully. */ 3756 flags &= ~M_WAITOK; 3757 flags |= M_NOWAIT; 3758 } 3759 3760 return i; 3761 } 3762 3763 static int 3764 zone_alloc_limit_hard(uma_zone_t zone, int count, int flags) 3765 { 3766 uint64_t old, new, total, max; 3767 3768 /* 3769 * The hard case. We're going to sleep because there were existing 3770 * sleepers or because we ran out of items. This routine enforces 3771 * fairness by keeping fifo order. 3772 * 3773 * First release our ill gotten gains and make some noise. 3774 */ 3775 for (;;) { 3776 zone_free_limit(zone, count); 3777 zone_log_warning(zone); 3778 zone_maxaction(zone); 3779 if (flags & M_NOWAIT) 3780 return (0); 3781 3782 /* 3783 * We need to allocate an item or set ourself as a sleeper 3784 * while the sleepq lock is held to avoid wakeup races. This 3785 * is essentially a home rolled semaphore. 3786 */ 3787 sleepq_lock(&zone->uz_max_items); 3788 old = zone->uz_items; 3789 do { 3790 MPASS(UZ_ITEMS_SLEEPERS(old) < UZ_ITEMS_SLEEPERS_MAX); 3791 /* Cache the max since we will evaluate twice. */ 3792 max = zone->uz_max_items; 3793 if (UZ_ITEMS_SLEEPERS(old) != 0 || 3794 UZ_ITEMS_COUNT(old) >= max) 3795 new = old + UZ_ITEMS_SLEEPER; 3796 else 3797 new = old + MIN(count, max - old); 3798 } while (atomic_fcmpset_64(&zone->uz_items, &old, new) == 0); 3799 3800 /* We may have successfully allocated under the sleepq lock. */ 3801 if (UZ_ITEMS_SLEEPERS(new) == 0) { 3802 sleepq_release(&zone->uz_max_items); 3803 return (new - old); 3804 } 3805 3806 /* 3807 * This is in a different cacheline from uz_items so that we 3808 * don't constantly invalidate the fastpath cacheline when we 3809 * adjust item counts. This could be limited to toggling on 3810 * transitions. 3811 */ 3812 atomic_add_32(&zone->uz_sleepers, 1); 3813 atomic_add_64(&zone->uz_sleeps, 1); 3814 3815 /* 3816 * We have added ourselves as a sleeper. The sleepq lock 3817 * protects us from wakeup races. Sleep now and then retry. 3818 */ 3819 sleepq_add(&zone->uz_max_items, NULL, "zonelimit", 0, 0); 3820 sleepq_wait(&zone->uz_max_items, PVM); 3821 3822 /* 3823 * After wakeup, remove ourselves as a sleeper and try 3824 * again. We no longer have the sleepq lock for protection. 3825 * 3826 * Subract ourselves as a sleeper while attempting to add 3827 * our count. 3828 */ 3829 atomic_subtract_32(&zone->uz_sleepers, 1); 3830 old = atomic_fetchadd_64(&zone->uz_items, 3831 -(UZ_ITEMS_SLEEPER - count)); 3832 /* We're no longer a sleeper. */ 3833 old -= UZ_ITEMS_SLEEPER; 3834 3835 /* 3836 * If we're still at the limit, restart. Notably do not 3837 * block on other sleepers. Cache the max value to protect 3838 * against changes via sysctl. 3839 */ 3840 total = UZ_ITEMS_COUNT(old); 3841 max = zone->uz_max_items; 3842 if (total >= max) 3843 continue; 3844 /* Truncate if necessary, otherwise wake other sleepers. */ 3845 if (total + count > max) { 3846 zone_free_limit(zone, total + count - max); 3847 count = max - total; 3848 } else if (total + count < max && UZ_ITEMS_SLEEPERS(old) != 0) 3849 wakeup_one(&zone->uz_max_items); 3850 3851 return (count); 3852 } 3853 } 3854 3855 /* 3856 * Allocate 'count' items from our max_items limit. Returns the number 3857 * available. If M_NOWAIT is not specified it will sleep until at least 3858 * one item can be allocated. 3859 */ 3860 static int 3861 zone_alloc_limit(uma_zone_t zone, int count, int flags) 3862 { 3863 uint64_t old; 3864 uint64_t max; 3865 3866 max = zone->uz_max_items; 3867 MPASS(max > 0); 3868 3869 /* 3870 * We expect normal allocations to succeed with a simple 3871 * fetchadd. 3872 */ 3873 old = atomic_fetchadd_64(&zone->uz_items, count); 3874 if (__predict_true(old + count <= max)) 3875 return (count); 3876 3877 /* 3878 * If we had some items and no sleepers just return the 3879 * truncated value. We have to release the excess space 3880 * though because that may wake sleepers who weren't woken 3881 * because we were temporarily over the limit. 3882 */ 3883 if (old < max) { 3884 zone_free_limit(zone, (old + count) - max); 3885 return (max - old); 3886 } 3887 return (zone_alloc_limit_hard(zone, count, flags)); 3888 } 3889 3890 /* 3891 * Free a number of items back to the limit. 3892 */ 3893 static void 3894 zone_free_limit(uma_zone_t zone, int count) 3895 { 3896 uint64_t old; 3897 3898 MPASS(count > 0); 3899 3900 /* 3901 * In the common case we either have no sleepers or 3902 * are still over the limit and can just return. 3903 */ 3904 old = atomic_fetchadd_64(&zone->uz_items, -count); 3905 if (__predict_true(UZ_ITEMS_SLEEPERS(old) == 0 || 3906 UZ_ITEMS_COUNT(old) - count >= zone->uz_max_items)) 3907 return; 3908 3909 /* 3910 * Moderate the rate of wakeups. Sleepers will continue 3911 * to generate wakeups if necessary. 3912 */ 3913 wakeup_one(&zone->uz_max_items); 3914 } 3915 3916 static uma_bucket_t 3917 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags) 3918 { 3919 uma_bucket_t bucket; 3920 int maxbucket, cnt; 3921 3922 CTR3(KTR_UMA, "zone_alloc_bucket zone %s(%p) domain %d", zone->uz_name, 3923 zone, domain); 3924 3925 /* Avoid allocs targeting empty domains. */ 3926 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 3927 domain = UMA_ANYDOMAIN; 3928 else if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) 3929 domain = UMA_ANYDOMAIN; 3930 3931 if (zone->uz_max_items > 0) 3932 maxbucket = zone_alloc_limit(zone, zone->uz_bucket_size, 3933 M_NOWAIT); 3934 else 3935 maxbucket = zone->uz_bucket_size; 3936 if (maxbucket == 0) 3937 return (false); 3938 3939 /* Don't wait for buckets, preserve caller's NOVM setting. */ 3940 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 3941 if (bucket == NULL) { 3942 cnt = 0; 3943 goto out; 3944 } 3945 3946 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 3947 MIN(maxbucket, bucket->ub_entries), domain, flags); 3948 3949 /* 3950 * Initialize the memory if necessary. 3951 */ 3952 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 3953 int i; 3954 3955 for (i = 0; i < bucket->ub_cnt; i++) 3956 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 3957 flags) != 0) 3958 break; 3959 /* 3960 * If we couldn't initialize the whole bucket, put the 3961 * rest back onto the freelist. 