1 /*- 2 * Copyright (c) 2002-2005, 2009 Jeffrey Roberson <jeff@FreeBSD.org> 3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 4 * Copyright (c) 2004-2006 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /* 30 * uma_core.c Implementation of the Universal Memory allocator 31 * 32 * This allocator is intended to replace the multitude of similar object caches 33 * in the standard FreeBSD kernel. The intent is to be flexible as well as 34 * effecient. A primary design goal is to return unused memory to the rest of 35 * the system. This will make the system as a whole more flexible due to the 36 * ability to move memory to subsystems which most need it instead of leaving 37 * pools of reserved memory unused. 38 * 39 * The basic ideas stem from similar slab/zone based allocators whose algorithms 40 * are well known. 41 * 42 */ 43 44 /* 45 * TODO: 46 * - Improve memory usage for large allocations 47 * - Investigate cache size adjustments 48 */ 49 50 #include <sys/cdefs.h> 51 __FBSDID("$FreeBSD$"); 52 53 /* I should really use ktr.. */ 54 /* 55 #define UMA_DEBUG 1 56 #define UMA_DEBUG_ALLOC 1 57 #define UMA_DEBUG_ALLOC_1 1 58 */ 59 60 #include "opt_ddb.h" 61 #include "opt_param.h" 62 63 #include <sys/param.h> 64 #include <sys/systm.h> 65 #include <sys/kernel.h> 66 #include <sys/types.h> 67 #include <sys/queue.h> 68 #include <sys/malloc.h> 69 #include <sys/ktr.h> 70 #include <sys/lock.h> 71 #include <sys/sysctl.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/sbuf.h> 75 #include <sys/smp.h> 76 #include <sys/vmmeter.h> 77 78 #include <vm/vm.h> 79 #include <vm/vm_object.h> 80 #include <vm/vm_page.h> 81 #include <vm/vm_param.h> 82 #include <vm/vm_map.h> 83 #include <vm/vm_kern.h> 84 #include <vm/vm_extern.h> 85 #include <vm/uma.h> 86 #include <vm/uma_int.h> 87 #include <vm/uma_dbg.h> 88 89 #include <ddb/ddb.h> 90 91 /* 92 * This is the zone and keg from which all zones are spawned. The idea is that 93 * even the zone & keg heads are allocated from the allocator, so we use the 94 * bss section to bootstrap us. 95 */ 96 static struct uma_keg masterkeg; 97 static struct uma_zone masterzone_k; 98 static struct uma_zone masterzone_z; 99 static uma_zone_t kegs = &masterzone_k; 100 static uma_zone_t zones = &masterzone_z; 101 102 /* This is the zone from which all of uma_slab_t's are allocated. */ 103 static uma_zone_t slabzone; 104 static uma_zone_t slabrefzone; /* With refcounters (for UMA_ZONE_REFCNT) */ 105 106 /* 107 * The initial hash tables come out of this zone so they can be allocated 108 * prior to malloc coming up. 109 */ 110 static uma_zone_t hashzone; 111 112 /* The boot-time adjusted value for cache line alignment. */ 113 int uma_align_cache = 64 - 1; 114 115 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 116 117 /* 118 * Are we allowed to allocate buckets? 119 */ 120 static int bucketdisable = 1; 121 122 /* Linked list of all kegs in the system */ 123 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 124 125 /* This mutex protects the keg list */ 126 static struct mtx uma_mtx; 127 128 /* Linked list of boot time pages */ 129 static LIST_HEAD(,uma_slab) uma_boot_pages = 130 LIST_HEAD_INITIALIZER(uma_boot_pages); 131 132 /* This mutex protects the boot time pages list */ 133 static struct mtx uma_boot_pages_mtx; 134 135 /* Is the VM done starting up? */ 136 static int booted = 0; 137 #define UMA_STARTUP 1 138 #define UMA_STARTUP2 2 139 140 /* Maximum number of allowed items-per-slab if the slab header is OFFPAGE */ 141 static u_int uma_max_ipers; 142 static u_int uma_max_ipers_ref; 143 144 /* 145 * This is the handle used to schedule events that need to happen 146 * outside of the allocation fast path. 147 */ 148 static struct callout uma_callout; 149 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 150 151 /* 152 * This structure is passed as the zone ctor arg so that I don't have to create 153 * a special allocation function just for zones. 154 */ 155 struct uma_zctor_args { 156 char *name; 157 size_t size; 158 uma_ctor ctor; 159 uma_dtor dtor; 160 uma_init uminit; 161 uma_fini fini; 162 uma_keg_t keg; 163 int align; 164 u_int32_t flags; 165 }; 166 167 struct uma_kctor_args { 168 uma_zone_t zone; 169 size_t size; 170 uma_init uminit; 171 uma_fini fini; 172 int align; 173 u_int32_t flags; 174 }; 175 176 struct uma_bucket_zone { 177 uma_zone_t ubz_zone; 178 char *ubz_name; 179 int ubz_entries; 180 }; 181 182 #define BUCKET_MAX 128 183 184 struct uma_bucket_zone bucket_zones[] = { 185 { NULL, "16 Bucket", 16 }, 186 { NULL, "32 Bucket", 32 }, 187 { NULL, "64 Bucket", 64 }, 188 { NULL, "128 Bucket", 128 }, 189 { NULL, NULL, 0} 190 }; 191 192 #define BUCKET_SHIFT 4 193 #define BUCKET_ZONES ((BUCKET_MAX >> BUCKET_SHIFT) + 1) 194 195 /* 196 * bucket_size[] maps requested bucket sizes to zones that allocate a bucket 197 * of approximately the right size. 198 */ 199 static uint8_t bucket_size[BUCKET_ZONES]; 200 201 /* 202 * Flags and enumerations to be passed to internal functions. 203 */ 204 enum zfreeskip { SKIP_NONE, SKIP_DTOR, SKIP_FINI }; 205 206 #define ZFREE_STATFAIL 0x00000001 /* Update zone failure statistic. */ 207 #define ZFREE_STATFREE 0x00000002 /* Update zone free statistic. */ 208 209 /* Prototypes.. */ 210 211 static void *obj_alloc(uma_zone_t, int, u_int8_t *, int); 212 static void *page_alloc(uma_zone_t, int, u_int8_t *, int); 213 static void *startup_alloc(uma_zone_t, int, u_int8_t *, int); 214 static void page_free(void *, int, u_int8_t); 215 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int); 216 static void cache_drain(uma_zone_t); 217 static void bucket_drain(uma_zone_t, uma_bucket_t); 218 static void bucket_cache_drain(uma_zone_t zone); 219 static int keg_ctor(void *, int, void *, int); 220 static void keg_dtor(void *, int, void *); 221 static int zone_ctor(void *, int, void *, int); 222 static void zone_dtor(void *, int, void *); 223 static int zero_init(void *, int, int); 224 static void keg_small_init(uma_keg_t keg); 225 static void keg_large_init(uma_keg_t keg); 226 static void zone_foreach(void (*zfunc)(uma_zone_t)); 227 static void zone_timeout(uma_zone_t zone); 228 static int hash_alloc(struct uma_hash *); 229 static int hash_expand(struct uma_hash *, struct uma_hash *); 230 static void hash_free(struct uma_hash *hash); 231 static void uma_timeout(void *); 232 static void uma_startup3(void); 233 static void *zone_alloc_item(uma_zone_t, void *, int); 234 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip, 235 int); 236 static void bucket_enable(void); 237 static void bucket_init(void); 238 static uma_bucket_t bucket_alloc(int, int); 239 static void bucket_free(uma_bucket_t); 240 static void bucket_zone_drain(void); 241 static int zone_alloc_bucket(uma_zone_t zone, int flags); 242 static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags); 243 static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags); 244 static void *slab_alloc_item(uma_zone_t zone, uma_slab_t slab); 245 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 246 uma_fini fini, int align, u_int32_t flags); 247 static inline void zone_relock(uma_zone_t zone, uma_keg_t keg); 248 static inline void keg_relock(uma_keg_t keg, uma_zone_t zone); 249 250 void uma_print_zone(uma_zone_t); 251 void uma_print_stats(void); 252 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 253 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 254 255 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 256 257 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 258 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 259 260 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 261 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 262 263 /* 264 * This routine checks to see whether or not it's safe to enable buckets. 265 */ 266 267 static void 268 bucket_enable(void) 269 { 270 if (cnt.v_free_count < cnt.v_free_min) 271 bucketdisable = 1; 272 else 273 bucketdisable = 0; 274 } 275 276 /* 277 * Initialize bucket_zones, the array of zones of buckets of various sizes. 278 * 279 * For each zone, calculate the memory required for each bucket, consisting 280 * of the header and an array of pointers. Initialize bucket_size[] to point 281 * the range of appropriate bucket sizes at the zone. 282 */ 283 static void 284 bucket_init(void) 285 { 286 struct uma_bucket_zone *ubz; 287 int i; 288 int j; 289 290 for (i = 0, j = 0; bucket_zones[j].ubz_entries != 0; j++) { 291 int size; 292 293 ubz = &bucket_zones[j]; 294 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 295 size += sizeof(void *) * ubz->ubz_entries; 296 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 297 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 298 UMA_ZFLAG_INTERNAL | UMA_ZFLAG_BUCKET); 299 for (; i <= ubz->ubz_entries; i += (1 << BUCKET_SHIFT)) 300 bucket_size[i >> BUCKET_SHIFT] = j; 301 } 302 } 303 304 /* 305 * Given a desired number of entries for a bucket, return the zone from which 306 * to allocate the bucket. 307 */ 308 static struct uma_bucket_zone * 309 bucket_zone_lookup(int entries) 310 { 311 int idx; 312 313 idx = howmany(entries, 1 << BUCKET_SHIFT); 314 return (&bucket_zones[bucket_size[idx]]); 315 } 316 317 static uma_bucket_t 318 bucket_alloc(int entries, int bflags) 319 { 320 struct uma_bucket_zone *ubz; 321 uma_bucket_t bucket; 322 323 /* 324 * This is to stop us from allocating per cpu buckets while we're 325 * running out of vm.boot_pages. Otherwise, we would exhaust the 326 * boot pages. This also prevents us from allocating buckets in 327 * low memory situations. 