xref: /freebsd/sys/vm/uma_core.c (revision a3cf0ef5a295c885c895fabfd56470c0d1db322d)
1 /*-
2  * Copyright (c) 2002-2005, 2009 Jeffrey Roberson <jeff@FreeBSD.org>
3  * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
4  * Copyright (c) 2004-2006 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * uma_core.c  Implementation of the Universal Memory allocator
31  *
32  * This allocator is intended to replace the multitude of similar object caches
33  * in the standard FreeBSD kernel.  The intent is to be flexible as well as
34  * effecient.  A primary design goal is to return unused memory to the rest of
35  * the system.  This will make the system as a whole more flexible due to the
36  * ability to move memory to subsystems which most need it instead of leaving
37  * pools of reserved memory unused.
38  *
39  * The basic ideas stem from similar slab/zone based allocators whose algorithms
40  * are well known.
41  *
42  */
43 
44 /*
45  * TODO:
46  *	- Improve memory usage for large allocations
47  *	- Investigate cache size adjustments
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 /* I should really use ktr.. */
54 /*
55 #define UMA_DEBUG 1
56 #define UMA_DEBUG_ALLOC 1
57 #define UMA_DEBUG_ALLOC_1 1
58 */
59 
60 #include "opt_ddb.h"
61 #include "opt_param.h"
62 
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/kernel.h>
66 #include <sys/types.h>
67 #include <sys/queue.h>
68 #include <sys/malloc.h>
69 #include <sys/ktr.h>
70 #include <sys/lock.h>
71 #include <sys/sysctl.h>
72 #include <sys/mutex.h>
73 #include <sys/proc.h>
74 #include <sys/sbuf.h>
75 #include <sys/smp.h>
76 #include <sys/vmmeter.h>
77 
78 #include <vm/vm.h>
79 #include <vm/vm_object.h>
80 #include <vm/vm_page.h>
81 #include <vm/vm_param.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_kern.h>
84 #include <vm/vm_extern.h>
85 #include <vm/uma.h>
86 #include <vm/uma_int.h>
87 #include <vm/uma_dbg.h>
88 
89 #include <machine/vmparam.h>
90 
91 #include <ddb/ddb.h>
92 
93 /*
94  * This is the zone and keg from which all zones are spawned.  The idea is that
95  * even the zone & keg heads are allocated from the allocator, so we use the
96  * bss section to bootstrap us.
97  */
98 static struct uma_keg masterkeg;
99 static struct uma_zone masterzone_k;
100 static struct uma_zone masterzone_z;
101 static uma_zone_t kegs = &masterzone_k;
102 static uma_zone_t zones = &masterzone_z;
103 
104 /* This is the zone from which all of uma_slab_t's are allocated. */
105 static uma_zone_t slabzone;
106 static uma_zone_t slabrefzone;	/* With refcounters (for UMA_ZONE_REFCNT) */
107 
108 /*
109  * The initial hash tables come out of this zone so they can be allocated
110  * prior to malloc coming up.
111  */
112 static uma_zone_t hashzone;
113 
114 /* The boot-time adjusted value for cache line alignment. */
115 static int uma_align_cache = 64 - 1;
116 
117 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
118 
119 /*
120  * Are we allowed to allocate buckets?
121  */
122 static int bucketdisable = 1;
123 
124 /* Linked list of all kegs in the system */
125 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs);
126 
127 /* This mutex protects the keg list */
128 static struct mtx uma_mtx;
129 
130 /* Linked list of boot time pages */
131 static LIST_HEAD(,uma_slab) uma_boot_pages =
132     LIST_HEAD_INITIALIZER(uma_boot_pages);
133 
134 /* This mutex protects the boot time pages list */
135 static struct mtx uma_boot_pages_mtx;
136 
137 /* Is the VM done starting up? */
138 static int booted = 0;
139 
140 /* Maximum number of allowed items-per-slab if the slab header is OFFPAGE */
141 static u_int uma_max_ipers;
142 static u_int uma_max_ipers_ref;
143 
144 /*
145  * This is the handle used to schedule events that need to happen
146  * outside of the allocation fast path.
147  */
148 static struct callout uma_callout;
149 #define	UMA_TIMEOUT	20		/* Seconds for callout interval. */
150 
151 /*
152  * This structure is passed as the zone ctor arg so that I don't have to create
153  * a special allocation function just for zones.
154  */
155 struct uma_zctor_args {
156 	char *name;
157 	size_t size;
158 	uma_ctor ctor;
159 	uma_dtor dtor;
160 	uma_init uminit;
161 	uma_fini fini;
162 	uma_keg_t keg;
163 	int align;
164 	u_int32_t flags;
165 };
166 
167 struct uma_kctor_args {
168 	uma_zone_t zone;
169 	size_t size;
170 	uma_init uminit;
171 	uma_fini fini;
172 	int align;
173 	u_int32_t flags;
174 };
175 
176 struct uma_bucket_zone {
177 	uma_zone_t	ubz_zone;
178 	char		*ubz_name;
179 	int		ubz_entries;
180 };
181 
182 #define	BUCKET_MAX	128
183 
184 struct uma_bucket_zone bucket_zones[] = {
185 	{ NULL, "16 Bucket", 16 },
186 	{ NULL, "32 Bucket", 32 },
187 	{ NULL, "64 Bucket", 64 },
188 	{ NULL, "128 Bucket", 128 },
189 	{ NULL, NULL, 0}
190 };
191 
192 #define	BUCKET_SHIFT	4
193 #define	BUCKET_ZONES	((BUCKET_MAX >> BUCKET_SHIFT) + 1)
194 
195 /*
196  * bucket_size[] maps requested bucket sizes to zones that allocate a bucket
197  * of approximately the right size.
198  */
199 static uint8_t bucket_size[BUCKET_ZONES];
200 
201 /*
202  * Flags and enumerations to be passed to internal functions.
203  */
204 enum zfreeskip { SKIP_NONE, SKIP_DTOR, SKIP_FINI };
205 
206 #define	ZFREE_STATFAIL	0x00000001	/* Update zone failure statistic. */
207 #define	ZFREE_STATFREE	0x00000002	/* Update zone free statistic. */
208 
209 /* Prototypes.. */
210 
211 static void *obj_alloc(uma_zone_t, int, u_int8_t *, int);
212 static void *page_alloc(uma_zone_t, int, u_int8_t *, int);
213 static void *startup_alloc(uma_zone_t, int, u_int8_t *, int);
214 static void page_free(void *, int, u_int8_t);
215 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int);
216 static void cache_drain(uma_zone_t);
217 static void bucket_drain(uma_zone_t, uma_bucket_t);
218 static void bucket_cache_drain(uma_zone_t zone);
219 static int keg_ctor(void *, int, void *, int);
220 static void keg_dtor(void *, int, void *);
221 static int zone_ctor(void *, int, void *, int);
222 static void zone_dtor(void *, int, void *);
223 static int zero_init(void *, int, int);
224 static void keg_small_init(uma_keg_t keg);
225 static void keg_large_init(uma_keg_t keg);
226 static void zone_foreach(void (*zfunc)(uma_zone_t));
227 static void zone_timeout(uma_zone_t zone);
228 static int hash_alloc(struct uma_hash *);
229 static int hash_expand(struct uma_hash *, struct uma_hash *);
230 static void hash_free(struct uma_hash *hash);
231 static void uma_timeout(void *);
232 static void uma_startup3(void);
233 static void *zone_alloc_item(uma_zone_t, void *, int);
234 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip,
235     int);
236 static void bucket_enable(void);
237 static void bucket_init(void);
238 static uma_bucket_t bucket_alloc(int, int);
239 static void bucket_free(uma_bucket_t);
240 static void bucket_zone_drain(void);
241 static int zone_alloc_bucket(uma_zone_t zone, int flags);
242 static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags);
243 static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags);
244 static void *slab_alloc_item(uma_zone_t zone, uma_slab_t slab);
245 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
246     uma_fini fini, int align, u_int32_t flags);
247 static inline void zone_relock(uma_zone_t zone, uma_keg_t keg);
248 static inline void keg_relock(uma_keg_t keg, uma_zone_t zone);
249 
250 void uma_print_zone(uma_zone_t);
251 void uma_print_stats(void);
252 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
253 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
254 
255 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
256 
257 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT,
258     0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
259 
260 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
261     0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
262 
263 /*
264  * This routine checks to see whether or not it's safe to enable buckets.
265  */
266 
267 static void
268 bucket_enable(void)
269 {
270 	if (cnt.v_free_count < cnt.v_free_min)
271 		bucketdisable = 1;
272 	else
273 		bucketdisable = 0;
274 }
275 
276 /*
277  * Initialize bucket_zones, the array of zones of buckets of various sizes.
278  *
279  * For each zone, calculate the memory required for each bucket, consisting
280  * of the header and an array of pointers.  Initialize bucket_size[] to point
281  * the range of appropriate bucket sizes at the zone.
282  */
283 static void
284 bucket_init(void)
285 {
286 	struct uma_bucket_zone *ubz;
287 	int i;
288 	int j;
289 
290 	for (i = 0, j = 0; bucket_zones[j].ubz_entries != 0; j++) {
291 		int size;
292 
293 		ubz = &bucket_zones[j];
294 		size = roundup(sizeof(struct uma_bucket), sizeof(void *));
295 		size += sizeof(void *) * ubz->ubz_entries;
296 		ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
297 		    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
298 		    UMA_ZFLAG_INTERNAL | UMA_ZFLAG_BUCKET);
299 		for (; i <= ubz->ubz_entries; i += (1 << BUCKET_SHIFT))
300 			bucket_size[i >> BUCKET_SHIFT] = j;
301 	}
302 }
303 
304 /*
305  * Given a desired number of entries for a bucket, return the zone from which
306  * to allocate the bucket.
307  */
308 static struct uma_bucket_zone *
309 bucket_zone_lookup(int entries)
310 {
311 	int idx;
312 
313 	idx = howmany(entries, 1 << BUCKET_SHIFT);
314 	return (&bucket_zones[bucket_size[idx]]);
315 }
316 
317 static uma_bucket_t
318 bucket_alloc(int entries, int bflags)
319 {
320 	struct uma_bucket_zone *ubz;
321 	uma_bucket_t bucket;
322 
323 	/*
324 	 * This is to stop us from allocating per cpu buckets while we're
325 	 * running out of vm.boot_pages.  Otherwise, we would exhaust the
326 	 * boot pages.  This also prevents us from allocating buckets in
327 	 * low memory situations.
328 	 */
329 	if (bucketdisable)
330 		return (NULL);
331 
332 	ubz = bucket_zone_lookup(entries);
333 	bucket = zone_alloc_item(ubz->ubz_zone, NULL, bflags);
334 	if (bucket) {
335 #ifdef INVARIANTS
336 		bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
337 #endif
338 		bucket->ub_cnt = 0;
339 		bucket->ub_entries = ubz->ubz_entries;
340 	}
341 
342 	return (bucket);
343 }
344 
345 static void
346 bucket_free(uma_bucket_t bucket)
347 {
348 	struct uma_bucket_zone *ubz;
349 
350 	ubz = bucket_zone_lookup(bucket->ub_entries);
351 	zone_free_item(ubz->ubz_zone, bucket, NULL, SKIP_NONE,
352 	    ZFREE_STATFREE);
353 }
354 
355 static void
356 bucket_zone_drain(void)
357 {
358 	struct uma_bucket_zone *ubz;
359 
360 	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
361 		zone_drain(ubz->ubz_zone);
362 }
363 
364 static inline uma_keg_t
365 zone_first_keg(uma_zone_t zone)
366 {
367 
368 	return (LIST_FIRST(&zone->uz_kegs)->kl_keg);
369 }
370 
371 static void
372 zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t))
373 {
374 	uma_klink_t klink;
375 
376 	LIST_FOREACH(klink, &zone->uz_kegs, kl_link)
377 		kegfn(klink->kl_keg);
378 }
379 
380 /*
381  * Routine called by timeout which is used to fire off some time interval
382  * based calculations.  (stats, hash size, etc.)
383  *
384  * Arguments:
385  *	arg   Unused
386  *
387  * Returns:
388  *	Nothing
389  */
390 static void
391 uma_timeout(void *unused)
392 {
393 	bucket_enable();
394 	zone_foreach(zone_timeout);
395 
396 	/* Reschedule this event */
397 	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
398 }
399 
400 /*
401  * Routine to perform timeout driven calculations.  This expands the
402  * hashes and does per cpu statistics aggregation.
403  *
404  *  Returns nothing.
405  */
406 static void
407 keg_timeout(uma_keg_t keg)
408 {
409 
410 	KEG_LOCK(keg);
411 	/*
412 	 * Expand the keg hash table.
413 	 *
414 	 * This is done if the number of slabs is larger than the hash size.
415 	 * What I'm trying to do here is completely reduce collisions.  This
416 	 * may be a little aggressive.  Should I allow for two collisions max?
417 	 */
418 	if (keg->uk_flags & UMA_ZONE_HASH &&
419 	    keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) {
420 		struct uma_hash newhash;
421 		struct uma_hash oldhash;
422 		int ret;
423 
424 		/*
425 		 * This is so involved because allocating and freeing
426 		 * while the keg lock is held will lead to deadlock.
427 		 * I have to do everything in stages and check for
428 		 * races.
429 		 */
430 		newhash = keg->uk_hash;
431 		KEG_UNLOCK(keg);
432 		ret = hash_alloc(&newhash);
433 		KEG_LOCK(keg);
434 		if (ret) {
435 			if (hash_expand(&keg->uk_hash, &newhash)) {
436 				oldhash = keg->uk_hash;
437 				keg->uk_hash = newhash;
438 			} else
439 				oldhash = newhash;
440 
441 			KEG_UNLOCK(keg);
442 			hash_free(&oldhash);
443 			KEG_LOCK(keg);
444 		}
445 	}
446 	KEG_UNLOCK(keg);
447 }
448 
449 static void
450 zone_timeout(uma_zone_t zone)
451 {
452 
453 	zone_foreach_keg(zone, &keg_timeout);
454 }
455 
456 /*
457  * Allocate and zero fill the next sized hash table from the appropriate
458  * backing store.
459  *
460  * Arguments:
461  *	hash  A new hash structure with the old hash size in uh_hashsize
462  *
463  * Returns:
464  *	1 on sucess and 0 on failure.
465  */
466 static int
467 hash_alloc(struct uma_hash *hash)
468 {
469 	int oldsize;
470 	int alloc;
471 
472 	oldsize = hash->uh_hashsize;
473 
474 	/* We're just going to go to a power of two greater */
475 	if (oldsize)  {
476 		hash->uh_hashsize = oldsize * 2;
477 		alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
478 		hash->uh_slab_hash = (struct slabhead *)malloc(alloc,
479 		    M_UMAHASH, M_NOWAIT);
480 	} else {
481 		alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
482 		hash->uh_slab_hash = zone_alloc_item(hashzone, NULL,
483 		    M_WAITOK);
484 		hash->uh_hashsize = UMA_HASH_SIZE_INIT;
485 	}
486 	if (hash->uh_slab_hash) {
487 		bzero(hash->uh_slab_hash, alloc);
488 		hash->uh_hashmask = hash->uh_hashsize - 1;
489 		return (1);
490 	}
491 
492 	return (0);
493 }
494 
495 /*
496  * Expands the hash table for HASH zones.  This is done from zone_timeout
497  * to reduce collisions.  This must not be done in the regular allocation
498  * path, otherwise, we can recurse on the vm while allocating pages.