3962 */ 3963 if (i != bucket->ub_cnt) { 3964 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 3965 bucket->ub_cnt - i); 3966 #ifdef INVARIANTS 3967 bzero(&bucket->ub_bucket[i], 3968 sizeof(void *) * (bucket->ub_cnt - i)); 3969 #endif 3970 bucket->ub_cnt = i; 3971 } 3972 } 3973 3974 cnt = bucket->ub_cnt; 3975 if (bucket->ub_cnt == 0) { 3976 bucket_free(zone, bucket, udata); 3977 counter_u64_add(zone->uz_fails, 1); 3978 bucket = NULL; 3979 } 3980 out: 3981 if (zone->uz_max_items > 0 && cnt < maxbucket) 3982 zone_free_limit(zone, maxbucket - cnt); 3983 3984 return (bucket); 3985 } 3986 3987 /* 3988 * Allocates a single item from a zone. 3989 * 3990 * Arguments 3991 * zone The zone to alloc for. 3992 * udata The data to be passed to the constructor. 3993 * domain The domain to allocate from or UMA_ANYDOMAIN. 3994 * flags M_WAITOK, M_NOWAIT, M_ZERO. 3995 * 3996 * Returns 3997 * NULL if there is no memory and M_NOWAIT is set 3998 * An item if successful 3999 */ 4000 4001 static void * 4002 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 4003 { 4004 void *item; 4005 4006 if (zone->uz_max_items > 0 && zone_alloc_limit(zone, 1, flags) == 0) { 4007 counter_u64_add(zone->uz_fails, 1); 4008 return (NULL); 4009 } 4010 4011 /* Avoid allocs targeting empty domains. */ 4012 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 4013 domain = UMA_ANYDOMAIN; 4014 4015 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 4016 goto fail_cnt; 4017 4018 /* 4019 * We have to call both the zone's init (not the keg's init) 4020 * and the zone's ctor. This is because the item is going from 4021 * a keg slab directly to the user, and the user is expecting it 4022 * to be both zone-init'd as well as zone-ctor'd. 4023 */ 4024 if (zone->uz_init != NULL) { 4025 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 4026 zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT); 4027 goto fail_cnt; 4028 } 4029 } 4030 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, flags, 4031 item); 4032 if (item == NULL) 4033 goto fail; 4034 4035 counter_u64_add(zone->uz_allocs, 1); 4036 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 4037 zone->uz_name, zone); 4038 4039 return (item); 4040 4041 fail_cnt: 4042 counter_u64_add(zone->uz_fails, 1); 4043 fail: 4044 if (zone->uz_max_items > 0) 4045 zone_free_limit(zone, 1); 4046 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 4047 zone->uz_name, zone); 4048 4049 return (NULL); 4050 } 4051 4052 /* See uma.h */ 4053 void 4054 uma_zfree_smr(uma_zone_t zone, void *item) 4055 { 4056 uma_cache_t cache; 4057 uma_cache_bucket_t bucket; 4058 int itemdomain, uz_flags; 4059 4060 #ifdef UMA_ZALLOC_DEBUG 4061 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 4062 ("uma_zfree_smr: called with non-SMR zone.")); 4063 KASSERT(item != NULL, ("uma_zfree_smr: Called with NULL pointer.")); 4064 SMR_ASSERT_NOT_ENTERED(zone->uz_smr); 4065 if (uma_zfree_debug(zone, item, NULL) == EJUSTRETURN) 4066 return; 4067 #endif 4068 cache = &zone->uz_cpu[curcpu]; 4069 uz_flags = cache_uz_flags(cache); 4070 itemdomain = 0; 4071 #ifdef NUMA 4072 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4073 itemdomain = item_domain(item); 4074 #endif 4075 critical_enter(); 4076 do { 4077 cache = &zone->uz_cpu[curcpu]; 4078 /* SMR Zones must free to the free bucket. */ 4079 bucket = &cache->uc_freebucket; 4080 #ifdef NUMA 4081 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4082 PCPU_GET(domain) != itemdomain) { 4083 bucket = &cache->uc_crossbucket; 4084 } 4085 #endif 4086 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 4087 cache_bucket_push(cache, bucket, item); 4088 critical_exit(); 4089 return; 4090 } 4091 } while (cache_free(zone, cache, NULL, item, itemdomain)); 4092 critical_exit(); 4093 4094 /* 4095 * If nothing else caught this, we'll just do an internal free. 4096 */ 4097 zone_free_item(zone, item, NULL, SKIP_NONE); 4098 } 4099 4100 /* See uma.h */ 4101 void 4102 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 4103 { 4104 uma_cache_t cache; 4105 uma_cache_bucket_t bucket; 4106 int itemdomain, uz_flags; 4107 4108 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 4109 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 4110 4111 CTR2(KTR_UMA, "uma_zfree_arg zone %s(%p)", zone->uz_name, zone); 4112 4113 #ifdef UMA_ZALLOC_DEBUG 4114 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 4115 ("uma_zfree_arg: called with SMR zone.")); 4116 if (uma_zfree_debug(zone, item, udata) == EJUSTRETURN) 4117 return; 4118 #endif 4119 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 4120 if (item == NULL) 4121 return; 4122 4123 /* 4124 * We are accessing the per-cpu cache without a critical section to 4125 * fetch size and flags. This is acceptable, if we are preempted we 4126 * will simply read another cpu's line. 4127 */ 4128 cache = &zone->uz_cpu[curcpu]; 4129 uz_flags = cache_uz_flags(cache); 4130 if (UMA_ALWAYS_CTORDTOR || 4131 __predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0)) 4132 item_dtor(zone, item, cache_uz_size(cache), udata, SKIP_NONE); 4133 4134 /* 4135 * The race here is acceptable. If we miss it we'll just have to wait 4136 * a little longer for the limits to be reset. 4137 */ 4138 if (__predict_false(uz_flags & UMA_ZFLAG_LIMIT)) { 4139 if (zone->uz_sleepers > 0) 4140 goto zfree_item; 4141 } 4142 4143 /* 4144 * If possible, free to the per-CPU cache. There are two 4145 * requirements for safe access to the per-CPU cache: (1) the thread 4146 * accessing the cache must not be preempted or yield during access, 4147 * and (2) the thread must not migrate CPUs without switching which 4148 * cache it accesses. We rely on a critical section to prevent 4149 * preemption and migration. We release the critical section in 4150 * order to acquire the zone mutex if we are unable to free to the 4151 * current cache; when we re-acquire the critical section, we must 4152 * detect and handle migration if it has occurred. 