1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/bitset.h> 62 #include <sys/domainset.h> 63 #include <sys/eventhandler.h> 64 #include <sys/kernel.h> 65 #include <sys/types.h> 66 #include <sys/limits.h> 67 #include <sys/queue.h> 68 #include <sys/malloc.h> 69 #include <sys/ktr.h> 70 #include <sys/lock.h> 71 #include <sys/sysctl.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/random.h> 75 #include <sys/rwlock.h> 76 #include <sys/sbuf.h> 77 #include <sys/sched.h> 78 #include <sys/sleepqueue.h> 79 #include <sys/smp.h> 80 #include <sys/smr.h> 81 #include <sys/taskqueue.h> 82 #include <sys/vmmeter.h> 83 84 #include <vm/vm.h> 85 #include <vm/vm_domainset.h> 86 #include <vm/vm_object.h> 87 #include <vm/vm_page.h> 88 #include <vm/vm_pageout.h> 89 #include <vm/vm_param.h> 90 #include <vm/vm_phys.h> 91 #include <vm/vm_pagequeue.h> 92 #include <vm/vm_map.h> 93 #include <vm/vm_kern.h> 94 #include <vm/vm_extern.h> 95 #include <vm/uma.h> 96 #include <vm/uma_int.h> 97 #include <vm/uma_dbg.h> 98 99 #include <ddb/ddb.h> 100 101 #ifdef DEBUG_MEMGUARD 102 #include <vm/memguard.h> 103 #endif 104 105 #include <machine/md_var.h> 106 107 #ifdef INVARIANTS 108 #define UMA_ALWAYS_CTORDTOR 1 109 #else 110 #define UMA_ALWAYS_CTORDTOR 0 111 #endif 112 113 /* 114 * This is the zone and keg from which all zones are spawned. 115 */ 116 static uma_zone_t kegs; 117 static uma_zone_t zones; 118 119 /* 120 * On INVARIANTS builds, the slab contains a second bitset of the same size, 121 * "dbg_bits", which is laid out immediately after us_free. 122 */ 123 #ifdef INVARIANTS 124 #define SLAB_BITSETS 2 125 #else 126 #define SLAB_BITSETS 1 127 #endif 128 129 /* 130 * These are the two zones from which all offpage uma_slab_ts are allocated. 131 * 132 * One zone is for slab headers that can represent a larger number of items, 133 * making the slabs themselves more efficient, and the other zone is for 134 * headers that are smaller and represent fewer items, making the headers more 135 * efficient. 136 */ 137 #define SLABZONE_SIZE(setsize) \ 138 (sizeof(struct uma_hash_slab) + BITSET_SIZE(setsize) * SLAB_BITSETS) 139 #define SLABZONE0_SETSIZE (PAGE_SIZE / 16) 140 #define SLABZONE1_SETSIZE SLAB_MAX_SETSIZE 141 #define SLABZONE0_SIZE SLABZONE_SIZE(SLABZONE0_SETSIZE) 142 #define SLABZONE1_SIZE SLABZONE_SIZE(SLABZONE1_SETSIZE) 143 static uma_zone_t slabzones[2]; 144 145 /* 146 * The initial hash tables come out of this zone so they can be allocated 147 * prior to malloc coming up. 148 */ 149 static uma_zone_t hashzone; 150 151 /* The boot-time adjusted value for cache line alignment. */ 152 int uma_align_cache = 64 - 1; 153 154 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 155 static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc"); 156 157 /* 158 * Are we allowed to allocate buckets? 159 */ 160 static int bucketdisable = 1; 161 162 /* Linked list of all kegs in the system */ 163 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 164 165 /* Linked list of all cache-only zones in the system */ 166 static LIST_HEAD(,uma_zone) uma_cachezones = 167 LIST_HEAD_INITIALIZER(uma_cachezones); 168 169 /* This RW lock protects the keg list */ 170 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 171 172 /* 173 * First available virual address for boot time allocations. 174 */ 175 static vm_offset_t bootstart; 176 static vm_offset_t bootmem; 177 178 static struct sx uma_reclaim_lock; 179 180 /* 181 * kmem soft limit, initialized by uma_set_limit(). Ensure that early 182 * allocations don't trigger a wakeup of the reclaim thread. 183 */ 184 unsigned long uma_kmem_limit = LONG_MAX; 185 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0, 186 "UMA kernel memory soft limit"); 187 unsigned long uma_kmem_total; 188 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0, 189 "UMA kernel memory usage"); 190 191 /* Is the VM done starting up? */ 192 static enum { 193 BOOT_COLD, 194 BOOT_KVA, 195 BOOT_PCPU, 196 BOOT_RUNNING, 197 BOOT_SHUTDOWN, 198 } booted = BOOT_COLD; 199 200 /* 201 * This is the handle used to schedule events that need to happen 202 * outside of the allocation fast path. 203 */ 204 static struct callout uma_callout; 205 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 206 207 /* 208 * This structure is passed as the zone ctor arg so that I don't have to create 209 * a special allocation function just for zones. 210 */ 211 struct uma_zctor_args { 212 const char *name; 213 size_t size; 214 uma_ctor ctor; 215 uma_dtor dtor; 216 uma_init uminit; 217 uma_fini fini; 218 uma_import import; 219 uma_release release; 220 void *arg; 221 uma_keg_t keg; 222 int align; 223 uint32_t flags; 224 }; 225 226 struct uma_kctor_args { 227 uma_zone_t zone; 228 size_t size; 229 uma_init uminit; 230 uma_fini fini; 231 int align; 232 uint32_t flags; 233 }; 234 235 struct uma_bucket_zone { 236 uma_zone_t ubz_zone; 237 const char *ubz_name; 238 int ubz_entries; /* Number of items it can hold. */ 239 int ubz_maxsize; /* Maximum allocation size per-item. */ 240 }; 241 242 /* 243 * Compute the actual number of bucket entries to pack them in power 244 * of two sizes for more efficient space utilization. 245 */ 246 #define BUCKET_SIZE(n) \ 247 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 248 249 #define BUCKET_MAX BUCKET_SIZE(256) 250 #define BUCKET_MIN 2 251 252 struct uma_bucket_zone bucket_zones[] = { 253 /* Literal bucket sizes. */ 254 { NULL, "2 Bucket", 2, 4096 }, 255 { NULL, "4 Bucket", 4, 3072 }, 256 { NULL, "8 Bucket", 8, 2048 }, 257 { NULL, "16 Bucket", 16, 1024 }, 258 /* Rounded down power of 2 sizes for efficiency. */ 259 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 260 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 261 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 262 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 263 { NULL, NULL, 0} 264 }; 265 266 /* 267 * Flags and enumerations to be passed to internal functions. 268 */ 269 enum zfreeskip { 270 SKIP_NONE = 0, 271 SKIP_CNT = 0x00000001, 272 SKIP_DTOR = 0x00010000, 273 SKIP_FINI = 0x00020000, 274 }; 275 276 /* Prototypes.. */ 277 278 void uma_startup1(vm_offset_t); 279 void uma_startup2(void); 280 281 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 282 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 283 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 284 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 285 static void *contig_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 286 static void page_free(void *, vm_size_t, uint8_t); 287 static void pcpu_page_free(void *, vm_size_t, uint8_t); 288 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int); 289 static void cache_drain(uma_zone_t); 290 static void bucket_drain(uma_zone_t, uma_bucket_t); 291 static void bucket_cache_reclaim(uma_zone_t zone, bool); 292 static int keg_ctor(void *, int, void *, int); 293 static void keg_dtor(void *, int, void *); 294 static int zone_ctor(void *, int, void *, int); 295 static void zone_dtor(void *, int, void *); 296 static inline void item_dtor(uma_zone_t zone, void *item, int size, 297 void *udata, enum zfreeskip skip); 298 static int zero_init(void *, int, int); 299 static void zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 300 int itemdomain, bool ws); 301 static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *); 302 static void zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *), void *); 303 static void zone_timeout(uma_zone_t zone, void *); 304 static int hash_alloc(struct uma_hash *, u_int); 305 static int hash_expand(struct uma_hash *, struct uma_hash *); 306 static void hash_free(struct uma_hash *hash); 307 static void uma_timeout(void *); 308 static void uma_shutdown(void); 309 static void *zone_alloc_item(uma_zone_t, void *, int, int); 310 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 311 static int zone_alloc_limit(uma_zone_t zone, int count, int flags); 312 static void zone_free_limit(uma_zone_t zone, int count); 313 static void bucket_enable(void); 314 static void bucket_init(void); 315 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 316 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 317 static void bucket_zone_drain(void); 318 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int); 319 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 320 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item); 321 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 322 uma_fini fini, int align, uint32_t flags); 323 static int zone_import(void *, void **, int, int, int); 324 static void zone_release(void *, void **, int); 325 static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int); 326 static bool cache_free(uma_zone_t, uma_cache_t, void *, void *, int); 327 328 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 329 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 330 static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS); 331 static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS); 332 static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS); 333 static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS); 334 static int sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS); 335 336 static uint64_t uma_zone_get_allocs(uma_zone_t zone); 337 338 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 339 "Memory allocation debugging"); 340 341 #ifdef INVARIANTS 342 static uint64_t uma_keg_get_allocs(uma_keg_t zone); 343 static inline struct noslabbits *slab_dbg_bits(uma_slab_t slab, uma_keg_t keg); 344 345 static bool uma_dbg_kskip(uma_keg_t keg, void *mem); 346 static bool uma_dbg_zskip(uma_zone_t zone, void *mem); 347 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 348 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 349 350 static u_int dbg_divisor = 1; 351 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor, 352 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0, 353 "Debug & thrash every this item in memory allocator"); 354 355 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER; 356 static counter_u64_t uma_skip_cnt = EARLY_COUNTER; 357 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD, 358 &uma_dbg_cnt, "memory items debugged"); 359 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD, 360 &uma_skip_cnt, "memory items skipped, not debugged"); 361 #endif 362 363 SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 364 "Universal Memory Allocator"); 365 366 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_INT, 367 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 368 369 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_STRUCT, 370 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 371 372 static int zone_warnings = 1; 373 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 374 "Warn when UMA zones becomes full"); 375 376 static int multipage_slabs = 1; 377 TUNABLE_INT("vm.debug.uma_multipage_slabs", &multipage_slabs); 378 SYSCTL_INT(_vm_debug, OID_AUTO, uma_multipage_slabs, 379 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &multipage_slabs, 0, 380 "UMA may choose larger slab sizes for better efficiency"); 381 382 /* 383 * Select the slab zone for an offpage slab with the given maximum item count. 384 */ 385 static inline uma_zone_t 386 slabzone(int ipers) 387 { 388 389 return (slabzones[ipers > SLABZONE0_SETSIZE]); 390 } 391 392 /* 393 * This routine checks to see whether or not it's safe to enable buckets. 394 */ 395 static void 396 bucket_enable(void) 397 { 398 399 KASSERT(booted >= BOOT_KVA, ("Bucket enable before init")); 400 bucketdisable = vm_page_count_min(); 401 } 402 403 /* 404 * Initialize bucket_zones, the array of zones of buckets of various sizes. 405 * 406 * For each zone, calculate the memory required for each bucket, consisting 407 * of the header and an array of pointers. 408 */ 409 static void 410 bucket_init(void) 411 { 412 struct uma_bucket_zone *ubz; 413 int size; 414 415 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 416 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 417 size += sizeof(void *) * ubz->ubz_entries; 418 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 419 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 420 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | 421 UMA_ZONE_FIRSTTOUCH); 422 } 423 } 424 425 /* 426 * Given a desired number of entries for a bucket, return the zone from which 427 * to allocate the bucket. 428 */ 429 static struct uma_bucket_zone * 430 bucket_zone_lookup(int entries) 431 { 432 struct uma_bucket_zone *ubz; 433 434 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 435 if (ubz->ubz_entries >= entries) 436 return (ubz); 437 ubz--; 438 return (ubz); 439 } 440 441 static struct uma_bucket_zone * 442 bucket_zone_max(uma_zone_t zone, int nitems) 443 { 444 struct uma_bucket_zone *ubz; 445 int bpcpu; 446 447 bpcpu = 2; 448 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 449 /* Count the cross-domain bucket. */ 450 bpcpu++; 451 452 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 453 if (ubz->ubz_entries * bpcpu * mp_ncpus > nitems) 454 break; 455 if (ubz == &bucket_zones[0]) 456 ubz = NULL; 457 else 458 ubz--; 459 return (ubz); 460 } 461 462 static int 463 bucket_select(int size) 464 { 465 struct uma_bucket_zone *ubz; 466 467 ubz = &bucket_zones[0]; 468 if (size > ubz->ubz_maxsize) 469 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 470 471 for (; ubz->ubz_entries != 0; ubz++) 472 if (ubz->ubz_maxsize < size) 473 break; 474 ubz--; 475 return (ubz->ubz_entries); 476 } 477 478 static uma_bucket_t 479 bucket_alloc(uma_zone_t zone, void *udata, int flags) 480 { 481 struct uma_bucket_zone *ubz; 482 uma_bucket_t bucket; 483 484 /* 485 * Don't allocate buckets early in boot. 486 */ 487 if (__predict_false(booted < BOOT_KVA)) 488 return (NULL); 489 490 /* 491 * To limit bucket recursion we store the original zone flags 492 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 493 * NOVM flag to persist even through deep recursions. We also 494 * store ZFLAG_BUCKET once we have recursed attempting to allocate 495 * a bucket for a bucket zone so we do not allow infinite bucket 496 * recursion. This cookie will even persist to frees of unused 497 * buckets via the allocation path or bucket allocations in the 498 * free path. 499 */ 500 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 501 udata = (void *)(uintptr_t)zone->uz_flags; 502 else { 503 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 504 return (NULL); 505 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 506 } 507 if (((uintptr_t)udata & UMA_ZONE_VM) != 0) 508 flags |= M_NOVM; 509 ubz = bucket_zone_lookup(zone->uz_bucket_size); 510 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 511 ubz++; 512 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 513 if (bucket) { 514 #ifdef INVARIANTS 515 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 516 #endif 517 bucket->ub_cnt = 0; 518 bucket->ub_entries = ubz->ubz_entries; 519 bucket->ub_seq = SMR_SEQ_INVALID; 520 CTR3(KTR_UMA, "bucket_alloc: zone %s(%p) allocated bucket %p", 521 zone->uz_name, zone, bucket); 522 } 523 524 return (bucket); 525 } 526 527 static void 528 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 529 { 530 struct uma_bucket_zone *ubz; 531 532 if (bucket->ub_cnt != 0) 533 bucket_drain(zone, bucket); 534 535 KASSERT(bucket->ub_cnt == 0, 536 ("bucket_free: Freeing a non free bucket.")); 537 KASSERT(bucket->ub_seq == SMR_SEQ_INVALID, 538 ("bucket_free: Freeing an SMR bucket.")); 539 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 540 udata = (void *)(uintptr_t)zone->uz_flags; 541 ubz = bucket_zone_lookup(bucket->ub_entries); 542 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 543 } 544 545 static void 546 bucket_zone_drain(void) 547 { 548 struct uma_bucket_zone *ubz; 549 550 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 551 uma_zone_reclaim(ubz->ubz_zone, UMA_RECLAIM_DRAIN); 552 } 553 554 /* 555 * Acquire the domain lock and record contention. 556 */ 557 static uma_zone_domain_t 558 zone_domain_lock(uma_zone_t zone, int domain) 559 { 560 uma_zone_domain_t zdom; 561 bool lockfail; 562 563 zdom = ZDOM_GET(zone, domain); 564 lockfail = false; 565 if (ZDOM_OWNED(zdom)) 566 lockfail = true; 567 ZDOM_LOCK(zdom); 568 /* This is unsynchronized. The counter does not need to be precise. */ 569 if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max) 570 zone->uz_bucket_size++; 571 return (zdom); 572 } 573 574 /* 575 * Search for the domain with the least cached items and return it if it 576 * is out of balance with the preferred domain. 577 */ 578 static __noinline int 579 zone_domain_lowest(uma_zone_t zone, int pref) 580 { 581 long least, nitems, prefitems; 582 int domain; 583 int i; 584 585 prefitems = least = LONG_MAX; 586 domain = 0; 587 for (i = 0; i < vm_ndomains; i++) { 588 nitems = ZDOM_GET(zone, i)->uzd_nitems; 589 if (nitems < least) { 590 domain = i; 591 least = nitems; 592 } 593 if (domain == pref) 594 prefitems = nitems; 595 } 596 if (prefitems < least * 2) 597 return (pref); 598 599 return (domain); 600 } 601 602 /* 603 * Search for the domain with the most cached items and return it or the 604 * preferred domain if it has enough to proceed. 605 */ 606 static __noinline int 607 zone_domain_highest(uma_zone_t zone, int pref) 608 { 609 long most, nitems; 610 int domain; 611 int i; 612 613 if (ZDOM_GET(zone, pref)->uzd_nitems > BUCKET_MAX) 614 return (pref); 615 616 most = 0; 617 domain = 0; 618 for (i = 0; i < vm_ndomains; i++) { 619 nitems = ZDOM_GET(zone, i)->uzd_nitems; 620 if (nitems > most) { 621 domain = i; 622 most = nitems; 623 } 624 } 625 626 return (domain); 627 } 628 629 /* 630 * Safely subtract cnt from imax. 631 */ 632 static void 633 zone_domain_imax_sub(uma_zone_domain_t zdom, int cnt) 634 { 635 long new; 636 long old; 637 638 old = zdom->uzd_imax; 639 do { 640 if (old <= cnt) 641 new = 0; 642 else 643 new = old - cnt; 644 } while (atomic_fcmpset_long(&zdom->uzd_imax, &old, new) == 0); 645 } 646 647 /* 648 * Set the maximum imax value. 649 */ 650 static void 651 zone_domain_imax_set(uma_zone_domain_t zdom, int nitems) 652 { 653 long old; 654 655 old = zdom->uzd_imax; 656 do { 657 if (old >= nitems) 658 break; 659 } while (atomic_fcmpset_long(&zdom->uzd_imax, &old, nitems) == 0); 660 } 661 662 /* 663 * Attempt to satisfy an allocation by retrieving a full bucket from one of the 664 * zone's caches. If a bucket is found the zone is not locked on return. 665 */ 666 static uma_bucket_t 667 zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom, bool reclaim) 668 { 669 uma_bucket_t bucket; 670 int i; 671 bool dtor = false; 672 673 ZDOM_LOCK_ASSERT(zdom); 674 675 if ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) == NULL) 676 return (NULL); 677 678 /* SMR Buckets can not be re-used until readers expire. */ 679 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 680 bucket->ub_seq != SMR_SEQ_INVALID) { 681 if (!smr_poll(zone->uz_smr, bucket->ub_seq, false)) 682 return (NULL); 683 bucket->ub_seq = SMR_SEQ_INVALID; 684 dtor = (zone->uz_dtor != NULL) || UMA_ALWAYS_CTORDTOR; 685 if (STAILQ_NEXT(bucket, ub_link) != NULL) 686 zdom->uzd_seq = STAILQ_NEXT(bucket, ub_link)->ub_seq; 687 } 688 MPASS(zdom->uzd_nitems >= bucket->ub_cnt); 689 STAILQ_REMOVE_HEAD(&zdom->uzd_buckets, ub_link); 690 zdom->uzd_nitems -= bucket->ub_cnt; 691 692 /* 693 * Shift the bounds of the current WSS interval to avoid 694 * perturbing the estimate. 