499  *
500  * Arguments:
501  *	oldhash  The hash you want to expand
502  *	newhash  The hash structure for the new table
503  *
504  * Returns:
505  *	Nothing
506  *
507  * Discussion:
508  */
509 static int
510 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
511 {
512 	uma_slab_t slab;
513 	int hval;
514 	int i;
515 
516 	if (!newhash->uh_slab_hash)
517 		return (0);
518 
519 	if (oldhash->uh_hashsize >= newhash->uh_hashsize)
520 		return (0);
521 
522 	/*
523 	 * I need to investigate hash algorithms for resizing without a
524 	 * full rehash.
525 	 */
526 
527 	for (i = 0; i < oldhash->uh_hashsize; i++)
528 		while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) {
529 			slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]);
530 			SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink);
531 			hval = UMA_HASH(newhash, slab->us_data);
532 			SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
533 			    slab, us_hlink);
534 		}
535 
536 	return (1);
537 }
538 
539 /*
540  * Free the hash bucket to the appropriate backing store.
541  *
542  * Arguments:
543  *	slab_hash  The hash bucket we're freeing
544  *	hashsize   The number of entries in that hash bucket
545  *
546  * Returns:
547  *	Nothing
548  */
549 static void
550 hash_free(struct uma_hash *hash)
551 {
552 	if (hash->uh_slab_hash == NULL)
553 		return;
554 	if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
555 		zone_free_item(hashzone,
556 		    hash->uh_slab_hash, NULL, SKIP_NONE, ZFREE_STATFREE);
557 	else
558 		free(hash->uh_slab_hash, M_UMAHASH);
559 }
560 
561 /*
562  * Frees all outstanding items in a bucket
563  *
564  * Arguments:
565  *	zone   The zone to free to, must be unlocked.
566  *	bucket The free/alloc bucket with items, cpu queue must be locked.
567  *
568  * Returns:
569  *	Nothing
570  */
571 
572 static void
573 bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
574 {
575 	void *item;
576 
577 	if (bucket == NULL)
578 		return;
579 
580 	while (bucket->ub_cnt > 0)  {
581 		bucket->ub_cnt--;
582 		item = bucket->ub_bucket[bucket->ub_cnt];
583 #ifdef INVARIANTS
584 		bucket->ub_bucket[bucket->ub_cnt] = NULL;
585 		KASSERT(item != NULL,
586 		    ("bucket_drain: botched ptr, item is NULL"));
587 #endif
588 		zone_free_item(zone, item, NULL, SKIP_DTOR, 0);
589 	}
590 }
591 
592 /*
593  * Drains the per cpu caches for a zone.
594  *
595  * NOTE: This may only be called while the zone is being turn down, and not
596  * during normal operation.  This is necessary in order that we do not have
597  * to migrate CPUs to drain the per-CPU caches.
598  *
599  * Arguments:
600  *	zone     The zone to drain, must be unlocked.
601  *
602  * Returns:
603  *	Nothing
604  */
605 static void
606 cache_drain(uma_zone_t zone)
607 {
608 	uma_cache_t cache;
609 	int cpu;
610 
611 	/*
612 	 * XXX: It is safe to not lock the per-CPU caches, because we're
613 	 * tearing down the zone anyway.  I.e., there will be no further use
614 	 * of the caches at this point.
615 	 *
616 	 * XXX: It would good to be able to assert that the zone is being
617 	 * torn down to prevent improper use of cache_drain().
618 	 *
619 	 * XXX: We lock the zone before passing into bucket_cache_drain() as
620 	 * it is used elsewhere.  Should the tear-down path be made special
621 	 * there in some form?
622 	 */
623 	CPU_FOREACH(cpu) {
624 		cache = &zone->uz_cpu[cpu];
625 		bucket_drain(zone, cache->uc_allocbucket);
626 		bucket_drain(zone, cache->uc_freebucket);
627 		if (cache->uc_allocbucket != NULL)
628 			bucket_free(cache->uc_allocbucket);
629 		if (cache->uc_freebucket != NULL)
630 			bucket_free(cache->uc_freebucket);
631 		cache->uc_allocbucket = cache->uc_freebucket = NULL;
632 	}
633 	ZONE_LOCK(zone);
634 	bucket_cache_drain(zone);
635 	ZONE_UNLOCK(zone);
636 }
637 
638 /*
639  * Drain the cached buckets from a zone.  Expects a locked zone on entry.
640  */
641 static void
642 bucket_cache_drain(uma_zone_t zone)
643 {
644 	uma_bucket_t bucket;
645 
646 	/*
647 	 * Drain the bucket queues and free the buckets, we just keep two per
648 	 * cpu (alloc/free).
649 	 */
650 	while ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) {
651 		LIST_REMOVE(bucket, ub_link);
652 		ZONE_UNLOCK(zone);
653 		bucket_drain(zone, bucket);
654 		bucket_free(bucket);
655 		ZONE_LOCK(zone);
656 	}
657 
658 	/* Now we do the free queue.. */
659 	while ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) {
660 		LIST_REMOVE(bucket, ub_link);
661 		bucket_free(bucket);
662 	}
663 }
664 
665 /*
666  * Frees pages from a keg back to the system.  This is done on demand from
667  * the pageout daemon.
668  *
669  * Returns nothing.
670  */
671 static void
672 keg_drain(uma_keg_t keg)
673 {
674 	struct slabhead freeslabs = { 0 };
675 	uma_slab_t slab;
676 	uma_slab_t n;
677 	u_int8_t flags;
678 	u_int8_t *mem;
679 	int i;
680 
681 	/*
682 	 * We don't want to take pages from statically allocated kegs at this
683 	 * time
684 	 */
685 	if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL)
686 		return;
687 
688 #ifdef UMA_DEBUG
689 	printf("%s free items: %u\n", keg->uk_name, keg->uk_free);
690 #endif
691 	KEG_LOCK(keg);
692 	if (keg->uk_free == 0)
693 		goto finished;
694 
695 	slab = LIST_FIRST(&keg->uk_free_slab);
696 	while (slab) {
697 		n = LIST_NEXT(slab, us_link);
698 
699 		/* We have no where to free these to */
700 		if (slab->us_flags & UMA_SLAB_BOOT) {
701 			slab = n;
702 			continue;
703 		}
704 
705 		LIST_REMOVE(slab, us_link);
706 		keg->uk_pages -= keg->uk_ppera;
707 		keg->uk_free -= keg->uk_ipers;
708 
709 		if (keg->uk_flags & UMA_ZONE_HASH)
710 			UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data);
711 
712 		SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink);
713 
714 		slab = n;
715 	}
716 finished:
717 	KEG_UNLOCK(keg);
718 
719 	while ((slab = SLIST_FIRST(&freeslabs)) != NULL) {
720 		SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink);
721 		if (keg->uk_fini)
722 			for (i = 0; i < keg->uk_ipers; i++)
723 				keg->uk_fini(
724 				    slab->us_data + (keg->uk_rsize * i),
725 				    keg->uk_size);
726 		flags = slab->us_flags;
727 		mem = slab->us_data;
728 
729 		if (keg->uk_flags & UMA_ZONE_VTOSLAB) {
730 			vm_object_t obj;
731 
732 			if (flags & UMA_SLAB_KMEM)
733 				obj = kmem_object;
734 			else if (flags & UMA_SLAB_KERNEL)
735 				obj = kernel_object;
736 			else
737 				obj = NULL;
738 			for (i = 0; i < keg->uk_ppera; i++)
739 				vsetobj((vm_offset_t)mem + (i * PAGE_SIZE),
740 				    obj);
741 		}
742 		if (keg->uk_flags & UMA_ZONE_OFFPAGE)
743 			zone_free_item(keg->uk_slabzone, slab, NULL,
744 			    SKIP_NONE, ZFREE_STATFREE);
745 #ifdef UMA_DEBUG
746 		printf("%s: Returning %d bytes.\n",
747 		    keg->uk_name, UMA_SLAB_SIZE * keg->uk_ppera);
748 #endif
749 		keg->uk_freef(mem, UMA_SLAB_SIZE * keg->uk_ppera, flags);
750 	}
751 }
752 
753 static void
754 zone_drain_wait(uma_zone_t zone, int waitok)
755 {
756 
757 	/*
758 	 * Set draining to interlock with zone_dtor() so we can release our
759 	 * locks as we go.  Only dtor() should do a WAITOK call since it
760 	 * is the only call that knows the structure will still be available
761 	 * when it wakes up.
762 	 */
763 	ZONE_LOCK(zone);
764 	while (zone->uz_flags & UMA_ZFLAG_DRAINING) {
765 		if (waitok == M_NOWAIT)
766 			goto out;
767 		mtx_unlock(&uma_mtx);
768 		msleep(zone, zone->uz_lock, PVM, "zonedrain", 1);
769 		mtx_lock(&uma_mtx);
770 	}
771 	zone->uz_flags |= UMA_ZFLAG_DRAINING;
772 	bucket_cache_drain(zone);
773 	ZONE_UNLOCK(zone);
774 	/*
775 	 * The DRAINING flag protects us from being freed while
776 	 * we're running.  Normally the uma_mtx would protect us but we
777 	 * must be able to release and acquire the right lock for each keg.
778 	 */
779 	zone_foreach_keg(zone, &keg_drain);
780 	ZONE_LOCK(zone);
781 	zone->uz_flags &= ~UMA_ZFLAG_DRAINING;
782 	wakeup(zone);
783 out:
784 	ZONE_UNLOCK(zone);
785 }
786 
787 void
788 zone_drain(uma_zone_t zone)
789 {
790 
791 	zone_drain_wait(zone, M_NOWAIT);
792 }
793 
794 /*
795  * Allocate a new slab for a keg.  This does not insert the slab onto a list.
796  *
797  * Arguments:
798  *	wait  Shall we wait?
799  *
800  * Returns:
801  *	The slab that was allocated or NULL if there is no memory and the
802  *	caller specified M_NOWAIT.
803  */
804 static uma_slab_t
805 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait)
806 {
807 	uma_slabrefcnt_t slabref;
808 	uma_alloc allocf;
809 	uma_slab_t slab;
810 	u_int8_t *mem;
811 	u_int8_t flags;
812 	int i;
813 
814 	mtx_assert(&keg->uk_lock, MA_OWNED);
815 	slab = NULL;
816 
817 #ifdef UMA_DEBUG
818 	printf("slab_zalloc:  Allocating a new slab for %s\n", keg->uk_name);
819 #endif
820 	allocf = keg->uk_allocf;
821 	KEG_UNLOCK(keg);
822 
823 	if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
824 		slab = zone_alloc_item(keg->uk_slabzone, NULL, wait);
825 		if (slab == NULL) {
826 			KEG_LOCK(keg);
827 			return NULL;
828 		}
829 	}
830 
831 	/*
832 	 * This reproduces the old vm_zone behavior of zero filling pages the
833 	 * first time they are added to a zone.
834 	 *
835 	 * Malloced items are zeroed in uma_zalloc.
836 	 */
837 
838 	if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
839 		wait |= M_ZERO;
840 	else
841 		wait &= ~M_ZERO;
842 
843 	/* zone is passed for legacy reasons. */
844 	mem = allocf(zone, keg->uk_ppera * UMA_SLAB_SIZE, &flags, wait);
845 	if (mem == NULL) {
846 		if (keg->uk_flags & UMA_ZONE_OFFPAGE)
847 			zone_free_item(keg->uk_slabzone, slab, NULL,
848 			    SKIP_NONE, ZFREE_STATFREE);
849 		KEG_LOCK(keg);
850 		return (NULL);
851 	}
852 
853 	/* Point the slab into the allocated memory */
854 	if (!(keg->uk_flags & UMA_ZONE_OFFPAGE))
855 		slab = (uma_slab_t )(mem + keg->uk_pgoff);
856 
857 	if (keg->uk_flags & UMA_ZONE_VTOSLAB)
858 		for (i = 0; i < keg->uk_ppera; i++)
859 			vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab);
860 
861 	slab->us_keg = keg;
862 	slab->us_data = mem;
863 	slab->us_freecount = keg->uk_ipers;
864 	slab->us_firstfree = 0;
865 	slab->us_flags = flags;
866 
867 	if (keg->uk_flags & UMA_ZONE_REFCNT) {
868 		slabref = (uma_slabrefcnt_t)slab;
869 		for (i = 0; i < keg->uk_ipers; i++) {
870 			slabref->us_freelist[i].us_refcnt = 0;
871 			slabref->us_freelist[i].us_item = i+1;
872 		}
873 	} else {
874 		for (i = 0; i < keg->uk_ipers; i++)
875 			slab->us_freelist[i].us_item = i+1;
876 	}
877 
878 	if (keg->uk_init != NULL) {
879 		for (i = 0; i < keg->uk_ipers; i++)
880 			if (keg->uk_init(slab->us_data + (keg->uk_rsize * i),
881 			    keg->uk_size, wait) != 0)
882 				break;
883 		if (i != keg->uk_ipers) {
884 			if (keg->uk_fini != NULL) {
885 				for (i--; i > -1; i--)
886 					keg->uk_fini(slab->us_data +
887 					    (keg->uk_rsize * i),
888 					    keg->uk_size);
889 			}
890 			if (keg->uk_flags & UMA_ZONE_VTOSLAB) {
891 				vm_object_t obj;
892 
893 				if (flags & UMA_SLAB_KMEM)
894 					obj = kmem_object;
895 				else if (flags & UMA_SLAB_KERNEL)
896 					obj = kernel_object;
897 				else
898 					obj = NULL;
899 				for (i = 0; i < keg->uk_ppera; i++)
900 					vsetobj((vm_offset_t)mem +
901 					    (i * PAGE_SIZE), obj);
902 			}
903 			if (keg->uk_flags & UMA_ZONE_OFFPAGE)
904 				zone_free_item(keg->uk_slabzone, slab,
905 				    NULL, SKIP_NONE, ZFREE_STATFREE);
906 			keg->uk_freef(mem, UMA_SLAB_SIZE * keg->uk_ppera,
907 			    flags);
908 			KEG_LOCK(keg);
909 			return (NULL);
910 		}
911 	}
912 	KEG_LOCK(keg);
913 
914 	if (keg->uk_flags & UMA_ZONE_HASH)
915 		UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
916 
917 	keg->uk_pages += keg->uk_ppera;
918 	keg->uk_free += keg->uk_ipers;
919 
920 	return (slab);
921 }
922 
923 /*
924  * This function is intended to be used early on in place of page_alloc() so
925  * that we may use the boot time page cache to satisfy allocations before
926  * the VM is ready.
927  */
928 static void *
929 startup_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait)
930 {
931 	uma_keg_t keg;
932 	uma_slab_t tmps;
933 	int pages, check_pages;
934 
935 	keg = zone_first_keg(zone);
936 	pages = howmany(bytes, PAGE_SIZE);
937 	check_pages = pages - 1;
938 	KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n"));
939 
940 	/*
941 	 * Check our small startup cache to see if it has pages remaining.