4153 */ 4154 itemdomain = 0; 4155 #ifdef NUMA 4156 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4157 itemdomain = item_domain(item); 4158 #endif 4159 critical_enter(); 4160 do { 4161 cache = &zone->uz_cpu[curcpu]; 4162 /* 4163 * Try to free into the allocbucket first to give LIFO 4164 * ordering for cache-hot datastructures. Spill over 4165 * into the freebucket if necessary. Alloc will swap 4166 * them if one runs dry. 4167 */ 4168 bucket = &cache->uc_allocbucket; 4169 #ifdef NUMA 4170 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4171 PCPU_GET(domain) != itemdomain) { 4172 bucket = &cache->uc_crossbucket; 4173 } else 4174 #endif 4175 if (bucket->ucb_cnt == bucket->ucb_entries && 4176 cache->uc_freebucket.ucb_cnt < 4177 cache->uc_freebucket.ucb_entries) 4178 cache_bucket_swap(&cache->uc_freebucket, 4179 &cache->uc_allocbucket); 4180 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 4181 cache_bucket_push(cache, bucket, item); 4182 critical_exit(); 4183 return; 4184 } 4185 } while (cache_free(zone, cache, udata, item, itemdomain)); 4186 critical_exit(); 4187 4188 /* 4189 * If nothing else caught this, we'll just do an internal free. 4190 */ 4191 zfree_item: 4192 zone_free_item(zone, item, udata, SKIP_DTOR); 4193 } 4194 4195 #ifdef NUMA 4196 /* 4197 * sort crossdomain free buckets to domain correct buckets and cache 4198 * them. 4199 */ 4200 static void 4201 zone_free_cross(uma_zone_t zone, uma_bucket_t bucket, void *udata) 4202 { 4203 struct uma_bucketlist fullbuckets; 4204 uma_zone_domain_t zdom; 4205 uma_bucket_t b; 4206 smr_seq_t seq; 4207 void *item; 4208 int domain; 4209 4210 CTR3(KTR_UMA, 4211 "uma_zfree: zone %s(%p) draining cross bucket %p", 4212 zone->uz_name, zone, bucket); 4213 4214 /* 4215 * It is possible for buckets to arrive here out of order so we fetch 4216 * the current smr seq rather than accepting the bucket's. 4217 */ 4218 seq = SMR_SEQ_INVALID; 4219 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 4220 seq = smr_advance(zone->uz_smr); 4221 4222 /* 4223 * To avoid having ndomain * ndomain buckets for sorting we have a 4224 * lock on the current crossfree bucket. A full matrix with 4225 * per-domain locking could be used if necessary. 4226 */ 4227 STAILQ_INIT(&fullbuckets); 4228 ZONE_CROSS_LOCK(zone); 4229 while (bucket->ub_cnt > 0) { 4230 item = bucket->ub_bucket[bucket->ub_cnt - 1]; 4231 domain = item_domain(item); 4232 zdom = ZDOM_GET(zone, domain); 4233 if (zdom->uzd_cross == NULL) { 4234 zdom->uzd_cross = bucket_alloc(zone, udata, M_NOWAIT); 4235 if (zdom->uzd_cross == NULL) 4236 break; 4237 } 4238 b = zdom->uzd_cross; 4239 b->ub_bucket[b->ub_cnt++] = item; 4240 b->ub_seq = seq; 4241 if (b->ub_cnt == b->ub_entries) { 4242 STAILQ_INSERT_HEAD(&fullbuckets, b, ub_link); 4243 zdom->uzd_cross = NULL; 4244 } 4245 bucket->ub_cnt--; 4246 } 4247 ZONE_CROSS_UNLOCK(zone); 4248 if (bucket->ub_cnt == 0) 4249 bucket->ub_seq = SMR_SEQ_INVALID; 4250 bucket_free(zone, bucket, udata); 4251 4252 while ((b = STAILQ_FIRST(&fullbuckets)) != NULL) { 4253 STAILQ_REMOVE_HEAD(&fullbuckets, ub_link); 4254 domain = item_domain(b->ub_bucket[0]); 4255 zone_put_bucket(zone, domain, b, udata, true); 4256 } 4257 } 4258 #endif 4259 4260 static void 4261 zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 4262 int itemdomain, bool ws) 4263 { 4264 4265 #ifdef NUMA 4266 /* 4267 * Buckets coming from the wrong domain will be entirely for the 4268 * only other domain on two domain systems. In this case we can 4269 * simply cache them. Otherwise we need to sort them back to 4270 * correct domains. 4271 */ 4272 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4273 vm_ndomains > 2 && PCPU_GET(domain) != itemdomain) { 4274 zone_free_cross(zone, bucket, udata); 4275 return; 4276 } 4277 #endif 4278 4279 /* 4280 * Attempt to save the bucket in the zone's domain bucket cache. 4281 */ 4282 CTR3(KTR_UMA, 4283 "uma_zfree: zone %s(%p) putting bucket %p on free list", 4284 zone->uz_name, zone, bucket); 4285 /* ub_cnt is pointing to the last free item */ 4286 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) 4287 itemdomain = zone_domain_lowest(zone, itemdomain); 4288 zone_put_bucket(zone, itemdomain, bucket, udata, ws); 4289 } 4290 4291 /* 4292 * Populate a free or cross bucket for the current cpu cache. Free any 4293 * existing full bucket either to the zone cache or back to the slab layer. 4294 * 4295 * Enters and returns in a critical section. false return indicates that 4296 * we can not satisfy this free in the cache layer. true indicates that 4297 * the caller should retry. 4298 */ 4299 static __noinline bool 4300 cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, void *item, 4301 int itemdomain) 4302 { 4303 uma_cache_bucket_t cbucket; 4304 uma_bucket_t newbucket, bucket; 4305 4306 CRITICAL_ASSERT(curthread); 4307 4308 if (zone->uz_bucket_size == 0) 4309 return false; 4310 4311 cache = &zone->uz_cpu[curcpu]; 4312 newbucket = NULL; 4313 4314 /* 4315 * FIRSTTOUCH domains need to free to the correct zdom. When 4316 * enabled this is the zdom of the item. The bucket is the 4317 * cross bucket if the current domain and itemdomain do not match. 4318 */ 4319 cbucket = &cache->uc_freebucket; 4320 #ifdef NUMA 4321 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { 4322 if (PCPU_GET(domain) != itemdomain) { 4323 cbucket = &cache->uc_crossbucket; 4324 if (cbucket->ucb_cnt != 0) 4325 counter_u64_add(zone->uz_xdomain, 4326 cbucket->ucb_cnt); 4327 } 4328 } 4329 #endif 4330 bucket = cache_bucket_unload(cbucket); 4331 KASSERT(bucket == NULL || bucket->ub_cnt == bucket->ub_entries, 4332 ("cache_free: Entered with non-full free bucket.")); 4333 4334 /* We are no longer associated with this CPU. */ 4335 critical_exit(); 4336 4337 /* 4338 * Don't let SMR zones operate without a free bucket. Force 4339 * a synchronize and re-use this one. We will only degrade 4340 * to a synchronize every bucket_size items rather than every 4341 * item if we fail to allocate a bucket. 