695 */ 696 if (reclaim) { 697 zdom->uzd_imin -= lmin(zdom->uzd_imin, bucket->ub_cnt); 698 zone_domain_imax_sub(zdom, bucket->ub_cnt); 699 } else if (zdom->uzd_imin > zdom->uzd_nitems) 700 zdom->uzd_imin = zdom->uzd_nitems; 701 702 ZDOM_UNLOCK(zdom); 703 if (dtor) 704 for (i = 0; i < bucket->ub_cnt; i++) 705 item_dtor(zone, bucket->ub_bucket[i], zone->uz_size, 706 NULL, SKIP_NONE); 707 708 return (bucket); 709 } 710 711 /* 712 * Insert a full bucket into the specified cache. The "ws" parameter indicates 713 * whether the bucket's contents should be counted as part of the zone's working 714 * set. The bucket may be freed if it exceeds the bucket limit. 715 */ 716 static void 717 zone_put_bucket(uma_zone_t zone, int domain, uma_bucket_t bucket, void *udata, 718 const bool ws) 719 { 720 uma_zone_domain_t zdom; 721 722 /* We don't cache empty buckets. This can happen after a reclaim. */ 723 if (bucket->ub_cnt == 0) 724 goto out; 725 zdom = zone_domain_lock(zone, domain); 726 727 /* 728 * Conditionally set the maximum number of items. 729 */ 730 zdom->uzd_nitems += bucket->ub_cnt; 731 if (__predict_true(zdom->uzd_nitems < zone->uz_bucket_max)) { 732 if (ws) 733 zone_domain_imax_set(zdom, zdom->uzd_nitems); 734 if (STAILQ_EMPTY(&zdom->uzd_buckets)) 735 zdom->uzd_seq = bucket->ub_seq; 736 STAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link); 737 ZDOM_UNLOCK(zdom); 738 return; 739 } 740 zdom->uzd_nitems -= bucket->ub_cnt; 741 ZDOM_UNLOCK(zdom); 742 out: 743 bucket_free(zone, bucket, udata); 744 } 745 746 /* Pops an item out of a per-cpu cache bucket. */ 747 static inline void * 748 cache_bucket_pop(uma_cache_t cache, uma_cache_bucket_t bucket) 749 { 750 void *item; 751 752 CRITICAL_ASSERT(curthread); 753 754 bucket->ucb_cnt--; 755 item = bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt]; 756 #ifdef INVARIANTS 757 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = NULL; 758 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 759 #endif 760 cache->uc_allocs++; 761 762 return (item); 763 } 764 765 /* Pushes an item into a per-cpu cache bucket. */ 766 static inline void 767 cache_bucket_push(uma_cache_t cache, uma_cache_bucket_t bucket, void *item) 768 { 769 770 CRITICAL_ASSERT(curthread); 771 KASSERT(bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] == NULL, 772 ("uma_zfree: Freeing to non free bucket index.")); 773 774 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = item; 775 bucket->ucb_cnt++; 776 cache->uc_frees++; 777 } 778 779 /* 780 * Unload a UMA bucket from a per-cpu cache. 781 */ 782 static inline uma_bucket_t 783 cache_bucket_unload(uma_cache_bucket_t bucket) 784 { 785 uma_bucket_t b; 786 787 b = bucket->ucb_bucket; 788 if (b != NULL) { 789 MPASS(b->ub_entries == bucket->ucb_entries); 790 b->ub_cnt = bucket->ucb_cnt; 791 bucket->ucb_bucket = NULL; 792 bucket->ucb_entries = bucket->ucb_cnt = 0; 793 } 794 795 return (b); 796 } 797 798 static inline uma_bucket_t 799 cache_bucket_unload_alloc(uma_cache_t cache) 800 { 801 802 return (cache_bucket_unload(&cache->uc_allocbucket)); 803 } 804 805 static inline uma_bucket_t 806 cache_bucket_unload_free(uma_cache_t cache) 807 { 808 809 return (cache_bucket_unload(&cache->uc_freebucket)); 810 } 811 812 static inline uma_bucket_t 813 cache_bucket_unload_cross(uma_cache_t cache) 814 { 815 816 return (cache_bucket_unload(&cache->uc_crossbucket)); 817 } 818 819 /* 820 * Load a bucket into a per-cpu cache bucket. 821 */ 822 static inline void 823 cache_bucket_load(uma_cache_bucket_t bucket, uma_bucket_t b) 824 { 825 826 CRITICAL_ASSERT(curthread); 827 MPASS(bucket->ucb_bucket == NULL); 828 MPASS(b->ub_seq == SMR_SEQ_INVALID); 829 830 bucket->ucb_bucket = b; 831 bucket->ucb_cnt = b->ub_cnt; 832 bucket->ucb_entries = b->ub_entries; 833 } 834 835 static inline void 836 cache_bucket_load_alloc(uma_cache_t cache, uma_bucket_t b) 837 { 838 839 cache_bucket_load(&cache->uc_allocbucket, b); 840 } 841 842 static inline void 843 cache_bucket_load_free(uma_cache_t cache, uma_bucket_t b) 844 { 845 846 cache_bucket_load(&cache->uc_freebucket, b); 847 } 848 849 #ifdef NUMA 850 static inline void 851 cache_bucket_load_cross(uma_cache_t cache, uma_bucket_t b) 852 { 853 854 cache_bucket_load(&cache->uc_crossbucket, b); 855 } 856 #endif 857 858 /* 859 * Copy and preserve ucb_spare. 860 */ 861 static inline void 862 cache_bucket_copy(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 863 { 864 865 b1->ucb_bucket = b2->ucb_bucket; 866 b1->ucb_entries = b2->ucb_entries; 867 b1->ucb_cnt = b2->ucb_cnt; 868 } 869 870 /* 871 * Swap two cache buckets. 872 */ 873 static inline void 874 cache_bucket_swap(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 875 { 876 struct uma_cache_bucket b3; 877 878 CRITICAL_ASSERT(curthread); 879 880 cache_bucket_copy(&b3, b1); 881 cache_bucket_copy(b1, b2); 882 cache_bucket_copy(b2, &b3); 883 } 884 885 /* 886 * Attempt to fetch a bucket from a zone on behalf of the current cpu cache. 887 */ 888 static uma_bucket_t 889 cache_fetch_bucket(uma_zone_t zone, uma_cache_t cache, int domain) 890 { 891 uma_zone_domain_t zdom; 892 uma_bucket_t bucket; 893 894 /* 895 * Avoid the lock if possible. 896 */ 897 zdom = ZDOM_GET(zone, domain); 898 if (zdom->uzd_nitems == 0) 899 return (NULL); 900 901 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) != 0 && 902 !smr_poll(zone->uz_smr, zdom->uzd_seq, false)) 903 return (NULL); 904 905 /* 906 * Check the zone's cache of buckets. 907 */ 908 zdom = zone_domain_lock(zone, domain); 909 if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) { 910 KASSERT(bucket->ub_cnt != 0, 911 ("cache_fetch_bucket: Returning an empty bucket.")); 912 return (bucket); 913 } 914 ZDOM_UNLOCK(zdom); 915 916 return (NULL); 917 } 918 919 static void 920 zone_log_warning(uma_zone_t zone) 921 { 922 static const struct timeval warninterval = { 300, 0 }; 923 924 if (!zone_warnings || zone->uz_warning == NULL) 925 return; 926 927 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 928 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 929 } 930 931 static inline void 932 zone_maxaction(uma_zone_t zone) 933 { 934 935 if (zone->uz_maxaction.ta_func != NULL) 936 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 937 } 938 939 /* 940 * Routine called by timeout which is used to fire off some time interval 941 * based calculations. (stats, hash size, etc.) 942 * 943 * Arguments: 944 * arg Unused 945 * 946 * Returns: 947 * Nothing 948 */ 949 static void 950 uma_timeout(void *unused) 951 { 952 bucket_enable(); 953 zone_foreach(zone_timeout, NULL); 954 955 /* Reschedule this event */ 956 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 957 } 958 959 /* 960 * Update the working set size estimate for the zone's bucket cache. 961 * The constants chosen here are somewhat arbitrary. With an update period of 962 * 20s (UMA_TIMEOUT), this estimate is dominated by zone activity over the 963 * last 100s. 964 */ 965 static void 966 zone_domain_update_wss(uma_zone_domain_t zdom) 967 { 968 long wss; 969 970 ZDOM_LOCK(zdom); 971 MPASS(zdom->uzd_imax >= zdom->uzd_imin); 972 wss = zdom->uzd_imax - zdom->uzd_imin; 973 zdom->uzd_imax = zdom->uzd_imin = zdom->uzd_nitems; 974 zdom->uzd_wss = (4 * wss + zdom->uzd_wss) / 5; 975 ZDOM_UNLOCK(zdom); 976 } 977 978 /* 979 * Routine to perform timeout driven calculations. This expands the 980 * hashes and does per cpu statistics aggregation. 981 * 982 * Returns nothing. 983 */ 984 static void 985 zone_timeout(uma_zone_t zone, void *unused) 986 { 987 uma_keg_t keg; 988 u_int slabs, pages; 989 990 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 991 goto update_wss; 992 993 keg = zone->uz_keg; 994 995 /* 996 * Hash zones are non-numa by definition so the first domain 997 * is the only one present. 998 */ 999 KEG_LOCK(keg, 0); 1000 pages = keg->uk_domain[0].ud_pages; 1001 1002 /* 1003 * Expand the keg hash table. 1004 * 1005 * This is done if the number of slabs is larger than the hash size. 1006 * What I'm trying to do here is completely reduce collisions. This 1007 * may be a little aggressive. Should I allow for two collisions max? 1008 */ 1009 if ((slabs = pages / keg->uk_ppera) > keg->uk_hash.uh_hashsize) { 1010 struct uma_hash newhash; 1011 struct uma_hash oldhash; 1012 int ret; 1013 1014 /* 1015 * This is so involved because allocating and freeing 1016 * while the keg lock is held will lead to deadlock. 1017 * I have to do everything in stages and check for 1018 * races. 1019 */ 1020 KEG_UNLOCK(keg, 0); 1021 ret = hash_alloc(&newhash, 1 << fls(slabs)); 1022 KEG_LOCK(keg, 0); 1023 if (ret) { 1024 if (hash_expand(&keg->uk_hash, &newhash)) { 1025 oldhash = keg->uk_hash; 1026 keg->uk_hash = newhash; 1027 } else 1028 oldhash = newhash; 1029 1030 KEG_UNLOCK(keg, 0); 1031 hash_free(&oldhash); 1032 goto update_wss; 1033 } 1034 } 1035 KEG_UNLOCK(keg, 0); 1036 1037 update_wss: 1038 for (int i = 0; i < vm_ndomains; i++) 1039 zone_domain_update_wss(ZDOM_GET(zone, i)); 1040 } 1041 1042 /* 1043 * Allocate and zero fill the next sized hash table from the appropriate 1044 * backing store. 1045 * 1046 * Arguments: 1047 * hash A new hash structure with the old hash size in uh_hashsize 1048 * 1049 * Returns: 1050 * 1 on success and 0 on failure. 1051 */ 1052 static int 1053 hash_alloc(struct uma_hash *hash, u_int size) 1054 { 1055 size_t alloc; 1056 1057 KASSERT(powerof2(size), ("hash size must be power of 2")); 1058 if (size > UMA_HASH_SIZE_INIT) { 1059 hash->uh_hashsize = size; 1060 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 1061 hash->uh_slab_hash = malloc(alloc, M_UMAHASH, M_NOWAIT); 1062 } else { 1063 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 1064 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 1065 UMA_ANYDOMAIN, M_WAITOK); 1066 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 1067 } 1068 if (hash->uh_slab_hash) { 1069 bzero(hash->uh_slab_hash, alloc); 1070 hash->uh_hashmask = hash->uh_hashsize - 1; 1071 return (1); 1072 } 1073 1074 return (0); 1075 } 1076 1077 /* 1078 * Expands the hash table for HASH zones. This is done from zone_timeout 1079 * to reduce collisions. This must not be done in the regular allocation 1080 * path, otherwise, we can recurse on the vm while allocating pages. 1081 * 1082 * Arguments: 1083 * oldhash The hash you want to expand 1084 * newhash The hash structure for the new table 1085 * 1086 * Returns: 1087 * Nothing 1088 * 1089 * Discussion: 1090 */ 1091 static int 1092 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 1093 { 1094 uma_hash_slab_t slab; 1095 u_int hval; 1096 u_int idx; 1097 1098 if (!newhash->uh_slab_hash) 1099 return (0); 1100 1101 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 1102 return (0); 1103 1104 /* 1105 * I need to investigate hash algorithms for resizing without a 1106 * full rehash. 1107 */ 1108 1109 for (idx = 0; idx < oldhash->uh_hashsize; idx++) 1110 while (!LIST_EMPTY(&oldhash->uh_slab_hash[idx])) { 1111 slab = LIST_FIRST(&oldhash->uh_slab_hash[idx]); 1112 LIST_REMOVE(slab, uhs_hlink); 1113 hval = UMA_HASH(newhash, slab->uhs_data); 1114 LIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 1115 slab, uhs_hlink); 1116 } 1117 1118 return (1); 1119 } 1120 1121 /* 1122 * Free the hash bucket to the appropriate backing store. 1123 * 1124 * Arguments: 1125 * slab_hash The hash bucket we're freeing 1126 * hashsize The number of entries in that hash bucket 1127 * 1128 * Returns: 1129 * Nothing 1130 */ 1131 static void 1132 hash_free(struct uma_hash *hash) 1133 { 1134 if (hash->uh_slab_hash == NULL) 1135 return; 1136 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 1137 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 1138 else 1139 free(hash->uh_slab_hash, M_UMAHASH); 1140 } 1141 1142 /* 1143 * Frees all outstanding items in a bucket 1144 * 1145 * Arguments: 1146 * zone The zone to free to, must be unlocked. 1147 * bucket The free/alloc bucket with items. 1148 * 1149 * Returns: 1150 * Nothing 1151 */ 1152 static void 1153 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 1154 { 1155 int i; 1156 1157 if (bucket->ub_cnt == 0) 1158 return; 1159 1160 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 1161 bucket->ub_seq != SMR_SEQ_INVALID) { 1162 smr_wait(zone->uz_smr, bucket->ub_seq); 1163 bucket->ub_seq = SMR_SEQ_INVALID; 1164 for (i = 0; i < bucket->ub_cnt; i++) 1165 item_dtor(zone, bucket->ub_bucket[i], 1166 zone->uz_size, NULL, SKIP_NONE); 1167 } 1168 if (zone->uz_fini) 1169 for (i = 0; i < bucket->ub_cnt; i++) 1170 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 1171 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 1172 if (zone->uz_max_items > 0) 1173 zone_free_limit(zone, bucket->ub_cnt); 1174 #ifdef INVARIANTS 1175 bzero(bucket->ub_bucket, sizeof(void *) * bucket->ub_cnt); 1176 #endif 1177 bucket->ub_cnt = 0; 1178 } 1179 1180 /* 1181 * Drains the per cpu caches for a zone. 1182 * 1183 * NOTE: This may only be called while the zone is being torn down, and not 1184 * during normal operation. This is necessary in order that we do not have 1185 * to migrate CPUs to drain the per-CPU caches. 1186 * 1187 * Arguments: 1188 * zone The zone to drain, must be unlocked. 1189 * 1190 * Returns: 1191 * Nothing 1192 */ 1193 static void 1194 cache_drain(uma_zone_t zone) 1195 { 1196 uma_cache_t cache; 1197 uma_bucket_t bucket; 1198 smr_seq_t seq; 1199 int cpu; 1200 1201 /* 1202 * XXX: It is safe to not lock the per-CPU caches, because we're 1203 * tearing down the zone anyway. I.e., there will be no further use 1204 * of the caches at this point. 1205 * 1206 * XXX: It would good to be able to assert that the zone is being 1207 * torn down to prevent improper use of cache_drain(). 1208 */ 1209 seq = SMR_SEQ_INVALID; 1210 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 1211 seq = smr_advance(zone->uz_smr); 1212 CPU_FOREACH(cpu) { 1213 cache = &zone->uz_cpu[cpu]; 1214 bucket = cache_bucket_unload_alloc(cache); 1215 if (bucket != NULL) 1216 bucket_free(zone, bucket, NULL); 1217 bucket = cache_bucket_unload_free(cache); 1218 if (bucket != NULL) { 1219 bucket->ub_seq = seq; 1220 bucket_free(zone, bucket, NULL); 1221 } 1222 bucket = cache_bucket_unload_cross(cache); 1223 if (bucket != NULL) { 1224 bucket->ub_seq = seq; 1225 bucket_free(zone, bucket, NULL); 1226 } 1227 } 1228 bucket_cache_reclaim(zone, true); 1229 } 1230 1231 static void 1232 cache_shrink(uma_zone_t zone, void *unused) 1233 { 1234 1235 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1236 return; 1237 1238 zone->uz_bucket_size = 1239 (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2; 1240 } 1241 1242 static void 1243 cache_drain_safe_cpu(uma_zone_t zone, void *unused) 1244 { 1245 uma_cache_t cache; 1246 uma_bucket_t b1, b2, b3; 1247 int domain; 1248 1249 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1250 return; 1251 1252 b1 = b2 = b3 = NULL; 1253 critical_enter(); 1254 cache = &zone->uz_cpu[curcpu]; 1255 domain = PCPU_GET(domain); 1256 b1 = cache_bucket_unload_alloc(cache); 1257 1258 /* 1259 * Don't flush SMR zone buckets. This leaves the zone without a 1260 * bucket and forces every free to synchronize(). 1261 */ 1262 if ((zone->uz_flags & UMA_ZONE_SMR) == 0) { 1263 b2 = cache_bucket_unload_free(cache); 1264 b3 = cache_bucket_unload_cross(cache); 1265 } 1266 critical_exit(); 1267 1268 if (b1 != NULL) 1269 zone_free_bucket(zone, b1, NULL, domain, false); 1270 if (b2 != NULL) 1271 zone_free_bucket(zone, b2, NULL, domain, false); 1272 if (b3 != NULL) { 1273 /* Adjust the domain so it goes to zone_free_cross. */ 1274 domain = (domain + 1) % vm_ndomains; 1275 zone_free_bucket(zone, b3, NULL, domain, false); 1276 } 1277 } 1278 1279 /* 1280 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 1281 * This is an expensive call because it needs to bind to all CPUs 1282 * one by one and enter a critical section on each of them in order 1283 * to safely access their cache buckets. 1284 * Zone lock must not be held on call this function. 1285 */ 1286 static void 1287 pcpu_cache_drain_safe(uma_zone_t zone) 1288 { 1289 int cpu; 1290 1291 /* 1292 * Polite bucket sizes shrinking was not enough, shrink aggressively. 1293 */ 1294 if (zone) 1295 cache_shrink(zone, NULL); 1296 else 1297 zone_foreach(cache_shrink, NULL); 1298 1299 CPU_FOREACH(cpu) { 1300 thread_lock(curthread); 1301 sched_bind(curthread, cpu); 1302 thread_unlock(curthread); 1303 1304 if (zone) 1305 cache_drain_safe_cpu(zone, NULL); 1306 else 1307 zone_foreach(cache_drain_safe_cpu, NULL); 1308 } 1309 thread_lock(curthread); 1310 sched_unbind(curthread); 1311 thread_unlock(curthread); 1312 } 1313 1314 /* 1315 * Reclaim cached buckets from a zone. All buckets are reclaimed if the caller 1316 * requested a drain, otherwise the per-domain caches are trimmed to either 1317 * estimated working set size. 1318 */ 1319 static void 1320 bucket_cache_reclaim(uma_zone_t zone, bool drain) 1321 { 1322 uma_zone_domain_t zdom; 1323 uma_bucket_t bucket; 1324 long target; 1325 int i; 1326 1327 /* 1328 * Shrink the zone bucket size to ensure that the per-CPU caches 1329 * don't grow too large. 1330 */ 1331 if (zone->uz_bucket_size > zone->uz_bucket_size_min) 1332 zone->uz_bucket_size--; 1333 1334 for (i = 0; i < vm_ndomains; i++) { 1335 /* 1336 * The cross bucket is partially filled and not part of 1337 * the item count. Reclaim it individually here. 1338 */ 1339 zdom = ZDOM_GET(zone, i); 1340 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 || drain) { 1341 ZONE_CROSS_LOCK(zone); 1342 bucket = zdom->uzd_cross; 1343 zdom->uzd_cross = NULL; 1344 ZONE_CROSS_UNLOCK(zone); 1345 if (bucket != NULL) 1346 bucket_free(zone, bucket, NULL); 1347 } 1348 1349 /* 1350 * If we were asked to drain the zone, we are done only once 1351 * this bucket cache is empty. Otherwise, we reclaim items in 1352 * excess of the zone's estimated working set size. If the 1353 * difference nitems - imin is larger than the WSS estimate, 1354 * then the estimate will grow at the end of this interval and 1355 * we ignore the historical average. 1356 */ 1357 ZDOM_LOCK(zdom); 1358 target = drain ? 0 : lmax(zdom->uzd_wss, zdom->uzd_nitems - 1359 zdom->uzd_imin); 1360 while (zdom->uzd_nitems > target) { 1361 bucket = zone_fetch_bucket(zone, zdom, true); 1362 if (bucket == NULL) 1363 break; 1364 bucket_free(zone, bucket, NULL); 1365 ZDOM_LOCK(zdom); 1366 } 1367 ZDOM_UNLOCK(zdom); 1368 } 1369 } 1370 1371 static void 1372 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 1373 { 1374 uint8_t *mem; 1375 int i; 1376 uint8_t flags; 1377 1378 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 1379 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 1380 1381 mem = slab_data(slab, keg); 1382 flags = slab->us_flags; 1383 i = start; 1384 if (keg->uk_fini != NULL) { 1385 for (i--; i > -1; i--) 1386 #ifdef INVARIANTS 1387 /* 1388 * trash_fini implies that dtor was trash_dtor. trash_fini 1389 * would check that memory hasn't been modified since free, 1390 * which executed trash_dtor. 1391 * That's why we need to run uma_dbg_kskip() check here, 1392 * albeit we don't make skip check for other init/fini 1393 * invocations. 1394 */ 1395 if (!uma_dbg_kskip(keg, slab_item(slab, keg, i)) || 1396 keg->uk_fini != trash_fini) 1397 #endif 1398 keg->uk_fini(slab_item(slab, keg, i), keg->uk_size); 1399 } 1400 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) 1401 zone_free_item(slabzone(keg->uk_ipers), slab_tohashslab(slab), 1402 NULL, SKIP_NONE); 1403 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 1404 uma_total_dec(PAGE_SIZE * keg->uk_ppera); 1405 } 1406 1407 /* 1408 * Frees pages from a keg back to the system. This is done on demand from 1409 * the pageout daemon. 1410 * 1411 * Returns nothing. 