328 */ 329 if (bucketdisable) 330 return (NULL); 331 332 ubz = bucket_zone_lookup(entries); 333 bucket = zone_alloc_item(ubz->ubz_zone, NULL, bflags); 334 if (bucket) { 335 #ifdef INVARIANTS 336 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 337 #endif 338 bucket->ub_cnt = 0; 339 bucket->ub_entries = ubz->ubz_entries; 340 } 341 342 return (bucket); 343 } 344 345 static void 346 bucket_free(uma_bucket_t bucket) 347 { 348 struct uma_bucket_zone *ubz; 349 350 ubz = bucket_zone_lookup(bucket->ub_entries); 351 zone_free_item(ubz->ubz_zone, bucket, NULL, SKIP_NONE, 352 ZFREE_STATFREE); 353 } 354 355 static void 356 bucket_zone_drain(void) 357 { 358 struct uma_bucket_zone *ubz; 359 360 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 361 zone_drain(ubz->ubz_zone); 362 } 363 364 static inline uma_keg_t 365 zone_first_keg(uma_zone_t zone) 366 { 367 368 return (LIST_FIRST(&zone->uz_kegs)->kl_keg); 369 } 370 371 static void 372 zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t)) 373 { 374 uma_klink_t klink; 375 376 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) 377 kegfn(klink->kl_keg); 378 } 379 380 /* 381 * Routine called by timeout which is used to fire off some time interval 382 * based calculations. (stats, hash size, etc.) 383 * 384 * Arguments: 385 * arg Unused 386 * 387 * Returns: 388 * Nothing 389 */ 390 static void 391 uma_timeout(void *unused) 392 { 393 bucket_enable(); 394 zone_foreach(zone_timeout); 395 396 /* Reschedule this event */ 397 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 398 } 399 400 /* 401 * Routine to perform timeout driven calculations. This expands the 402 * hashes and does per cpu statistics aggregation. 403 * 404 * Returns nothing. 405 */ 406 static void 407 keg_timeout(uma_keg_t keg) 408 { 409 410 KEG_LOCK(keg); 411 /* 412 * Expand the keg hash table. 413 * 414 * This is done if the number of slabs is larger than the hash size. 415 * What I'm trying to do here is completely reduce collisions. This 416 * may be a little aggressive. Should I allow for two collisions max? 417 */ 418 if (keg->uk_flags & UMA_ZONE_HASH && 419 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) { 420 struct uma_hash newhash; 421 struct uma_hash oldhash; 422 int ret; 423 424 /* 425 * This is so involved because allocating and freeing 426 * while the keg lock is held will lead to deadlock. 427 * I have to do everything in stages and check for 428 * races. 429 */ 430 newhash = keg->uk_hash; 431 KEG_UNLOCK(keg); 432 ret = hash_alloc(&newhash); 433 KEG_LOCK(keg); 434 if (ret) { 435 if (hash_expand(&keg->uk_hash, &newhash)) { 436 oldhash = keg->uk_hash; 437 keg->uk_hash = newhash; 438 } else 439 oldhash = newhash; 440 441 KEG_UNLOCK(keg); 442 hash_free(&oldhash); 443 KEG_LOCK(keg); 444 } 445 } 446 KEG_UNLOCK(keg); 447 } 448 449 static void 450 zone_timeout(uma_zone_t zone) 451 { 452 453 zone_foreach_keg(zone, &keg_timeout); 454 } 455 456 /* 457 * Allocate and zero fill the next sized hash table from the appropriate 458 * backing store. 459 * 460 * Arguments: 461 * hash A new hash structure with the old hash size in uh_hashsize 462 * 463 * Returns: 464 * 1 on sucess and 0 on failure. 465 */ 466 static int 467 hash_alloc(struct uma_hash *hash) 468 { 469 int oldsize; 470 int alloc; 471 472 oldsize = hash->uh_hashsize; 473 474 /* We're just going to go to a power of two greater */ 475 if (oldsize) { 476 hash->uh_hashsize = oldsize * 2; 477 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 478 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 479 M_UMAHASH, M_NOWAIT); 480 } else { 481 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 482 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 483 M_WAITOK); 484 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 485 } 486 if (hash->uh_slab_hash) { 487 bzero(hash->uh_slab_hash, alloc); 488 hash->uh_hashmask = hash->uh_hashsize - 1; 489 return (1); 490 } 491 492 return (0); 493 } 494 495 /* 496 * Expands the hash table for HASH zones. This is done from zone_timeout 497 * to reduce collisions. This must not be done in the regular allocation 498 * path, otherwise, we can recurse on the vm while allocating pages. 499 * 500 * Arguments: 501 * oldhash The hash you want to expand 502 * newhash The hash structure for the new table 503 * 504 * Returns: 505 * Nothing 506 * 507 * Discussion: 508 */ 509 static int 510 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 511 { 512 uma_slab_t slab; 513 int hval; 514 int i; 515 516 if (!newhash->uh_slab_hash) 517 return (0); 518 519 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 520 return (0); 521 522 /* 523 * I need to investigate hash algorithms for resizing without a 524 * full rehash. 525 */ 526 527 for (i = 0; i < oldhash->uh_hashsize; i++) 528 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) { 529 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]); 530 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink); 531 hval = UMA_HASH(newhash, slab->us_data); 532 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 533 slab, us_hlink); 534 } 535 536 return (1); 537 } 538 539 /* 540 * Free the hash bucket to the appropriate backing store. 541 * 542 * Arguments: 543 * slab_hash The hash bucket we're freeing 544 * hashsize The number of entries in that hash bucket 545 * 546 * Returns: 547 * Nothing 548 */ 549 static void 550 hash_free(struct uma_hash *hash) 551 { 552 if (hash->uh_slab_hash == NULL) 553 return; 554 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 555 zone_free_item(hashzone, 556 hash->uh_slab_hash, NULL, SKIP_NONE, ZFREE_STATFREE); 557 else 558 free(hash->uh_slab_hash, M_UMAHASH); 559 } 560 561 /* 562 * Frees all outstanding items in a bucket 563 * 564 * Arguments: 565 * zone The zone to free to, must be unlocked. 566 * bucket The free/alloc bucket with items, cpu queue must be locked. 567 * 568 * Returns: 569 * Nothing 570 */ 571 572 static void 573 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 574 { 575 void *item; 576 577 if (bucket == NULL) 578 return; 579 580 while (bucket->ub_cnt > 0) { 581 bucket->ub_cnt--; 582 item = bucket->ub_bucket[bucket->ub_cnt]; 583 #ifdef INVARIANTS 584 bucket->ub_bucket[bucket->ub_cnt] = NULL; 585 KASSERT(item != NULL, 586 ("bucket_drain: botched ptr, item is NULL")); 587 #endif 588 zone_free_item(zone, item, NULL, SKIP_DTOR, 0); 589 } 590 } 591 592 /* 593 * Drains the per cpu caches for a zone. 594 * 595 * NOTE: This may only be called while the zone is being turn down, and not 596 * during normal operation. This is necessary in order that we do not have 597 * to migrate CPUs to drain the per-CPU caches. 598 * 599 * Arguments: 600 * zone The zone to drain, must be unlocked. 601 * 602 * Returns: 603 * Nothing 604 */ 605 static void 606 cache_drain(uma_zone_t zone) 607 { 608 uma_cache_t cache; 609 int cpu; 610 611 /* 612 * XXX: It is safe to not lock the per-CPU caches, because we're 613 * tearing down the zone anyway. I.e., there will be no further use 614 * of the caches at this point. 615 * 616 * XXX: It would good to be able to assert that the zone is being 617 * torn down to prevent improper use of cache_drain(). 618 * 619 * XXX: We lock the zone before passing into bucket_cache_drain() as 620 * it is used elsewhere. Should the tear-down path be made special 621 * there in some form? 622 */ 623 CPU_FOREACH(cpu) { 624 cache = &zone->uz_cpu[cpu]; 625 bucket_drain(zone, cache->uc_allocbucket); 626 bucket_drain(zone, cache->uc_freebucket); 627 if (cache->uc_allocbucket != NULL) 628 bucket_free(cache->uc_allocbucket); 629 if (cache->uc_freebucket != NULL) 630 bucket_free(cache->uc_freebucket); 631 cache->uc_allocbucket = cache->uc_freebucket = NULL; 632 } 633 ZONE_LOCK(zone); 634 bucket_cache_drain(zone); 635 ZONE_UNLOCK(zone); 636 } 637 638 /* 639 * Drain the cached buckets from a zone. Expects a locked zone on entry. 640 */ 641 static void 642 bucket_cache_drain(uma_zone_t zone) 643 { 644 uma_bucket_t bucket; 645 646 /* 647 * Drain the bucket queues and free the buckets, we just keep two per 648 * cpu (alloc/free). 649 */ 650 while ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) { 651 LIST_REMOVE(bucket, ub_link); 652 ZONE_UNLOCK(zone); 653 bucket_drain(zone, bucket); 654 bucket_free(bucket); 655 ZONE_LOCK(zone); 656 } 657 658 /* Now we do the free queue.. */ 659 while ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) { 660 LIST_REMOVE(bucket, ub_link); 661 bucket_free(bucket); 662 } 663 } 664 665 /* 666 * Frees pages from a keg back to the system. This is done on demand from 667 * the pageout daemon. 668 * 669 * Returns nothing. 