4342 */ 4343 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) { 4344 if (bucket != NULL) 4345 bucket->ub_seq = smr_advance(zone->uz_smr); 4346 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4347 if (newbucket == NULL && bucket != NULL) { 4348 bucket_drain(zone, bucket); 4349 newbucket = bucket; 4350 bucket = NULL; 4351 } 4352 } else if (!bucketdisable) 4353 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4354 4355 if (bucket != NULL) 4356 zone_free_bucket(zone, bucket, udata, itemdomain, true); 4357 4358 critical_enter(); 4359 if ((bucket = newbucket) == NULL) 4360 return (false); 4361 cache = &zone->uz_cpu[curcpu]; 4362 #ifdef NUMA 4363 /* 4364 * Check to see if we should be populating the cross bucket. If it 4365 * is already populated we will fall through and attempt to populate 4366 * the free bucket. 4367 */ 4368 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { 4369 if (PCPU_GET(domain) != itemdomain && 4370 cache->uc_crossbucket.ucb_bucket == NULL) { 4371 cache_bucket_load_cross(cache, bucket); 4372 return (true); 4373 } 4374 } 4375 #endif 4376 /* 4377 * We may have lost the race to fill the bucket or switched CPUs. 4378 */ 4379 if (cache->uc_freebucket.ucb_bucket != NULL) { 4380 critical_exit(); 4381 bucket_free(zone, bucket, udata); 4382 critical_enter(); 4383 } else 4384 cache_bucket_load_free(cache, bucket); 4385 4386 return (true); 4387 } 4388 4389 static void 4390 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item) 4391 { 4392 uma_keg_t keg; 4393 uma_domain_t dom; 4394 int freei; 4395 4396 keg = zone->uz_keg; 4397 KEG_LOCK_ASSERT(keg, slab->us_domain); 4398 4399 /* Do we need to remove from any lists? */ 4400 dom = &keg->uk_domain[slab->us_domain]; 4401 if (slab->us_freecount + 1 == keg->uk_ipers) { 4402 LIST_REMOVE(slab, us_link); 4403 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 4404 dom->ud_free_slabs++; 4405 } else if (slab->us_freecount == 0) { 4406 LIST_REMOVE(slab, us_link); 4407 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 4408 } 4409 4410 /* Slab management. */ 4411 freei = slab_item_index(slab, keg, item); 4412 BIT_SET(keg->uk_ipers, freei, &slab->us_free); 4413 slab->us_freecount++; 4414 4415 /* Keg statistics. */ 4416 dom->ud_free_items++; 4417 } 4418 4419 static void 4420 zone_release(void *arg, void **bucket, int cnt) 4421 { 4422 struct mtx *lock; 4423 uma_zone_t zone; 4424 uma_slab_t slab; 4425 uma_keg_t keg; 4426 uint8_t *mem; 4427 void *item; 4428 int i; 4429 4430 zone = arg; 4431 keg = zone->uz_keg; 4432 lock = NULL; 4433 if (__predict_false((zone->uz_flags & UMA_ZFLAG_HASH) != 0)) 4434 lock = KEG_LOCK(keg, 0); 4435 for (i = 0; i < cnt; i++) { 4436 item = bucket[i]; 4437 if (__predict_true((zone->uz_flags & UMA_ZFLAG_VTOSLAB) != 0)) { 4438 slab = vtoslab((vm_offset_t)item); 4439 } else { 4440 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 4441 if ((zone->uz_flags & UMA_ZFLAG_HASH) != 0) 4442 slab = hash_sfind(&keg->uk_hash, mem); 4443 else 4444 slab = (uma_slab_t)(mem + keg->uk_pgoff); 4445 } 4446 if (lock != KEG_LOCKPTR(keg, slab->us_domain)) { 4447 if (lock != NULL) 4448 mtx_unlock(lock); 4449 lock = KEG_LOCK(keg, slab->us_domain); 4450 } 4451 slab_free_item(zone, slab, item); 4452 } 4453 if (lock != NULL) 4454 mtx_unlock(lock); 4455 } 4456 4457 /* 4458 * Frees a single item to any zone. 4459 * 4460 * Arguments: 4461 * zone The zone to free to 4462 * item The item we're freeing 4463 * udata User supplied data for the dtor 4464 * skip Skip dtors and finis 4465 */ 4466 static __noinline void 4467 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 4468 { 4469 4470 /* 4471 * If a free is sent directly to an SMR zone we have to 4472 * synchronize immediately because the item can instantly 4473 * be reallocated. This should only happen in degenerate 4474 * cases when no memory is available for per-cpu caches. 4475 */ 4476 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && skip == SKIP_NONE) 4477 smr_synchronize(zone->uz_smr); 4478 4479 item_dtor(zone, item, zone->uz_size, udata, skip); 4480 4481 if (skip < SKIP_FINI && zone->uz_fini) 4482 zone->uz_fini(item, zone->uz_size); 4483 4484 zone->uz_release(zone->uz_arg, &item, 1); 4485 4486 if (skip & SKIP_CNT) 4487 return; 4488 4489 counter_u64_add(zone->uz_frees, 1); 4490 4491 if (zone->uz_max_items > 0) 4492 zone_free_limit(zone, 1); 4493 } 4494 4495 /* See uma.h */ 4496 int 4497 uma_zone_set_max(uma_zone_t zone, int nitems) 4498 { 4499 struct uma_bucket_zone *ubz; 4500 int count; 4501 4502 /* 4503 * XXX This can misbehave if the zone has any allocations with 4504 * no limit and a limit is imposed. There is currently no 4505 * way to clear a limit. 4506 */ 4507 ZONE_LOCK(zone); 4508 ubz = bucket_zone_max(zone, nitems); 4509 count = ubz != NULL ? ubz->ubz_entries : 0; 4510 zone->uz_bucket_size_max = zone->uz_bucket_size = count; 4511 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 4512 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 4513 zone->uz_max_items = nitems; 4514 zone->uz_flags |= UMA_ZFLAG_LIMIT; 4515 zone_update_caches(zone); 4516 /* We may need to wake waiters. */ 4517 wakeup(&zone->uz_max_items); 4518 ZONE_UNLOCK(zone); 4519 4520 return (nitems); 4521 } 4522 4523 /* See uma.h */ 4524 void 4525 uma_zone_set_maxcache(uma_zone_t zone, int nitems) 4526 { 4527 struct uma_bucket_zone *ubz; 4528 int bpcpu; 4529 4530 ZONE_LOCK(zone); 4531 ubz = bucket_zone_max(zone, nitems); 4532 if (ubz != NULL) { 4533 bpcpu = 2; 4534 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4535 /* Count the cross-domain bucket. */ 4536 bpcpu++; 4537 nitems -= ubz->ubz_entries * bpcpu * mp_ncpus; 4538 zone->uz_bucket_size_max = ubz->ubz_entries; 4539 } else { 4540 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 4541 } 4542 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 4543 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 4544 zone->uz_bucket_max = nitems / vm_ndomains; 4545 ZONE_UNLOCK(zone); 4546 } 4547 4548 /* See uma.h */ 4549 int 4550 uma_zone_get_max(uma_zone_t zone) 4551 { 4552 int nitems; 4553 4554 nitems = atomic_load_64(&zone->uz_max_items); 4555 4556 return (nitems); 4557 } 4558 4559 /* See uma.h */ 4560 void 4561 uma_zone_set_warning(uma_zone_t zone, const char *warning) 4562 { 4563 4564 ZONE_ASSERT_COLD(zone); 4565 zone->uz_warning = warning; 4566 } 4567 4568 /* See uma.h */ 4569 void 4570 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 4571 { 4572 4573 ZONE_ASSERT_COLD(zone); 4574 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 4575 } 4576 4577 /* See uma.h */ 4578 int 4579 uma_zone_get_cur(uma_zone_t zone) 4580 { 4581 int64_t nitems; 4582 u_int i; 4583 4584 nitems = 0; 4585 if (zone->uz_allocs != EARLY_COUNTER && zone->uz_frees != EARLY_COUNTER) 4586 nitems = counter_u64_fetch(zone->uz_allocs) - 4587 counter_u64_fetch(zone->uz_frees); 4588 CPU_FOREACH(i) 4589 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs) - 4590 atomic_load_64(&zone->uz_cpu[i].uc_frees); 4591 4592 return (nitems < 0 ? 