1412 */ 1413 static void 1414 keg_drain(uma_keg_t keg) 1415 { 1416 struct slabhead freeslabs; 1417 uma_domain_t dom; 1418 uma_slab_t slab, tmp; 1419 int i, n; 1420 1421 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 1422 return; 1423 1424 for (i = 0; i < vm_ndomains; i++) { 1425 CTR4(KTR_UMA, "keg_drain %s(%p) domain %d free items: %u", 1426 keg->uk_name, keg, i, dom->ud_free_items); 1427 dom = &keg->uk_domain[i]; 1428 LIST_INIT(&freeslabs); 1429 1430 KEG_LOCK(keg, i); 1431 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) { 1432 LIST_FOREACH(slab, &dom->ud_free_slab, us_link) 1433 UMA_HASH_REMOVE(&keg->uk_hash, slab); 1434 } 1435 n = dom->ud_free_slabs; 1436 LIST_SWAP(&freeslabs, &dom->ud_free_slab, uma_slab, us_link); 1437 dom->ud_free_slabs = 0; 1438 dom->ud_free_items -= n * keg->uk_ipers; 1439 dom->ud_pages -= n * keg->uk_ppera; 1440 KEG_UNLOCK(keg, i); 1441 1442 LIST_FOREACH_SAFE(slab, &freeslabs, us_link, tmp) 1443 keg_free_slab(keg, slab, keg->uk_ipers); 1444 } 1445 } 1446 1447 static void 1448 zone_reclaim(uma_zone_t zone, int waitok, bool drain) 1449 { 1450 1451 /* 1452 * Set draining to interlock with zone_dtor() so we can release our 1453 * locks as we go. Only dtor() should do a WAITOK call since it 1454 * is the only call that knows the structure will still be available 1455 * when it wakes up. 1456 */ 1457 ZONE_LOCK(zone); 1458 while (zone->uz_flags & UMA_ZFLAG_RECLAIMING) { 1459 if (waitok == M_NOWAIT) 1460 goto out; 1461 msleep(zone, &ZDOM_GET(zone, 0)->uzd_lock, PVM, "zonedrain", 1462 1); 1463 } 1464 zone->uz_flags |= UMA_ZFLAG_RECLAIMING; 1465 ZONE_UNLOCK(zone); 1466 bucket_cache_reclaim(zone, drain); 1467 1468 /* 1469 * The DRAINING flag protects us from being freed while 1470 * we're running. Normally the uma_rwlock would protect us but we 1471 * must be able to release and acquire the right lock for each keg. 1472 */ 1473 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) 1474 keg_drain(zone->uz_keg); 1475 ZONE_LOCK(zone); 1476 zone->uz_flags &= ~UMA_ZFLAG_RECLAIMING; 1477 wakeup(zone); 1478 out: 1479 ZONE_UNLOCK(zone); 1480 } 1481 1482 static void 1483 zone_drain(uma_zone_t zone, void *unused) 1484 { 1485 1486 zone_reclaim(zone, M_NOWAIT, true); 1487 } 1488 1489 static void 1490 zone_trim(uma_zone_t zone, void *unused) 1491 { 1492 1493 zone_reclaim(zone, M_NOWAIT, false); 1494 } 1495 1496 /* 1497 * Allocate a new slab for a keg and inserts it into the partial slab list. 1498 * The keg should be unlocked on entry. If the allocation succeeds it will 1499 * be locked on return. 1500 * 1501 * Arguments: 1502 * flags Wait flags for the item initialization routine 1503 * aflags Wait flags for the slab allocation 1504 * 1505 * Returns: 1506 * The slab that was allocated or NULL if there is no memory and the 1507 * caller specified M_NOWAIT. 1508 */ 1509 static uma_slab_t 1510 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags, 1511 int aflags) 1512 { 1513 uma_domain_t dom; 1514 uma_alloc allocf; 1515 uma_slab_t slab; 1516 unsigned long size; 1517 uint8_t *mem; 1518 uint8_t sflags; 1519 int i; 1520 1521 KASSERT(domain >= 0 && domain < vm_ndomains, 1522 ("keg_alloc_slab: domain %d out of range", domain)); 1523 1524 allocf = keg->uk_allocf; 1525 slab = NULL; 1526 mem = NULL; 1527 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) { 1528 uma_hash_slab_t hslab; 1529 hslab = zone_alloc_item(slabzone(keg->uk_ipers), NULL, 1530 domain, aflags); 1531 if (hslab == NULL) 1532 goto fail; 1533 slab = &hslab->uhs_slab; 1534 } 1535 1536 /* 1537 * This reproduces the old vm_zone behavior of zero filling pages the 1538 * first time they are added to a zone. 1539 * 1540 * Malloced items are zeroed in uma_zalloc. 1541 */ 1542 1543 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1544 aflags |= M_ZERO; 1545 else 1546 aflags &= ~M_ZERO; 1547 1548 if (keg->uk_flags & UMA_ZONE_NODUMP) 1549 aflags |= M_NODUMP; 1550 1551 /* zone is passed for legacy reasons. */ 1552 size = keg->uk_ppera * PAGE_SIZE; 1553 mem = allocf(zone, size, domain, &sflags, aflags); 1554 if (mem == NULL) { 1555 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) 1556 zone_free_item(slabzone(keg->uk_ipers), 1557 slab_tohashslab(slab), NULL, SKIP_NONE); 1558 goto fail; 1559 } 1560 uma_total_inc(size); 1561 1562 /* For HASH zones all pages go to the same uma_domain. */ 1563 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 1564 domain = 0; 1565 1566 /* Point the slab into the allocated memory */ 1567 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) 1568 slab = (uma_slab_t )(mem + keg->uk_pgoff); 1569 else 1570 slab_tohashslab(slab)->uhs_data = mem; 1571 1572 if (keg->uk_flags & UMA_ZFLAG_VTOSLAB) 1573 for (i = 0; i < keg->uk_ppera; i++) 1574 vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE), 1575 zone, slab); 1576 1577 slab->us_freecount = keg->uk_ipers; 1578 slab->us_flags = sflags; 1579 slab->us_domain = domain; 1580 1581 BIT_FILL(keg->uk_ipers, &slab->us_free); 1582 #ifdef INVARIANTS 1583 BIT_ZERO(keg->uk_ipers, slab_dbg_bits(slab, keg)); 1584 #endif 1585 1586 if (keg->uk_init != NULL) { 1587 for (i = 0; i < keg->uk_ipers; i++) 1588 if (keg->uk_init(slab_item(slab, keg, i), 1589 keg->uk_size, flags) != 0) 1590 break; 1591 if (i != keg->uk_ipers) { 1592 keg_free_slab(keg, slab, i); 1593 goto fail; 1594 } 1595 } 1596 KEG_LOCK(keg, domain); 1597 1598 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1599 slab, keg->uk_name, keg); 1600 1601 if (keg->uk_flags & UMA_ZFLAG_HASH) 1602 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1603 1604 /* 1605 * If we got a slab here it's safe to mark it partially used 1606 * and return. We assume that the caller is going to remove 1607 * at least one item. 1608 */ 1609 dom = &keg->uk_domain[domain]; 1610 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 1611 dom->ud_pages += keg->uk_ppera; 1612 dom->ud_free_items += keg->uk_ipers; 1613 1614 return (slab); 1615 1616 fail: 1617 return (NULL); 1618 } 1619 1620 /* 1621 * This function is intended to be used early on in place of page_alloc() so 1622 * that we may use the boot time page cache to satisfy allocations before 1623 * the VM is ready. 1624 */ 1625 static void * 1626 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1627 int wait) 1628 { 1629 vm_paddr_t pa; 1630 vm_page_t m; 1631 void *mem; 1632 int pages; 1633 int i; 1634 1635 pages = howmany(bytes, PAGE_SIZE); 1636 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1637 1638 *pflag = UMA_SLAB_BOOT; 1639 m = vm_page_alloc_contig_domain(NULL, 0, domain, 1640 malloc2vm_flags(wait) | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED, pages, 1641 (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT); 1642 if (m == NULL) 1643 return (NULL); 1644 1645 pa = VM_PAGE_TO_PHYS(m); 1646 for (i = 0; i < pages; i++, pa += PAGE_SIZE) { 1647 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 1648 defined(__riscv) || defined(__powerpc64__) 1649 if ((wait & M_NODUMP) == 0) 1650 dump_add_page(pa); 1651 #endif 1652 } 1653 /* Allocate KVA and indirectly advance bootmem. */ 1654 mem = (void *)pmap_map(&bootmem, m->phys_addr, 1655 m->phys_addr + (pages * PAGE_SIZE), VM_PROT_READ | VM_PROT_WRITE); 1656 if ((wait & M_ZERO) != 0) 1657 bzero(mem, pages * PAGE_SIZE); 1658 1659 return (mem); 1660 } 1661 1662 static void 1663 startup_free(void *mem, vm_size_t bytes) 1664 { 1665 vm_offset_t va; 1666 vm_page_t m; 1667 1668 va = (vm_offset_t)mem; 1669 m = PHYS_TO_VM_PAGE(pmap_kextract(va)); 1670 pmap_remove(kernel_pmap, va, va + bytes); 1671 for (; bytes != 0; bytes -= PAGE_SIZE, m++) { 1672 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 1673 defined(__riscv) || defined(__powerpc64__) 1674 dump_drop_page(VM_PAGE_TO_PHYS(m)); 1675 #endif 1676 vm_page_unwire_noq(m); 1677 vm_page_free(m); 1678 } 1679 } 1680 1681 /* 1682 * Allocates a number of pages from the system 1683 * 1684 * Arguments: 1685 * bytes The number of bytes requested 1686 * wait Shall we wait? 1687 * 1688 * Returns: 1689 * A pointer to the alloced memory or possibly 1690 * NULL if M_NOWAIT is set. 1691 */ 1692 static void * 1693 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1694 int wait) 1695 { 1696 void *p; /* Returned page */ 1697 1698 *pflag = UMA_SLAB_KERNEL; 1699 p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait); 1700 1701 return (p); 1702 } 1703 1704 static void * 1705 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1706 int wait) 1707 { 1708 struct pglist alloctail; 1709 vm_offset_t addr, zkva; 1710 int cpu, flags; 1711 vm_page_t p, p_next; 1712 #ifdef NUMA 1713 struct pcpu *pc; 1714 #endif 1715 1716 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE); 1717 1718 TAILQ_INIT(&alloctail); 1719 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1720 malloc2vm_flags(wait); 1721 *pflag = UMA_SLAB_KERNEL; 1722 for (cpu = 0; cpu <= mp_maxid; cpu++) { 1723 if (CPU_ABSENT(cpu)) { 1724 p = vm_page_alloc(NULL, 0, flags); 1725 } else { 1726 #ifndef NUMA 1727 p = vm_page_alloc(NULL, 0, flags); 1728 #else 1729 pc = pcpu_find(cpu); 1730 if (__predict_false(VM_DOMAIN_EMPTY(pc->pc_domain))) 1731 p = NULL; 1732 else 1733 p = vm_page_alloc_domain(NULL, 0, 1734 pc->pc_domain, flags); 1735 if (__predict_false(p == NULL)) 1736 p = vm_page_alloc(NULL, 0, flags); 1737 #endif 1738 } 1739 if (__predict_false(p == NULL)) 1740 goto fail; 1741 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1742 } 1743 if ((addr = kva_alloc(bytes)) == 0) 1744 goto fail; 1745 zkva = addr; 1746 TAILQ_FOREACH(p, &alloctail, listq) { 1747 pmap_qenter(zkva, &p, 1); 1748 zkva += PAGE_SIZE; 1749 } 1750 return ((void*)addr); 1751 fail: 1752 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1753 vm_page_unwire_noq(p); 1754 vm_page_free(p); 1755 } 1756 return (NULL); 1757 } 1758 1759 /* 1760 * Allocates a number of pages from within an object 1761 * 1762 * Arguments: 1763 * bytes The number of bytes requested 1764 * wait Shall we wait? 1765 * 1766 * Returns: 1767 * A pointer to the alloced memory or possibly 1768 * NULL if M_NOWAIT is set. 1769 */ 1770 static void * 1771 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 1772 int wait) 1773 { 1774 TAILQ_HEAD(, vm_page) alloctail; 1775 u_long npages; 1776 vm_offset_t retkva, zkva; 1777 vm_page_t p, p_next; 1778 uma_keg_t keg; 1779 1780 TAILQ_INIT(&alloctail); 1781 keg = zone->uz_keg; 1782 1783 npages = howmany(bytes, PAGE_SIZE); 1784 while (npages > 0) { 1785 p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT | 1786 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1787 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK : 1788 VM_ALLOC_NOWAIT)); 1789 if (p != NULL) { 1790 /* 1791 * Since the page does not belong to an object, its 1792 * listq is unused. 1793 */ 1794 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1795 npages--; 1796 continue; 1797 } 1798 /* 1799 * Page allocation failed, free intermediate pages and 1800 * exit. 1801 */ 1802 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1803 vm_page_unwire_noq(p); 1804 vm_page_free(p); 1805 } 1806 return (NULL); 1807 } 1808 *flags = UMA_SLAB_PRIV; 1809 zkva = keg->uk_kva + 1810 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1811 retkva = zkva; 1812 TAILQ_FOREACH(p, &alloctail, listq) { 1813 pmap_qenter(zkva, &p, 1); 1814 zkva += PAGE_SIZE; 1815 } 1816 1817 return ((void *)retkva); 1818 } 1819 1820 /* 1821 * Allocate physically contiguous pages. 1822 */ 1823 static void * 1824 contig_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1825 int wait) 1826 { 1827 1828 *pflag = UMA_SLAB_KERNEL; 1829 return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain), 1830 bytes, wait, 0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT)); 1831 } 1832 1833 /* 1834 * Frees a number of pages to the system 1835 * 1836 * Arguments: 1837 * mem A pointer to the memory to be freed 1838 * size The size of the memory being freed 1839 * flags The original p->us_flags field 1840 * 1841 * Returns: 1842 * Nothing 1843 */ 1844 static void 1845 page_free(void *mem, vm_size_t size, uint8_t flags) 1846 { 1847 1848 if ((flags & UMA_SLAB_BOOT) != 0) { 1849 startup_free(mem, size); 1850 return; 1851 } 1852 1853 KASSERT((flags & UMA_SLAB_KERNEL) != 0, 1854 ("UMA: page_free used with invalid flags %x", flags)); 1855 1856 kmem_free((vm_offset_t)mem, size); 1857 } 1858 1859 /* 1860 * Frees pcpu zone allocations 1861 * 1862 * Arguments: 1863 * mem A pointer to the memory to be freed 1864 * size The size of the memory being freed 1865 * flags The original p->us_flags field 1866 * 1867 * Returns: 1868 * Nothing 1869 */ 1870 static void 1871 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags) 1872 { 1873 vm_offset_t sva, curva; 1874 vm_paddr_t paddr; 1875 vm_page_t m; 1876 1877 MPASS(size == (mp_maxid+1)*PAGE_SIZE); 1878 1879 if ((flags & UMA_SLAB_BOOT) != 0) { 1880 startup_free(mem, size); 1881 return; 1882 } 1883 1884 sva = (vm_offset_t)mem; 1885 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) { 1886 paddr = pmap_kextract(curva); 1887 m = PHYS_TO_VM_PAGE(paddr); 1888 vm_page_unwire_noq(m); 1889 vm_page_free(m); 1890 } 1891 pmap_qremove(sva, size >> PAGE_SHIFT); 1892 kva_free(sva, size); 1893 } 1894 1895 /* 1896 * Zero fill initializer 1897 * 1898 * Arguments/Returns follow uma_init specifications 1899 */ 1900 static int 1901 zero_init(void *mem, int size, int flags) 1902 { 1903 bzero(mem, size); 1904 return (0); 1905 } 1906 1907 #ifdef INVARIANTS 1908 static struct noslabbits * 1909 slab_dbg_bits(uma_slab_t slab, uma_keg_t keg) 1910 { 1911 1912 return ((void *)((char *)&slab->us_free + BITSET_SIZE(keg->uk_ipers))); 1913 } 1914 #endif 1915 1916 /* 1917 * Actual size of embedded struct slab (!OFFPAGE). 1918 */ 1919 static size_t 1920 slab_sizeof(int nitems) 1921 { 1922 size_t s; 1923 1924 s = sizeof(struct uma_slab) + BITSET_SIZE(nitems) * SLAB_BITSETS; 1925 return (roundup(s, UMA_ALIGN_PTR + 1)); 1926 } 1927 1928 #define UMA_FIXPT_SHIFT 31 1929 #define UMA_FRAC_FIXPT(n, d) \ 1930 ((uint32_t)(((uint64_t)(n) << UMA_FIXPT_SHIFT) / (d))) 1931 #define UMA_FIXPT_PCT(f) \ 1932 ((u_int)(((uint64_t)100 * (f)) >> UMA_FIXPT_SHIFT)) 1933 #define UMA_PCT_FIXPT(pct) UMA_FRAC_FIXPT((pct), 100) 1934 #define UMA_MIN_EFF UMA_PCT_FIXPT(100 - UMA_MAX_WASTE) 1935 1936 /* 1937 * Compute the number of items that will fit in a slab. If hdr is true, the 1938 * item count may be limited to provide space in the slab for an inline slab 1939 * header. Otherwise, all slab space will be provided for item storage. 1940 */ 1941 static u_int 1942 slab_ipers_hdr(u_int size, u_int rsize, u_int slabsize, bool hdr) 1943 { 1944 u_int ipers; 1945 u_int padpi; 1946 1947 /* The padding between items is not needed after the last item. */ 1948 padpi = rsize - size; 1949 1950 if (hdr) { 1951 /* 1952 * Start with the maximum item count and remove items until 1953 * the slab header first alongside the allocatable memory. 1954 */ 1955 for (ipers = MIN(SLAB_MAX_SETSIZE, 1956 (slabsize + padpi - slab_sizeof(1)) / rsize); 1957 ipers > 0 && 1958 ipers * rsize - padpi + slab_sizeof(ipers) > slabsize; 1959 ipers--) 1960 continue; 1961 } else { 1962 ipers = MIN((slabsize + padpi) / rsize, SLAB_MAX_SETSIZE); 1963 } 1964 1965 return (ipers); 1966 } 1967 1968 struct keg_layout_result { 1969 u_int format; 1970 u_int slabsize; 1971 u_int ipers; 1972 u_int eff; 1973 }; 1974 1975 static void 1976 keg_layout_one(uma_keg_t keg, u_int rsize, u_int slabsize, u_int fmt, 1977 struct keg_layout_result *kl) 1978 { 1979 u_int total; 1980 1981 kl->format = fmt; 1982 kl->slabsize = slabsize; 1983 1984 /* Handle INTERNAL as inline with an extra page. */ 1985 if ((fmt & UMA_ZFLAG_INTERNAL) != 0) { 1986 kl->format &= ~UMA_ZFLAG_INTERNAL; 1987 kl->slabsize += PAGE_SIZE; 1988 } 1989 1990 kl->ipers = slab_ipers_hdr(keg->uk_size, rsize, kl->slabsize, 1991 (fmt & UMA_ZFLAG_OFFPAGE) == 0); 1992 1993 /* Account for memory used by an offpage slab header. */ 1994 total = kl->slabsize; 1995 if ((fmt & UMA_ZFLAG_OFFPAGE) != 0) 1996 total += slabzone(kl->ipers)->uz_keg->uk_rsize; 1997 1998 kl->eff = UMA_FRAC_FIXPT(kl->ipers * rsize, total); 1999 } 2000 2001 /* 2002 * Determine the format of a uma keg. This determines where the slab header 2003 * will be placed (inline or offpage) and calculates ipers, rsize, and ppera. 2004 * 2005 * Arguments 2006 * keg The zone we should initialize 2007 * 2008 * Returns 2009 * Nothing 2010 */ 2011 static void 2012 keg_layout(uma_keg_t keg) 2013 { 2014 struct keg_layout_result kl = {}, kl_tmp; 2015 u_int fmts[2]; 2016 u_int alignsize; 2017 u_int nfmt; 2018 u_int pages; 2019 u_int rsize; 2020 u_int slabsize; 2021 u_int i, j; 2022 2023 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 2024 (keg->uk_size <= UMA_PCPU_ALLOC_SIZE && 2025 (keg->uk_flags & UMA_ZONE_CACHESPREAD) == 0), 2026 ("%s: cannot configure for PCPU: keg=%s, size=%u, flags=0x%b", 2027 __func__, keg->uk_name, keg->uk_size, keg->uk_flags, 2028 PRINT_UMA_ZFLAGS)); 2029 KASSERT((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) == 0 || 2030 (keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0, 2031 ("%s: incompatible flags 0x%b", __func__, keg->uk_flags, 2032 PRINT_UMA_ZFLAGS)); 2033 2034 alignsize = keg->uk_align + 1; 2035 2036 /* 2037 * Calculate the size of each allocation (rsize) according to 2038 * alignment. If the requested size is smaller than we have 2039 * allocation bits for we round it up. 2040 */ 2041 rsize = MAX(keg->uk_size, UMA_SMALLEST_UNIT); 2042 rsize = roundup2(rsize, alignsize); 2043 2044 if ((keg->uk_flags & UMA_ZONE_CACHESPREAD) != 0) { 2045 /* 2046 * We want one item to start on every align boundary in a page. 2047 * To do this we will span pages. We will also extend the item 2048 * by the size of align if it is an even multiple of align. 2049 * Otherwise, it would fall on the same boundary every time. 2050 */ 2051 if ((rsize & alignsize) == 0) 2052 rsize += alignsize; 2053 slabsize = rsize * (PAGE_SIZE / alignsize); 2054 slabsize = MIN(slabsize, rsize * SLAB_MAX_SETSIZE); 2055 slabsize = MIN(slabsize, UMA_CACHESPREAD_MAX_SIZE); 2056 slabsize = round_page(slabsize); 2057 } else { 2058 /* 2059 * Start with a slab size of as many pages as it takes to 2060 * represent a single item. We will try to fit as many 2061 * additional items into the slab as possible. 2062 */ 2063 slabsize = round_page(keg->uk_size); 2064 } 2065 2066 /* Build a list of all of the available formats for this keg. */ 2067 nfmt = 0; 2068 2069 /* Evaluate an inline slab layout. */ 2070 if ((keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0) 2071 fmts[nfmt++] = 0; 2072 2073 /* TODO: vm_page-embedded slab. */ 2074 2075 /* 2076 * We can't do OFFPAGE if we're internal or if we've been 2077 * asked to not go to the VM for buckets. If we do this we 2078 * may end up going to the VM for slabs which we do not want 2079 * to do if we're UMA_ZONE_VM, which clearly forbids it. 2080 * In those cases, evaluate a pseudo-format called INTERNAL 2081 * which has an inline slab header and one extra page to 2082 * guarantee that it fits. 2083 * 2084 * Otherwise, see if using an OFFPAGE slab will improve our 2085 * efficiency. 2086 */ 2087 if ((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) != 0) 2088 fmts[nfmt++] = UMA_ZFLAG_INTERNAL; 2089 else 2090 fmts[nfmt++] = UMA_ZFLAG_OFFPAGE; 2091 2092 /* 2093 * Choose a slab size and format which satisfy the minimum efficiency. 2094 * Prefer the smallest slab size that meets the constraints. 