1 /*- 2 * Copyright (c) 2002-2005, 2009 Jeffrey Roberson <jeff@FreeBSD.org> 3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 4 * Copyright (c) 2004-2006 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /* 30 * uma_core.c Implementation of the Universal Memory allocator 31 * 32 * This allocator is intended to replace the multitude of similar object caches 33 * in the standard FreeBSD kernel. The intent is to be flexible as well as 34 * effecient. A primary design goal is to return unused memory to the rest of 35 * the system. This will make the system as a whole more flexible due to the 36 * ability to move memory to subsystems which most need it instead of leaving 37 * pools of reserved memory unused. 38 * 39 * The basic ideas stem from similar slab/zone based allocators whose algorithms 40 * are well known. 41 * 42 */ 43 44 /* 45 * TODO: 46 * - Improve memory usage for large allocations 47 * - Investigate cache size adjustments 48 */ 49 50 #include <sys/cdefs.h> 51 __FBSDID("$FreeBSD$"); 52 53 /* I should really use ktr.. */ 54 /* 55 #define UMA_DEBUG 1 56 #define UMA_DEBUG_ALLOC 1 57 #define UMA_DEBUG_ALLOC_1 1 58 */ 59 60 #include "opt_ddb.h" 61 #include "opt_param.h" 62 #include "opt_vm.h" 63 64 #include <sys/param.h> 65 #include <sys/systm.h> 66 #include <sys/kernel.h> 67 #include <sys/types.h> 68 #include <sys/queue.h> 69 #include <sys/malloc.h> 70 #include <sys/ktr.h> 71 #include <sys/lock.h> 72 #include <sys/sysctl.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/sbuf.h> 76 #include <sys/smp.h> 77 #include <sys/vmmeter.h> 78 79 #include <vm/vm.h> 80 #include <vm/vm_object.h> 81 #include <vm/vm_page.h> 82 #include <vm/vm_param.h> 83 #include <vm/vm_map.h> 84 #include <vm/vm_kern.h> 85 #include <vm/vm_extern.h> 86 #include <vm/uma.h> 87 #include <vm/uma_int.h> 88 #include <vm/uma_dbg.h> 89 90 #include <ddb/ddb.h> 91 92 #ifdef DEBUG_MEMGUARD 93 #include <vm/memguard.h> 94 #endif 95 96 /* 97 * This is the zone and keg from which all zones are spawned. The idea is that 98 * even the zone & keg heads are allocated from the allocator, so we use the 99 * bss section to bootstrap us. 100 */ 101 static struct uma_keg masterkeg; 102 static struct uma_zone masterzone_k; 103 static struct uma_zone masterzone_z; 104 static uma_zone_t kegs = &masterzone_k; 105 static uma_zone_t zones = &masterzone_z; 106 107 /* This is the zone from which all of uma_slab_t's are allocated. */ 108 static uma_zone_t slabzone; 109 static uma_zone_t slabrefzone; /* With refcounters (for UMA_ZONE_REFCNT) */ 110 111 /* 112 * The initial hash tables come out of this zone so they can be allocated 113 * prior to malloc coming up. 114 */ 115 static uma_zone_t hashzone; 116 117 /* The boot-time adjusted value for cache line alignment. */ 118 int uma_align_cache = 64 - 1; 119 120 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 121 122 /* 123 * Are we allowed to allocate buckets? 124 */ 125 static int bucketdisable = 1; 126 127 /* Linked list of all kegs in the system */ 128 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 129 130 /* This mutex protects the keg list */ 131 static struct mtx uma_mtx; 132 133 /* Linked list of boot time pages */ 134 static LIST_HEAD(,uma_slab) uma_boot_pages = 135 LIST_HEAD_INITIALIZER(uma_boot_pages); 136 137 /* This mutex protects the boot time pages list */ 138 static struct mtx uma_boot_pages_mtx; 139 140 /* Is the VM done starting up? */ 141 static int booted = 0; 142 #define UMA_STARTUP 1 143 #define UMA_STARTUP2 2 144 145 /* Maximum number of allowed items-per-slab if the slab header is OFFPAGE */ 146 static u_int uma_max_ipers; 147 static u_int uma_max_ipers_ref; 148 149 /* 150 * This is the handle used to schedule events that need to happen 151 * outside of the allocation fast path. 152 */ 153 static struct callout uma_callout; 154 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 155 156 /* 157 * This structure is passed as the zone ctor arg so that I don't have to create 158 * a special allocation function just for zones. 159 */ 160 struct uma_zctor_args { 161 char *name; 162 size_t size; 163 uma_ctor ctor; 164 uma_dtor dtor; 165 uma_init uminit; 166 uma_fini fini; 167 uma_keg_t keg; 168 int align; 169 u_int32_t flags; 170 }; 171 172 struct uma_kctor_args { 173 uma_zone_t zone; 174 size_t size; 175 uma_init uminit; 176 uma_fini fini; 177 int align; 178 u_int32_t flags; 179 }; 180 181 struct uma_bucket_zone { 182 uma_zone_t ubz_zone; 183 char *ubz_name; 184 int ubz_entries; 185 }; 186 187 #define BUCKET_MAX 128 188 189 struct uma_bucket_zone bucket_zones[] = { 190 { NULL, "16 Bucket", 16 }, 191 { NULL, "32 Bucket", 32 }, 192 { NULL, "64 Bucket", 64 }, 193 { NULL, "128 Bucket", 128 }, 194 { NULL, NULL, 0} 195 }; 196 197 #define BUCKET_SHIFT 4 198 #define BUCKET_ZONES ((BUCKET_MAX >> BUCKET_SHIFT) + 1) 199 200 /* 201 * bucket_size[] maps requested bucket sizes to zones that allocate a bucket 202 * of approximately the right size. 203 */ 204 static uint8_t bucket_size[BUCKET_ZONES]; 205 206 /* 207 * Flags and enumerations to be passed to internal functions. 208 */ 209 enum zfreeskip { SKIP_NONE, SKIP_DTOR, SKIP_FINI }; 210 211 #define ZFREE_STATFAIL 0x00000001 /* Update zone failure statistic. */ 212 #define ZFREE_STATFREE 0x00000002 /* Update zone free statistic. */ 213 214 /* Prototypes.. */ 215 216 static void *obj_alloc(uma_zone_t, int, u_int8_t *, int); 217 static void *page_alloc(uma_zone_t, int, u_int8_t *, int); 218 static void *startup_alloc(uma_zone_t, int, u_int8_t *, int); 219 static void page_free(void *, int, u_int8_t); 220 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int); 221 static void cache_drain(uma_zone_t); 222 static void bucket_drain(uma_zone_t, uma_bucket_t); 223 static void bucket_cache_drain(uma_zone_t zone); 224 static int keg_ctor(void *, int, void *, int); 225 static void keg_dtor(void *, int, void *); 226 static int zone_ctor(void *, int, void *, int); 227 static void zone_dtor(void *, int, void *); 228 static int zero_init(void *, int, int); 229 static void keg_small_init(uma_keg_t keg); 230 static void keg_large_init(uma_keg_t keg); 231 static void zone_foreach(void (*zfunc)(uma_zone_t)); 232 static void zone_timeout(uma_zone_t zone); 233 static int hash_alloc(struct uma_hash *); 234 static int hash_expand(struct uma_hash *, struct uma_hash *); 235 static void hash_free(struct uma_hash *hash); 236 static void uma_timeout(void *); 237 static void uma_startup3(void); 238 static void *zone_alloc_item(uma_zone_t, void *, int); 239 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip, 240 int); 241 static void bucket_enable(void); 242 static void bucket_init(void); 243 static uma_bucket_t bucket_alloc(int, int); 244 static void bucket_free(uma_bucket_t); 245 static void bucket_zone_drain(void); 246 static int zone_alloc_bucket(uma_zone_t zone, int flags); 247 static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags); 248 static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags); 249 static void *slab_alloc_item(uma_zone_t zone, uma_slab_t slab); 250 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 251 uma_fini fini, int align, u_int32_t flags); 252 static inline void zone_relock(uma_zone_t zone, uma_keg_t keg); 253 static inline void keg_relock(uma_keg_t keg, uma_zone_t zone); 254 255 void uma_print_zone(uma_zone_t); 256 void uma_print_stats(void); 257 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 258 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 259 260 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 261 262 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 263 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 264 265 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 266 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 267 268 /* 269 * This routine checks to see whether or not it's safe to enable buckets. 270 */ 271 272 static void 273 bucket_enable(void) 274 { 275 bucketdisable = vm_page_count_min(); 276 } 277 278 /* 279 * Initialize bucket_zones, the array of zones of buckets of various sizes. 280 * 281 * For each zone, calculate the memory required for each bucket, consisting 282 * of the header and an array of pointers. Initialize bucket_size[] to point 283 * the range of appropriate bucket sizes at the zone. 284 */ 285 static void 286 bucket_init(void) 287 { 288 struct uma_bucket_zone *ubz; 289 int i; 290 int j; 291 292 for (i = 0, j = 0; bucket_zones[j].ubz_entries != 0; j++) { 293 int size; 294 295 ubz = &bucket_zones[j]; 296 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 297 size += sizeof(void *) * ubz->ubz_entries; 298 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 299 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 300 UMA_ZFLAG_INTERNAL | UMA_ZFLAG_BUCKET); 301 for (; i <= ubz->ubz_entries; i += (1 << BUCKET_SHIFT)) 302 bucket_size[i >> BUCKET_SHIFT] = j; 303 } 304 } 305 306 /* 307 * Given a desired number of entries for a bucket, return the zone from which 308 * to allocate the bucket. 309 */ 310 static struct uma_bucket_zone * 311 bucket_zone_lookup(int entries) 312 { 313 int idx; 314 315 idx = howmany(entries, 1 << BUCKET_SHIFT); 316 return (&bucket_zones[bucket_size[idx]]); 317 } 318 319 static uma_bucket_t 320 bucket_alloc(int entries, int bflags) 321 { 322 struct uma_bucket_zone *ubz; 323 uma_bucket_t bucket; 324 325 /* 326 * This is to stop us from allocating per cpu buckets while we're 327 * running out of vm.boot_pages. Otherwise, we would exhaust the 328 * boot pages. This also prevents us from allocating buckets in 329 * low memory situations. 330 */ 331 if (bucketdisable) 332 return (NULL); 333 334 ubz = bucket_zone_lookup(entries); 335 bucket = zone_alloc_item(ubz->ubz_zone, NULL, bflags); 336 if (bucket) { 337 #ifdef INVARIANTS 338 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 339 #endif 340 bucket->ub_cnt = 0; 341 bucket->ub_entries = ubz->ubz_entries; 342 } 343 344 return (bucket); 345 } 346 347 static void 348 bucket_free(uma_bucket_t bucket) 349 { 350 struct uma_bucket_zone *ubz; 351 352 ubz = bucket_zone_lookup(bucket->ub_entries); 353 zone_free_item(ubz->ubz_zone, bucket, NULL, SKIP_NONE, 354 ZFREE_STATFREE); 355 } 356 357 static void 358 bucket_zone_drain(void) 359 { 360 struct uma_bucket_zone *ubz; 361 362 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 363 zone_drain(ubz->ubz_zone); 364 } 365 366 static inline uma_keg_t 367 zone_first_keg(uma_zone_t zone) 368 { 369 370 return (LIST_FIRST(&zone->uz_kegs)->kl_keg); 371 } 372 373 static void 374 zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t)) 375 { 376 uma_klink_t klink; 377 378 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) 379 kegfn(klink->kl_keg); 380 } 381 382 /* 383 * Routine called by timeout which is used to fire off some time interval 384 * based calculations. (stats, hash size, etc.) 385 * 386 * Arguments: 387 * arg Unused 388 * 389 * Returns: 390 * Nothing 391 */ 392 static void 393 uma_timeout(void *unused) 394 { 395 bucket_enable(); 396 zone_foreach(zone_timeout); 397 398 /* Reschedule this event */ 399 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 400 } 401 402 /* 403 * Routine to perform timeout driven calculations. This expands the 404 * hashes and does per cpu statistics aggregation. 405 * 406 * Returns nothing. 407 */ 408 static void 409 keg_timeout(uma_keg_t keg) 410 { 411 412 KEG_LOCK(keg); 413 /* 414 * Expand the keg hash table. 415 * 416 * This is done if the number of slabs is larger than the hash size. 417 * What I'm trying to do here is completely reduce collisions. This 418 * may be a little aggressive. Should I allow for two collisions max? 419 */ 420 if (keg->uk_flags & UMA_ZONE_HASH && 421 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) { 422 struct uma_hash newhash; 423 struct uma_hash oldhash; 424 int ret; 425 426 /* 427 * This is so involved because allocating and freeing 428 * while the keg lock is held will lead to deadlock. 