942 	 */
943 	mtx_lock(&uma_boot_pages_mtx);
944 
945 	/* First check if we have enough room. */
946 	tmps = LIST_FIRST(&uma_boot_pages);
947 	while (tmps != NULL && check_pages-- > 0)
948 		tmps = LIST_NEXT(tmps, us_link);
949 	if (tmps != NULL) {
950 		/*
951 		 * It's ok to lose tmps references.  The last one will
952 		 * have tmps->us_data pointing to the start address of
953 		 * "pages" contiguous pages of memory.
954 		 */
955 		while (pages-- > 0) {
956 			tmps = LIST_FIRST(&uma_boot_pages);
957 			LIST_REMOVE(tmps, us_link);
958 		}
959 		mtx_unlock(&uma_boot_pages_mtx);
960 		*pflag = tmps->us_flags;
961 		return (tmps->us_data);
962 	}
963 	mtx_unlock(&uma_boot_pages_mtx);
964 	if (booted == 0)
965 		panic("UMA: Increase vm.boot_pages");
966 	/*
967 	 * Now that we've booted reset these users to their real allocator.
968 	 */
969 #ifdef UMA_MD_SMALL_ALLOC
970 	keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc;
971 #else
972 	keg->uk_allocf = page_alloc;
973 #endif
974 	return keg->uk_allocf(zone, bytes, pflag, wait);
975 }
976 
977 /*
978  * Allocates a number of pages from the system
979  *
980  * Arguments:
981  *	bytes  The number of bytes requested
982  *	wait  Shall we wait?
983  *
984  * Returns:
985  *	A pointer to the alloced memory or possibly
986  *	NULL if M_NOWAIT is set.
987  */
988 static void *
989 page_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait)
990 {
991 	void *p;	/* Returned page */
992 
993 	*pflag = UMA_SLAB_KMEM;
994 	p = (void *) kmem_malloc(kmem_map, bytes, wait);
995 
996 	return (p);
997 }
998 
999 /*
1000  * Allocates a number of pages from within an object
1001  *
1002  * Arguments:
1003  *	bytes  The number of bytes requested
1004  *	wait   Shall we wait?
1005  *
1006  * Returns:
1007  *	A pointer to the alloced memory or possibly
1008  *	NULL if M_NOWAIT is set.
1009  */
1010 static void *
1011 obj_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
1012 {
1013 	vm_object_t object;
1014 	vm_offset_t retkva, zkva;
1015 	vm_page_t p;
1016 	int pages, startpages;
1017 	uma_keg_t keg;
1018 
1019 	keg = zone_first_keg(zone);
1020 	object = keg->uk_obj;
1021 	retkva = 0;
1022 
1023 	/*
1024 	 * This looks a little weird since we're getting one page at a time.
1025 	 */
1026 	VM_OBJECT_LOCK(object);
1027 	p = TAILQ_LAST(&object->memq, pglist);
1028 	pages = p != NULL ? p->pindex + 1 : 0;
1029 	startpages = pages;
1030 	zkva = keg->uk_kva + pages * PAGE_SIZE;
1031 	for (; bytes > 0; bytes -= PAGE_SIZE) {
1032 		p = vm_page_alloc(object, pages,
1033 		    VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED);
1034 		if (p == NULL) {
1035 			if (pages != startpages)
1036 				pmap_qremove(retkva, pages - startpages);
1037 			while (pages != startpages) {
1038 				pages--;
1039 				p = TAILQ_LAST(&object->memq, pglist);
1040 				vm_page_unwire(p, 0);
1041 				vm_page_free(p);
1042 			}
1043 			retkva = 0;
1044 			goto done;
1045 		}
1046 		pmap_qenter(zkva, &p, 1);
1047 		if (retkva == 0)
1048 			retkva = zkva;
1049 		zkva += PAGE_SIZE;
1050 		pages += 1;
1051 	}
1052 done:
1053 	VM_OBJECT_UNLOCK(object);
1054 	*flags = UMA_SLAB_PRIV;
1055 
1056 	return ((void *)retkva);
1057 }
1058 
1059 /*
1060  * Frees a number of pages to the system
1061  *
1062  * Arguments:
1063  *	mem   A pointer to the memory to be freed
1064  *	size  The size of the memory being freed
1065  *	flags The original p->us_flags field
1066  *
1067  * Returns:
1068  *	Nothing
1069  */
1070 static void
1071 page_free(void *mem, int size, u_int8_t flags)
1072 {
1073 	vm_map_t map;
1074 
1075 	if (flags & UMA_SLAB_KMEM)
1076 		map = kmem_map;
1077 	else if (flags & UMA_SLAB_KERNEL)
1078 		map = kernel_map;
1079 	else
1080 		panic("UMA: page_free used with invalid flags %d", flags);
1081 
1082 	kmem_free(map, (vm_offset_t)mem, size);
1083 }
1084 
1085 /*
1086  * Zero fill initializer
1087  *
1088  * Arguments/Returns follow uma_init specifications
1089  */
1090 static int
1091 zero_init(void *mem, int size, int flags)
1092 {
1093 	bzero(mem, size);
1094 	return (0);
1095 }
1096 
1097 /*
1098  * Finish creating a small uma keg.  This calculates ipers, and the keg size.
1099  *
1100  * Arguments
1101  *	keg  The zone we should initialize
1102  *
1103  * Returns
1104  *	Nothing
1105  */
1106 static void
1107 keg_small_init(uma_keg_t keg)
1108 {
1109 	u_int rsize;
1110 	u_int memused;
1111 	u_int wastedspace;
1112 	u_int shsize;
1113 
1114 	KASSERT(keg != NULL, ("Keg is null in keg_small_init"));
1115 	rsize = keg->uk_size;
1116 
1117 	if (rsize < UMA_SMALLEST_UNIT)
1118 		rsize = UMA_SMALLEST_UNIT;
1119 	if (rsize & keg->uk_align)
1120 		rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1);
1121 
1122 	keg->uk_rsize = rsize;
1123 	keg->uk_ppera = 1;
1124 
1125 	if (keg->uk_flags & UMA_ZONE_REFCNT) {
1126 		rsize += UMA_FRITMREF_SZ;	/* linkage & refcnt */
1127 		shsize = sizeof(struct uma_slab_refcnt);
1128 	} else {
1129 		rsize += UMA_FRITM_SZ;	/* Account for linkage */
1130 		shsize = sizeof(struct uma_slab);
1131 	}
1132 
1133 	keg->uk_ipers = (UMA_SLAB_SIZE - shsize) / rsize;
1134 	KASSERT(keg->uk_ipers != 0, ("keg_small_init: ipers is 0"));
1135 	memused = keg->uk_ipers * rsize + shsize;
1136 	wastedspace = UMA_SLAB_SIZE - memused;
1137 
1138 	/*
1139 	 * We can't do OFFPAGE if we're internal or if we've been
1140 	 * asked to not go to the VM for buckets.  If we do this we
1141 	 * may end up going to the VM (kmem_map) for slabs which we
1142 	 * do not want to do if we're UMA_ZFLAG_CACHEONLY as a
1143 	 * result of UMA_ZONE_VM, which clearly forbids it.
1144 	 */
1145 	if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) ||
1146 	    (keg->uk_flags & UMA_ZFLAG_CACHEONLY))
1147 		return;
1148 
1149 	if ((wastedspace >= UMA_MAX_WASTE) &&
1150 	    (keg->uk_ipers < (UMA_SLAB_SIZE / keg->uk_rsize))) {
1151 		keg->uk_ipers = UMA_SLAB_SIZE / keg->uk_rsize;
1152 		KASSERT(keg->uk_ipers <= 255,
1153 		    ("keg_small_init: keg->uk_ipers too high!"));
1154 #ifdef UMA_DEBUG
1155 		printf("UMA decided we need offpage slab headers for "
1156 		    "keg: %s, calculated wastedspace = %d, "
1157 		    "maximum wasted space allowed = %d, "
1158 		    "calculated ipers = %d, "
1159 		    "new wasted space = %d\n", keg->uk_name, wastedspace,
1160 		    UMA_MAX_WASTE, keg->uk_ipers,
1161 		    UMA_SLAB_SIZE - keg->uk_ipers * keg->uk_rsize);
1162 #endif
1163 		keg->uk_flags |= UMA_ZONE_OFFPAGE;
1164 		if ((keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1165 			keg->uk_flags |= UMA_ZONE_HASH;
1166 	}
1167 }
1168 
1169 /*
1170  * Finish creating a large (> UMA_SLAB_SIZE) uma kegs.  Just give in and do
1171  * OFFPAGE for now.  When I can allow for more dynamic slab sizes this will be
1172  * more complicated.
1173  *
1174  * Arguments
1175  *	keg  The keg we should initialize
1176  *
1177  * Returns
1178  *	Nothing
1179  */
1180 static void
1181 keg_large_init(uma_keg_t keg)
1182 {
1183 	int pages;
1184 
1185 	KASSERT(keg != NULL, ("Keg is null in keg_large_init"));
1186 	KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0,
1187 	    ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg"));
1188 
1189 	pages = keg->uk_size / UMA_SLAB_SIZE;
1190 
1191 	/* Account for remainder */
1192 	if ((pages * UMA_SLAB_SIZE) < keg->uk_size)
1193 		pages++;
1194 
1195 	keg->uk_ppera = pages;
1196 	keg->uk_ipers = 1;
1197 	keg->uk_rsize = keg->uk_size;
1198 
1199 	/* We can't do OFFPAGE if we're internal, bail out here. */
1200 	if (keg->uk_flags & UMA_ZFLAG_INTERNAL)
1201 		return;
1202 
1203 	keg->uk_flags |= UMA_ZONE_OFFPAGE;
1204 	if ((keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1205 		keg->uk_flags |= UMA_ZONE_HASH;
1206 }
1207 
1208 static void
1209 keg_cachespread_init(uma_keg_t keg)
1210 {
1211 	int alignsize;
1212 	int trailer;
1213 	int pages;
1214 	int rsize;
1215 
1216 	alignsize = keg->uk_align + 1;
1217 	rsize = keg->uk_size;
1218 	/*
1219 	 * We want one item to start on every align boundary in a page.  To
1220 	 * do this we will span pages.  We will also extend the item by the
1221 	 * size of align if it is an even multiple of align.  Otherwise, it
1222 	 * would fall on the same boundary every time.
1223 	 */
1224 	if (rsize & keg->uk_align)
1225 		rsize = (rsize & ~keg->uk_align) + alignsize;
1226 	if ((rsize & alignsize) == 0)
1227 		rsize += alignsize;
1228 	trailer = rsize - keg->uk_size;
1229 	pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE;
1230 	pages = MIN(pages, (128 * 1024) / PAGE_SIZE);
1231 	keg->uk_rsize = rsize;
1232 	keg->uk_ppera = pages;
1233 	keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize;
1234 	keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB;
1235 	KASSERT(keg->uk_ipers <= uma_max_ipers,
1236 	    ("keg_small_init: keg->uk_ipers too high(%d) increase max_ipers",
1237 	    keg->uk_ipers));
1238 }
1239 
1240 /*
1241  * Keg header ctor.  This initializes all fields, locks, etc.  And inserts
1242  * the keg onto the global keg list.
1243  *
1244  * Arguments/Returns follow uma_ctor specifications
1245  *	udata  Actually uma_kctor_args
1246  */
1247 static int
1248 keg_ctor(void *mem, int size, void *udata, int flags)
1249 {
1250 	struct uma_kctor_args *arg = udata;
1251 	uma_keg_t keg = mem;
1252 	uma_zone_t zone;
1253 
1254 	bzero(keg, size);
1255 	keg->uk_size = arg->size;
1256 	keg->uk_init = arg->uminit;
1257 	keg->uk_fini = arg->fini;
1258 	keg->uk_align = arg->align;
1259 	keg->uk_free = 0;
1260 	keg->uk_pages = 0;
1261 	keg->uk_flags = arg->flags;
1262 	keg->uk_allocf = page_alloc;
1263 	keg->uk_freef = page_free;
1264 	keg->uk_recurse = 0;
1265 	keg->uk_slabzone = NULL;
1266 
1267 	/*
1268 	 * The master zone is passed to us at keg-creation time.
1269 	 */
1270 	zone = arg->zone;
1271 	keg->uk_name = zone->uz_name;
1272 
1273 	if (arg->flags & UMA_ZONE_VM)
1274 		keg->uk_flags |= UMA_ZFLAG_CACHEONLY;
1275 
1276 	if (arg->flags & UMA_ZONE_ZINIT)
1277 		keg->uk_init = zero_init;
1278 
1279 	if (arg->flags & UMA_ZONE_REFCNT || arg->flags & UMA_ZONE_MALLOC)
1280 		keg->uk_flags |= UMA_ZONE_VTOSLAB;
1281 
1282 	/*
1283 	 * The +UMA_FRITM_SZ added to uk_size is to account for the
1284 	 * linkage that is added to the size in keg_small_init().  If
1285 	 * we don't account for this here then we may end up in
1286 	 * keg_small_init() with a calculated 'ipers' of 0.
1287 	 */
1288 	if (keg->uk_flags & UMA_ZONE_REFCNT) {
1289 		if (keg->uk_flags & UMA_ZONE_CACHESPREAD)
1290 			keg_cachespread_init(keg);
1291 		else if ((keg->uk_size+UMA_FRITMREF_SZ) >
1292 		    (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt)))
1293 			keg_large_init(keg);
1294 		else
1295 			keg_small_init(keg);
1296 	} else {
1297 		if (keg->uk_flags & UMA_ZONE_CACHESPREAD)
1298 			keg_cachespread_init(keg);
1299 		else if ((keg->uk_size+UMA_FRITM_SZ) >
1300 		    (UMA_SLAB_SIZE - sizeof(struct uma_slab)))
1301 			keg_large_init(keg);
1302 		else
1303 			keg_small_init(keg);
1304 	}
1305 
1306 	if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
1307 		if (keg->uk_flags & UMA_ZONE_REFCNT)
1308 			keg->uk_slabzone = slabrefzone;
1309 		else
1310 			keg->uk_slabzone = slabzone;
1311 	}
1312 
1313 	/*
1314 	 * If we haven't booted yet we need allocations to go through the
1315 	 * startup cache until the vm is ready.
1316 	 */
1317 	if (keg->uk_ppera == 1) {
1318 #ifdef UMA_MD_SMALL_ALLOC
1319 		keg->uk_allocf = uma_small_alloc;
1320 		keg->uk_freef = uma_small_free;
1321 #endif
1322 		if (booted == 0)
1323 			keg->uk_allocf = startup_alloc;
1324 	} else if (booted == 0 && (keg->uk_flags & UMA_ZFLAG_INTERNAL))
1325 		keg->uk_allocf = startup_alloc;
1326 
1327 	/*
1328 	 * Initialize keg's lock (shared among zones).
1329 	 */
1330 	if (arg->flags & UMA_ZONE_MTXCLASS)
1331 		KEG_LOCK_INIT(keg, 1);
1332 	else
1333 		KEG_LOCK_INIT(keg, 0);
1334 
1335 	/*
1336 	 * If we're putting the slab header in the actual page we need to
1337 	 * figure out where in each page it goes.  This calculates a right
1338 	 * justified offset into the memory on an ALIGN_PTR boundary.