0 : nitems); 4593 } 4594 4595 static uint64_t 4596 uma_zone_get_allocs(uma_zone_t zone) 4597 { 4598 uint64_t nitems; 4599 u_int i; 4600 4601 nitems = 0; 4602 if (zone->uz_allocs != EARLY_COUNTER) 4603 nitems = counter_u64_fetch(zone->uz_allocs); 4604 CPU_FOREACH(i) 4605 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs); 4606 4607 return (nitems); 4608 } 4609 4610 static uint64_t 4611 uma_zone_get_frees(uma_zone_t zone) 4612 { 4613 uint64_t nitems; 4614 u_int i; 4615 4616 nitems = 0; 4617 if (zone->uz_frees != EARLY_COUNTER) 4618 nitems = counter_u64_fetch(zone->uz_frees); 4619 CPU_FOREACH(i) 4620 nitems += atomic_load_64(&zone->uz_cpu[i].uc_frees); 4621 4622 return (nitems); 4623 } 4624 4625 #ifdef INVARIANTS 4626 /* Used only for KEG_ASSERT_COLD(). */ 4627 static uint64_t 4628 uma_keg_get_allocs(uma_keg_t keg) 4629 { 4630 uma_zone_t z; 4631 uint64_t nitems; 4632 4633 nitems = 0; 4634 LIST_FOREACH(z, &keg->uk_zones, uz_link) 4635 nitems += uma_zone_get_allocs(z); 4636 4637 return (nitems); 4638 } 4639 #endif 4640 4641 /* See uma.h */ 4642 void 4643 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 4644 { 4645 uma_keg_t keg; 4646 4647 KEG_GET(zone, keg); 4648 KEG_ASSERT_COLD(keg); 4649 keg->uk_init = uminit; 4650 } 4651 4652 /* See uma.h */ 4653 void 4654 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 4655 { 4656 uma_keg_t keg; 4657 4658 KEG_GET(zone, keg); 4659 KEG_ASSERT_COLD(keg); 4660 keg->uk_fini = fini; 4661 } 4662 4663 /* See uma.h */ 4664 void 4665 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 4666 { 4667 4668 ZONE_ASSERT_COLD(zone); 4669 zone->uz_init = zinit; 4670 } 4671 4672 /* See uma.h */ 4673 void 4674 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 4675 { 4676 4677 ZONE_ASSERT_COLD(zone); 4678 zone->uz_fini = zfini; 4679 } 4680 4681 /* See uma.h */ 4682 void 4683 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 4684 { 4685 uma_keg_t keg; 4686 4687 KEG_GET(zone, keg); 4688 KEG_ASSERT_COLD(keg); 4689 keg->uk_freef = freef; 4690 } 4691 4692 /* See uma.h */ 4693 void 4694 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 4695 { 4696 uma_keg_t keg; 4697 4698 KEG_GET(zone, keg); 4699 KEG_ASSERT_COLD(keg); 4700 keg->uk_allocf = allocf; 4701 } 4702 4703 /* See uma.h */ 4704 void 4705 uma_zone_set_smr(uma_zone_t zone, smr_t smr) 4706 { 4707 4708 ZONE_ASSERT_COLD(zone); 4709 4710 KASSERT(smr != NULL, ("Got NULL smr")); 4711 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 4712 ("zone %p (%s) already uses SMR", zone, zone->uz_name)); 4713 zone->uz_flags |= UMA_ZONE_SMR; 4714 zone->uz_smr = smr; 4715 zone_update_caches(zone); 4716 } 4717 4718 smr_t 4719 uma_zone_get_smr(uma_zone_t zone) 4720 { 4721 4722 return (zone->uz_smr); 4723 } 4724 4725 /* See uma.h */ 4726 void 4727 uma_zone_reserve(uma_zone_t zone, int items) 4728 { 4729 uma_keg_t keg; 4730 4731 KEG_GET(zone, keg); 4732 KEG_ASSERT_COLD(keg); 4733 keg->uk_reserve = items; 4734 } 4735 4736 /* See uma.h */ 4737 int 4738 uma_zone_reserve_kva(uma_zone_t zone, int count) 4739 { 4740 uma_keg_t keg; 4741 vm_offset_t kva; 4742 u_int pages; 4743 4744 KEG_GET(zone, keg); 4745 KEG_ASSERT_COLD(keg); 4746 ZONE_ASSERT_COLD(zone); 4747 4748 pages = howmany(count, keg->uk_ipers) * keg->uk_ppera; 4749 4750 #ifdef UMA_MD_SMALL_ALLOC 4751 if (keg->uk_ppera > 1) { 4752 #else 4753 if (1) { 4754 #endif 4755 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 4756 if (kva == 0) 4757 return (0); 4758 } else 4759 kva = 0; 4760 4761 MPASS(keg->uk_kva == 0); 4762 keg->uk_kva = kva; 4763 keg->uk_offset = 0; 4764 zone->uz_max_items = pages * keg->uk_ipers; 4765 #ifdef UMA_MD_SMALL_ALLOC 4766 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 4767 #else 4768 keg->uk_allocf = noobj_alloc; 4769 #endif 4770 keg->uk_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 4771 zone->uz_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 4772 zone_update_caches(zone); 4773 4774 return (1); 4775 } 4776 4777 /* See uma.h */ 4778 void 4779 uma_prealloc(uma_zone_t zone, int items) 4780 { 4781 struct vm_domainset_iter di; 4782 uma_domain_t dom; 4783 uma_slab_t slab; 4784 uma_keg_t keg; 4785 int aflags, domain, slabs; 4786 4787 KEG_GET(zone, keg); 4788 slabs = howmany(items, keg->uk_ipers); 4789 while (slabs-- > 0) { 4790 aflags = M_NOWAIT; 4791 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 4792 &aflags); 4793 for (;;) { 4794 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK, 4795 aflags); 4796 if (slab != NULL) { 4797 dom = &keg->uk_domain[slab->us_domain]; 4798 /* 4799 * keg_alloc_slab() always returns a slab on the 4800 * partial list. 4801 */ 4802 LIST_REMOVE(slab, us_link); 4803 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, 4804 us_link); 4805 dom->ud_free_slabs++; 4806 KEG_UNLOCK(keg, slab->us_domain); 4807 break; 4808 } 4809 if (vm_domainset_iter_policy(&di, &domain) != 0) 4810 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0); 4811 } 4812 } 4813 } 4814 4815 /* 4816 * Returns a snapshot of memory consumption in bytes. 