429 * I have to do everything in stages and check for 430 * races. 431 */ 432 newhash = keg->uk_hash; 433 KEG_UNLOCK(keg); 434 ret = hash_alloc(&newhash); 435 KEG_LOCK(keg); 436 if (ret) { 437 if (hash_expand(&keg->uk_hash, &newhash)) { 438 oldhash = keg->uk_hash; 439 keg->uk_hash = newhash; 440 } else 441 oldhash = newhash; 442 443 KEG_UNLOCK(keg); 444 hash_free(&oldhash); 445 KEG_LOCK(keg); 446 } 447 } 448 KEG_UNLOCK(keg); 449 } 450 451 static void 452 zone_timeout(uma_zone_t zone) 453 { 454 455 zone_foreach_keg(zone, &keg_timeout); 456 } 457 458 /* 459 * Allocate and zero fill the next sized hash table from the appropriate 460 * backing store. 461 * 462 * Arguments: 463 * hash A new hash structure with the old hash size in uh_hashsize 464 * 465 * Returns: 466 * 1 on sucess and 0 on failure. 467 */ 468 static int 469 hash_alloc(struct uma_hash *hash) 470 { 471 int oldsize; 472 int alloc; 473 474 oldsize = hash->uh_hashsize; 475 476 /* We're just going to go to a power of two greater */ 477 if (oldsize) { 478 hash->uh_hashsize = oldsize * 2; 479 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 480 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 481 M_UMAHASH, M_NOWAIT); 482 } else { 483 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 484 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 485 M_WAITOK); 486 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 487 } 488 if (hash->uh_slab_hash) { 489 bzero(hash->uh_slab_hash, alloc); 490 hash->uh_hashmask = hash->uh_hashsize - 1; 491 return (1); 492 } 493 494 return (0); 495 } 496 497 /* 498 * Expands the hash table for HASH zones. This is done from zone_timeout 499 * to reduce collisions. This must not be done in the regular allocation 500 * path, otherwise, we can recurse on the vm while allocating pages. 501 * 502 * Arguments: 503 * oldhash The hash you want to expand 504 * newhash The hash structure for the new table 505 * 506 * Returns: 507 * Nothing 508 * 509 * Discussion: 510 */ 511 static int 512 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 513 { 514 uma_slab_t slab; 515 int hval; 516 int i; 517 518 if (!newhash->uh_slab_hash) 519 return (0); 520 521 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 522 return (0); 523 524 /* 525 * I need to investigate hash algorithms for resizing without a 526 * full rehash. 527 */ 528 529 for (i = 0; i < oldhash->uh_hashsize; i++) 530 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) { 531 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]); 532 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink); 533 hval = UMA_HASH(newhash, slab->us_data); 534 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 535 slab, us_hlink); 536 } 537 538 return (1); 539 } 540 541 /* 542 * Free the hash bucket to the appropriate backing store. 543 * 544 * Arguments: 545 * slab_hash The hash bucket we're freeing 546 * hashsize The number of entries in that hash bucket 547 * 548 * Returns: 549 * Nothing 550 */ 551 static void 552 hash_free(struct uma_hash *hash) 553 { 554 if (hash->uh_slab_hash == NULL) 555 return; 556 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 557 zone_free_item(hashzone, 558 hash->uh_slab_hash, NULL, SKIP_NONE, ZFREE_STATFREE); 559 else 560 free(hash->uh_slab_hash, M_UMAHASH); 561 } 562 563 /* 564 * Frees all outstanding items in a bucket 565 * 566 * Arguments: 567 * zone The zone to free to, must be unlocked. 568 * bucket The free/alloc bucket with items, cpu queue must be locked. 569 * 570 * Returns: 571 * Nothing 572 */ 573 574 static void 575 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 576 { 577 void *item; 578 579 if (bucket == NULL) 580 return; 581 582 while (bucket->ub_cnt > 0) { 583 bucket->ub_cnt--; 584 item = bucket->ub_bucket[bucket->ub_cnt]; 585 #ifdef INVARIANTS 586 bucket->ub_bucket[bucket->ub_cnt] = NULL; 587 KASSERT(item != NULL, 588 ("bucket_drain: botched ptr, item is NULL")); 589 #endif 590 zone_free_item(zone, item, NULL, SKIP_DTOR, 0); 591 } 592 } 593 594 /* 595 * Drains the per cpu caches for a zone. 596 * 597 * NOTE: This may only be called while the zone is being turn down, and not 598 * during normal operation. This is necessary in order that we do not have 599 * to migrate CPUs to drain the per-CPU caches. 600 * 601 * Arguments: 602 * zone The zone to drain, must be unlocked. 603 * 604 * Returns: 605 * Nothing 606 */ 607 static void 608 cache_drain(uma_zone_t zone) 609 { 610 uma_cache_t cache; 611 int cpu; 612 613 /* 614 * XXX: It is safe to not lock the per-CPU caches, because we're 615 * tearing down the zone anyway. I.e., there will be no further use 616 * of the caches at this point. 617 * 618 * XXX: It would good to be able to assert that the zone is being 619 * torn down to prevent improper use of cache_drain(). 620 * 621 * XXX: We lock the zone before passing into bucket_cache_drain() as 622 * it is used elsewhere. Should the tear-down path be made special 623 * there in some form? 624 */ 625 CPU_FOREACH(cpu) { 626 cache = &zone->uz_cpu[cpu]; 627 bucket_drain(zone, cache->uc_allocbucket); 628 bucket_drain(zone, cache->uc_freebucket); 629 if (cache->uc_allocbucket != NULL) 630 bucket_free(cache->uc_allocbucket); 631 if (cache->uc_freebucket != NULL) 632 bucket_free(cache->uc_freebucket); 633 cache->uc_allocbucket = cache->uc_freebucket = NULL; 634 } 635 ZONE_LOCK(zone); 636 bucket_cache_drain(zone); 637 ZONE_UNLOCK(zone); 638 } 639 640 /* 641 * Drain the cached buckets from a zone. Expects a locked zone on entry. 642 */ 643 static void 644 bucket_cache_drain(uma_zone_t zone) 645 { 646 uma_bucket_t bucket; 647 648 /* 649 * Drain the bucket queues and free the buckets, we just keep two per 650 * cpu (alloc/free). 651 */ 652 while ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) { 653 LIST_REMOVE(bucket, ub_link); 654 ZONE_UNLOCK(zone); 655 bucket_drain(zone, bucket); 656 bucket_free(bucket); 657 ZONE_LOCK(zone); 658 } 659 660 /* Now we do the free queue.. */ 661 while ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) { 662 LIST_REMOVE(bucket, ub_link); 663 bucket_free(bucket); 664 } 665 } 666 667 /* 668 * Frees pages from a keg back to the system. This is done on demand from 669 * the pageout daemon. 670 * 671 * Returns nothing. 672 */ 673 static void 674 keg_drain(uma_keg_t keg) 675 { 676 struct slabhead freeslabs = { 0 }; 677 uma_slab_t slab; 678 uma_slab_t n; 679 u_int8_t flags; 680 u_int8_t *mem; 681 int i; 682 683 /* 684 * We don't want to take pages from statically allocated kegs at this 685 * time 686 */ 687 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 688 return; 689 690 #ifdef UMA_DEBUG 691 printf("%s free items: %u\n", keg->uk_name, keg->uk_free); 692 #endif 693 KEG_LOCK(keg); 694 if (keg->uk_free == 0) 695 goto finished; 696 697 slab = LIST_FIRST(&keg->uk_free_slab); 698 while (slab) { 699 n = LIST_NEXT(slab, us_link); 700 701 /* We have no where to free these to */ 702 if (slab->us_flags & UMA_SLAB_BOOT) { 703 slab = n; 704 continue; 705 } 706 707 LIST_REMOVE(slab, us_link); 708 keg->uk_pages -= keg->uk_ppera; 709 keg->uk_free -= keg->uk_ipers; 710 711 if (keg->uk_flags & UMA_ZONE_HASH) 712 UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data); 713 714 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 715 716 slab = n; 717 } 718 finished: 719 KEG_UNLOCK(keg); 720 721 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 722 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 723 if (keg->uk_fini) 724 for (i = 0; i < keg->uk_ipers; i++) 725 keg->uk_fini( 726 slab->us_data + (keg->uk_rsize * i), 727 keg->uk_size); 728 flags = slab->us_flags; 729 mem = slab->us_data; 730 731 if (keg->uk_flags & UMA_ZONE_VTOSLAB) { 732 vm_object_t obj; 733 734 if (flags & UMA_SLAB_KMEM) 735 obj = kmem_object; 736 else if (flags & UMA_SLAB_KERNEL) 737 obj = kernel_object; 738 else 739 obj = NULL; 740 for (i = 0; i < keg->uk_ppera; i++) 741 vsetobj((vm_offset_t)mem + (i * PAGE_SIZE), 742 obj); 743 } 744 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 745 zone_free_item(keg->uk_slabzone, slab, NULL, 746 SKIP_NONE, ZFREE_STATFREE); 747 #ifdef UMA_DEBUG 748 printf("%s: Returning %d bytes.\n", 749 keg->uk_name, UMA_SLAB_SIZE * keg->uk_ppera); 750 #endif 751 keg->uk_freef(mem, UMA_SLAB_SIZE * keg->uk_ppera, flags); 752 } 753 } 754 755 static void 756 zone_drain_wait(uma_zone_t zone, int waitok) 757 { 758 759 /* 760 * Set draining to interlock with zone_dtor() so we can release our 761 * locks as we go. Only dtor() should do a WAITOK call since it 762 * is the only call that knows the structure will still be available 763 * when it wakes up. 764 */ 765 ZONE_LOCK(zone); 766 while (zone->uz_flags & UMA_ZFLAG_DRAINING) { 767 if (waitok == M_NOWAIT) 768 goto out; 769 mtx_unlock(&uma_mtx); 770 msleep(zone, zone->uz_lock, PVM, "zonedrain", 1); 771 mtx_lock(&uma_mtx); 772 } 773 zone->uz_flags |= UMA_ZFLAG_DRAINING; 774 bucket_cache_drain(zone); 775 ZONE_UNLOCK(zone); 776 /* 777 * The DRAINING flag protects us from being freed while 778 * we're running. Normally the uma_mtx would protect us but we 779 * must be able to release and acquire the right lock for each keg. 780 */ 781 zone_foreach_keg(zone, &keg_drain); 782 ZONE_LOCK(zone); 783 zone->uz_flags &= ~UMA_ZFLAG_DRAINING; 784 wakeup(zone); 785 out: 786 ZONE_UNLOCK(zone); 787 } 788 789 void 790 zone_drain(uma_zone_t zone) 791 { 792 793 zone_drain_wait(zone, M_NOWAIT); 794 } 795 796 /* 797 * Allocate a new slab for a keg. This does not insert the slab onto a list. 798 * 799 * Arguments: 800 * wait Shall we wait? 801 * 802 * Returns: 803 * The slab that was allocated or NULL if there is no memory and the 804 * caller specified M_NOWAIT. 805 */ 806 static uma_slab_t 807 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait) 808 { 809 uma_slabrefcnt_t slabref; 810 uma_alloc allocf; 811 uma_slab_t slab; 812 u_int8_t *mem; 813 u_int8_t flags; 814 int i; 815 816 mtx_assert(&keg->uk_lock, MA_OWNED); 817 slab = NULL; 818 819 #ifdef UMA_DEBUG 820 printf("slab_zalloc: Allocating a new slab for %s\n", keg->uk_name); 821 #endif 822 allocf = keg->uk_allocf; 823 KEG_UNLOCK(keg); 824 825 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 826 slab = zone_alloc_item(keg->uk_slabzone, NULL, wait); 827 if (slab == NULL) { 828 KEG_LOCK(keg); 829 return NULL; 830 } 831 } 832 833 /* 834 * This reproduces the old vm_zone behavior of zero filling pages the 835 * first time they are added to a zone. 836 * 837 * Malloced items are zeroed in uma_zalloc. 838 */ 839 840 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 841 wait |= M_ZERO; 842 else 843 wait &= ~M_ZERO; 844 845 if (keg->uk_flags & UMA_ZONE_NODUMP) 846 wait |= M_NODUMP; 847 848 /* zone is passed for legacy reasons. */ 849 mem = allocf(zone, keg->uk_ppera * UMA_SLAB_SIZE, &flags, wait); 850 if (mem == NULL) { 851 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 852 zone_free_item(keg->uk_slabzone, slab, NULL, 853 SKIP_NONE, ZFREE_STATFREE); 854 KEG_LOCK(keg); 855 return (NULL); 856 } 857 858 /* Point the slab into the allocated memory */ 859 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 860 slab = (uma_slab_t )(mem + keg->uk_pgoff); 861 862 if (keg->uk_flags & UMA_ZONE_VTOSLAB) 863 for (i = 0; i < keg->uk_ppera; i++) 864 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 865 866 slab->us_keg = keg; 867 slab->us_data = mem; 868 slab->us_freecount = keg->uk_ipers; 869 slab->us_firstfree = 0; 870 slab->us_flags = flags; 871 872 if (keg->uk_flags & UMA_ZONE_REFCNT) { 873 slabref = (uma_slabrefcnt_t)slab; 874 for (i = 0; i < keg->uk_ipers; i++) { 875 slabref->us_freelist[i].us_refcnt = 0; 876 slabref->us_freelist[i].us_item = i+1; 877 } 878 } else { 879 for (i = 0; i < keg->uk_ipers; i++) 880 slab->us_freelist[i].us_item = i+1; 881 } 882 883 if (keg->uk_init != NULL) { 884 for (i = 0; i < keg->uk_ipers; i++) 885 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 886 keg->uk_size, wait) != 0) 887 break; 888 if (i != keg->uk_ipers) { 889 if (keg->uk_fini != NULL) { 890 for (i--; i > -1; i--) 891 keg->uk_fini(slab->us_data + 892 (keg->uk_rsize * i), 893 keg->uk_size); 894 } 895 if (keg->uk_flags & UMA_ZONE_VTOSLAB) { 896 vm_object_t obj; 897 898 if (flags & UMA_SLAB_KMEM) 899 obj = kmem_object; 900 else if (flags & UMA_SLAB_KERNEL) 901 obj = kernel_object; 902 else 903 obj = NULL; 904 for (i = 0; i < keg->uk_ppera; i++) 905 vsetobj((vm_offset_t)mem + 906 (i * PAGE_SIZE), obj); 907 } 908 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 909 zone_free_item(keg->uk_slabzone, slab, 910 NULL, SKIP_NONE, ZFREE_STATFREE); 911 keg->uk_freef(mem, UMA_SLAB_SIZE * keg->uk_ppera, 912 flags); 913 KEG_LOCK(keg); 914 return (NULL); 915 } 916 } 917 KEG_LOCK(keg); 918 919 if (keg->uk_flags & UMA_ZONE_HASH) 920 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 921 922 keg->uk_pages += keg->uk_ppera; 923 keg->uk_free += keg->uk_ipers; 924 925 return (slab); 926 } 927 928 /* 929 * This function is intended to be used early on in place of page_alloc() so 930 * that we may use the boot time page cache to satisfy allocations before 931 * the VM is ready. 