1339 	 */
1340 	if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) {
1341 		u_int totsize;
1342 
1343 		/* Size of the slab struct and free list */
1344 		if (keg->uk_flags & UMA_ZONE_REFCNT)
1345 			totsize = sizeof(struct uma_slab_refcnt) +
1346 			    keg->uk_ipers * UMA_FRITMREF_SZ;
1347 		else
1348 			totsize = sizeof(struct uma_slab) +
1349 			    keg->uk_ipers * UMA_FRITM_SZ;
1350 
1351 		if (totsize & UMA_ALIGN_PTR)
1352 			totsize = (totsize & ~UMA_ALIGN_PTR) +
1353 			    (UMA_ALIGN_PTR + 1);
1354 		keg->uk_pgoff = (UMA_SLAB_SIZE * keg->uk_ppera) - totsize;
1355 
1356 		if (keg->uk_flags & UMA_ZONE_REFCNT)
1357 			totsize = keg->uk_pgoff + sizeof(struct uma_slab_refcnt)
1358 			    + keg->uk_ipers * UMA_FRITMREF_SZ;
1359 		else
1360 			totsize = keg->uk_pgoff + sizeof(struct uma_slab)
1361 			    + keg->uk_ipers * UMA_FRITM_SZ;
1362 
1363 		/*
1364 		 * The only way the following is possible is if with our
1365 		 * UMA_ALIGN_PTR adjustments we are now bigger than
1366 		 * UMA_SLAB_SIZE.  I haven't checked whether this is
1367 		 * mathematically possible for all cases, so we make
1368 		 * sure here anyway.
1369 		 */
1370 		if (totsize > UMA_SLAB_SIZE * keg->uk_ppera) {
1371 			printf("zone %s ipers %d rsize %d size %d\n",
1372 			    zone->uz_name, keg->uk_ipers, keg->uk_rsize,
1373 			    keg->uk_size);
1374 			panic("UMA slab won't fit.");
1375 		}
1376 	}
1377 
1378 	if (keg->uk_flags & UMA_ZONE_HASH)
1379 		hash_alloc(&keg->uk_hash);
1380 
1381 #ifdef UMA_DEBUG
1382 	printf("UMA: %s(%p) size %d(%d) flags %d ipers %d ppera %d out %d free %d\n",
1383 	    zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags,
1384 	    keg->uk_ipers, keg->uk_ppera,
1385 	    (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free);
1386 #endif
1387 
1388 	LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
1389 
1390 	mtx_lock(&uma_mtx);
1391 	LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
1392 	mtx_unlock(&uma_mtx);
1393 	return (0);
1394 }
1395 
1396 /*
1397  * Zone header ctor.  This initializes all fields, locks, etc.
1398  *
1399  * Arguments/Returns follow uma_ctor specifications
1400  *	udata  Actually uma_zctor_args
1401  */
1402 static int
1403 zone_ctor(void *mem, int size, void *udata, int flags)
1404 {
1405 	struct uma_zctor_args *arg = udata;
1406 	uma_zone_t zone = mem;
1407 	uma_zone_t z;
1408 	uma_keg_t keg;
1409 
1410 	bzero(zone, size);
1411 	zone->uz_name = arg->name;
1412 	zone->uz_ctor = arg->ctor;
1413 	zone->uz_dtor = arg->dtor;
1414 	zone->uz_slab = zone_fetch_slab;
1415 	zone->uz_init = NULL;
1416 	zone->uz_fini = NULL;
1417 	zone->uz_allocs = 0;
1418 	zone->uz_frees = 0;
1419 	zone->uz_fails = 0;
1420 	zone->uz_sleeps = 0;
1421 	zone->uz_fills = zone->uz_count = 0;
1422 	zone->uz_flags = 0;
1423 	keg = arg->keg;
1424 
1425 	if (arg->flags & UMA_ZONE_SECONDARY) {
1426 		KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
1427 		zone->uz_init = arg->uminit;
1428 		zone->uz_fini = arg->fini;
1429 		zone->uz_lock = &keg->uk_lock;
1430 		zone->uz_flags |= UMA_ZONE_SECONDARY;
1431 		mtx_lock(&uma_mtx);
1432 		ZONE_LOCK(zone);
1433 		LIST_FOREACH(z, &keg->uk_zones, uz_link) {
1434 			if (LIST_NEXT(z, uz_link) == NULL) {
1435 				LIST_INSERT_AFTER(z, zone, uz_link);
1436 				break;
1437 			}
1438 		}
1439 		ZONE_UNLOCK(zone);
1440 		mtx_unlock(&uma_mtx);
1441 	} else if (keg == NULL) {
1442 		if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
1443 		    arg->align, arg->flags)) == NULL)
1444 			return (ENOMEM);
1445 	} else {
1446 		struct uma_kctor_args karg;
1447 		int error;
1448 
1449 		/* We should only be here from uma_startup() */
1450 		karg.size = arg->size;
1451 		karg.uminit = arg->uminit;
1452 		karg.fini = arg->fini;
1453 		karg.align = arg->align;
1454 		karg.flags = arg->flags;
1455 		karg.zone = zone;
1456 		error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
1457 		    flags);
1458 		if (error)
1459 			return (error);
1460 	}
1461 	/*
1462 	 * Link in the first keg.
1463 	 */
1464 	zone->uz_klink.kl_keg = keg;
1465 	LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link);
1466 	zone->uz_lock = &keg->uk_lock;
1467 	zone->uz_size = keg->uk_size;
1468 	zone->uz_flags |= (keg->uk_flags &
1469 	    (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT));
1470 
1471 	/*
1472 	 * Some internal zones don't have room allocated for the per cpu
1473 	 * caches.  If we're internal, bail out here.
1474 	 */
1475 	if (keg->uk_flags & UMA_ZFLAG_INTERNAL) {
1476 		KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0,
1477 		    ("Secondary zone requested UMA_ZFLAG_INTERNAL"));
1478 		return (0);
1479 	}
1480 
1481 	if (keg->uk_flags & UMA_ZONE_MAXBUCKET)
1482 		zone->uz_count = BUCKET_MAX;
1483 	else if (keg->uk_ipers <= BUCKET_MAX)
1484 		zone->uz_count = keg->uk_ipers;
1485 	else
1486 		zone->uz_count = BUCKET_MAX;
1487 	return (0);
1488 }
1489 
1490 /*
1491  * Keg header dtor.  This frees all data, destroys locks, frees the hash
1492  * table and removes the keg from the global list.
1493  *
1494  * Arguments/Returns follow uma_dtor specifications
1495  *	udata  unused
1496  */
1497 static void
1498 keg_dtor(void *arg, int size, void *udata)
1499 {
1500 	uma_keg_t keg;
1501 
1502 	keg = (uma_keg_t)arg;
1503 	KEG_LOCK(keg);
1504 	if (keg->uk_free != 0) {
1505 		printf("Freed UMA keg was not empty (%d items). "
1506 		    " Lost %d pages of memory.\n",
1507 		    keg->uk_free, keg->uk_pages);
1508 	}
1509 	KEG_UNLOCK(keg);
1510 
1511 	hash_free(&keg->uk_hash);
1512 
1513 	KEG_LOCK_FINI(keg);
1514 }
1515 
1516 /*
1517  * Zone header dtor.
1518  *
1519  * Arguments/Returns follow uma_dtor specifications
1520  *	udata  unused
1521  */
1522 static void
1523 zone_dtor(void *arg, int size, void *udata)
1524 {
1525 	uma_klink_t klink;
1526 	uma_zone_t zone;
1527 	uma_keg_t keg;
1528 
1529 	zone = (uma_zone_t)arg;
1530 	keg = zone_first_keg(zone);
1531 
1532 	if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
1533 		cache_drain(zone);
1534 
1535 	mtx_lock(&uma_mtx);
1536 	LIST_REMOVE(zone, uz_link);
1537 	mtx_unlock(&uma_mtx);
1538 	/*
1539 	 * XXX there are some races here where
1540 	 * the zone can be drained but zone lock
1541 	 * released and then refilled before we
1542 	 * remove it... we dont care for now
1543 	 */
1544 	zone_drain_wait(zone, M_WAITOK);
1545 	/*
1546 	 * Unlink all of our kegs.
1547 	 */
1548 	while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) {
1549 		klink->kl_keg = NULL;
1550 		LIST_REMOVE(klink, kl_link);
1551 		if (klink == &zone->uz_klink)
1552 			continue;
1553 		free(klink, M_TEMP);
1554 	}
1555 	/*
1556 	 * We only destroy kegs from non secondary zones.
1557 	 */
1558 	if ((zone->uz_flags & UMA_ZONE_SECONDARY) == 0)  {
1559 		mtx_lock(&uma_mtx);
1560 		LIST_REMOVE(keg, uk_link);
1561 		mtx_unlock(&uma_mtx);
1562 		zone_free_item(kegs, keg, NULL, SKIP_NONE,
1563 		    ZFREE_STATFREE);
1564 	}
1565 }
1566 
1567 /*
1568  * Traverses every zone in the system and calls a callback
1569  *
1570  * Arguments:
1571  *	zfunc  A pointer to a function which accepts a zone
1572  *		as an argument.
1573  *
1574  * Returns:
1575  *	Nothing
1576  */
1577 static void
1578 zone_foreach(void (*zfunc)(uma_zone_t))
1579 {
1580 	uma_keg_t keg;
1581 	uma_zone_t zone;
1582 
1583 	mtx_lock(&uma_mtx);
1584 	LIST_FOREACH(keg, &uma_kegs, uk_link) {
1585 		LIST_FOREACH(zone, &keg->uk_zones, uz_link)
1586 			zfunc(zone);
1587 	}
1588 	mtx_unlock(&uma_mtx);
1589 }
1590 
1591 /* Public functions */
1592 /* See uma.h */
1593 void
1594 uma_startup(void *bootmem, int boot_pages)
1595 {
1596 	struct uma_zctor_args args;
1597 	uma_slab_t slab;
1598 	u_int slabsize;
1599 	u_int objsize, totsize, wsize;
1600 	int i;
1601 
1602 #ifdef UMA_DEBUG
1603 	printf("Creating uma keg headers zone and keg.\n");
1604 #endif
1605 	mtx_init(&uma_mtx, "UMA lock", NULL, MTX_DEF);
1606 
1607 	/*
1608 	 * Figure out the maximum number of items-per-slab we'll have if
1609 	 * we're using the OFFPAGE slab header to track free items, given
1610 	 * all possible object sizes and the maximum desired wastage
1611 	 * (UMA_MAX_WASTE).
1612 	 *
1613 	 * We iterate until we find an object size for
1614 	 * which the calculated wastage in keg_small_init() will be
1615 	 * enough to warrant OFFPAGE.  Since wastedspace versus objsize
1616 	 * is an overall increasing see-saw function, we find the smallest
1617 	 * objsize such that the wastage is always acceptable for objects
1618 	 * with that objsize or smaller.  Since a smaller objsize always
1619 	 * generates a larger possible uma_max_ipers, we use this computed
1620 	 * objsize to calculate the largest ipers possible.  Since the
1621 	 * ipers calculated for OFFPAGE slab headers is always larger than
1622 	 * the ipers initially calculated in keg_small_init(), we use
1623 	 * the former's equation (UMA_SLAB_SIZE / keg->uk_rsize) to
1624 	 * obtain the maximum ipers possible for offpage slab headers.
1625 	 *
1626 	 * It should be noted that ipers versus objsize is an inversly
1627 	 * proportional function which drops off rather quickly so as
1628 	 * long as our UMA_MAX_WASTE is such that the objsize we calculate
1629 	 * falls into the portion of the inverse relation AFTER the steep
1630 	 * falloff, then uma_max_ipers shouldn't be too high (~10 on i386).
1631 	 *
1632 	 * Note that we have 8-bits (1 byte) to use as a freelist index
1633 	 * inside the actual slab header itself and this is enough to
1634 	 * accomodate us.  In the worst case, a UMA_SMALLEST_UNIT sized
1635 	 * object with offpage slab header would have ipers =
1636 	 * UMA_SLAB_SIZE / UMA_SMALLEST_UNIT (currently = 256), which is
1637 	 * 1 greater than what our byte-integer freelist index can
1638 	 * accomodate, but we know that this situation never occurs as
1639 	 * for UMA_SMALLEST_UNIT-sized objects, we will never calculate
1640 	 * that we need to go to offpage slab headers.  Or, if we do,
1641 	 * then we trap that condition below and panic in the INVARIANTS case.
1642 	 */
1643 	wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab) - UMA_MAX_WASTE;
1644 	totsize = wsize;
1645 	objsize = UMA_SMALLEST_UNIT;
1646 	while (totsize >= wsize) {
1647 		totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab)) /
1648 		    (objsize + UMA_FRITM_SZ);
1649 		totsize *= (UMA_FRITM_SZ + objsize);
1650 		objsize++;
1651 	}
1652 	if (objsize > UMA_SMALLEST_UNIT)
1653 		objsize--;
1654 	uma_max_ipers = MAX(UMA_SLAB_SIZE / objsize, 64);
1655 
1656 	wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt) - UMA_MAX_WASTE;
1657 	totsize = wsize;
1658 	objsize = UMA_SMALLEST_UNIT;
1659 	while (totsize >= wsize) {
1660 		totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt)) /
1661 		    (objsize + UMA_FRITMREF_SZ);
1662 		totsize *= (UMA_FRITMREF_SZ + objsize);
1663 		objsize++;
1664 	}
1665 	if (objsize > UMA_SMALLEST_UNIT)
1666 		objsize--;
1667 	uma_max_ipers_ref = MAX(UMA_SLAB_SIZE / objsize, 64);
1668 
1669 	KASSERT((uma_max_ipers_ref <= 255) && (uma_max_ipers <= 255),
1670 	    ("uma_startup: calculated uma_max_ipers values too large!"));
1671 
1672 #ifdef UMA_DEBUG
1673 	printf("Calculated uma_max_ipers (for OFFPAGE) is %d\n", uma_max_ipers);
1674 	printf("Calculated uma_max_ipers_slab (for OFFPAGE) is %d\n",
1675 	    uma_max_ipers_ref);
1676 #endif
1677 
1678 	/* "manually" create the initial zone */
1679 	args.name = "UMA Kegs";
1680 	args.size = sizeof(struct uma_keg);
1681 	args.ctor = keg_ctor;
1682 	args.dtor = keg_dtor;
1683 	args.uminit = zero_init;
1684 	args.fini = NULL;
1685 	args.keg = &masterkeg;
1686 	args.align = 32 - 1;
1687 	args.flags = UMA_ZFLAG_INTERNAL;
1688 	/* The initial zone has no Per cpu queues so it's smaller */
1689 	zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK);
1690 
1691 #ifdef UMA_DEBUG
1692 	printf("Filling boot free list.\n");
1693 #endif
1694 	for (i = 0; i < boot_pages; i++) {
1695 		slab = (uma_slab_t)((u_int8_t *)bootmem + (i * UMA_SLAB_SIZE));
1696 		slab->us_data = (u_int8_t *)slab;
1697 		slab->us_flags = UMA_SLAB_BOOT;
1698 		LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link);
1699 	}
1700 	mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF);
1701 
1702 #ifdef UMA_DEBUG
1703 	printf("Creating uma zone headers zone and keg.\n");
1704 #endif
1705 	args.name = "UMA Zones";
1706 	args.size = sizeof(struct uma_zone) +
1707 	    (sizeof(struct uma_cache) * (mp_maxid + 1));
1708 	args.ctor = zone_ctor;
1709 	args.dtor = zone_dtor;
1710 	args.uminit = zero_init;
1711 	args.fini = NULL;
1712 	args.keg = NULL;
1713 	args.align = 32 - 1;
1714 	args.flags = UMA_ZFLAG_INTERNAL;
1715 	/* The initial zone has no Per cpu queues so it's smaller */
1716 	zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK);
1717 
1718 #ifdef UMA_DEBUG
1719 	printf("Initializing pcpu cache locks.\n");
1720 #endif
1721 #ifdef UMA_DEBUG
1722 	printf("Creating slab and hash zones.\n");
1723 #endif
1724 
1725 	/*
1726 	 * This is the max number of free list items we'll have with
1727 	 * offpage slabs.