4817 */ 4818 size_t 4819 uma_zone_memory(uma_zone_t zone) 4820 { 4821 size_t sz; 4822 int i; 4823 4824 sz = 0; 4825 if (zone->uz_flags & UMA_ZFLAG_CACHE) { 4826 for (i = 0; i < vm_ndomains; i++) 4827 sz += ZDOM_GET(zone, i)->uzd_nitems; 4828 return (sz * zone->uz_size); 4829 } 4830 for (i = 0; i < vm_ndomains; i++) 4831 sz += zone->uz_keg->uk_domain[i].ud_pages; 4832 4833 return (sz * PAGE_SIZE); 4834 } 4835 4836 /* See uma.h */ 4837 void 4838 uma_reclaim(int req) 4839 { 4840 4841 CTR0(KTR_UMA, "UMA: vm asked us to release pages!"); 4842 sx_xlock(&uma_reclaim_lock); 4843 bucket_enable(); 4844 4845 switch (req) { 4846 case UMA_RECLAIM_TRIM: 4847 zone_foreach(zone_trim, NULL); 4848 break; 4849 case UMA_RECLAIM_DRAIN: 4850 case UMA_RECLAIM_DRAIN_CPU: 4851 zone_foreach(zone_drain, NULL); 4852 if (req == UMA_RECLAIM_DRAIN_CPU) { 4853 pcpu_cache_drain_safe(NULL); 4854 zone_foreach(zone_drain, NULL); 4855 } 4856 break; 4857 default: 4858 panic("unhandled reclamation request %d", req); 4859 } 4860 4861 /* 4862 * Some slabs may have been freed but this zone will be visited early 4863 * we visit again so that we can free pages that are empty once other 4864 * zones are drained. We have to do the same for buckets. 4865 */ 4866 zone_drain(slabzones[0], NULL); 4867 zone_drain(slabzones[1], NULL); 4868 bucket_zone_drain(); 4869 sx_xunlock(&uma_reclaim_lock); 4870 } 4871 4872 static volatile int uma_reclaim_needed; 4873 4874 void 4875 uma_reclaim_wakeup(void) 4876 { 4877 4878 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 4879 wakeup(uma_reclaim); 4880 } 4881 4882 void 4883 uma_reclaim_worker(void *arg __unused) 4884 { 4885 4886 for (;;) { 4887 sx_xlock(&uma_reclaim_lock); 4888 while (atomic_load_int(&uma_reclaim_needed) == 0) 4889 sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl", 4890 hz); 4891 sx_xunlock(&uma_reclaim_lock); 4892 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 4893 uma_reclaim(UMA_RECLAIM_DRAIN_CPU); 4894 atomic_store_int(&uma_reclaim_needed, 0); 4895 /* Don't fire more than once per-second. */ 4896 pause("umarclslp", hz); 4897 } 4898 } 4899 4900 /* See uma.h */ 4901 void 4902 uma_zone_reclaim(uma_zone_t zone, int req) 4903 { 4904 4905 switch (req) { 4906 case UMA_RECLAIM_TRIM: 4907 zone_trim(zone, NULL); 4908 break; 4909 case UMA_RECLAIM_DRAIN: 4910 zone_drain(zone, NULL); 4911 break; 4912 case UMA_RECLAIM_DRAIN_CPU: 4913 pcpu_cache_drain_safe(zone); 4914 zone_drain(zone, NULL); 4915 break; 4916 default: 4917 panic("unhandled reclamation request %d", req); 4918 } 4919 } 4920 4921 /* See uma.h */ 4922 int 4923 uma_zone_exhausted(uma_zone_t zone) 4924 { 4925 4926 return (atomic_load_32(&zone->uz_sleepers) > 0); 4927 } 4928 4929 unsigned long 4930 uma_limit(void) 4931 { 4932 4933 return (uma_kmem_limit); 4934 } 4935 4936 void 4937 uma_set_limit(unsigned long limit) 4938 { 4939 4940 uma_kmem_limit = limit; 4941 } 4942 4943 unsigned long 4944 uma_size(void) 4945 { 4946 4947 return (atomic_load_long(&uma_kmem_total)); 4948 } 4949 4950 long 4951 uma_avail(void) 4952 { 4953 4954 return (uma_kmem_limit - uma_size()); 4955 } 4956 4957 #ifdef DDB 4958 /* 4959 * Generate statistics across both the zone and its per-cpu cache's. Return 4960 * desired statistics if the pointer is non-NULL for that statistic. 4961 * 4962 * Note: does not update the zone statistics, as it can't safely clear the 4963 * per-CPU cache statistic. 4964 * 4965 */ 4966 static void 4967 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp, 4968 uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp) 4969 { 4970 uma_cache_t cache; 4971 uint64_t allocs, frees, sleeps, xdomain; 4972 int cachefree, cpu; 4973 4974 allocs = frees = sleeps = xdomain = 0; 4975 cachefree = 0; 4976 CPU_FOREACH(cpu) { 4977 cache = &z->uz_cpu[cpu]; 4978 cachefree += cache->uc_allocbucket.ucb_cnt; 4979 cachefree += cache->uc_freebucket.ucb_cnt; 4980 xdomain += cache->uc_crossbucket.ucb_cnt; 4981 cachefree += cache->uc_crossbucket.ucb_cnt; 4982 allocs += cache->uc_allocs; 4983 frees += cache->uc_frees; 4984 } 4985 allocs += counter_u64_fetch(z->uz_allocs); 4986 frees += counter_u64_fetch(z->uz_frees); 4987 xdomain += counter_u64_fetch(z->uz_xdomain); 4988 sleeps += z->uz_sleeps; 4989 if (cachefreep != NULL) 4990 *cachefreep = cachefree; 4991 if (allocsp != NULL) 4992 *allocsp = allocs; 4993 if (freesp != NULL) 4994 *freesp = frees; 4995 if (sleepsp != NULL) 4996 *sleepsp = sleeps; 4997 if (xdomainp != NULL) 4998 *xdomainp = xdomain; 4999 } 5000 #endif /* DDB */ 5001 5002 static int 5003 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 5004 { 5005 uma_keg_t kz; 5006 uma_zone_t z; 5007 int count; 5008 5009 count = 0; 5010 rw_rlock(&uma_rwlock); 5011 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5012 LIST_FOREACH(z, &kz->uk_zones, uz_link) 5013 count++; 5014 } 5015 LIST_FOREACH(z, &uma_cachezones, uz_link) 5016 count++; 5017 5018 rw_runlock(&uma_rwlock); 5019 return (sysctl_handle_int(oidp, &count, 0, req)); 5020 } 5021 5022 static void 5023 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf, 5024 struct uma_percpu_stat *ups, bool internal) 5025 { 5026 uma_zone_domain_t zdom; 5027 uma_cache_t cache; 5028 int i; 5029 5030 for (i = 0; i < vm_ndomains; i++) { 5031 zdom = ZDOM_GET(z, i); 5032 uth->uth_zone_free += zdom->uzd_nitems; 5033 } 5034 uth->uth_allocs = counter_u64_fetch(z->uz_allocs); 5035 uth->uth_frees = counter_u64_fetch(z->uz_frees); 5036 uth->uth_fails = counter_u64_fetch(z->uz_fails); 5037 uth->uth_xdomain = counter_u64_fetch(z->uz_xdomain); 5038 uth->uth_sleeps = z->uz_sleeps; 5039 5040 for (i = 0; i < mp_maxid + 1; i++) { 5041 bzero(&ups[i], sizeof(*ups)); 5042 if (internal || CPU_ABSENT(i)) 5043 continue; 5044 cache = &z->uz_cpu[i]; 5045 ups[i].ups_cache_free += cache->uc_allocbucket.ucb_cnt; 5046 ups[i].ups_cache_free += cache->uc_freebucket.ucb_cnt; 5047 ups[i].ups_cache_free += cache->uc_crossbucket.ucb_cnt; 5048 ups[i].ups_allocs = cache->uc_allocs; 5049 ups[i].ups_frees = cache->uc_frees; 5050 } 5051 } 5052 5053 static int 5054 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 5055 { 5056 struct uma_stream_header ush; 5057 struct uma_type_header uth; 5058 struct uma_percpu_stat *ups; 5059 struct sbuf sbuf; 5060 uma_keg_t kz; 5061 uma_zone_t z; 5062 uint64_t items; 5063 uint32_t kfree, pages; 5064 int count, error, i; 5065 5066 error = sysctl_wire_old_buffer(req, 0); 5067 if (error != 0) 5068 return (error); 5069 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 5070 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 5071 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 5072 5073 count = 0; 5074 rw_rlock(&uma_rwlock); 5075 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5076 LIST_FOREACH(z, &kz->uk_zones, uz_link) 5077 count++; 5078 } 5079 5080 LIST_FOREACH(z, &uma_cachezones, uz_link) 5081 count++; 5082 5083 /* 5084 * Insert stream header. 