2095 * 2096 * Start with a minimum slab size, to accommodate CACHESPREAD. Then, 2097 * for small items (up to PAGE_SIZE), the iteration increment is one 2098 * page; and for large items, the increment is one item. 2099 */ 2100 i = (slabsize + rsize - keg->uk_size) / MAX(PAGE_SIZE, rsize); 2101 KASSERT(i >= 1, ("keg %s(%p) flags=0x%b slabsize=%u, rsize=%u, i=%u", 2102 keg->uk_name, keg, keg->uk_flags, PRINT_UMA_ZFLAGS, slabsize, 2103 rsize, i)); 2104 for ( ; ; i++) { 2105 slabsize = (rsize <= PAGE_SIZE) ? ptoa(i) : 2106 round_page(rsize * (i - 1) + keg->uk_size); 2107 2108 for (j = 0; j < nfmt; j++) { 2109 /* Only if we have no viable format yet. */ 2110 if ((fmts[j] & UMA_ZFLAG_INTERNAL) != 0 && 2111 kl.ipers > 0) 2112 continue; 2113 2114 keg_layout_one(keg, rsize, slabsize, fmts[j], &kl_tmp); 2115 if (kl_tmp.eff <= kl.eff) 2116 continue; 2117 2118 kl = kl_tmp; 2119 2120 CTR6(KTR_UMA, "keg %s layout: format %#x " 2121 "(ipers %u * rsize %u) / slabsize %#x = %u%% eff", 2122 keg->uk_name, kl.format, kl.ipers, rsize, 2123 kl.slabsize, UMA_FIXPT_PCT(kl.eff)); 2124 2125 /* Stop when we reach the minimum efficiency. */ 2126 if (kl.eff >= UMA_MIN_EFF) 2127 break; 2128 } 2129 2130 if (kl.eff >= UMA_MIN_EFF || !multipage_slabs || 2131 slabsize >= SLAB_MAX_SETSIZE * rsize || 2132 (keg->uk_flags & (UMA_ZONE_PCPU | UMA_ZONE_CONTIG)) != 0) 2133 break; 2134 } 2135 2136 pages = atop(kl.slabsize); 2137 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 2138 pages *= mp_maxid + 1; 2139 2140 keg->uk_rsize = rsize; 2141 keg->uk_ipers = kl.ipers; 2142 keg->uk_ppera = pages; 2143 keg->uk_flags |= kl.format; 2144 2145 /* 2146 * How do we find the slab header if it is offpage or if not all item 2147 * start addresses are in the same page? We could solve the latter 2148 * case with vaddr alignment, but we don't. 2149 */ 2150 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0 || 2151 (keg->uk_ipers - 1) * rsize >= PAGE_SIZE) { 2152 if ((keg->uk_flags & UMA_ZONE_NOTPAGE) != 0) 2153 keg->uk_flags |= UMA_ZFLAG_HASH; 2154 else 2155 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2156 } 2157 2158 CTR6(KTR_UMA, "%s: keg=%s, flags=%#x, rsize=%u, ipers=%u, ppera=%u", 2159 __func__, keg->uk_name, keg->uk_flags, rsize, keg->uk_ipers, 2160 pages); 2161 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE, 2162 ("%s: keg=%s, flags=0x%b, rsize=%u, ipers=%u, ppera=%u", __func__, 2163 keg->uk_name, keg->uk_flags, PRINT_UMA_ZFLAGS, rsize, 2164 keg->uk_ipers, pages)); 2165 } 2166 2167 /* 2168 * Keg header ctor. This initializes all fields, locks, etc. And inserts 2169 * the keg onto the global keg list. 2170 * 2171 * Arguments/Returns follow uma_ctor specifications 2172 * udata Actually uma_kctor_args 2173 */ 2174 static int 2175 keg_ctor(void *mem, int size, void *udata, int flags) 2176 { 2177 struct uma_kctor_args *arg = udata; 2178 uma_keg_t keg = mem; 2179 uma_zone_t zone; 2180 int i; 2181 2182 bzero(keg, size); 2183 keg->uk_size = arg->size; 2184 keg->uk_init = arg->uminit; 2185 keg->uk_fini = arg->fini; 2186 keg->uk_align = arg->align; 2187 keg->uk_reserve = 0; 2188 keg->uk_flags = arg->flags; 2189 2190 /* 2191 * We use a global round-robin policy by default. Zones with 2192 * UMA_ZONE_FIRSTTOUCH set will use first-touch instead, in which 2193 * case the iterator is never run. 2194 */ 2195 keg->uk_dr.dr_policy = DOMAINSET_RR(); 2196 keg->uk_dr.dr_iter = 0; 2197 2198 /* 2199 * The primary zone is passed to us at keg-creation time. 2200 */ 2201 zone = arg->zone; 2202 keg->uk_name = zone->uz_name; 2203 2204 if (arg->flags & UMA_ZONE_ZINIT) 2205 keg->uk_init = zero_init; 2206 2207 if (arg->flags & UMA_ZONE_MALLOC) 2208 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2209 2210 #ifndef SMP 2211 keg->uk_flags &= ~UMA_ZONE_PCPU; 2212 #endif 2213 2214 keg_layout(keg); 2215 2216 /* 2217 * Use a first-touch NUMA policy for kegs that pmap_extract() will 2218 * work on. Use round-robin for everything else. 2219 * 2220 * Zones may override the default by specifying either. 2221 */ 2222 #ifdef NUMA 2223 if ((keg->uk_flags & 2224 (UMA_ZONE_ROUNDROBIN | UMA_ZFLAG_CACHE | UMA_ZONE_NOTPAGE)) == 0) 2225 keg->uk_flags |= UMA_ZONE_FIRSTTOUCH; 2226 else if ((keg->uk_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2227 keg->uk_flags |= UMA_ZONE_ROUNDROBIN; 2228 #endif 2229 2230 /* 2231 * If we haven't booted yet we need allocations to go through the 2232 * startup cache until the vm is ready. 2233 */ 2234 #ifdef UMA_MD_SMALL_ALLOC 2235 if (keg->uk_ppera == 1) 2236 keg->uk_allocf = uma_small_alloc; 2237 else 2238 #endif 2239 if (booted < BOOT_KVA) 2240 keg->uk_allocf = startup_alloc; 2241 else if (keg->uk_flags & UMA_ZONE_PCPU) 2242 keg->uk_allocf = pcpu_page_alloc; 2243 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && keg->uk_ppera > 1) 2244 keg->uk_allocf = contig_alloc; 2245 else 2246 keg->uk_allocf = page_alloc; 2247 #ifdef UMA_MD_SMALL_ALLOC 2248 if (keg->uk_ppera == 1) 2249 keg->uk_freef = uma_small_free; 2250 else 2251 #endif 2252 if (keg->uk_flags & UMA_ZONE_PCPU) 2253 keg->uk_freef = pcpu_page_free; 2254 else 2255 keg->uk_freef = page_free; 2256 2257 /* 2258 * Initialize keg's locks. 2259 */ 2260 for (i = 0; i < vm_ndomains; i++) 2261 KEG_LOCK_INIT(keg, i, (arg->flags & UMA_ZONE_MTXCLASS)); 2262 2263 /* 2264 * If we're putting the slab header in the actual page we need to 2265 * figure out where in each page it goes. See slab_sizeof 2266 * definition. 2267 */ 2268 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) { 2269 size_t shsize; 2270 2271 shsize = slab_sizeof(keg->uk_ipers); 2272 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize; 2273 /* 2274 * The only way the following is possible is if with our 2275 * UMA_ALIGN_PTR adjustments we are now bigger than 2276 * UMA_SLAB_SIZE. I haven't checked whether this is 2277 * mathematically possible for all cases, so we make 2278 * sure here anyway. 2279 */ 2280 KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera, 2281 ("zone %s ipers %d rsize %d size %d slab won't fit", 2282 zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size)); 2283 } 2284 2285 if (keg->uk_flags & UMA_ZFLAG_HASH) 2286 hash_alloc(&keg->uk_hash, 0); 2287 2288 CTR3(KTR_UMA, "keg_ctor %p zone %s(%p)", keg, zone->uz_name, zone); 2289 2290 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 2291 2292 rw_wlock(&uma_rwlock); 2293 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 2294 rw_wunlock(&uma_rwlock); 2295 return (0); 2296 } 2297 2298 static void 2299 zone_kva_available(uma_zone_t zone, void *unused) 2300 { 2301 uma_keg_t keg; 2302 2303 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 2304 return; 2305 KEG_GET(zone, keg); 2306 2307 if (keg->uk_allocf == startup_alloc) { 2308 /* Switch to the real allocator. */ 2309 if (keg->uk_flags & UMA_ZONE_PCPU) 2310 keg->uk_allocf = pcpu_page_alloc; 2311 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && 2312 keg->uk_ppera > 1) 2313 keg->uk_allocf = contig_alloc; 2314 else 2315 keg->uk_allocf = page_alloc; 2316 } 2317 } 2318 2319 static void 2320 zone_alloc_counters(uma_zone_t zone, void *unused) 2321 { 2322 2323 zone->uz_allocs = counter_u64_alloc(M_WAITOK); 2324 zone->uz_frees = counter_u64_alloc(M_WAITOK); 2325 zone->uz_fails = counter_u64_alloc(M_WAITOK); 2326 zone->uz_xdomain = counter_u64_alloc(M_WAITOK); 2327 } 2328 2329 static void 2330 zone_alloc_sysctl(uma_zone_t zone, void *unused) 2331 { 2332 uma_zone_domain_t zdom; 2333 uma_domain_t dom; 2334 uma_keg_t keg; 2335 struct sysctl_oid *oid, *domainoid; 2336 int domains, i, cnt; 2337 static const char *nokeg = "cache zone"; 2338 char *c; 2339 2340 /* 2341 * Make a sysctl safe copy of the zone name by removing 2342 * any special characters and handling dups by appending 2343 * an index. 2344 */ 2345 if (zone->uz_namecnt != 0) { 2346 /* Count the number of decimal digits and '_' separator. */ 2347 for (i = 1, cnt = zone->uz_namecnt; cnt != 0; i++) 2348 cnt /= 10; 2349 zone->uz_ctlname = malloc(strlen(zone->uz_name) + i + 1, 2350 M_UMA, M_WAITOK); 2351 sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name, 2352 zone->uz_namecnt); 2353 } else 2354 zone->uz_ctlname = strdup(zone->uz_name, M_UMA); 2355 for (c = zone->uz_ctlname; *c != '\0'; c++) 2356 if (strchr("./\\ -", *c) != NULL) 2357 *c = '_'; 2358 2359 /* 2360 * Basic parameters at the root. 2361 */ 2362 zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma), 2363 OID_AUTO, zone->uz_ctlname, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2364 oid = zone->uz_oid; 2365 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2366 "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size"); 2367 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2368 "flags", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE, 2369 zone, 0, sysctl_handle_uma_zone_flags, "A", 2370 "Allocator configuration flags"); 2371 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2372 "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0, 2373 "Desired per-cpu cache size"); 2374 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2375 "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0, 2376 "Maximum allowed per-cpu cache size"); 2377 2378 /* 2379 * keg if present. 2380 */ 2381 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 2382 domains = vm_ndomains; 2383 else 2384 domains = 1; 2385 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2386 "keg", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2387 keg = zone->uz_keg; 2388 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) { 2389 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2390 "name", CTLFLAG_RD, keg->uk_name, "Keg name"); 2391 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2392 "rsize", CTLFLAG_RD, &keg->uk_rsize, 0, 2393 "Real object size with alignment"); 2394 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2395 "ppera", CTLFLAG_RD, &keg->uk_ppera, 0, 2396 "pages per-slab allocation"); 2397 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2398 "ipers", CTLFLAG_RD, &keg->uk_ipers, 0, 2399 "items available per-slab"); 2400 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2401 "align", CTLFLAG_RD, &keg->uk_align, 0, 2402 "item alignment mask"); 2403 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2404 "efficiency", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2405 keg, 0, sysctl_handle_uma_slab_efficiency, "I", 2406 "Slab utilization (100 - internal fragmentation %)"); 2407 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(oid), 2408 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2409 for (i = 0; i < domains; i++) { 2410 dom = &keg->uk_domain[i]; 2411 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2412 OID_AUTO, VM_DOMAIN(i)->vmd_name, 2413 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2414 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2415 "pages", CTLFLAG_RD, &dom->ud_pages, 0, 2416 "Total pages currently allocated from VM"); 2417 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2418 "free_items", CTLFLAG_RD, &dom->ud_free_items, 0, 2419 "items free in the slab layer"); 2420 } 2421 } else 2422 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2423 "name", CTLFLAG_RD, nokeg, "Keg name"); 2424 2425 /* 2426 * Information about zone limits. 2427 */ 2428 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2429 "limit", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2430 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2431 "items", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2432 zone, 0, sysctl_handle_uma_zone_items, "QU", 2433 "current number of allocated items if limit is set"); 2434 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2435 "max_items", CTLFLAG_RD, &zone->uz_max_items, 0, 2436 "Maximum number of cached items"); 2437 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2438 "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0, 2439 "Number of threads sleeping at limit"); 2440 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2441 "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0, 2442 "Total zone limit sleeps"); 2443 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2444 "bucket_max", CTLFLAG_RD, &zone->uz_bucket_max, 0, 2445 "Maximum number of items in each domain's bucket cache"); 2446 2447 /* 2448 * Per-domain zone information. 2449 */ 2450 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), 2451 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2452 for (i = 0; i < domains; i++) { 2453 zdom = ZDOM_GET(zone, i); 2454 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2455 OID_AUTO, VM_DOMAIN(i)->vmd_name, 2456 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2457 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2458 "nitems", CTLFLAG_RD, &zdom->uzd_nitems, 2459 "number of items in this domain"); 2460 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2461 "imax", CTLFLAG_RD, &zdom->uzd_imax, 2462 "maximum item count in this period"); 2463 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2464 "imin", CTLFLAG_RD, &zdom->uzd_imin, 2465 "minimum item count in this period"); 2466 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2467 "wss", CTLFLAG_RD, &zdom->uzd_wss, 2468 "Working set size"); 2469 } 2470 2471 /* 2472 * General statistics. 2473 */ 2474 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2475 "stats", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2476 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2477 "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2478 zone, 1, sysctl_handle_uma_zone_cur, "I", 2479 "Current number of allocated items"); 2480 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2481 "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2482 zone, 0, sysctl_handle_uma_zone_allocs, "QU", 2483 "Total allocation calls"); 2484 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2485 "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2486 zone, 0, sysctl_handle_uma_zone_frees, "QU", 2487 "Total free calls"); 2488 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2489 "fails", CTLFLAG_RD, &zone->uz_fails, 2490 "Number of allocation failures"); 2491 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2492 "xdomain", CTLFLAG_RD, &zone->uz_xdomain, 2493 "Free calls from the wrong domain"); 2494 } 2495 2496 struct uma_zone_count { 2497 const char *name; 2498 int count; 2499 }; 2500 2501 static void 2502 zone_count(uma_zone_t zone, void *arg) 2503 { 2504 struct uma_zone_count *cnt; 2505 2506 cnt = arg; 2507 /* 2508 * Some zones are rapidly created with identical names and 2509 * destroyed out of order. This can lead to gaps in the count. 2510 * Use one greater than the maximum observed for this name. 2511 */ 2512 if (strcmp(zone->uz_name, cnt->name) == 0) 2513 cnt->count = MAX(cnt->count, 2514 zone->uz_namecnt + 1); 2515 } 2516 2517 static void 2518 zone_update_caches(uma_zone_t zone) 2519 { 2520 int i; 2521 2522 for (i = 0; i <= mp_maxid; i++) { 2523 cache_set_uz_size(&zone->uz_cpu[i], zone->uz_size); 2524 cache_set_uz_flags(&zone->uz_cpu[i], zone->uz_flags); 2525 } 2526 } 2527 2528 /* 2529 * Zone header ctor. This initializes all fields, locks, etc. 2530 * 2531 * Arguments/Returns follow uma_ctor specifications 2532 * udata Actually uma_zctor_args 2533 */ 2534 static int 2535 zone_ctor(void *mem, int size, void *udata, int flags) 2536 { 2537 struct uma_zone_count cnt; 2538 struct uma_zctor_args *arg = udata; 2539 uma_zone_domain_t zdom; 2540 uma_zone_t zone = mem; 2541 uma_zone_t z; 2542 uma_keg_t keg; 2543 int i; 2544 2545 bzero(zone, size); 2546 zone->uz_name = arg->name; 2547 zone->uz_ctor = arg->ctor; 2548 zone->uz_dtor = arg->dtor; 2549 zone->uz_init = NULL; 2550 zone->uz_fini = NULL; 2551 zone->uz_sleeps = 0; 2552 zone->uz_bucket_size = 0; 2553 zone->uz_bucket_size_min = 0; 2554 zone->uz_bucket_size_max = BUCKET_MAX; 2555 zone->uz_flags = (arg->flags & UMA_ZONE_SMR); 2556 zone->uz_warning = NULL; 2557 /* The domain structures follow the cpu structures. */ 2558 zone->uz_bucket_max = ULONG_MAX; 2559 timevalclear(&zone->uz_ratecheck); 2560 2561 /* Count the number of duplicate names. */ 2562 cnt.name = arg->name; 2563 cnt.count = 0; 2564 zone_foreach(zone_count, &cnt); 2565 zone->uz_namecnt = cnt.count; 2566 ZONE_CROSS_LOCK_INIT(zone); 2567 2568 for (i = 0; i < vm_ndomains; i++) { 2569 zdom = ZDOM_GET(zone, i); 2570 ZDOM_LOCK_INIT(zone, zdom, (arg->flags & UMA_ZONE_MTXCLASS)); 2571 STAILQ_INIT(&zdom->uzd_buckets); 2572 } 2573 2574 #ifdef INVARIANTS 2575 if (arg->uminit == trash_init && arg->fini == trash_fini) 2576 zone->uz_flags |= UMA_ZFLAG_TRASH | UMA_ZFLAG_CTORDTOR; 2577 #endif 2578 2579 /* 2580 * This is a pure cache zone, no kegs. 2581 */ 2582 if (arg->import) { 2583 KASSERT((arg->flags & UMA_ZFLAG_CACHE) != 0, 2584 ("zone_ctor: Import specified for non-cache zone.")); 2585 zone->uz_flags = arg->flags; 2586 zone->uz_size = arg->size; 2587 zone->uz_import = arg->import; 2588 zone->uz_release = arg->release; 2589 zone->uz_arg = arg->arg; 2590 #ifdef NUMA 2591 /* 2592 * Cache zones are round-robin unless a policy is 2593 * specified because they may have incompatible 2594 * constraints. 2595 */ 2596 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2597 zone->uz_flags |= UMA_ZONE_ROUNDROBIN; 2598 #endif 2599 rw_wlock(&uma_rwlock); 2600 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 2601 rw_wunlock(&uma_rwlock); 2602 goto out; 2603 } 2604 2605 /* 2606 * Use the regular zone/keg/slab allocator. 2607 */ 2608 zone->uz_import = zone_import; 2609 zone->uz_release = zone_release; 2610 zone->uz_arg = zone; 2611 keg = arg->keg; 2612 2613 if (arg->flags & UMA_ZONE_SECONDARY) { 2614 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 2615 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 2616 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 2617 zone->uz_init = arg->uminit; 2618 zone->uz_fini = arg->fini; 2619 zone->uz_flags |= UMA_ZONE_SECONDARY; 2620 rw_wlock(&uma_rwlock); 2621 ZONE_LOCK(zone); 2622 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 2623 if (LIST_NEXT(z, uz_link) == NULL) { 2624 LIST_INSERT_AFTER(z, zone, uz_link); 2625 break; 2626 } 2627 } 2628 ZONE_UNLOCK(zone); 2629 rw_wunlock(&uma_rwlock); 2630 } else if (keg == NULL) { 2631 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 2632 arg->align, arg->flags)) == NULL) 2633 return (ENOMEM); 2634 } else { 2635 struct uma_kctor_args karg; 2636 int error; 2637 2638 /* We should only be here from uma_startup() */ 2639 karg.size = arg->size; 2640 karg.uminit = arg->uminit; 2641 karg.fini = arg->fini; 2642 karg.align = arg->align; 2643 karg.flags = (arg->flags & ~UMA_ZONE_SMR); 2644 karg.zone = zone; 2645 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 2646 flags); 2647 if (error) 2648 return (error); 2649 } 2650 2651 /* Inherit properties from the keg. */ 2652 zone->uz_keg = keg; 2653 zone->uz_size = keg->uk_size; 2654 zone->uz_flags |= (keg->uk_flags & 2655 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 2656 2657 out: 2658 if (booted >= BOOT_PCPU) { 2659 zone_alloc_counters(zone, NULL); 2660 if (booted >= BOOT_RUNNING) 2661 zone_alloc_sysctl(zone, NULL); 2662 } else { 2663 zone->uz_allocs = EARLY_COUNTER; 2664 zone->uz_frees = EARLY_COUNTER; 2665 zone->uz_fails = EARLY_COUNTER; 2666 } 2667 2668 /* Caller requests a private SMR context. */ 2669 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 2670 zone->uz_smr = smr_create(zone->uz_name, 0, 0); 2671 2672 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != 2673 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), 2674 ("Invalid zone flag combination")); 2675 if (arg->flags & UMA_ZFLAG_INTERNAL) 2676 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 2677 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) 2678 zone->uz_bucket_size = BUCKET_MAX; 2679 else if ((arg->flags & UMA_ZONE_MINBUCKET) != 0) 2680 zone->uz_bucket_size_max = zone->uz_bucket_size = BUCKET_MIN; 2681 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) 2682 zone->uz_bucket_size = 0; 2683 else 2684 zone->uz_bucket_size = bucket_select(zone->uz_size); 2685 zone->uz_bucket_size_min = zone->uz_bucket_size; 2686 if (zone->uz_dtor != NULL || zone->uz_ctor != NULL) 2687 zone->uz_flags |= UMA_ZFLAG_CTORDTOR; 2688 zone_update_caches(zone); 2689 2690 return (0); 2691 } 2692 2693 /* 2694 * Keg header dtor. This frees all data, destroys locks, frees the hash 2695 * table and removes the keg from the global list. 2696 * 2697 * Arguments/Returns follow uma_dtor specifications 2698 * udata unused 2699 */ 2700 static void 2701 keg_dtor(void *arg, int size, void *udata) 2702 { 2703 uma_keg_t keg; 2704 uint32_t free, pages; 2705 int i; 2706 2707 keg = (uma_keg_t)arg; 2708 free = pages = 0; 2709 for (i = 0; i < vm_ndomains; i++) { 2710 free += keg->uk_domain[i].ud_free_items; 2711 pages += keg->uk_domain[i].ud_pages; 2712 KEG_LOCK_FINI(keg, i); 2713 } 2714 if (pages != 0) 2715 printf("Freed UMA keg (%s) was not empty (%u items). " 2716 " Lost %u pages of memory.\n", 2717 keg->uk_name ? keg->uk_name : "", 2718 pages / keg->uk_ppera * keg->uk_ipers - free, pages); 2719 2720 hash_free(&keg->uk_hash); 2721 } 2722 2723 /* 2724 * Zone header dtor. 2725 * 2726 * Arguments/Returns follow uma_dtor specifications 2727 * udata unused 2728 */ 2729 static void 2730 zone_dtor(void *arg, int size, void *udata) 2731 { 2732 uma_zone_t zone; 2733 uma_keg_t keg; 2734 int i; 2735 2736 zone = (uma_zone_t)arg; 2737 2738 sysctl_remove_oid(zone->uz_oid, 1, 1); 2739 2740 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 2741 cache_drain(zone); 2742 2743 rw_wlock(&uma_rwlock); 2744 LIST_REMOVE(zone, uz_link); 2745 rw_wunlock(&uma_rwlock); 2746 zone_reclaim(zone, M_WAITOK, true); 2747 2748 /* 2749 * We only destroy kegs from non secondary/non cache zones. 2750 */ 2751 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { 2752 keg = zone->uz_keg; 2753 rw_wlock(&uma_rwlock); 2754 LIST_REMOVE(keg, uk_link); 2755 rw_wunlock(&uma_rwlock); 2756 zone_free_item(kegs, keg, NULL, SKIP_NONE); 2757 } 2758 counter_u64_free(zone->uz_allocs); 2759 counter_u64_free(zone->uz_frees); 2760 counter_u64_free(zone->uz_fails); 2761 counter_u64_free(zone->uz_xdomain); 2762 free(zone->uz_ctlname, M_UMA); 2763 for (i = 0; i < vm_ndomains; i++) 2764 ZDOM_LOCK_FINI(ZDOM_GET(zone, i)); 2765 ZONE_CROSS_LOCK_FINI(zone); 2766 } 2767 2768 static void 2769 zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *arg), void *arg) 2770 { 2771 uma_keg_t keg; 2772 uma_zone_t zone; 2773 2774 LIST_FOREACH(keg, &uma_kegs, uk_link) { 2775 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 2776 zfunc(zone, arg); 2777 } 2778 LIST_FOREACH(zone, &uma_cachezones, uz_link) 2779 zfunc(zone, arg); 2780 } 2781 2782 /* 2783 * Traverses every zone in the system and calls a callback 2784 * 2785 * Arguments: 2786 * zfunc A pointer to a function which accepts a zone 2787 * as an argument. 2788 * 2789 * Returns: 2790 * Nothing 2791 */ 2792 static void 2793 zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg) 2794 { 2795 2796 rw_rlock(&uma_rwlock); 2797 zone_foreach_unlocked(zfunc, arg); 2798 rw_runlock(&uma_rwlock); 2799 } 2800 2801 /* 2802 * Initialize the kernel memory allocator. This is done after pages can be 2803 * allocated but before general KVA is available. 2804 */ 2805 void 2806 uma_startup1(vm_offset_t virtual_avail) 2807 { 2808 struct uma_zctor_args args; 2809 size_t ksize, zsize, size; 2810 uma_keg_t primarykeg; 2811 uintptr_t m; 2812 int domain; 2813 uint8_t pflag; 2814 2815 bootstart = bootmem = virtual_avail; 2816 2817 rw_init(&uma_rwlock, "UMA lock"); 2818 sx_init(&uma_reclaim_lock, "umareclaim"); 2819 2820 ksize = sizeof(struct uma_keg) + 2821 (sizeof(struct uma_domain) * vm_ndomains); 2822 ksize = roundup(ksize, UMA_SUPER_ALIGN); 2823 zsize = sizeof(struct uma_zone) + 2824 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 2825 (sizeof(struct uma_zone_domain) * vm_ndomains); 2826 zsize = roundup(zsize, UMA_SUPER_ALIGN); 2827 2828 /* Allocate the zone of zones, zone of kegs, and zone of zones keg. */ 2829 size = (zsize * 2) + ksize; 2830 for (domain = 0; domain < vm_ndomains; domain++) { 2831 m = (uintptr_t)startup_alloc(NULL, size, domain, &pflag, 2832 M_NOWAIT | M_ZERO); 2833 if (m != 0) 2834 break; 2835 } 2836 zones = (uma_zone_t)m; 2837 m += zsize; 2838 kegs = (uma_zone_t)m; 2839 m += zsize; 2840 primarykeg = (uma_keg_t)m; 2841 2842 /* "manually" create the initial zone */ 2843 memset(&args, 0, sizeof(args)); 2844 args.name = "UMA Kegs"; 2845 args.size = ksize; 2846 args.ctor = keg_ctor; 2847 args.dtor = keg_dtor; 2848 args.uminit = zero_init; 2849 args.fini = NULL; 2850 args.keg = primarykeg; 2851 args.align = UMA_SUPER_ALIGN - 1; 2852 args.flags = UMA_ZFLAG_INTERNAL; 2853 zone_ctor(kegs, zsize, &args, M_WAITOK); 2854 2855 args.name = "UMA Zones"; 2856 args.size = zsize; 2857 args.ctor = zone_ctor; 2858 args.dtor = zone_dtor; 2859 args.uminit = zero_init; 2860 args.fini = NULL; 2861 args.keg = NULL; 2862 args.align = UMA_SUPER_ALIGN - 1; 2863 args.flags = UMA_ZFLAG_INTERNAL; 2864 zone_ctor(zones, zsize, &args, M_WAITOK); 2865 2866 /* Now make zones for slab headers */ 2867 slabzones[0] = uma_zcreate("UMA Slabs 0", SLABZONE0_SIZE, 2868 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2869 slabzones[1] = uma_zcreate("UMA Slabs 1", SLABZONE1_SIZE, 2870 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2871 2872 hashzone = uma_zcreate("UMA Hash", 2873 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 2874 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2875 2876 bucket_init(); 2877 smr_init(); 2878 } 2879 2880 #ifndef UMA_MD_SMALL_ALLOC 2881 extern void vm_radix_reserve_kva(void); 2882 #endif 2883 2884 /* 2885 * Advertise the availability of normal kva allocations and switch to 2886 * the default back-end allocator. Marks the KVA we consumed on startup 2887 * as used in the map. 2888 */ 2889 void 2890 uma_startup2(void) 2891 { 2892 2893 if (bootstart != bootmem) { 2894 vm_map_lock(kernel_map); 2895 (void)vm_map_insert(kernel_map, NULL, 0, bootstart, bootmem, 2896 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT); 2897 vm_map_unlock(kernel_map); 2898 } 2899 2900 #ifndef UMA_MD_SMALL_ALLOC 2901 /* Set up radix zone to use noobj_alloc. */ 2902 vm_radix_reserve_kva(); 2903 #endif 2904 2905 booted = BOOT_KVA; 2906 zone_foreach_unlocked(zone_kva_available, NULL); 2907 bucket_enable(); 2908 } 2909 2910 /* 2911 * Allocate counters as early as possible so that boot-time allocations are 2912 * accounted more precisely. 2913 */ 2914 static void 2915 uma_startup_pcpu(void *arg __unused) 2916 { 2917 2918 zone_foreach_unlocked(zone_alloc_counters, NULL); 2919 booted = BOOT_PCPU; 2920 } 2921 SYSINIT(uma_startup_pcpu, SI_SUB_COUNTER, SI_ORDER_ANY, uma_startup_pcpu, NULL); 2922 2923 /* 2924 * Finish our initialization steps. 2925 */ 2926 static void 2927 uma_startup3(void *arg __unused) 2928 { 2929 2930 #ifdef INVARIANTS 2931 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor); 2932 uma_dbg_cnt = counter_u64_alloc(M_WAITOK); 2933 uma_skip_cnt = counter_u64_alloc(M_WAITOK); 2934 #endif 2935 zone_foreach_unlocked(zone_alloc_sysctl, NULL); 2936 callout_init(&uma_callout, 1); 2937 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 2938 booted = BOOT_RUNNING; 2939 2940 EVENTHANDLER_REGISTER(shutdown_post_sync, uma_shutdown, NULL, 2941 EVENTHANDLER_PRI_FIRST); 2942 } 2943 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 2944 2945 static void 2946 uma_shutdown(void) 2947 { 2948 2949 booted = BOOT_SHUTDOWN; 2950 } 2951 2952 static uma_keg_t 2953 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 2954 int align, uint32_t flags) 2955 { 2956 struct uma_kctor_args args; 2957 2958 args.size = size; 2959 args.uminit = uminit; 2960 args.fini = fini; 2961 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 2962 args.flags = flags; 2963 args.zone = zone; 2964 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 2965 } 2966 2967 /* Public functions */ 2968 /* See uma.h */ 2969 void 2970 uma_set_align(int align) 2971 { 2972 2973 if (align != UMA_ALIGN_CACHE) 2974 uma_align_cache = align; 2975 } 2976 2977 /* See uma.h */ 2978 uma_zone_t 2979 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 2980 uma_init uminit, uma_fini fini, int align, uint32_t flags) 2981 2982 { 2983 struct uma_zctor_args args; 2984 uma_zone_t res; 2985 2986 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 2987 align, name)); 2988 2989 /* This stuff is essential for the zone ctor */ 2990 memset(&args, 0, sizeof(args)); 2991 args.name = name; 2992 args.size = size; 2993 args.ctor = ctor; 2994 args.dtor = dtor; 2995 args.uminit = uminit; 2996 args.fini = fini; 2997 #ifdef INVARIANTS 2998 /* 2999 * Inject procedures which check for memory use after free if we are 3000 * allowed to scramble the memory while it is not allocated. This 3001 * requires that: UMA is actually able to access the memory, no init 3002 * or fini procedures, no dependency on the initial value of the 3003 * memory, and no (legitimate) use of the memory after free. Note, 3004 * the ctor and dtor do not need to be empty. 3005 */ 3006 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOTOUCH | 3007 UMA_ZONE_NOFREE))) && uminit == NULL && fini == NULL) { 3008 args.uminit = trash_init; 3009 args.fini = trash_fini; 3010 } 3011 #endif 3012 args.align = align; 3013 args.flags = flags; 3014 args.keg = NULL; 3015 3016 sx_slock(&uma_reclaim_lock); 3017 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 3018 sx_sunlock(&uma_reclaim_lock); 3019 3020 return (res); 3021 } 3022 3023 /* See uma.h */ 3024 uma_zone_t 3025 uma_zsecond_create(const char *name, uma_ctor ctor, uma_dtor dtor, 3026 uma_init zinit, uma_fini zfini, uma_zone_t primary) 3027 { 3028 struct uma_zctor_args args; 3029 uma_keg_t keg; 3030 uma_zone_t res; 3031 3032 keg = primary->uz_keg; 3033 memset(&args, 0, sizeof(args)); 3034 args.name = name; 3035 args.size = keg->uk_size; 3036 args.ctor = ctor; 3037 args.dtor = dtor; 3038 args.uminit = zinit; 3039 args.fini = zfini; 3040 args.align = keg->uk_align; 3041 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 3042 args.keg = keg; 3043 3044 sx_slock(&uma_reclaim_lock); 3045 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 3046 sx_sunlock(&uma_reclaim_lock); 3047 3048 return (res); 3049 } 3050 3051 /* See uma.h */ 3052 uma_zone_t 3053 uma_zcache_create(const char *name, int size, uma_ctor ctor, uma_dtor dtor, 3054 uma_init zinit, uma_fini zfini, uma_import zimport, uma_release zrelease, 3055 void *arg, int flags) 3056 { 3057 struct uma_zctor_args args; 3058 3059 memset(&args, 0, sizeof(args)); 3060 args.name = name; 3061 args.size = size; 3062 args.ctor = ctor; 3063 args.dtor = dtor; 3064 args.uminit = zinit; 3065 args.fini = zfini; 3066 args.import = zimport; 3067 args.release = zrelease; 3068 args.arg = arg; 3069 args.align = 0; 3070 args.flags = flags | UMA_ZFLAG_CACHE; 3071 3072 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 3073 } 3074 3075 /* See uma.h */ 3076 void 3077 uma_zdestroy(uma_zone_t zone) 3078 { 3079 3080 /* 3081 * Large slabs are expensive to reclaim, so don't bother doing 3082 * unnecessary work if we're shutting down. 3083 */ 3084 if (booted == BOOT_SHUTDOWN && 3085 zone->uz_fini == NULL && zone->uz_release == zone_release) 3086 return; 3087 sx_slock(&uma_reclaim_lock); 3088 zone_free_item(zones, zone, NULL, SKIP_NONE); 3089 sx_sunlock(&uma_reclaim_lock); 3090 } 3091 3092 void 3093 uma_zwait(uma_zone_t zone) 3094 { 3095 3096 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 3097 uma_zfree_smr(zone, uma_zalloc_smr(zone, M_WAITOK)); 3098 else if ((zone->uz_flags & UMA_ZONE_PCPU) != 0) 3099 uma_zfree_pcpu(zone, uma_zalloc_pcpu(zone, M_WAITOK)); 3100 else 3101 uma_zfree(zone, uma_zalloc(zone, M_WAITOK)); 3102 } 3103 3104 void * 3105 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags) 3106 { 3107 void *item, *pcpu_item; 3108 #ifdef SMP 3109 int i; 3110 3111 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 3112 #endif 3113 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO); 3114 if (item == NULL) 3115 return (NULL); 3116 pcpu_item = zpcpu_base_to_offset(item); 3117 if (flags & M_ZERO) { 3118 #ifdef SMP 3119 for (i = 0; i <= mp_maxid; i++) 3120 bzero(zpcpu_get_cpu(pcpu_item, i), zone->uz_size); 3121 #else 3122 bzero(item, zone->uz_size); 3123 #endif 3124 } 3125 return (pcpu_item); 3126 } 3127 3128 /* 3129 * A stub while both regular and pcpu cases are identical. 3130 */ 3131 void 3132 uma_zfree_pcpu_arg(uma_zone_t zone, void *pcpu_item, void *udata) 3133 { 3134 void *item; 3135 3136 #ifdef SMP 3137 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 3138 #endif 3139 item = zpcpu_offset_to_base(pcpu_item); 3140 uma_zfree_arg(zone, item, udata); 3141 } 3142 3143 static inline void * 3144 item_ctor(uma_zone_t zone, int uz_flags, int size, void *udata, int flags, 3145 void *item) 3146 { 3147 #ifdef INVARIANTS 3148 bool skipdbg; 3149 3150 skipdbg = uma_dbg_zskip(zone, item); 3151 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 3152 zone->uz_ctor != trash_ctor) 3153 trash_ctor(item, size, udata, flags); 3154 #endif 3155 /* Check flags before loading ctor pointer. */ 3156 if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0) && 3157 __predict_false(zone->uz_ctor != NULL) && 3158 zone->uz_ctor(item, size, udata, flags) != 0) { 3159 counter_u64_add(zone->uz_fails, 1); 3160 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT); 3161 return (NULL); 3162 } 3163 #ifdef INVARIANTS 3164 if (!skipdbg) 3165 uma_dbg_alloc(zone, NULL, item); 3166 #endif 3167 if (__predict_false(flags & M_ZERO)) 3168 return (memset(item, 0, size)); 3169 3170 return (item); 3171 } 3172 3173 static inline void 3174 item_dtor(uma_zone_t zone, void *item, int size, void *udata, 3175 enum zfreeskip skip) 3176 { 3177 #ifdef INVARIANTS 3178 bool skipdbg; 3179 3180 skipdbg = uma_dbg_zskip(zone, item); 3181 if (skip == SKIP_NONE && !skipdbg) { 3182 if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0) 3183 uma_dbg_free(zone, udata, item); 3184 else 3185 uma_dbg_free(zone, NULL, item); 3186 } 3187 #endif 3188 if (__predict_true(skip < SKIP_DTOR)) { 3189 if (zone->uz_dtor != NULL) 3190 zone->uz_dtor(item, size, udata); 3191 #ifdef INVARIANTS 3192 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 3193 zone->uz_dtor != trash_dtor) 3194 trash_dtor(item, size, udata); 3195 #endif 3196 } 3197 } 3198 3199 #ifdef NUMA 3200 static int 3201 item_domain(void *item) 3202 { 3203 int domain; 3204 3205 domain = _vm_phys_domain(vtophys(item)); 3206 KASSERT(domain >= 0 && domain < vm_ndomains, 3207 ("%s: unknown domain for item %p", __func__, item)); 3208 return (domain); 3209 } 3210 #endif 3211 3212 #if defined(INVARIANTS) || defined(DEBUG_MEMGUARD) || defined(WITNESS) 3213 #define UMA_ZALLOC_DEBUG 3214 static int 3215 uma_zalloc_debug(uma_zone_t zone, void **itemp, void *udata, int flags) 3216 { 3217 int error; 3218 3219 error = 0; 3220 #ifdef WITNESS 3221 if (flags & M_WAITOK) { 3222 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3223 "uma_zalloc_debug: zone \"%s\"", zone->uz_name); 3224 } 3225 #endif 3226 3227 #ifdef INVARIANTS 3228 KASSERT((flags & M_EXEC) == 0, 3229 ("uma_zalloc_debug: called with M_EXEC")); 3230 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3231 ("uma_zalloc_debug: called within spinlock or critical section")); 3232 KASSERT((zone->uz_flags & UMA_ZONE_PCPU) == 0 || (flags & M_ZERO) == 0, 3233 ("uma_zalloc_debug: allocating from a pcpu zone with M_ZERO")); 3234 #endif 3235 3236 #ifdef DEBUG_MEMGUARD 3237 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && memguard_cmp_zone(zone)) { 3238 void *item; 3239 item = memguard_alloc(zone->uz_size, flags); 3240 if (item != NULL) { 3241 error = EJUSTRETURN; 3242 if (zone->uz_init != NULL && 3243 zone->uz_init(item, zone->uz_size, flags) != 0) { 3244 *itemp = NULL; 3245 return (error); 3246 } 3247 if (zone->uz_ctor != NULL && 3248 zone->uz_ctor(item, zone->uz_size, udata, 3249 flags) != 0) { 3250 counter_u64_add(zone->uz_fails, 1); 3251 zone->uz_fini(item, zone->uz_size); 3252 *itemp = NULL; 3253 return (error); 3254 } 3255 *itemp = item; 3256 return (error); 3257 } 3258 /* This is unfortunate but should not be fatal. */ 3259 } 3260 #endif 3261 return (error); 3262 } 3263 3264 static int 3265 uma_zfree_debug(uma_zone_t zone, void *item, void *udata) 3266 { 3267 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3268 ("uma_zfree_debug: called with spinlock or critical section held")); 3269 3270 #ifdef DEBUG_MEMGUARD 3271 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && is_memguard_addr(item)) { 3272 if (zone->uz_dtor != NULL) 3273 zone->uz_dtor(item, zone->uz_size, udata); 3274 if (zone->uz_fini != NULL) 3275 zone->uz_fini(item, zone->uz_size); 3276 memguard_free(item); 3277 return (EJUSTRETURN); 3278 } 3279 #endif 3280 return (0); 3281 } 3282 #endif 3283 3284 static inline void * 3285 cache_alloc_item(uma_zone_t zone, uma_cache_t cache, uma_cache_bucket_t bucket, 3286 void *udata, int flags) 3287 { 3288 void *item; 3289 int size, uz_flags; 3290 3291 item = cache_bucket_pop(cache, bucket); 3292 size = cache_uz_size(cache); 3293 uz_flags = cache_uz_flags(cache); 3294 critical_exit(); 3295 return (item_ctor(zone, uz_flags, size, udata, flags, item)); 3296 } 3297 3298 static __noinline void * 3299 cache_alloc_retry(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3300 { 3301 uma_cache_bucket_t bucket; 3302 int domain; 3303 3304 while (cache_alloc(zone, cache, udata, flags)) { 3305 cache = &zone->uz_cpu[curcpu]; 3306 bucket = &cache->uc_allocbucket; 3307 if (__predict_false(bucket->ucb_cnt == 0)) 3308 continue; 3309 return (cache_alloc_item(zone, cache, bucket, udata, flags)); 3310 } 3311 critical_exit(); 3312 3313 /* 3314 * We can not get a bucket so try to return a single item. 3315 */ 3316 if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH) 3317 domain = PCPU_GET(domain); 3318 else 3319 domain = UMA_ANYDOMAIN; 3320 return (zone_alloc_item(zone, udata, domain, flags)); 3321 } 3322 3323 /* See uma.h */ 3324 void * 3325 uma_zalloc_smr(uma_zone_t zone, int flags) 3326 { 3327 uma_cache_bucket_t bucket; 3328 uma_cache_t cache; 3329 3330 #ifdef UMA_ZALLOC_DEBUG 3331 void *item; 3332 3333 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 3334 ("uma_zalloc_arg: called with non-SMR zone.\n")); 3335 if (uma_zalloc_debug(zone, &item, NULL, flags) == EJUSTRETURN) 3336 return (item); 3337 #endif 3338 3339 critical_enter(); 3340 cache = &zone->uz_cpu[curcpu]; 3341 bucket = &cache->uc_allocbucket; 3342 if (__predict_false(bucket->ucb_cnt == 0)) 3343 return (cache_alloc_retry(zone, cache, NULL, flags)); 3344 return (cache_alloc_item(zone, cache, bucket, NULL, flags)); 3345 } 3346 3347 /* See uma.h */ 3348 void * 3349 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 3350 { 3351 uma_cache_bucket_t bucket; 3352 uma_cache_t cache; 3353 3354 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3355 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3356 3357 /* This is the fast path allocation */ 3358 CTR3(KTR_UMA, "uma_zalloc_arg zone %s(%p) flags %d", zone->uz_name, 3359 zone, flags); 3360 3361 #ifdef UMA_ZALLOC_DEBUG 3362 void *item; 3363 3364 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 3365 ("uma_zalloc_arg: called with SMR zone.\n")); 3366 if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN) 3367 return (item); 3368 #endif 3369 3370 /* 3371 * If possible, allocate from the per-CPU cache. There are two 3372 * requirements for safe access to the per-CPU cache: (1) the thread 3373 * accessing the cache must not be preempted or yield during access, 3374 * and (2) the thread must not migrate CPUs without switching which 3375 * cache it accesses. We rely on a critical section to prevent 3376 * preemption and migration. We release the critical section in 3377 * order to acquire the zone mutex if we are unable to allocate from 3378 * the current cache; when we re-acquire the critical section, we 3379 * must detect and handle migration if it has occurred. 