1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/bitset.h> 62 #include <sys/domainset.h> 63 #include <sys/eventhandler.h> 64 #include <sys/kernel.h> 65 #include <sys/types.h> 66 #include <sys/limits.h> 67 #include <sys/queue.h> 68 #include <sys/malloc.h> 69 #include <sys/ktr.h> 70 #include <sys/lock.h> 71 #include <sys/sysctl.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/random.h> 75 #include <sys/rwlock.h> 76 #include <sys/sbuf.h> 77 #include <sys/sched.h> 78 #include <sys/smp.h> 79 #include <sys/taskqueue.h> 80 #include <sys/vmmeter.h> 81 82 #include <vm/vm.h> 83 #include <vm/vm_domainset.h> 84 #include <vm/vm_object.h> 85 #include <vm/vm_page.h> 86 #include <vm/vm_pageout.h> 87 #include <vm/vm_param.h> 88 #include <vm/vm_phys.h> 89 #include <vm/vm_pagequeue.h> 90 #include <vm/vm_map.h> 91 #include <vm/vm_kern.h> 92 #include <vm/vm_extern.h> 93 #include <vm/uma.h> 94 #include <vm/uma_int.h> 95 #include <vm/uma_dbg.h> 96 97 #include <ddb/ddb.h> 98 99 #ifdef DEBUG_MEMGUARD 100 #include <vm/memguard.h> 101 #endif 102 103 /* 104 * This is the zone and keg from which all zones are spawned. 105 */ 106 static uma_zone_t kegs; 107 static uma_zone_t zones; 108 109 /* This is the zone from which all offpage uma_slab_ts are allocated. */ 110 static uma_zone_t slabzone; 111 112 /* 113 * The initial hash tables come out of this zone so they can be allocated 114 * prior to malloc coming up. 115 */ 116 static uma_zone_t hashzone; 117 118 /* The boot-time adjusted value for cache line alignment. */ 119 int uma_align_cache = 64 - 1; 120 121 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 122 123 /* 124 * Are we allowed to allocate buckets? 125 */ 126 static int bucketdisable = 1; 127 128 /* Linked list of all kegs in the system */ 129 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 130 131 /* Linked list of all cache-only zones in the system */ 132 static LIST_HEAD(,uma_zone) uma_cachezones = 133 LIST_HEAD_INITIALIZER(uma_cachezones); 134 135 /* This RW lock protects the keg list */ 136 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 137 138 /* 139 * Pointer and counter to pool of pages, that is preallocated at 140 * startup to bootstrap UMA. 141 */ 142 static char *bootmem; 143 static int boot_pages; 144 145 static struct sx uma_drain_lock; 146 147 /* kmem soft limit. */ 148 static unsigned long uma_kmem_limit = LONG_MAX; 149 static volatile unsigned long uma_kmem_total; 150 151 /* Is the VM done starting up? */ 152 static enum { BOOT_COLD = 0, BOOT_STRAPPED, BOOT_PAGEALLOC, BOOT_BUCKETS, 153 BOOT_RUNNING } booted = BOOT_COLD; 154 155 /* 156 * This is the handle used to schedule events that need to happen 157 * outside of the allocation fast path. 158 */ 159 static struct callout uma_callout; 160 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 161 162 /* 163 * This structure is passed as the zone ctor arg so that I don't have to create 164 * a special allocation function just for zones. 165 */ 166 struct uma_zctor_args { 167 const char *name; 168 size_t size; 169 uma_ctor ctor; 170 uma_dtor dtor; 171 uma_init uminit; 172 uma_fini fini; 173 uma_import import; 174 uma_release release; 175 void *arg; 176 uma_keg_t keg; 177 int align; 178 uint32_t flags; 179 }; 180 181 struct uma_kctor_args { 182 uma_zone_t zone; 183 size_t size; 184 uma_init uminit; 185 uma_fini fini; 186 int align; 187 uint32_t flags; 188 }; 189 190 struct uma_bucket_zone { 191 uma_zone_t ubz_zone; 192 char *ubz_name; 193 int ubz_entries; /* Number of items it can hold. */ 194 int ubz_maxsize; /* Maximum allocation size per-item. */ 195 }; 196 197 /* 198 * Compute the actual number of bucket entries to pack them in power 199 * of two sizes for more efficient space utilization. 200 */ 201 #define BUCKET_SIZE(n) \ 202 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 203 204 #define BUCKET_MAX BUCKET_SIZE(256) 205 206 struct uma_bucket_zone bucket_zones[] = { 207 { NULL, "4 Bucket", BUCKET_SIZE(4), 4096 }, 208 { NULL, "6 Bucket", BUCKET_SIZE(6), 3072 }, 209 { NULL, "8 Bucket", BUCKET_SIZE(8), 2048 }, 210 { NULL, "12 Bucket", BUCKET_SIZE(12), 1536 }, 211 { NULL, "16 Bucket", BUCKET_SIZE(16), 1024 }, 212 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 213 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 214 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 215 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 216 { NULL, NULL, 0} 217 }; 218 219 /* 220 * Flags and enumerations to be passed to internal functions. 221 */ 222 enum zfreeskip { 223 SKIP_NONE = 0, 224 SKIP_CNT = 0x00000001, 225 SKIP_DTOR = 0x00010000, 226 SKIP_FINI = 0x00020000, 227 }; 228 229 #define UMA_ANYDOMAIN -1 /* Special value for domain search. */ 230 231 /* Prototypes.. */ 232 233 int uma_startup_count(int); 234 void uma_startup(void *, int); 235 void uma_startup1(void); 236 void uma_startup2(void); 237 238 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 239 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 240 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 241 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 242 static void page_free(void *, vm_size_t, uint8_t); 243 static void pcpu_page_free(void *, vm_size_t, uint8_t); 244 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int); 245 static void cache_drain(uma_zone_t); 246 static void bucket_drain(uma_zone_t, uma_bucket_t); 247 static void bucket_cache_drain(uma_zone_t zone); 248 static int keg_ctor(void *, int, void *, int); 249 static void keg_dtor(void *, int, void *); 250 static int zone_ctor(void *, int, void *, int); 251 static void zone_dtor(void *, int, void *); 252 static int zero_init(void *, int, int); 253 static void keg_small_init(uma_keg_t keg); 254 static void keg_large_init(uma_keg_t keg); 255 static void zone_foreach(void (*zfunc)(uma_zone_t)); 256 static void zone_timeout(uma_zone_t zone); 257 static int hash_alloc(struct uma_hash *); 258 static int hash_expand(struct uma_hash *, struct uma_hash *); 259 static void hash_free(struct uma_hash *hash); 260 static void uma_timeout(void *); 261 static void uma_startup3(void); 262 static void *zone_alloc_item(uma_zone_t, void *, int, int); 263 static void *zone_alloc_item_locked(uma_zone_t, void *, int, int); 264 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 265 static void bucket_enable(void); 266 static void bucket_init(void); 267 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 268 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 269 static void bucket_zone_drain(void); 270 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int, int); 271 static uma_slab_t zone_fetch_slab(uma_zone_t, uma_keg_t, int, int); 272 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 273 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item); 274 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 275 uma_fini fini, int align, uint32_t flags); 276 static int zone_import(uma_zone_t, void **, int, int, int); 277 static void zone_release(uma_zone_t, void **, int); 278 static void uma_zero_item(void *, uma_zone_t); 279 280 void uma_print_zone(uma_zone_t); 281 void uma_print_stats(void); 282 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 283 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 284 285 #ifdef INVARIANTS 286 static bool uma_dbg_kskip(uma_keg_t keg, void *mem); 287 static bool uma_dbg_zskip(uma_zone_t zone, void *mem); 288 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 289 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 290 291 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD, 0, 292 "Memory allocation debugging"); 293 294 static u_int dbg_divisor = 1; 295 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor, 296 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0, 297 "Debug & thrash every this item in memory allocator"); 298 299 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER; 300 static counter_u64_t uma_skip_cnt = EARLY_COUNTER; 301 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD, 302 &uma_dbg_cnt, "memory items debugged"); 303 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD, 304 &uma_skip_cnt, "memory items skipped, not debugged"); 305 #endif 306 307 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 308 309 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 310 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 311 312 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 313 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 314 315 static int zone_warnings = 1; 316 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 317 "Warn when UMA zones becomes full"); 318 319 /* Adjust bytes under management by UMA. */ 320 static inline void 321 uma_total_dec(unsigned long size) 322 { 323 324 atomic_subtract_long(&uma_kmem_total, size); 325 } 326 327 static inline void 328 uma_total_inc(unsigned long size) 329 { 330 331 if (atomic_fetchadd_long(&uma_kmem_total, size) > uma_kmem_limit) 332 uma_reclaim_wakeup(); 333 } 334 335 /* 336 * This routine checks to see whether or not it's safe to enable buckets. 337 */ 338 static void 339 bucket_enable(void) 340 { 341 bucketdisable = vm_page_count_min(); 342 } 343 344 /* 345 * Initialize bucket_zones, the array of zones of buckets of various sizes. 346 * 347 * For each zone, calculate the memory required for each bucket, consisting 348 * of the header and an array of pointers. 349 */ 350 static void 351 bucket_init(void) 352 { 353 struct uma_bucket_zone *ubz; 354 int size; 355 356 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 357 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 358 size += sizeof(void *) * ubz->ubz_entries; 359 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 360 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 361 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | UMA_ZONE_NUMA); 362 } 363 } 364 365 /* 366 * Given a desired number of entries for a bucket, return the zone from which 367 * to allocate the bucket. 368 */ 369 static struct uma_bucket_zone * 370 bucket_zone_lookup(int entries) 371 { 372 struct uma_bucket_zone *ubz; 373 374 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 375 if (ubz->ubz_entries >= entries) 376 return (ubz); 377 ubz--; 378 return (ubz); 379 } 380 381 static int 382 bucket_select(int size) 383 { 384 struct uma_bucket_zone *ubz; 385 386 ubz = &bucket_zones[0]; 387 if (size > ubz->ubz_maxsize) 388 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 389 390 for (; ubz->ubz_entries != 0; ubz++) 391 if (ubz->ubz_maxsize < size) 392 break; 393 ubz--; 394 return (ubz->ubz_entries); 395 } 396 397 static uma_bucket_t 398 bucket_alloc(uma_zone_t zone, void *udata, int flags) 399 { 400 struct uma_bucket_zone *ubz; 401 uma_bucket_t bucket; 402 403 /* 404 * This is to stop us from allocating per cpu buckets while we're 405 * running out of vm.boot_pages. Otherwise, we would exhaust the 406 * boot pages. This also prevents us from allocating buckets in 407 * low memory situations. 408 */ 409 if (bucketdisable) 410 return (NULL); 411 /* 412 * To limit bucket recursion we store the original zone flags 413 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 414 * NOVM flag to persist even through deep recursions. We also 415 * store ZFLAG_BUCKET once we have recursed attempting to allocate 416 * a bucket for a bucket zone so we do not allow infinite bucket 417 * recursion. This cookie will even persist to frees of unused 418 * buckets via the allocation path or bucket allocations in the 419 * free path. 420 */ 421 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 422 udata = (void *)(uintptr_t)zone->uz_flags; 423 else { 424 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 425 return (NULL); 426 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 427 } 428 if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY) 429 flags |= M_NOVM; 430 ubz = bucket_zone_lookup(zone->uz_count); 431 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 432 ubz++; 433 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 434 if (bucket) { 435 #ifdef INVARIANTS 436 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 437 #endif 438 bucket->ub_cnt = 0; 439 bucket->ub_entries = ubz->ubz_entries; 440 } 441 442 return (bucket); 443 } 444 445 static void 446 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 447 { 448 struct uma_bucket_zone *ubz; 449 450 KASSERT(bucket->ub_cnt == 0, 451 ("bucket_free: Freeing a non free bucket.")); 452 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 453 udata = (void *)(uintptr_t)zone->uz_flags; 454 ubz = bucket_zone_lookup(bucket->ub_entries); 455 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 456 } 457 458 static void 459 bucket_zone_drain(void) 460 { 461 struct uma_bucket_zone *ubz; 462 463 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 464 zone_drain(ubz->ubz_zone); 465 } 466 467 static uma_bucket_t 468 zone_try_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom, const bool ws) 469 { 470 uma_bucket_t bucket; 471 472 ZONE_LOCK_ASSERT(zone); 473 474 if ((bucket = LIST_FIRST(&zdom->uzd_buckets)) != NULL) { 475 MPASS(zdom->uzd_nitems >= bucket->ub_cnt); 476 LIST_REMOVE(bucket, ub_link); 477 zdom->uzd_nitems -= bucket->ub_cnt; 478 if (ws && zdom->uzd_imin > zdom->uzd_nitems) 479 zdom->uzd_imin = zdom->uzd_nitems; 480 zone->uz_bkt_count -= bucket->ub_cnt; 481 } 482 return (bucket); 483 } 484 485 static void 486 zone_put_bucket(uma_zone_t zone, uma_zone_domain_t zdom, uma_bucket_t bucket, 487 const bool ws) 488 { 489 490 ZONE_LOCK_ASSERT(zone); 491 KASSERT(zone->uz_bkt_count < zone->uz_bkt_max, ("%s: zone %p overflow", 492 __func__, zone)); 493 494 LIST_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); 495 zdom->uzd_nitems += bucket->ub_cnt; 496 if (ws && zdom->uzd_imax < zdom->uzd_nitems) 497 zdom->uzd_imax = zdom->uzd_nitems; 498 zone->uz_bkt_count += bucket->ub_cnt; 499 } 500 501 static void 502 zone_log_warning(uma_zone_t zone) 503 { 504 static const struct timeval warninterval = { 300, 0 }; 505 506 if (!zone_warnings || zone->uz_warning == NULL) 507 return; 508 509 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 510 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 511 } 512 513 static inline void 514 zone_maxaction(uma_zone_t zone) 515 { 516 517 if (zone->uz_maxaction.ta_func != NULL) 518 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 519 } 520 521 /* 522 * Routine called by timeout which is used to fire off some time interval 523 * based calculations. (stats, hash size, etc.) 524 * 525 * Arguments: 526 * arg Unused 527 * 528 * Returns: 529 * Nothing 530 */ 531 static void 532 uma_timeout(void *unused) 533 { 534 bucket_enable(); 535 zone_foreach(zone_timeout); 536 537 /* Reschedule this event */ 538 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 539 } 540 541 /* 542 * Update the working set size estimate for the zone's bucket cache. 