932 */ 933 static void * 934 startup_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait) 935 { 936 uma_keg_t keg; 937 uma_slab_t tmps; 938 int pages, check_pages; 939 940 keg = zone_first_keg(zone); 941 pages = howmany(bytes, PAGE_SIZE); 942 check_pages = pages - 1; 943 KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n")); 944 945 /* 946 * Check our small startup cache to see if it has pages remaining. 947 */ 948 mtx_lock(&uma_boot_pages_mtx); 949 950 /* First check if we have enough room. */ 951 tmps = LIST_FIRST(&uma_boot_pages); 952 while (tmps != NULL && check_pages-- > 0) 953 tmps = LIST_NEXT(tmps, us_link); 954 if (tmps != NULL) { 955 /* 956 * It's ok to lose tmps references. The last one will 957 * have tmps->us_data pointing to the start address of 958 * "pages" contiguous pages of memory. 959 */ 960 while (pages-- > 0) { 961 tmps = LIST_FIRST(&uma_boot_pages); 962 LIST_REMOVE(tmps, us_link); 963 } 964 mtx_unlock(&uma_boot_pages_mtx); 965 *pflag = tmps->us_flags; 966 return (tmps->us_data); 967 } 968 mtx_unlock(&uma_boot_pages_mtx); 969 if (booted < UMA_STARTUP2) 970 panic("UMA: Increase vm.boot_pages"); 971 /* 972 * Now that we've booted reset these users to their real allocator. 973 */ 974 #ifdef UMA_MD_SMALL_ALLOC 975 keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc; 976 #else 977 keg->uk_allocf = page_alloc; 978 #endif 979 return keg->uk_allocf(zone, bytes, pflag, wait); 980 } 981 982 /* 983 * Allocates a number of pages from the system 984 * 985 * Arguments: 986 * bytes The number of bytes requested 987 * wait Shall we wait? 988 * 989 * Returns: 990 * A pointer to the alloced memory or possibly 991 * NULL if M_NOWAIT is set. 992 */ 993 static void * 994 page_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait) 995 { 996 void *p; /* Returned page */ 997 998 *pflag = UMA_SLAB_KMEM; 999 p = (void *) kmem_malloc(kmem_map, bytes, wait); 1000 1001 return (p); 1002 } 1003 1004 /* 1005 * Allocates a number of pages from within an object 1006 * 1007 * Arguments: 1008 * bytes The number of bytes requested 1009 * wait Shall we wait? 1010 * 1011 * Returns: 1012 * A pointer to the alloced memory or possibly 1013 * NULL if M_NOWAIT is set. 1014 */ 1015 static void * 1016 obj_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait) 1017 { 1018 vm_object_t object; 1019 vm_offset_t retkva, zkva; 1020 vm_page_t p; 1021 int pages, startpages; 1022 uma_keg_t keg; 1023 1024 keg = zone_first_keg(zone); 1025 object = keg->uk_obj; 1026 retkva = 0; 1027 1028 /* 1029 * This looks a little weird since we're getting one page at a time. 1030 */ 1031 VM_OBJECT_LOCK(object); 1032 p = TAILQ_LAST(&object->memq, pglist); 1033 pages = p != NULL ? p->pindex + 1 : 0; 1034 startpages = pages; 1035 zkva = keg->uk_kva + pages * PAGE_SIZE; 1036 for (; bytes > 0; bytes -= PAGE_SIZE) { 1037 p = vm_page_alloc(object, pages, 1038 VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED); 1039 if (p == NULL) { 1040 if (pages != startpages) 1041 pmap_qremove(retkva, pages - startpages); 1042 while (pages != startpages) { 1043 pages--; 1044 p = TAILQ_LAST(&object->memq, pglist); 1045 vm_page_unwire(p, 0); 1046 vm_page_free(p); 1047 } 1048 retkva = 0; 1049 goto done; 1050 } 1051 pmap_qenter(zkva, &p, 1); 1052 if (retkva == 0) 1053 retkva = zkva; 1054 zkva += PAGE_SIZE; 1055 pages += 1; 1056 } 1057 done: 1058 VM_OBJECT_UNLOCK(object); 1059 *flags = UMA_SLAB_PRIV; 1060 1061 return ((void *)retkva); 1062 } 1063 1064 /* 1065 * Frees a number of pages to the system 1066 * 1067 * Arguments: 1068 * mem A pointer to the memory to be freed 1069 * size The size of the memory being freed 1070 * flags The original p->us_flags field 1071 * 1072 * Returns: 1073 * Nothing 1074 */ 1075 static void 1076 page_free(void *mem, int size, u_int8_t flags) 1077 { 1078 vm_map_t map; 1079 1080 if (flags & UMA_SLAB_KMEM) 1081 map = kmem_map; 1082 else if (flags & UMA_SLAB_KERNEL) 1083 map = kernel_map; 1084 else 1085 panic("UMA: page_free used with invalid flags %d", flags); 1086 1087 kmem_free(map, (vm_offset_t)mem, size); 1088 } 1089 1090 /* 1091 * Zero fill initializer 1092 * 1093 * Arguments/Returns follow uma_init specifications 1094 */ 1095 static int 1096 zero_init(void *mem, int size, int flags) 1097 { 1098 bzero(mem, size); 1099 return (0); 1100 } 1101 1102 /* 1103 * Finish creating a small uma keg. This calculates ipers, and the keg size. 1104 * 1105 * Arguments 1106 * keg The zone we should initialize 1107 * 1108 * Returns 1109 * Nothing 1110 */ 1111 static void 1112 keg_small_init(uma_keg_t keg) 1113 { 1114 u_int rsize; 1115 u_int memused; 1116 u_int wastedspace; 1117 u_int shsize; 1118 1119 KASSERT(keg != NULL, ("Keg is null in keg_small_init")); 1120 rsize = keg->uk_size; 1121 1122 if (rsize < UMA_SMALLEST_UNIT) 1123 rsize = UMA_SMALLEST_UNIT; 1124 if (rsize & keg->uk_align) 1125 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1126 1127 keg->uk_rsize = rsize; 1128 keg->uk_ppera = 1; 1129 1130 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 1131 shsize = 0; 1132 } else if (keg->uk_flags & UMA_ZONE_REFCNT) { 1133 rsize += UMA_FRITMREF_SZ; /* linkage & refcnt */ 1134 shsize = sizeof(struct uma_slab_refcnt); 1135 } else { 1136 rsize += UMA_FRITM_SZ; /* Account for linkage */ 1137 shsize = sizeof(struct uma_slab); 1138 } 1139 1140 keg->uk_ipers = (UMA_SLAB_SIZE - shsize) / rsize; 1141 KASSERT(keg->uk_ipers != 0, ("keg_small_init: ipers is 0")); 1142 memused = keg->uk_ipers * rsize + shsize; 1143 wastedspace = UMA_SLAB_SIZE - memused; 1144 1145 /* 1146 * We can't do OFFPAGE if we're internal or if we've been 1147 * asked to not go to the VM for buckets. If we do this we 1148 * may end up going to the VM (kmem_map) for slabs which we 1149 * do not want to do if we're UMA_ZFLAG_CACHEONLY as a 1150 * result of UMA_ZONE_VM, which clearly forbids it. 1151 */ 1152 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1153 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1154 return; 1155 1156 if ((wastedspace >= UMA_MAX_WASTE) && 1157 (keg->uk_ipers < (UMA_SLAB_SIZE / keg->uk_rsize))) { 1158 keg->uk_ipers = UMA_SLAB_SIZE / keg->uk_rsize; 1159 KASSERT(keg->uk_ipers <= 255, 1160 ("keg_small_init: keg->uk_ipers too high!")); 1161 #ifdef UMA_DEBUG 1162 printf("UMA decided we need offpage slab headers for " 1163 "keg: %s, calculated wastedspace = %d, " 1164 "maximum wasted space allowed = %d, " 1165 "calculated ipers = %d, " 1166 "new wasted space = %d\n", keg->uk_name, wastedspace, 1167 UMA_MAX_WASTE, keg->uk_ipers, 1168 UMA_SLAB_SIZE - keg->uk_ipers * keg->uk_rsize); 1169 #endif 1170 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1171 if ((keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1172 keg->uk_flags |= UMA_ZONE_HASH; 1173 } 1174 } 1175 1176 /* 1177 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do 1178 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1179 * more complicated. 1180 * 1181 * Arguments 1182 * keg The keg we should initialize 1183 * 1184 * Returns 1185 * Nothing 1186 */ 1187 static void 1188 keg_large_init(uma_keg_t keg) 1189 { 1190 int pages; 1191 1192 KASSERT(keg != NULL, ("Keg is null in keg_large_init")); 1193 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0, 1194 ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg")); 1195 1196 pages = keg->uk_size / UMA_SLAB_SIZE; 1197 1198 /* Account for remainder */ 1199 if ((pages * UMA_SLAB_SIZE) < keg->uk_size) 1200 pages++; 1201 1202 keg->uk_ppera = pages; 1203 keg->uk_ipers = 1; 1204 keg->uk_rsize = keg->uk_size; 1205 1206 /* We can't do OFFPAGE if we're internal, bail out here. */ 1207 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) 1208 return; 1209 1210 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1211 if ((keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1212 keg->uk_flags |= UMA_ZONE_HASH; 1213 } 1214 1215 static void 1216 keg_cachespread_init(uma_keg_t keg) 1217 { 1218 int alignsize; 1219 int trailer; 1220 int pages; 1221 int rsize; 1222 1223 alignsize = keg->uk_align + 1; 1224 rsize = keg->uk_size; 1225 /* 1226 * We want one item to start on every align boundary in a page. To 1227 * do this we will span pages. We will also extend the item by the 1228 * size of align if it is an even multiple of align. Otherwise, it 1229 * would fall on the same boundary every time. 1230 */ 1231 if (rsize & keg->uk_align) 1232 rsize = (rsize & ~keg->uk_align) + alignsize; 1233 if ((rsize & alignsize) == 0) 1234 rsize += alignsize; 1235 trailer = rsize - keg->uk_size; 1236 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE; 1237 pages = MIN(pages, (128 * 1024) / PAGE_SIZE); 1238 keg->uk_rsize = rsize; 1239 keg->uk_ppera = pages; 1240 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize; 1241 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1242 KASSERT(keg->uk_ipers <= uma_max_ipers, 1243 ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__, 1244 keg->uk_ipers)); 1245 } 1246 1247 /* 1248 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1249 * the keg onto the global keg list. 1250 * 1251 * Arguments/Returns follow uma_ctor specifications 1252 * udata Actually uma_kctor_args 1253 */ 1254 static int 1255 keg_ctor(void *mem, int size, void *udata, int flags) 1256 { 1257 struct uma_kctor_args *arg = udata; 1258 uma_keg_t keg = mem; 1259 uma_zone_t zone; 1260 1261 bzero(keg, size); 1262 keg->uk_size = arg->size; 1263 keg->uk_init = arg->uminit; 1264 keg->uk_fini = arg->fini; 1265 keg->uk_align = arg->align; 1266 keg->uk_free = 0; 1267 keg->uk_pages = 0; 1268 keg->uk_flags = arg->flags; 1269 keg->uk_allocf = page_alloc; 1270 keg->uk_freef = page_free; 1271 keg->uk_recurse = 0; 1272 keg->uk_slabzone = NULL; 1273 1274 /* 1275 * The master zone is passed to us at keg-creation time. 1276 */ 1277 zone = arg->zone; 1278 keg->uk_name = zone->uz_name; 1279 1280 if (arg->flags & UMA_ZONE_VM) 1281 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1282 1283 if (arg->flags & UMA_ZONE_ZINIT) 1284 keg->uk_init = zero_init; 1285 1286 if (arg->flags & UMA_ZONE_REFCNT || arg->flags & UMA_ZONE_MALLOC) 1287 keg->uk_flags |= UMA_ZONE_VTOSLAB; 1288 1289 /* 1290 * The +UMA_FRITM_SZ added to uk_size is to account for the 1291 * linkage that is added to the size in keg_small_init(). If 1292 * we don't account for this here then we may end up in 1293 * keg_small_init() with a calculated 'ipers' of 0. 