3380 */ 3381 critical_enter(); 3382 cache = &zone->uz_cpu[curcpu]; 3383 bucket = &cache->uc_allocbucket; 3384 if (__predict_false(bucket->ucb_cnt == 0)) 3385 return (cache_alloc_retry(zone, cache, udata, flags)); 3386 return (cache_alloc_item(zone, cache, bucket, udata, flags)); 3387 } 3388 3389 /* 3390 * Replenish an alloc bucket and possibly restore an old one. Called in 3391 * a critical section. Returns in a critical section. 3392 * 3393 * A false return value indicates an allocation failure. 3394 * A true return value indicates success and the caller should retry. 3395 */ 3396 static __noinline bool 3397 cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3398 { 3399 uma_bucket_t bucket; 3400 int curdomain, domain; 3401 bool new; 3402 3403 CRITICAL_ASSERT(curthread); 3404 3405 /* 3406 * If we have run out of items in our alloc bucket see 3407 * if we can switch with the free bucket. 3408 * 3409 * SMR Zones can't re-use the free bucket until the sequence has 3410 * expired. 3411 */ 3412 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) == 0 && 3413 cache->uc_freebucket.ucb_cnt != 0) { 3414 cache_bucket_swap(&cache->uc_freebucket, 3415 &cache->uc_allocbucket); 3416 return (true); 3417 } 3418 3419 /* 3420 * Discard any empty allocation bucket while we hold no locks. 3421 */ 3422 bucket = cache_bucket_unload_alloc(cache); 3423 critical_exit(); 3424 3425 if (bucket != NULL) { 3426 KASSERT(bucket->ub_cnt == 0, 3427 ("cache_alloc: Entered with non-empty alloc bucket.")); 3428 bucket_free(zone, bucket, udata); 3429 } 3430 3431 /* 3432 * Attempt to retrieve the item from the per-CPU cache has failed, so 3433 * we must go back to the zone. This requires the zdom lock, so we 3434 * must drop the critical section, then re-acquire it when we go back 3435 * to the cache. Since the critical section is released, we may be 3436 * preempted or migrate. As such, make sure not to maintain any 3437 * thread-local state specific to the cache from prior to releasing 3438 * the critical section. 3439 */ 3440 domain = PCPU_GET(domain); 3441 if ((cache_uz_flags(cache) & UMA_ZONE_ROUNDROBIN) != 0 || 3442 VM_DOMAIN_EMPTY(domain)) 3443 domain = zone_domain_highest(zone, domain); 3444 bucket = cache_fetch_bucket(zone, cache, domain); 3445 if (bucket == NULL && zone->uz_bucket_size != 0 && !bucketdisable) { 3446 bucket = zone_alloc_bucket(zone, udata, domain, flags); 3447 new = true; 3448 } else { 3449 new = false; 3450 } 3451 3452 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 3453 zone->uz_name, zone, bucket); 3454 if (bucket == NULL) { 3455 critical_enter(); 3456 return (false); 3457 } 3458 3459 /* 3460 * See if we lost the race or were migrated. Cache the 3461 * initialized bucket to make this less likely or claim 3462 * the memory directly. 3463 */ 3464 critical_enter(); 3465 cache = &zone->uz_cpu[curcpu]; 3466 if (cache->uc_allocbucket.ucb_bucket == NULL && 3467 ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) == 0 || 3468 (curdomain = PCPU_GET(domain)) == domain || 3469 VM_DOMAIN_EMPTY(curdomain))) { 3470 if (new) 3471 atomic_add_long(&ZDOM_GET(zone, domain)->uzd_imax, 3472 bucket->ub_cnt); 3473 cache_bucket_load_alloc(cache, bucket); 3474 return (true); 3475 } 3476 3477 /* 3478 * We lost the race, release this bucket and start over. 3479 */ 3480 critical_exit(); 3481 zone_put_bucket(zone, domain, bucket, udata, false); 3482 critical_enter(); 3483 3484 return (true); 3485 } 3486 3487 void * 3488 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 3489 { 3490 3491 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3492 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3493 3494 /* This is the fast path allocation */ 3495 CTR4(KTR_UMA, "uma_zalloc_domain zone %s(%p) domain %d flags %d", 3496 zone->uz_name, zone, domain, flags); 3497 3498 if (flags & M_WAITOK) { 3499 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3500 "uma_zalloc_domain: zone \"%s\"", zone->uz_name); 3501 } 3502 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3503 ("uma_zalloc_domain: called with spinlock or critical section held")); 3504 3505 return (zone_alloc_item(zone, udata, domain, flags)); 3506 } 3507 3508 /* 3509 * Find a slab with some space. Prefer slabs that are partially used over those 3510 * that are totally full. This helps to reduce fragmentation. 3511 * 3512 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 3513 * only 'domain'. 3514 */ 3515 static uma_slab_t 3516 keg_first_slab(uma_keg_t keg, int domain, bool rr) 3517 { 3518 uma_domain_t dom; 3519 uma_slab_t slab; 3520 int start; 3521 3522 KASSERT(domain >= 0 && domain < vm_ndomains, 3523 ("keg_first_slab: domain %d out of range", domain)); 3524 KEG_LOCK_ASSERT(keg, domain); 3525 3526 slab = NULL; 3527 start = domain; 3528 do { 3529 dom = &keg->uk_domain[domain]; 3530 if ((slab = LIST_FIRST(&dom->ud_part_slab)) != NULL) 3531 return (slab); 3532 if ((slab = LIST_FIRST(&dom->ud_free_slab)) != NULL) { 3533 LIST_REMOVE(slab, us_link); 3534 dom->ud_free_slabs--; 3535 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3536 return (slab); 3537 } 3538 if (rr) 3539 domain = (domain + 1) % vm_ndomains; 3540 } while (domain != start); 3541 3542 return (NULL); 3543 } 3544 3545 /* 3546 * Fetch an existing slab from a free or partial list. Returns with the 3547 * keg domain lock held if a slab was found or unlocked if not. 3548 */ 3549 static uma_slab_t 3550 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags) 3551 { 3552 uma_slab_t slab; 3553 uint32_t reserve; 3554 3555 /* HASH has a single free list. */ 3556 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 3557 domain = 0; 3558 3559 KEG_LOCK(keg, domain); 3560 reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve; 3561 if (keg->uk_domain[domain].ud_free_items <= reserve || 3562 (slab = keg_first_slab(keg, domain, rr)) == NULL) { 3563 KEG_UNLOCK(keg, domain); 3564 return (NULL); 3565 } 3566 return (slab); 3567 } 3568 3569 static uma_slab_t 3570 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags) 3571 { 3572 struct vm_domainset_iter di; 3573 uma_slab_t slab; 3574 int aflags, domain; 3575 bool rr; 3576 3577 restart: 3578 /* 3579 * Use the keg's policy if upper layers haven't already specified a 3580 * domain (as happens with first-touch zones). 3581 * 3582 * To avoid races we run the iterator with the keg lock held, but that 3583 * means that we cannot allow the vm_domainset layer to sleep. Thus, 3584 * clear M_WAITOK and handle low memory conditions locally. 3585 */ 3586 rr = rdomain == UMA_ANYDOMAIN; 3587 if (rr) { 3588 aflags = (flags & ~M_WAITOK) | M_NOWAIT; 3589 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 3590 &aflags); 3591 } else { 3592 aflags = flags; 3593 domain = rdomain; 3594 } 3595 3596 for (;;) { 3597 slab = keg_fetch_free_slab(keg, domain, rr, flags); 3598 if (slab != NULL) 3599 return (slab); 3600 3601 /* 3602 * M_NOVM means don't ask at all! 3603 */ 3604 if (flags & M_NOVM) 3605 break; 3606 3607 slab = keg_alloc_slab(keg, zone, domain, flags, aflags); 3608 if (slab != NULL) 3609 return (slab); 3610 if (!rr && (flags & M_WAITOK) == 0) 3611 break; 3612 if (rr && vm_domainset_iter_policy(&di, &domain) != 0) { 3613 if ((flags & M_WAITOK) != 0) { 3614 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0); 3615 goto restart; 3616 } 3617 break; 3618 } 3619 } 3620 3621 /* 3622 * We might not have been able to get a slab but another cpu 3623 * could have while we were unlocked. Check again before we 3624 * fail. 3625 */ 3626 if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL) 3627 return (slab); 3628 3629 return (NULL); 3630 } 3631 3632 static void * 3633 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 3634 { 3635 uma_domain_t dom; 3636 void *item; 3637 int freei; 3638 3639 KEG_LOCK_ASSERT(keg, slab->us_domain); 3640 3641 dom = &keg->uk_domain[slab->us_domain]; 3642 freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1; 3643 BIT_CLR(keg->uk_ipers, freei, &slab->us_free); 3644 item = slab_item(slab, keg, freei); 3645 slab->us_freecount--; 3646 dom->ud_free_items--; 3647 3648 /* 3649 * Move this slab to the full list. It must be on the partial list, so 3650 * we do not need to update the free slab count. In particular, 3651 * keg_fetch_slab() always returns slabs on the partial list. 3652 */ 3653 if (slab->us_freecount == 0) { 3654 LIST_REMOVE(slab, us_link); 3655 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 3656 } 3657 3658 return (item); 3659 } 3660 3661 static int 3662 zone_import(void *arg, void **bucket, int max, int domain, int flags) 3663 { 3664 uma_domain_t dom; 3665 uma_zone_t zone; 3666 uma_slab_t slab; 3667 uma_keg_t keg; 3668 #ifdef NUMA 3669 int stripe; 3670 #endif 3671 int i; 3672 3673 zone = arg; 3674 slab = NULL; 3675 keg = zone->uz_keg; 3676 /* Try to keep the buckets totally full */ 3677 for (i = 0; i < max; ) { 3678 if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL) 3679 break; 3680 #ifdef NUMA 3681 stripe = howmany(max, vm_ndomains); 3682 #endif 3683 dom = &keg->uk_domain[slab->us_domain]; 3684 while (slab->us_freecount && i < max) { 3685 bucket[i++] = slab_alloc_item(keg, slab); 3686 if (dom->ud_free_items <= keg->uk_reserve) 3687 break; 3688 #ifdef NUMA 3689 /* 3690 * If the zone is striped we pick a new slab for every 3691 * N allocations. Eliminating this conditional will 3692 * instead pick a new domain for each bucket rather 3693 * than stripe within each bucket. The current option 3694 * produces more fragmentation and requires more cpu 3695 * time but yields better distribution. 3696 */ 3697 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0 && 3698 vm_ndomains > 1 && --stripe == 0) 3699 break; 3700 #endif 3701 } 3702 KEG_UNLOCK(keg, slab->us_domain); 3703 /* Don't block if we allocated any successfully. */ 3704 flags &= ~M_WAITOK; 3705 flags |= M_NOWAIT; 3706 } 3707 3708 return i; 3709 } 3710 3711 static int 3712 zone_alloc_limit_hard(uma_zone_t zone, int count, int flags) 3713 { 3714 uint64_t old, new, total, max; 3715 3716 /* 3717 * The hard case. We're going to sleep because there were existing 3718 * sleepers or because we ran out of items. This routine enforces 3719 * fairness by keeping fifo order. 3720 * 3721 * First release our ill gotten gains and make some noise. 3722 */ 3723 for (;;) { 3724 zone_free_limit(zone, count); 3725 zone_log_warning(zone); 3726 zone_maxaction(zone); 3727 if (flags & M_NOWAIT) 3728 return (0); 3729 3730 /* 3731 * We need to allocate an item or set ourself as a sleeper 3732 * while the sleepq lock is held to avoid wakeup races. This 3733 * is essentially a home rolled semaphore. 3734 */ 3735 sleepq_lock(&zone->uz_max_items); 3736 old = zone->uz_items; 3737 do { 3738 MPASS(UZ_ITEMS_SLEEPERS(old) < UZ_ITEMS_SLEEPERS_MAX); 3739 /* Cache the max since we will evaluate twice. */ 3740 max = zone->uz_max_items; 3741 if (UZ_ITEMS_SLEEPERS(old) != 0 || 3742 UZ_ITEMS_COUNT(old) >= max) 3743 new = old + UZ_ITEMS_SLEEPER; 3744 else 3745 new = old + MIN(count, max - old); 3746 } while (atomic_fcmpset_64(&zone->uz_items, &old, new) == 0); 3747 3748 /* We may have successfully allocated under the sleepq lock. */ 3749 if (UZ_ITEMS_SLEEPERS(new) == 0) { 3750 sleepq_release(&zone->uz_max_items); 3751 return (new - old); 3752 } 3753 3754 /* 3755 * This is in a different cacheline from uz_items so that we 3756 * don't constantly invalidate the fastpath cacheline when we 3757 * adjust item counts. This could be limited to toggling on 3758 * transitions. 3759 */ 3760 atomic_add_32(&zone->uz_sleepers, 1); 3761 atomic_add_64(&zone->uz_sleeps, 1); 3762 3763 /* 3764 * We have added ourselves as a sleeper. The sleepq lock 3765 * protects us from wakeup races. Sleep now and then retry. 3766 */ 3767 sleepq_add(&zone->uz_max_items, NULL, "zonelimit", 0, 0); 3768 sleepq_wait(&zone->uz_max_items, PVM); 3769 3770 /* 3771 * After wakeup, remove ourselves as a sleeper and try 3772 * again. We no longer have the sleepq lock for protection. 3773 * 3774 * Subract ourselves as a sleeper while attempting to add 3775 * our count. 3776 */ 3777 atomic_subtract_32(&zone->uz_sleepers, 1); 3778 old = atomic_fetchadd_64(&zone->uz_items, 3779 -(UZ_ITEMS_SLEEPER - count)); 3780 /* We're no longer a sleeper. */ 3781 old -= UZ_ITEMS_SLEEPER; 3782 3783 /* 3784 * If we're still at the limit, restart. Notably do not 3785 * block on other sleepers. Cache the max value to protect 3786 * against changes via sysctl. 3787 */ 3788 total = UZ_ITEMS_COUNT(old); 3789 max = zone->uz_max_items; 3790 if (total >= max) 3791 continue; 3792 /* Truncate if necessary, otherwise wake other sleepers. */ 3793 if (total + count > max) { 3794 zone_free_limit(zone, total + count - max); 3795 count = max - total; 3796 } else if (total + count < max && UZ_ITEMS_SLEEPERS(old) != 0) 3797 wakeup_one(&zone->uz_max_items); 3798 3799 return (count); 3800 } 3801 } 3802 3803 /* 3804 * Allocate 'count' items from our max_items limit. Returns the number 3805 * available. If M_NOWAIT is not specified it will sleep until at least 3806 * one item can be allocated. 3807 */ 3808 static int 3809 zone_alloc_limit(uma_zone_t zone, int count, int flags) 3810 { 3811 uint64_t old; 3812 uint64_t max; 3813 3814 max = zone->uz_max_items; 3815 MPASS(max > 0); 3816 3817 /* 3818 * We expect normal allocations to succeed with a simple 3819 * fetchadd. 3820 */ 3821 old = atomic_fetchadd_64(&zone->uz_items, count); 3822 if (__predict_true(old + count <= max)) 3823 return (count); 3824 3825 /* 3826 * If we had some items and no sleepers just return the 3827 * truncated value. We have to release the excess space 3828 * though because that may wake sleepers who weren't woken 3829 * because we were temporarily over the limit. 3830 */ 3831 if (old < max) { 3832 zone_free_limit(zone, (old + count) - max); 3833 return (max - old); 3834 } 3835 return (zone_alloc_limit_hard(zone, count, flags)); 3836 } 3837 3838 /* 3839 * Free a number of items back to the limit. 3840 */ 3841 static void 3842 zone_free_limit(uma_zone_t zone, int count) 3843 { 3844 uint64_t old; 3845 3846 MPASS(count > 0); 3847 3848 /* 3849 * In the common case we either have no sleepers or 3850 * are still over the limit and can just return. 3851 */ 3852 old = atomic_fetchadd_64(&zone->uz_items, -count); 3853 if (__predict_true(UZ_ITEMS_SLEEPERS(old) == 0 || 3854 UZ_ITEMS_COUNT(old) - count >= zone->uz_max_items)) 3855 return; 3856 3857 /* 3858 * Moderate the rate of wakeups. Sleepers will continue 3859 * to generate wakeups if necessary. 3860 */ 3861 wakeup_one(&zone->uz_max_items); 3862 } 3863 3864 static uma_bucket_t 3865 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags) 3866 { 3867 uma_bucket_t bucket; 3868 int maxbucket, cnt; 3869 3870 CTR3(KTR_UMA, "zone_alloc_bucket zone %s(%p) domain %d", zone->uz_name, 3871 zone, domain); 3872 3873 /* Avoid allocs targeting empty domains. */ 3874 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 3875 domain = UMA_ANYDOMAIN; 3876 else if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) 3877 domain = UMA_ANYDOMAIN; 3878 3879 if (zone->uz_max_items > 0) 3880 maxbucket = zone_alloc_limit(zone, zone->uz_bucket_size, 3881 M_NOWAIT); 3882 else 3883 maxbucket = zone->uz_bucket_size; 3884 if (maxbucket == 0) 3885 return (false); 3886 3887 /* Don't wait for buckets, preserve caller's NOVM setting. */ 3888 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 3889 if (bucket == NULL) { 3890 cnt = 0; 3891 goto out; 3892 } 3893 3894 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 3895 MIN(maxbucket, bucket->ub_entries), domain, flags); 3896 3897 /* 3898 * Initialize the memory if necessary. 3899 */ 3900 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 3901 int i; 3902 3903 for (i = 0; i < bucket->ub_cnt; i++) 3904 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 3905 flags) != 0) 3906 break; 3907 /* 3908 * If we couldn't initialize the whole bucket, put the 3909 * rest back onto the freelist. 3910 */ 3911 if (i != bucket->ub_cnt) { 3912 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 3913 bucket->ub_cnt - i); 3914 #ifdef INVARIANTS 3915 bzero(&bucket->ub_bucket[i], 3916 sizeof(void *) * (bucket->ub_cnt - i)); 3917 #endif 3918 bucket->ub_cnt = i; 3919 } 3920 } 3921 3922 cnt = bucket->ub_cnt; 3923 if (bucket->ub_cnt == 0) { 3924 bucket_free(zone, bucket, udata); 3925 counter_u64_add(zone->uz_fails, 1); 3926 bucket = NULL; 3927 } 3928 out: 3929 if (zone->uz_max_items > 0 && cnt < maxbucket) 3930 zone_free_limit(zone, maxbucket - cnt); 3931 3932 return (bucket); 3933 } 3934 3935 /* 3936 * Allocates a single item from a zone. 3937 * 3938 * Arguments 3939 * zone The zone to alloc for. 3940 * udata The data to be passed to the constructor. 3941 * domain The domain to allocate from or UMA_ANYDOMAIN. 3942 * flags M_WAITOK, M_NOWAIT, M_ZERO. 3943 * 3944 * Returns 3945 * NULL if there is no memory and M_NOWAIT is set 3946 * An item if successful 3947 */ 3948 3949 static void * 3950 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 3951 { 3952 void *item; 3953 3954 if (zone->uz_max_items > 0 && zone_alloc_limit(zone, 1, flags) == 0) { 3955 counter_u64_add(zone->uz_fails, 1); 3956 return (NULL); 3957 } 3958 3959 /* Avoid allocs targeting empty domains. */ 3960 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 3961 domain = UMA_ANYDOMAIN; 3962 3963 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 3964 goto fail_cnt; 3965 3966 /* 3967 * We have to call both the zone's init (not the keg's init) 3968 * and the zone's ctor. This is because the item is going from 3969 * a keg slab directly to the user, and the user is expecting it 3970 * to be both zone-init'd as well as zone-ctor'd. 3971 */ 3972 if (zone->uz_init != NULL) { 3973 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 3974 zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT); 3975 goto fail_cnt; 3976 } 3977 } 3978 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, flags, 3979 item); 3980 if (item == NULL) 3981 goto fail; 3982 3983 counter_u64_add(zone->uz_allocs, 1); 3984 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 3985 zone->uz_name, zone); 3986 3987 return (item); 3988 3989 fail_cnt: 3990 counter_u64_add(zone->uz_fails, 1); 3991 fail: 3992 if (zone->uz_max_items > 0) 3993 zone_free_limit(zone, 1); 3994 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 3995 zone->uz_name, zone); 3996 3997 return (NULL); 3998 } 3999 4000 /* See uma.h */ 4001 void 4002 uma_zfree_smr(uma_zone_t zone, void *item) 4003 { 4004 uma_cache_t cache; 4005 uma_cache_bucket_t bucket; 4006 int itemdomain, uz_flags; 4007 4008 #ifdef UMA_ZALLOC_DEBUG 4009 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 4010 ("uma_zfree_smr: called with non-SMR zone.