543 * The constants chosen here are somewhat arbitrary. With an update period of 544 * 20s (UMA_TIMEOUT), this estimate is dominated by zone activity over the 545 * last 100s. 546 */ 547 static void 548 zone_domain_update_wss(uma_zone_domain_t zdom) 549 { 550 long wss; 551 552 MPASS(zdom->uzd_imax >= zdom->uzd_imin); 553 wss = zdom->uzd_imax - zdom->uzd_imin; 554 zdom->uzd_imax = zdom->uzd_imin = zdom->uzd_nitems; 555 zdom->uzd_wss = (3 * wss + 2 * zdom->uzd_wss) / 5; 556 } 557 558 /* 559 * Routine to perform timeout driven calculations. This expands the 560 * hashes and does per cpu statistics aggregation. 561 * 562 * Returns nothing. 563 */ 564 static void 565 zone_timeout(uma_zone_t zone) 566 { 567 uma_keg_t keg = zone->uz_keg; 568 569 KEG_LOCK(keg); 570 /* 571 * Expand the keg hash table. 572 * 573 * This is done if the number of slabs is larger than the hash size. 574 * What I'm trying to do here is completely reduce collisions. This 575 * may be a little aggressive. Should I allow for two collisions max? 576 */ 577 if (keg->uk_flags & UMA_ZONE_HASH && 578 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) { 579 struct uma_hash newhash; 580 struct uma_hash oldhash; 581 int ret; 582 583 /* 584 * This is so involved because allocating and freeing 585 * while the keg lock is held will lead to deadlock. 586 * I have to do everything in stages and check for 587 * races. 588 */ 589 newhash = keg->uk_hash; 590 KEG_UNLOCK(keg); 591 ret = hash_alloc(&newhash); 592 KEG_LOCK(keg); 593 if (ret) { 594 if (hash_expand(&keg->uk_hash, &newhash)) { 595 oldhash = keg->uk_hash; 596 keg->uk_hash = newhash; 597 } else 598 oldhash = newhash; 599 600 KEG_UNLOCK(keg); 601 hash_free(&oldhash); 602 return; 603 } 604 } 605 606 for (int i = 0; i < vm_ndomains; i++) 607 zone_domain_update_wss(&zone->uz_domain[i]); 608 609 KEG_UNLOCK(keg); 610 } 611 612 /* 613 * Allocate and zero fill the next sized hash table from the appropriate 614 * backing store. 615 * 616 * Arguments: 617 * hash A new hash structure with the old hash size in uh_hashsize 618 * 619 * Returns: 620 * 1 on success and 0 on failure. 621 */ 622 static int 623 hash_alloc(struct uma_hash *hash) 624 { 625 int oldsize; 626 int alloc; 627 628 oldsize = hash->uh_hashsize; 629 630 /* We're just going to go to a power of two greater */ 631 if (oldsize) { 632 hash->uh_hashsize = oldsize * 2; 633 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 634 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 635 M_UMAHASH, M_NOWAIT); 636 } else { 637 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 638 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 639 UMA_ANYDOMAIN, M_WAITOK); 640 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 641 } 642 if (hash->uh_slab_hash) { 643 bzero(hash->uh_slab_hash, alloc); 644 hash->uh_hashmask = hash->uh_hashsize - 1; 645 return (1); 646 } 647 648 return (0); 649 } 650 651 /* 652 * Expands the hash table for HASH zones. This is done from zone_timeout 653 * to reduce collisions. This must not be done in the regular allocation 654 * path, otherwise, we can recurse on the vm while allocating pages. 655 * 656 * Arguments: 657 * oldhash The hash you want to expand 658 * newhash The hash structure for the new table 659 * 660 * Returns: 661 * Nothing 662 * 663 * Discussion: 664 */ 665 static int 666 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 667 { 668 uma_slab_t slab; 669 int hval; 670 int i; 671 672 if (!newhash->uh_slab_hash) 673 return (0); 674 675 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 676 return (0); 677 678 /* 679 * I need to investigate hash algorithms for resizing without a 680 * full rehash. 681 */ 682 683 for (i = 0; i < oldhash->uh_hashsize; i++) 684 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) { 685 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]); 686 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink); 687 hval = UMA_HASH(newhash, slab->us_data); 688 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 689 slab, us_hlink); 690 } 691 692 return (1); 693 } 694 695 /* 696 * Free the hash bucket to the appropriate backing store. 697 * 698 * Arguments: 699 * slab_hash The hash bucket we're freeing 700 * hashsize The number of entries in that hash bucket 701 * 702 * Returns: 703 * Nothing 704 */ 705 static void 706 hash_free(struct uma_hash *hash) 707 { 708 if (hash->uh_slab_hash == NULL) 709 return; 710 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 711 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 712 else 713 free(hash->uh_slab_hash, M_UMAHASH); 714 } 715 716 /* 717 * Frees all outstanding items in a bucket 718 * 719 * Arguments: 720 * zone The zone to free to, must be unlocked. 721 * bucket The free/alloc bucket with items, cpu queue must be locked. 722 * 723 * Returns: 724 * Nothing 725 */ 726 727 static void 728 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 729 { 730 int i; 731 732 if (bucket == NULL) 733 return; 734 735 if (zone->uz_fini) 736 for (i = 0; i < bucket->ub_cnt; i++) 737 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 738 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 739 if (zone->uz_max_items > 0) { 740 ZONE_LOCK(zone); 741 zone->uz_items -= bucket->ub_cnt; 742 if (zone->uz_sleepers && zone->uz_items < zone->uz_max_items) 743 wakeup_one(zone); 744 ZONE_UNLOCK(zone); 745 } 746 bucket->ub_cnt = 0; 747 } 748 749 /* 750 * Drains the per cpu caches for a zone. 751 * 752 * NOTE: This may only be called while the zone is being turn down, and not 753 * during normal operation. This is necessary in order that we do not have 754 * to migrate CPUs to drain the per-CPU caches. 755 * 756 * Arguments: 757 * zone The zone to drain, must be unlocked. 758 * 759 * Returns: 760 * Nothing 761 */ 762 static void 763 cache_drain(uma_zone_t zone) 764 { 765 uma_cache_t cache; 766 int cpu; 767 768 /* 769 * XXX: It is safe to not lock the per-CPU caches, because we're 770 * tearing down the zone anyway. I.e., there will be no further use 771 * of the caches at this point. 772 * 773 * XXX: It would good to be able to assert that the zone is being 774 * torn down to prevent improper use of cache_drain(). 775 * 776 * XXX: We lock the zone before passing into bucket_cache_drain() as 777 * it is used elsewhere. Should the tear-down path be made special 778 * there in some form? 779 */ 780 CPU_FOREACH(cpu) { 781 cache = &zone->uz_cpu[cpu]; 782 bucket_drain(zone, cache->uc_allocbucket); 783 bucket_drain(zone, cache->uc_freebucket); 784 if (cache->uc_allocbucket != NULL) 785 bucket_free(zone, cache->uc_allocbucket, NULL); 786 if (cache->uc_freebucket != NULL) 787 bucket_free(zone, cache->uc_freebucket, NULL); 788 cache->uc_allocbucket = cache->uc_freebucket = NULL; 789 } 790 ZONE_LOCK(zone); 791 bucket_cache_drain(zone); 792 ZONE_UNLOCK(zone); 793 } 794 795 static void 796 cache_shrink(uma_zone_t zone) 797 { 798 799 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 800 return; 801 802 ZONE_LOCK(zone); 803 zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2; 804 ZONE_UNLOCK(zone); 805 } 806 807 static void 808 cache_drain_safe_cpu(uma_zone_t zone) 809 { 810 uma_cache_t cache; 811 uma_bucket_t b1, b2; 812 int domain; 813 814 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 815 return; 816 817 b1 = b2 = NULL; 818 ZONE_LOCK(zone); 819 critical_enter(); 820 if (zone->uz_flags & UMA_ZONE_NUMA) 821 domain = PCPU_GET(domain); 822 else 823 domain = 0; 824 cache = &zone->uz_cpu[curcpu]; 825 if (cache->uc_allocbucket) { 826 if (cache->uc_allocbucket->ub_cnt != 0) 827 zone_put_bucket(zone, &zone->uz_domain[domain], 828 cache->uc_allocbucket, false); 829 else 830 b1 = cache->uc_allocbucket; 831 cache->uc_allocbucket = NULL; 832 } 833 if (cache->uc_freebucket) { 834 if (cache->uc_freebucket->ub_cnt != 0) 835 zone_put_bucket(zone, &zone->uz_domain[domain], 836 cache->uc_freebucket, false); 837 else 838 b2 = cache->uc_freebucket; 839 cache->uc_freebucket = NULL; 840 } 841 critical_exit(); 842 ZONE_UNLOCK(zone); 843 if (b1) 844 bucket_free(zone, b1, NULL); 845 if (b2) 846 bucket_free(zone, b2, NULL); 847 } 848 849 /* 850 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 851 * This is an expensive call because it needs to bind to all CPUs 852 * one by one and enter a critical section on each of them in order 853 * to safely access their cache buckets. 854 * Zone lock must not be held on call this function. 855 */ 856 static void 857 cache_drain_safe(uma_zone_t zone) 858 { 859 int cpu; 860 861 /* 862 * Polite bucket sizes shrinking was not enouth, shrink aggressively. 863 */ 864 if (zone) 865 cache_shrink(zone); 866 else 867 zone_foreach(cache_shrink); 868 869 CPU_FOREACH(cpu) { 870 thread_lock(curthread); 871 sched_bind(curthread, cpu); 872 thread_unlock(curthread); 873 874 if (zone) 875 cache_drain_safe_cpu(zone); 876 else 877 zone_foreach(cache_drain_safe_cpu); 878 } 879 thread_lock(curthread); 880 sched_unbind(curthread); 881 thread_unlock(curthread); 882 } 883 884 /* 885 * Drain the cached buckets from a zone. Expects a locked zone on entry. 886 */ 887 static void 888 bucket_cache_drain(uma_zone_t zone) 889 { 890 uma_zone_domain_t zdom; 891 uma_bucket_t bucket; 892 int i; 893 894 /* 895 * Drain the bucket queues and free the buckets. 896 */ 897 for (i = 0; i < vm_ndomains; i++) { 898 zdom = &zone->uz_domain[i]; 899 while ((bucket = zone_try_fetch_bucket(zone, zdom, false)) != 900 NULL) { 901 ZONE_UNLOCK(zone); 902 bucket_drain(zone, bucket); 903 bucket_free(zone, bucket, NULL); 904 ZONE_LOCK(zone); 905 } 906 } 907 908 /* 909 * Shrink further bucket sizes. Price of single zone lock collision 910 * is probably lower then price of global cache drain. 911 */ 912 if (zone->uz_count > zone->uz_count_min) 913 zone->uz_count--; 914 } 915 916 static void 917 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 918 { 919 uint8_t *mem; 920 int i; 921 uint8_t flags; 922 923 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 924 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 925 926 mem = slab->us_data; 927 flags = slab->us_flags; 928 i = start; 929 if (keg->uk_fini != NULL) { 930 for (i--; i > -1; i--) 931 #ifdef INVARIANTS 932 /* 933 * trash_fini implies that dtor was trash_dtor. trash_fini 934 * would check that memory hasn't been modified since free, 935 * which executed trash_dtor. 936 * That's why we need to run uma_dbg_kskip() check here, 937 * albeit we don't make skip check for other init/fini 938 * invocations. 939 */ 940 if (!uma_dbg_kskip(keg, slab->us_data + (keg->uk_rsize * i)) || 941 keg->uk_fini != trash_fini) 942 #endif 943 keg->uk_fini(slab->us_data + (keg->uk_rsize * i), 944 keg->uk_size); 945 } 946 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 947 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 948 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 949 uma_total_dec(PAGE_SIZE * keg->uk_ppera); 950 } 951 952 /* 953 * Frees pages from a keg back to the system. This is done on demand from 954 * the pageout daemon. 955 * 956 * Returns nothing. 957 */ 958 static void 959 keg_drain(uma_keg_t keg) 960 { 961 struct slabhead freeslabs = { 0 }; 962 uma_domain_t dom; 963 uma_slab_t slab, tmp; 964 int i; 965 966 /* 967 * We don't want to take pages from statically allocated kegs at this 968 * time 969 */ 970 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 971 return; 972 973 CTR3(KTR_UMA, "keg_drain %s(%p) free items: %u", 974 keg->uk_name, keg, keg->uk_free); 975 KEG_LOCK(keg); 976 if (keg->uk_free == 0) 977 goto finished; 978 979 for (i = 0; i < vm_ndomains; i++) { 980 dom = &keg->uk_domain[i]; 981 LIST_FOREACH_SAFE(slab, &dom->ud_free_slab, us_link, tmp) { 982 /* We have nowhere to free these to. */ 983 if (slab->us_flags & UMA_SLAB_BOOT) 984 continue; 985 986 LIST_REMOVE(slab, us_link); 987 keg->uk_pages -= keg->uk_ppera; 988 keg->uk_free -= keg->uk_ipers; 989 990 if (keg->uk_flags & UMA_ZONE_HASH) 991 UMA_HASH_REMOVE(&keg->uk_hash, slab, 992 slab->us_data); 993 994 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 995 } 996 } 997 998 finished: 999 KEG_UNLOCK(keg); 1000 1001 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 1002 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 1003 keg_free_slab(keg, slab, keg->uk_ipers); 1004 } 1005 } 1006 1007 static void 1008 zone_drain_wait(uma_zone_t zone, int waitok) 1009 { 1010 1011 /* 1012 * Set draining to interlock with zone_dtor() so we can release our 1013 * locks as we go. Only dtor() should do a WAITOK call since it 1014 * is the only call that knows the structure will still be available 1015 * when it wakes up. 1016 */ 1017 ZONE_LOCK(zone); 1018 while (zone->uz_flags & UMA_ZFLAG_DRAINING) { 1019 if (waitok == M_NOWAIT) 1020 goto out; 1021 msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1); 1022 } 1023 zone->uz_flags |= UMA_ZFLAG_DRAINING; 1024 bucket_cache_drain(zone); 1025 ZONE_UNLOCK(zone); 1026 /* 1027 * The DRAINING flag protects us from being freed while 1028 * we're running. Normally the uma_rwlock would protect us but we 1029 * must be able to release and acquire the right lock for each keg. 1030 */ 1031 keg_drain(zone->uz_keg); 1032 ZONE_LOCK(zone); 1033 zone->uz_flags &= ~UMA_ZFLAG_DRAINING; 1034 wakeup(zone); 1035 out: 1036 ZONE_UNLOCK(zone); 1037 } 1038 1039 void 1040 zone_drain(uma_zone_t zone) 1041 { 1042 1043 zone_drain_wait(zone, M_NOWAIT); 1044 } 1045 1046 /* 1047 * Allocate a new slab for a keg. This does not insert the slab onto a list. 1048 * If the allocation was successful, the keg lock will be held upon return, 1049 * otherwise the keg will be left unlocked. 1050 * 1051 * Arguments: 1052 * wait Shall we wait? 1053 * 1054 * Returns: 1055 * The slab that was allocated or NULL if there is no memory and the 1056 * caller specified M_NOWAIT. 1057 */ 1058 static uma_slab_t 1059 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int wait) 1060 { 1061 uma_alloc allocf; 1062 uma_slab_t slab; 1063 unsigned long size; 1064 uint8_t *mem; 1065 uint8_t flags; 1066 int i; 1067 1068 KASSERT(domain >= 0 && domain < vm_ndomains, 1069 ("keg_alloc_slab: domain %d out of range", domain)); 1070 KEG_LOCK_ASSERT(keg); 1071 MPASS(zone->uz_lockptr == &keg->uk_lock); 1072 1073 allocf = keg->uk_allocf; 1074 KEG_UNLOCK(keg); 1075 1076 slab = NULL; 1077 mem = NULL; 1078 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 1079 slab = zone_alloc_item(keg->uk_slabzone, NULL, domain, wait); 1080 if (slab == NULL) 1081 goto out; 1082 } 1083 1084 /* 1085 * This reproduces the old vm_zone behavior of zero filling pages the 1086 * first time they are added to a zone. 1087 * 1088 * Malloced items are zeroed in uma_zalloc. 