1728 	 */
1729 	slabsize = uma_max_ipers * UMA_FRITM_SZ;
1730 	slabsize += sizeof(struct uma_slab);
1731 
1732 	/* Now make a zone for slab headers */
1733 	slabzone = uma_zcreate("UMA Slabs",
1734 				slabsize,
1735 				NULL, NULL, NULL, NULL,
1736 				UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1737 
1738 	/*
1739 	 * We also create a zone for the bigger slabs with reference
1740 	 * counts in them, to accomodate UMA_ZONE_REFCNT zones.
1741 	 */
1742 	slabsize = uma_max_ipers_ref * UMA_FRITMREF_SZ;
1743 	slabsize += sizeof(struct uma_slab_refcnt);
1744 	slabrefzone = uma_zcreate("UMA RCntSlabs",
1745 				  slabsize,
1746 				  NULL, NULL, NULL, NULL,
1747 				  UMA_ALIGN_PTR,
1748 				  UMA_ZFLAG_INTERNAL);
1749 
1750 	hashzone = uma_zcreate("UMA Hash",
1751 	    sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
1752 	    NULL, NULL, NULL, NULL,
1753 	    UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1754 
1755 	bucket_init();
1756 
1757 #if defined(UMA_MD_SMALL_ALLOC) && !defined(UMA_MD_SMALL_ALLOC_NEEDS_VM)
1758 	booted = 1;
1759 #endif
1760 
1761 #ifdef UMA_DEBUG
1762 	printf("UMA startup complete.\n");
1763 #endif
1764 }
1765 
1766 /* see uma.h */
1767 void
1768 uma_startup2(void)
1769 {
1770 	booted = 1;
1771 	bucket_enable();
1772 #ifdef UMA_DEBUG
1773 	printf("UMA startup2 complete.\n");
1774 #endif
1775 }
1776 
1777 /*
1778  * Initialize our callout handle
1779  *
1780  */
1781 
1782 static void
1783 uma_startup3(void)
1784 {
1785 #ifdef UMA_DEBUG
1786 	printf("Starting callout.\n");
1787 #endif
1788 	callout_init(&uma_callout, CALLOUT_MPSAFE);
1789 	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
1790 #ifdef UMA_DEBUG
1791 	printf("UMA startup3 complete.\n");
1792 #endif
1793 }
1794 
1795 static uma_keg_t
1796 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
1797 		int align, u_int32_t flags)
1798 {
1799 	struct uma_kctor_args args;
1800 
1801 	args.size = size;
1802 	args.uminit = uminit;
1803 	args.fini = fini;
1804 	args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align;
1805 	args.flags = flags;
1806 	args.zone = zone;
1807 	return (zone_alloc_item(kegs, &args, M_WAITOK));
1808 }
1809 
1810 /* See uma.h */
1811 void
1812 uma_set_align(int align)
1813 {
1814 
1815 	if (align != UMA_ALIGN_CACHE)
1816 		uma_align_cache = align;
1817 }
1818 
1819 /* See uma.h */
1820 uma_zone_t
1821 uma_zcreate(char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
1822 		uma_init uminit, uma_fini fini, int align, u_int32_t flags)
1823 
1824 {
1825 	struct uma_zctor_args args;
1826 
1827 	/* This stuff is essential for the zone ctor */
1828 	args.name = name;
1829 	args.size = size;
1830 	args.ctor = ctor;
1831 	args.dtor = dtor;
1832 	args.uminit = uminit;
1833 	args.fini = fini;
1834 	args.align = align;
1835 	args.flags = flags;
1836 	args.keg = NULL;
1837 
1838 	return (zone_alloc_item(zones, &args, M_WAITOK));
1839 }
1840 
1841 /* See uma.h */
1842 uma_zone_t
1843 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor,
1844 		    uma_init zinit, uma_fini zfini, uma_zone_t master)
1845 {
1846 	struct uma_zctor_args args;
1847 	uma_keg_t keg;
1848 
1849 	keg = zone_first_keg(master);
1850 	args.name = name;
1851 	args.size = keg->uk_size;
1852 	args.ctor = ctor;
1853 	args.dtor = dtor;
1854 	args.uminit = zinit;
1855 	args.fini = zfini;
1856 	args.align = keg->uk_align;
1857 	args.flags = keg->uk_flags | UMA_ZONE_SECONDARY;
1858 	args.keg = keg;
1859 
1860 	/* XXX Attaches only one keg of potentially many. */
1861 	return (zone_alloc_item(zones, &args, M_WAITOK));
1862 }
1863 
1864 static void
1865 zone_lock_pair(uma_zone_t a, uma_zone_t b)
1866 {
1867 	if (a < b) {
1868 		ZONE_LOCK(a);
1869 		mtx_lock_flags(b->uz_lock, MTX_DUPOK);
1870 	} else {
1871 		ZONE_LOCK(b);
1872 		mtx_lock_flags(a->uz_lock, MTX_DUPOK);
1873 	}
1874 }
1875 
1876 static void
1877 zone_unlock_pair(uma_zone_t a, uma_zone_t b)
1878 {
1879 
1880 	ZONE_UNLOCK(a);
1881 	ZONE_UNLOCK(b);
1882 }
1883 
1884 int
1885 uma_zsecond_add(uma_zone_t zone, uma_zone_t master)
1886 {
1887 	uma_klink_t klink;
1888 	uma_klink_t kl;
1889 	int error;
1890 
1891 	error = 0;
1892 	klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO);
1893 
1894 	zone_lock_pair(zone, master);
1895 	/*
1896 	 * zone must use vtoslab() to resolve objects and must already be
1897 	 * a secondary.
1898 	 */
1899 	if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY))
1900 	    != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) {
1901 		error = EINVAL;
1902 		goto out;
1903 	}
1904 	/*
1905 	 * The new master must also use vtoslab().
1906 	 */
1907 	if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) {
1908 		error = EINVAL;
1909 		goto out;
1910 	}
1911 	/*
1912 	 * Both must either be refcnt, or not be refcnt.
1913 	 */
1914 	if ((zone->uz_flags & UMA_ZONE_REFCNT) !=
1915 	    (master->uz_flags & UMA_ZONE_REFCNT)) {
1916 		error = EINVAL;
1917 		goto out;
1918 	}
1919 	/*
1920 	 * The underlying object must be the same size.  rsize
1921 	 * may be different.
1922 	 */
1923 	if (master->uz_size != zone->uz_size) {
1924 		error = E2BIG;
1925 		goto out;
1926 	}
1927 	/*
1928 	 * Put it at the end of the list.
1929 	 */
1930 	klink->kl_keg = zone_first_keg(master);
1931 	LIST_FOREACH(kl, &zone->uz_kegs, kl_link) {
1932 		if (LIST_NEXT(kl, kl_link) == NULL) {
1933 			LIST_INSERT_AFTER(kl, klink, kl_link);
1934 			break;
1935 		}
1936 	}
1937 	klink = NULL;
1938 	zone->uz_flags |= UMA_ZFLAG_MULTI;
1939 	zone->uz_slab = zone_fetch_slab_multi;
1940 
1941 out:
1942 	zone_unlock_pair(zone, master);
1943 	if (klink != NULL)
1944 		free(klink, M_TEMP);
1945 
1946 	return (error);
1947 }
1948 
1949 
1950 /* See uma.h */
1951 void
1952 uma_zdestroy(uma_zone_t zone)
1953 {
1954 
1955 	zone_free_item(zones, zone, NULL, SKIP_NONE, ZFREE_STATFREE);
1956 }
1957 
1958 /* See uma.h */
1959 void *
1960 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
1961 {
1962 	void *item;
1963 	uma_cache_t cache;
1964 	uma_bucket_t bucket;
1965 	int cpu;
1966 
1967 	/* This is the fast path allocation */
1968 #ifdef UMA_DEBUG_ALLOC_1
1969 	printf("Allocating one item from %s(%p)\n", zone->uz_name, zone);
1970 #endif
1971 	CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread,
1972 	    zone->uz_name, flags);
1973 
1974 	if (flags & M_WAITOK) {
1975 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
1976 		    "uma_zalloc_arg: zone \"%s\"", zone->uz_name);
1977 	}
1978 
1979 	/*
1980 	 * If possible, allocate from the per-CPU cache.  There are two
1981 	 * requirements for safe access to the per-CPU cache: (1) the thread
1982 	 * accessing the cache must not be preempted or yield during access,
1983 	 * and (2) the thread must not migrate CPUs without switching which
1984 	 * cache it accesses.  We rely on a critical section to prevent
1985 	 * preemption and migration.  We release the critical section in
1986 	 * order to acquire the zone mutex if we are unable to allocate from
1987 	 * the current cache; when we re-acquire the critical section, we
1988 	 * must detect and handle migration if it has occurred.
1989 	 */
1990 zalloc_restart:
1991 	critical_enter();
1992 	cpu = curcpu;
1993 	cache = &zone->uz_cpu[cpu];
1994 
1995 zalloc_start:
1996 	bucket = cache->uc_allocbucket;
1997 
1998 	if (bucket) {
1999 		if (bucket->ub_cnt > 0) {
2000 			bucket->ub_cnt--;
2001 			item = bucket->ub_bucket[bucket->ub_cnt];
2002 #ifdef INVARIANTS
2003 			bucket->ub_bucket[bucket->ub_cnt] = NULL;
2004 #endif
2005 			KASSERT(item != NULL,
2006 			    ("uma_zalloc: Bucket pointer mangled."));
2007 			cache->uc_allocs++;
2008 			critical_exit();
2009 #ifdef INVARIANTS
2010 			ZONE_LOCK(zone);
2011 			uma_dbg_alloc(zone, NULL, item);
2012 			ZONE_UNLOCK(zone);
2013 #endif
2014 			if (zone->uz_ctor != NULL) {
2015 				if (zone->uz_ctor(item, zone->uz_size,
2016 				    udata, flags) != 0) {
2017 					zone_free_item(zone, item, udata,
2018 					    SKIP_DTOR, ZFREE_STATFAIL |
2019 					    ZFREE_STATFREE);
2020 					return (NULL);
2021 				}
2022 			}
2023 			if (flags & M_ZERO)
2024 				bzero(item, zone->uz_size);
2025 			return (item);
2026 		} else if (cache->uc_freebucket) {
2027 			/*
2028 			 * We have run out of items in our allocbucket.
2029 			 * See if we can switch with our free bucket.
2030 			 */
2031 			if (cache->uc_freebucket->ub_cnt > 0) {
2032 #ifdef UMA_DEBUG_ALLOC
2033 				printf("uma_zalloc: Swapping empty with"
2034 				    " alloc.\n");
2035 #endif
2036 				bucket = cache->uc_freebucket;
2037 				cache->uc_freebucket = cache->uc_allocbucket;
2038 				cache->uc_allocbucket = bucket;
2039 
2040 				goto zalloc_start;
2041 			}
2042 		}
2043 	}
2044 	/*
2045 	 * Attempt to retrieve the item from the per-CPU cache has failed, so
2046 	 * we must go back to the zone.  This requires the zone lock, so we
2047 	 * must drop the critical section, then re-acquire it when we go back
2048 	 * to the cache.  Since the critical section is released, we may be
2049 	 * preempted or migrate.  As such, make sure not to maintain any
2050 	 * thread-local state specific to the cache from prior to releasing
2051 	 * the critical section.
2052 	 */
2053 	critical_exit();
2054 	ZONE_LOCK(zone);
2055 	critical_enter();
2056 	cpu = curcpu;
2057 	cache = &zone->uz_cpu[cpu];
2058 	bucket = cache->uc_allocbucket;
2059 	if (bucket != NULL) {
2060 		if (bucket->ub_cnt > 0) {
2061 			ZONE_UNLOCK(zone);
2062 			goto zalloc_start;
2063 		}
2064 		bucket = cache->uc_freebucket;
2065 		if (bucket != NULL && bucket->ub_cnt > 0) {
2066 			ZONE_UNLOCK(zone);
2067 			goto zalloc_start;
2068 		}
2069 	}
2070 
2071 	/* Since we have locked the zone we may as well send back our stats */
2072 	zone->uz_allocs += cache->uc_allocs;
2073 	cache->uc_allocs = 0;
2074 	zone->uz_frees += cache->uc_frees;
2075 	cache->uc_frees = 0;
2076 
2077 	/* Our old one is now a free bucket */
2078 	if (cache->uc_allocbucket) {
2079 		KASSERT(cache->uc_allocbucket->ub_cnt == 0,
2080 		    ("uma_zalloc_arg: Freeing a non free bucket."));
2081 		LIST_INSERT_HEAD(&zone->uz_free_bucket,
2082 		    cache->uc_allocbucket, ub_link);
2083 		cache->uc_allocbucket = NULL;
2084 	}
2085 
2086 	/* Check the free list for a new alloc bucket */
2087 	if ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) {
2088 		KASSERT(bucket->ub_cnt != 0,
2089 		    ("uma_zalloc_arg: Returning an empty bucket."));
2090 
2091 		LIST_REMOVE(bucket, ub_link);
2092 		cache->uc_allocbucket = bucket;
2093 		ZONE_UNLOCK(zone);
2094 		goto zalloc_start;
2095 	}
2096 	/* We are no longer associated with this CPU. */
2097 	critical_exit();
2098 
2099 	/* Bump up our uz_count so we get here less */
2100 	if (zone->uz_count < BUCKET_MAX)
2101 		zone->uz_count++;
2102 
2103 	/*
2104 	 * Now lets just fill a bucket and put it on the free list.  If that
2105 	 * works we'll restart the allocation from the begining.
2106 	 */
2107 	if (zone_alloc_bucket(zone, flags)) {
2108 		ZONE_UNLOCK(zone);
2109 		goto zalloc_restart;
2110 	}
2111 	ZONE_UNLOCK(zone);
2112 	/*
2113 	 * We may not be able to get a bucket so return an actual item.