5085 */ 5086 bzero(&ush, sizeof(ush)); 5087 ush.ush_version = UMA_STREAM_VERSION; 5088 ush.ush_maxcpus = (mp_maxid + 1); 5089 ush.ush_count = count; 5090 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 5091 5092 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5093 kfree = pages = 0; 5094 for (i = 0; i < vm_ndomains; i++) { 5095 kfree += kz->uk_domain[i].ud_free_items; 5096 pages += kz->uk_domain[i].ud_pages; 5097 } 5098 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5099 bzero(&uth, sizeof(uth)); 5100 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 5101 uth.uth_align = kz->uk_align; 5102 uth.uth_size = kz->uk_size; 5103 uth.uth_rsize = kz->uk_rsize; 5104 if (z->uz_max_items > 0) { 5105 items = UZ_ITEMS_COUNT(z->uz_items); 5106 uth.uth_pages = (items / kz->uk_ipers) * 5107 kz->uk_ppera; 5108 } else 5109 uth.uth_pages = pages; 5110 uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) * 5111 kz->uk_ppera; 5112 uth.uth_limit = z->uz_max_items; 5113 uth.uth_keg_free = kfree; 5114 5115 /* 5116 * A zone is secondary is it is not the first entry 5117 * on the keg's zone list. 5118 */ 5119 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 5120 (LIST_FIRST(&kz->uk_zones) != z)) 5121 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 5122 uma_vm_zone_stats(&uth, z, &sbuf, ups, 5123 kz->uk_flags & UMA_ZFLAG_INTERNAL); 5124 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 5125 for (i = 0; i < mp_maxid + 1; i++) 5126 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 5127 } 5128 } 5129 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5130 bzero(&uth, sizeof(uth)); 5131 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 5132 uth.uth_size = z->uz_size; 5133 uma_vm_zone_stats(&uth, z, &sbuf, ups, false); 5134 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 5135 for (i = 0; i < mp_maxid + 1; i++) 5136 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 5137 } 5138 5139 rw_runlock(&uma_rwlock); 5140 error = sbuf_finish(&sbuf); 5141 sbuf_delete(&sbuf); 5142 free(ups, M_TEMP); 5143 return (error); 5144 } 5145 5146 int 5147 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 5148 { 5149 uma_zone_t zone = *(uma_zone_t *)arg1; 5150 int error, max; 5151 5152 max = uma_zone_get_max(zone); 5153 error = sysctl_handle_int(oidp, &max, 0, req); 5154 if (error || !req->newptr) 5155 return (error); 5156 5157 uma_zone_set_max(zone, max); 5158 5159 return (0); 5160 } 5161 5162 int 5163 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 5164 { 5165 uma_zone_t zone; 5166 int cur; 5167 5168 /* 5169 * Some callers want to add sysctls for global zones that 5170 * may not yet exist so they pass a pointer to a pointer. 5171 */ 5172 if (arg2 == 0) 5173 zone = *(uma_zone_t *)arg1; 5174 else 5175 zone = arg1; 5176 cur = uma_zone_get_cur(zone); 5177 return (sysctl_handle_int(oidp, &cur, 0, req)); 5178 } 5179 5180 static int 5181 sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS) 5182 { 5183 uma_zone_t zone = arg1; 5184 uint64_t cur; 5185 5186 cur = uma_zone_get_allocs(zone); 5187 return (sysctl_handle_64(oidp, &cur, 0, req)); 5188 } 5189 5190 static int 5191 sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS) 5192 { 5193 uma_zone_t zone = arg1; 5194 uint64_t cur; 5195 5196 cur = uma_zone_get_frees(zone); 5197 return (sysctl_handle_64(oidp, &cur, 0, req)); 5198 } 5199 5200 static int 5201 sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS) 5202 { 5203 struct sbuf sbuf; 5204 uma_zone_t zone = arg1; 5205 int error; 5206 5207 sbuf_new_for_sysctl(&sbuf, NULL, 0, req); 5208 if (zone->uz_flags != 0) 5209 sbuf_printf(&sbuf, "0x%b", zone->uz_flags, PRINT_UMA_ZFLAGS); 5210 else 5211 sbuf_printf(&sbuf, "0"); 5212 error = sbuf_finish(&sbuf); 5213 sbuf_delete(&sbuf); 5214 5215 return (error); 5216 } 5217 5218 static int 5219 sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS) 5220 { 5221 uma_keg_t keg = arg1; 5222 int avail, effpct, total; 5223 5224 total = keg->uk_ppera * PAGE_SIZE; 5225 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0) 5226 total += slabzone(keg->uk_ipers)->uz_keg->uk_rsize; 5227 /* 5228 * We consider the client's requested size and alignment here, not the 5229 * real size determination uk_rsize, because we also adjust the real 5230 * size for internal implementation reasons (max bitset size). 5231 */ 5232 avail = keg->uk_ipers * roundup2(keg->uk_size, keg->uk_align + 1); 5233 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 5234 avail *= mp_maxid + 1; 5235 effpct = 100 * avail / total; 5236 return (sysctl_handle_int(oidp, &effpct, 0, req)); 5237 } 5238 5239 static int 5240 sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS) 5241 { 5242 uma_zone_t zone = arg1; 5243 uint64_t cur; 5244 5245 cur = UZ_ITEMS_COUNT(atomic_load_64(&zone->uz_items)); 5246 return (sysctl_handle_64(oidp, &cur, 0, req)); 5247 } 5248 5249 #ifdef INVARIANTS 5250 static uma_slab_t 5251 uma_dbg_getslab(uma_zone_t zone, void *item) 5252 { 5253 uma_slab_t slab; 5254 uma_keg_t keg; 5255 uint8_t *mem; 5256 5257 /* 5258 * It is safe to return the slab here even though the 5259 * zone is unlocked because the item's allocation state 5260 * essentially holds a reference. 5261 */ 5262 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 5263 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5264 return (NULL); 5265 if (zone->uz_flags & UMA_ZFLAG_VTOSLAB) 5266 return (vtoslab((vm_offset_t)mem)); 5267 keg = zone->uz_keg; 5268 if ((keg->uk_flags & UMA_ZFLAG_HASH) == 0) 5269 return ((uma_slab_t)(mem + keg->uk_pgoff)); 5270 KEG_LOCK(keg, 0); 5271 slab = hash_sfind(&keg->uk_hash, mem); 5272 KEG_UNLOCK(keg, 0); 5273 5274 return (slab); 5275 } 5276 5277 static bool 5278 uma_dbg_zskip(uma_zone_t zone, void *mem) 5279 { 5280 5281 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5282 return (true); 5283 5284 return (uma_dbg_kskip(zone->uz_keg, mem)); 5285 } 5286 5287 static bool 5288 uma_dbg_kskip(uma_keg_t keg, void *mem) 5289 { 5290 uintptr_t idx; 5291 5292 if (dbg_divisor == 0) 5293 return (true); 5294 5295 if (dbg_divisor == 1) 5296 return (false); 5297 5298 idx = (uintptr_t)mem >> PAGE_SHIFT; 5299 if (keg->uk_ipers > 1) { 5300 idx *= keg->uk_ipers; 5301 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize; 5302 } 5303 5304 if ((idx / dbg_divisor) * dbg_divisor != idx) { 5305 counter_u64_add(uma_skip_cnt, 1); 5306 return (true); 5307 } 5308 counter_u64_add(uma_dbg_cnt, 1); 5309 5310 return (false); 5311 } 5312 5313 /* 5314 * Set up the slab's freei data such that uma_dbg_free can function. 