670 */ 671 static void 672 keg_drain(uma_keg_t keg) 673 { 674 struct slabhead freeslabs = { 0 }; 675 uma_slab_t slab; 676 uma_slab_t n; 677 u_int8_t flags; 678 u_int8_t *mem; 679 int i; 680 681 /* 682 * We don't want to take pages from statically allocated kegs at this 683 * time 684 */ 685 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 686 return; 687 688 #ifdef UMA_DEBUG 689 printf("%s free items: %u\n", keg->uk_name, keg->uk_free); 690 #endif 691 KEG_LOCK(keg); 692 if (keg->uk_free == 0) 693 goto finished; 694 695 slab = LIST_FIRST(&keg->uk_free_slab); 696 while (slab) { 697 n = LIST_NEXT(slab, us_link); 698 699 /* We have no where to free these to */ 700 if (slab->us_flags & UMA_SLAB_BOOT) { 701 slab = n; 702 continue; 703 } 704 705 LIST_REMOVE(slab, us_link); 706 keg->uk_pages -= keg->uk_ppera; 707 keg->uk_free -= keg->uk_ipers; 708 709 if (keg->uk_flags & UMA_ZONE_HASH) 710 UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data); 711 712 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 713 714 slab = n; 715 } 716 finished: 717 KEG_UNLOCK(keg); 718 719 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 720 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 721 if (keg->uk_fini) 722 for (i = 0; i < keg->uk_ipers; i++) 723 keg->uk_fini( 724 slab->us_data + (keg->uk_rsize * i), 725 keg->uk_size); 726 flags = slab->us_flags; 727 mem = slab->us_data; 728 729 if (keg->uk_flags & UMA_ZONE_VTOSLAB) { 730 vm_object_t obj; 731 732 if (flags & UMA_SLAB_KMEM) 733 obj = kmem_object; 734 else if (flags & UMA_SLAB_KERNEL) 735 obj = kernel_object; 736 else 737 obj = NULL; 738 for (i = 0; i < keg->uk_ppera; i++) 739 vsetobj((vm_offset_t)mem + (i * PAGE_SIZE), 740 obj); 741 } 742 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 743 zone_free_item(keg->uk_slabzone, slab, NULL, 744 SKIP_NONE, ZFREE_STATFREE); 745 #ifdef UMA_DEBUG 746 printf("%s: Returning %d bytes.\n", 747 keg->uk_name, UMA_SLAB_SIZE * keg->uk_ppera); 748 #endif 749 keg->uk_freef(mem, UMA_SLAB_SIZE * keg->uk_ppera, flags); 750 } 751 } 752 753 static void 754 zone_drain_wait(uma_zone_t zone, int waitok) 755 { 756 757 /* 758 * Set draining to interlock with zone_dtor() so we can release our 759 * locks as we go. Only dtor() should do a WAITOK call since it 760 * is the only call that knows the structure will still be available 761 * when it wakes up. 762 */ 763 ZONE_LOCK(zone); 764 while (zone->uz_flags & UMA_ZFLAG_DRAINING) { 765 if (waitok == M_NOWAIT) 766 goto out; 767 mtx_unlock(&uma_mtx); 768 msleep(zone, zone->uz_lock, PVM, "zonedrain", 1); 769 mtx_lock(&uma_mtx); 770 } 771 zone->uz_flags |= UMA_ZFLAG_DRAINING; 772 bucket_cache_drain(zone); 773 ZONE_UNLOCK(zone); 774 /* 775 * The DRAINING flag protects us from being freed while 776 * we're running. Normally the uma_mtx would protect us but we 777 * must be able to release and acquire the right lock for each keg. 778 */ 779 zone_foreach_keg(zone, &keg_drain); 780 ZONE_LOCK(zone); 781 zone->uz_flags &= ~UMA_ZFLAG_DRAINING; 782 wakeup(zone); 783 out: 784 ZONE_UNLOCK(zone); 785 } 786 787 void 788 zone_drain(uma_zone_t zone) 789 { 790 791 zone_drain_wait(zone, M_NOWAIT); 792 } 793 794 /* 795 * Allocate a new slab for a keg. This does not insert the slab onto a list. 796 * 797 * Arguments: 798 * wait Shall we wait? 799 * 800 * Returns: 801 * The slab that was allocated or NULL if there is no memory and the 802 * caller specified M_NOWAIT. 803 */ 804 static uma_slab_t 805 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait) 806 { 807 uma_slabrefcnt_t slabref; 808 uma_alloc allocf; 809 uma_slab_t slab; 810 u_int8_t *mem; 811 u_int8_t flags; 812 int i; 813 814 mtx_assert(&keg->uk_lock, MA_OWNED); 815 slab = NULL; 816 817 #ifdef UMA_DEBUG 818 printf("slab_zalloc: Allocating a new slab for %s\n", keg->uk_name); 819 #endif 820 allocf = keg->uk_allocf; 821 KEG_UNLOCK(keg); 822 823 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 824 slab = zone_alloc_item(keg->uk_slabzone, NULL, wait); 825 if (slab == NULL) { 826 KEG_LOCK(keg); 827 return NULL; 828 } 829 } 830 831 /* 832 * This reproduces the old vm_zone behavior of zero filling pages the 833 * first time they are added to a zone. 834 * 835 * Malloced items are zeroed in uma_zalloc. 836 */ 837 838 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 839 wait |= M_ZERO; 840 else 841 wait &= ~M_ZERO; 842 843 /* zone is passed for legacy reasons. */ 844 mem = allocf(zone, keg->uk_ppera * UMA_SLAB_SIZE, &flags, wait); 845 if (mem == NULL) { 846 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 847 zone_free_item(keg->uk_slabzone, slab, NULL, 848 SKIP_NONE, ZFREE_STATFREE); 849 KEG_LOCK(keg); 850 return (NULL); 851 } 852 853 /* Point the slab into the allocated memory */ 854 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 855 slab = (uma_slab_t )(mem + keg->uk_pgoff); 856 857 if (keg->uk_flags & UMA_ZONE_VTOSLAB) 858 for (i = 0; i < keg->uk_ppera; i++) 859 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 860 861 slab->us_keg = keg; 862 slab->us_data = mem; 863 slab->us_freecount = keg->uk_ipers; 864 slab->us_firstfree = 0; 865 slab->us_flags = flags; 866 867 if (keg->uk_flags & UMA_ZONE_REFCNT) { 868 slabref = (uma_slabrefcnt_t)slab; 869 for (i = 0; i < keg->uk_ipers; i++) { 870 slabref->us_freelist[i].us_refcnt = 0; 871 slabref->us_freelist[i].us_item = i+1; 872 } 873 } else { 874 for (i = 0; i < keg->uk_ipers; i++) 875 slab->us_freelist[i].us_item = i+1; 876 } 877 878 if (keg->uk_init != NULL) { 879 for (i = 0; i < keg->uk_ipers; i++) 880 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 881 keg->uk_size, wait) != 0) 882 break; 883 if (i != keg->uk_ipers) { 884 if (keg->uk_fini != NULL) { 885 for (i--; i > -1; i--) 886 keg->uk_fini(slab->us_data + 887 (keg->uk_rsize * i), 888 keg->uk_size); 889 } 890 if (keg->uk_flags & UMA_ZONE_VTOSLAB) { 891 vm_object_t obj; 892 893 if (flags & UMA_SLAB_KMEM) 894 obj = kmem_object; 895 else if (flags & UMA_SLAB_KERNEL) 896 obj = kernel_object; 897 else 898 obj = NULL; 899 for (i = 0; i < keg->uk_ppera; i++) 900 vsetobj((vm_offset_t)mem + 901 (i * PAGE_SIZE), obj); 902 } 903 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 904 zone_free_item(keg->uk_slabzone, slab, 905 NULL, SKIP_NONE, ZFREE_STATFREE); 906 keg->uk_freef(mem, UMA_SLAB_SIZE * keg->uk_ppera, 907 flags); 908 KEG_LOCK(keg); 909 return (NULL); 910 } 911 } 912 KEG_LOCK(keg); 913 914 if (keg->uk_flags & UMA_ZONE_HASH) 915 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 916 917 keg->uk_pages += keg->uk_ppera; 918 keg->uk_free += keg->uk_ipers; 919 920 return (slab); 921 } 922 923 /* 924 * This function is intended to be used early on in place of page_alloc() so 925 * that we may use the boot time page cache to satisfy allocations before 926 * the VM is ready. 927 */ 928 static void * 929 startup_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait) 930 { 931 uma_keg_t keg; 932 uma_slab_t tmps; 933 int pages, check_pages; 934 935 keg = zone_first_keg(zone); 936 pages = howmany(bytes, PAGE_SIZE); 937 check_pages = pages - 1; 938 KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n")); 939 940 /* 941 * Check our small startup cache to see if it has pages remaining. 942 */ 943 mtx_lock(&uma_boot_pages_mtx); 944 945 /* First check if we have enough room. */ 946 tmps = LIST_FIRST(&uma_boot_pages); 947 while (tmps != NULL && check_pages-- > 0) 948 tmps = LIST_NEXT(tmps, us_link); 949 if (tmps != NULL) { 950 /* 951 * It's ok to lose tmps references. The last one will 952 * have tmps->us_data pointing to the start address of 953 * "pages" contiguous pages of memory. 954 */ 955 while (pages-- > 0) { 956 tmps = LIST_FIRST(&uma_boot_pages); 957 LIST_REMOVE(tmps, us_link); 958 } 959 mtx_unlock(&uma_boot_pages_mtx); 960 *pflag = tmps->us_flags; 961 return (tmps->us_data); 962 } 963 mtx_unlock(&uma_boot_pages_mtx); 964 if (booted < UMA_STARTUP2) 965 panic("UMA: Increase vm.boot_pages"); 966 /* 967 * Now that we've booted reset these users to their real allocator. 968 */ 969 #ifdef UMA_MD_SMALL_ALLOC 970 keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc; 971 #else 972 keg->uk_allocf = page_alloc; 973 #endif 974 return keg->uk_allocf(zone, bytes, pflag, wait); 975 } 976 977 /* 978 * Allocates a number of pages from the system 979 * 980 * Arguments: 981 * bytes The number of bytes requested 982 * wait Shall we wait? 983 * 984 * Returns: 985 * A pointer to the alloced memory or possibly 986 * NULL if M_NOWAIT is set. 987 */ 988 static void * 989 page_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait) 990 { 991 void *p; /* Returned page */ 992 993 *pflag = UMA_SLAB_KMEM; 994 p = (void *) kmem_malloc(kmem_map, bytes, wait); 995 996 return (p); 997 } 998 999 /* 1000 * Allocates a number of pages from within an object 1001 * 1002 * Arguments: 1003 * bytes The number of bytes requested 1004 * wait Shall we wait? 1005 * 1006 * Returns: 1007 * A pointer to the alloced memory or possibly 1008 * NULL if M_NOWAIT is set. 1009 */ 1010 static void * 1011 obj_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait) 1012 { 1013 vm_object_t object; 1014 vm_offset_t retkva, zkva; 1015 vm_page_t p; 1016 int pages, startpages; 1017 uma_keg_t keg; 1018 1019 keg = zone_first_keg(zone); 1020 object = keg->uk_obj; 1021 retkva = 0; 1022 1023 /* 1024 * This looks a little weird since we're getting one page at a time. 1025 */ 1026 VM_OBJECT_LOCK(object); 1027 p = TAILQ_LAST(&object->memq, pglist); 1028 pages = p != NULL ? p->pindex + 1 : 0; 1029 startpages = pages; 1030 zkva = keg->uk_kva + pages * PAGE_SIZE; 1031 for (; bytes > 0; bytes -= PAGE_SIZE) { 1032 p = vm_page_alloc(object, pages, 1033 VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED); 1034 if (p == NULL) { 1035 if (pages != startpages) 1036 pmap_qremove(retkva, pages - startpages); 1037 while (pages != startpages) { 1038 pages--; 1039 p = TAILQ_LAST(&object->memq, pglist); 1040 vm_page_unwire(p, 0); 1041 vm_page_free(p); 1042 } 1043 retkva = 0; 1044 goto done; 1045 } 1046 pmap_qenter(zkva, &p, 1); 1047 if (retkva == 0) 1048 retkva = zkva; 1049 zkva += PAGE_SIZE; 1050 pages += 1; 1051 } 1052 done: 1053 VM_OBJECT_UNLOCK(object); 1054 *flags = UMA_SLAB_PRIV; 1055 1056 return ((void *)retkva); 1057 } 1058 1059 /* 1060 * Frees a number of pages to the system 1061 * 1062 * Arguments: 1063 * mem A pointer to the memory to be freed 1064 * size The size of the memory being freed 1065 * flags The original p->us_flags