1089 */ 1090 1091 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1092 wait |= M_ZERO; 1093 else 1094 wait &= ~M_ZERO; 1095 1096 if (keg->uk_flags & UMA_ZONE_NODUMP) 1097 wait |= M_NODUMP; 1098 1099 /* zone is passed for legacy reasons. */ 1100 size = keg->uk_ppera * PAGE_SIZE; 1101 mem = allocf(zone, size, domain, &flags, wait); 1102 if (mem == NULL) { 1103 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1104 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 1105 slab = NULL; 1106 goto out; 1107 } 1108 uma_total_inc(size); 1109 1110 /* Point the slab into the allocated memory */ 1111 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 1112 slab = (uma_slab_t )(mem + keg->uk_pgoff); 1113 1114 if (keg->uk_flags & UMA_ZONE_VTOSLAB) 1115 for (i = 0; i < keg->uk_ppera; i++) 1116 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 1117 1118 slab->us_keg = keg; 1119 slab->us_data = mem; 1120 slab->us_freecount = keg->uk_ipers; 1121 slab->us_flags = flags; 1122 slab->us_domain = domain; 1123 BIT_FILL(SLAB_SETSIZE, &slab->us_free); 1124 #ifdef INVARIANTS 1125 BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree); 1126 #endif 1127 1128 if (keg->uk_init != NULL) { 1129 for (i = 0; i < keg->uk_ipers; i++) 1130 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 1131 keg->uk_size, wait) != 0) 1132 break; 1133 if (i != keg->uk_ipers) { 1134 keg_free_slab(keg, slab, i); 1135 slab = NULL; 1136 goto out; 1137 } 1138 } 1139 KEG_LOCK(keg); 1140 1141 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1142 slab, keg->uk_name, keg); 1143 1144 if (keg->uk_flags & UMA_ZONE_HASH) 1145 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1146 1147 keg->uk_pages += keg->uk_ppera; 1148 keg->uk_free += keg->uk_ipers; 1149 1150 out: 1151 return (slab); 1152 } 1153 1154 /* 1155 * This function is intended to be used early on in place of page_alloc() so 1156 * that we may use the boot time page cache to satisfy allocations before 1157 * the VM is ready. 1158 */ 1159 static void * 1160 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1161 int wait) 1162 { 1163 uma_keg_t keg; 1164 void *mem; 1165 int pages; 1166 1167 keg = zone->uz_keg; 1168 /* 1169 * If we are in BOOT_BUCKETS or higher, than switch to real 1170 * allocator. Zones with page sized slabs switch at BOOT_PAGEALLOC. 1171 */ 1172 switch (booted) { 1173 case BOOT_COLD: 1174 case BOOT_STRAPPED: 1175 break; 1176 case BOOT_PAGEALLOC: 1177 if (keg->uk_ppera > 1) 1178 break; 1179 case BOOT_BUCKETS: 1180 case BOOT_RUNNING: 1181 #ifdef UMA_MD_SMALL_ALLOC 1182 keg->uk_allocf = (keg->uk_ppera > 1) ? 1183 page_alloc : uma_small_alloc; 1184 #else 1185 keg->uk_allocf = page_alloc; 1186 #endif 1187 return keg->uk_allocf(zone, bytes, domain, pflag, wait); 1188 } 1189 1190 /* 1191 * Check our small startup cache to see if it has pages remaining. 1192 */ 1193 pages = howmany(bytes, PAGE_SIZE); 1194 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1195 if (pages > boot_pages) 1196 panic("UMA zone \"%s\": Increase vm.boot_pages", zone->uz_name); 1197 #ifdef DIAGNOSTIC 1198 printf("%s from \"%s\", %d boot pages left\n", __func__, zone->uz_name, 1199 boot_pages); 1200 #endif 1201 mem = bootmem; 1202 boot_pages -= pages; 1203 bootmem += pages * PAGE_SIZE; 1204 *pflag = UMA_SLAB_BOOT; 1205 1206 return (mem); 1207 } 1208 1209 /* 1210 * Allocates a number of pages from the system 1211 * 1212 * Arguments: 1213 * bytes The number of bytes requested 1214 * wait Shall we wait? 1215 * 1216 * Returns: 1217 * A pointer to the alloced memory or possibly 1218 * NULL if M_NOWAIT is set. 1219 */ 1220 static void * 1221 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1222 int wait) 1223 { 1224 void *p; /* Returned page */ 1225 1226 *pflag = UMA_SLAB_KERNEL; 1227 p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait); 1228 1229 return (p); 1230 } 1231 1232 static void * 1233 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1234 int wait) 1235 { 1236 struct pglist alloctail; 1237 vm_offset_t addr, zkva; 1238 int cpu, flags; 1239 vm_page_t p, p_next; 1240 #ifdef NUMA 1241 struct pcpu *pc; 1242 #endif 1243 1244 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE); 1245 1246 TAILQ_INIT(&alloctail); 1247 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1248 malloc2vm_flags(wait); 1249 *pflag = UMA_SLAB_KERNEL; 1250 for (cpu = 0; cpu <= mp_maxid; cpu++) { 1251 if (CPU_ABSENT(cpu)) { 1252 p = vm_page_alloc(NULL, 0, flags); 1253 } else { 1254 #ifndef NUMA 1255 p = vm_page_alloc(NULL, 0, flags); 1256 #else 1257 pc = pcpu_find(cpu); 1258 p = vm_page_alloc_domain(NULL, 0, pc->pc_domain, flags); 1259 if (__predict_false(p == NULL)) 1260 p = vm_page_alloc(NULL, 0, flags); 1261 #endif 1262 } 1263 if (__predict_false(p == NULL)) 1264 goto fail; 1265 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1266 } 1267 if ((addr = kva_alloc(bytes)) == 0) 1268 goto fail; 1269 zkva = addr; 1270 TAILQ_FOREACH(p, &alloctail, listq) { 1271 pmap_qenter(zkva, &p, 1); 1272 zkva += PAGE_SIZE; 1273 } 1274 return ((void*)addr); 1275 fail: 1276 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1277 vm_page_unwire(p, PQ_NONE); 1278 vm_page_free(p); 1279 } 1280 return (NULL); 1281 } 1282 1283 /* 1284 * Allocates a number of pages from within an object 1285 * 1286 * Arguments: 1287 * bytes The number of bytes requested 1288 * wait Shall we wait? 1289 * 1290 * Returns: 1291 * A pointer to the alloced memory or possibly 1292 * NULL if M_NOWAIT is set. 1293 */ 1294 static void * 1295 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 1296 int wait) 1297 { 1298 TAILQ_HEAD(, vm_page) alloctail; 1299 u_long npages; 1300 vm_offset_t retkva, zkva; 1301 vm_page_t p, p_next; 1302 uma_keg_t keg; 1303 1304 TAILQ_INIT(&alloctail); 1305 keg = zone->uz_keg; 1306 1307 npages = howmany(bytes, PAGE_SIZE); 1308 while (npages > 0) { 1309 p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT | 1310 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1311 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK : 1312 VM_ALLOC_NOWAIT)); 1313 if (p != NULL) { 1314 /* 1315 * Since the page does not belong to an object, its 1316 * listq is unused. 1317 */ 1318 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1319 npages--; 1320 continue; 1321 } 1322 /* 1323 * Page allocation failed, free intermediate pages and 1324 * exit. 1325 */ 1326 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1327 vm_page_unwire(p, PQ_NONE); 1328 vm_page_free(p); 1329 } 1330 return (NULL); 1331 } 1332 *flags = UMA_SLAB_PRIV; 1333 zkva = keg->uk_kva + 1334 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1335 retkva = zkva; 1336 TAILQ_FOREACH(p, &alloctail, listq) { 1337 pmap_qenter(zkva, &p, 1); 1338 zkva += PAGE_SIZE; 1339 } 1340 1341 return ((void *)retkva); 1342 } 1343 1344 /* 1345 * Frees a number of pages to the system 1346 * 1347 * Arguments: 1348 * mem A pointer to the memory to be freed 1349 * size The size of the memory being freed 1350 * flags The original p->us_flags field 1351 * 1352 * Returns: 1353 * Nothing 1354 */ 1355 static void 1356 page_free(void *mem, vm_size_t size, uint8_t flags) 1357 { 1358 1359 if ((flags & UMA_SLAB_KERNEL) == 0) 1360 panic("UMA: page_free used with invalid flags %x", flags); 1361 1362 kmem_free((vm_offset_t)mem, size); 1363 } 1364 1365 /* 1366 * Frees pcpu zone allocations 1367 * 1368 * Arguments: 1369 * mem A pointer to the memory to be freed 1370 * size The size of the memory being freed 1371 * flags The original p->us_flags field 1372 * 1373 * Returns: 1374 * Nothing 1375 */ 1376 static void 1377 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags) 1378 { 1379 vm_offset_t sva, curva; 1380 vm_paddr_t paddr; 1381 vm_page_t m; 1382 1383 MPASS(size == (mp_maxid+1)*PAGE_SIZE); 1384 sva = (vm_offset_t)mem; 1385 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) { 1386 paddr = pmap_kextract(curva); 1387 m = PHYS_TO_VM_PAGE(paddr); 1388 vm_page_unwire(m, PQ_NONE); 1389 vm_page_free(m); 1390 } 1391 pmap_qremove(sva, size >> PAGE_SHIFT); 1392 kva_free(sva, size); 1393 } 1394 1395 1396 /* 1397 * Zero fill initializer 1398 * 1399 * Arguments/Returns follow uma_init specifications 1400 */ 1401 static int 1402 zero_init(void *mem, int size, int flags) 1403 { 1404 bzero(mem, size); 1405 return (0); 1406 } 1407 1408 /* 1409 * Finish creating a small uma keg. This calculates ipers, and the keg size. 1410 * 1411 * Arguments 1412 * keg The zone we should initialize 1413 * 1414 * Returns 1415 * Nothing 1416 */ 1417 static void 1418 keg_small_init(uma_keg_t keg) 1419 { 1420 u_int rsize; 1421 u_int memused; 1422 u_int wastedspace; 1423 u_int shsize; 1424 u_int slabsize; 1425 1426 if (keg->uk_flags & UMA_ZONE_PCPU) { 1427 u_int ncpus = (mp_maxid + 1) ? (mp_maxid + 1) : MAXCPU; 1428 1429 slabsize = UMA_PCPU_ALLOC_SIZE; 1430 keg->uk_ppera = ncpus; 1431 } else { 1432 slabsize = UMA_SLAB_SIZE; 1433 keg->uk_ppera = 1; 1434 } 1435 1436 /* 1437 * Calculate the size of each allocation (rsize) according to 1438 * alignment. If the requested size is smaller than we have 1439 * allocation bits for we round it up. 1440 */ 1441 rsize = keg->uk_size; 1442 if (rsize < slabsize / SLAB_SETSIZE) 1443 rsize = slabsize / SLAB_SETSIZE; 1444 if (rsize & keg->uk_align) 1445 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1446 keg->uk_rsize = rsize; 1447 1448 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 1449 keg->uk_rsize < UMA_PCPU_ALLOC_SIZE, 1450 ("%s: size %u too large", __func__, keg->uk_rsize)); 1451 1452 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1453 shsize = 0; 1454 else 1455 shsize = SIZEOF_UMA_SLAB; 1456 1457 if (rsize <= slabsize - shsize) 1458 keg->uk_ipers = (slabsize - shsize) / rsize; 1459 else { 1460 /* Handle special case when we have 1 item per slab, so 1461 * alignment requirement can be relaxed. */ 1462 KASSERT(keg->uk_size <= slabsize - shsize, 1463 ("%s: size %u greater than slab", __func__, keg->uk_size)); 1464 keg->uk_ipers = 1; 1465 } 1466 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1467 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1468 1469 memused = keg->uk_ipers * rsize + shsize; 1470 wastedspace = slabsize - memused; 1471 1472 /* 1473 * We can't do OFFPAGE if we're internal or if we've been 1474 * asked to not go to the VM for buckets. If we do this we 1475 * may end up going to the VM for slabs which we do not 1476 * want to do if we're UMA_ZFLAG_CACHEONLY as a result 1477 * of UMA_ZONE_VM, which clearly forbids it. 1478 */ 1479 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1480 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1481 return; 1482 1483 /* 1484 * See if using an OFFPAGE slab will limit our waste. Only do 1485 * this if it permits more items per-slab. 1486 * 1487 * XXX We could try growing slabsize to limit max waste as well. 1488 * Historically this was not done because the VM could not 1489 * efficiently handle contiguous allocations. 1490 */ 1491 if ((wastedspace >= slabsize / UMA_MAX_WASTE) && 1492 (keg->uk_ipers < (slabsize / keg->uk_rsize))) { 1493 keg->uk_ipers = slabsize / keg->uk_rsize; 1494 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1495 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1496 CTR6(KTR_UMA, "UMA decided we need offpage slab headers for " 1497 "keg: %s(%p), calculated wastedspace = %d, " 1498 "maximum wasted space allowed = %d, " 1499 "calculated ipers = %d, " 1500 "new wasted space = %d\n", keg->uk_name, keg, wastedspace, 1501 slabsize / UMA_MAX_WASTE, keg->uk_ipers, 1502 slabsize - keg->uk_ipers * keg->uk_rsize); 1503 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1504 } 1505 1506 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1507 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1508 keg->uk_flags |= UMA_ZONE_HASH; 1509 } 1510 1511 /* 1512 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do 1513 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1514 * more complicated. 1515 * 1516 * Arguments 1517 * keg The keg we should initialize 1518 * 1519 * Returns 1520 * Nothing 1521 */ 1522 static void 1523 keg_large_init(uma_keg_t keg) 1524 { 1525 1526 KASSERT(keg != NULL, ("Keg is null in keg_large_init")); 1527 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1528 ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__)); 1529 1530 keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE); 1531 keg->uk_ipers = 1; 1532 keg->uk_rsize = keg->uk_size; 1533 1534 /* Check whether we have enough space to not do OFFPAGE. */ 1535 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0 && 1536 PAGE_SIZE * keg->uk_ppera - keg->uk_rsize < SIZEOF_UMA_SLAB) { 1537 /* 1538 * We can't do OFFPAGE if we're internal, in which case 1539 * we need an extra page per allocation to contain the 1540 * slab header. 