1294 */ 1295 if (keg->uk_flags & UMA_ZONE_REFCNT) { 1296 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) 1297 keg_cachespread_init(keg); 1298 else if ((keg->uk_size+UMA_FRITMREF_SZ) > 1299 (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt))) 1300 keg_large_init(keg); 1301 else 1302 keg_small_init(keg); 1303 } else { 1304 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) 1305 keg_cachespread_init(keg); 1306 else if ((keg->uk_size+UMA_FRITM_SZ) > 1307 (UMA_SLAB_SIZE - sizeof(struct uma_slab))) 1308 keg_large_init(keg); 1309 else 1310 keg_small_init(keg); 1311 } 1312 1313 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 1314 if (keg->uk_flags & UMA_ZONE_REFCNT) 1315 keg->uk_slabzone = slabrefzone; 1316 else 1317 keg->uk_slabzone = slabzone; 1318 } 1319 1320 /* 1321 * If we haven't booted yet we need allocations to go through the 1322 * startup cache until the vm is ready. 1323 */ 1324 if (keg->uk_ppera == 1) { 1325 #ifdef UMA_MD_SMALL_ALLOC 1326 keg->uk_allocf = uma_small_alloc; 1327 keg->uk_freef = uma_small_free; 1328 1329 if (booted < UMA_STARTUP) 1330 keg->uk_allocf = startup_alloc; 1331 #else 1332 if (booted < UMA_STARTUP2) 1333 keg->uk_allocf = startup_alloc; 1334 #endif 1335 } else if (booted < UMA_STARTUP2 && 1336 (keg->uk_flags & UMA_ZFLAG_INTERNAL)) 1337 keg->uk_allocf = startup_alloc; 1338 1339 /* 1340 * Initialize keg's lock (shared among zones). 1341 */ 1342 if (arg->flags & UMA_ZONE_MTXCLASS) 1343 KEG_LOCK_INIT(keg, 1); 1344 else 1345 KEG_LOCK_INIT(keg, 0); 1346 1347 /* 1348 * If we're putting the slab header in the actual page we need to 1349 * figure out where in each page it goes. This calculates a right 1350 * justified offset into the memory on an ALIGN_PTR boundary. 1351 */ 1352 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1353 u_int totsize; 1354 1355 /* Size of the slab struct and free list */ 1356 if (keg->uk_flags & UMA_ZONE_REFCNT) 1357 totsize = sizeof(struct uma_slab_refcnt) + 1358 keg->uk_ipers * UMA_FRITMREF_SZ; 1359 else 1360 totsize = sizeof(struct uma_slab) + 1361 keg->uk_ipers * UMA_FRITM_SZ; 1362 1363 if (totsize & UMA_ALIGN_PTR) 1364 totsize = (totsize & ~UMA_ALIGN_PTR) + 1365 (UMA_ALIGN_PTR + 1); 1366 keg->uk_pgoff = (UMA_SLAB_SIZE * keg->uk_ppera) - totsize; 1367 1368 if (keg->uk_flags & UMA_ZONE_REFCNT) 1369 totsize = keg->uk_pgoff + sizeof(struct uma_slab_refcnt) 1370 + keg->uk_ipers * UMA_FRITMREF_SZ; 1371 else 1372 totsize = keg->uk_pgoff + sizeof(struct uma_slab) 1373 + keg->uk_ipers * UMA_FRITM_SZ; 1374 1375 /* 1376 * The only way the following is possible is if with our 1377 * UMA_ALIGN_PTR adjustments we are now bigger than 1378 * UMA_SLAB_SIZE. I haven't checked whether this is 1379 * mathematically possible for all cases, so we make 1380 * sure here anyway. 1381 */ 1382 if (totsize > UMA_SLAB_SIZE * keg->uk_ppera) { 1383 printf("zone %s ipers %d rsize %d size %d\n", 1384 zone->uz_name, keg->uk_ipers, keg->uk_rsize, 1385 keg->uk_size); 1386 panic("UMA slab won't fit."); 1387 } 1388 } 1389 1390 if (keg->uk_flags & UMA_ZONE_HASH) 1391 hash_alloc(&keg->uk_hash); 1392 1393 #ifdef UMA_DEBUG 1394 printf("UMA: %s(%p) size %d(%d) flags %d ipers %d ppera %d out %d free %d\n", 1395 zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags, 1396 keg->uk_ipers, keg->uk_ppera, 1397 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free); 1398 #endif 1399 1400 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1401 1402 mtx_lock(&uma_mtx); 1403 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1404 mtx_unlock(&uma_mtx); 1405 return (0); 1406 } 1407 1408 /* 1409 * Zone header ctor. This initializes all fields, locks, etc. 1410 * 1411 * Arguments/Returns follow uma_ctor specifications 1412 * udata Actually uma_zctor_args 1413 */ 1414 static int 1415 zone_ctor(void *mem, int size, void *udata, int flags) 1416 { 1417 struct uma_zctor_args *arg = udata; 1418 uma_zone_t zone = mem; 1419 uma_zone_t z; 1420 uma_keg_t keg; 1421 1422 bzero(zone, size); 1423 zone->uz_name = arg->name; 1424 zone->uz_ctor = arg->ctor; 1425 zone->uz_dtor = arg->dtor; 1426 zone->uz_slab = zone_fetch_slab; 1427 zone->uz_init = NULL; 1428 zone->uz_fini = NULL; 1429 zone->uz_allocs = 0; 1430 zone->uz_frees = 0; 1431 zone->uz_fails = 0; 1432 zone->uz_sleeps = 0; 1433 zone->uz_fills = zone->uz_count = 0; 1434 zone->uz_flags = 0; 1435 keg = arg->keg; 1436 1437 if (arg->flags & UMA_ZONE_SECONDARY) { 1438 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 1439 zone->uz_init = arg->uminit; 1440 zone->uz_fini = arg->fini; 1441 zone->uz_lock = &keg->uk_lock; 1442 zone->uz_flags |= UMA_ZONE_SECONDARY; 1443 mtx_lock(&uma_mtx); 1444 ZONE_LOCK(zone); 1445 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 1446 if (LIST_NEXT(z, uz_link) == NULL) { 1447 LIST_INSERT_AFTER(z, zone, uz_link); 1448 break; 1449 } 1450 } 1451 ZONE_UNLOCK(zone); 1452 mtx_unlock(&uma_mtx); 1453 } else if (keg == NULL) { 1454 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 1455 arg->align, arg->flags)) == NULL) 1456 return (ENOMEM); 1457 } else { 1458 struct uma_kctor_args karg; 1459 int error; 1460 1461 /* We should only be here from uma_startup() */ 1462 karg.size = arg->size; 1463 karg.uminit = arg->uminit; 1464 karg.fini = arg->fini; 1465 karg.align = arg->align; 1466 karg.flags = arg->flags; 1467 karg.zone = zone; 1468 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 1469 flags); 1470 if (error) 1471 return (error); 1472 } 1473 /* 1474 * Link in the first keg. 1475 */ 1476 zone->uz_klink.kl_keg = keg; 1477 LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link); 1478 zone->uz_lock = &keg->uk_lock; 1479 zone->uz_size = keg->uk_size; 1480 zone->uz_flags |= (keg->uk_flags & 1481 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 1482 1483 /* 1484 * Some internal zones don't have room allocated for the per cpu 1485 * caches. If we're internal, bail out here. 1486 */ 1487 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { 1488 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 1489 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 1490 return (0); 1491 } 1492 1493 if (keg->uk_flags & UMA_ZONE_MAXBUCKET) 1494 zone->uz_count = BUCKET_MAX; 1495 else if (keg->uk_ipers <= BUCKET_MAX) 1496 zone->uz_count = keg->uk_ipers; 1497 else 1498 zone->uz_count = BUCKET_MAX; 1499 return (0); 1500 } 1501 1502 /* 1503 * Keg header dtor. This frees all data, destroys locks, frees the hash 1504 * table and removes the keg from the global list. 1505 * 1506 * Arguments/Returns follow uma_dtor specifications 1507 * udata unused 1508 */ 1509 static void 1510 keg_dtor(void *arg, int size, void *udata) 1511 { 1512 uma_keg_t keg; 1513 1514 keg = (uma_keg_t)arg; 1515 KEG_LOCK(keg); 1516 if (keg->uk_free != 0) { 1517 printf("Freed UMA keg was not empty (%d items). " 1518 " Lost %d pages of memory.\n", 1519 keg->uk_free, keg->uk_pages); 1520 } 1521 KEG_UNLOCK(keg); 1522 1523 hash_free(&keg->uk_hash); 1524 1525 KEG_LOCK_FINI(keg); 1526 } 1527 1528 /* 1529 * Zone header dtor. 1530 * 1531 * Arguments/Returns follow uma_dtor specifications 1532 * udata unused 1533 */ 1534 static void 1535 zone_dtor(void *arg, int size, void *udata) 1536 { 1537 uma_klink_t klink; 1538 uma_zone_t zone; 1539 uma_keg_t keg; 1540 1541 zone = (uma_zone_t)arg; 1542 keg = zone_first_keg(zone); 1543 1544 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 1545 cache_drain(zone); 1546 1547 mtx_lock(&uma_mtx); 1548 LIST_REMOVE(zone, uz_link); 1549 mtx_unlock(&uma_mtx); 1550 /* 1551 * XXX there are some races here where 1552 * the zone can be drained but zone lock 1553 * released and then refilled before we 1554 * remove it... we dont care for now 1555 */ 1556 zone_drain_wait(zone, M_WAITOK); 1557 /* 1558 * Unlink all of our kegs. 1559 */ 1560 while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) { 1561 klink->kl_keg = NULL; 1562 LIST_REMOVE(klink, kl_link); 1563 if (klink == &zone->uz_klink) 1564 continue; 1565 free(klink, M_TEMP); 1566 } 1567 /* 1568 * We only destroy kegs from non secondary zones. 1569 */ 1570 if ((zone->uz_flags & UMA_ZONE_SECONDARY) == 0) { 1571 mtx_lock(&uma_mtx); 1572 LIST_REMOVE(keg, uk_link); 1573 mtx_unlock(&uma_mtx); 1574 zone_free_item(kegs, keg, NULL, SKIP_NONE, 1575 ZFREE_STATFREE); 1576 } 1577 } 1578 1579 /* 1580 * Traverses every zone in the system and calls a callback 1581 * 1582 * Arguments: 1583 * zfunc A pointer to a function which accepts a zone 1584 * as an argument. 1585 * 1586 * Returns: 1587 * Nothing 1588 */ 1589 static void 1590 zone_foreach(void (*zfunc)(uma_zone_t)) 1591 { 1592 uma_keg_t keg; 1593 uma_zone_t zone; 1594 1595 mtx_lock(&uma_mtx); 1596 LIST_FOREACH(keg, &uma_kegs, uk_link) { 1597 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 1598 zfunc(zone); 1599 } 1600 mtx_unlock(&uma_mtx); 1601 } 1602 1603 /* Public functions */ 1604 /* See uma.h */ 1605 void 1606 uma_startup(void *bootmem, int boot_pages) 1607 { 1608 struct uma_zctor_args args; 1609 uma_slab_t slab; 1610 u_int slabsize; 1611 u_int objsize, totsize, wsize; 1612 int i; 1613 1614 #ifdef UMA_DEBUG 1615 printf("Creating uma keg headers zone and keg.\n"); 1616 #endif 1617 mtx_init(&uma_mtx, "UMA lock", NULL, MTX_DEF); 1618 1619 /* 1620 * Figure out the maximum number of items-per-slab we'll have if 1621 * we're using the OFFPAGE slab header to track free items, given 1622 * all possible object sizes and the maximum desired wastage 1623 * (UMA_MAX_WASTE). 1624 * 1625 * We iterate until we find an object size for 1626 * which the calculated wastage in keg_small_init() will be 1627 * enough to warrant OFFPAGE. Since wastedspace versus objsize 1628 * is an overall increasing see-saw function, we find the smallest 1629 * objsize such that the wastage is always acceptable for objects 1630 * with that objsize or smaller. Since a smaller objsize always 1631 * generates a larger possible uma_max_ipers, we use this computed 1632 * objsize to calculate the largest ipers possible. Since the 1633 * ipers calculated for OFFPAGE slab headers is always larger than 1634 * the ipers initially calculated in keg_small_init(), we use 1635 * the former's equation (UMA_SLAB_SIZE / keg->uk_rsize) to 1636 * obtain the maximum ipers possible for offpage slab headers. 1637 * 1638 * It should be noted that ipers versus objsize is an inversly 1639 * proportional function which drops off rather quickly so as 1640 * long as our UMA_MAX_WASTE is such that the objsize we calculate 1641 * falls into the portion of the inverse relation AFTER the steep 1642 * falloff, then uma_max_ipers shouldn't be too high (~10 on i386). 1643 * 1644 * Note that we have 8-bits (1 byte) to use as a freelist index 1645 * inside the actual slab header itself and this is enough to 1646 * accomodate us. In the worst case, a UMA_SMALLEST_UNIT sized 1647 * object with offpage slab header would have ipers = 1648 * UMA_SLAB_SIZE / UMA_SMALLEST_UNIT (currently = 256), which is 1649 * 1 greater than what our byte-integer freelist index can 1650 * accomodate, but we know that this situation never occurs as 1651 * for UMA_SMALLEST_UNIT-sized objects, we will never calculate 1652 * that we need to go to offpage slab headers. Or, if we do, 1653 * then we trap that condition below and panic in the INVARIANTS case. 1654 */ 1655 wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab) - UMA_MAX_WASTE; 1656 totsize = wsize; 1657 objsize = UMA_SMALLEST_UNIT; 1658 while (totsize >= wsize) { 1659 totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab)) / 1660 (objsize + UMA_FRITM_SZ); 1661 totsize *= (UMA_FRITM_SZ + objsize); 1662 objsize++; 1663 } 1664 if (objsize > UMA_SMALLEST_UNIT) 1665 objsize--; 1666 uma_max_ipers = MAX(UMA_SLAB_SIZE / objsize, 64); 1667 1668 wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt) - UMA_MAX_WASTE; 1669 totsize = wsize; 1670 objsize = UMA_SMALLEST_UNIT; 1671 while (totsize >= wsize) { 1672 totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt)) / 1673 (objsize + UMA_FRITMREF_SZ); 1674 totsize *= (UMA_FRITMREF_SZ + objsize); 1675 objsize++; 1676 } 1677 if (objsize > UMA_SMALLEST_UNIT) 1678 objsize--; 1679 uma_max_ipers_ref = MAX(UMA_SLAB_SIZE / objsize, 64); 1680 1681 KASSERT((uma_max_ipers_ref <= 255) && (uma_max_ipers <= 255), 1682 ("uma_startup: calculated uma_max_ipers values too large!")); 1683 1684 #ifdef UMA_DEBUG 1685 printf("Calculated uma_max_ipers (for OFFPAGE) is %d\n", uma_max_ipers); 1686 printf("Calculated uma_max_ipers_slab (for OFFPAGE) is %d\n", 1687 uma_max_ipers_ref); 1688 #endif 1689 1690 /* "manually" create the initial zone */ 1691 args.name = "UMA Kegs"; 1692 args.size = sizeof(struct uma_keg); 1693 args.ctor = keg_ctor; 1694 args.dtor = keg_dtor; 1695 args.uminit = zero_init; 1696 args.fini = NULL; 1697 args.keg = &masterkeg; 1698 args.align = 32 - 1; 1699 args.flags = UMA_ZFLAG_INTERNAL; 1700 /* The initial zone has no Per cpu queues so it's smaller */ 1701 zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK); 1702 1703 #ifdef UMA_DEBUG 1704 printf("Filling boot free list.