\n")); 4011 KASSERT(item != NULL, ("uma_zfree_smr: Called with NULL pointer.")); 4012 SMR_ASSERT_NOT_ENTERED(zone->uz_smr); 4013 if (uma_zfree_debug(zone, item, NULL) == EJUSTRETURN) 4014 return; 4015 #endif 4016 cache = &zone->uz_cpu[curcpu]; 4017 uz_flags = cache_uz_flags(cache); 4018 itemdomain = 0; 4019 #ifdef NUMA 4020 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4021 itemdomain = item_domain(item); 4022 #endif 4023 critical_enter(); 4024 do { 4025 cache = &zone->uz_cpu[curcpu]; 4026 /* SMR Zones must free to the free bucket. */ 4027 bucket = &cache->uc_freebucket; 4028 #ifdef NUMA 4029 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4030 PCPU_GET(domain) != itemdomain) { 4031 bucket = &cache->uc_crossbucket; 4032 } 4033 #endif 4034 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 4035 cache_bucket_push(cache, bucket, item); 4036 critical_exit(); 4037 return; 4038 } 4039 } while (cache_free(zone, cache, NULL, item, itemdomain)); 4040 critical_exit(); 4041 4042 /* 4043 * If nothing else caught this, we'll just do an internal free. 4044 */ 4045 zone_free_item(zone, item, NULL, SKIP_NONE); 4046 } 4047 4048 /* See uma.h */ 4049 void 4050 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 4051 { 4052 uma_cache_t cache; 4053 uma_cache_bucket_t bucket; 4054 int itemdomain, uz_flags; 4055 4056 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 4057 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 4058 4059 CTR2(KTR_UMA, "uma_zfree_arg zone %s(%p)", zone->uz_name, zone); 4060 4061 #ifdef UMA_ZALLOC_DEBUG 4062 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 4063 ("uma_zfree_arg: called with SMR zone.\n")); 4064 if (uma_zfree_debug(zone, item, udata) == EJUSTRETURN) 4065 return; 4066 #endif 4067 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 4068 if (item == NULL) 4069 return; 4070 4071 /* 4072 * We are accessing the per-cpu cache without a critical section to 4073 * fetch size and flags. This is acceptable, if we are preempted we 4074 * will simply read another cpu's line. 4075 */ 4076 cache = &zone->uz_cpu[curcpu]; 4077 uz_flags = cache_uz_flags(cache); 4078 if (UMA_ALWAYS_CTORDTOR || 4079 __predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0)) 4080 item_dtor(zone, item, cache_uz_size(cache), udata, SKIP_NONE); 4081 4082 /* 4083 * The race here is acceptable. If we miss it we'll just have to wait 4084 * a little longer for the limits to be reset. 4085 */ 4086 if (__predict_false(uz_flags & UMA_ZFLAG_LIMIT)) { 4087 if (zone->uz_sleepers > 0) 4088 goto zfree_item; 4089 } 4090 4091 /* 4092 * If possible, free to the per-CPU cache. There are two 4093 * requirements for safe access to the per-CPU cache: (1) the thread 4094 * accessing the cache must not be preempted or yield during access, 4095 * and (2) the thread must not migrate CPUs without switching which 4096 * cache it accesses. We rely on a critical section to prevent 4097 * preemption and migration. We release the critical section in 4098 * order to acquire the zone mutex if we are unable to free to the 4099 * current cache; when we re-acquire the critical section, we must 4100 * detect and handle migration if it has occurred. 4101 */ 4102 itemdomain = 0; 4103 #ifdef NUMA 4104 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4105 itemdomain = item_domain(item); 4106 #endif 4107 critical_enter(); 4108 do { 4109 cache = &zone->uz_cpu[curcpu]; 4110 /* 4111 * Try to free into the allocbucket first to give LIFO 4112 * ordering for cache-hot datastructures. Spill over 4113 * into the freebucket if necessary. Alloc will swap 4114 * them if one runs dry. 4115 */ 4116 bucket = &cache->uc_allocbucket; 4117 #ifdef NUMA 4118 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4119 PCPU_GET(domain) != itemdomain) { 4120 bucket = &cache->uc_crossbucket; 4121 } else 4122 #endif 4123 if (bucket->ucb_cnt == bucket->ucb_entries && 4124 cache->uc_freebucket.ucb_cnt < 4125 cache->uc_freebucket.ucb_entries) 4126 cache_bucket_swap(&cache->uc_freebucket, 4127 &cache->uc_allocbucket); 4128 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 4129 cache_bucket_push(cache, bucket, item); 4130 critical_exit(); 4131 return; 4132 } 4133 } while (cache_free(zone, cache, udata, item, itemdomain)); 4134 critical_exit(); 4135 4136 /* 4137 * If nothing else caught this, we'll just do an internal free. 4138 */ 4139 zfree_item: 4140 zone_free_item(zone, item, udata, SKIP_DTOR); 4141 } 4142 4143 #ifdef NUMA 4144 /* 4145 * sort crossdomain free buckets to domain correct buckets and cache 4146 * them. 4147 */ 4148 static void 4149 zone_free_cross(uma_zone_t zone, uma_bucket_t bucket, void *udata) 4150 { 4151 struct uma_bucketlist fullbuckets; 4152 uma_zone_domain_t zdom; 4153 uma_bucket_t b; 4154 smr_seq_t seq; 4155 void *item; 4156 int domain; 4157 4158 CTR3(KTR_UMA, 4159 "uma_zfree: zone %s(%p) draining cross bucket %p", 4160 zone->uz_name, zone, bucket); 4161 4162 /* 4163 * It is possible for buckets to arrive here out of order so we fetch 4164 * the current smr seq rather than accepting the bucket's. 4165 */ 4166 seq = SMR_SEQ_INVALID; 4167 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 4168 seq = smr_advance(zone->uz_smr); 4169 4170 /* 4171 * To avoid having ndomain * ndomain buckets for sorting we have a 4172 * lock on the current crossfree bucket. A full matrix with 4173 * per-domain locking could be used if necessary. 4174 */ 4175 STAILQ_INIT(&fullbuckets); 4176 ZONE_CROSS_LOCK(zone); 4177 while (bucket->ub_cnt > 0) { 4178 item = bucket->ub_bucket[bucket->ub_cnt - 1]; 4179 domain = item_domain(item); 4180 zdom = ZDOM_GET(zone, domain); 4181 if (zdom->uzd_cross == NULL) { 4182 zdom->uzd_cross = bucket_alloc(zone, udata, M_NOWAIT); 4183 if (zdom->uzd_cross == NULL) 4184 break; 4185 } 4186 b = zdom->uzd_cross; 4187 b->ub_bucket[b->ub_cnt++] = item; 4188 b->ub_seq = seq; 4189 if (b->ub_cnt == b->ub_entries) { 4190 STAILQ_INSERT_HEAD(&fullbuckets, b, ub_link); 4191 zdom->uzd_cross = NULL; 4192 } 4193 bucket->ub_cnt--; 4194 } 4195 ZONE_CROSS_UNLOCK(zone); 4196 if (bucket->ub_cnt == 0) 4197 bucket->ub_seq = SMR_SEQ_INVALID; 4198 bucket_free(zone, bucket, udata); 4199 4200 while ((b = STAILQ_FIRST(&fullbuckets)) != NULL) { 4201 STAILQ_REMOVE_HEAD(&fullbuckets, ub_link); 4202 domain = item_domain(b->ub_bucket[0]); 4203 zone_put_bucket(zone, domain, b, udata, true); 4204 } 4205 } 4206 #endif 4207 4208 static void 4209 zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 4210 int itemdomain, bool ws) 4211 { 4212 4213 #ifdef NUMA 4214 /* 4215 * Buckets coming from the wrong domain will be entirely for the 4216 * only other domain on two domain systems. In this case we can 4217 * simply cache them. Otherwise we need to sort them back to 4218 * correct domains. 4219 */ 4220 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4221 vm_ndomains > 2 && PCPU_GET(domain) != itemdomain) { 4222 zone_free_cross(zone, bucket, udata); 4223 return; 4224 } 4225 #endif 4226 4227 /* 4228 * Attempt to save the bucket in the zone's domain bucket cache. 4229 */ 4230 CTR3(KTR_UMA, 4231 "uma_zfree: zone %s(%p) putting bucket %p on free list", 4232 zone->uz_name, zone, bucket); 4233 /* ub_cnt is pointing to the last free item */ 4234 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) 4235 itemdomain = zone_domain_lowest(zone, itemdomain); 4236 zone_put_bucket(zone, itemdomain, bucket, udata, ws); 4237 } 4238 4239 /* 4240 * Populate a free or cross bucket for the current cpu cache. Free any 4241 * existing full bucket either to the zone cache or back to the slab layer. 4242 * 4243 * Enters and returns in a critical section. false return indicates that 4244 * we can not satisfy this free in the cache layer. true indicates that 4245 * the caller should retry. 4246 */ 4247 static __noinline bool 4248 cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, void *item, 4249 int itemdomain) 4250 { 4251 uma_cache_bucket_t cbucket; 4252 uma_bucket_t newbucket, bucket; 4253 4254 CRITICAL_ASSERT(curthread); 4255 4256 if (zone->uz_bucket_size == 0) 4257 return false; 4258 4259 cache = &zone->uz_cpu[curcpu]; 4260 newbucket = NULL; 4261 4262 /* 4263 * FIRSTTOUCH domains need to free to the correct zdom. When 4264 * enabled this is the zdom of the item. The bucket is the 4265 * cross bucket if the current domain and itemdomain do not match. 4266 */ 4267 cbucket = &cache->uc_freebucket; 4268 #ifdef NUMA 4269 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { 4270 if (PCPU_GET(domain) != itemdomain) { 4271 cbucket = &cache->uc_crossbucket; 4272 if (cbucket->ucb_cnt != 0) 4273 counter_u64_add(zone->uz_xdomain, 4274 cbucket->ucb_cnt); 4275 } 4276 } 4277 #endif 4278 bucket = cache_bucket_unload(cbucket); 4279 KASSERT(bucket == NULL || bucket->ub_cnt == bucket->ub_entries, 4280 ("cache_free: Entered with non-full free bucket.")); 4281 4282 /* We are no longer associated with this CPU. */ 4283 critical_exit(); 4284 4285 /* 4286 * Don't let SMR zones operate without a free bucket. Force 4287 * a synchronize and re-use this one. We will only degrade 4288 * to a synchronize every bucket_size items rather than every 4289 * item if we fail to allocate a bucket. 4290 */ 4291 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) { 4292 if (bucket != NULL) 4293 bucket->ub_seq = smr_advance(zone->uz_smr); 4294 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4295 if (newbucket == NULL && bucket != NULL) { 4296 bucket_drain(zone, bucket); 4297 newbucket = bucket; 4298 bucket = NULL; 4299 } 4300 } else if (!bucketdisable) 4301 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4302 4303 if (bucket != NULL) 4304 zone_free_bucket(zone, bucket, udata, itemdomain, true); 4305 4306 critical_enter(); 4307 if ((bucket = newbucket) == NULL) 4308 return (false); 4309 cache = &zone->uz_cpu[curcpu]; 4310 #ifdef NUMA 4311 /* 4312 * Check to see if we should be populating the cross bucket. If it 4313 * is already populated we will fall through and attempt to populate 4314 * the free bucket. 4315 */ 4316 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { 4317 if (PCPU_GET(domain) != itemdomain && 4318 cache->uc_crossbucket.ucb_bucket == NULL) { 4319 cache_bucket_load_cross(cache, bucket); 4320 return (true); 4321 } 4322 } 4323 #endif 4324 /* 4325 * We may have lost the race to fill the bucket or switched CPUs. 4326 */ 4327 if (cache->uc_freebucket.ucb_bucket != NULL) { 4328 critical_exit(); 4329 bucket_free(zone, bucket, udata); 4330 critical_enter(); 4331 } else 4332 cache_bucket_load_free(cache, bucket); 4333 4334 return (true); 4335 } 4336 4337 static void 4338 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item) 4339 { 4340 uma_keg_t keg; 4341 uma_domain_t dom; 4342 int freei; 4343 4344 keg = zone->uz_keg; 4345 KEG_LOCK_ASSERT(keg, slab->us_domain); 4346 4347 /* Do we need to remove from any lists? */ 4348 dom = &keg->uk_domain[slab->us_domain]; 4349 if (slab->us_freecount + 1 == keg->uk_ipers) { 4350 LIST_REMOVE(slab, us_link); 4351 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 4352 dom->ud_free_slabs++; 4353 } else if (slab->us_freecount == 0) { 4354 LIST_REMOVE(slab, us_link); 4355 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 4356 } 4357 4358 /* Slab management. */ 4359 freei = slab_item_index(slab, keg, item); 4360 BIT_SET(keg->uk_ipers, freei, &slab->us_free); 4361 slab->us_freecount++; 4362 4363 /* Keg statistics. */ 4364 dom->ud_free_items++; 4365 } 4366 4367 static void 4368 zone_release(void *arg, void **bucket, int cnt) 4369 { 4370 struct mtx *lock; 4371 uma_zone_t zone; 4372 uma_slab_t slab; 4373 uma_keg_t keg; 4374 uint8_t *mem; 4375 void *item; 4376 int i; 4377 4378 zone = arg; 4379 keg = zone->uz_keg; 4380 lock = NULL; 4381 if (__predict_false((zone->uz_flags & UMA_ZFLAG_HASH) != 0)) 4382 lock = KEG_LOCK(keg, 0); 4383 for (i = 0; i < cnt; i++) { 4384 item = bucket[i]; 4385 if (__predict_true((zone->uz_flags & UMA_ZFLAG_VTOSLAB) != 0)) { 4386 slab = vtoslab((vm_offset_t)item); 4387 } else { 4388 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 4389 if ((zone->uz_flags & UMA_ZFLAG_HASH) != 0) 4390 slab = hash_sfind(&keg->uk_hash, mem); 4391 else 4392 slab = (uma_slab_t)(mem + keg->uk_pgoff); 4393 } 4394 if (lock != KEG_LOCKPTR(keg, slab->us_domain)) { 4395 if (lock != NULL) 4396 mtx_unlock(lock); 4397 lock = KEG_LOCK(keg, slab->us_domain); 4398 } 4399 slab_free_item(zone, slab, item); 4400 } 4401 if (lock != NULL) 4402 mtx_unlock(lock); 4403 } 4404 4405 /* 4406 * Frees a single item to any zone. 4407 * 4408 * Arguments: 4409 * zone The zone to free to 4410 * item The item we're freeing 4411 * udata User supplied data for the dtor 4412 * skip Skip dtors and finis 4413 */ 4414 static __noinline void 4415 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 4416 { 4417 4418 /* 4419 * If a free is sent directly to an SMR zone we have to 4420 * synchronize immediately because the item can instantly 4421 * be reallocated. This should only happen in degenerate 4422 * cases when no memory is available for per-cpu caches. 4423 */ 4424 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && skip == SKIP_NONE) 4425 smr_synchronize(zone->uz_smr); 4426 4427 item_dtor(zone, item, zone->uz_size, udata, skip); 4428 4429 if (skip < SKIP_FINI && zone->uz_fini) 4430 zone->uz_fini(item, zone->uz_size); 4431 4432 zone->uz_release(zone->uz_arg, &item, 1); 4433 4434 if (skip & SKIP_CNT) 4435 return; 4436 4437 counter_u64_add(zone->uz_frees, 1); 4438 4439 if (zone->uz_max_items > 0) 4440 zone_free_limit(zone, 1); 4441 } 4442 4443 /* See uma.h */ 4444 int 4445 uma_zone_set_max(uma_zone_t zone, int nitems) 4446 { 4447 struct uma_bucket_zone *ubz; 4448 int count; 4449 4450 /* 4451 * XXX This can misbehave if the zone has any allocations with 4452 * no limit and a limit is imposed. There is currently no 4453 * way to clear a limit. 4454 */ 4455 ZONE_LOCK(zone); 4456 ubz = bucket_zone_max(zone, nitems); 4457 count = ubz != NULL ? ubz->ubz_entries : 0; 4458 zone->uz_bucket_size_max = zone->uz_bucket_size = count; 4459 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 4460 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 4461 zone->uz_max_items = nitems; 4462 zone->uz_flags |= UMA_ZFLAG_LIMIT; 4463 zone_update_caches(zone); 4464 /* We may need to wake waiters. */ 4465 wakeup(&zone->uz_max_items); 4466 ZONE_UNLOCK(zone); 4467 4468 return (nitems); 4469 } 4470 4471 /* See uma.h */ 4472 void 4473 uma_zone_set_maxcache(uma_zone_t zone, int nitems) 4474 { 4475 struct uma_bucket_zone *ubz; 4476 int bpcpu; 4477 4478 ZONE_LOCK(zone); 4479 ubz = bucket_zone_max(zone, nitems); 4480 if (ubz != NULL) { 4481 bpcpu = 2; 4482 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4483 /* Count the cross-domain bucket. */ 4484 bpcpu++; 4485 nitems -= ubz->ubz_entries * bpcpu * mp_ncpus; 4486 zone->uz_bucket_size_max = ubz->ubz_entries; 4487 } else { 4488 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 4489 } 4490 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 4491 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 4492 zone->uz_bucket_max = nitems / vm_ndomains; 4493 ZONE_UNLOCK(zone); 4494 } 4495 4496 /* See uma.h */ 4497 int 4498 uma_zone_get_max(uma_zone_t zone) 4499 { 4500 int nitems; 4501 4502 nitems = atomic_load_64(&zone->uz_max_items); 4503 4504 return (nitems); 4505 } 4506 4507 /* See uma.h */ 4508 void 4509 uma_zone_set_warning(uma_zone_t zone, const char *warning) 4510 { 4511 4512 ZONE_ASSERT_COLD(zone); 4513 zone->uz_warning = warning; 4514 } 4515 4516 /* See uma.h */ 4517 void 4518 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 4519 { 4520 4521 ZONE_ASSERT_COLD(zone); 4522 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 4523 } 4524 4525 /* See uma.h */ 4526 int 4527 uma_zone_get_cur(uma_zone_t zone) 4528 { 4529 int64_t nitems; 4530 u_int i; 4531 4532 nitems = 0; 4533 if (zone->uz_allocs != EARLY_COUNTER && zone->uz_frees != EARLY_COUNTER) 4534 nitems = counter_u64_fetch(zone->uz_allocs) - 4535 counter_u64_fetch(zone->uz_frees); 4536 CPU_FOREACH(i) 4537 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs) - 4538 atomic_load_64(&zone->uz_cpu[i].uc_frees); 4539 4540 return (nitems < 0 ? 0 : nitems); 4541 } 4542 4543 static uint64_t 4544 uma_zone_get_allocs(uma_zone_t zone) 4545 { 4546 uint64_t nitems; 4547 u_int i; 4548 4549 nitems = 0; 4550 if (zone->uz_allocs != EARLY_COUNTER) 4551 nitems = counter_u64_fetch(zone->uz_allocs); 4552 CPU_FOREACH(i) 4553 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs); 4554 4555 return (nitems); 4556 } 4557 4558 static uint64_t 4559 uma_zone_get_frees(uma_zone_t zone) 4560 { 4561 uint64_t nitems; 4562 u_int i; 4563 4564 nitems = 0; 4565 if (zone->uz_frees != EARLY_COUNTER) 4566 nitems = counter_u64_fetch(zone->uz_frees); 4567 CPU_FOREACH(i) 4568 nitems += atomic_load_64(&zone->uz_cpu[i].uc_frees); 4569 4570 return (nitems); 4571 } 4572 4573 #ifdef INVARIANTS 4574 /* Used only for KEG_ASSERT_COLD(). */ 4575 static uint64_t 4576 uma_keg_get_allocs(uma_keg_t keg) 4577 { 4578 uma_zone_t z; 4579 uint64_t nitems; 4580 4581 nitems = 0; 4582 LIST_FOREACH(z, &keg->uk_zones, uz_link) 4583 nitems += uma_zone_get_allocs(z); 4584 4585 return (nitems); 4586 } 4587 #endif 4588 4589 /* See uma.h */ 4590 void 4591 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 4592 { 4593 uma_keg_t keg; 4594 4595 KEG_GET(zone, keg); 4596 KEG_ASSERT_COLD(keg); 4597 keg->uk_init = uminit; 4598 } 4599 4600 /* See uma.h */ 4601 void 4602 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 4603 { 4604 uma_keg_t keg; 4605 4606 KEG_GET(zone, keg); 4607 KEG_ASSERT_COLD(keg); 4608 keg->uk_fini = fini; 4609 } 4610 4611 /* See uma.h */ 4612 void 4613 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 4614 { 4615 4616 ZONE_ASSERT_COLD(zone); 4617 zone->uz_init = zinit; 4618 } 4619 4620 /* See uma.h */ 4621 void 4622 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 4623 { 4624 4625 ZONE_ASSERT_COLD(zone); 4626 zone->uz_fini = zfini; 4627 } 4628 4629 /* See uma.h */ 4630 void 4631 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 4632 { 4633 uma_keg_t keg; 4634 4635 KEG_GET(zone, keg); 4636 KEG_ASSERT_COLD(keg); 4637 keg->uk_freef = freef; 4638 } 4639 4640 /* See uma.h */ 4641 void 4642 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 4643 { 4644 uma_keg_t keg; 4645 4646 KEG_GET(zone, keg); 4647 KEG_ASSERT_COLD(keg); 4648 keg->uk_allocf = allocf; 4649 } 4650 4651 /* See uma.h */ 4652 void 4653 uma_zone_set_smr(uma_zone_t zone, smr_t smr) 4654 { 4655 4656 ZONE_ASSERT_COLD(zone); 4657 4658 KASSERT(smr != NULL, ("Got NULL smr")); 4659 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 4660 ("zone %p (%s) already uses SMR", zone, zone->uz_name)); 4661 zone->uz_flags |= UMA_ZONE_SMR; 4662 zone->uz_smr = smr; 4663 zone_update_caches(zone); 4664 } 4665 4666 smr_t 4667 uma_zone_get_smr(uma_zone_t zone) 4668 { 4669 4670 return (zone->uz_smr); 4671 } 4672 4673 /* See uma.h */ 4674 void 4675 uma_zone_reserve(uma_zone_t zone, int items) 4676 { 4677 uma_keg_t keg; 4678 4679 KEG_GET(zone, keg); 4680 KEG_ASSERT_COLD(keg); 4681 keg->uk_reserve = items; 4682 } 4683 4684 /* See uma.h */ 4685 int 4686 uma_zone_reserve_kva(uma_zone_t zone, int count) 4687 { 4688 uma_keg_t keg; 4689 vm_offset_t kva; 4690 u_int pages; 4691 4692 KEG_GET(zone, keg); 4693 KEG_ASSERT_COLD(keg); 4694 ZONE_ASSERT_COLD(zone); 4695 4696 pages = howmany(count, keg->uk_ipers) * keg->uk_ppera; 4697 4698 #ifdef UMA_MD_SMALL_ALLOC 4699 if (keg->uk_ppera > 1) { 4700 #else 4701 if (1) { 4702 #endif 4703 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 4704 if (kva == 0) 4705 return (0); 4706 } else 4707 kva = 0; 4708 4709 MPASS(keg->uk_kva == 0); 4710 keg->uk_kva = kva; 4711 keg->uk_offset = 0; 4712 zone->uz_max_items = pages * keg->uk_ipers; 4713 #ifdef UMA_MD_SMALL_ALLOC 4714 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 4715 #else 4716 keg->uk_allocf = noobj_alloc; 4717 #endif 4718 keg->uk_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 4719 zone->uz_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 4720 zone_update_caches(zone); 4721 4722 return (1); 4723 } 4724 4725 /* See uma.h */ 4726 void 4727 uma_prealloc(uma_zone_t zone, int items) 4728 { 4729 struct vm_domainset_iter di; 4730 uma_domain_t dom; 4731 uma_slab_t slab; 4732 uma_keg_t keg; 4733 int aflags, domain, slabs; 4734 4735 KEG_GET(zone, keg); 4736 slabs = howmany(items, keg->uk_ipers); 4737 while (slabs-- > 0) { 4738 aflags = M_NOWAIT; 4739 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 4740 &aflags); 4741 for (;;) { 4742 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK, 4743 aflags); 4744 if (slab != NULL) { 4745 dom = &keg->uk_domain[slab->us_domain]; 4746 /* 4747 * keg_alloc_slab() always returns a slab on the 4748 * partial list. 4749 */ 4750 LIST_REMOVE(slab, us_link); 4751 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, 4752 us_link); 4753 dom->ud_free_slabs++; 4754 KEG_UNLOCK(keg, slab->us_domain); 4755 break; 4756 } 4757 if (vm_domainset_iter_policy(&di, &domain) != 0) 4758 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0); 4759 } 4760 } 4761 } 4762 4763 /* 4764 * Returns a snapshot of memory consumption in bytes. 