2114 	 */
2115 #ifdef UMA_DEBUG
2116 	printf("uma_zalloc_arg: Bucketzone returned NULL\n");
2117 #endif
2118 
2119 	item = zone_alloc_item(zone, udata, flags);
2120 	return (item);
2121 }
2122 
2123 static uma_slab_t
2124 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags)
2125 {
2126 	uma_slab_t slab;
2127 
2128 	mtx_assert(&keg->uk_lock, MA_OWNED);
2129 	slab = NULL;
2130 
2131 	for (;;) {
2132 		/*
2133 		 * Find a slab with some space.  Prefer slabs that are partially
2134 		 * used over those that are totally full.  This helps to reduce
2135 		 * fragmentation.
2136 		 */
2137 		if (keg->uk_free != 0) {
2138 			if (!LIST_EMPTY(&keg->uk_part_slab)) {
2139 				slab = LIST_FIRST(&keg->uk_part_slab);
2140 			} else {
2141 				slab = LIST_FIRST(&keg->uk_free_slab);
2142 				LIST_REMOVE(slab, us_link);
2143 				LIST_INSERT_HEAD(&keg->uk_part_slab, slab,
2144 				    us_link);
2145 			}
2146 			MPASS(slab->us_keg == keg);
2147 			return (slab);
2148 		}
2149 
2150 		/*
2151 		 * M_NOVM means don't ask at all!
2152 		 */
2153 		if (flags & M_NOVM)
2154 			break;
2155 
2156 		if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) {
2157 			keg->uk_flags |= UMA_ZFLAG_FULL;
2158 			/*
2159 			 * If this is not a multi-zone, set the FULL bit.
2160 			 * Otherwise slab_multi() takes care of it.
2161 			 */
2162 			if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0)
2163 				zone->uz_flags |= UMA_ZFLAG_FULL;
2164 			if (flags & M_NOWAIT)
2165 				break;
2166 			msleep(keg, &keg->uk_lock, PVM, "keglimit", 0);
2167 			continue;
2168 		}
2169 		keg->uk_recurse++;
2170 		slab = keg_alloc_slab(keg, zone, flags);
2171 		keg->uk_recurse--;
2172 		/*
2173 		 * If we got a slab here it's safe to mark it partially used
2174 		 * and return.  We assume that the caller is going to remove
2175 		 * at least one item.
2176 		 */
2177 		if (slab) {
2178 			MPASS(slab->us_keg == keg);
2179 			LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2180 			return (slab);
2181 		}
2182 		/*
2183 		 * We might not have been able to get a slab but another cpu
2184 		 * could have while we were unlocked.  Check again before we
2185 		 * fail.
2186 		 */
2187 		flags |= M_NOVM;
2188 	}
2189 	return (slab);
2190 }
2191 
2192 static inline void
2193 zone_relock(uma_zone_t zone, uma_keg_t keg)
2194 {
2195 	if (zone->uz_lock != &keg->uk_lock) {
2196 		KEG_UNLOCK(keg);
2197 		ZONE_LOCK(zone);
2198 	}
2199 }
2200 
2201 static inline void
2202 keg_relock(uma_keg_t keg, uma_zone_t zone)
2203 {
2204 	if (zone->uz_lock != &keg->uk_lock) {
2205 		ZONE_UNLOCK(zone);
2206 		KEG_LOCK(keg);
2207 	}
2208 }
2209 
2210 static uma_slab_t
2211 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags)
2212 {
2213 	uma_slab_t slab;
2214 
2215 	if (keg == NULL)
2216 		keg = zone_first_keg(zone);
2217 	/*
2218 	 * This is to prevent us from recursively trying to allocate
2219 	 * buckets.  The problem is that if an allocation forces us to
2220 	 * grab a new bucket we will call page_alloc, which will go off
2221 	 * and cause the vm to allocate vm_map_entries.  If we need new
2222 	 * buckets there too we will recurse in kmem_alloc and bad
2223 	 * things happen.  So instead we return a NULL bucket, and make
2224 	 * the code that allocates buckets smart enough to deal with it
2225 	 */
2226 	if (keg->uk_flags & UMA_ZFLAG_BUCKET && keg->uk_recurse != 0)
2227 		return (NULL);
2228 
2229 	for (;;) {
2230 		slab = keg_fetch_slab(keg, zone, flags);
2231 		if (slab)
2232 			return (slab);
2233 		if (flags & (M_NOWAIT | M_NOVM))
2234 			break;
2235 	}
2236 	return (NULL);
2237 }
2238 
2239 /*
2240  * uma_zone_fetch_slab_multi:  Fetches a slab from one available keg.  Returns
2241  * with the keg locked.  Caller must call zone_relock() afterwards if the
2242  * zone lock is required.  On NULL the zone lock is held.
2243  *
2244  * The last pointer is used to seed the search.  It is not required.
2245  */
2246 static uma_slab_t
2247 zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags)
2248 {
2249 	uma_klink_t klink;
2250 	uma_slab_t slab;
2251 	uma_keg_t keg;
2252 	int flags;
2253 	int empty;
2254 	int full;
2255 
2256 	/*
2257 	 * Don't wait on the first pass.  This will skip limit tests
2258 	 * as well.  We don't want to block if we can find a provider
2259 	 * without blocking.
2260 	 */
2261 	flags = (rflags & ~M_WAITOK) | M_NOWAIT;
2262 	/*
2263 	 * Use the last slab allocated as a hint for where to start
2264 	 * the search.
2265 	 */
2266 	if (last) {
2267 		slab = keg_fetch_slab(last, zone, flags);
2268 		if (slab)
2269 			return (slab);
2270 		zone_relock(zone, last);
2271 		last = NULL;
2272 	}
2273 	/*
2274 	 * Loop until we have a slab incase of transient failures
2275 	 * while M_WAITOK is specified.  I'm not sure this is 100%
2276 	 * required but we've done it for so long now.
2277 	 */
2278 	for (;;) {
2279 		empty = 0;
2280 		full = 0;
2281 		/*
2282 		 * Search the available kegs for slabs.  Be careful to hold the
2283 		 * correct lock while calling into the keg layer.
2284 		 */
2285 		LIST_FOREACH(klink, &zone->uz_kegs, kl_link) {
2286 			keg = klink->kl_keg;
2287 			keg_relock(keg, zone);
2288 			if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) {
2289 				slab = keg_fetch_slab(keg, zone, flags);
2290 				if (slab)
2291 					return (slab);
2292 			}
2293 			if (keg->uk_flags & UMA_ZFLAG_FULL)
2294 				full++;
2295 			else
2296 				empty++;
2297 			zone_relock(zone, keg);
2298 		}
2299 		if (rflags & (M_NOWAIT | M_NOVM))
2300 			break;
2301 		flags = rflags;
2302 		/*
2303 		 * All kegs are full.  XXX We can't atomically check all kegs
2304 		 * and sleep so just sleep for a short period and retry.
2305 		 */
2306 		if (full && !empty) {
2307 			zone->uz_flags |= UMA_ZFLAG_FULL;
2308 			zone->uz_sleeps++;
2309 			msleep(zone, zone->uz_lock, PVM, "zonelimit", hz/100);
2310 			zone->uz_flags &= ~UMA_ZFLAG_FULL;
2311 			continue;
2312 		}
2313 	}
2314 	return (NULL);
2315 }
2316 
2317 static void *
2318 slab_alloc_item(uma_zone_t zone, uma_slab_t slab)
2319 {
2320 	uma_keg_t keg;
2321 	uma_slabrefcnt_t slabref;
2322 	void *item;
2323 	u_int8_t freei;
2324 
2325 	keg = slab->us_keg;
2326 	mtx_assert(&keg->uk_lock, MA_OWNED);
2327 
2328 	freei = slab->us_firstfree;
2329 	if (keg->uk_flags & UMA_ZONE_REFCNT) {
2330 		slabref = (uma_slabrefcnt_t)slab;
2331 		slab->us_firstfree = slabref->us_freelist[freei].us_item;
2332 	} else {
2333 		slab->us_firstfree = slab->us_freelist[freei].us_item;
2334 	}
2335 	item = slab->us_data + (keg->uk_rsize * freei);
2336 
2337 	slab->us_freecount--;
2338 	keg->uk_free--;
2339 #ifdef INVARIANTS
2340 	uma_dbg_alloc(zone, slab, item);
2341 #endif
2342 	/* Move this slab to the full list */
2343 	if (slab->us_freecount == 0) {
2344 		LIST_REMOVE(slab, us_link);
2345 		LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link);
2346 	}
2347 
2348 	return (item);
2349 }
2350 
2351 static int
2352 zone_alloc_bucket(uma_zone_t zone, int flags)
2353 {
2354 	uma_bucket_t bucket;
2355 	uma_slab_t slab;
2356 	uma_keg_t keg;
2357 	int16_t saved;
2358 	int max, origflags = flags;
2359 
2360 	/*
2361 	 * Try this zone's free list first so we don't allocate extra buckets.
2362 	 */
2363 	if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) {
2364 		KASSERT(bucket->ub_cnt == 0,
2365 		    ("zone_alloc_bucket: Bucket on free list is not empty."));
2366 		LIST_REMOVE(bucket, ub_link);
2367 	} else {
2368 		int bflags;
2369 
2370 		bflags = (flags & ~M_ZERO);
2371 		if (zone->uz_flags & UMA_ZFLAG_CACHEONLY)
2372 			bflags |= M_NOVM;
2373 
2374 		ZONE_UNLOCK(zone);
2375 		bucket = bucket_alloc(zone->uz_count, bflags);
2376 		ZONE_LOCK(zone);
2377 	}
2378 
2379 	if (bucket == NULL) {
2380 		return (0);
2381 	}
2382 
2383 #ifdef SMP
2384 	/*
2385 	 * This code is here to limit the number of simultaneous bucket fills
2386 	 * for any given zone to the number of per cpu caches in this zone. This
2387 	 * is done so that we don't allocate more memory than we really need.
2388 	 */
2389 	if (zone->uz_fills >= mp_ncpus)
2390 		goto done;
2391 
2392 #endif
2393 	zone->uz_fills++;
2394 
2395 	max = MIN(bucket->ub_entries, zone->uz_count);
2396 	/* Try to keep the buckets totally full */
2397 	saved = bucket->ub_cnt;
2398 	slab = NULL;
2399 	keg = NULL;
2400 	while (bucket->ub_cnt < max &&
2401 	    (slab = zone->uz_slab(zone, keg, flags)) != NULL) {
2402 		keg = slab->us_keg;
2403 		while (slab->us_freecount && bucket->ub_cnt < max) {
2404 			bucket->ub_bucket[bucket->ub_cnt++] =
2405 			    slab_alloc_item(zone, slab);
2406 		}
2407 
2408 		/* Don't block on the next fill */
2409 		flags |= M_NOWAIT;
2410 	}
2411 	if (slab)
2412 		zone_relock(zone, keg);
2413 
2414 	/*
2415 	 * We unlock here because we need to call the zone's init.
2416 	 * It should be safe to unlock because the slab dealt with
2417 	 * above is already on the appropriate list within the keg
2418 	 * and the bucket we filled is not yet on any list, so we
2419 	 * own it.
2420 	 */
2421 	if (zone->uz_init != NULL) {
2422 		int i;
2423 
2424 		ZONE_UNLOCK(zone);
2425 		for (i = saved; i < bucket->ub_cnt; i++)
2426 			if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size,
2427 			    origflags) != 0)
2428 				break;
2429 		/*
2430 		 * If we couldn't initialize the whole bucket, put the
2431 		 * rest back onto the freelist.
2432 		 */
2433 		if (i != bucket->ub_cnt) {
2434 			int j;
2435 
2436 			for (j = i; j < bucket->ub_cnt; j++) {
2437 				zone_free_item(zone, bucket->ub_bucket[j],
2438 				    NULL, SKIP_FINI, 0);
2439 #ifdef INVARIANTS
2440 				bucket->ub_bucket[j] = NULL;
2441 #endif
2442 			}
2443 			bucket->ub_cnt = i;
2444 		}
2445 		ZONE_LOCK(zone);
2446 	}
2447 
2448 	zone->uz_fills--;
2449 	if (bucket->ub_cnt != 0) {
2450 		LIST_INSERT_HEAD(&zone->uz_full_bucket,
2451 		    bucket, ub_link);
2452 		return (1);
2453 	}
2454 #ifdef SMP
2455 done:
2456 #endif
2457 	bucket_free(bucket);
2458 
2459 	return (0);
2460 }
2461 /*
2462  * Allocates an item for an internal zone
2463  *
2464  * Arguments
2465  *	zone   The zone to alloc for.
2466  *	udata  The data to be passed to the constructor.
2467  *	flags  M_WAITOK, M_NOWAIT, M_ZERO.
2468  *
2469  * Returns
2470  *	NULL if there is no memory and M_NOWAIT is set
2471  *	An item if successful
2472  */
2473 
2474 static void *
2475 zone_alloc_item(uma_zone_t zone, void *udata, int flags)
2476 {
2477 	uma_slab_t slab;
2478 	void *item;
2479 
2480 	item = NULL;
2481 
2482 #ifdef UMA_DEBUG_ALLOC
2483 	printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone);
2484 #endif
2485 	ZONE_LOCK(zone);
2486 
2487 	slab = zone->uz_slab(zone, NULL, flags);
2488 	if (slab == NULL) {
2489 		zone->uz_fails++;
2490 		ZONE_UNLOCK(zone);
2491 		return (NULL);
2492 	}
2493 
2494 	item = slab_alloc_item(zone, slab);
2495 
2496 	zone_relock(zone, slab->us_keg);
2497 	zone->uz_allocs++;
2498 	ZONE_UNLOCK(zone);
2499 
2500 	/*
2501 	 * We have to call both the zone's init (not the keg's init)
2502 	 * and the zone's ctor.  This is because the item is going from
2503 	 * a keg slab directly to the user, and the user is expecting it
2504 	 * to be both zone-init'd as well as zone-ctor'd.
2505 	 */
2506 	if (zone->uz_init != NULL) {
2507 		if (zone->uz_init(item, zone->uz_size, flags) != 0) {
2508 			zone_free_item(zone, item, udata, SKIP_FINI,
2509 			    ZFREE_STATFAIL | ZFREE_STATFREE);
2510 			return (NULL);
2511 		}
2512 	}
2513 	if (zone->uz_ctor != NULL) {
2514 		if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
2515 			zone_free_item(zone, item, udata, SKIP_DTOR,
2516 			    ZFREE_STATFAIL | ZFREE_STATFREE);
2517 			return (NULL);
2518 		}
2519 	}
2520 	if (flags & M_ZERO)
2521 		bzero(item, zone->uz_size);
2522 
2523 	return (item);
2524 }
2525 
2526 /* See uma.h */
2527 void
2528 uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
2529 {
2530 	uma_cache_t cache;
2531 	uma_bucket_t bucket;
2532 	int bflags;
2533 	int cpu;
2534 
2535 #ifdef UMA_DEBUG_ALLOC_1
2536 	printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone);
2537 #endif
2538 	CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread,
2539 	    zone->uz_name);
2540 
2541         /* uma_zfree(..., NULL) does nothing, to match free(9). */
2542         if (item == NULL)
2543                 return;
2544 
2545 	if (zone->uz_dtor)
2546 		zone->uz_dtor(item, zone->uz_size, udata);
2547 
2548 #ifdef INVARIANTS
2549 	ZONE_LOCK(zone);
2550 	if (zone->uz_flags & UMA_ZONE_MALLOC)
2551 		uma_dbg_free(zone, udata, item);
2552 	else
2553 		uma_dbg_free(zone, NULL, item);
2554 	ZONE_UNLOCK(zone);
2555 #endif
2556 	/*
2557 	 * The race here is acceptable.  If we miss it we'll just have to wait
2558 	 * a little longer for the limits to be reset.