1541 */ 1542 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) == 0) 1543 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1544 else 1545 keg->uk_ppera++; 1546 } 1547 1548 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1549 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1550 keg->uk_flags |= UMA_ZONE_HASH; 1551 } 1552 1553 static void 1554 keg_cachespread_init(uma_keg_t keg) 1555 { 1556 int alignsize; 1557 int trailer; 1558 int pages; 1559 int rsize; 1560 1561 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1562 ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__)); 1563 1564 alignsize = keg->uk_align + 1; 1565 rsize = keg->uk_size; 1566 /* 1567 * We want one item to start on every align boundary in a page. To 1568 * do this we will span pages. We will also extend the item by the 1569 * size of align if it is an even multiple of align. Otherwise, it 1570 * would fall on the same boundary every time. 1571 */ 1572 if (rsize & keg->uk_align) 1573 rsize = (rsize & ~keg->uk_align) + alignsize; 1574 if ((rsize & alignsize) == 0) 1575 rsize += alignsize; 1576 trailer = rsize - keg->uk_size; 1577 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE; 1578 pages = MIN(pages, (128 * 1024) / PAGE_SIZE); 1579 keg->uk_rsize = rsize; 1580 keg->uk_ppera = pages; 1581 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize; 1582 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1583 KASSERT(keg->uk_ipers <= SLAB_SETSIZE, 1584 ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__, 1585 keg->uk_ipers)); 1586 } 1587 1588 /* 1589 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1590 * the keg onto the global keg list. 1591 * 1592 * Arguments/Returns follow uma_ctor specifications 1593 * udata Actually uma_kctor_args 1594 */ 1595 static int 1596 keg_ctor(void *mem, int size, void *udata, int flags) 1597 { 1598 struct uma_kctor_args *arg = udata; 1599 uma_keg_t keg = mem; 1600 uma_zone_t zone; 1601 1602 bzero(keg, size); 1603 keg->uk_size = arg->size; 1604 keg->uk_init = arg->uminit; 1605 keg->uk_fini = arg->fini; 1606 keg->uk_align = arg->align; 1607 keg->uk_free = 0; 1608 keg->uk_reserve = 0; 1609 keg->uk_pages = 0; 1610 keg->uk_flags = arg->flags; 1611 keg->uk_slabzone = NULL; 1612 1613 /* 1614 * We use a global round-robin policy by default. Zones with 1615 * UMA_ZONE_NUMA set will use first-touch instead, in which case the 1616 * iterator is never run. 1617 */ 1618 keg->uk_dr.dr_policy = DOMAINSET_RR(); 1619 keg->uk_dr.dr_iter = 0; 1620 1621 /* 1622 * The master zone is passed to us at keg-creation time. 1623 */ 1624 zone = arg->zone; 1625 keg->uk_name = zone->uz_name; 1626 1627 if (arg->flags & UMA_ZONE_VM) 1628 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1629 1630 if (arg->flags & UMA_ZONE_ZINIT) 1631 keg->uk_init = zero_init; 1632 1633 if (arg->flags & UMA_ZONE_MALLOC) 1634 keg->uk_flags |= UMA_ZONE_VTOSLAB; 1635 1636 if (arg->flags & UMA_ZONE_PCPU) 1637 #ifdef SMP 1638 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1639 #else 1640 keg->uk_flags &= ~UMA_ZONE_PCPU; 1641 #endif 1642 1643 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) { 1644 keg_cachespread_init(keg); 1645 } else { 1646 if (keg->uk_size > UMA_SLAB_SPACE) 1647 keg_large_init(keg); 1648 else 1649 keg_small_init(keg); 1650 } 1651 1652 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1653 keg->uk_slabzone = slabzone; 1654 1655 /* 1656 * If we haven't booted yet we need allocations to go through the 1657 * startup cache until the vm is ready. 1658 */ 1659 if (booted < BOOT_PAGEALLOC) 1660 keg->uk_allocf = startup_alloc; 1661 #ifdef UMA_MD_SMALL_ALLOC 1662 else if (keg->uk_ppera == 1) 1663 keg->uk_allocf = uma_small_alloc; 1664 #endif 1665 else if (keg->uk_flags & UMA_ZONE_PCPU) 1666 keg->uk_allocf = pcpu_page_alloc; 1667 else 1668 keg->uk_allocf = page_alloc; 1669 #ifdef UMA_MD_SMALL_ALLOC 1670 if (keg->uk_ppera == 1) 1671 keg->uk_freef = uma_small_free; 1672 else 1673 #endif 1674 if (keg->uk_flags & UMA_ZONE_PCPU) 1675 keg->uk_freef = pcpu_page_free; 1676 else 1677 keg->uk_freef = page_free; 1678 1679 /* 1680 * Initialize keg's lock 1681 */ 1682 KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS)); 1683 1684 /* 1685 * If we're putting the slab header in the actual page we need to 1686 * figure out where in each page it goes. See SIZEOF_UMA_SLAB 1687 * macro definition. 1688 */ 1689 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1690 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - SIZEOF_UMA_SLAB; 1691 /* 1692 * The only way the following is possible is if with our 1693 * UMA_ALIGN_PTR adjustments we are now bigger than 1694 * UMA_SLAB_SIZE. I haven't checked whether this is 1695 * mathematically possible for all cases, so we make 1696 * sure here anyway. 1697 */ 1698 KASSERT(keg->uk_pgoff + sizeof(struct uma_slab) <= 1699 PAGE_SIZE * keg->uk_ppera, 1700 ("zone %s ipers %d rsize %d size %d slab won't fit", 1701 zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size)); 1702 } 1703 1704 if (keg->uk_flags & UMA_ZONE_HASH) 1705 hash_alloc(&keg->uk_hash); 1706 1707 CTR5(KTR_UMA, "keg_ctor %p zone %s(%p) out %d free %d\n", 1708 keg, zone->uz_name, zone, 1709 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 1710 keg->uk_free); 1711 1712 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1713 1714 rw_wlock(&uma_rwlock); 1715 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1716 rw_wunlock(&uma_rwlock); 1717 return (0); 1718 } 1719 1720 static void 1721 zone_alloc_counters(uma_zone_t zone) 1722 { 1723 1724 zone->uz_allocs = counter_u64_alloc(M_WAITOK); 1725 zone->uz_frees = counter_u64_alloc(M_WAITOK); 1726 zone->uz_fails = counter_u64_alloc(M_WAITOK); 1727 } 1728 1729 /* 1730 * Zone header ctor. This initializes all fields, locks, etc. 1731 * 1732 * Arguments/Returns follow uma_ctor specifications 1733 * udata Actually uma_zctor_args 1734 */ 1735 static int 1736 zone_ctor(void *mem, int size, void *udata, int flags) 1737 { 1738 struct uma_zctor_args *arg = udata; 1739 uma_zone_t zone = mem; 1740 uma_zone_t z; 1741 uma_keg_t keg; 1742 1743 bzero(zone, size); 1744 zone->uz_name = arg->name; 1745 zone->uz_ctor = arg->ctor; 1746 zone->uz_dtor = arg->dtor; 1747 zone->uz_slab = zone_fetch_slab; 1748 zone->uz_init = NULL; 1749 zone->uz_fini = NULL; 1750 zone->uz_sleeps = 0; 1751 zone->uz_count = 0; 1752 zone->uz_count_min = 0; 1753 zone->uz_count_max = BUCKET_MAX; 1754 zone->uz_flags = 0; 1755 zone->uz_warning = NULL; 1756 /* The domain structures follow the cpu structures. */ 1757 zone->uz_domain = (struct uma_zone_domain *)&zone->uz_cpu[mp_ncpus]; 1758 zone->uz_bkt_max = ULONG_MAX; 1759 timevalclear(&zone->uz_ratecheck); 1760 1761 if (__predict_true(booted == BOOT_RUNNING)) 1762 zone_alloc_counters(zone); 1763 else { 1764 zone->uz_allocs = EARLY_COUNTER; 1765 zone->uz_frees = EARLY_COUNTER; 1766 zone->uz_fails = EARLY_COUNTER; 1767 } 1768 1769 /* 1770 * This is a pure cache zone, no kegs. 1771 */ 1772 if (arg->import) { 1773 if (arg->flags & UMA_ZONE_VM) 1774 arg->flags |= UMA_ZFLAG_CACHEONLY; 1775 zone->uz_flags = arg->flags; 1776 zone->uz_size = arg->size; 1777 zone->uz_import = arg->import; 1778 zone->uz_release = arg->release; 1779 zone->uz_arg = arg->arg; 1780 zone->uz_lockptr = &zone->uz_lock; 1781 ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS)); 1782 rw_wlock(&uma_rwlock); 1783 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 1784 rw_wunlock(&uma_rwlock); 1785 goto out; 1786 } 1787 1788 /* 1789 * Use the regular zone/keg/slab allocator. 1790 */ 1791 zone->uz_import = (uma_import)zone_import; 1792 zone->uz_release = (uma_release)zone_release; 1793 zone->uz_arg = zone; 1794 keg = arg->keg; 1795 1796 if (arg->flags & UMA_ZONE_SECONDARY) { 1797 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 1798 zone->uz_init = arg->uminit; 1799 zone->uz_fini = arg->fini; 1800 zone->uz_lockptr = &keg->uk_lock; 1801 zone->uz_flags |= UMA_ZONE_SECONDARY; 1802 rw_wlock(&uma_rwlock); 1803 ZONE_LOCK(zone); 1804 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 1805 if (LIST_NEXT(z, uz_link) == NULL) { 1806 LIST_INSERT_AFTER(z, zone, uz_link); 1807 break; 1808 } 1809 } 1810 ZONE_UNLOCK(zone); 1811 rw_wunlock(&uma_rwlock); 1812 } else if (keg == NULL) { 1813 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 1814 arg->align, arg->flags)) == NULL) 1815 return (ENOMEM); 1816 } else { 1817 struct uma_kctor_args karg; 1818 int error; 1819 1820 /* We should only be here from uma_startup() */ 1821 karg.size = arg->size; 1822 karg.uminit = arg->uminit; 1823 karg.fini = arg->fini; 1824 karg.align = arg->align; 1825 karg.flags = arg->flags; 1826 karg.zone = zone; 1827 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 1828 flags); 1829 if (error) 1830 return (error); 1831 } 1832 1833 zone->uz_keg = keg; 1834 zone->uz_size = keg->uk_size; 1835 zone->uz_flags |= (keg->uk_flags & 1836 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 1837 1838 /* 1839 * Some internal zones don't have room allocated for the per cpu 1840 * caches. If we're internal, bail out here. 1841 */ 1842 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { 1843 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 1844 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 1845 return (0); 1846 } 1847 1848 out: 1849 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != 1850 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), 1851 ("Invalid zone flag combination")); 1852 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) 1853 zone->uz_count = BUCKET_MAX; 1854 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) 1855 zone->uz_count = 0; 1856 else 1857 zone->uz_count = bucket_select(zone->uz_size); 1858 zone->uz_count_min = zone->uz_count; 1859 1860 return (0); 1861 } 1862 1863 /* 1864 * Keg header dtor. This frees all data, destroys locks, frees the hash 1865 * table and removes the keg from the global list. 1866 * 1867 * Arguments/Returns follow uma_dtor specifications 1868 * udata unused 1869 */ 1870 static void 1871 keg_dtor(void *arg, int size, void *udata) 1872 { 1873 uma_keg_t keg; 1874 1875 keg = (uma_keg_t)arg; 1876 KEG_LOCK(keg); 1877 if (keg->uk_free != 0) { 1878 printf("Freed UMA keg (%s) was not empty (%d items). " 1879 " Lost %d pages of memory.\n", 1880 keg->uk_name ? keg->uk_name : "", 1881 keg->uk_free, keg->uk_pages); 1882 } 1883 KEG_UNLOCK(keg); 1884 1885 hash_free(&keg->uk_hash); 1886 1887 KEG_LOCK_FINI(keg); 1888 } 1889 1890 /* 1891 * Zone header dtor. 1892 * 1893 * Arguments/Returns follow uma_dtor specifications 1894 * udata unused 1895 */ 1896 static void 1897 zone_dtor(void *arg, int size, void *udata) 1898 { 1899 uma_zone_t zone; 1900 uma_keg_t keg; 1901 1902 zone = (uma_zone_t)arg; 1903 1904 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 1905 cache_drain(zone); 1906 1907 rw_wlock(&uma_rwlock); 1908 LIST_REMOVE(zone, uz_link); 1909 rw_wunlock(&uma_rwlock); 1910 /* 1911 * XXX there are some races here where 1912 * the zone can be drained but zone lock 1913 * released and then refilled before we 1914 * remove it... we dont care for now 1915 */ 1916 zone_drain_wait(zone, M_WAITOK); 1917 /* 1918 * We only destroy kegs from non secondary zones. 1919 */ 1920 if ((keg = zone->uz_keg) != NULL && 1921 (zone->uz_flags & UMA_ZONE_SECONDARY) == 0) { 1922 rw_wlock(&uma_rwlock); 1923 LIST_REMOVE(keg, uk_link); 1924 rw_wunlock(&uma_rwlock); 1925 zone_free_item(kegs, keg, NULL, SKIP_NONE); 1926 } 1927 counter_u64_free(zone->uz_allocs); 1928 counter_u64_free(zone->uz_frees); 1929 counter_u64_free(zone->uz_fails); 1930 if (zone->uz_lockptr == &zone->uz_lock) 1931 ZONE_LOCK_FINI(zone); 1932 } 1933 1934 /* 1935 * Traverses every zone in the system and calls a callback 1936 * 1937 * Arguments: 1938 * zfunc A pointer to a function which accepts a zone 1939 * as an argument. 1940 * 1941 * Returns: 1942 * Nothing 1943 */ 1944 static void 1945 zone_foreach(void (*zfunc)(uma_zone_t)) 1946 { 1947 uma_keg_t keg; 1948 uma_zone_t zone; 1949 1950 /* 1951 * Before BOOT_RUNNING we are guaranteed to be single 1952 * threaded, so locking isn't needed. Startup functions 1953 * are allowed to use M_WAITOK. 1954 */ 1955 if (__predict_true(booted == BOOT_RUNNING)) 1956 rw_rlock(&uma_rwlock); 1957 LIST_FOREACH(keg, &uma_kegs, uk_link) { 1958 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 1959 zfunc(zone); 1960 } 1961 if (__predict_true(booted == BOOT_RUNNING)) 1962 rw_runlock(&uma_rwlock); 1963 } 1964 1965 /* 1966 * Count how many pages do we need to bootstrap. VM supplies 1967 * its need in early zones in the argument, we add up our zones, 1968 * which consist of: UMA Slabs, UMA Hash and 9 Bucket zones. The 1969 * zone of zones and zone of kegs are accounted separately. 1970 */ 1971 #define UMA_BOOT_ZONES 11 1972 /* Zone of zones and zone of kegs have arbitrary alignment. */ 1973 #define UMA_BOOT_ALIGN 32 1974 static int zsize, ksize; 1975 int 1976 uma_startup_count(int vm_zones) 1977 { 1978 int zones, pages; 1979 1980 ksize = sizeof(struct uma_keg) + 1981 (sizeof(struct uma_domain) * vm_ndomains); 1982 zsize = sizeof(struct uma_zone) + 1983 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 1984 (sizeof(struct uma_zone_domain) * vm_ndomains); 1985 1986 /* 1987 * Memory for the zone of kegs and its keg, 1988 * and for zone of zones. 1989 */ 1990 pages = howmany(roundup(zsize, CACHE_LINE_SIZE) * 2 + 1991 roundup(ksize, CACHE_LINE_SIZE), PAGE_SIZE); 1992 1993 #ifdef UMA_MD_SMALL_ALLOC 1994 zones = UMA_BOOT_ZONES; 1995 #else 1996 zones = UMA_BOOT_ZONES + vm_zones; 1997 vm_zones = 0; 1998 #endif 1999 2000 /* Memory for the rest of startup zones, UMA and VM, ... */ 2001 if (zsize > UMA_SLAB_SPACE) { 2002 /* See keg_large_init(). */ 2003 u_int ppera; 2004 2005 ppera = howmany(roundup2(zsize, UMA_BOOT_ALIGN), PAGE_SIZE); 2006 if (PAGE_SIZE * ppera - roundup2(zsize, UMA_BOOT_ALIGN) < 2007 SIZEOF_UMA_SLAB) 2008 ppera++; 2009 pages += (zones + vm_zones) * ppera; 2010 } else if (roundup2(zsize, UMA_BOOT_ALIGN) > UMA_SLAB_SPACE) 2011 /* See keg_small_init() special case for uk_ppera = 1. */ 2012 pages += zones; 2013 else 2014 pages += howmany(zones, 2015 UMA_SLAB_SPACE / roundup2(zsize, UMA_BOOT_ALIGN)); 2016 2017 /* ... and their kegs. Note that zone of zones allocates a keg! */ 2018 pages += howmany(zones + 1, 2019 UMA_SLAB_SPACE / roundup2(ksize, UMA_BOOT_ALIGN)); 2020 2021 /* 2022 * Most of startup zones are not going to be offpages, that's 2023 * why we use UMA_SLAB_SPACE instead of UMA_SLAB_SIZE in all 2024 * calculations. Some large bucket zones will be offpage, and 2025 * thus will allocate hashes. We take conservative approach 2026 * and assume that all zones may allocate hash. This may give 2027 * us some positive inaccuracy, usually an extra single page. 2028 */ 2029 pages += howmany(zones, UMA_SLAB_SPACE / 2030 (sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT)); 2031 2032 return (pages); 2033 } 2034 2035 void 2036 uma_startup(void *mem, int npages) 2037 { 2038 struct uma_zctor_args args; 2039 uma_keg_t masterkeg; 2040 uintptr_t m; 2041 2042 #ifdef DIAGNOSTIC 2043 printf("Entering %s with %d boot pages configured\n", __func__, npages); 2044 #endif 2045 2046 rw_init(&uma_rwlock, "UMA lock"); 2047 2048 /* Use bootpages memory for the zone of zones and zone of kegs. */ 2049 m = (uintptr_t)mem; 2050 zones = (uma_zone_t)m; 2051 m += roundup(zsize, CACHE_LINE_SIZE); 2052 kegs = (uma_zone_t)m; 2053 m += roundup(zsize, CACHE_LINE_SIZE); 2054 masterkeg = (uma_keg_t)m; 2055 m += roundup(ksize, CACHE_LINE_SIZE); 2056 m = roundup(m, PAGE_SIZE); 2057 npages -= (m - (uintptr_t)mem) / PAGE_SIZE; 2058 mem = (void *)m; 2059 2060 /* "manually" create the initial zone */ 2061 memset(&args, 0, sizeof(args)); 2062 args.name = "UMA Kegs"; 2063 args.size = ksize; 2064 args.ctor = keg_ctor; 2065 args.dtor = keg_dtor; 2066 args.uminit = zero_init; 2067 args.fini = NULL; 2068 args.keg = masterkeg; 2069 args.align = UMA_BOOT_ALIGN - 1; 2070 args.flags = UMA_ZFLAG_INTERNAL; 2071 zone_ctor(kegs, zsize, &args, M_WAITOK); 2072 2073 bootmem = mem; 2074 boot_pages = npages; 2075 2076 args.name = "UMA Zones"; 2077 args.size = zsize; 2078 args.ctor = zone_ctor; 2079 args.dtor = zone_dtor; 2080 args.uminit = zero_init; 2081 args.fini = NULL; 2082 args.keg = NULL; 2083 args.align = UMA_BOOT_ALIGN - 1; 2084 args.flags = UMA_ZFLAG_INTERNAL; 2085 zone_ctor(zones, zsize, &args, M_WAITOK); 2086 2087 /* Now make a zone for slab headers */ 2088 slabzone = uma_zcreate("UMA Slabs", 2089 sizeof(struct uma_slab), 2090 NULL, NULL, NULL, NULL, 2091 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2092 2093 hashzone = uma_zcreate("UMA Hash", 2094 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 2095 NULL, NULL, NULL, NULL, 2096 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2097 2098 bucket_init(); 2099 2100 booted = BOOT_STRAPPED; 2101 } 2102 2103 void 2104 uma_startup1(void) 2105 { 2106 2107 #ifdef DIAGNOSTIC 2108 printf("Entering %s with %d boot pages left\n", __func__, boot_pages); 2109 #endif 2110 booted = BOOT_PAGEALLOC; 2111 } 2112 2113 void 2114 uma_startup2(void) 2115 { 2116 2117 #ifdef DIAGNOSTIC 2118 printf("Entering %s with %d boot pages left\n", __func__, boot_pages); 2119 #endif 2120 booted = BOOT_BUCKETS; 2121 sx_init(&uma_drain_lock, "umadrain"); 2122 bucket_enable(); 2123 } 2124 2125 /* 2126 * Initialize our callout handle 2127 * 2128 */ 2129 static void 2130 uma_startup3(void) 2131 { 2132 2133 #ifdef INVARIANTS 2134 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor); 2135 uma_dbg_cnt = counter_u64_alloc(M_WAITOK); 2136 uma_skip_cnt = counter_u64_alloc(M_WAITOK); 2137 #endif 2138 zone_foreach(zone_alloc_counters); 2139 callout_init(&uma_callout, 1); 2140 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 2141 booted = BOOT_RUNNING; 2142 } 2143 2144 static uma_keg_t 2145 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 2146 int align, uint32_t flags) 2147 { 2148 struct uma_kctor_args args; 2149 2150 args.size = size; 2151 args.uminit = uminit; 2152 args.fini = fini; 2153 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 2154 args.flags = flags; 2155 args.zone = zone; 2156 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 2157 } 2158 2159 /* Public functions */ 2160 /* See uma.h */ 2161 void 2162 uma_set_align(int align) 2163 { 2164 2165 if (align != UMA_ALIGN_CACHE) 2166 uma_align_cache = align; 2167 } 2168 2169 /* See uma.h */ 2170 uma_zone_t 2171 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 2172 uma_init uminit, uma_fini fini, int align, uint32_t flags) 2173 2174 { 2175 struct uma_zctor_args args; 2176 uma_zone_t res; 2177 bool locked; 2178 2179 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 2180 align, name)); 2181 2182 /* This stuff is essential for the zone ctor */ 2183 memset(&args, 0, sizeof(args)); 2184 args.name = name; 2185 args.size = size; 2186 args.ctor = ctor; 2187 args.dtor = dtor; 2188 args.uminit = uminit; 2189 args.fini = fini; 2190 #ifdef INVARIANTS 2191 /* 2192 * If a zone is being created with an empty constructor and 2193 * destructor, pass UMA constructor/destructor which checks for 2194 * memory use after free. 2195 */ 2196 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOFREE))) && 2197 ctor == NULL && dtor == NULL && uminit == NULL && fini == NULL) { 2198 args.ctor = trash_ctor; 2199 args.dtor = trash_dtor; 2200 args.uminit = trash_init; 2201 args.fini = trash_fini; 2202 } 2203 #endif 2204 args.align = align; 2205 args.flags = flags; 2206 args.keg = NULL; 2207 2208 if (booted < BOOT_BUCKETS) { 2209 locked = false; 2210 } else { 2211 sx_slock(&uma_drain_lock); 2212 locked = true; 2213 } 2214 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2215 if (locked) 2216 sx_sunlock(&uma_drain_lock); 2217 return (res); 2218 } 2219 2220 /* See uma.h */ 2221 uma_zone_t 2222 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 2223 uma_init zinit, uma_fini zfini, uma_zone_t master) 2224 { 2225 struct uma_zctor_args args; 2226 uma_keg_t keg; 2227 uma_zone_t res; 2228 bool locked; 2229 2230 keg = master->uz_keg; 2231 memset(&args, 0, sizeof(args)); 2232 args.name = name; 2233 args.size = keg->uk_size; 2234 args.ctor = ctor; 2235 args.dtor = dtor; 2236 args.uminit = zinit; 2237 args.fini = zfini; 2238 args.align = keg->uk_align; 2239 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 2240 args.keg = keg; 2241 2242 if (booted < BOOT_BUCKETS) { 2243 locked = false; 2244 } else { 2245 sx_slock(&uma_drain_lock); 2246 locked = true; 2247 } 2248 /* XXX Attaches only one keg of potentially many. */ 2249 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2250 if (locked) 2251 sx_sunlock(&uma_drain_lock); 2252 return (res); 2253 } 2254 2255 /* See uma.h */ 2256 uma_zone_t 2257 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor, 2258 uma_init zinit, uma_fini zfini, uma_import zimport, 2259 uma_release zrelease, void *arg, int flags) 2260 { 2261 struct uma_zctor_args args; 2262 2263 memset(&args, 0, sizeof(args)); 2264 args.name = name; 2265 args.size = size; 2266 args.ctor = ctor; 2267 args.dtor = dtor; 2268 args.uminit = zinit; 2269 args.fini = zfini; 2270 args.import = zimport; 2271 args.release = zrelease; 2272 args.arg = arg; 2273 args.align = 0; 2274 args.flags = flags | UMA_ZFLAG_CACHE; 2275 2276 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 2277 } 2278 2279 /* See uma.h */ 2280 void 2281 uma_zdestroy(uma_zone_t zone) 2282 { 2283 2284 sx_slock(&uma_drain_lock); 2285 zone_free_item(zones, zone, NULL, SKIP_NONE); 2286 sx_sunlock(&uma_drain_lock); 2287 } 2288 2289 void 2290 uma_zwait(uma_zone_t zone) 2291 { 2292 void *item; 2293 2294 item = uma_zalloc_arg(zone, NULL, M_WAITOK); 2295 uma_zfree(zone, item); 2296 } 2297 2298 void * 2299 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags) 2300 { 2301 void *item; 2302 #ifdef SMP 2303 int i; 2304 2305 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 2306 #endif 2307 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO); 2308 if (item != NULL && (flags & M_ZERO)) { 2309 #ifdef SMP 2310 for (i = 0; i <= mp_maxid; i++) 2311 bzero(zpcpu_get_cpu(item, i), zone->uz_size); 2312 #else 2313 bzero(item, zone->uz_size); 2314 #endif 2315 } 2316 return (item); 2317 } 2318 2319 /* 2320 * A stub while both regular and pcpu cases are identical. 2321 */ 2322 void 2323 uma_zfree_pcpu_arg(uma_zone_t zone, void *item, void *udata) 2324 { 2325 2326 #ifdef SMP 2327 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 2328 #endif 2329 uma_zfree_arg(zone, item, udata); 2330 } 2331 2332 /* See uma.h */ 2333 void * 2334 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 2335 { 2336 uma_zone_domain_t zdom; 2337 uma_bucket_t bucket; 2338 uma_cache_t cache; 2339 void *item; 2340 int cpu, domain, lockfail, maxbucket; 2341 #ifdef INVARIANTS 2342 bool skipdbg; 2343 #endif 2344 2345 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2346 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 2347 2348 /* This is the fast path allocation */ 2349 CTR4(KTR_UMA, "uma_zalloc_arg thread %x zone %s(%p) flags %d", 2350 curthread, zone->uz_name, zone, flags); 2351 2352 if (flags & M_WAITOK) { 2353 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2354 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 2355 } 2356 KASSERT((flags & M_EXEC) == 0, ("uma_zalloc_arg: called with M_EXEC")); 2357 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2358 ("uma_zalloc_arg: called with spinlock or critical section held")); 2359 if (zone->uz_flags & UMA_ZONE_PCPU) 2360 KASSERT((flags & M_ZERO) == 0, ("allocating from a pcpu zone " 2361 "with M_ZERO passed")); 2362 2363 #ifdef DEBUG_MEMGUARD 2364 if (memguard_cmp_zone(zone)) { 2365 item = memguard_alloc(zone->uz_size, flags); 2366 if (item != NULL) { 2367 if (zone->uz_init != NULL && 2368 zone->uz_init(item, zone->uz_size, flags) != 0) 2369 return (NULL); 2370 if (zone->uz_ctor != NULL && 2371 zone->uz_ctor(item, zone->uz_size, udata, 2372 flags) != 0) { 2373 zone->uz_fini(item, zone->uz_size); 2374 return (NULL); 2375 } 2376 return (item); 2377 } 2378 /* This is unfortunate but should not be fatal. */ 2379 } 2380 #endif 2381 /* 2382 * If possible, allocate from the per-CPU cache. There are two 2383 * requirements for safe access to the per-CPU cache: (1) the thread 2384 * accessing the cache must not be preempted or yield during access, 2385 * and (2) the thread must not migrate CPUs without switching which 2386 * cache it accesses. We rely on a critical section to prevent 2387 * preemption and migration. We release the critical section in 2388 * order to acquire the zone mutex if we are unable to allocate from 2389 * the current cache; when we re-acquire the critical section, we 2390 * must detect and handle migration if it has occurred. 2391 */ 2392 zalloc_restart: 2393 critical_enter(); 2394 cpu = curcpu; 2395 cache = &zone->uz_cpu[cpu]; 2396 2397 zalloc_start: 2398 bucket = cache->uc_allocbucket; 2399 if (bucket != NULL && bucket->ub_cnt > 0) { 2400 bucket->ub_cnt--; 2401 item = bucket->ub_bucket[bucket->ub_cnt]; 2402 #ifdef INVARIANTS 2403 bucket->ub_bucket[bucket->ub_cnt] = NULL; 2404 #endif 2405 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 2406 cache->uc_allocs++; 2407 critical_exit(); 2408 #ifdef INVARIANTS 2409 skipdbg = uma_dbg_zskip(zone, item); 2410 #endif 2411 if (zone->uz_ctor != NULL && 2412 #ifdef INVARIANTS 2413 (!skipdbg || zone->uz_ctor != trash_ctor || 2414 zone->uz_dtor != trash_dtor) && 2415 #endif 2416 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2417 counter_u64_add(zone->uz_fails, 1); 2418 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT); 2419 return (NULL); 2420 } 2421 #ifdef INVARIANTS 2422 if (!skipdbg) 2423 uma_dbg_alloc(zone, NULL, item); 2424 #endif 2425 if (flags & M_ZERO) 2426 uma_zero_item(item, zone); 2427 return (item); 2428 } 2429 2430 /* 2431 * We have run out of items in our alloc bucket. 2432 * See if we can switch with our free bucket. 2433 */ 2434 bucket = cache->uc_freebucket; 2435 if (bucket != NULL && bucket->ub_cnt > 0) { 2436 CTR2(KTR_UMA, 2437 "uma_zalloc: zone %s(%p) swapping empty with alloc", 2438 zone->uz_name, zone); 2439 cache->uc_freebucket = cache->uc_allocbucket; 2440 cache->uc_allocbucket = bucket; 2441 goto zalloc_start; 2442 } 2443 2444 /* 2445 * Discard any empty allocation bucket while we hold no locks. 2446 */ 2447 bucket = cache->uc_allocbucket; 2448 cache->uc_allocbucket = NULL; 2449 critical_exit(); 2450 if (bucket != NULL) 2451 bucket_free(zone, bucket, udata); 2452 2453 if (zone->uz_flags & UMA_ZONE_NUMA) { 2454 domain = PCPU_GET(domain); 2455 if (VM_DOMAIN_EMPTY(domain)) 2456 domain = UMA_ANYDOMAIN; 2457 } else 2458 domain = UMA_ANYDOMAIN; 2459 2460 /* Short-circuit for zones without buckets and low memory. */ 2461 if (zone->uz_count == 0 || bucketdisable) { 2462 ZONE_LOCK(zone); 2463 goto zalloc_item; 2464 } 2465 2466 /* 2467 * Attempt to retrieve the item from the per-CPU cache has failed, so 2468 * we must go back to the zone. This requires the zone lock, so we 2469 * must drop the critical section, then re-acquire it when we go back 2470 * to the cache. Since the critical section is released, we may be 2471 * preempted or migrate. As such, make sure not to maintain any 2472 * thread-local state specific to the cache from prior to releasing 2473 * the critical section. 2474 */ 2475 lockfail = 0; 2476 if (ZONE_TRYLOCK(zone) == 0) { 2477 /* Record contention to size the buckets. */ 2478 ZONE_LOCK(zone); 2479 lockfail = 1; 2480 } 2481 critical_enter(); 2482 cpu = curcpu; 2483 cache = &zone->uz_cpu[cpu]; 2484 2485 /* See if we lost the race to fill the cache. */ 2486 if (cache->uc_allocbucket != NULL) { 2487 ZONE_UNLOCK(zone); 2488 goto zalloc_start; 2489 } 2490 2491 /* 2492 * Check the zone's cache of buckets. 2493 */ 2494 if (domain == UMA_ANYDOMAIN) 2495 zdom = &zone->uz_domain[0]; 2496 else 2497 zdom = &zone->uz_domain[domain]; 2498 if ((bucket = zone_try_fetch_bucket(zone, zdom, true)) != NULL) { 2499 KASSERT(bucket->ub_cnt != 0, 2500 ("uma_zalloc_arg: Returning an empty bucket.")); 2501 cache->uc_allocbucket = bucket; 2502 ZONE_UNLOCK(zone); 2503 goto zalloc_start; 2504 } 2505 /* We are no longer associated with this CPU. */ 2506 critical_exit(); 2507 2508 /* 2509 * We bump the uz count when the cache size is insufficient to 2510 * handle the working set. 2511 */ 2512 if (lockfail && zone->uz_count < zone->uz_count_max) 2513 zone->uz_count++; 2514 2515 if (zone->uz_max_items > 0) { 2516 if (zone->uz_items >= zone->uz_max_items) 2517 goto zalloc_item; 2518 maxbucket = MIN(zone->uz_count, 2519 zone->uz_max_items - zone->uz_items); 2520 zone->uz_items += maxbucket; 2521 } else 2522 maxbucket = zone->uz_count; 2523 ZONE_UNLOCK(zone); 2524 2525 /* 2526 * Now lets just fill a bucket and put it on the free list. If that 2527 * works we'll restart the allocation from the beginning and it 2528 * will use the just filled bucket. 2529 */ 2530 bucket = zone_alloc_bucket(zone, udata, domain, flags, maxbucket); 2531 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 2532 zone->uz_name, zone, bucket); 2533 ZONE_LOCK(zone); 2534 if (bucket != NULL) { 2535 if (zone->uz_max_items > 0 && bucket->ub_cnt < maxbucket) { 2536 MPASS(zone->uz_items >= maxbucket - bucket->ub_cnt); 2537 zone->uz_items -= maxbucket - bucket->ub_cnt; 2538 if (zone->uz_sleepers > 0 && 2539 zone->uz_items < zone->uz_max_items) 2540 wakeup_one(zone); 2541 } 2542 critical_enter(); 2543 cpu = curcpu; 2544 cache = &zone->uz_cpu[cpu]; 2545 2546 /* 2547 * See if we lost the race or were migrated. Cache the 2548 * initialized bucket to make this less likely or claim 2549 * the memory directly. 