field 1066 * 1067 * Returns: 1068 * Nothing 1069 */ 1070 static void 1071 page_free(void *mem, int size, u_int8_t flags) 1072 { 1073 vm_map_t map; 1074 1075 if (flags & UMA_SLAB_KMEM) 1076 map = kmem_map; 1077 else if (flags & UMA_SLAB_KERNEL) 1078 map = kernel_map; 1079 else 1080 panic("UMA: page_free used with invalid flags %d", flags); 1081 1082 kmem_free(map, (vm_offset_t)mem, size); 1083 } 1084 1085 /* 1086 * Zero fill initializer 1087 * 1088 * Arguments/Returns follow uma_init specifications 1089 */ 1090 static int 1091 zero_init(void *mem, int size, int flags) 1092 { 1093 bzero(mem, size); 1094 return (0); 1095 } 1096 1097 /* 1098 * Finish creating a small uma keg. This calculates ipers, and the keg size. 1099 * 1100 * Arguments 1101 * keg The zone we should initialize 1102 * 1103 * Returns 1104 * Nothing 1105 */ 1106 static void 1107 keg_small_init(uma_keg_t keg) 1108 { 1109 u_int rsize; 1110 u_int memused; 1111 u_int wastedspace; 1112 u_int shsize; 1113 1114 KASSERT(keg != NULL, ("Keg is null in keg_small_init")); 1115 rsize = keg->uk_size; 1116 1117 if (rsize < UMA_SMALLEST_UNIT) 1118 rsize = UMA_SMALLEST_UNIT; 1119 if (rsize & keg->uk_align) 1120 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1121 1122 keg->uk_rsize = rsize; 1123 keg->uk_ppera = 1; 1124 1125 if (keg->uk_flags & UMA_ZONE_REFCNT) { 1126 rsize += UMA_FRITMREF_SZ; /* linkage & refcnt */ 1127 shsize = sizeof(struct uma_slab_refcnt); 1128 } else { 1129 rsize += UMA_FRITM_SZ; /* Account for linkage */ 1130 shsize = sizeof(struct uma_slab); 1131 } 1132 1133 keg->uk_ipers = (UMA_SLAB_SIZE - shsize) / rsize; 1134 KASSERT(keg->uk_ipers != 0, ("keg_small_init: ipers is 0")); 1135 memused = keg->uk_ipers * rsize + shsize; 1136 wastedspace = UMA_SLAB_SIZE - memused; 1137 1138 /* 1139 * We can't do OFFPAGE if we're internal or if we've been 1140 * asked to not go to the VM for buckets. If we do this we 1141 * may end up going to the VM (kmem_map) for slabs which we 1142 * do not want to do if we're UMA_ZFLAG_CACHEONLY as a 1143 * result of UMA_ZONE_VM, which clearly forbids it. 1144 */ 1145 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1146 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1147 return; 1148 1149 if ((wastedspace >= UMA_MAX_WASTE) && 1150 (keg->uk_ipers < (UMA_SLAB_SIZE / keg->uk_rsize))) { 1151 keg->uk_ipers = UMA_SLAB_SIZE / keg->uk_rsize; 1152 KASSERT(keg->uk_ipers <= 255, 1153 ("keg_small_init: keg->uk_ipers too high!")); 1154 #ifdef UMA_DEBUG 1155 printf("UMA decided we need offpage slab headers for " 1156 "keg: %s, calculated wastedspace = %d, " 1157 "maximum wasted space allowed = %d, " 1158 "calculated ipers = %d, " 1159 "new wasted space = %d\n", keg->uk_name, wastedspace, 1160 UMA_MAX_WASTE, keg->uk_ipers, 1161 UMA_SLAB_SIZE - keg->uk_ipers * keg->uk_rsize); 1162 #endif 1163 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1164 if ((keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1165 keg->uk_flags |= UMA_ZONE_HASH; 1166 } 1167 } 1168 1169 /* 1170 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do 1171 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1172 * more complicated. 1173 * 1174 * Arguments 1175 * keg The keg we should initialize 1176 * 1177 * Returns 1178 * Nothing 1179 */ 1180 static void 1181 keg_large_init(uma_keg_t keg) 1182 { 1183 int pages; 1184 1185 KASSERT(keg != NULL, ("Keg is null in keg_large_init")); 1186 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0, 1187 ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg")); 1188 1189 pages = keg->uk_size / UMA_SLAB_SIZE; 1190 1191 /* Account for remainder */ 1192 if ((pages * UMA_SLAB_SIZE) < keg->uk_size) 1193 pages++; 1194 1195 keg->uk_ppera = pages; 1196 keg->uk_ipers = 1; 1197 keg->uk_rsize = keg->uk_size; 1198 1199 /* We can't do OFFPAGE if we're internal, bail out here. */ 1200 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) 1201 return; 1202 1203 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1204 if ((keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1205 keg->uk_flags |= UMA_ZONE_HASH; 1206 } 1207 1208 static void 1209 keg_cachespread_init(uma_keg_t keg) 1210 { 1211 int alignsize; 1212 int trailer; 1213 int pages; 1214 int rsize; 1215 1216 alignsize = keg->uk_align + 1; 1217 rsize = keg->uk_size; 1218 /* 1219 * We want one item to start on every align boundary in a page. To 1220 * do this we will span pages. We will also extend the item by the 1221 * size of align if it is an even multiple of align. Otherwise, it 1222 * would fall on the same boundary every time. 1223 */ 1224 if (rsize & keg->uk_align) 1225 rsize = (rsize & ~keg->uk_align) + alignsize; 1226 if ((rsize & alignsize) == 0) 1227 rsize += alignsize; 1228 trailer = rsize - keg->uk_size; 1229 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE; 1230 pages = MIN(pages, (128 * 1024) / PAGE_SIZE); 1231 keg->uk_rsize = rsize; 1232 keg->uk_ppera = pages; 1233 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize; 1234 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1235 KASSERT(keg->uk_ipers <= uma_max_ipers, 1236 ("keg_small_init: keg->uk_ipers too high(%d) increase max_ipers", 1237 keg->uk_ipers)); 1238 } 1239 1240 /* 1241 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1242 * the keg onto the global keg list. 1243 * 1244 * Arguments/Returns follow uma_ctor specifications 1245 * udata Actually uma_kctor_args 1246 */ 1247 static int 1248 keg_ctor(void *mem, int size, void *udata, int flags) 1249 { 1250 struct uma_kctor_args *arg = udata; 1251 uma_keg_t keg = mem; 1252 uma_zone_t zone; 1253 1254 bzero(keg, size); 1255 keg->uk_size = arg->size; 1256 keg->uk_init = arg->uminit; 1257 keg->uk_fini = arg->fini; 1258 keg->uk_align = arg->align; 1259 keg->uk_free = 0; 1260 keg->uk_pages = 0; 1261 keg->uk_flags = arg->flags; 1262 keg->uk_allocf = page_alloc; 1263 keg->uk_freef = page_free; 1264 keg->uk_recurse = 0; 1265 keg->uk_slabzone = NULL; 1266 1267 /* 1268 * The master zone is passed to us at keg-creation time. 1269 */ 1270 zone = arg->zone; 1271 keg->uk_name = zone->uz_name; 1272 1273 if (arg->flags & UMA_ZONE_VM) 1274 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1275 1276 if (arg->flags & UMA_ZONE_ZINIT) 1277 keg->uk_init = zero_init; 1278 1279 if (arg->flags & UMA_ZONE_REFCNT || arg->flags & UMA_ZONE_MALLOC) 1280 keg->uk_flags |= UMA_ZONE_VTOSLAB; 1281 1282 /* 1283 * The +UMA_FRITM_SZ added to uk_size is to account for the 1284 * linkage that is added to the size in keg_small_init(). If 1285 * we don't account for this here then we may end up in 1286 * keg_small_init() with a calculated 'ipers' of 0. 1287 */ 1288 if (keg->uk_flags & UMA_ZONE_REFCNT) { 1289 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) 1290 keg_cachespread_init(keg); 1291 else if ((keg->uk_size+UMA_FRITMREF_SZ) > 1292 (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt))) 1293 keg_large_init(keg); 1294 else 1295 keg_small_init(keg); 1296 } else { 1297 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) 1298 keg_cachespread_init(keg); 1299 else if ((keg->uk_size+UMA_FRITM_SZ) > 1300 (UMA_SLAB_SIZE - sizeof(struct uma_slab))) 1301 keg_large_init(keg); 1302 else 1303 keg_small_init(keg); 1304 } 1305 1306 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 1307 if (keg->uk_flags & UMA_ZONE_REFCNT) 1308 keg->uk_slabzone = slabrefzone; 1309 else 1310 keg->uk_slabzone = slabzone; 1311 } 1312 1313 /* 1314 * If we haven't booted yet we need allocations to go through the 1315 * startup cache until the vm is ready. 1316 */ 1317 if (keg->uk_ppera == 1) { 1318 #ifdef UMA_MD_SMALL_ALLOC 1319 keg->uk_allocf = uma_small_alloc; 1320 keg->uk_freef = uma_small_free; 1321 1322 if (booted < UMA_STARTUP) 1323 keg->uk_allocf = startup_alloc; 1324 #else 1325 if (booted < UMA_STARTUP2) 1326 keg->uk_allocf = startup_alloc; 1327 #endif 1328 } else if (booted < UMA_STARTUP2 && 1329 (keg->uk_flags & UMA_ZFLAG_INTERNAL)) 1330 keg->uk_allocf = startup_alloc; 1331 1332 /* 1333 * Initialize keg's lock (shared among zones). 1334 */ 1335 if (arg->flags & UMA_ZONE_MTXCLASS) 1336 KEG_LOCK_INIT(keg, 1); 1337 else 1338 KEG_LOCK_INIT(keg, 0); 1339 1340 /* 1341 * If we're putting the slab header in the actual page we need to 1342 * figure out where in each page it goes. This calculates a right 1343 * justified offset into the memory on an ALIGN_PTR boundary. 1344 */ 1345 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1346 u_int totsize; 1347 1348 /* Size of the slab struct and free list */ 1349 if (keg->uk_flags & UMA_ZONE_REFCNT) 1350 totsize = sizeof(struct uma_slab_refcnt) + 1351 keg->uk_ipers * UMA_FRITMREF_SZ; 1352 else 1353 totsize = sizeof(struct uma_slab) + 1354 keg->uk_ipers * UMA_FRITM_SZ; 1355 1356 if (totsize & UMA_ALIGN_PTR) 1357 totsize = (totsize & ~UMA_ALIGN_PTR) + 1358 (UMA_ALIGN_PTR + 1); 1359 keg->uk_pgoff = (UMA_SLAB_SIZE * keg->uk_ppera) - totsize; 1360 1361 if (keg->uk_flags & UMA_ZONE_REFCNT) 1362 totsize = keg->uk_pgoff + sizeof(struct uma_slab_refcnt) 1363 + keg->uk_ipers * UMA_FRITMREF_SZ; 1364 else 1365 totsize = keg->uk_pgoff + sizeof(struct uma_slab) 1366 + keg->uk_ipers * UMA_FRITM_SZ; 1367 1368 /* 1369 * The only way the following is possible is if with our 1370 * UMA_ALIGN_PTR adjustments we are now bigger than 1371 * UMA_SLAB_SIZE. I haven't checked whether this is 1372 * mathematically possible for all cases, so we make 1373 * sure here anyway. 