\n"); 1705 #endif 1706 for (i = 0; i < boot_pages; i++) { 1707 slab = (uma_slab_t)((u_int8_t *)bootmem + (i * UMA_SLAB_SIZE)); 1708 slab->us_data = (u_int8_t *)slab; 1709 slab->us_flags = UMA_SLAB_BOOT; 1710 LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link); 1711 } 1712 mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF); 1713 1714 #ifdef UMA_DEBUG 1715 printf("Creating uma zone headers zone and keg.\n"); 1716 #endif 1717 args.name = "UMA Zones"; 1718 args.size = sizeof(struct uma_zone) + 1719 (sizeof(struct uma_cache) * (mp_maxid + 1)); 1720 args.ctor = zone_ctor; 1721 args.dtor = zone_dtor; 1722 args.uminit = zero_init; 1723 args.fini = NULL; 1724 args.keg = NULL; 1725 args.align = 32 - 1; 1726 args.flags = UMA_ZFLAG_INTERNAL; 1727 /* The initial zone has no Per cpu queues so it's smaller */ 1728 zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK); 1729 1730 #ifdef UMA_DEBUG 1731 printf("Initializing pcpu cache locks.\n"); 1732 #endif 1733 #ifdef UMA_DEBUG 1734 printf("Creating slab and hash zones.\n"); 1735 #endif 1736 1737 /* 1738 * This is the max number of free list items we'll have with 1739 * offpage slabs. 1740 */ 1741 slabsize = uma_max_ipers * UMA_FRITM_SZ; 1742 slabsize += sizeof(struct uma_slab); 1743 1744 /* Now make a zone for slab headers */ 1745 slabzone = uma_zcreate("UMA Slabs", 1746 slabsize, 1747 NULL, NULL, NULL, NULL, 1748 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1749 1750 /* 1751 * We also create a zone for the bigger slabs with reference 1752 * counts in them, to accomodate UMA_ZONE_REFCNT zones. 1753 */ 1754 slabsize = uma_max_ipers_ref * UMA_FRITMREF_SZ; 1755 slabsize += sizeof(struct uma_slab_refcnt); 1756 slabrefzone = uma_zcreate("UMA RCntSlabs", 1757 slabsize, 1758 NULL, NULL, NULL, NULL, 1759 UMA_ALIGN_PTR, 1760 UMA_ZFLAG_INTERNAL); 1761 1762 hashzone = uma_zcreate("UMA Hash", 1763 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 1764 NULL, NULL, NULL, NULL, 1765 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1766 1767 bucket_init(); 1768 1769 booted = UMA_STARTUP; 1770 1771 #ifdef UMA_DEBUG 1772 printf("UMA startup complete.\n"); 1773 #endif 1774 } 1775 1776 /* see uma.h */ 1777 void 1778 uma_startup2(void) 1779 { 1780 booted = UMA_STARTUP2; 1781 bucket_enable(); 1782 #ifdef UMA_DEBUG 1783 printf("UMA startup2 complete.\n"); 1784 #endif 1785 } 1786 1787 /* 1788 * Initialize our callout handle 1789 * 1790 */ 1791 1792 static void 1793 uma_startup3(void) 1794 { 1795 #ifdef UMA_DEBUG 1796 printf("Starting callout.\n"); 1797 #endif 1798 callout_init(&uma_callout, CALLOUT_MPSAFE); 1799 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 1800 #ifdef UMA_DEBUG 1801 printf("UMA startup3 complete.\n"); 1802 #endif 1803 } 1804 1805 static uma_keg_t 1806 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 1807 int align, u_int32_t flags) 1808 { 1809 struct uma_kctor_args args; 1810 1811 args.size = size; 1812 args.uminit = uminit; 1813 args.fini = fini; 1814 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 1815 args.flags = flags; 1816 args.zone = zone; 1817 return (zone_alloc_item(kegs, &args, M_WAITOK)); 1818 } 1819 1820 /* See uma.h */ 1821 void 1822 uma_set_align(int align) 1823 { 1824 1825 if (align != UMA_ALIGN_CACHE) 1826 uma_align_cache = align; 1827 } 1828 1829 /* See uma.h */ 1830 uma_zone_t 1831 uma_zcreate(char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 1832 uma_init uminit, uma_fini fini, int align, u_int32_t flags) 1833 1834 { 1835 struct uma_zctor_args args; 1836 1837 /* This stuff is essential for the zone ctor */ 1838 args.name = name; 1839 args.size = size; 1840 args.ctor = ctor; 1841 args.dtor = dtor; 1842 args.uminit = uminit; 1843 args.fini = fini; 1844 args.align = align; 1845 args.flags = flags; 1846 args.keg = NULL; 1847 1848 return (zone_alloc_item(zones, &args, M_WAITOK)); 1849 } 1850 1851 /* See uma.h */ 1852 uma_zone_t 1853 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 1854 uma_init zinit, uma_fini zfini, uma_zone_t master) 1855 { 1856 struct uma_zctor_args args; 1857 uma_keg_t keg; 1858 1859 keg = zone_first_keg(master); 1860 args.name = name; 1861 args.size = keg->uk_size; 1862 args.ctor = ctor; 1863 args.dtor = dtor; 1864 args.uminit = zinit; 1865 args.fini = zfini; 1866 args.align = keg->uk_align; 1867 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 1868 args.keg = keg; 1869 1870 /* XXX Attaches only one keg of potentially many. */ 1871 return (zone_alloc_item(zones, &args, M_WAITOK)); 1872 } 1873 1874 static void 1875 zone_lock_pair(uma_zone_t a, uma_zone_t b) 1876 { 1877 if (a < b) { 1878 ZONE_LOCK(a); 1879 mtx_lock_flags(b->uz_lock, MTX_DUPOK); 1880 } else { 1881 ZONE_LOCK(b); 1882 mtx_lock_flags(a->uz_lock, MTX_DUPOK); 1883 } 1884 } 1885 1886 static void 1887 zone_unlock_pair(uma_zone_t a, uma_zone_t b) 1888 { 1889 1890 ZONE_UNLOCK(a); 1891 ZONE_UNLOCK(b); 1892 } 1893 1894 int 1895 uma_zsecond_add(uma_zone_t zone, uma_zone_t master) 1896 { 1897 uma_klink_t klink; 1898 uma_klink_t kl; 1899 int error; 1900 1901 error = 0; 1902 klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO); 1903 1904 zone_lock_pair(zone, master); 1905 /* 1906 * zone must use vtoslab() to resolve objects and must already be 1907 * a secondary. 1908 */ 1909 if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) 1910 != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) { 1911 error = EINVAL; 1912 goto out; 1913 } 1914 /* 1915 * The new master must also use vtoslab(). 1916 */ 1917 if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) { 1918 error = EINVAL; 1919 goto out; 1920 } 1921 /* 1922 * Both must either be refcnt, or not be refcnt. 1923 */ 1924 if ((zone->uz_flags & UMA_ZONE_REFCNT) != 1925 (master->uz_flags & UMA_ZONE_REFCNT)) { 1926 error = EINVAL; 1927 goto out; 1928 } 1929 /* 1930 * The underlying object must be the same size. rsize 1931 * may be different. 1932 */ 1933 if (master->uz_size != zone->uz_size) { 1934 error = E2BIG; 1935 goto out; 1936 } 1937 /* 1938 * Put it at the end of the list. 1939 */ 1940 klink->kl_keg = zone_first_keg(master); 1941 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) { 1942 if (LIST_NEXT(kl, kl_link) == NULL) { 1943 LIST_INSERT_AFTER(kl, klink, kl_link); 1944 break; 1945 } 1946 } 1947 klink = NULL; 1948 zone->uz_flags |= UMA_ZFLAG_MULTI; 1949 zone->uz_slab = zone_fetch_slab_multi; 1950 1951 out: 1952 zone_unlock_pair(zone, master); 1953 if (klink != NULL) 1954 free(klink, M_TEMP); 1955 1956 return (error); 1957 } 1958 1959 1960 /* See uma.h */ 1961 void 1962 uma_zdestroy(uma_zone_t zone) 1963 { 1964 1965 zone_free_item(zones, zone, NULL, SKIP_NONE, ZFREE_STATFREE); 1966 } 1967 1968 /* See uma.h */ 1969 void * 1970 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 1971 { 1972 void *item; 1973 uma_cache_t cache; 1974 uma_bucket_t bucket; 1975 int cpu; 1976 1977 /* This is the fast path allocation */ 1978 #ifdef UMA_DEBUG_ALLOC_1 1979 printf("Allocating one item from %s(%p)\n", zone->uz_name, zone); 1980 #endif 1981 CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread, 1982 zone->uz_name, flags); 1983 1984 if (flags & M_WAITOK) { 1985 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 1986 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 1987 } 1988 #ifdef DEBUG_MEMGUARD 1989 if (memguard_cmp_zone(zone)) { 1990 item = memguard_alloc(zone->uz_size, flags); 1991 if (item != NULL) { 1992 /* 1993 * Avoid conflict with the use-after-free 1994 * protecting infrastructure from INVARIANTS. 1995 */ 1996 if (zone->uz_init != NULL && 1997 zone->uz_init != mtrash_init && 1998 zone->uz_init(item, zone->uz_size, flags) != 0) 1999 return (NULL); 2000 if (zone->uz_ctor != NULL && 2001 zone->uz_ctor != mtrash_ctor && 2002 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2003 zone->uz_fini(item, zone->uz_size); 2004 return (NULL); 2005 } 2006 return (item); 2007 } 2008 /* This is unfortunate but should not be fatal. */ 2009 } 2010 #endif 2011 /* 2012 * If possible, allocate from the per-CPU cache. There are two 2013 * requirements for safe access to the per-CPU cache: (1) the thread 2014 * accessing the cache must not be preempted or yield during access, 2015 * and (2) the thread must not migrate CPUs without switching which 2016 * cache it accesses. We rely on a critical section to prevent 2017 * preemption and migration. We release the critical section in 2018 * order to acquire the zone mutex if we are unable to allocate from 2019 * the current cache; when we re-acquire the critical section, we 2020 * must detect and handle migration if it has occurred. 2021 */ 2022 zalloc_restart: 2023 critical_enter(); 2024 cpu = curcpu; 2025 cache = &zone->uz_cpu[cpu]; 2026 2027 zalloc_start: 2028 bucket = cache->uc_allocbucket; 2029 2030 if (bucket) { 2031 if (bucket->ub_cnt > 0) { 2032 bucket->ub_cnt--; 2033 item = bucket->ub_bucket[bucket->ub_cnt]; 2034 #ifdef INVARIANTS 2035 bucket->ub_bucket[bucket->ub_cnt] = NULL; 2036 #endif 2037 KASSERT(item != NULL, 2038 ("uma_zalloc: Bucket pointer mangled.")); 2039 cache->uc_allocs++; 2040 critical_exit(); 2041 #ifdef INVARIANTS 2042 ZONE_LOCK(zone); 2043 uma_dbg_alloc(zone, NULL, item); 2044 ZONE_UNLOCK(zone); 2045 #endif 2046 if (zone->uz_ctor != NULL) { 2047 if (zone->uz_ctor(item, zone->uz_size, 2048 udata, flags) != 0) { 2049 zone_free_item(zone, item, udata, 2050 SKIP_DTOR, ZFREE_STATFAIL | 2051 ZFREE_STATFREE); 2052 return (NULL); 2053 } 2054 } 2055 if (flags & M_ZERO) 2056 bzero(item, zone->uz_size); 2057 return (item); 2058 } else if (cache->uc_freebucket) { 2059 /* 2060 * We have run out of items in our allocbucket. 2061 * See if we can switch with our free bucket. 2062 */ 2063 if (cache->uc_freebucket->ub_cnt > 0) { 2064 #ifdef UMA_DEBUG_ALLOC 2065 printf("uma_zalloc: Swapping empty with" 2066 " alloc.\n"); 2067 #endif 2068 bucket = cache->uc_freebucket; 2069 cache->uc_freebucket = cache->uc_allocbucket; 2070 cache->uc_allocbucket = bucket; 2071 2072 goto zalloc_start; 2073 } 2074 } 2075 } 2076 /* 2077 * Attempt to retrieve the item from the per-CPU cache has failed, so 2078 * we must go back to the zone. This requires the zone lock, so we 2079 * must drop the critical section, then re-acquire it when we go back 2080 * to the cache. Since the critical section is released, we may be 2081 * preempted or migrate. As such, make sure not to maintain any 2082 * thread-local state specific to the cache from prior to releasing 2083 * the critical section. 