5315 * 5316 */ 5317 static void 5318 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 5319 { 5320 uma_keg_t keg; 5321 int freei; 5322 5323 if (slab == NULL) { 5324 slab = uma_dbg_getslab(zone, item); 5325 if (slab == NULL) 5326 panic("uma: item %p did not belong to zone %s", 5327 item, zone->uz_name); 5328 } 5329 keg = zone->uz_keg; 5330 freei = slab_item_index(slab, keg, item); 5331 5332 if (BIT_ISSET(keg->uk_ipers, freei, slab_dbg_bits(slab, keg))) 5333 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)", 5334 item, zone, zone->uz_name, slab, freei); 5335 BIT_SET_ATOMIC(keg->uk_ipers, freei, slab_dbg_bits(slab, keg)); 5336 } 5337 5338 /* 5339 * Verifies freed addresses. Checks for alignment, valid slab membership 5340 * and duplicate frees. 5341 * 5342 */ 5343 static void 5344 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 5345 { 5346 uma_keg_t keg; 5347 int freei; 5348 5349 if (slab == NULL) { 5350 slab = uma_dbg_getslab(zone, item); 5351 if (slab == NULL) 5352 panic("uma: Freed item %p did not belong to zone %s", 5353 item, zone->uz_name); 5354 } 5355 keg = zone->uz_keg; 5356 freei = slab_item_index(slab, keg, item); 5357 5358 if (freei >= keg->uk_ipers) 5359 panic("Invalid free of %p from zone %p(%s) slab %p(%d)", 5360 item, zone, zone->uz_name, slab, freei); 5361 5362 if (slab_item(slab, keg, freei) != item) 5363 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)", 5364 item, zone, zone->uz_name, slab, freei); 5365 5366 if (!BIT_ISSET(keg->uk_ipers, freei, slab_dbg_bits(slab, keg))) 5367 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)", 5368 item, zone, zone->uz_name, slab, freei); 5369 5370 BIT_CLR_ATOMIC(keg->uk_ipers, freei, slab_dbg_bits(slab, keg)); 5371 } 5372 #endif /* INVARIANTS */ 5373 5374 #ifdef DDB 5375 static int64_t 5376 get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used, 5377 uint64_t *sleeps, long *cachefree, uint64_t *xdomain) 5378 { 5379 uint64_t frees; 5380 int i; 5381 5382 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 5383 *allocs = counter_u64_fetch(z->uz_allocs); 5384 frees = counter_u64_fetch(z->uz_frees); 5385 *sleeps = z->uz_sleeps; 5386 *cachefree = 0; 5387 *xdomain = 0; 5388 } else 5389 uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps, 5390 xdomain); 5391 for (i = 0; i < vm_ndomains; i++) { 5392 *cachefree += ZDOM_GET(z, i)->uzd_nitems; 5393 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 5394 (LIST_FIRST(&kz->uk_zones) != z))) 5395 *cachefree += kz->uk_domain[i].ud_free_items; 5396 } 5397 *used = *allocs - frees; 5398 return (((int64_t)*used + *cachefree) * kz->uk_size); 5399 } 5400 5401 DB_SHOW_COMMAND(uma, db_show_uma) 5402 { 5403 const char *fmt_hdr, *fmt_entry; 5404 uma_keg_t kz; 5405 uma_zone_t z; 5406 uint64_t allocs, used, sleeps, xdomain; 5407 long cachefree; 5408 /* variables for sorting */ 5409 uma_keg_t cur_keg; 5410 uma_zone_t cur_zone, last_zone; 5411 int64_t cur_size, last_size, size; 5412 int ties; 5413 5414 /* /i option produces machine-parseable CSV output */ 5415 if (modif[0] == 'i') { 5416 fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n"; 5417 fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n"; 5418 } else { 5419 fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n"; 5420 fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n"; 5421 } 5422 5423 db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests", 5424 "Sleeps", "Bucket", "Total Mem", "XFree"); 5425 5426 /* Sort the zones with largest size first. */ 5427 last_zone = NULL; 5428 last_size = INT64_MAX; 5429 for (;;) { 5430 cur_zone = NULL; 5431 cur_size = -1; 5432 ties = 0; 5433 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5434 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5435 /* 5436 * In the case of size ties, print out zones 5437 * in the order they are encountered. That is, 5438 * when we encounter the most recently output 5439 * zone, we have already printed all preceding 5440 * ties, and we must print all following ties. 5441 */ 5442 if (z == last_zone) { 5443 ties = 1; 5444 continue; 5445 } 5446 size = get_uma_stats(kz, z, &allocs, &used, 5447 &sleeps, &cachefree, &xdomain); 5448 if (size > cur_size && size < last_size + ties) 5449 { 5450 cur_size = size; 5451 cur_zone = z; 5452 cur_keg = kz; 5453 } 5454 } 5455 } 5456 if (cur_zone == NULL) 5457 break; 5458 5459 size = get_uma_stats(cur_keg, cur_zone, &allocs, &used, 5460 &sleeps, &cachefree, &xdomain); 5461 db_printf(fmt_entry, cur_zone->uz_name, 5462 (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree, 5463 (uintmax_t)allocs, (uintmax_t)sleeps, 5464 (unsigned)cur_zone->uz_bucket_size, (intmax_t)size, 5465 xdomain); 5466 5467 if (db_pager_quit) 5468 return; 5469 last_zone = cur_zone; 5470 last_size = cur_size; 5471 } 5472 } 5473 5474 DB_SHOW_COMMAND(umacache, db_show_umacache) 5475 { 5476 uma_zone_t z; 5477 uint64_t allocs, frees; 5478 long cachefree; 5479 int i; 5480 5481 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 5482 "Requests", "Bucket"); 5483 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5484 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL); 5485 for (i = 0; i < vm_ndomains; i++) 5486 cachefree += ZDOM_GET(z, i)->uzd_nitems; 5487 db_printf("%18s %8ju %8jd %8ld %12ju %8u\n", 5488 z->uz_name, (uintmax_t)z->uz_size, 5489 (intmax_t)(allocs - frees), cachefree, 5490 (uintmax_t)allocs, z->uz_bucket_size); 5491 if (db_pager_quit) 5492 return; 5493 } 5494 } 5495 #endif /* DDB */ 5496