1374 */ 1375 if (totsize > UMA_SLAB_SIZE * keg->uk_ppera) { 1376 printf("zone %s ipers %d rsize %d size %d\n", 1377 zone->uz_name, keg->uk_ipers, keg->uk_rsize, 1378 keg->uk_size); 1379 panic("UMA slab won't fit."); 1380 } 1381 } 1382 1383 if (keg->uk_flags & UMA_ZONE_HASH) 1384 hash_alloc(&keg->uk_hash); 1385 1386 #ifdef UMA_DEBUG 1387 printf("UMA: %s(%p) size %d(%d) flags %d ipers %d ppera %d out %d free %d\n", 1388 zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags, 1389 keg->uk_ipers, keg->uk_ppera, 1390 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free); 1391 #endif 1392 1393 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1394 1395 mtx_lock(&uma_mtx); 1396 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1397 mtx_unlock(&uma_mtx); 1398 return (0); 1399 } 1400 1401 /* 1402 * Zone header ctor. This initializes all fields, locks, etc. 1403 * 1404 * Arguments/Returns follow uma_ctor specifications 1405 * udata Actually uma_zctor_args 1406 */ 1407 static int 1408 zone_ctor(void *mem, int size, void *udata, int flags) 1409 { 1410 struct uma_zctor_args *arg = udata; 1411 uma_zone_t zone = mem; 1412 uma_zone_t z; 1413 uma_keg_t keg; 1414 1415 bzero(zone, size); 1416 zone->uz_name = arg->name; 1417 zone->uz_ctor = arg->ctor; 1418 zone->uz_dtor = arg->dtor; 1419 zone->uz_slab = zone_fetch_slab; 1420 zone->uz_init = NULL; 1421 zone->uz_fini = NULL; 1422 zone->uz_allocs = 0; 1423 zone->uz_frees = 0; 1424 zone->uz_fails = 0; 1425 zone->uz_sleeps = 0; 1426 zone->uz_fills = zone->uz_count = 0; 1427 zone->uz_flags = 0; 1428 keg = arg->keg; 1429 1430 if (arg->flags & UMA_ZONE_SECONDARY) { 1431 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 1432 zone->uz_init = arg->uminit; 1433 zone->uz_fini = arg->fini; 1434 zone->uz_lock = &keg->uk_lock; 1435 zone->uz_flags |= UMA_ZONE_SECONDARY; 1436 mtx_lock(&uma_mtx); 1437 ZONE_LOCK(zone); 1438 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 1439 if (LIST_NEXT(z, uz_link) == NULL) { 1440 LIST_INSERT_AFTER(z, zone, uz_link); 1441 break; 1442 } 1443 } 1444 ZONE_UNLOCK(zone); 1445 mtx_unlock(&uma_mtx); 1446 } else if (keg == NULL) { 1447 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 1448 arg->align, arg->flags)) == NULL) 1449 return (ENOMEM); 1450 } else { 1451 struct uma_kctor_args karg; 1452 int error; 1453 1454 /* We should only be here from uma_startup() */ 1455 karg.size = arg->size; 1456 karg.uminit = arg->uminit; 1457 karg.fini = arg->fini; 1458 karg.align = arg->align; 1459 karg.flags = arg->flags; 1460 karg.zone = zone; 1461 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 1462 flags); 1463 if (error) 1464 return (error); 1465 } 1466 /* 1467 * Link in the first keg. 1468 */ 1469 zone->uz_klink.kl_keg = keg; 1470 LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link); 1471 zone->uz_lock = &keg->uk_lock; 1472 zone->uz_size = keg->uk_size; 1473 zone->uz_flags |= (keg->uk_flags & 1474 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 1475 1476 /* 1477 * Some internal zones don't have room allocated for the per cpu 1478 * caches. If we're internal, bail out here. 1479 */ 1480 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { 1481 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 1482 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 1483 return (0); 1484 } 1485 1486 if (keg->uk_flags & UMA_ZONE_MAXBUCKET) 1487 zone->uz_count = BUCKET_MAX; 1488 else if (keg->uk_ipers <= BUCKET_MAX) 1489 zone->uz_count = keg->uk_ipers; 1490 else 1491 zone->uz_count = BUCKET_MAX; 1492 return (0); 1493 } 1494 1495 /* 1496 * Keg header dtor. This frees all data, destroys locks, frees the hash 1497 * table and removes the keg from the global list. 1498 * 1499 * Arguments/Returns follow uma_dtor specifications 1500 * udata unused 1501 */ 1502 static void 1503 keg_dtor(void *arg, int size, void *udata) 1504 { 1505 uma_keg_t keg; 1506 1507 keg = (uma_keg_t)arg; 1508 KEG_LOCK(keg); 1509 if (keg->uk_free != 0) { 1510 printf("Freed UMA keg was not empty (%d items). " 1511 " Lost %d pages of memory.\n", 1512 keg->uk_free, keg->uk_pages); 1513 } 1514 KEG_UNLOCK(keg); 1515 1516 hash_free(&keg->uk_hash); 1517 1518 KEG_LOCK_FINI(keg); 1519 } 1520 1521 /* 1522 * Zone header dtor. 1523 * 1524 * Arguments/Returns follow uma_dtor specifications 1525 * udata unused 1526 */ 1527 static void 1528 zone_dtor(void *arg, int size, void *udata) 1529 { 1530 uma_klink_t klink; 1531 uma_zone_t zone; 1532 uma_keg_t keg; 1533 1534 zone = (uma_zone_t)arg; 1535 keg = zone_first_keg(zone); 1536 1537 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 1538 cache_drain(zone); 1539 1540 mtx_lock(&uma_mtx); 1541 LIST_REMOVE(zone, uz_link); 1542 mtx_unlock(&uma_mtx); 1543 /* 1544 * XXX there are some races here where 1545 * the zone can be drained but zone lock 1546 * released and then refilled before we 1547 * remove it... we dont care for now 1548 */ 1549 zone_drain_wait(zone, M_WAITOK); 1550 /* 1551 * Unlink all of our kegs. 1552 */ 1553 while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) { 1554 klink->kl_keg = NULL; 1555 LIST_REMOVE(klink, kl_link); 1556 if (klink == &zone->uz_klink) 1557 continue; 1558 free(klink, M_TEMP); 1559 } 1560 /* 1561 * We only destroy kegs from non secondary zones. 1562 */ 1563 if ((zone->uz_flags & UMA_ZONE_SECONDARY) == 0) { 1564 mtx_lock(&uma_mtx); 1565 LIST_REMOVE(keg, uk_link); 1566 mtx_unlock(&uma_mtx); 1567 zone_free_item(kegs, keg, NULL, SKIP_NONE, 1568 ZFREE_STATFREE); 1569 } 1570 } 1571 1572 /* 1573 * Traverses every zone in the system and calls a callback 1574 * 1575 * Arguments: 1576 * zfunc A pointer to a function which accepts a zone 1577 * as an argument. 1578 * 1579 * Returns: 1580 * Nothing 1581 */ 1582 static void 1583 zone_foreach(void (*zfunc)(uma_zone_t)) 1584 { 1585 uma_keg_t keg; 1586 uma_zone_t zone; 1587 1588 mtx_lock(&uma_mtx); 1589 LIST_FOREACH(keg, &uma_kegs, uk_link) { 1590 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 1591 zfunc(zone); 1592 } 1593 mtx_unlock(&uma_mtx); 1594 } 1595 1596 /* Public functions */ 1597 /* See uma.h */ 1598 void 1599 uma_startup(void *bootmem, int boot_pages) 1600 { 1601 struct uma_zctor_args args; 1602 uma_slab_t slab; 1603 u_int slabsize; 1604 u_int objsize, totsize, wsize; 1605 int i; 1606 1607 #ifdef UMA_DEBUG 1608 printf("Creating uma keg headers zone and keg.\n"); 1609 #endif 1610 mtx_init(&uma_mtx, "UMA lock", NULL, MTX_DEF); 1611 1612 /* 1613 * Figure out the maximum number of items-per-slab we'll have if 1614 * we're using the OFFPAGE slab header to track free items, given 1615 * all possible object sizes and the maximum desired wastage 1616 * (UMA_MAX_WASTE). 1617 * 1618 * We iterate until we find an object size for 1619 * which the calculated wastage in keg_small_init() will be 1620 * enough to warrant OFFPAGE. Since wastedspace versus objsize 1621 * is an overall increasing see-saw function, we find the smallest 1622 * objsize such that the wastage is always acceptable for objects 1623 * with that objsize or smaller. Since a smaller objsize always 1624 * generates a larger possible uma_max_ipers, we use this computed 1625 * objsize to calculate the largest ipers possible. Since the 1626 * ipers calculated for OFFPAGE slab headers is always larger than 1627 * the ipers initially calculated in keg_small_init(), we use 1628 * the former's equation (UMA_SLAB_SIZE / keg->uk_rsize) to 1629 * obtain the maximum ipers possible for offpage slab headers. 1630 * 1631 * It should be noted that ipers versus objsize is an inversly 1632 * proportional function which drops off rather quickly so as 1633 * long as our UMA_MAX_WASTE is such that the objsize we calculate 1634 * falls into the portion of the inverse relation AFTER the steep 1635 * falloff, then uma_max_ipers shouldn't be too high (~10 on i386). 1636 * 1637 * Note that we have 8-bits (1 byte) to use as a freelist index 1638 * inside the actual slab header itself and this is enough to 1639 * accomodate us. In the worst case, a UMA_SMALLEST_UNIT sized 1640 * object with offpage slab header would have ipers = 1641 * UMA_SLAB_SIZE / UMA_SMALLEST_UNIT (currently = 256), which is 1642 * 1 greater than what our byte-integer freelist index can 1643 * accomodate, but we know that this situation never occurs as 1644 * for UMA_SMALLEST_UNIT-sized objects, we will never calculate 1645 * that we need to go to offpage slab headers. Or, if we do, 1646 * then we trap that condition below and panic in the INVARIANTS case. 1647 */ 1648 wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab) - UMA_MAX_WASTE; 1649 totsize = wsize; 1650 objsize = UMA_SMALLEST_UNIT; 1651 while (totsize >= wsize) { 1652 totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab)) / 1653 (objsize + UMA_FRITM_SZ); 1654 totsize *= (UMA_FRITM_SZ + objsize); 1655 objsize++; 1656 } 1657 if (objsize > UMA_SMALLEST_UNIT) 1658 objsize--; 1659 uma_max_ipers = MAX(UMA_SLAB_SIZE / objsize, 64); 1660 1661 wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt) - UMA_MAX_WASTE; 1662 totsize = wsize; 1663 objsize = UMA_SMALLEST_UNIT; 1664 while (totsize >= wsize) { 1665 totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt)) / 1666 (objsize + UMA_FRITMREF_SZ); 1667 totsize *= (UMA_FRITMREF_SZ + objsize); 1668 objsize++; 1669 } 1670 if (objsize > UMA_SMALLEST_UNIT) 1671 objsize--; 1672 uma_max_ipers_ref = MAX(UMA_SLAB_SIZE / objsize, 64); 1673 1674 KASSERT((uma_max_ipers_ref <= 255) && (uma_max_ipers <= 255), 1675 ("uma_startup: calculated uma_max_ipers values too large!")); 1676 1677 #ifdef UMA_DEBUG 1678 printf("Calculated uma_max_ipers (for OFFPAGE) is %d\n", uma_max_ipers); 1679 printf("Calculated uma_max_ipers_slab (for OFFPAGE) is %d\n", 1680 uma_max_ipers_ref); 1681 #endif 1682 1683 /* "manually" create the initial zone */ 1684 args.name = "UMA Kegs"; 1685 args.size = sizeof(struct uma_keg); 1686 args.ctor = keg_ctor; 1687 args.dtor = keg_dtor; 1688 args.uminit = zero_init; 1689 args.fini = NULL; 1690 args.keg = &masterkeg; 1691 args.align = 32 - 1; 1692 args.flags = UMA_ZFLAG_INTERNAL; 1693 /* The initial zone has no Per cpu queues so it's smaller */ 1694 zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK); 1695 1696 #ifdef UMA_DEBUG 1697 printf("Filling boot free list.