2550 */ 2551 if (cache->uc_allocbucket == NULL && 2552 ((zone->uz_flags & UMA_ZONE_NUMA) == 0 || 2553 domain == PCPU_GET(domain))) { 2554 cache->uc_allocbucket = bucket; 2555 zdom->uzd_imax += bucket->ub_cnt; 2556 } else if (zone->uz_bkt_count >= zone->uz_bkt_max) { 2557 critical_exit(); 2558 ZONE_UNLOCK(zone); 2559 bucket_drain(zone, bucket); 2560 bucket_free(zone, bucket, udata); 2561 goto zalloc_restart; 2562 } else 2563 zone_put_bucket(zone, zdom, bucket, false); 2564 ZONE_UNLOCK(zone); 2565 goto zalloc_start; 2566 } else if (zone->uz_max_items > 0) { 2567 zone->uz_items -= maxbucket; 2568 if (zone->uz_sleepers > 0 && 2569 zone->uz_items + 1 < zone->uz_max_items) 2570 wakeup_one(zone); 2571 } 2572 2573 /* 2574 * We may not be able to get a bucket so return an actual item. 2575 */ 2576 zalloc_item: 2577 item = zone_alloc_item_locked(zone, udata, domain, flags); 2578 2579 return (item); 2580 } 2581 2582 void * 2583 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 2584 { 2585 2586 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2587 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 2588 2589 /* This is the fast path allocation */ 2590 CTR5(KTR_UMA, 2591 "uma_zalloc_domain thread %x zone %s(%p) domain %d flags %d", 2592 curthread, zone->uz_name, zone, domain, flags); 2593 2594 if (flags & M_WAITOK) { 2595 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2596 "uma_zalloc_domain: zone \"%s\"", zone->uz_name); 2597 } 2598 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2599 ("uma_zalloc_domain: called with spinlock or critical section held")); 2600 2601 return (zone_alloc_item(zone, udata, domain, flags)); 2602 } 2603 2604 /* 2605 * Find a slab with some space. Prefer slabs that are partially used over those 2606 * that are totally full. This helps to reduce fragmentation. 2607 * 2608 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 2609 * only 'domain'. 2610 */ 2611 static uma_slab_t 2612 keg_first_slab(uma_keg_t keg, int domain, bool rr) 2613 { 2614 uma_domain_t dom; 2615 uma_slab_t slab; 2616 int start; 2617 2618 KASSERT(domain >= 0 && domain < vm_ndomains, 2619 ("keg_first_slab: domain %d out of range", domain)); 2620 KEG_LOCK_ASSERT(keg); 2621 2622 slab = NULL; 2623 start = domain; 2624 do { 2625 dom = &keg->uk_domain[domain]; 2626 if (!LIST_EMPTY(&dom->ud_part_slab)) 2627 return (LIST_FIRST(&dom->ud_part_slab)); 2628 if (!LIST_EMPTY(&dom->ud_free_slab)) { 2629 slab = LIST_FIRST(&dom->ud_free_slab); 2630 LIST_REMOVE(slab, us_link); 2631 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 2632 return (slab); 2633 } 2634 if (rr) 2635 domain = (domain + 1) % vm_ndomains; 2636 } while (domain != start); 2637 2638 return (NULL); 2639 } 2640 2641 static uma_slab_t 2642 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags) 2643 { 2644 uint32_t reserve; 2645 2646 KEG_LOCK_ASSERT(keg); 2647 2648 reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve; 2649 if (keg->uk_free <= reserve) 2650 return (NULL); 2651 return (keg_first_slab(keg, domain, rr)); 2652 } 2653 2654 static uma_slab_t 2655 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags) 2656 { 2657 struct vm_domainset_iter di; 2658 uma_domain_t dom; 2659 uma_slab_t slab; 2660 int aflags, domain; 2661 bool rr; 2662 2663 restart: 2664 KEG_LOCK_ASSERT(keg); 2665 2666 /* 2667 * Use the keg's policy if upper layers haven't already specified a 2668 * domain (as happens with first-touch zones). 2669 * 2670 * To avoid races we run the iterator with the keg lock held, but that 2671 * means that we cannot allow the vm_domainset layer to sleep. Thus, 2672 * clear M_WAITOK and handle low memory conditions locally. 2673 */ 2674 rr = rdomain == UMA_ANYDOMAIN; 2675 if (rr) { 2676 aflags = (flags & ~M_WAITOK) | M_NOWAIT; 2677 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 2678 &aflags); 2679 } else { 2680 aflags = flags; 2681 domain = rdomain; 2682 } 2683 2684 for (;;) { 2685 slab = keg_fetch_free_slab(keg, domain, rr, flags); 2686 if (slab != NULL) { 2687 MPASS(slab->us_keg == keg); 2688 return (slab); 2689 } 2690 2691 /* 2692 * M_NOVM means don't ask at all! 2693 */ 2694 if (flags & M_NOVM) 2695 break; 2696 2697 KASSERT(zone->uz_max_items == 0 || 2698 zone->uz_items <= zone->uz_max_items, 2699 ("%s: zone %p overflow", __func__, zone)); 2700 2701 slab = keg_alloc_slab(keg, zone, domain, aflags); 2702 /* 2703 * If we got a slab here it's safe to mark it partially used 2704 * and return. We assume that the caller is going to remove 2705 * at least one item. 2706 */ 2707 if (slab) { 2708 MPASS(slab->us_keg == keg); 2709 dom = &keg->uk_domain[slab->us_domain]; 2710 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 2711 return (slab); 2712 } 2713 KEG_LOCK(keg); 2714 if (rr && vm_domainset_iter_policy(&di, &domain) != 0) { 2715 if ((flags & M_WAITOK) != 0) { 2716 KEG_UNLOCK(keg); 2717 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask); 2718 KEG_LOCK(keg); 2719 goto restart; 2720 } 2721 break; 2722 } 2723 } 2724 2725 /* 2726 * We might not have been able to get a slab but another cpu 2727 * could have while we were unlocked. Check again before we 2728 * fail. 2729 */ 2730 if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL) { 2731 MPASS(slab->us_keg == keg); 2732 return (slab); 2733 } 2734 return (NULL); 2735 } 2736 2737 static uma_slab_t 2738 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int domain, int flags) 2739 { 2740 uma_slab_t slab; 2741 2742 if (keg == NULL) { 2743 keg = zone->uz_keg; 2744 KEG_LOCK(keg); 2745 } 2746 2747 for (;;) { 2748 slab = keg_fetch_slab(keg, zone, domain, flags); 2749 if (slab) 2750 return (slab); 2751 if (flags & (M_NOWAIT | M_NOVM)) 2752 break; 2753 } 2754 KEG_UNLOCK(keg); 2755 return (NULL); 2756 } 2757 2758 static void * 2759 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 2760 { 2761 uma_domain_t dom; 2762 void *item; 2763 uint8_t freei; 2764 2765 MPASS(keg == slab->us_keg); 2766 KEG_LOCK_ASSERT(keg); 2767 2768 freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1; 2769 BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free); 2770 item = slab->us_data + (keg->uk_rsize * freei); 2771 slab->us_freecount--; 2772 keg->uk_free--; 2773 2774 /* Move this slab to the full list */ 2775 if (slab->us_freecount == 0) { 2776 LIST_REMOVE(slab, us_link); 2777 dom = &keg->uk_domain[slab->us_domain]; 2778 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 2779 } 2780 2781 return (item); 2782 } 2783 2784 static int 2785 zone_import(uma_zone_t zone, void **bucket, int max, int domain, int flags) 2786 { 2787 uma_slab_t slab; 2788 uma_keg_t keg; 2789 #ifdef NUMA 2790 int stripe; 2791 #endif 2792 int i; 2793 2794 slab = NULL; 2795 keg = NULL; 2796 /* Try to keep the buckets totally full */ 2797 for (i = 0; i < max; ) { 2798 if ((slab = zone->uz_slab(zone, keg, domain, flags)) == NULL) 2799 break; 2800 keg = slab->us_keg; 2801 #ifdef NUMA 2802 stripe = howmany(max, vm_ndomains); 2803 #endif 2804 while (slab->us_freecount && i < max) { 2805 bucket[i++] = slab_alloc_item(keg, slab); 2806 if (keg->uk_free <= keg->uk_reserve) 2807 break; 2808 #ifdef NUMA 2809 /* 2810 * If the zone is striped we pick a new slab for every 2811 * N allocations. Eliminating this conditional will 2812 * instead pick a new domain for each bucket rather 2813 * than stripe within each bucket. The current option 2814 * produces more fragmentation and requires more cpu 2815 * time but yields better distribution. 2816 */ 2817 if ((zone->uz_flags & UMA_ZONE_NUMA) == 0 && 2818 vm_ndomains > 1 && --stripe == 0) 2819 break; 2820 #endif 2821 } 2822 /* Don't block if we allocated any successfully. */ 2823 flags &= ~M_WAITOK; 2824 flags |= M_NOWAIT; 2825 } 2826 if (slab != NULL) 2827 KEG_UNLOCK(keg); 2828 2829 return i; 2830 } 2831 2832 static uma_bucket_t 2833 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags, int max) 2834 { 2835 uma_bucket_t bucket; 2836 2837 CTR1(KTR_UMA, "zone_alloc:_bucket domain %d)", domain); 2838 2839 /* Don't wait for buckets, preserve caller's NOVM setting. */ 2840 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 2841 if (bucket == NULL) 2842 return (NULL); 2843 2844 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 2845 max, domain, flags); 2846 2847 /* 2848 * Initialize the memory if necessary. 2849 */ 2850 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 2851 int i; 2852 2853 for (i = 0; i < bucket->ub_cnt; i++) 2854 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 2855 flags) != 0) 2856 break; 2857 /* 2858 * If we couldn't initialize the whole bucket, put the 2859 * rest back onto the freelist. 2860 */ 2861 if (i != bucket->ub_cnt) { 2862 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 2863 bucket->ub_cnt - i); 2864 #ifdef INVARIANTS 2865 bzero(&bucket->ub_bucket[i], 2866 sizeof(void *) * (bucket->ub_cnt - i)); 2867 #endif 2868 bucket->ub_cnt = i; 2869 } 2870 } 2871 2872 if (bucket->ub_cnt == 0) { 2873 bucket_free(zone, bucket, udata); 2874 counter_u64_add(zone->uz_fails, 1); 2875 return (NULL); 2876 } 2877 2878 return (bucket); 2879 } 2880 2881 /* 2882 * Allocates a single item from a zone. 2883 * 2884 * Arguments 2885 * zone The zone to alloc for. 2886 * udata The data to be passed to the constructor. 2887 * domain The domain to allocate from or UMA_ANYDOMAIN. 2888 * flags M_WAITOK, M_NOWAIT, M_ZERO. 2889 * 2890 * Returns 2891 * NULL if there is no memory and M_NOWAIT is set 2892 * An item if successful 2893 */ 2894 2895 static void * 2896 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 2897 { 2898 2899 ZONE_LOCK(zone); 2900 return (zone_alloc_item_locked(zone, udata, domain, flags)); 2901 } 2902 2903 /* 2904 * Returns with zone unlocked. 2905 */ 2906 static void * 2907 zone_alloc_item_locked(uma_zone_t zone, void *udata, int domain, int flags) 2908 { 2909 void *item; 2910 #ifdef INVARIANTS 2911 bool skipdbg; 2912 #endif 2913 2914 ZONE_LOCK_ASSERT(zone); 2915 2916 if (zone->uz_max_items > 0) { 2917 if (zone->uz_items >= zone->uz_max_items) { 2918 zone_log_warning(zone); 2919 zone_maxaction(zone); 2920 if (flags & M_NOWAIT) { 2921 ZONE_UNLOCK(zone); 2922 return (NULL); 2923 } 2924 zone->uz_sleeps++; 2925 zone->uz_sleepers++; 2926 while (zone->uz_items >= zone->uz_max_items) 2927 mtx_sleep(zone, zone->uz_lockptr, PVM, 2928 "zonelimit", 0); 2929 zone->uz_sleepers--; 2930 if (zone->uz_sleepers > 0 && 2931 zone->uz_items + 1 < zone->uz_max_items) 2932 wakeup_one(zone); 2933 } 2934 zone->uz_items++; 2935 } 2936 ZONE_UNLOCK(zone); 2937 2938 if (domain != UMA_ANYDOMAIN) { 2939 /* avoid allocs targeting empty domains */ 2940 if (VM_DOMAIN_EMPTY(domain)) 2941 domain = UMA_ANYDOMAIN; 2942 } 2943 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 2944 goto fail; 2945 2946 #ifdef INVARIANTS 2947 skipdbg = uma_dbg_zskip(zone, item); 2948 #endif 2949 /* 2950 * We have to call both the zone's init (not the keg's init) 2951 * and the zone's ctor. This is because the item is going from 2952 * a keg slab directly to the user, and the user is expecting it 2953 * to be both zone-init'd as well as zone-ctor'd. 2954 */ 2955 if (zone->uz_init != NULL) { 2956 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 2957 zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT); 2958 goto fail; 2959 } 2960 } 2961 if (zone->uz_ctor != NULL && 2962 #ifdef INVARIANTS 2963 (!skipdbg || zone->uz_ctor != trash_ctor || 2964 zone->uz_dtor != trash_dtor) && 2965 #endif 2966 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2967 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT); 2968 goto fail; 2969 } 2970 #ifdef INVARIANTS 2971 if (!skipdbg) 2972 uma_dbg_alloc(zone, NULL, item); 2973 #endif 2974 if (flags & M_ZERO) 2975 uma_zero_item(item, zone); 2976 2977 counter_u64_add(zone->uz_allocs, 1); 2978 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 2979 zone->uz_name, zone); 2980 2981 return (item); 2982 2983 fail: 2984 if (zone->uz_max_items > 0) { 2985 ZONE_LOCK(zone); 2986 zone->uz_items--; 2987 ZONE_UNLOCK(zone); 2988 } 2989 counter_u64_add(zone->uz_fails, 1); 2990 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 2991 zone->uz_name, zone); 2992 return (NULL); 2993 } 2994 2995 /* See uma.h */ 2996 void 2997 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 2998 { 2999 uma_cache_t cache; 3000 uma_bucket_t bucket; 3001 uma_zone_domain_t zdom; 3002 int cpu, domain; 3003 bool lockfail; 3004 #ifdef INVARIANTS 3005 bool skipdbg; 3006 #endif 3007 3008 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3009 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3010 3011 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 3012 zone->uz_name); 3013 3014 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3015 ("uma_zfree_arg: called with spinlock or critical section held")); 3016 3017 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 3018 if (item == NULL) 3019 return; 3020 #ifdef DEBUG_MEMGUARD 3021 if (is_memguard_addr(item)) { 3022 if (zone->uz_dtor != NULL) 3023 zone->uz_dtor(item, zone->uz_size, udata); 3024 if (zone->uz_fini != NULL) 3025 zone->uz_fini(item, zone->uz_size); 3026 memguard_free(item); 3027 return; 3028 } 3029 #endif 3030 #ifdef INVARIANTS 3031 skipdbg = uma_dbg_zskip(zone, item); 3032 if (skipdbg == false) { 3033 if (zone->uz_flags & UMA_ZONE_MALLOC) 3034 uma_dbg_free(zone, udata, item); 3035 else 3036 uma_dbg_free(zone, NULL, item); 3037 } 3038 if (zone->uz_dtor != NULL && (!skipdbg || 3039 zone->uz_dtor != trash_dtor || zone->uz_ctor != trash_ctor)) 3040 #else 3041 if (zone->uz_dtor != NULL) 3042 #endif 3043 zone->uz_dtor(item, zone->uz_size, udata); 3044 3045 /* 3046 * The race here is acceptable. If we miss it we'll just have to wait 3047 * a little longer for the limits to be reset. 3048 */ 3049 if (zone->uz_sleepers > 0) 3050 goto zfree_item; 3051 3052 /* 3053 * If possible, free to the per-CPU cache. There are two 3054 * requirements for safe access to the per-CPU cache: (1) the thread 3055 * accessing the cache must not be preempted or yield during access, 3056 * and (2) the thread must not migrate CPUs without switching which 3057 * cache it accesses. We rely on a critical section to prevent 3058 * preemption and migration. We release the critical section in 3059 * order to acquire the zone mutex if we are unable to free to the 3060 * current cache; when we re-acquire the critical section, we must 3061 * detect and handle migration if it has occurred. 3062 */ 3063 zfree_restart: 3064 critical_enter(); 3065 cpu = curcpu; 3066 cache = &zone->uz_cpu[cpu]; 3067 3068 zfree_start: 3069 /* 3070 * Try to free into the allocbucket first to give LIFO ordering 3071 * for cache-hot datastructures. Spill over into the freebucket 3072 * if necessary. Alloc will swap them if one runs dry. 3073 */ 3074 bucket = cache->uc_allocbucket; 3075 if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries) 3076 bucket = cache->uc_freebucket; 3077 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 3078 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 3079 ("uma_zfree: Freeing to non free bucket index.")); 3080 bucket->ub_bucket[bucket->ub_cnt] = item; 3081 bucket->ub_cnt++; 3082 cache->uc_frees++; 3083 critical_exit(); 3084 return; 3085 } 3086 3087 /* 3088 * We must go back the zone, which requires acquiring the zone lock, 3089 * which in turn means we must release and re-acquire the critical 3090 * section. Since the critical section is released, we may be 3091 * preempted or migrate. As such, make sure not to maintain any 3092 * thread-local state specific to the cache from prior to releasing 3093 * the critical section. 