2559 	 */
2560 	if (zone->uz_flags & UMA_ZFLAG_FULL)
2561 		goto zfree_internal;
2562 
2563 	/*
2564 	 * If possible, free to the per-CPU cache.  There are two
2565 	 * requirements for safe access to the per-CPU cache: (1) the thread
2566 	 * accessing the cache must not be preempted or yield during access,
2567 	 * and (2) the thread must not migrate CPUs without switching which
2568 	 * cache it accesses.  We rely on a critical section to prevent
2569 	 * preemption and migration.  We release the critical section in
2570 	 * order to acquire the zone mutex if we are unable to free to the
2571 	 * current cache; when we re-acquire the critical section, we must
2572 	 * detect and handle migration if it has occurred.
2573 	 */
2574 zfree_restart:
2575 	critical_enter();
2576 	cpu = curcpu;
2577 	cache = &zone->uz_cpu[cpu];
2578 
2579 zfree_start:
2580 	bucket = cache->uc_freebucket;
2581 
2582 	if (bucket) {
2583 		/*
2584 		 * Do we have room in our bucket? It is OK for this uz count
2585 		 * check to be slightly out of sync.
2586 		 */
2587 
2588 		if (bucket->ub_cnt < bucket->ub_entries) {
2589 			KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL,
2590 			    ("uma_zfree: Freeing to non free bucket index."));
2591 			bucket->ub_bucket[bucket->ub_cnt] = item;
2592 			bucket->ub_cnt++;
2593 			cache->uc_frees++;
2594 			critical_exit();
2595 			return;
2596 		} else if (cache->uc_allocbucket) {
2597 #ifdef UMA_DEBUG_ALLOC
2598 			printf("uma_zfree: Swapping buckets.\n");
2599 #endif
2600 			/*
2601 			 * We have run out of space in our freebucket.
2602 			 * See if we can switch with our alloc bucket.
2603 			 */
2604 			if (cache->uc_allocbucket->ub_cnt <
2605 			    cache->uc_freebucket->ub_cnt) {
2606 				bucket = cache->uc_freebucket;
2607 				cache->uc_freebucket = cache->uc_allocbucket;
2608 				cache->uc_allocbucket = bucket;
2609 				goto zfree_start;
2610 			}
2611 		}
2612 	}
2613 	/*
2614 	 * We can get here for two reasons:
2615 	 *
2616 	 * 1) The buckets are NULL
2617 	 * 2) The alloc and free buckets are both somewhat full.
2618 	 *
2619 	 * We must go back the zone, which requires acquiring the zone lock,
2620 	 * which in turn means we must release and re-acquire the critical
2621 	 * section.  Since the critical section is released, we may be
2622 	 * preempted or migrate.  As such, make sure not to maintain any
2623 	 * thread-local state specific to the cache from prior to releasing
2624 	 * the critical section.
2625 	 */
2626 	critical_exit();
2627 	ZONE_LOCK(zone);
2628 	critical_enter();
2629 	cpu = curcpu;
2630 	cache = &zone->uz_cpu[cpu];
2631 	if (cache->uc_freebucket != NULL) {
2632 		if (cache->uc_freebucket->ub_cnt <
2633 		    cache->uc_freebucket->ub_entries) {
2634 			ZONE_UNLOCK(zone);
2635 			goto zfree_start;
2636 		}
2637 		if (cache->uc_allocbucket != NULL &&
2638 		    (cache->uc_allocbucket->ub_cnt <
2639 		    cache->uc_freebucket->ub_cnt)) {
2640 			ZONE_UNLOCK(zone);
2641 			goto zfree_start;
2642 		}
2643 	}
2644 
2645 	/* Since we have locked the zone we may as well send back our stats */
2646 	zone->uz_allocs += cache->uc_allocs;
2647 	cache->uc_allocs = 0;
2648 	zone->uz_frees += cache->uc_frees;
2649 	cache->uc_frees = 0;
2650 
2651 	bucket = cache->uc_freebucket;
2652 	cache->uc_freebucket = NULL;
2653 
2654 	/* Can we throw this on the zone full list? */
2655 	if (bucket != NULL) {
2656 #ifdef UMA_DEBUG_ALLOC
2657 		printf("uma_zfree: Putting old bucket on the free list.\n");
2658 #endif
2659 		/* ub_cnt is pointing to the last free item */
2660 		KASSERT(bucket->ub_cnt != 0,
2661 		    ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n"));
2662 		LIST_INSERT_HEAD(&zone->uz_full_bucket,
2663 		    bucket, ub_link);
2664 	}
2665 	if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) {
2666 		LIST_REMOVE(bucket, ub_link);
2667 		ZONE_UNLOCK(zone);
2668 		cache->uc_freebucket = bucket;
2669 		goto zfree_start;
2670 	}
2671 	/* We are no longer associated with this CPU. */
2672 	critical_exit();
2673 
2674 	/* And the zone.. */
2675 	ZONE_UNLOCK(zone);
2676 
2677 #ifdef UMA_DEBUG_ALLOC
2678 	printf("uma_zfree: Allocating new free bucket.\n");
2679 #endif
2680 	bflags = M_NOWAIT;
2681 
2682 	if (zone->uz_flags & UMA_ZFLAG_CACHEONLY)
2683 		bflags |= M_NOVM;
2684 	bucket = bucket_alloc(zone->uz_count, bflags);
2685 	if (bucket) {
2686 		ZONE_LOCK(zone);
2687 		LIST_INSERT_HEAD(&zone->uz_free_bucket,
2688 		    bucket, ub_link);
2689 		ZONE_UNLOCK(zone);
2690 		goto zfree_restart;
2691 	}
2692 
2693 	/*
2694 	 * If nothing else caught this, we'll just do an internal free.
2695 	 */
2696 zfree_internal:
2697 	zone_free_item(zone, item, udata, SKIP_DTOR, ZFREE_STATFREE);
2698 
2699 	return;
2700 }
2701 
2702 /*
2703  * Frees an item to an INTERNAL zone or allocates a free bucket
2704  *
2705  * Arguments:
2706  *	zone   The zone to free to
2707  *	item   The item we're freeing
2708  *	udata  User supplied data for the dtor
2709  *	skip   Skip dtors and finis
2710  */
2711 static void
2712 zone_free_item(uma_zone_t zone, void *item, void *udata,
2713     enum zfreeskip skip, int flags)
2714 {
2715 	uma_slab_t slab;
2716 	uma_slabrefcnt_t slabref;
2717 	uma_keg_t keg;
2718 	u_int8_t *mem;
2719 	u_int8_t freei;
2720 	int clearfull;
2721 
2722 	if (skip < SKIP_DTOR && zone->uz_dtor)
2723 		zone->uz_dtor(item, zone->uz_size, udata);
2724 
2725 	if (skip < SKIP_FINI && zone->uz_fini)
2726 		zone->uz_fini(item, zone->uz_size);
2727 
2728 	ZONE_LOCK(zone);
2729 
2730 	if (flags & ZFREE_STATFAIL)
2731 		zone->uz_fails++;
2732 	if (flags & ZFREE_STATFREE)
2733 		zone->uz_frees++;
2734 
2735 	if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) {
2736 		mem = (u_int8_t *)((unsigned long)item & (~UMA_SLAB_MASK));
2737 		keg = zone_first_keg(zone); /* Must only be one. */
2738 		if (zone->uz_flags & UMA_ZONE_HASH) {
2739 			slab = hash_sfind(&keg->uk_hash, mem);
2740 		} else {
2741 			mem += keg->uk_pgoff;
2742 			slab = (uma_slab_t)mem;
2743 		}
2744 	} else {
2745 		/* This prevents redundant lookups via free(). */
2746 		if ((zone->uz_flags & UMA_ZONE_MALLOC) && udata != NULL)
2747 			slab = (uma_slab_t)udata;
2748 		else
2749 			slab = vtoslab((vm_offset_t)item);
2750 		keg = slab->us_keg;
2751 		keg_relock(keg, zone);
2752 	}
2753 	MPASS(keg == slab->us_keg);
2754 
2755 	/* Do we need to remove from any lists? */
2756 	if (slab->us_freecount+1 == keg->uk_ipers) {
2757 		LIST_REMOVE(slab, us_link);
2758 		LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
2759 	} else if (slab->us_freecount == 0) {
2760 		LIST_REMOVE(slab, us_link);
2761 		LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2762 	}
2763 
2764 	/* Slab management stuff */
2765 	freei = ((unsigned long)item - (unsigned long)slab->us_data)
2766 		/ keg->uk_rsize;
2767 
2768 #ifdef INVARIANTS
2769 	if (!skip)
2770 		uma_dbg_free(zone, slab, item);
2771 #endif
2772 
2773 	if (keg->uk_flags & UMA_ZONE_REFCNT) {
2774 		slabref = (uma_slabrefcnt_t)slab;
2775 		slabref->us_freelist[freei].us_item = slab->us_firstfree;
2776 	} else {
2777 		slab->us_freelist[freei].us_item = slab->us_firstfree;
2778 	}
2779 	slab->us_firstfree = freei;
2780 	slab->us_freecount++;
2781 
2782 	/* Zone statistics */
2783 	keg->uk_free++;
2784 
2785 	clearfull = 0;
2786 	if (keg->uk_flags & UMA_ZFLAG_FULL) {
2787 		if (keg->uk_pages < keg->uk_maxpages) {
2788 			keg->uk_flags &= ~UMA_ZFLAG_FULL;
2789 			clearfull = 1;
2790 		}
2791 
2792 		/*
2793 		 * We can handle one more allocation. Since we're clearing ZFLAG_FULL,
2794 		 * wake up all procs blocked on pages. This should be uncommon, so
2795 		 * keeping this simple for now (rather than adding count of blocked
2796 		 * threads etc).
2797 		 */
2798 		wakeup(keg);
2799 	}
2800 	if (clearfull) {
2801 		zone_relock(zone, keg);
2802 		zone->uz_flags &= ~UMA_ZFLAG_FULL;
2803 		wakeup(zone);
2804 		ZONE_UNLOCK(zone);
2805 	} else
2806 		KEG_UNLOCK(keg);
2807 }
2808 
2809 /* See uma.h */
2810 int
2811 uma_zone_set_max(uma_zone_t zone, int nitems)
2812 {
2813 	uma_keg_t keg;
2814 
2815 	ZONE_LOCK(zone);
2816 	keg = zone_first_keg(zone);
2817 	keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera;
2818 	if (keg->uk_maxpages * keg->uk_ipers < nitems)
2819 		keg->uk_maxpages += keg->uk_ppera;
2820 	nitems = keg->uk_maxpages * keg->uk_ipers;
2821 	ZONE_UNLOCK(zone);
2822 
2823 	return (nitems);
2824 }
2825 
2826 /* See uma.h */
2827 int
2828 uma_zone_get_max(uma_zone_t zone)
2829 {
2830 	int nitems;
2831 	uma_keg_t keg;
2832 
2833 	ZONE_LOCK(zone);
2834 	keg = zone_first_keg(zone);
2835 	nitems = keg->uk_maxpages * keg->uk_ipers;
2836 	ZONE_UNLOCK(zone);
2837 
2838 	return (nitems);
2839 }
2840 
2841 /* See uma.h */
2842 int
2843 uma_zone_get_cur(uma_zone_t zone)
2844 {
2845 	int64_t nitems;
2846 	u_int i;
2847 
2848 	ZONE_LOCK(zone);
2849 	nitems = zone->uz_allocs - zone->uz_frees;
2850 	CPU_FOREACH(i) {
2851 		/*
2852 		 * See the comment in sysctl_vm_zone_stats() regarding the
2853 		 * safety of accessing the per-cpu caches. With the zone lock
2854 		 * held, it is safe, but can potentially result in stale data.