\n"); 1698 #endif 1699 for (i = 0; i < boot_pages; i++) { 1700 slab = (uma_slab_t)((u_int8_t *)bootmem + (i * UMA_SLAB_SIZE)); 1701 slab->us_data = (u_int8_t *)slab; 1702 slab->us_flags = UMA_SLAB_BOOT; 1703 LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link); 1704 } 1705 mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF); 1706 1707 #ifdef UMA_DEBUG 1708 printf("Creating uma zone headers zone and keg.\n"); 1709 #endif 1710 args.name = "UMA Zones"; 1711 args.size = sizeof(struct uma_zone) + 1712 (sizeof(struct uma_cache) * (mp_maxid + 1)); 1713 args.ctor = zone_ctor; 1714 args.dtor = zone_dtor; 1715 args.uminit = zero_init; 1716 args.fini = NULL; 1717 args.keg = NULL; 1718 args.align = 32 - 1; 1719 args.flags = UMA_ZFLAG_INTERNAL; 1720 /* The initial zone has no Per cpu queues so it's smaller */ 1721 zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK); 1722 1723 #ifdef UMA_DEBUG 1724 printf("Initializing pcpu cache locks.\n"); 1725 #endif 1726 #ifdef UMA_DEBUG 1727 printf("Creating slab and hash zones.\n"); 1728 #endif 1729 1730 /* 1731 * This is the max number of free list items we'll have with 1732 * offpage slabs. 1733 */ 1734 slabsize = uma_max_ipers * UMA_FRITM_SZ; 1735 slabsize += sizeof(struct uma_slab); 1736 1737 /* Now make a zone for slab headers */ 1738 slabzone = uma_zcreate("UMA Slabs", 1739 slabsize, 1740 NULL, NULL, NULL, NULL, 1741 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1742 1743 /* 1744 * We also create a zone for the bigger slabs with reference 1745 * counts in them, to accomodate UMA_ZONE_REFCNT zones. 1746 */ 1747 slabsize = uma_max_ipers_ref * UMA_FRITMREF_SZ; 1748 slabsize += sizeof(struct uma_slab_refcnt); 1749 slabrefzone = uma_zcreate("UMA RCntSlabs", 1750 slabsize, 1751 NULL, NULL, NULL, NULL, 1752 UMA_ALIGN_PTR, 1753 UMA_ZFLAG_INTERNAL); 1754 1755 hashzone = uma_zcreate("UMA Hash", 1756 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 1757 NULL, NULL, NULL, NULL, 1758 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1759 1760 bucket_init(); 1761 1762 booted = UMA_STARTUP; 1763 1764 #ifdef UMA_DEBUG 1765 printf("UMA startup complete.\n"); 1766 #endif 1767 } 1768 1769 /* see uma.h */ 1770 void 1771 uma_startup2(void) 1772 { 1773 booted = UMA_STARTUP2; 1774 bucket_enable(); 1775 #ifdef UMA_DEBUG 1776 printf("UMA startup2 complete.\n"); 1777 #endif 1778 } 1779 1780 /* 1781 * Initialize our callout handle 1782 * 1783 */ 1784 1785 static void 1786 uma_startup3(void) 1787 { 1788 #ifdef UMA_DEBUG 1789 printf("Starting callout.\n"); 1790 #endif 1791 callout_init(&uma_callout, CALLOUT_MPSAFE); 1792 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 1793 #ifdef UMA_DEBUG 1794 printf("UMA startup3 complete.\n"); 1795 #endif 1796 } 1797 1798 static uma_keg_t 1799 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 1800 int align, u_int32_t flags) 1801 { 1802 struct uma_kctor_args args; 1803 1804 args.size = size; 1805 args.uminit = uminit; 1806 args.fini = fini; 1807 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 1808 args.flags = flags; 1809 args.zone = zone; 1810 return (zone_alloc_item(kegs, &args, M_WAITOK)); 1811 } 1812 1813 /* See uma.h */ 1814 void 1815 uma_set_align(int align) 1816 { 1817 1818 if (align != UMA_ALIGN_CACHE) 1819 uma_align_cache = align; 1820 } 1821 1822 /* See uma.h */ 1823 uma_zone_t 1824 uma_zcreate(char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 1825 uma_init uminit, uma_fini fini, int align, u_int32_t flags) 1826 1827 { 1828 struct uma_zctor_args args; 1829 1830 /* This stuff is essential for the zone ctor */ 1831 args.name = name; 1832 args.size = size; 1833 args.ctor = ctor; 1834 args.dtor = dtor; 1835 args.uminit = uminit; 1836 args.fini = fini; 1837 args.align = align; 1838 args.flags = flags; 1839 args.keg = NULL; 1840 1841 return (zone_alloc_item(zones, &args, M_WAITOK)); 1842 } 1843 1844 /* See uma.h */ 1845 uma_zone_t 1846 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 1847 uma_init zinit, uma_fini zfini, uma_zone_t master) 1848 { 1849 struct uma_zctor_args args; 1850 uma_keg_t keg; 1851 1852 keg = zone_first_keg(master); 1853 args.name = name; 1854 args.size = keg->uk_size; 1855 args.ctor = ctor; 1856 args.dtor = dtor; 1857 args.uminit = zinit; 1858 args.fini = zfini; 1859 args.align = keg->uk_align; 1860 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 1861 args.keg = keg; 1862 1863 /* XXX Attaches only one keg of potentially many. */ 1864 return (zone_alloc_item(zones, &args, M_WAITOK)); 1865 } 1866 1867 static void 1868 zone_lock_pair(uma_zone_t a, uma_zone_t b) 1869 { 1870 if (a < b) { 1871 ZONE_LOCK(a); 1872 mtx_lock_flags(b->uz_lock, MTX_DUPOK); 1873 } else { 1874 ZONE_LOCK(b); 1875 mtx_lock_flags(a->uz_lock, MTX_DUPOK); 1876 } 1877 } 1878 1879 static void 1880 zone_unlock_pair(uma_zone_t a, uma_zone_t b) 1881 { 1882 1883 ZONE_UNLOCK(a); 1884 ZONE_UNLOCK(b); 1885 } 1886 1887 int 1888 uma_zsecond_add(uma_zone_t zone, uma_zone_t master) 1889 { 1890 uma_klink_t klink; 1891 uma_klink_t kl; 1892 int error; 1893 1894 error = 0; 1895 klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO); 1896 1897 zone_lock_pair(zone, master); 1898 /* 1899 * zone must use vtoslab() to resolve objects and must already be 1900 * a secondary. 1901 */ 1902 if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) 1903 != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) { 1904 error = EINVAL; 1905 goto out; 1906 } 1907 /* 1908 * The new master must also use vtoslab(). 1909 */ 1910 if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) { 1911 error = EINVAL; 1912 goto out; 1913 } 1914 /* 1915 * Both must either be refcnt, or not be refcnt. 1916 */ 1917 if ((zone->uz_flags & UMA_ZONE_REFCNT) != 1918 (master->uz_flags & UMA_ZONE_REFCNT)) { 1919 error = EINVAL; 1920 goto out; 1921 } 1922 /* 1923 * The underlying object must be the same size. rsize 1924 * may be different. 1925 */ 1926 if (master->uz_size != zone->uz_size) { 1927 error = E2BIG; 1928 goto out; 1929 } 1930 /* 1931 * Put it at the end of the list. 1932 */ 1933 klink->kl_keg = zone_first_keg(master); 1934 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) { 1935 if (LIST_NEXT(kl, kl_link) == NULL) { 1936 LIST_INSERT_AFTER(kl, klink, kl_link); 1937 break; 1938 } 1939 } 1940 klink = NULL; 1941 zone->uz_flags |= UMA_ZFLAG_MULTI; 1942 zone->uz_slab = zone_fetch_slab_multi; 1943 1944 out: 1945 zone_unlock_pair(zone, master); 1946 if (klink != NULL) 1947 free(klink, M_TEMP); 1948 1949 return (error); 1950 } 1951 1952 1953 /* See uma.h */ 1954 void 1955 uma_zdestroy(uma_zone_t zone) 1956 { 1957 1958 zone_free_item(zones, zone, NULL, SKIP_NONE, ZFREE_STATFREE); 1959 } 1960 1961 /* See uma.h */ 1962 void * 1963 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 1964 { 1965 void *item; 1966 uma_cache_t cache; 1967 uma_bucket_t bucket; 1968 int cpu; 1969 1970 /* This is the fast path allocation */ 1971 #ifdef UMA_DEBUG_ALLOC_1 1972 printf("Allocating one item from %s(%p)\n", zone->uz_name, zone); 1973 #endif 1974 CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread, 1975 zone->uz_name, flags); 1976 1977 if (flags & M_WAITOK) { 1978 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 1979 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 1980 } 1981 1982 /* 1983 * If possible, allocate from the per-CPU cache. There are two 1984 * requirements for safe access to the per-CPU cache: (1) the thread 1985 * accessing the cache must not be preempted or yield during access, 1986 * and (2) the thread must not migrate CPUs without switching which 1987 * cache it accesses. We rely on a critical section to prevent 1988 * preemption and migration. We release the critical section in 1989 * order to acquire the zone mutex if we are unable to allocate from 1990 * the current cache; when we re-acquire the critical section, we 1991 * must detect and handle migration if it has occurred. 1992 */ 1993 zalloc_restart: 1994 critical_enter(); 1995 cpu = curcpu; 1996 cache = &zone->uz_cpu[cpu]; 1997 1998 zalloc_start: 1999 bucket = cache->uc_allocbucket; 2000 2001 if (bucket) { 2002 if (bucket->ub_cnt > 0) { 2003 bucket->ub_cnt--; 2004 item = bucket->ub_bucket[bucket->ub_cnt]; 2005 #ifdef INVARIANTS 2006 bucket->ub_bucket[bucket->ub_cnt] = NULL; 2007 #endif 2008 KASSERT(item != NULL, 2009 ("uma_zalloc: Bucket pointer mangled.")); 2010 cache->uc_allocs++; 2011 critical_exit(); 2012 #ifdef INVARIANTS 2013 ZONE_LOCK(zone); 2014 uma_dbg_alloc(zone, NULL, item); 2015 ZONE_UNLOCK(zone); 2016 #endif 2017 if (zone->uz_ctor != NULL) { 2018 if (zone->uz_ctor(item, zone->uz_size, 2019 udata, flags) != 0) { 2020 zone_free_item(zone, item, udata, 2021 SKIP_DTOR, ZFREE_STATFAIL | 2022 ZFREE_STATFREE); 2023 return (NULL); 2024 } 2025 } 2026 if (flags & M_ZERO) 2027 bzero(item, zone->uz_size); 2028 return (item); 2029 } else if (cache->uc_freebucket) { 2030 /* 2031 * We have run out of items in our allocbucket. 2032 * See if we can switch with our free bucket. 