2084 */ 2085 critical_exit(); 2086 ZONE_LOCK(zone); 2087 critical_enter(); 2088 cpu = curcpu; 2089 cache = &zone->uz_cpu[cpu]; 2090 bucket = cache->uc_allocbucket; 2091 if (bucket != NULL) { 2092 if (bucket->ub_cnt > 0) { 2093 ZONE_UNLOCK(zone); 2094 goto zalloc_start; 2095 } 2096 bucket = cache->uc_freebucket; 2097 if (bucket != NULL && bucket->ub_cnt > 0) { 2098 ZONE_UNLOCK(zone); 2099 goto zalloc_start; 2100 } 2101 } 2102 2103 /* Since we have locked the zone we may as well send back our stats */ 2104 zone->uz_allocs += cache->uc_allocs; 2105 cache->uc_allocs = 0; 2106 zone->uz_frees += cache->uc_frees; 2107 cache->uc_frees = 0; 2108 2109 /* Our old one is now a free bucket */ 2110 if (cache->uc_allocbucket) { 2111 KASSERT(cache->uc_allocbucket->ub_cnt == 0, 2112 ("uma_zalloc_arg: Freeing a non free bucket.")); 2113 LIST_INSERT_HEAD(&zone->uz_free_bucket, 2114 cache->uc_allocbucket, ub_link); 2115 cache->uc_allocbucket = NULL; 2116 } 2117 2118 /* Check the free list for a new alloc bucket */ 2119 if ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) { 2120 KASSERT(bucket->ub_cnt != 0, 2121 ("uma_zalloc_arg: Returning an empty bucket.")); 2122 2123 LIST_REMOVE(bucket, ub_link); 2124 cache->uc_allocbucket = bucket; 2125 ZONE_UNLOCK(zone); 2126 goto zalloc_start; 2127 } 2128 /* We are no longer associated with this CPU. */ 2129 critical_exit(); 2130 2131 /* Bump up our uz_count so we get here less */ 2132 if (zone->uz_count < BUCKET_MAX) 2133 zone->uz_count++; 2134 2135 /* 2136 * Now lets just fill a bucket and put it on the free list. If that 2137 * works we'll restart the allocation from the begining. 2138 */ 2139 if (zone_alloc_bucket(zone, flags)) { 2140 ZONE_UNLOCK(zone); 2141 goto zalloc_restart; 2142 } 2143 ZONE_UNLOCK(zone); 2144 /* 2145 * We may not be able to get a bucket so return an actual item. 2146 */ 2147 #ifdef UMA_DEBUG 2148 printf("uma_zalloc_arg: Bucketzone returned NULL\n"); 2149 #endif 2150 2151 item = zone_alloc_item(zone, udata, flags); 2152 return (item); 2153 } 2154 2155 static uma_slab_t 2156 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags) 2157 { 2158 uma_slab_t slab; 2159 2160 mtx_assert(&keg->uk_lock, MA_OWNED); 2161 slab = NULL; 2162 2163 for (;;) { 2164 /* 2165 * Find a slab with some space. Prefer slabs that are partially 2166 * used over those that are totally full. This helps to reduce 2167 * fragmentation. 2168 */ 2169 if (keg->uk_free != 0) { 2170 if (!LIST_EMPTY(&keg->uk_part_slab)) { 2171 slab = LIST_FIRST(&keg->uk_part_slab); 2172 } else { 2173 slab = LIST_FIRST(&keg->uk_free_slab); 2174 LIST_REMOVE(slab, us_link); 2175 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, 2176 us_link); 2177 } 2178 MPASS(slab->us_keg == keg); 2179 return (slab); 2180 } 2181 2182 /* 2183 * M_NOVM means don't ask at all! 2184 */ 2185 if (flags & M_NOVM) 2186 break; 2187 2188 if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) { 2189 keg->uk_flags |= UMA_ZFLAG_FULL; 2190 /* 2191 * If this is not a multi-zone, set the FULL bit. 2192 * Otherwise slab_multi() takes care of it. 2193 */ 2194 if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) 2195 zone->uz_flags |= UMA_ZFLAG_FULL; 2196 if (flags & M_NOWAIT) 2197 break; 2198 zone->uz_sleeps++; 2199 msleep(keg, &keg->uk_lock, PVM, "keglimit", 0); 2200 continue; 2201 } 2202 keg->uk_recurse++; 2203 slab = keg_alloc_slab(keg, zone, flags); 2204 keg->uk_recurse--; 2205 /* 2206 * If we got a slab here it's safe to mark it partially used 2207 * and return. We assume that the caller is going to remove 2208 * at least one item. 2209 */ 2210 if (slab) { 2211 MPASS(slab->us_keg == keg); 2212 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2213 return (slab); 2214 } 2215 /* 2216 * We might not have been able to get a slab but another cpu 2217 * could have while we were unlocked. Check again before we 2218 * fail. 2219 */ 2220 flags |= M_NOVM; 2221 } 2222 return (slab); 2223 } 2224 2225 static inline void 2226 zone_relock(uma_zone_t zone, uma_keg_t keg) 2227 { 2228 if (zone->uz_lock != &keg->uk_lock) { 2229 KEG_UNLOCK(keg); 2230 ZONE_LOCK(zone); 2231 } 2232 } 2233 2234 static inline void 2235 keg_relock(uma_keg_t keg, uma_zone_t zone) 2236 { 2237 if (zone->uz_lock != &keg->uk_lock) { 2238 ZONE_UNLOCK(zone); 2239 KEG_LOCK(keg); 2240 } 2241 } 2242 2243 static uma_slab_t 2244 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags) 2245 { 2246 uma_slab_t slab; 2247 2248 if (keg == NULL) 2249 keg = zone_first_keg(zone); 2250 /* 2251 * This is to prevent us from recursively trying to allocate 2252 * buckets. The problem is that if an allocation forces us to 2253 * grab a new bucket we will call page_alloc, which will go off 2254 * and cause the vm to allocate vm_map_entries. If we need new 2255 * buckets there too we will recurse in kmem_alloc and bad 2256 * things happen. So instead we return a NULL bucket, and make 2257 * the code that allocates buckets smart enough to deal with it 2258 */ 2259 if (keg->uk_flags & UMA_ZFLAG_BUCKET && keg->uk_recurse != 0) 2260 return (NULL); 2261 2262 for (;;) { 2263 slab = keg_fetch_slab(keg, zone, flags); 2264 if (slab) 2265 return (slab); 2266 if (flags & (M_NOWAIT | M_NOVM)) 2267 break; 2268 } 2269 return (NULL); 2270 } 2271 2272 /* 2273 * uma_zone_fetch_slab_multi: Fetches a slab from one available keg. Returns 2274 * with the keg locked. Caller must call zone_relock() afterwards if the 2275 * zone lock is required. On NULL the zone lock is held. 2276 * 2277 * The last pointer is used to seed the search. It is not required. 2278 */ 2279 static uma_slab_t 2280 zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags) 2281 { 2282 uma_klink_t klink; 2283 uma_slab_t slab; 2284 uma_keg_t keg; 2285 int flags; 2286 int empty; 2287 int full; 2288 2289 /* 2290 * Don't wait on the first pass. This will skip limit tests 2291 * as well. We don't want to block if we can find a provider 2292 * without blocking. 2293 */ 2294 flags = (rflags & ~M_WAITOK) | M_NOWAIT; 2295 /* 2296 * Use the last slab allocated as a hint for where to start 2297 * the search. 2298 */ 2299 if (last) { 2300 slab = keg_fetch_slab(last, zone, flags); 2301 if (slab) 2302 return (slab); 2303 zone_relock(zone, last); 2304 last = NULL; 2305 } 2306 /* 2307 * Loop until we have a slab incase of transient failures 2308 * while M_WAITOK is specified. I'm not sure this is 100% 2309 * required but we've done it for so long now. 2310 */ 2311 for (;;) { 2312 empty = 0; 2313 full = 0; 2314 /* 2315 * Search the available kegs for slabs. Be careful to hold the 2316 * correct lock while calling into the keg layer. 2317 */ 2318 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) { 2319 keg = klink->kl_keg; 2320 keg_relock(keg, zone); 2321 if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) { 2322 slab = keg_fetch_slab(keg, zone, flags); 2323 if (slab) 2324 return (slab); 2325 } 2326 if (keg->uk_flags & UMA_ZFLAG_FULL) 2327 full++; 2328 else 2329 empty++; 2330 zone_relock(zone, keg); 2331 } 2332 if (rflags & (M_NOWAIT | M_NOVM)) 2333 break; 2334 flags = rflags; 2335 /* 2336 * All kegs are full. XXX We can't atomically check all kegs 2337 * and sleep so just sleep for a short period and retry. 2338 */ 2339 if (full && !empty) { 2340 zone->uz_flags |= UMA_ZFLAG_FULL; 2341 zone->uz_sleeps++; 2342 msleep(zone, zone->uz_lock, PVM, "zonelimit", hz/100); 2343 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2344 continue; 2345 } 2346 } 2347 return (NULL); 2348 } 2349 2350 static void * 2351 slab_alloc_item(uma_zone_t zone, uma_slab_t slab) 2352 { 2353 uma_keg_t keg; 2354 uma_slabrefcnt_t slabref; 2355 void *item; 2356 u_int8_t freei; 2357 2358 keg = slab->us_keg; 2359 mtx_assert(&keg->uk_lock, MA_OWNED); 2360 2361 freei = slab->us_firstfree; 2362 if (keg->uk_flags & UMA_ZONE_REFCNT) { 2363 slabref = (uma_slabrefcnt_t)slab; 2364 slab->us_firstfree = slabref->us_freelist[freei].us_item; 2365 } else { 2366 slab->us_firstfree = slab->us_freelist[freei].us_item; 2367 } 2368 item = slab->us_data + (keg->uk_rsize * freei); 2369 2370 slab->us_freecount--; 2371 keg->uk_free--; 2372 #ifdef INVARIANTS 2373 uma_dbg_alloc(zone, slab, item); 2374 #endif 2375 /* Move this slab to the full list */ 2376 if (slab->us_freecount == 0) { 2377 LIST_REMOVE(slab, us_link); 2378 LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link); 2379 } 2380 2381 return (item); 2382 } 2383 2384 static int 2385 zone_alloc_bucket(uma_zone_t zone, int flags) 2386 { 2387 uma_bucket_t bucket; 2388 uma_slab_t slab; 2389 uma_keg_t keg; 2390 int16_t saved; 2391 int max, origflags = flags; 2392 2393 /* 2394 * Try this zone's free list first so we don't allocate extra buckets. 2395 */ 2396 if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) { 2397 KASSERT(bucket->ub_cnt == 0, 2398 ("zone_alloc_bucket: Bucket on free list is not empty.")); 2399 LIST_REMOVE(bucket, ub_link); 2400 } else { 2401 int bflags; 2402 2403 bflags = (flags & ~M_ZERO); 2404 if (zone->uz_flags & UMA_ZFLAG_CACHEONLY) 2405 bflags |= M_NOVM; 2406 2407 ZONE_UNLOCK(zone); 2408 bucket = bucket_alloc(zone->uz_count, bflags); 2409 ZONE_LOCK(zone); 2410 } 2411 2412 if (bucket == NULL) { 2413 return (0); 2414 } 2415 2416 #ifdef SMP 2417 /* 2418 * This code is here to limit the number of simultaneous bucket fills 2419 * for any given zone to the number of per cpu caches in this zone. This 2420 * is done so that we don't allocate more memory than we really need. 2421 */ 2422 if (zone->uz_fills >= mp_ncpus) 2423 goto done; 2424 2425 #endif 2426 zone->uz_fills++; 2427 2428 max = MIN(bucket->ub_entries, zone->uz_count); 2429 /* Try to keep the buckets totally full */ 2430 saved = bucket->ub_cnt; 2431 slab = NULL; 2432 keg = NULL; 2433 while (bucket->ub_cnt < max && 2434 (slab = zone->uz_slab(zone, keg, flags)) != NULL) { 2435 keg = slab->us_keg; 2436 while (slab->us_freecount && bucket->ub_cnt < max) { 2437 bucket->ub_bucket[bucket->ub_cnt++] = 2438 slab_alloc_item(zone, slab); 2439 } 2440 2441 /* Don't block on the next fill */ 2442 flags |= M_NOWAIT; 2443 } 2444 if (slab) 2445 zone_relock(zone, keg); 2446 2447 /* 2448 * We unlock here because we need to call the zone's init. 2449 * It should be safe to unlock because the slab dealt with 2450 * above is already on the appropriate list within the keg 2451 * and the bucket we filled is not yet on any list, so we 2452 * own it. 2453 */ 2454 if (zone->uz_init != NULL) { 2455 int i; 2456 2457 ZONE_UNLOCK(zone); 2458 for (i = saved; i < bucket->ub_cnt; i++) 2459 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 2460 origflags) != 0) 2461 break; 2462 /* 2463 * If we couldn't initialize the whole bucket, put the 2464 * rest back onto the freelist. 2465 */ 2466 if (i != bucket->ub_cnt) { 2467 int j; 2468 2469 for (j = i; j < bucket->ub_cnt; j++) { 2470 zone_free_item(zone, bucket->ub_bucket[j], 2471 NULL, SKIP_FINI, 0); 2472 #ifdef INVARIANTS 2473 bucket->ub_bucket[j] = NULL; 2474 #endif 2475 } 2476 bucket->ub_cnt = i; 2477 } 2478 ZONE_LOCK(zone); 2479 } 2480 2481 zone->uz_fills--; 2482 if (bucket->ub_cnt != 0) { 2483 LIST_INSERT_HEAD(&zone->uz_full_bucket, 2484 bucket, ub_link); 2485 return (1); 2486 } 2487 #ifdef SMP 2488 done: 2489 #endif 2490 bucket_free(bucket); 2491 2492 return (0); 2493 } 2494 /* 2495 * Allocates an item for an internal zone 2496 * 2497 * Arguments 2498 * zone The zone to alloc for. 2499 * udata The data to be passed to the constructor. 