2855 		 */
2856 		nitems += zone->uz_cpu[i].uc_allocs -
2857 		    zone->uz_cpu[i].uc_frees;
2858 	}
2859 	ZONE_UNLOCK(zone);
2860 
2861 	return (nitems < 0 ? 0 : nitems);
2862 }
2863 
2864 /* See uma.h */
2865 void
2866 uma_zone_set_init(uma_zone_t zone, uma_init uminit)
2867 {
2868 	uma_keg_t keg;
2869 
2870 	ZONE_LOCK(zone);
2871 	keg = zone_first_keg(zone);
2872 	KASSERT(keg->uk_pages == 0,
2873 	    ("uma_zone_set_init on non-empty keg"));
2874 	keg->uk_init = uminit;
2875 	ZONE_UNLOCK(zone);
2876 }
2877 
2878 /* See uma.h */
2879 void
2880 uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
2881 {
2882 	uma_keg_t keg;
2883 
2884 	ZONE_LOCK(zone);
2885 	keg = zone_first_keg(zone);
2886 	KASSERT(keg->uk_pages == 0,
2887 	    ("uma_zone_set_fini on non-empty keg"));
2888 	keg->uk_fini = fini;
2889 	ZONE_UNLOCK(zone);
2890 }
2891 
2892 /* See uma.h */
2893 void
2894 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
2895 {
2896 	ZONE_LOCK(zone);
2897 	KASSERT(zone_first_keg(zone)->uk_pages == 0,
2898 	    ("uma_zone_set_zinit on non-empty keg"));
2899 	zone->uz_init = zinit;
2900 	ZONE_UNLOCK(zone);
2901 }
2902 
2903 /* See uma.h */
2904 void
2905 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
2906 {
2907 	ZONE_LOCK(zone);
2908 	KASSERT(zone_first_keg(zone)->uk_pages == 0,
2909 	    ("uma_zone_set_zfini on non-empty keg"));
2910 	zone->uz_fini = zfini;
2911 	ZONE_UNLOCK(zone);
2912 }
2913 
2914 /* See uma.h */
2915 /* XXX uk_freef is not actually used with the zone locked */
2916 void
2917 uma_zone_set_freef(uma_zone_t zone, uma_free freef)
2918 {
2919 
2920 	ZONE_LOCK(zone);
2921 	zone_first_keg(zone)->uk_freef = freef;
2922 	ZONE_UNLOCK(zone);
2923 }
2924 
2925 /* See uma.h */
2926 /* XXX uk_allocf is not actually used with the zone locked */
2927 void
2928 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
2929 {
2930 	uma_keg_t keg;
2931 
2932 	ZONE_LOCK(zone);
2933 	keg = zone_first_keg(zone);
2934 	keg->uk_flags |= UMA_ZFLAG_PRIVALLOC;
2935 	keg->uk_allocf = allocf;
2936 	ZONE_UNLOCK(zone);
2937 }
2938 
2939 /* See uma.h */
2940 int
2941 uma_zone_set_obj(uma_zone_t zone, struct vm_object *obj, int count)
2942 {
2943 	uma_keg_t keg;
2944 	vm_offset_t kva;
2945 	int pages;
2946 
2947 	keg = zone_first_keg(zone);
2948 	pages = count / keg->uk_ipers;
2949 
2950 	if (pages * keg->uk_ipers < count)
2951 		pages++;
2952 
2953 	kva = kmem_alloc_nofault(kernel_map, pages * UMA_SLAB_SIZE);
2954 
2955 	if (kva == 0)
2956 		return (0);
2957 	if (obj == NULL)
2958 		obj = vm_object_allocate(OBJT_PHYS, pages);
2959 	else {
2960 		VM_OBJECT_LOCK_INIT(obj, "uma object");
2961 		_vm_object_allocate(OBJT_PHYS, pages, obj);
2962 	}
2963 	ZONE_LOCK(zone);
2964 	keg->uk_kva = kva;
2965 	keg->uk_obj = obj;
2966 	keg->uk_maxpages = pages;
2967 	keg->uk_allocf = obj_alloc;
2968 	keg->uk_flags |= UMA_ZONE_NOFREE | UMA_ZFLAG_PRIVALLOC;
2969 	ZONE_UNLOCK(zone);
2970 	return (1);
2971 }
2972 
2973 /* See uma.h */
2974 void
2975 uma_prealloc(uma_zone_t zone, int items)
2976 {
2977 	int slabs;
2978 	uma_slab_t slab;
2979 	uma_keg_t keg;
2980 
2981 	keg = zone_first_keg(zone);
2982 	ZONE_LOCK(zone);
2983 	slabs = items / keg->uk_ipers;
2984 	if (slabs * keg->uk_ipers < items)
2985 		slabs++;
2986 	while (slabs > 0) {
2987 		slab = keg_alloc_slab(keg, zone, M_WAITOK);
2988 		if (slab == NULL)
2989 			break;
2990 		MPASS(slab->us_keg == keg);
2991 		LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
2992 		slabs--;
2993 	}
2994 	ZONE_UNLOCK(zone);
2995 }
2996 
2997 /* See uma.h */
2998 u_int32_t *
2999 uma_find_refcnt(uma_zone_t zone, void *item)
3000 {
3001 	uma_slabrefcnt_t slabref;
3002 	uma_keg_t keg;
3003 	u_int32_t *refcnt;
3004 	int idx;
3005 
3006 	slabref = (uma_slabrefcnt_t)vtoslab((vm_offset_t)item &
3007 	    (~UMA_SLAB_MASK));
3008 	keg = slabref->us_keg;
3009 	KASSERT(slabref != NULL && slabref->us_keg->uk_flags & UMA_ZONE_REFCNT,
3010 	    ("uma_find_refcnt(): zone possibly not UMA_ZONE_REFCNT"));
3011 	idx = ((unsigned long)item - (unsigned long)slabref->us_data)
3012 	    / keg->uk_rsize;
3013 	refcnt = &slabref->us_freelist[idx].us_refcnt;
3014 	return refcnt;
3015 }
3016 
3017 /* See uma.h */
3018 void
3019 uma_reclaim(void)
3020 {
3021 #ifdef UMA_DEBUG
3022 	printf("UMA: vm asked us to release pages!\n");
3023 #endif
3024 	bucket_enable();
3025 	zone_foreach(zone_drain);
3026 	/*
3027 	 * Some slabs may have been freed but this zone will be visited early
3028 	 * we visit again so that we can free pages that are empty once other
3029 	 * zones are drained.  We have to do the same for buckets.
3030 	 */
3031 	zone_drain(slabzone);
3032 	zone_drain(slabrefzone);
3033 	bucket_zone_drain();
3034 }
3035 
3036 /* See uma.h */
3037 int
3038 uma_zone_exhausted(uma_zone_t zone)
3039 {
3040 	int full;
3041 
3042 	ZONE_LOCK(zone);
3043 	full = (zone->uz_flags & UMA_ZFLAG_FULL);
3044 	ZONE_UNLOCK(zone);
3045 	return (full);
3046 }
3047 
3048 int
3049 uma_zone_exhausted_nolock(uma_zone_t zone)
3050 {
3051 	return (zone->uz_flags & UMA_ZFLAG_FULL);
3052 }
3053 
3054 void *
3055 uma_large_malloc(int size, int wait)
3056 {
3057 	void *mem;
3058 	uma_slab_t slab;
3059 	u_int8_t flags;
3060 
3061 	slab = zone_alloc_item(slabzone, NULL, wait);
3062 	if (slab == NULL)
3063 		return (NULL);
3064 	mem = page_alloc(NULL, size, &flags, wait);
3065 	if (mem) {
3066 		vsetslab((vm_offset_t)mem, slab);
3067 		slab->us_data = mem;
3068 		slab->us_flags = flags | UMA_SLAB_MALLOC;
3069 		slab->us_size = size;
3070 	} else {
3071 		zone_free_item(slabzone, slab, NULL, SKIP_NONE,
3072 		    ZFREE_STATFAIL | ZFREE_STATFREE);
3073 	}
3074 
3075 	return (mem);
3076 }
3077 
3078 void
3079 uma_large_free(uma_slab_t slab)
3080 {
3081 	vsetobj((vm_offset_t)slab->us_data, kmem_object);
3082 	page_free(slab->us_data, slab->us_size, slab->us_flags);
3083 	zone_free_item(slabzone, slab, NULL, SKIP_NONE, ZFREE_STATFREE);
3084 }
3085 
3086 void
3087 uma_print_stats(void)
3088 {
3089 	zone_foreach(uma_print_zone);
3090 }
3091 
3092 static void
3093 slab_print(uma_slab_t slab)
3094 {
3095 	printf("slab: keg %p, data %p, freecount %d, firstfree %d\n",
3096 		slab->us_keg, slab->us_data, slab->us_freecount,
3097 		slab->us_firstfree);
3098 }
3099 
3100 static void
3101 cache_print(uma_cache_t cache)
3102 {
3103 	printf("alloc: %p(%d), free: %p(%d)\n",
3104 		cache->uc_allocbucket,
3105 		cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0,
3106 		cache->uc_freebucket,
3107 		cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0);
3108 }
3109 
3110 static void
3111 uma_print_keg(uma_keg_t keg)
3112 {
3113 	uma_slab_t slab;
3114 
3115 	printf("keg: %s(%p) size %d(%d) flags %d ipers %d ppera %d "
3116 	    "out %d free %d limit %d\n",
3117 	    keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags,
3118 	    keg->uk_ipers, keg->uk_ppera,
3119 	    (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free,
3120 	    (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers);
3121 	printf("Part slabs:\n");
3122 	LIST_FOREACH(slab, &keg->uk_part_slab, us_link)
3123 		slab_print(slab);
3124 	printf("Free slabs:\n");
3125 	LIST_FOREACH(slab, &keg->uk_free_slab, us_link)
3126 		slab_print(slab);
3127 	printf("Full slabs:\n");
3128 	LIST_FOREACH(slab, &keg->uk_full_slab, us_link)
3129 		slab_print(slab);
3130 }
3131 
3132 void
3133 uma_print_zone(uma_zone_t zone)
3134 {
3135 	uma_cache_t cache;
3136 	uma_klink_t kl;
3137 	int i;
3138 
3139 	printf("zone: %s(%p) size %d flags %d\n",
3140 	    zone->uz_name, zone, zone->uz_size, zone->uz_flags);
3141 	LIST_FOREACH(kl, &zone->uz_kegs, kl_link)
3142 		uma_print_keg(kl->kl_keg);
3143 	CPU_FOREACH(i) {
3144 		cache = &zone->uz_cpu[i];
3145 		printf("CPU %d Cache:\n", i);
3146 		cache_print(cache);
3147 	}
3148 }
3149 
3150 #ifdef DDB
3151 /*
3152  * Generate statistics across both the zone and its per-cpu cache's.  Return
3153  * desired statistics if the pointer is non-NULL for that statistic.
3154  *
3155  * Note: does not update the zone statistics, as it can't safely clear the
3156  * per-CPU cache statistic.
3157  *
3158  * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't
3159  * safe from off-CPU; we should modify the caches to track this information
3160  * directly so that we don't have to.
3161  */
3162 static void
3163 uma_zone_sumstat(uma_zone_t z, int *cachefreep, u_int64_t *allocsp,
3164     u_int64_t *freesp, u_int64_t *sleepsp)
3165 {
3166 	uma_cache_t cache;
3167 	u_int64_t allocs, frees, sleeps;
3168 	int cachefree, cpu;
3169 
3170 	allocs = frees = sleeps = 0;
3171 	cachefree = 0;
3172 	CPU_FOREACH(cpu) {
3173 		cache = &z->uz_cpu[cpu];
3174 		if (cache->uc_allocbucket != NULL)
3175 			cachefree += cache->uc_allocbucket->ub_cnt;
3176 		if (cache->uc_freebucket != NULL)
3177 			cachefree += cache->uc_freebucket->ub_cnt;
3178 		allocs += cache->uc_allocs;
3179 		frees += cache->uc_frees;
3180 	}
3181 	allocs += z->uz_allocs;
3182 	frees += z->uz_frees;
3183 	sleeps += z->uz_sleeps;
3184 	if (cachefreep != NULL)
3185 		*cachefreep = cachefree;
3186 	if (allocsp != NULL)
3187 		*allocsp = allocs;
3188 	if (freesp != NULL)
3189 		*freesp = frees;
3190 	if (sleepsp != NULL)
3191 		*sleepsp = sleeps;
3192 }
3193 #endif /* DDB */
3194 
3195 static int
3196 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
3197 {
3198 	uma_keg_t kz;
3199 	uma_zone_t z;
3200 	int count;
3201 
3202 	count = 0;
3203 	mtx_lock(&uma_mtx);
3204 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3205 		LIST_FOREACH(z, &kz->uk_zones, uz_link)
3206 			count++;
3207 	}
3208 	mtx_unlock(&uma_mtx);
3209 	return (sysctl_handle_int(oidp, &count, 0, req));
3210 }
3211 
3212 static int
3213 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
3214 {
3215 	struct uma_stream_header ush;
3216 	struct uma_type_header uth;
3217 	struct uma_percpu_stat ups;
3218 	uma_bucket_t bucket;
3219 	struct sbuf sbuf;
3220 	uma_cache_t cache;
3221 	uma_klink_t kl;
3222 	uma_keg_t kz;
3223 	uma_zone_t z;
3224 	uma_keg_t k;
3225 	int count, error, i;
3226 
3227 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
3228 
3229 	count = 0;
3230 	mtx_lock(&uma_mtx);
3231 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3232 		LIST_FOREACH(z, &kz->uk_zones, uz_link)
3233 			count++;
3234 	}
3235 
3236 	/*
3237 	 * Insert stream header.
3238 	 */
3239 	bzero(&ush, sizeof(ush));
3240 	ush.ush_version = UMA_STREAM_VERSION;
3241 	ush.ush_maxcpus = (mp_maxid + 1);
3242 	ush.ush_count = count;
3243 	(void)sbuf_bcat(&sbuf, &ush, sizeof(ush));
3244 
3245 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3246 		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3247 			bzero(&uth, sizeof(uth));
3248 			ZONE_LOCK(z);
3249 			strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
3250 			uth.uth_align = kz->uk_align;
3251 			uth.uth_size = kz->uk_size;
3252 			uth.uth_rsize = kz->uk_rsize;
3253 			LIST_FOREACH(kl, &z->uz_kegs, kl_link) {
3254 				k = kl->kl_keg;
3255 				uth.uth_maxpages += k->uk_maxpages;
3256 				uth.uth_pages += k->uk_pages;
3257 				uth.uth_keg_free += k->uk_free;
3258 				uth.uth_limit = (k->uk_maxpages / k->uk_ppera)
3259 				    * k->uk_ipers;
3260 			}
3261 
3262 			/*
3263 			 * A zone is secondary is it is not the first entry
3264 			 * on the keg's zone list.
3265 			 */
3266 			if ((z->uz_flags & UMA_ZONE_SECONDARY) &&
3267 			    (LIST_FIRST(&kz->uk_zones) != z))
3268 				uth.uth_zone_flags = UTH_ZONE_SECONDARY;
3269 
3270 			LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link)
3271 				uth.uth_zone_free += bucket->ub_cnt;
3272 			uth.uth_allocs = z->uz_allocs;
3273 			uth.uth_frees = z->uz_frees;
3274 			uth.uth_fails = z->uz_fails;
3275 			uth.uth_sleeps = z->uz_sleeps;
3276 			(void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
3277 			/*
3278 			 * While it is not normally safe to access the cache
3279 			 * bucket pointers while not on the CPU that owns the
3280 			 * cache, we only allow the pointers to be exchanged
3281 			 * without the zone lock held, not invalidated, so
3282 			 * accept the possible race associated with bucket
3283 			 * exchange during monitoring.
3284 			 */
3285 			for (i = 0; i < (mp_maxid + 1); i++) {
3286 				bzero(&ups, sizeof(ups));
3287 				if (kz->uk_flags & UMA_ZFLAG_INTERNAL)
3288 					goto skip;
3289 				if (CPU_ABSENT(i))
3290 					goto skip;
3291 				cache = &z->uz_cpu[i];
3292 				if (cache->uc_allocbucket != NULL)
3293 					ups.ups_cache_free +=
3294 					    cache->uc_allocbucket->ub_cnt;
3295 				if (cache->uc_freebucket != NULL)
3296 					ups.ups_cache_free +=
3297 					    cache->uc_freebucket->ub_cnt;
3298 				ups.ups_allocs = cache->uc_allocs;
3299 				ups.ups_frees = cache->uc_frees;
3300 skip:
3301 				(void)sbuf_bcat(&sbuf, &ups, sizeof(ups));
3302 			}
3303 			ZONE_UNLOCK(z);
3304 		}
3305 	}
3306 	mtx_unlock(&uma_mtx);
3307 	error = sbuf_finish(&sbuf);
3308 	sbuf_delete(&sbuf);
3309 	return (error);
3310 }
3311 
3312 #ifdef DDB
3313 DB_SHOW_COMMAND(uma, db_show_uma)
3314 {
3315 	u_int64_t allocs, frees, sleeps;
3316 	uma_bucket_t bucket;
3317 	uma_keg_t kz;
3318 	uma_zone_t z;
3319 	int cachefree;
3320 
3321 	db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free",
3322 	    "Requests", "Sleeps");
3323 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3324 		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3325 			if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
3326 				allocs = z->uz_allocs;
3327 				frees = z->uz_frees;
3328 				sleeps = z->uz_sleeps;
3329 				cachefree = 0;
3330 			} else
3331 				uma_zone_sumstat(z, &cachefree, &allocs,
3332 				    &frees, &sleeps);
3333 			if (!((z->uz_flags & UMA_ZONE_SECONDARY) &&
3334 			    (LIST_FIRST(&kz->uk_zones) != z)))
3335 				cachefree += kz->uk_free;
3336 			LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link)
3337 				cachefree += bucket->ub_cnt;
3338 			db_printf("%18s %8ju %8jd %8d %12ju %8ju\n", z->uz_name,
3339 			    (uintmax_t)kz->uk_size,
3340 			    (intmax_t)(allocs - frees), cachefree,
3341 			    (uintmax_t)allocs, sleeps);
3342 		}
3343 	}
3344 }
3345 #endif
3346