2033 */ 2034 if (cache->uc_freebucket->ub_cnt > 0) { 2035 #ifdef UMA_DEBUG_ALLOC 2036 printf("uma_zalloc: Swapping empty with" 2037 " alloc.\n"); 2038 #endif 2039 bucket = cache->uc_freebucket; 2040 cache->uc_freebucket = cache->uc_allocbucket; 2041 cache->uc_allocbucket = bucket; 2042 2043 goto zalloc_start; 2044 } 2045 } 2046 } 2047 /* 2048 * Attempt to retrieve the item from the per-CPU cache has failed, so 2049 * we must go back to the zone. This requires the zone lock, so we 2050 * must drop the critical section, then re-acquire it when we go back 2051 * to the cache. Since the critical section is released, we may be 2052 * preempted or migrate. As such, make sure not to maintain any 2053 * thread-local state specific to the cache from prior to releasing 2054 * the critical section. 2055 */ 2056 critical_exit(); 2057 ZONE_LOCK(zone); 2058 critical_enter(); 2059 cpu = curcpu; 2060 cache = &zone->uz_cpu[cpu]; 2061 bucket = cache->uc_allocbucket; 2062 if (bucket != NULL) { 2063 if (bucket->ub_cnt > 0) { 2064 ZONE_UNLOCK(zone); 2065 goto zalloc_start; 2066 } 2067 bucket = cache->uc_freebucket; 2068 if (bucket != NULL && bucket->ub_cnt > 0) { 2069 ZONE_UNLOCK(zone); 2070 goto zalloc_start; 2071 } 2072 } 2073 2074 /* Since we have locked the zone we may as well send back our stats */ 2075 zone->uz_allocs += cache->uc_allocs; 2076 cache->uc_allocs = 0; 2077 zone->uz_frees += cache->uc_frees; 2078 cache->uc_frees = 0; 2079 2080 /* Our old one is now a free bucket */ 2081 if (cache->uc_allocbucket) { 2082 KASSERT(cache->uc_allocbucket->ub_cnt == 0, 2083 ("uma_zalloc_arg: Freeing a non free bucket.")); 2084 LIST_INSERT_HEAD(&zone->uz_free_bucket, 2085 cache->uc_allocbucket, ub_link); 2086 cache->uc_allocbucket = NULL; 2087 } 2088 2089 /* Check the free list for a new alloc bucket */ 2090 if ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) { 2091 KASSERT(bucket->ub_cnt != 0, 2092 ("uma_zalloc_arg: Returning an empty bucket.")); 2093 2094 LIST_REMOVE(bucket, ub_link); 2095 cache->uc_allocbucket = bucket; 2096 ZONE_UNLOCK(zone); 2097 goto zalloc_start; 2098 } 2099 /* We are no longer associated with this CPU. */ 2100 critical_exit(); 2101 2102 /* Bump up our uz_count so we get here less */ 2103 if (zone->uz_count < BUCKET_MAX) 2104 zone->uz_count++; 2105 2106 /* 2107 * Now lets just fill a bucket and put it on the free list. If that 2108 * works we'll restart the allocation from the begining. 2109 */ 2110 if (zone_alloc_bucket(zone, flags)) { 2111 ZONE_UNLOCK(zone); 2112 goto zalloc_restart; 2113 } 2114 ZONE_UNLOCK(zone); 2115 /* 2116 * We may not be able to get a bucket so return an actual item. 2117 */ 2118 #ifdef UMA_DEBUG 2119 printf("uma_zalloc_arg: Bucketzone returned NULL\n"); 2120 #endif 2121 2122 item = zone_alloc_item(zone, udata, flags); 2123 return (item); 2124 } 2125 2126 static uma_slab_t 2127 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags) 2128 { 2129 uma_slab_t slab; 2130 2131 mtx_assert(&keg->uk_lock, MA_OWNED); 2132 slab = NULL; 2133 2134 for (;;) { 2135 /* 2136 * Find a slab with some space. Prefer slabs that are partially 2137 * used over those that are totally full. This helps to reduce 2138 * fragmentation. 2139 */ 2140 if (keg->uk_free != 0) { 2141 if (!LIST_EMPTY(&keg->uk_part_slab)) { 2142 slab = LIST_FIRST(&keg->uk_part_slab); 2143 } else { 2144 slab = LIST_FIRST(&keg->uk_free_slab); 2145 LIST_REMOVE(slab, us_link); 2146 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, 2147 us_link); 2148 } 2149 MPASS(slab->us_keg == keg); 2150 return (slab); 2151 } 2152 2153 /* 2154 * M_NOVM means don't ask at all! 2155 */ 2156 if (flags & M_NOVM) 2157 break; 2158 2159 if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) { 2160 keg->uk_flags |= UMA_ZFLAG_FULL; 2161 /* 2162 * If this is not a multi-zone, set the FULL bit. 2163 * Otherwise slab_multi() takes care of it. 2164 */ 2165 if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) 2166 zone->uz_flags |= UMA_ZFLAG_FULL; 2167 if (flags & M_NOWAIT) 2168 break; 2169 msleep(keg, &keg->uk_lock, PVM, "keglimit", 0); 2170 continue; 2171 } 2172 keg->uk_recurse++; 2173 slab = keg_alloc_slab(keg, zone, flags); 2174 keg->uk_recurse--; 2175 /* 2176 * If we got a slab here it's safe to mark it partially used 2177 * and return. We assume that the caller is going to remove 2178 * at least one item. 2179 */ 2180 if (slab) { 2181 MPASS(slab->us_keg == keg); 2182 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2183 return (slab); 2184 } 2185 /* 2186 * We might not have been able to get a slab but another cpu 2187 * could have while we were unlocked. Check again before we 2188 * fail. 2189 */ 2190 flags |= M_NOVM; 2191 } 2192 return (slab); 2193 } 2194 2195 static inline void 2196 zone_relock(uma_zone_t zone, uma_keg_t keg) 2197 { 2198 if (zone->uz_lock != &keg->uk_lock) { 2199 KEG_UNLOCK(keg); 2200 ZONE_LOCK(zone); 2201 } 2202 } 2203 2204 static inline void 2205 keg_relock(uma_keg_t keg, uma_zone_t zone) 2206 { 2207 if (zone->uz_lock != &keg->uk_lock) { 2208 ZONE_UNLOCK(zone); 2209 KEG_LOCK(keg); 2210 } 2211 } 2212 2213 static uma_slab_t 2214 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags) 2215 { 2216 uma_slab_t slab; 2217 2218 if (keg == NULL) 2219 keg = zone_first_keg(zone); 2220 /* 2221 * This is to prevent us from recursively trying to allocate 2222 * buckets. The problem is that if an allocation forces us to 2223 * grab a new bucket we will call page_alloc, which will go off 2224 * and cause the vm to allocate vm_map_entries. If we need new 2225 * buckets there too we will recurse in kmem_alloc and bad 2226 * things happen. So instead we return a NULL bucket, and make 2227 * the code that allocates buckets smart enough to deal with it 2228 */ 2229 if (keg->uk_flags & UMA_ZFLAG_BUCKET && keg->uk_recurse != 0) 2230 return (NULL); 2231 2232 for (;;) { 2233 slab = keg_fetch_slab(keg, zone, flags); 2234 if (slab) 2235 return (slab); 2236 if (flags & (M_NOWAIT | M_NOVM)) 2237 break; 2238 } 2239 return (NULL); 2240 } 2241 2242 /* 2243 * uma_zone_fetch_slab_multi: Fetches a slab from one available keg. Returns 2244 * with the keg locked. Caller must call zone_relock() afterwards if the 2245 * zone lock is required. On NULL the zone lock is held. 2246 * 2247 * The last pointer is used to seed the search. It is not required. 2248 */ 2249 static uma_slab_t 2250 zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags) 2251 { 2252 uma_klink_t klink; 2253 uma_slab_t slab; 2254 uma_keg_t keg; 2255 int flags; 2256 int empty; 2257 int full; 2258 2259 /* 2260 * Don't wait on the first pass. This will skip limit tests 2261 * as well. We don't want to block if we can find a provider 2262 * without blocking. 2263 */ 2264 flags = (rflags & ~M_WAITOK) | M_NOWAIT; 2265 /* 2266 * Use the last slab allocated as a hint for where to start 2267 * the search. 2268 */ 2269 if (last) { 2270 slab = keg_fetch_slab(last, zone, flags); 2271 if (slab) 2272 return (slab); 2273 zone_relock(zone, last); 2274 last = NULL; 2275 } 2276 /* 2277 * Loop until we have a slab incase of transient failures 2278 * while M_WAITOK is specified. I'm not sure this is 100% 2279 * required but we've done it for so long now. 2280 */ 2281 for (;;) { 2282 empty = 0; 2283 full = 0; 2284 /* 2285 * Search the available kegs for slabs. Be careful to hold the 2286 * correct lock while calling into the keg layer. 2287 */ 2288 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) { 2289 keg = klink->kl_keg; 2290 keg_relock(keg, zone); 2291 if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) { 2292 slab = keg_fetch_slab(keg, zone, flags); 2293 if (slab) 2294 return (slab); 2295 } 2296 if (keg->uk_flags & UMA_ZFLAG_FULL) 2297 full++; 2298 else 2299 empty++; 2300 zone_relock(zone, keg); 2301 } 2302 if (rflags & (M_NOWAIT | M_NOVM)) 2303 break; 2304 flags = rflags; 2305 /* 2306 * All kegs are full. XXX We can't atomically check all kegs 2307 * and sleep so just sleep for a short period and retry. 2308 */ 2309 if (full && !empty) { 2310 zone->uz_flags |= UMA_ZFLAG_FULL; 2311 zone->uz_sleeps++; 2312 msleep(zone, zone->uz_lock, PVM, "zonelimit", hz/100); 2313 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2314 continue; 2315 } 2316 } 2317 return (NULL); 2318 } 2319 2320 static void * 2321 slab_alloc_item(uma_zone_t zone, uma_slab_t slab) 2322 { 2323 uma_keg_t keg; 2324 uma_slabrefcnt_t slabref; 2325 void *item; 2326 u_int8_t freei; 2327 2328 keg = slab->us_keg; 2329 mtx_assert(&keg->uk_lock, MA_OWNED); 2330 2331 freei = slab->us_firstfree; 2332 if (keg->uk_flags & UMA_ZONE_REFCNT) { 2333 slabref = (uma_slabrefcnt_t)slab; 2334 slab->us_firstfree = slabref->us_freelist[freei].us_item; 2335 } else { 2336 slab->us_firstfree = slab->us_freelist[freei].us_item; 2337 } 2338 item = slab->us_data + (keg->uk_rsize * freei); 2339 2340 slab->us_freecount--; 2341 keg->uk_free--; 2342 #ifdef INVARIANTS 2343 uma_dbg_alloc(zone, slab, item); 2344 #endif 2345 /* Move this slab to the full list */ 2346 if (slab->us_freecount == 0) { 2347 LIST_REMOVE(slab, us_link); 2348 LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link); 2349 } 2350 2351 return (item); 2352 } 2353 2354 static int 2355 zone_alloc_bucket(uma_zone_t zone, int flags) 2356 { 2357 uma_bucket_t bucket; 2358 uma_slab_t slab; 2359 uma_keg_t keg; 2360 int16_t saved; 2361 int max, origflags = flags; 2362 2363 /* 2364 * Try this zone's free list first so we don't allocate extra buckets. 