2500 * flags M_WAITOK, M_NOWAIT, M_ZERO. 2501 * 2502 * Returns 2503 * NULL if there is no memory and M_NOWAIT is set 2504 * An item if successful 2505 */ 2506 2507 static void * 2508 zone_alloc_item(uma_zone_t zone, void *udata, int flags) 2509 { 2510 uma_slab_t slab; 2511 void *item; 2512 2513 item = NULL; 2514 2515 #ifdef UMA_DEBUG_ALLOC 2516 printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone); 2517 #endif 2518 ZONE_LOCK(zone); 2519 2520 slab = zone->uz_slab(zone, NULL, flags); 2521 if (slab == NULL) { 2522 zone->uz_fails++; 2523 ZONE_UNLOCK(zone); 2524 return (NULL); 2525 } 2526 2527 item = slab_alloc_item(zone, slab); 2528 2529 zone_relock(zone, slab->us_keg); 2530 zone->uz_allocs++; 2531 ZONE_UNLOCK(zone); 2532 2533 /* 2534 * We have to call both the zone's init (not the keg's init) 2535 * and the zone's ctor. This is because the item is going from 2536 * a keg slab directly to the user, and the user is expecting it 2537 * to be both zone-init'd as well as zone-ctor'd. 2538 */ 2539 if (zone->uz_init != NULL) { 2540 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 2541 zone_free_item(zone, item, udata, SKIP_FINI, 2542 ZFREE_STATFAIL | ZFREE_STATFREE); 2543 return (NULL); 2544 } 2545 } 2546 if (zone->uz_ctor != NULL) { 2547 if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2548 zone_free_item(zone, item, udata, SKIP_DTOR, 2549 ZFREE_STATFAIL | ZFREE_STATFREE); 2550 return (NULL); 2551 } 2552 } 2553 if (flags & M_ZERO) 2554 bzero(item, zone->uz_size); 2555 2556 return (item); 2557 } 2558 2559 /* See uma.h */ 2560 void 2561 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 2562 { 2563 uma_cache_t cache; 2564 uma_bucket_t bucket; 2565 int bflags; 2566 int cpu; 2567 2568 #ifdef UMA_DEBUG_ALLOC_1 2569 printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone); 2570 #endif 2571 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 2572 zone->uz_name); 2573 2574 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 2575 if (item == NULL) 2576 return; 2577 #ifdef DEBUG_MEMGUARD 2578 if (is_memguard_addr(item)) { 2579 if (zone->uz_dtor != NULL && zone->uz_dtor != mtrash_dtor) 2580 zone->uz_dtor(item, zone->uz_size, udata); 2581 if (zone->uz_fini != NULL && zone->uz_fini != mtrash_fini) 2582 zone->uz_fini(item, zone->uz_size); 2583 memguard_free(item); 2584 return; 2585 } 2586 #endif 2587 if (zone->uz_dtor) 2588 zone->uz_dtor(item, zone->uz_size, udata); 2589 2590 #ifdef INVARIANTS 2591 ZONE_LOCK(zone); 2592 if (zone->uz_flags & UMA_ZONE_MALLOC) 2593 uma_dbg_free(zone, udata, item); 2594 else 2595 uma_dbg_free(zone, NULL, item); 2596 ZONE_UNLOCK(zone); 2597 #endif 2598 /* 2599 * The race here is acceptable. If we miss it we'll just have to wait 2600 * a little longer for the limits to be reset. 2601 */ 2602 if (zone->uz_flags & UMA_ZFLAG_FULL) 2603 goto zfree_internal; 2604 2605 /* 2606 * If possible, free to the per-CPU cache. There are two 2607 * requirements for safe access to the per-CPU cache: (1) the thread 2608 * accessing the cache must not be preempted or yield during access, 2609 * and (2) the thread must not migrate CPUs without switching which 2610 * cache it accesses. We rely on a critical section to prevent 2611 * preemption and migration. We release the critical section in 2612 * order to acquire the zone mutex if we are unable to free to the 2613 * current cache; when we re-acquire the critical section, we must 2614 * detect and handle migration if it has occurred. 2615 */ 2616 zfree_restart: 2617 critical_enter(); 2618 cpu = curcpu; 2619 cache = &zone->uz_cpu[cpu]; 2620 2621 zfree_start: 2622 bucket = cache->uc_freebucket; 2623 2624 if (bucket) { 2625 /* 2626 * Do we have room in our bucket? It is OK for this uz count 2627 * check to be slightly out of sync. 2628 */ 2629 2630 if (bucket->ub_cnt < bucket->ub_entries) { 2631 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 2632 ("uma_zfree: Freeing to non free bucket index.")); 2633 bucket->ub_bucket[bucket->ub_cnt] = item; 2634 bucket->ub_cnt++; 2635 cache->uc_frees++; 2636 critical_exit(); 2637 return; 2638 } else if (cache->uc_allocbucket) { 2639 #ifdef UMA_DEBUG_ALLOC 2640 printf("uma_zfree: Swapping buckets.\n"); 2641 #endif 2642 /* 2643 * We have run out of space in our freebucket. 2644 * See if we can switch with our alloc bucket. 2645 */ 2646 if (cache->uc_allocbucket->ub_cnt < 2647 cache->uc_freebucket->ub_cnt) { 2648 bucket = cache->uc_freebucket; 2649 cache->uc_freebucket = cache->uc_allocbucket; 2650 cache->uc_allocbucket = bucket; 2651 goto zfree_start; 2652 } 2653 } 2654 } 2655 /* 2656 * We can get here for two reasons: 2657 * 2658 * 1) The buckets are NULL 2659 * 2) The alloc and free buckets are both somewhat full. 2660 * 2661 * We must go back the zone, which requires acquiring the zone lock, 2662 * which in turn means we must release and re-acquire the critical 2663 * section. Since the critical section is released, we may be 2664 * preempted or migrate. As such, make sure not to maintain any 2665 * thread-local state specific to the cache from prior to releasing 2666 * the critical section. 2667 */ 2668 critical_exit(); 2669 ZONE_LOCK(zone); 2670 critical_enter(); 2671 cpu = curcpu; 2672 cache = &zone->uz_cpu[cpu]; 2673 if (cache->uc_freebucket != NULL) { 2674 if (cache->uc_freebucket->ub_cnt < 2675 cache->uc_freebucket->ub_entries) { 2676 ZONE_UNLOCK(zone); 2677 goto zfree_start; 2678 } 2679 if (cache->uc_allocbucket != NULL && 2680 (cache->uc_allocbucket->ub_cnt < 2681 cache->uc_freebucket->ub_cnt)) { 2682 ZONE_UNLOCK(zone); 2683 goto zfree_start; 2684 } 2685 } 2686 2687 /* Since we have locked the zone we may as well send back our stats */ 2688 zone->uz_allocs += cache->uc_allocs; 2689 cache->uc_allocs = 0; 2690 zone->uz_frees += cache->uc_frees; 2691 cache->uc_frees = 0; 2692 2693 bucket = cache->uc_freebucket; 2694 cache->uc_freebucket = NULL; 2695 2696 /* Can we throw this on the zone full list? */ 2697 if (bucket != NULL) { 2698 #ifdef UMA_DEBUG_ALLOC 2699 printf("uma_zfree: Putting old bucket on the free list.\n"); 2700 #endif 2701 /* ub_cnt is pointing to the last free item */ 2702 KASSERT(bucket->ub_cnt != 0, 2703 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n")); 2704 LIST_INSERT_HEAD(&zone->uz_full_bucket, 2705 bucket, ub_link); 2706 } 2707 if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) { 2708 LIST_REMOVE(bucket, ub_link); 2709 ZONE_UNLOCK(zone); 2710 cache->uc_freebucket = bucket; 2711 goto zfree_start; 2712 } 2713 /* We are no longer associated with this CPU. */ 2714 critical_exit(); 2715 2716 /* And the zone.. */ 2717 ZONE_UNLOCK(zone); 2718 2719 #ifdef UMA_DEBUG_ALLOC 2720 printf("uma_zfree: Allocating new free bucket.\n"); 2721 #endif 2722 bflags = M_NOWAIT; 2723 2724 if (zone->uz_flags & UMA_ZFLAG_CACHEONLY) 2725 bflags |= M_NOVM; 2726 bucket = bucket_alloc(zone->uz_count, bflags); 2727 if (bucket) { 2728 ZONE_LOCK(zone); 2729 LIST_INSERT_HEAD(&zone->uz_free_bucket, 2730 bucket, ub_link); 2731 ZONE_UNLOCK(zone); 2732 goto zfree_restart; 2733 } 2734 2735 /* 2736 * If nothing else caught this, we'll just do an internal free. 2737 */ 2738 zfree_internal: 2739 zone_free_item(zone, item, udata, SKIP_DTOR, ZFREE_STATFREE); 2740 2741 return; 2742 } 2743 2744 /* 2745 * Frees an item to an INTERNAL zone or allocates a free bucket 2746 * 2747 * Arguments: 2748 * zone The zone to free to 2749 * item The item we're freeing 2750 * udata User supplied data for the dtor 2751 * skip Skip dtors and finis 2752 */ 2753 static void 2754 zone_free_item(uma_zone_t zone, void *item, void *udata, 2755 enum zfreeskip skip, int flags) 2756 { 2757 uma_slab_t slab; 2758 uma_slabrefcnt_t slabref; 2759 uma_keg_t keg; 2760 u_int8_t *mem; 2761 u_int8_t freei; 2762 int clearfull; 2763 2764 if (skip < SKIP_DTOR && zone->uz_dtor) 2765 zone->uz_dtor(item, zone->uz_size, udata); 2766 2767 if (skip < SKIP_FINI && zone->uz_fini) 2768 zone->uz_fini(item, zone->uz_size); 2769 2770 ZONE_LOCK(zone); 2771 2772 if (flags & ZFREE_STATFAIL) 2773 zone->uz_fails++; 2774 if (flags & ZFREE_STATFREE) 2775 zone->uz_frees++; 2776 2777 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) { 2778 mem = (u_int8_t *)((unsigned long)item & (~UMA_SLAB_MASK)); 2779 keg = zone_first_keg(zone); /* Must only be one. */ 2780 if (zone->uz_flags & UMA_ZONE_HASH) { 2781 slab = hash_sfind(&keg->uk_hash, mem); 2782 } else { 2783 mem += keg->uk_pgoff; 2784 slab = (uma_slab_t)mem; 2785 } 2786 } else { 2787 /* This prevents redundant lookups via free(). */ 2788 if ((zone->uz_flags & UMA_ZONE_MALLOC) && udata != NULL) 2789 slab = (uma_slab_t)udata; 2790 else 2791 slab = vtoslab((vm_offset_t)item); 2792 keg = slab->us_keg; 2793 keg_relock(keg, zone); 2794 } 2795 MPASS(keg == slab->us_keg); 2796 2797 /* Do we need to remove from any lists? */ 2798 if (slab->us_freecount+1 == keg->uk_ipers) { 2799 LIST_REMOVE(slab, us_link); 2800 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 2801 } else if (slab->us_freecount == 0) { 2802 LIST_REMOVE(slab, us_link); 2803 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2804 } 2805 2806 /* Slab management stuff */ 2807 freei = ((unsigned long)item - (unsigned long)slab->us_data) 2808 / keg->uk_rsize; 2809 2810 #ifdef INVARIANTS 2811 if (!skip) 2812 uma_dbg_free(zone, slab, item); 2813 #endif 2814 2815 if (keg->uk_flags & UMA_ZONE_REFCNT) { 2816 slabref = (uma_slabrefcnt_t)slab; 2817 slabref->us_freelist[freei].us_item = slab->us_firstfree; 2818 } else { 2819 slab->us_freelist[freei].us_item = slab->us_firstfree; 2820 } 2821 slab->us_firstfree = freei; 2822 slab->us_freecount++; 2823 2824 /* Zone statistics */ 2825 keg->uk_free++; 2826 2827 clearfull = 0; 2828 if (keg->uk_flags & UMA_ZFLAG_FULL) { 2829 if (keg->uk_pages < keg->uk_maxpages) { 2830 keg->uk_flags &= ~UMA_ZFLAG_FULL; 2831 clearfull = 1; 2832 } 2833 2834 /* 2835 * We can handle one more allocation. Since we're clearing ZFLAG_FULL, 2836 * wake up all procs blocked on pages. This should be uncommon, so 2837 * keeping this simple for now (rather than adding count of blocked 2838 * threads etc). 2839 */ 2840 wakeup(keg); 2841 } 2842 if (clearfull) { 2843 zone_relock(zone, keg); 2844 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2845 wakeup(zone); 2846 ZONE_UNLOCK(zone); 2847 } else 2848 KEG_UNLOCK(keg); 2849 } 2850 2851 /* See uma.h */ 2852 int 2853 uma_zone_set_max(uma_zone_t zone, int nitems) 2854 { 2855 uma_keg_t keg; 2856 2857 ZONE_LOCK(zone); 2858 keg = zone_first_keg(zone); 2859 keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera; 2860 if (keg->uk_maxpages * keg->uk_ipers < nitems) 2861 keg->uk_maxpages += keg->uk_ppera; 2862 nitems = keg->uk_maxpages * keg->uk_ipers; 2863 ZONE_UNLOCK(zone); 2864 2865 return (nitems); 2866 } 2867 2868 /* See uma.h */ 2869 int 2870 uma_zone_get_max(uma_zone_t zone) 2871 { 2872 int nitems; 2873 uma_keg_t keg; 2874 2875 ZONE_LOCK(zone); 2876 keg = zone_first_keg(zone); 2877 nitems = keg->uk_maxpages * keg->uk_ipers; 2878 ZONE_UNLOCK(zone); 2879 2880 return (nitems); 2881 } 2882 2883 /* See uma.h */ 2884 int 2885 uma_zone_get_cur(uma_zone_t zone) 2886 { 2887 int64_t nitems; 2888 u_int i; 2889 2890 ZONE_LOCK(zone); 2891 nitems = zone->uz_allocs - zone->uz_frees; 2892 CPU_FOREACH(i) { 2893 /* 2894 * See the comment in sysctl_vm_zone_stats() regarding the 2895 * safety of accessing the per-cpu caches. With the zone lock 2896 * held, it is safe, but can potentially result in stale data. 2897 */ 2898 nitems += zone->uz_cpu[i].uc_allocs - 2899 zone->uz_cpu[i].uc_frees; 2900 } 2901 ZONE_UNLOCK(zone); 2902 2903 return (nitems < 0 ? 