3094 */ 3095 critical_exit(); 3096 if (zone->uz_count == 0 || bucketdisable) 3097 goto zfree_item; 3098 3099 lockfail = false; 3100 if (ZONE_TRYLOCK(zone) == 0) { 3101 /* Record contention to size the buckets. */ 3102 ZONE_LOCK(zone); 3103 lockfail = true; 3104 } 3105 critical_enter(); 3106 cpu = curcpu; 3107 cache = &zone->uz_cpu[cpu]; 3108 3109 bucket = cache->uc_freebucket; 3110 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 3111 ZONE_UNLOCK(zone); 3112 goto zfree_start; 3113 } 3114 cache->uc_freebucket = NULL; 3115 /* We are no longer associated with this CPU. */ 3116 critical_exit(); 3117 3118 if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) { 3119 domain = PCPU_GET(domain); 3120 if (VM_DOMAIN_EMPTY(domain)) 3121 domain = UMA_ANYDOMAIN; 3122 } else 3123 domain = 0; 3124 zdom = &zone->uz_domain[0]; 3125 3126 /* Can we throw this on the zone full list? */ 3127 if (bucket != NULL) { 3128 CTR3(KTR_UMA, 3129 "uma_zfree: zone %s(%p) putting bucket %p on free list", 3130 zone->uz_name, zone, bucket); 3131 /* ub_cnt is pointing to the last free item */ 3132 KASSERT(bucket->ub_cnt == bucket->ub_entries, 3133 ("uma_zfree: Attempting to insert not full bucket onto the full list.\n")); 3134 if (zone->uz_bkt_count >= zone->uz_bkt_max) { 3135 ZONE_UNLOCK(zone); 3136 bucket_drain(zone, bucket); 3137 bucket_free(zone, bucket, udata); 3138 goto zfree_restart; 3139 } else 3140 zone_put_bucket(zone, zdom, bucket, true); 3141 } 3142 3143 /* 3144 * We bump the uz count when the cache size is insufficient to 3145 * handle the working set. 3146 */ 3147 if (lockfail && zone->uz_count < zone->uz_count_max) 3148 zone->uz_count++; 3149 ZONE_UNLOCK(zone); 3150 3151 bucket = bucket_alloc(zone, udata, M_NOWAIT); 3152 CTR3(KTR_UMA, "uma_zfree: zone %s(%p) allocated bucket %p", 3153 zone->uz_name, zone, bucket); 3154 if (bucket) { 3155 critical_enter(); 3156 cpu = curcpu; 3157 cache = &zone->uz_cpu[cpu]; 3158 if (cache->uc_freebucket == NULL && 3159 ((zone->uz_flags & UMA_ZONE_NUMA) == 0 || 3160 domain == PCPU_GET(domain))) { 3161 cache->uc_freebucket = bucket; 3162 goto zfree_start; 3163 } 3164 /* 3165 * We lost the race, start over. We have to drop our 3166 * critical section to free the bucket. 3167 */ 3168 critical_exit(); 3169 bucket_free(zone, bucket, udata); 3170 goto zfree_restart; 3171 } 3172 3173 /* 3174 * If nothing else caught this, we'll just do an internal free. 3175 */ 3176 zfree_item: 3177 zone_free_item(zone, item, udata, SKIP_DTOR); 3178 } 3179 3180 void 3181 uma_zfree_domain(uma_zone_t zone, void *item, void *udata) 3182 { 3183 3184 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3185 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3186 3187 CTR2(KTR_UMA, "uma_zfree_domain thread %x zone %s", curthread, 3188 zone->uz_name); 3189 3190 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3191 ("uma_zfree_domain: called with spinlock or critical section held")); 3192 3193 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 3194 if (item == NULL) 3195 return; 3196 zone_free_item(zone, item, udata, SKIP_NONE); 3197 } 3198 3199 static void 3200 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item) 3201 { 3202 uma_keg_t keg; 3203 uma_domain_t dom; 3204 uint8_t freei; 3205 3206 keg = zone->uz_keg; 3207 MPASS(zone->uz_lockptr == &keg->uk_lock); 3208 KEG_LOCK_ASSERT(keg); 3209 MPASS(keg == slab->us_keg); 3210 3211 dom = &keg->uk_domain[slab->us_domain]; 3212 3213 /* Do we need to remove from any lists? */ 3214 if (slab->us_freecount+1 == keg->uk_ipers) { 3215 LIST_REMOVE(slab, us_link); 3216 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 3217 } else if (slab->us_freecount == 0) { 3218 LIST_REMOVE(slab, us_link); 3219 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3220 } 3221 3222 /* Slab management. */ 3223 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3224 BIT_SET(SLAB_SETSIZE, freei, &slab->us_free); 3225 slab->us_freecount++; 3226 3227 /* Keg statistics. */ 3228 keg->uk_free++; 3229 } 3230 3231 static void 3232 zone_release(uma_zone_t zone, void **bucket, int cnt) 3233 { 3234 void *item; 3235 uma_slab_t slab; 3236 uma_keg_t keg; 3237 uint8_t *mem; 3238 int i; 3239 3240 keg = zone->uz_keg; 3241 KEG_LOCK(keg); 3242 for (i = 0; i < cnt; i++) { 3243 item = bucket[i]; 3244 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) { 3245 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 3246 if (zone->uz_flags & UMA_ZONE_HASH) { 3247 slab = hash_sfind(&keg->uk_hash, mem); 3248 } else { 3249 mem += keg->uk_pgoff; 3250 slab = (uma_slab_t)mem; 3251 } 3252 } else { 3253 slab = vtoslab((vm_offset_t)item); 3254 MPASS(slab->us_keg == keg); 3255 } 3256 slab_free_item(zone, slab, item); 3257 } 3258 KEG_UNLOCK(keg); 3259 } 3260 3261 /* 3262 * Frees a single item to any zone. 3263 * 3264 * Arguments: 3265 * zone The zone to free to 3266 * item The item we're freeing 3267 * udata User supplied data for the dtor 3268 * skip Skip dtors and finis 3269 */ 3270 static void 3271 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 3272 { 3273 #ifdef INVARIANTS 3274 bool skipdbg; 3275 3276 skipdbg = uma_dbg_zskip(zone, item); 3277 if (skip == SKIP_NONE && !skipdbg) { 3278 if (zone->uz_flags & UMA_ZONE_MALLOC) 3279 uma_dbg_free(zone, udata, item); 3280 else 3281 uma_dbg_free(zone, NULL, item); 3282 } 3283 3284 if (skip < SKIP_DTOR && zone->uz_dtor != NULL && 3285 (!skipdbg || zone->uz_dtor != trash_dtor || 3286 zone->uz_ctor != trash_ctor)) 3287 #else 3288 if (skip < SKIP_DTOR && zone->uz_dtor != NULL) 3289 #endif 3290 zone->uz_dtor(item, zone->uz_size, udata); 3291 3292 if (skip < SKIP_FINI && zone->uz_fini) 3293 zone->uz_fini(item, zone->uz_size); 3294 3295 zone->uz_release(zone->uz_arg, &item, 1); 3296 3297 if (skip & SKIP_CNT) 3298 return; 3299 3300 counter_u64_add(zone->uz_frees, 1); 3301 3302 if (zone->uz_max_items > 0) { 3303 ZONE_LOCK(zone); 3304 zone->uz_items--; 3305 if (zone->uz_sleepers > 0 && 3306 zone->uz_items < zone->uz_max_items) 3307 wakeup_one(zone); 3308 ZONE_UNLOCK(zone); 3309 } 3310 } 3311 3312 /* See uma.h */ 3313 int 3314 uma_zone_set_max(uma_zone_t zone, int nitems) 3315 { 3316 struct uma_bucket_zone *ubz; 3317 3318 /* 3319 * If limit is very low we may need to limit how 3320 * much items are allowed in CPU caches. 3321 */ 3322 ubz = &bucket_zones[0]; 3323 for (; ubz->ubz_entries != 0; ubz++) 3324 if (ubz->ubz_entries * 2 * mp_ncpus > nitems) 3325 break; 3326 if (ubz == &bucket_zones[0]) 3327 nitems = ubz->ubz_entries * 2 * mp_ncpus; 3328 else 3329 ubz--; 3330 3331 ZONE_LOCK(zone); 3332 zone->uz_count_max = zone->uz_count = ubz->ubz_entries; 3333 if (zone->uz_count_min > zone->uz_count_max) 3334 zone->uz_count_min = zone->uz_count_max; 3335 zone->uz_max_items = nitems; 3336 ZONE_UNLOCK(zone); 3337 3338 return (nitems); 3339 } 3340 3341 /* See uma.h */ 3342 int 3343 uma_zone_set_maxcache(uma_zone_t zone, int nitems) 3344 { 3345 3346 ZONE_LOCK(zone); 3347 zone->uz_bkt_max = nitems; 3348 ZONE_UNLOCK(zone); 3349 3350 return (nitems); 3351 } 3352 3353 /* See uma.h */ 3354 int 3355 uma_zone_get_max(uma_zone_t zone) 3356 { 3357 int nitems; 3358 3359 ZONE_LOCK(zone); 3360 nitems = zone->uz_max_items; 3361 ZONE_UNLOCK(zone); 3362 3363 return (nitems); 3364 } 3365 3366 /* See uma.h */ 3367 void 3368 uma_zone_set_warning(uma_zone_t zone, const char *warning) 3369 { 3370 3371 ZONE_LOCK(zone); 3372 zone->uz_warning = warning; 3373 ZONE_UNLOCK(zone); 3374 } 3375 3376 /* See uma.h */ 3377 void 3378 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 3379 { 3380 3381 ZONE_LOCK(zone); 3382 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 3383 ZONE_UNLOCK(zone); 3384 } 3385 3386 /* See uma.h */ 3387 int 3388 uma_zone_get_cur(uma_zone_t zone) 3389 { 3390 int64_t nitems; 3391 u_int i; 3392 3393 ZONE_LOCK(zone); 3394 nitems = counter_u64_fetch(zone->uz_allocs) - 3395 counter_u64_fetch(zone->uz_frees); 3396 CPU_FOREACH(i) { 3397 /* 3398 * See the comment in sysctl_vm_zone_stats() regarding the 3399 * safety of accessing the per-cpu caches. With the zone lock 3400 * held, it is safe, but can potentially result in stale data. 3401 */ 3402 nitems += zone->uz_cpu[i].uc_allocs - 3403 zone->uz_cpu[i].uc_frees; 3404 } 3405 ZONE_UNLOCK(zone); 3406 3407 return (nitems < 0 ? 0 : nitems); 3408 } 3409 3410 /* See uma.h */ 3411 void 3412 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 3413 { 3414 uma_keg_t keg; 3415 3416 KEG_GET(zone, keg); 3417 KEG_LOCK(keg); 3418 KASSERT(keg->uk_pages == 0, 3419 ("uma_zone_set_init on non-empty keg")); 3420 keg->uk_init = uminit; 3421 KEG_UNLOCK(keg); 3422 } 3423 3424 /* See uma.h */ 3425 void 3426 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 3427 { 3428 uma_keg_t keg; 3429 3430 KEG_GET(zone, keg); 3431 KEG_LOCK(keg); 3432 KASSERT(keg->uk_pages == 0, 3433 ("uma_zone_set_fini on non-empty keg")); 3434 keg->uk_fini = fini; 3435 KEG_UNLOCK(keg); 3436 } 3437 3438 /* See uma.h */ 3439 void 3440 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 3441 { 3442 3443 ZONE_LOCK(zone); 3444 KASSERT(zone->uz_keg->uk_pages == 0, 3445 ("uma_zone_set_zinit on non-empty keg")); 3446 zone->uz_init = zinit; 3447 ZONE_UNLOCK(zone); 3448 } 3449 3450 /* See uma.h */ 3451 void 3452 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 3453 { 3454 3455 ZONE_LOCK(zone); 3456 KASSERT(zone->uz_keg->uk_pages == 0, 3457 ("uma_zone_set_zfini on non-empty keg")); 3458 zone->uz_fini = zfini; 3459 ZONE_UNLOCK(zone); 3460 } 3461 3462 /* See uma.h */ 3463 /* XXX uk_freef is not actually used with the zone locked */ 3464 void 3465 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 3466 { 3467 uma_keg_t keg; 3468 3469 KEG_GET(zone, keg); 3470 KASSERT(keg != NULL, ("uma_zone_set_freef: Invalid zone type")); 3471 KEG_LOCK(keg); 3472 keg->uk_freef = freef; 3473 KEG_UNLOCK(keg); 3474 } 3475 3476 /* See uma.h */ 3477 /* XXX uk_allocf is not actually used with the zone locked */ 3478 void 3479 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 3480 { 3481 uma_keg_t keg; 3482 3483 KEG_GET(zone, keg); 3484 KEG_LOCK(keg); 3485 keg->uk_allocf = allocf; 3486 KEG_UNLOCK(keg); 3487 } 3488 3489 /* See uma.h */ 3490 void 3491 uma_zone_reserve(uma_zone_t zone, int items) 3492 { 3493 uma_keg_t keg; 3494 3495 KEG_GET(zone, keg); 3496 KEG_LOCK(keg); 3497 keg->uk_reserve = items; 3498 KEG_UNLOCK(keg); 3499 } 3500 3501 /* See uma.h */ 3502 int 3503 uma_zone_reserve_kva(uma_zone_t zone, int count) 3504 { 3505 uma_keg_t keg; 3506 vm_offset_t kva; 3507 u_int pages; 3508 3509 KEG_GET(zone, keg); 3510 3511 pages = count / keg->uk_ipers; 3512 if (pages * keg->uk_ipers < count) 3513 pages++; 3514 pages *= keg->uk_ppera; 3515 3516 #ifdef UMA_MD_SMALL_ALLOC 3517 if (keg->uk_ppera > 1) { 3518 #else 3519 if (1) { 3520 #endif 3521 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 3522 if (kva == 0) 3523 return (0); 3524 } else 3525 kva = 0; 3526 3527 ZONE_LOCK(zone); 3528 MPASS(keg->uk_kva == 0); 3529 keg->uk_kva = kva; 3530 keg->uk_offset = 0; 3531 zone->uz_max_items = pages * keg->uk_ipers; 3532 #ifdef UMA_MD_SMALL_ALLOC 3533 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 3534 #else 3535 keg->uk_allocf = noobj_alloc; 3536 #endif 3537 keg->uk_flags |= UMA_ZONE_NOFREE; 3538 ZONE_UNLOCK(zone); 3539 3540 return (1); 3541 } 3542 3543 /* See uma.h */ 3544 void 3545 uma_prealloc(uma_zone_t zone, int items) 3546 { 3547 struct vm_domainset_iter di; 3548 uma_domain_t dom; 3549 uma_slab_t slab; 3550 uma_keg_t keg; 3551 int domain, flags, slabs; 3552 3553 KEG_GET(zone, keg); 3554 KEG_LOCK(keg); 3555 slabs = items / keg->uk_ipers; 3556 if (slabs * keg->uk_ipers < items) 3557 slabs++; 3558 flags = M_WAITOK; 3559 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, &flags); 3560 while (slabs-- > 0) { 3561 slab = keg_alloc_slab(keg, zone, domain, flags); 3562 if (slab == NULL) 3563 return; 3564 MPASS(slab->us_keg == keg); 3565 dom = &keg->uk_domain[slab->us_domain]; 3566 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 3567 if (vm_domainset_iter_policy(&di, &domain) != 0) 3568 break; 3569 } 3570 KEG_UNLOCK(keg); 3571 } 3572 3573 /* See uma.h */ 3574 static void 3575 uma_reclaim_locked(bool kmem_danger) 3576 { 3577 3578 CTR0(KTR_UMA, "UMA: vm asked us to release pages!"); 3579 sx_assert(&uma_drain_lock, SA_XLOCKED); 3580 bucket_enable(); 3581 zone_foreach(zone_drain); 3582 if (vm_page_count_min() || kmem_danger) { 3583 cache_drain_safe(NULL); 3584 zone_foreach(zone_drain); 3585 } 3586 3587 /* 3588 * Some slabs may have been freed but this zone will be visited early 3589 * we visit again so that we can free pages that are empty once other 3590 * zones are drained. We have to do the same for buckets. 