4765 */ 4766 size_t 4767 uma_zone_memory(uma_zone_t zone) 4768 { 4769 size_t sz; 4770 int i; 4771 4772 sz = 0; 4773 if (zone->uz_flags & UMA_ZFLAG_CACHE) { 4774 for (i = 0; i < vm_ndomains; i++) 4775 sz += ZDOM_GET(zone, i)->uzd_nitems; 4776 return (sz * zone->uz_size); 4777 } 4778 for (i = 0; i < vm_ndomains; i++) 4779 sz += zone->uz_keg->uk_domain[i].ud_pages; 4780 4781 return (sz * PAGE_SIZE); 4782 } 4783 4784 /* See uma.h */ 4785 void 4786 uma_reclaim(int req) 4787 { 4788 4789 CTR0(KTR_UMA, "UMA: vm asked us to release pages!"); 4790 sx_xlock(&uma_reclaim_lock); 4791 bucket_enable(); 4792 4793 switch (req) { 4794 case UMA_RECLAIM_TRIM: 4795 zone_foreach(zone_trim, NULL); 4796 break; 4797 case UMA_RECLAIM_DRAIN: 4798 case UMA_RECLAIM_DRAIN_CPU: 4799 zone_foreach(zone_drain, NULL); 4800 if (req == UMA_RECLAIM_DRAIN_CPU) { 4801 pcpu_cache_drain_safe(NULL); 4802 zone_foreach(zone_drain, NULL); 4803 } 4804 break; 4805 default: 4806 panic("unhandled reclamation request %d", req); 4807 } 4808 4809 /* 4810 * Some slabs may have been freed but this zone will be visited early 4811 * we visit again so that we can free pages that are empty once other 4812 * zones are drained. We have to do the same for buckets. 4813 */ 4814 zone_drain(slabzones[0], NULL); 4815 zone_drain(slabzones[1], NULL); 4816 bucket_zone_drain(); 4817 sx_xunlock(&uma_reclaim_lock); 4818 } 4819 4820 static volatile int uma_reclaim_needed; 4821 4822 void 4823 uma_reclaim_wakeup(void) 4824 { 4825 4826 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 4827 wakeup(uma_reclaim); 4828 } 4829 4830 void 4831 uma_reclaim_worker(void *arg __unused) 4832 { 4833 4834 for (;;) { 4835 sx_xlock(&uma_reclaim_lock); 4836 while (atomic_load_int(&uma_reclaim_needed) == 0) 4837 sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl", 4838 hz); 4839 sx_xunlock(&uma_reclaim_lock); 4840 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 4841 uma_reclaim(UMA_RECLAIM_DRAIN_CPU); 4842 atomic_store_int(&uma_reclaim_needed, 0); 4843 /* Don't fire more than once per-second. */ 4844 pause("umarclslp", hz); 4845 } 4846 } 4847 4848 /* See uma.h */ 4849 void 4850 uma_zone_reclaim(uma_zone_t zone, int req) 4851 { 4852 4853 switch (req) { 4854 case UMA_RECLAIM_TRIM: 4855 zone_trim(zone, NULL); 4856 break; 4857 case UMA_RECLAIM_DRAIN: 4858 zone_drain(zone, NULL); 4859 break; 4860 case UMA_RECLAIM_DRAIN_CPU: 4861 pcpu_cache_drain_safe(zone); 4862 zone_drain(zone, NULL); 4863 break; 4864 default: 4865 panic("unhandled reclamation request %d", req); 4866 } 4867 } 4868 4869 /* See uma.h */ 4870 int 4871 uma_zone_exhausted(uma_zone_t zone) 4872 { 4873 4874 return (atomic_load_32(&zone->uz_sleepers) > 0); 4875 } 4876 4877 unsigned long 4878 uma_limit(void) 4879 { 4880 4881 return (uma_kmem_limit); 4882 } 4883 4884 void 4885 uma_set_limit(unsigned long limit) 4886 { 4887 4888 uma_kmem_limit = limit; 4889 } 4890 4891 unsigned long 4892 uma_size(void) 4893 { 4894 4895 return (atomic_load_long(&uma_kmem_total)); 4896 } 4897 4898 long 4899 uma_avail(void) 4900 { 4901 4902 return (uma_kmem_limit - uma_size()); 4903 } 4904 4905 #ifdef DDB 4906 /* 4907 * Generate statistics across both the zone and its per-cpu cache's. Return 4908 * desired statistics if the pointer is non-NULL for that statistic. 4909 * 4910 * Note: does not update the zone statistics, as it can't safely clear the 4911 * per-CPU cache statistic. 4912 * 4913 */ 4914 static void 4915 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp, 4916 uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp) 4917 { 4918 uma_cache_t cache; 4919 uint64_t allocs, frees, sleeps, xdomain; 4920 int cachefree, cpu; 4921 4922 allocs = frees = sleeps = xdomain = 0; 4923 cachefree = 0; 4924 CPU_FOREACH(cpu) { 4925 cache = &z->uz_cpu[cpu]; 4926 cachefree += cache->uc_allocbucket.ucb_cnt; 4927 cachefree += cache->uc_freebucket.ucb_cnt; 4928 xdomain += cache->uc_crossbucket.ucb_cnt; 4929 cachefree += cache->uc_crossbucket.ucb_cnt; 4930 allocs += cache->uc_allocs; 4931 frees += cache->uc_frees; 4932 } 4933 allocs += counter_u64_fetch(z->uz_allocs); 4934 frees += counter_u64_fetch(z->uz_frees); 4935 xdomain += counter_u64_fetch(z->uz_xdomain); 4936 sleeps += z->uz_sleeps; 4937 if (cachefreep != NULL) 4938 *cachefreep = cachefree; 4939 if (allocsp != NULL) 4940 *allocsp = allocs; 4941 if (freesp != NULL) 4942 *freesp = frees; 4943 if (sleepsp != NULL) 4944 *sleepsp = sleeps; 4945 if (xdomainp != NULL) 4946 *xdomainp = xdomain; 4947 } 4948 #endif /* DDB */ 4949 4950 static int 4951 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 4952 { 4953 uma_keg_t kz; 4954 uma_zone_t z; 4955 int count; 4956 4957 count = 0; 4958 rw_rlock(&uma_rwlock); 4959 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4960 LIST_FOREACH(z, &kz->uk_zones, uz_link) 4961 count++; 4962 } 4963 LIST_FOREACH(z, &uma_cachezones, uz_link) 4964 count++; 4965 4966 rw_runlock(&uma_rwlock); 4967 return (sysctl_handle_int(oidp, &count, 0, req)); 4968 } 4969 4970 static void 4971 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf, 4972 struct uma_percpu_stat *ups, bool internal) 4973 { 4974 uma_zone_domain_t zdom; 4975 uma_cache_t cache; 4976 int i; 4977 4978 for (i = 0; i < vm_ndomains; i++) { 4979 zdom = ZDOM_GET(z, i); 4980 uth->uth_zone_free += zdom->uzd_nitems; 4981 } 4982 uth->uth_allocs = counter_u64_fetch(z->uz_allocs); 4983 uth->uth_frees = counter_u64_fetch(z->uz_frees); 4984 uth->uth_fails = counter_u64_fetch(z->uz_fails); 4985 uth->uth_xdomain = counter_u64_fetch(z->uz_xdomain); 4986 uth->uth_sleeps = z->uz_sleeps; 4987 4988 for (i = 0; i < mp_maxid + 1; i++) { 4989 bzero(&ups[i], sizeof(*ups)); 4990 if (internal || CPU_ABSENT(i)) 4991 continue; 4992 cache = &z->uz_cpu[i]; 4993 ups[i].ups_cache_free += cache->uc_allocbucket.ucb_cnt; 4994 ups[i].ups_cache_free += cache->uc_freebucket.ucb_cnt; 4995 ups[i].ups_cache_free += cache->uc_crossbucket.ucb_cnt; 4996 ups[i].ups_allocs = cache->uc_allocs; 4997 ups[i].ups_frees = cache->uc_frees; 4998 } 4999 } 5000 5001 static int 5002 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 5003 { 5004 struct uma_stream_header ush; 5005 struct uma_type_header uth; 5006 struct uma_percpu_stat *ups; 5007 struct sbuf sbuf; 5008 uma_keg_t kz; 5009 uma_zone_t z; 5010 uint64_t items; 5011 uint32_t kfree, pages; 5012 int count, error, i; 5013 5014 error = sysctl_wire_old_buffer(req, 0); 5015 if (error != 0) 5016 return (error); 5017 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 5018 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 5019 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 5020 5021 count = 0; 5022 rw_rlock(&uma_rwlock); 5023 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5024 LIST_FOREACH(z, &kz->uk_zones, uz_link) 5025 count++; 5026 } 5027 5028 LIST_FOREACH(z, &uma_cachezones, uz_link) 5029 count++; 5030 5031 /* 5032 * Insert stream header. 5033 */ 5034 bzero(&ush, sizeof(ush)); 5035 ush.ush_version = UMA_STREAM_VERSION; 5036 ush.ush_maxcpus = (mp_maxid + 1); 5037 ush.ush_count = count; 5038 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 5039 5040 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5041 kfree = pages = 0; 5042 for (i = 0; i < vm_ndomains; i++) { 5043 kfree += kz->uk_domain[i].ud_free_items; 5044 pages += kz->uk_domain[i].ud_pages; 5045 } 5046 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5047 bzero(&uth, sizeof(uth)); 5048 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 5049 uth.uth_align = kz->uk_align; 5050 uth.uth_size = kz->uk_size; 5051 uth.uth_rsize = kz->uk_rsize; 5052 if (z->uz_max_items > 0) { 5053 items = UZ_ITEMS_COUNT(z->uz_items); 5054 uth.uth_pages = (items / kz->uk_ipers) * 5055 kz->uk_ppera; 5056 } else 5057 uth.uth_pages = pages; 5058 uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) * 5059 kz->uk_ppera; 5060 uth.uth_limit = z->uz_max_items; 5061 uth.uth_keg_free = kfree; 5062 5063 /* 5064 * A zone is secondary is it is not the first entry 5065 * on the keg's zone list. 5066 */ 5067 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 5068 (LIST_FIRST(&kz->uk_zones) != z)) 5069 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 5070 uma_vm_zone_stats(&uth, z, &sbuf, ups, 5071 kz->uk_flags & UMA_ZFLAG_INTERNAL); 5072 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 5073 for (i = 0; i < mp_maxid + 1; i++) 5074 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 5075 } 5076 } 5077 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5078 bzero(&uth, sizeof(uth)); 5079 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 5080 uth.uth_size = z->uz_size; 5081 uma_vm_zone_stats(&uth, z, &sbuf, ups, false); 5082 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 5083 for (i = 0; i < mp_maxid + 1; i++) 5084 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 5085 } 5086 5087 rw_runlock(&uma_rwlock); 5088 error = sbuf_finish(&sbuf); 5089 sbuf_delete(&sbuf); 5090 free(ups, M_TEMP); 5091 return (error); 5092 } 5093 5094 int 5095 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 5096 { 5097 uma_zone_t zone = *(uma_zone_t *)arg1; 5098 int error, max; 5099 5100 max = uma_zone_get_max(zone); 5101 error = sysctl_handle_int(oidp, &max, 0, req); 5102 if (error || !req->newptr) 5103 return (error); 5104 5105 uma_zone_set_max(zone, max); 5106 5107 return (0); 5108 } 5109 5110 int 5111 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 5112 { 5113 uma_zone_t zone; 5114 int cur; 5115 5116 /* 5117 * Some callers want to add sysctls for global zones that 5118 * may not yet exist so they pass a pointer to a pointer. 5119 */ 5120 if (arg2 == 0) 5121 zone = *(uma_zone_t *)arg1; 5122 else 5123 zone = arg1; 5124 cur = uma_zone_get_cur(zone); 5125 return (sysctl_handle_int(oidp, &cur, 0, req)); 5126 } 5127 5128 static int 5129 sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS) 5130 { 5131 uma_zone_t zone = arg1; 5132 uint64_t cur; 5133 5134 cur = uma_zone_get_allocs(zone); 5135 return (sysctl_handle_64(oidp, &cur, 0, req)); 5136 } 5137 5138 static int 5139 sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS) 5140 { 5141 uma_zone_t zone = arg1; 5142 uint64_t cur; 5143 5144 cur = uma_zone_get_frees(zone); 5145 return (sysctl_handle_64(oidp, &cur, 0, req)); 5146 } 5147 5148 static int 5149 sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS) 5150 { 5151 struct sbuf sbuf; 5152 uma_zone_t zone = arg1; 5153 int error; 5154 5155 sbuf_new_for_sysctl(&sbuf, NULL, 0, req); 5156 if (zone->uz_flags != 0) 5157 sbuf_printf(&sbuf, "0x%b", zone->uz_flags, PRINT_UMA_ZFLAGS); 5158 else 5159 sbuf_printf(&sbuf, "0"); 5160 error = sbuf_finish(&sbuf); 5161 sbuf_delete(&sbuf); 5162 5163 return (error); 5164 } 5165 5166 static int 5167 sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS) 5168 { 5169 uma_keg_t keg = arg1; 5170 int avail, effpct, total; 5171 5172 total = keg->uk_ppera * PAGE_SIZE; 5173 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0) 5174 total += slabzone(keg->uk_ipers)->uz_keg->uk_rsize; 5175 /* 5176 * We consider the client's requested size and alignment here, not the 5177 * real size determination uk_rsize, because we also adjust the real 5178 * size for internal implementation reasons (max bitset size). 5179 */ 5180 avail = keg->uk_ipers * roundup2(keg->uk_size, keg->uk_align + 1); 5181 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 5182 avail *= mp_maxid + 1; 5183 effpct = 100 * avail / total; 5184 return (sysctl_handle_int(oidp, &effpct, 0, req)); 5185 } 5186 5187 static int 5188 sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS) 5189 { 5190 uma_zone_t zone = arg1; 5191 uint64_t cur; 5192 5193 cur = UZ_ITEMS_COUNT(atomic_load_64(&zone->uz_items)); 5194 return (sysctl_handle_64(oidp, &cur, 0, req)); 5195 } 5196 5197 #ifdef INVARIANTS 5198 static uma_slab_t 5199 uma_dbg_getslab(uma_zone_t zone, void *item) 5200 { 5201 uma_slab_t slab; 5202 uma_keg_t keg; 5203 uint8_t *mem; 5204 5205 /* 5206 * It is safe to return the slab here even though the 5207 * zone is unlocked because the item's allocation state 5208 * essentially holds a reference. 5209 */ 5210 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 5211 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5212 return (NULL); 5213 if (zone->uz_flags & UMA_ZFLAG_VTOSLAB) 5214 return (vtoslab((vm_offset_t)mem)); 5215 keg = zone->uz_keg; 5216 if ((keg->uk_flags & UMA_ZFLAG_HASH) == 0) 5217 return ((uma_slab_t)(mem + keg->uk_pgoff)); 5218 KEG_LOCK(keg, 0); 5219 slab = hash_sfind(&keg->uk_hash, mem); 5220 KEG_UNLOCK(keg, 0); 5221 5222 return (slab); 5223 } 5224 5225 static bool 5226 uma_dbg_zskip(uma_zone_t zone, void *mem) 5227 { 5228 5229 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5230 return (true); 5231 5232 return (uma_dbg_kskip(zone->uz_keg, mem)); 5233 } 5234 5235 static bool 5236 uma_dbg_kskip(uma_keg_t keg, void *mem) 5237 { 5238 uintptr_t idx; 5239 5240 if (dbg_divisor == 0) 5241 return (true); 5242 5243 if (dbg_divisor == 1) 5244 return (false); 5245 5246 idx = (uintptr_t)mem >> PAGE_SHIFT; 5247 if (keg->uk_ipers > 1) { 5248 idx *= keg->uk_ipers; 5249 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize; 5250 } 5251 5252 if ((idx / dbg_divisor) * dbg_divisor != idx) { 5253 counter_u64_add(uma_skip_cnt, 1); 5254 return (true); 5255 } 5256 counter_u64_add(uma_dbg_cnt, 1); 5257 5258 return (false); 5259 } 5260 5261 /* 5262 * Set up the slab's freei data such that uma_dbg_free can function. 5263 * 5264 */ 5265 static void 5266 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 5267 { 5268 uma_keg_t keg; 5269 int freei; 5270 5271 if (slab == NULL) { 5272 slab = uma_dbg_getslab(zone, item); 5273 if (slab == NULL) 5274 panic("uma: item %p did not belong to zone %s\n", 5275 item, zone->uz_name); 5276 } 5277 keg = zone->uz_keg; 5278 freei = slab_item_index(slab, keg, item); 5279 5280 if (BIT_ISSET(keg->uk_ipers, freei, slab_dbg_bits(slab, keg))) 5281 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n", 5282 item, zone, zone->uz_name, slab, freei); 5283 BIT_SET_ATOMIC(keg->uk_ipers, freei, slab_dbg_bits(slab, keg)); 5284 } 5285 5286 /* 5287 * Verifies freed addresses. Checks for alignment, valid slab membership 5288 * and duplicate frees. 5289 * 5290 */ 5291 static void 5292 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 5293 { 5294 uma_keg_t keg; 5295 int freei; 5296 5297 if (slab == NULL) { 5298 slab = uma_dbg_getslab(zone, item); 5299 if (slab == NULL) 5300 panic("uma: Freed item %p did not belong to zone %s\n", 5301 item, zone->uz_name); 5302 } 5303 keg = zone->uz_keg; 5304 freei = slab_item_index(slab, keg, item); 5305 5306 if (freei >= keg->uk_ipers) 5307 panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n", 5308 item, zone, zone->uz_name, slab, freei); 5309 5310 if (slab_item(slab, keg, freei) != item) 5311 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n", 5312 item, zone, zone->uz_name, slab, freei); 5313 5314 if (!BIT_ISSET(keg->uk_ipers, freei, slab_dbg_bits(slab, keg))) 5315 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n", 5316 item, zone, zone->uz_name, slab, freei); 5317 5318 BIT_CLR_ATOMIC(keg->uk_ipers, freei, slab_dbg_bits(slab, keg)); 5319 } 5320 #endif /* INVARIANTS */ 5321 5322 #ifdef DDB 5323 static int64_t 5324 get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used, 5325 uint64_t *sleeps, long *cachefree, uint64_t *xdomain) 5326 { 5327 uint64_t frees; 5328 int i; 5329 5330 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 5331 *allocs = counter_u64_fetch(z->uz_allocs); 5332 frees = counter_u64_fetch(z->uz_frees); 5333 *sleeps = z->uz_sleeps; 5334 *cachefree = 0; 5335 *xdomain = 0; 5336 } else 5337 uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps, 5338 xdomain); 5339 for (i = 0; i < vm_ndomains; i++) { 5340 *cachefree += ZDOM_GET(z, i)->uzd_nitems; 5341 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 5342 (LIST_FIRST(&kz->uk_zones) != z))) 5343 *cachefree += kz->uk_domain[i].ud_free_items; 5344 } 5345 *used = *allocs - frees; 5346 return (((int64_t)*used + *cachefree) * kz->uk_size); 5347 } 5348 5349 DB_SHOW_COMMAND(uma, db_show_uma) 5350 { 5351 const char *fmt_hdr, *fmt_entry; 5352 uma_keg_t kz; 5353 uma_zone_t z; 5354 uint64_t allocs, used, sleeps, xdomain; 5355 long cachefree; 5356 /* variables for sorting */ 5357 uma_keg_t cur_keg; 5358 uma_zone_t cur_zone, last_zone; 5359 int64_t cur_size, last_size, size; 5360 int ties; 5361 5362 /* /i option produces machine-parseable CSV output */ 5363 if (modif[0] == 'i') { 5364 fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n"; 5365 fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n"; 5366 } else { 5367 fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n"; 5368 fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n"; 5369 } 5370 5371 db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests", 5372 "Sleeps", "Bucket", "Total Mem", "XFree"); 5373 5374 /* Sort the zones with largest size first. */ 5375 last_zone = NULL; 5376 last_size = INT64_MAX; 5377 for (;;) { 5378 cur_zone = NULL; 5379 cur_size = -1; 5380 ties = 0; 5381 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5382 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5383 /* 5384 * In the case of size ties, print out zones 5385 * in the order they are encountered. That is, 5386 * when we encounter the most recently output 5387 * zone, we have already printed all preceding 5388 * ties, and we must print all following ties. 5389 */ 5390 if (z == last_zone) { 5391 ties = 1; 5392 continue; 5393 } 5394 size = get_uma_stats(kz, z, &allocs, &used, 5395 &sleeps, &cachefree, &xdomain); 5396 if (size > cur_size && size < last_size + ties) 5397 { 5398 cur_size = size; 5399 cur_zone = z; 5400 cur_keg = kz; 5401 } 5402 } 5403 } 5404 if (cur_zone == NULL) 5405 break; 5406 5407 size = get_uma_stats(cur_keg, cur_zone, &allocs, &used, 5408 &sleeps, &cachefree, &xdomain); 5409 db_printf(fmt_entry, cur_zone->uz_name, 5410 (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree, 5411 (uintmax_t)allocs, (uintmax_t)sleeps, 5412 (unsigned)cur_zone->uz_bucket_size, (intmax_t)size, 5413 xdomain); 5414 5415 if (db_pager_quit) 5416 return; 5417 last_zone = cur_zone; 5418 last_size = cur_size; 5419 } 5420 } 5421 5422 DB_SHOW_COMMAND(umacache, db_show_umacache) 5423 { 5424 uma_zone_t z; 5425 uint64_t allocs, frees; 5426 long cachefree; 5427 int i; 5428 5429 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 5430 "Requests", "Bucket"); 5431 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5432 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL); 5433 for (i = 0; i < vm_ndomains; i++) 5434 cachefree += ZDOM_GET(z, i)->uzd_nitems; 5435 db_printf("%18s %8ju %8jd %8ld %12ju %8u\n", 5436 z->uz_name, (uintmax_t)z->uz_size, 5437 (intmax_t)(allocs - frees), cachefree, 5438 (uintmax_t)allocs, z->uz_bucket_size); 5439 if (db_pager_quit) 5440 return; 5441 } 5442 } 5443 #endif /* DDB */ 5444