0 : nitems); 2904 } 2905 2906 /* See uma.h */ 2907 void 2908 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 2909 { 2910 uma_keg_t keg; 2911 2912 ZONE_LOCK(zone); 2913 keg = zone_first_keg(zone); 2914 KASSERT(keg->uk_pages == 0, 2915 ("uma_zone_set_init on non-empty keg")); 2916 keg->uk_init = uminit; 2917 ZONE_UNLOCK(zone); 2918 } 2919 2920 /* See uma.h */ 2921 void 2922 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 2923 { 2924 uma_keg_t keg; 2925 2926 ZONE_LOCK(zone); 2927 keg = zone_first_keg(zone); 2928 KASSERT(keg->uk_pages == 0, 2929 ("uma_zone_set_fini on non-empty keg")); 2930 keg->uk_fini = fini; 2931 ZONE_UNLOCK(zone); 2932 } 2933 2934 /* See uma.h */ 2935 void 2936 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 2937 { 2938 ZONE_LOCK(zone); 2939 KASSERT(zone_first_keg(zone)->uk_pages == 0, 2940 ("uma_zone_set_zinit on non-empty keg")); 2941 zone->uz_init = zinit; 2942 ZONE_UNLOCK(zone); 2943 } 2944 2945 /* See uma.h */ 2946 void 2947 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 2948 { 2949 ZONE_LOCK(zone); 2950 KASSERT(zone_first_keg(zone)->uk_pages == 0, 2951 ("uma_zone_set_zfini on non-empty keg")); 2952 zone->uz_fini = zfini; 2953 ZONE_UNLOCK(zone); 2954 } 2955 2956 /* See uma.h */ 2957 /* XXX uk_freef is not actually used with the zone locked */ 2958 void 2959 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 2960 { 2961 2962 ZONE_LOCK(zone); 2963 zone_first_keg(zone)->uk_freef = freef; 2964 ZONE_UNLOCK(zone); 2965 } 2966 2967 /* See uma.h */ 2968 /* XXX uk_allocf is not actually used with the zone locked */ 2969 void 2970 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 2971 { 2972 uma_keg_t keg; 2973 2974 ZONE_LOCK(zone); 2975 keg = zone_first_keg(zone); 2976 keg->uk_flags |= UMA_ZFLAG_PRIVALLOC; 2977 keg->uk_allocf = allocf; 2978 ZONE_UNLOCK(zone); 2979 } 2980 2981 /* See uma.h */ 2982 int 2983 uma_zone_set_obj(uma_zone_t zone, struct vm_object *obj, int count) 2984 { 2985 uma_keg_t keg; 2986 vm_offset_t kva; 2987 int pages; 2988 2989 keg = zone_first_keg(zone); 2990 pages = count / keg->uk_ipers; 2991 2992 if (pages * keg->uk_ipers < count) 2993 pages++; 2994 2995 kva = kmem_alloc_nofault(kernel_map, pages * UMA_SLAB_SIZE); 2996 2997 if (kva == 0) 2998 return (0); 2999 if (obj == NULL) 3000 obj = vm_object_allocate(OBJT_PHYS, pages); 3001 else { 3002 VM_OBJECT_LOCK_INIT(obj, "uma object"); 3003 _vm_object_allocate(OBJT_PHYS, pages, obj); 3004 } 3005 ZONE_LOCK(zone); 3006 keg->uk_kva = kva; 3007 keg->uk_obj = obj; 3008 keg->uk_maxpages = pages; 3009 keg->uk_allocf = obj_alloc; 3010 keg->uk_flags |= UMA_ZONE_NOFREE | UMA_ZFLAG_PRIVALLOC; 3011 ZONE_UNLOCK(zone); 3012 return (1); 3013 } 3014 3015 /* See uma.h */ 3016 void 3017 uma_prealloc(uma_zone_t zone, int items) 3018 { 3019 int slabs; 3020 uma_slab_t slab; 3021 uma_keg_t keg; 3022 3023 keg = zone_first_keg(zone); 3024 ZONE_LOCK(zone); 3025 slabs = items / keg->uk_ipers; 3026 if (slabs * keg->uk_ipers < items) 3027 slabs++; 3028 while (slabs > 0) { 3029 slab = keg_alloc_slab(keg, zone, M_WAITOK); 3030 if (slab == NULL) 3031 break; 3032 MPASS(slab->us_keg == keg); 3033 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 3034 slabs--; 3035 } 3036 ZONE_UNLOCK(zone); 3037 } 3038 3039 /* See uma.h */ 3040 u_int32_t * 3041 uma_find_refcnt(uma_zone_t zone, void *item) 3042 { 3043 uma_slabrefcnt_t slabref; 3044 uma_keg_t keg; 3045 u_int32_t *refcnt; 3046 int idx; 3047 3048 slabref = (uma_slabrefcnt_t)vtoslab((vm_offset_t)item & 3049 (~UMA_SLAB_MASK)); 3050 keg = slabref->us_keg; 3051 KASSERT(slabref != NULL && slabref->us_keg->uk_flags & UMA_ZONE_REFCNT, 3052 ("uma_find_refcnt(): zone possibly not UMA_ZONE_REFCNT")); 3053 idx = ((unsigned long)item - (unsigned long)slabref->us_data) 3054 / keg->uk_rsize; 3055 refcnt = &slabref->us_freelist[idx].us_refcnt; 3056 return refcnt; 3057 } 3058 3059 /* See uma.h */ 3060 void 3061 uma_reclaim(void) 3062 { 3063 #ifdef UMA_DEBUG 3064 printf("UMA: vm asked us to release pages!\n"); 3065 #endif 3066 bucket_enable(); 3067 zone_foreach(zone_drain); 3068 /* 3069 * Some slabs may have been freed but this zone will be visited early 3070 * we visit again so that we can free pages that are empty once other 3071 * zones are drained. We have to do the same for buckets. 3072 */ 3073 zone_drain(slabzone); 3074 zone_drain(slabrefzone); 3075 bucket_zone_drain(); 3076 } 3077 3078 /* See uma.h */ 3079 int 3080 uma_zone_exhausted(uma_zone_t zone) 3081 { 3082 int full; 3083 3084 ZONE_LOCK(zone); 3085 full = (zone->uz_flags & UMA_ZFLAG_FULL); 3086 ZONE_UNLOCK(zone); 3087 return (full); 3088 } 3089 3090 int 3091 uma_zone_exhausted_nolock(uma_zone_t zone) 3092 { 3093 return (zone->uz_flags & UMA_ZFLAG_FULL); 3094 } 3095 3096 void * 3097 uma_large_malloc(int size, int wait) 3098 { 3099 void *mem; 3100 uma_slab_t slab; 3101 u_int8_t flags; 3102 3103 slab = zone_alloc_item(slabzone, NULL, wait); 3104 if (slab == NULL) 3105 return (NULL); 3106 mem = page_alloc(NULL, size, &flags, wait); 3107 if (mem) { 3108 vsetslab((vm_offset_t)mem, slab); 3109 slab->us_data = mem; 3110 slab->us_flags = flags | UMA_SLAB_MALLOC; 3111 slab->us_size = size; 3112 } else { 3113 zone_free_item(slabzone, slab, NULL, SKIP_NONE, 3114 ZFREE_STATFAIL | ZFREE_STATFREE); 3115 } 3116 3117 return (mem); 3118 } 3119 3120 void 3121 uma_large_free(uma_slab_t slab) 3122 { 3123 vsetobj((vm_offset_t)slab->us_data, kmem_object); 3124 page_free(slab->us_data, slab->us_size, slab->us_flags); 3125 zone_free_item(slabzone, slab, NULL, SKIP_NONE, ZFREE_STATFREE); 3126 } 3127 3128 void 3129 uma_print_stats(void) 3130 { 3131 zone_foreach(uma_print_zone); 3132 } 3133 3134 static void 3135 slab_print(uma_slab_t slab) 3136 { 3137 printf("slab: keg %p, data %p, freecount %d, firstfree %d\n", 3138 slab->us_keg, slab->us_data, slab->us_freecount, 3139 slab->us_firstfree); 3140 } 3141 3142 static void 3143 cache_print(uma_cache_t cache) 3144 { 3145 printf("alloc: %p(%d), free: %p(%d)\n", 3146 cache->uc_allocbucket, 3147 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, 3148 cache->uc_freebucket, 3149 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0); 3150 } 3151 3152 static void 3153 uma_print_keg(uma_keg_t keg) 3154 { 3155 uma_slab_t slab; 3156 3157 printf("keg: %s(%p) size %d(%d) flags %d ipers %d ppera %d " 3158 "out %d free %d limit %d\n", 3159 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags, 3160 keg->uk_ipers, keg->uk_ppera, 3161 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free, 3162 (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers); 3163 printf("Part slabs:\n"); 3164 LIST_FOREACH(slab, &keg->uk_part_slab, us_link) 3165 slab_print(slab); 3166 printf("Free slabs:\n"); 3167 LIST_FOREACH(slab, &keg->uk_free_slab, us_link) 3168 slab_print(slab); 3169 printf("Full slabs:\n"); 3170 LIST_FOREACH(slab, &keg->uk_full_slab, us_link) 3171 slab_print(slab); 3172 } 3173 3174 void 3175 uma_print_zone(uma_zone_t zone) 3176 { 3177 uma_cache_t cache; 3178 uma_klink_t kl; 3179 int i; 3180 3181 printf("zone: %s(%p) size %d flags %d\n", 3182 zone->uz_name, zone, zone->uz_size, zone->uz_flags); 3183 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) 3184 uma_print_keg(kl->kl_keg); 3185 CPU_FOREACH(i) { 3186 cache = &zone->uz_cpu[i]; 3187 printf("CPU %d Cache:\n", i); 3188 cache_print(cache); 3189 } 3190 } 3191 3192 #ifdef DDB 3193 /* 3194 * Generate statistics across both the zone and its per-cpu cache's. Return 3195 * desired statistics if the pointer is non-NULL for that statistic. 3196 * 3197 * Note: does not update the zone statistics, as it can't safely clear the 3198 * per-CPU cache statistic. 3199 * 3200 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't 3201 * safe from off-CPU; we should modify the caches to track this information 3202 * directly so that we don't have to. 3203 */ 3204 static void 3205 uma_zone_sumstat(uma_zone_t z, int *cachefreep, u_int64_t *allocsp, 3206 u_int64_t *freesp, u_int64_t *sleepsp) 3207 { 3208 uma_cache_t cache; 3209 u_int64_t allocs, frees, sleeps; 3210 int cachefree, cpu; 3211 3212 allocs = frees = sleeps = 0; 3213 cachefree = 0; 3214 CPU_FOREACH(cpu) { 3215 cache = &z->uz_cpu[cpu]; 3216 if (cache->uc_allocbucket != NULL) 3217 cachefree += cache->uc_allocbucket->ub_cnt; 3218 if (cache->uc_freebucket != NULL) 3219 cachefree += cache->uc_freebucket->ub_cnt; 3220 allocs += cache->uc_allocs; 3221 frees += cache->uc_frees; 3222 } 3223 allocs += z->uz_allocs; 3224 frees += z->uz_frees; 3225 sleeps += z->uz_sleeps; 3226 if (cachefreep != NULL) 3227 *cachefreep = cachefree; 3228 if (allocsp != NULL) 3229 *allocsp = allocs; 3230 if (freesp != NULL) 3231 *freesp = frees; 3232 if (sleepsp != NULL) 3233 *sleepsp = sleeps; 3234 } 3235 #endif /* DDB */ 3236 3237 static int 3238 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 3239 { 3240 uma_keg_t kz; 3241 uma_zone_t z; 3242 int count; 3243 3244 count = 0; 3245 mtx_lock(&uma_mtx); 3246 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3247 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3248 count++; 3249 } 3250 mtx_unlock(&uma_mtx); 3251 return (sysctl_handle_int(oidp, &count, 0, req)); 3252 } 3253 3254 static int 3255 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 3256 { 3257 struct uma_stream_header ush; 3258 struct uma_type_header uth; 3259 struct uma_percpu_stat ups; 3260 uma_bucket_t bucket; 3261 struct sbuf sbuf; 3262 uma_cache_t cache; 3263 uma_klink_t kl; 3264 uma_keg_t kz; 3265 uma_zone_t z; 3266 uma_keg_t k; 3267 int count, error, i; 3268 3269 error = sysctl_wire_old_buffer(req, 0); 3270 if (error != 0) 3271 return (error); 3272 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 3273 3274 count = 0; 3275 mtx_lock(&uma_mtx); 3276 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3277 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3278 count++; 3279 } 3280 3281 /* 3282 * Insert stream header. 3283 */ 3284 bzero(&ush, sizeof(ush)); 3285 ush.ush_version = UMA_STREAM_VERSION; 3286 ush.ush_maxcpus = (mp_maxid + 1); 3287 ush.ush_count = count; 3288 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 3289 3290 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3291 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3292 bzero(&uth, sizeof(uth)); 3293 ZONE_LOCK(z); 3294 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 3295 uth.uth_align = kz->uk_align; 3296 uth.uth_size = kz->uk_size; 3297 uth.uth_rsize = kz->uk_rsize; 3298 LIST_FOREACH(kl, &z->uz_kegs, kl_link) { 3299 k = kl->kl_keg; 3300 uth.uth_maxpages += k->uk_maxpages; 3301 uth.uth_pages += k->uk_pages; 3302 uth.uth_keg_free += k->uk_free; 3303 uth.uth_limit = (k->uk_maxpages / k->uk_ppera) 3304 * k->uk_ipers; 3305 } 3306 3307 /* 3308 * A zone is secondary is it is not the first entry 3309 * on the keg's zone list. 3310 */ 3311 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 3312 (LIST_FIRST(&kz->uk_zones) != z)) 3313 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 3314 3315 LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link) 3316 uth.uth_zone_free += bucket->ub_cnt; 3317 uth.uth_allocs = z->uz_allocs; 3318 uth.uth_frees = z->uz_frees; 3319 uth.uth_fails = z->uz_fails; 3320 uth.uth_sleeps = z->uz_sleeps; 3321 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 3322 /* 3323 * While it is not normally safe to access the cache 3324 * bucket pointers while not on the CPU that owns the 3325 * cache, we only allow the pointers to be exchanged 3326 * without the zone lock held, not invalidated, so 3327 * accept the possible race associated with bucket 3328 * exchange during monitoring. 3329 */ 3330 for (i = 0; i < (mp_maxid + 1); i++) { 3331 bzero(&ups, sizeof(ups)); 3332 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) 3333 goto skip; 3334 if (CPU_ABSENT(i)) 3335 goto skip; 3336 cache = &z->uz_cpu[i]; 3337 if (cache->uc_allocbucket != NULL) 3338 ups.ups_cache_free += 3339 cache->uc_allocbucket->ub_cnt; 3340 if (cache->uc_freebucket != NULL) 3341 ups.ups_cache_free += 3342 cache->uc_freebucket->ub_cnt; 3343 ups.ups_allocs = cache->uc_allocs; 3344 ups.ups_frees = cache->uc_frees; 3345 skip: 3346 (void)sbuf_bcat(&sbuf, &ups, sizeof(ups)); 3347 } 3348 ZONE_UNLOCK(z); 3349 } 3350 } 3351 mtx_unlock(&uma_mtx); 3352 error = sbuf_finish(&sbuf); 3353 sbuf_delete(&sbuf); 3354 return (error); 3355 } 3356 3357 #ifdef DDB 3358 DB_SHOW_COMMAND(uma, db_show_uma) 3359 { 3360 u_int64_t allocs, frees, sleeps; 3361 uma_bucket_t bucket; 3362 uma_keg_t kz; 3363 uma_zone_t z; 3364 int cachefree; 3365 3366 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 3367 "Requests", "Sleeps"); 3368 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3369 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3370 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 3371 allocs = z->uz_allocs; 3372 frees = z->uz_frees; 3373 sleeps = z->uz_sleeps; 3374 cachefree = 0; 3375 } else 3376 uma_zone_sumstat(z, &cachefree, &allocs, 3377 &frees, &sleeps); 3378 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 3379 (LIST_FIRST(&kz->uk_zones) != z))) 3380 cachefree += kz->uk_free; 3381 LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link) 3382 cachefree += bucket->ub_cnt; 3383 db_printf("%18s %8ju %8jd %8d %12ju %8ju\n", z->uz_name, 3384 (uintmax_t)kz->uk_size, 3385 (intmax_t)(allocs - frees), cachefree, 3386 (uintmax_t)allocs, sleeps); 3387 if (db_pager_quit) 3388 return; 3389 } 3390 } 3391 } 3392 #endif 3393