3591 */ 3592 zone_drain(slabzone); 3593 bucket_zone_drain(); 3594 } 3595 3596 void 3597 uma_reclaim(void) 3598 { 3599 3600 sx_xlock(&uma_drain_lock); 3601 uma_reclaim_locked(false); 3602 sx_xunlock(&uma_drain_lock); 3603 } 3604 3605 static volatile int uma_reclaim_needed; 3606 3607 void 3608 uma_reclaim_wakeup(void) 3609 { 3610 3611 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 3612 wakeup(uma_reclaim); 3613 } 3614 3615 void 3616 uma_reclaim_worker(void *arg __unused) 3617 { 3618 3619 for (;;) { 3620 sx_xlock(&uma_drain_lock); 3621 while (atomic_load_int(&uma_reclaim_needed) == 0) 3622 sx_sleep(uma_reclaim, &uma_drain_lock, PVM, "umarcl", 3623 hz); 3624 sx_xunlock(&uma_drain_lock); 3625 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 3626 sx_xlock(&uma_drain_lock); 3627 uma_reclaim_locked(true); 3628 atomic_store_int(&uma_reclaim_needed, 0); 3629 sx_xunlock(&uma_drain_lock); 3630 /* Don't fire more than once per-second. */ 3631 pause("umarclslp", hz); 3632 } 3633 } 3634 3635 /* See uma.h */ 3636 int 3637 uma_zone_exhausted(uma_zone_t zone) 3638 { 3639 int full; 3640 3641 ZONE_LOCK(zone); 3642 full = zone->uz_sleepers > 0; 3643 ZONE_UNLOCK(zone); 3644 return (full); 3645 } 3646 3647 int 3648 uma_zone_exhausted_nolock(uma_zone_t zone) 3649 { 3650 return (zone->uz_sleepers > 0); 3651 } 3652 3653 void * 3654 uma_large_malloc_domain(vm_size_t size, int domain, int wait) 3655 { 3656 struct domainset *policy; 3657 vm_offset_t addr; 3658 uma_slab_t slab; 3659 3660 if (domain != UMA_ANYDOMAIN) { 3661 /* avoid allocs targeting empty domains */ 3662 if (VM_DOMAIN_EMPTY(domain)) 3663 domain = UMA_ANYDOMAIN; 3664 } 3665 slab = zone_alloc_item(slabzone, NULL, domain, wait); 3666 if (slab == NULL) 3667 return (NULL); 3668 policy = (domain == UMA_ANYDOMAIN) ? DOMAINSET_RR() : 3669 DOMAINSET_FIXED(domain); 3670 addr = kmem_malloc_domainset(policy, size, wait); 3671 if (addr != 0) { 3672 vsetslab(addr, slab); 3673 slab->us_data = (void *)addr; 3674 slab->us_flags = UMA_SLAB_KERNEL | UMA_SLAB_MALLOC; 3675 slab->us_size = size; 3676 slab->us_domain = vm_phys_domain(PHYS_TO_VM_PAGE( 3677 pmap_kextract(addr))); 3678 uma_total_inc(size); 3679 } else { 3680 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3681 } 3682 3683 return ((void *)addr); 3684 } 3685 3686 void * 3687 uma_large_malloc(vm_size_t size, int wait) 3688 { 3689 3690 return uma_large_malloc_domain(size, UMA_ANYDOMAIN, wait); 3691 } 3692 3693 void 3694 uma_large_free(uma_slab_t slab) 3695 { 3696 3697 KASSERT((slab->us_flags & UMA_SLAB_KERNEL) != 0, 3698 ("uma_large_free: Memory not allocated with uma_large_malloc.")); 3699 kmem_free((vm_offset_t)slab->us_data, slab->us_size); 3700 uma_total_dec(slab->us_size); 3701 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3702 } 3703 3704 static void 3705 uma_zero_item(void *item, uma_zone_t zone) 3706 { 3707 3708 bzero(item, zone->uz_size); 3709 } 3710 3711 unsigned long 3712 uma_limit(void) 3713 { 3714 3715 return (uma_kmem_limit); 3716 } 3717 3718 void 3719 uma_set_limit(unsigned long limit) 3720 { 3721 3722 uma_kmem_limit = limit; 3723 } 3724 3725 unsigned long 3726 uma_size(void) 3727 { 3728 3729 return (uma_kmem_total); 3730 } 3731 3732 long 3733 uma_avail(void) 3734 { 3735 3736 return (uma_kmem_limit - uma_kmem_total); 3737 } 3738 3739 void 3740 uma_print_stats(void) 3741 { 3742 zone_foreach(uma_print_zone); 3743 } 3744 3745 static void 3746 slab_print(uma_slab_t slab) 3747 { 3748 printf("slab: keg %p, data %p, freecount %d\n", 3749 slab->us_keg, slab->us_data, slab->us_freecount); 3750 } 3751 3752 static void 3753 cache_print(uma_cache_t cache) 3754 { 3755 printf("alloc: %p(%d), free: %p(%d)\n", 3756 cache->uc_allocbucket, 3757 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, 3758 cache->uc_freebucket, 3759 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0); 3760 } 3761 3762 static void 3763 uma_print_keg(uma_keg_t keg) 3764 { 3765 uma_domain_t dom; 3766 uma_slab_t slab; 3767 int i; 3768 3769 printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d " 3770 "out %d free %d\n", 3771 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags, 3772 keg->uk_ipers, keg->uk_ppera, 3773 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 3774 keg->uk_free); 3775 for (i = 0; i < vm_ndomains; i++) { 3776 dom = &keg->uk_domain[i]; 3777 printf("Part slabs:\n"); 3778 LIST_FOREACH(slab, &dom->ud_part_slab, us_link) 3779 slab_print(slab); 3780 printf("Free slabs:\n"); 3781 LIST_FOREACH(slab, &dom->ud_free_slab, us_link) 3782 slab_print(slab); 3783 printf("Full slabs:\n"); 3784 LIST_FOREACH(slab, &dom->ud_full_slab, us_link) 3785 slab_print(slab); 3786 } 3787 } 3788 3789 void 3790 uma_print_zone(uma_zone_t zone) 3791 { 3792 uma_cache_t cache; 3793 int i; 3794 3795 printf("zone: %s(%p) size %d maxitems %ju flags %#x\n", 3796 zone->uz_name, zone, zone->uz_size, (uintmax_t)zone->uz_max_items, 3797 zone->uz_flags); 3798 if (zone->uz_lockptr != &zone->uz_lock) 3799 uma_print_keg(zone->uz_keg); 3800 CPU_FOREACH(i) { 3801 cache = &zone->uz_cpu[i]; 3802 printf("CPU %d Cache:\n", i); 3803 cache_print(cache); 3804 } 3805 } 3806 3807 #ifdef DDB 3808 /* 3809 * Generate statistics across both the zone and its per-cpu cache's. Return 3810 * desired statistics if the pointer is non-NULL for that statistic. 3811 * 3812 * Note: does not update the zone statistics, as it can't safely clear the 3813 * per-CPU cache statistic. 3814 * 3815 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't 3816 * safe from off-CPU; we should modify the caches to track this information 3817 * directly so that we don't have to. 3818 */ 3819 static void 3820 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp, 3821 uint64_t *freesp, uint64_t *sleepsp) 3822 { 3823 uma_cache_t cache; 3824 uint64_t allocs, frees, sleeps; 3825 int cachefree, cpu; 3826 3827 allocs = frees = sleeps = 0; 3828 cachefree = 0; 3829 CPU_FOREACH(cpu) { 3830 cache = &z->uz_cpu[cpu]; 3831 if (cache->uc_allocbucket != NULL) 3832 cachefree += cache->uc_allocbucket->ub_cnt; 3833 if (cache->uc_freebucket != NULL) 3834 cachefree += cache->uc_freebucket->ub_cnt; 3835 allocs += cache->uc_allocs; 3836 frees += cache->uc_frees; 3837 } 3838 allocs += counter_u64_fetch(z->uz_allocs); 3839 frees += counter_u64_fetch(z->uz_frees); 3840 sleeps += z->uz_sleeps; 3841 if (cachefreep != NULL) 3842 *cachefreep = cachefree; 3843 if (allocsp != NULL) 3844 *allocsp = allocs; 3845 if (freesp != NULL) 3846 *freesp = frees; 3847 if (sleepsp != NULL) 3848 *sleepsp = sleeps; 3849 } 3850 #endif /* DDB */ 3851 3852 static int 3853 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 3854 { 3855 uma_keg_t kz; 3856 uma_zone_t z; 3857 int count; 3858 3859 count = 0; 3860 rw_rlock(&uma_rwlock); 3861 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3862 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3863 count++; 3864 } 3865 rw_runlock(&uma_rwlock); 3866 return (sysctl_handle_int(oidp, &count, 0, req)); 3867 } 3868 3869 static int 3870 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 3871 { 3872 struct uma_stream_header ush; 3873 struct uma_type_header uth; 3874 struct uma_percpu_stat *ups; 3875 uma_zone_domain_t zdom; 3876 struct sbuf sbuf; 3877 uma_cache_t cache; 3878 uma_keg_t kz; 3879 uma_zone_t z; 3880 int count, error, i; 3881 3882 error = sysctl_wire_old_buffer(req, 0); 3883 if (error != 0) 3884 return (error); 3885 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 3886 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 3887 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 3888 3889 count = 0; 3890 rw_rlock(&uma_rwlock); 3891 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3892 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3893 count++; 3894 } 3895 3896 /* 3897 * Insert stream header. 3898 */ 3899 bzero(&ush, sizeof(ush)); 3900 ush.ush_version = UMA_STREAM_VERSION; 3901 ush.ush_maxcpus = (mp_maxid + 1); 3902 ush.ush_count = count; 3903 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 3904 3905 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3906 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3907 bzero(&uth, sizeof(uth)); 3908 ZONE_LOCK(z); 3909 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 3910 uth.uth_align = kz->uk_align; 3911 uth.uth_size = kz->uk_size; 3912 uth.uth_rsize = kz->uk_rsize; 3913 if (z->uz_max_items > 0) 3914 uth.uth_pages = (z->uz_items / kz->uk_ipers) * 3915 kz->uk_ppera; 3916 else 3917 uth.uth_pages = kz->uk_pages; 3918 uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) * 3919 kz->uk_ppera; 3920 uth.uth_limit = z->uz_max_items; 3921 uth.uth_keg_free = z->uz_keg->uk_free; 3922 3923 /* 3924 * A zone is secondary is it is not the first entry 3925 * on the keg's zone list. 3926 */ 3927 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 3928 (LIST_FIRST(&kz->uk_zones) != z)) 3929 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 3930 3931 for (i = 0; i < vm_ndomains; i++) { 3932 zdom = &z->uz_domain[i]; 3933 uth.uth_zone_free += zdom->uzd_nitems; 3934 } 3935 uth.uth_allocs = counter_u64_fetch(z->uz_allocs); 3936 uth.uth_frees = counter_u64_fetch(z->uz_frees); 3937 uth.uth_fails = counter_u64_fetch(z->uz_fails); 3938 uth.uth_sleeps = z->uz_sleeps; 3939 /* 3940 * While it is not normally safe to access the cache 3941 * bucket pointers while not on the CPU that owns the 3942 * cache, we only allow the pointers to be exchanged 3943 * without the zone lock held, not invalidated, so 3944 * accept the possible race associated with bucket 3945 * exchange during monitoring. 3946 */ 3947 for (i = 0; i < mp_maxid + 1; i++) { 3948 bzero(&ups[i], sizeof(*ups)); 3949 if (kz->uk_flags & UMA_ZFLAG_INTERNAL || 3950 CPU_ABSENT(i)) 3951 continue; 3952 cache = &z->uz_cpu[i]; 3953 if (cache->uc_allocbucket != NULL) 3954 ups[i].ups_cache_free += 3955 cache->uc_allocbucket->ub_cnt; 3956 if (cache->uc_freebucket != NULL) 3957 ups[i].ups_cache_free += 3958 cache->uc_freebucket->ub_cnt; 3959 ups[i].ups_allocs = cache->uc_allocs; 3960 ups[i].ups_frees = cache->uc_frees; 3961 } 3962 ZONE_UNLOCK(z); 3963 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 3964 for (i = 0; i < mp_maxid + 1; i++) 3965 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 3966 } 3967 } 3968 rw_runlock(&uma_rwlock); 3969 error = sbuf_finish(&sbuf); 3970 sbuf_delete(&sbuf); 3971 free(ups, M_TEMP); 3972 return (error); 3973 } 3974 3975 int 3976 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 3977 { 3978 uma_zone_t zone = *(uma_zone_t *)arg1; 3979 int error, max; 3980 3981 max = uma_zone_get_max(zone); 3982 error = sysctl_handle_int(oidp, &max, 0, req); 3983 if (error || !req->newptr) 3984 return (error); 3985 3986 uma_zone_set_max(zone, max); 3987 3988 return (0); 3989 } 3990 3991 int 3992 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 3993 { 3994 uma_zone_t zone = *(uma_zone_t *)arg1; 3995 int cur; 3996 3997 cur = uma_zone_get_cur(zone); 3998 return (sysctl_handle_int(oidp, &cur, 0, req)); 3999 } 4000 4001 #ifdef INVARIANTS 4002 static uma_slab_t 4003 uma_dbg_getslab(uma_zone_t zone, void *item) 4004 { 4005 uma_slab_t slab; 4006 uma_keg_t keg; 4007 uint8_t *mem; 4008 4009 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 4010 if (zone->uz_flags & UMA_ZONE_VTOSLAB) { 4011 slab = vtoslab((vm_offset_t)mem); 4012 } else { 4013 /* 4014 * It is safe to return the slab here even though the 4015 * zone is unlocked because the item's allocation state 4016 * essentially holds a reference. 4017 */ 4018 if (zone->uz_lockptr == &zone->uz_lock) 4019 return (NULL); 4020 ZONE_LOCK(zone); 4021 keg = zone->uz_keg; 4022 if (keg->uk_flags & UMA_ZONE_HASH) 4023 slab = hash_sfind(&keg->uk_hash, mem); 4024 else 4025 slab = (uma_slab_t)(mem + keg->uk_pgoff); 4026 ZONE_UNLOCK(zone); 4027 } 4028 4029 return (slab); 4030 } 4031 4032 static bool 4033 uma_dbg_zskip(uma_zone_t zone, void *mem) 4034 { 4035 4036 if (zone->uz_lockptr == &zone->uz_lock) 4037 return (true); 4038 4039 return (uma_dbg_kskip(zone->uz_keg, mem)); 4040 } 4041 4042 static bool 4043 uma_dbg_kskip(uma_keg_t keg, void *mem) 4044 { 4045 uintptr_t idx; 4046 4047 if (dbg_divisor == 0) 4048 return (true); 4049 4050 if (dbg_divisor == 1) 4051 return (false); 4052 4053 idx = (uintptr_t)mem >> PAGE_SHIFT; 4054 if (keg->uk_ipers > 1) { 4055 idx *= keg->uk_ipers; 4056 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize; 4057 } 4058 4059 if ((idx / dbg_divisor) * dbg_divisor != idx) { 4060 counter_u64_add(uma_skip_cnt, 1); 4061 return (true); 4062 } 4063 counter_u64_add(uma_dbg_cnt, 1); 4064 4065 return (false); 4066 } 4067 4068 /* 4069 * Set up the slab's freei data such that uma_dbg_free can function. 4070 * 4071 */ 4072 static void 4073 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 4074 { 4075 uma_keg_t keg; 4076 int freei; 4077 4078 if (slab == NULL) { 4079 slab = uma_dbg_getslab(zone, item); 4080 if (slab == NULL) 4081 panic("uma: item %p did not belong to zone %s\n", 4082 item, zone->uz_name); 4083 } 4084 keg = slab->us_keg; 4085 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 4086 4087 if (BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 4088 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n", 4089 item, zone, zone->uz_name, slab, freei); 4090 BIT_SET_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 4091 4092 return; 4093 } 4094 4095 /* 4096 * Verifies freed addresses. Checks for alignment, valid slab membership 4097 * and duplicate frees. 4098 * 4099 */ 4100 static void 4101 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 4102 { 4103 uma_keg_t keg; 4104 int freei; 4105 4106 if (slab == NULL) { 4107 slab = uma_dbg_getslab(zone, item); 4108 if (slab == NULL) 4109 panic("uma: Freed item %p did not belong to zone %s\n", 4110 item, zone->uz_name); 4111 } 4112 keg = slab->us_keg; 4113 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 4114 4115 if (freei >= keg->uk_ipers) 4116 panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n", 4117 item, zone, zone->uz_name, slab, freei); 4118 4119 if (((freei * keg->uk_rsize) + slab->us_data) != item) 4120 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n", 4121 item, zone, zone->uz_name, slab, freei); 4122 4123 if (!BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 4124 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n", 4125 item, zone, zone->uz_name, slab, freei); 4126 4127 BIT_CLR_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 4128 } 4129 #endif /* INVARIANTS */ 4130 4131 #ifdef DDB 4132 DB_SHOW_COMMAND(uma, db_show_uma) 4133 { 4134 uma_keg_t kz; 4135 uma_zone_t z; 4136 uint64_t allocs, frees, sleeps; 4137 long cachefree; 4138 int i; 4139 4140 db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used", 4141 "Free", "Requests", "Sleeps", "Bucket"); 4142 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4143 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 4144 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 4145 allocs = counter_u64_fetch(z->uz_allocs); 4146 frees = counter_u64_fetch(z->uz_frees); 4147 sleeps = z->uz_sleeps; 4148 cachefree = 0; 4149 } else 4150 uma_zone_sumstat(z, &cachefree, &allocs, 4151 &frees, &sleeps); 4152 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 4153 (LIST_FIRST(&kz->uk_zones) != z))) 4154 cachefree += kz->uk_free; 4155 for (i = 0; i < vm_ndomains; i++) 4156 cachefree += z->uz_domain[i].uzd_nitems; 4157 4158 db_printf("%18s %8ju %8jd %8ld %12ju %8ju %8u\n", 4159 z->uz_name, (uintmax_t)kz->uk_size, 4160 (intmax_t)(allocs - frees), cachefree, 4161 (uintmax_t)allocs, sleeps, z->uz_count); 4162 if (db_pager_quit) 4163 return; 4164 } 4165 } 4166 } 4167 4168 DB_SHOW_COMMAND(umacache, db_show_umacache) 4169 { 4170 uma_zone_t z; 4171 uint64_t allocs, frees; 4172 long cachefree; 4173 int i; 4174 4175 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 4176 "Requests", "Bucket"); 4177 LIST_FOREACH(z, &uma_cachezones, uz_link) { 4178 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL); 4179 for (i = 0; i < vm_ndomains; i++) 4180 cachefree += z->uz_domain[i].uzd_nitems; 4181 db_printf("%18s %8ju %8jd %8ld %12ju %8u\n", 4182 z->uz_name, (uintmax_t)z->uz_size, 4183 (intmax_t)(allocs - frees), cachefree, 4184 (uintmax_t)allocs, z->uz_count); 4185 if (db_pager_quit) 4186 return; 4187 } 4188 } 4189 #endif /* DDB */ 4190