2365 */ 2366 if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) { 2367 KASSERT(bucket->ub_cnt == 0, 2368 ("zone_alloc_bucket: Bucket on free list is not empty.")); 2369 LIST_REMOVE(bucket, ub_link); 2370 } else { 2371 int bflags; 2372 2373 bflags = (flags & ~M_ZERO); 2374 if (zone->uz_flags & UMA_ZFLAG_CACHEONLY) 2375 bflags |= M_NOVM; 2376 2377 ZONE_UNLOCK(zone); 2378 bucket = bucket_alloc(zone->uz_count, bflags); 2379 ZONE_LOCK(zone); 2380 } 2381 2382 if (bucket == NULL) { 2383 return (0); 2384 } 2385 2386 #ifdef SMP 2387 /* 2388 * This code is here to limit the number of simultaneous bucket fills 2389 * for any given zone to the number of per cpu caches in this zone. This 2390 * is done so that we don't allocate more memory than we really need. 2391 */ 2392 if (zone->uz_fills >= mp_ncpus) 2393 goto done; 2394 2395 #endif 2396 zone->uz_fills++; 2397 2398 max = MIN(bucket->ub_entries, zone->uz_count); 2399 /* Try to keep the buckets totally full */ 2400 saved = bucket->ub_cnt; 2401 slab = NULL; 2402 keg = NULL; 2403 while (bucket->ub_cnt < max && 2404 (slab = zone->uz_slab(zone, keg, flags)) != NULL) { 2405 keg = slab->us_keg; 2406 while (slab->us_freecount && bucket->ub_cnt < max) { 2407 bucket->ub_bucket[bucket->ub_cnt++] = 2408 slab_alloc_item(zone, slab); 2409 } 2410 2411 /* Don't block on the next fill */ 2412 flags |= M_NOWAIT; 2413 } 2414 if (slab) 2415 zone_relock(zone, keg); 2416 2417 /* 2418 * We unlock here because we need to call the zone's init. 2419 * It should be safe to unlock because the slab dealt with 2420 * above is already on the appropriate list within the keg 2421 * and the bucket we filled is not yet on any list, so we 2422 * own it. 2423 */ 2424 if (zone->uz_init != NULL) { 2425 int i; 2426 2427 ZONE_UNLOCK(zone); 2428 for (i = saved; i < bucket->ub_cnt; i++) 2429 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 2430 origflags) != 0) 2431 break; 2432 /* 2433 * If we couldn't initialize the whole bucket, put the 2434 * rest back onto the freelist. 2435 */ 2436 if (i != bucket->ub_cnt) { 2437 int j; 2438 2439 for (j = i; j < bucket->ub_cnt; j++) { 2440 zone_free_item(zone, bucket->ub_bucket[j], 2441 NULL, SKIP_FINI, 0); 2442 #ifdef INVARIANTS 2443 bucket->ub_bucket[j] = NULL; 2444 #endif 2445 } 2446 bucket->ub_cnt = i; 2447 } 2448 ZONE_LOCK(zone); 2449 } 2450 2451 zone->uz_fills--; 2452 if (bucket->ub_cnt != 0) { 2453 LIST_INSERT_HEAD(&zone->uz_full_bucket, 2454 bucket, ub_link); 2455 return (1); 2456 } 2457 #ifdef SMP 2458 done: 2459 #endif 2460 bucket_free(bucket); 2461 2462 return (0); 2463 } 2464 /* 2465 * Allocates an item for an internal zone 2466 * 2467 * Arguments 2468 * zone The zone to alloc for. 2469 * udata The data to be passed to the constructor. 2470 * flags M_WAITOK, M_NOWAIT, M_ZERO. 2471 * 2472 * Returns 2473 * NULL if there is no memory and M_NOWAIT is set 2474 * An item if successful 2475 */ 2476 2477 static void * 2478 zone_alloc_item(uma_zone_t zone, void *udata, int flags) 2479 { 2480 uma_slab_t slab; 2481 void *item; 2482 2483 item = NULL; 2484 2485 #ifdef UMA_DEBUG_ALLOC 2486 printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone); 2487 #endif 2488 ZONE_LOCK(zone); 2489 2490 slab = zone->uz_slab(zone, NULL, flags); 2491 if (slab == NULL) { 2492 zone->uz_fails++; 2493 ZONE_UNLOCK(zone); 2494 return (NULL); 2495 } 2496 2497 item = slab_alloc_item(zone, slab); 2498 2499 zone_relock(zone, slab->us_keg); 2500 zone->uz_allocs++; 2501 ZONE_UNLOCK(zone); 2502 2503 /* 2504 * We have to call both the zone's init (not the keg's init) 2505 * and the zone's ctor. This is because the item is going from 2506 * a keg slab directly to the user, and the user is expecting it 2507 * to be both zone-init'd as well as zone-ctor'd. 2508 */ 2509 if (zone->uz_init != NULL) { 2510 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 2511 zone_free_item(zone, item, udata, SKIP_FINI, 2512 ZFREE_STATFAIL | ZFREE_STATFREE); 2513 return (NULL); 2514 } 2515 } 2516 if (zone->uz_ctor != NULL) { 2517 if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2518 zone_free_item(zone, item, udata, SKIP_DTOR, 2519 ZFREE_STATFAIL | ZFREE_STATFREE); 2520 return (NULL); 2521 } 2522 } 2523 if (flags & M_ZERO) 2524 bzero(item, zone->uz_size); 2525 2526 return (item); 2527 } 2528 2529 /* See uma.h */ 2530 void 2531 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 2532 { 2533 uma_cache_t cache; 2534 uma_bucket_t bucket; 2535 int bflags; 2536 int cpu; 2537 2538 #ifdef UMA_DEBUG_ALLOC_1 2539 printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone); 2540 #endif 2541 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 2542 zone->uz_name); 2543 2544 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 2545 if (item == NULL) 2546 return; 2547 2548 if (zone->uz_dtor) 2549 zone->uz_dtor(item, zone->uz_size, udata); 2550 2551 #ifdef INVARIANTS 2552 ZONE_LOCK(zone); 2553 if (zone->uz_flags & UMA_ZONE_MALLOC) 2554 uma_dbg_free(zone, udata, item); 2555 else 2556 uma_dbg_free(zone, NULL, item); 2557 ZONE_UNLOCK(zone); 2558 #endif 2559 /* 2560 * The race here is acceptable. If we miss it we'll just have to wait 2561 * a little longer for the limits to be reset. 2562 */ 2563 if (zone->uz_flags & UMA_ZFLAG_FULL) 2564 goto zfree_internal; 2565 2566 /* 2567 * If possible, free to the per-CPU cache. There are two 2568 * requirements for safe access to the per-CPU cache: (1) the thread 2569 * accessing the cache must not be preempted or yield during access, 2570 * and (2) the thread must not migrate CPUs without switching which 2571 * cache it accesses. We rely on a critical section to prevent 2572 * preemption and migration. We release the critical section in 2573 * order to acquire the zone mutex if we are unable to free to the 2574 * current cache; when we re-acquire the critical section, we must 2575 * detect and handle migration if it has occurred. 2576 */ 2577 zfree_restart: 2578 critical_enter(); 2579 cpu = curcpu; 2580 cache = &zone->uz_cpu[cpu]; 2581 2582 zfree_start: 2583 bucket = cache->uc_freebucket; 2584 2585 if (bucket) { 2586 /* 2587 * Do we have room in our bucket? It is OK for this uz count 2588 * check to be slightly out of sync. 2589 */ 2590 2591 if (bucket->ub_cnt < bucket->ub_entries) { 2592 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 2593 ("uma_zfree: Freeing to non free bucket index.")); 2594 bucket->ub_bucket[bucket->ub_cnt] = item; 2595 bucket->ub_cnt++; 2596 cache->uc_frees++; 2597 critical_exit(); 2598 return; 2599 } else if (cache->uc_allocbucket) { 2600 #ifdef UMA_DEBUG_ALLOC 2601 printf("uma_zfree: Swapping buckets.\n"); 2602 #endif 2603 /* 2604 * We have run out of space in our freebucket. 2605 * See if we can switch with our alloc bucket. 2606 */ 2607 if (cache->uc_allocbucket->ub_cnt < 2608 cache->uc_freebucket->ub_cnt) { 2609 bucket = cache->uc_freebucket; 2610 cache->uc_freebucket = cache->uc_allocbucket; 2611 cache->uc_allocbucket = bucket; 2612 goto zfree_start; 2613 } 2614 } 2615 } 2616 /* 2617 * We can get here for two reasons: 2618 * 2619 * 1) The buckets are NULL 2620 * 2) The alloc and free buckets are both somewhat full. 2621 * 2622 * We must go back the zone, which requires acquiring the zone lock, 2623 * which in turn means we must release and re-acquire the critical 2624 * section. Since the critical section is released, we may be 2625 * preempted or migrate. As such, make sure not to maintain any 2626 * thread-local state specific to the cache from prior to releasing 2627 * the critical section. 2628 */ 2629 critical_exit(); 2630 ZONE_LOCK(zone); 2631 critical_enter(); 2632 cpu = curcpu; 2633 cache = &zone->uz_cpu[cpu]; 2634 if (cache->uc_freebucket != NULL) { 2635 if (cache->uc_freebucket->ub_cnt < 2636 cache->uc_freebucket->ub_entries) { 2637 ZONE_UNLOCK(zone); 2638 goto zfree_start; 2639 } 2640 if (cache->uc_allocbucket != NULL && 2641 (cache->uc_allocbucket->ub_cnt < 2642 cache->uc_freebucket->ub_cnt)) { 2643 ZONE_UNLOCK(zone); 2644 goto zfree_start; 2645 } 2646 } 2647 2648 /* Since we have locked the zone we may as well send back our stats */ 2649 zone->uz_allocs += cache->uc_allocs; 2650 cache->uc_allocs = 0; 2651 zone->uz_frees += cache->uc_frees; 2652 cache->uc_frees = 0; 2653 2654 bucket = cache->uc_freebucket; 2655 cache->uc_freebucket = NULL; 2656 2657 /* Can we throw this on the zone full list? */ 2658 if (bucket != NULL) { 2659 #ifdef UMA_DEBUG_ALLOC 2660 printf("uma_zfree: Putting old bucket on the free list.\n"); 2661 #endif 2662 /* ub_cnt is pointing to the last free item */ 2663 KASSERT(bucket->ub_cnt != 0, 2664 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n")); 2665 LIST_INSERT_HEAD(&zone->uz_full_bucket, 2666 bucket, ub_link); 2667 } 2668 if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) { 2669 LIST_REMOVE(bucket, ub_link); 2670 ZONE_UNLOCK(zone); 2671 cache->uc_freebucket = bucket; 2672 goto zfree_start; 2673 } 2674 /* We are no longer associated with this CPU. */ 2675 critical_exit(); 2676 2677 /* And the zone.. */ 2678 ZONE_UNLOCK(zone); 2679 2680 #ifdef UMA_DEBUG_ALLOC 2681 printf("uma_zfree: Allocating new free bucket.\n"); 2682 #endif 2683 bflags = M_NOWAIT; 2684 2685 if (zone->uz_flags & UMA_ZFLAG_CACHEONLY) 2686 bflags |= M_NOVM; 2687 bucket = bucket_alloc(zone->uz_count, bflags); 2688 if (bucket) { 2689 ZONE_LOCK(zone); 2690 LIST_INSERT_HEAD(&zone->uz_free_bucket, 2691 bucket, ub_link); 2692 ZONE_UNLOCK(zone); 2693 goto zfree_restart; 2694 } 2695 2696 /* 2697 * If nothing else caught this, we'll just do an internal free. 2698 */ 2699 zfree_internal: 2700 zone_free_item(zone, item, udata, SKIP_DTOR, ZFREE_STATFREE); 2701 2702 return; 2703 } 2704 2705 /* 2706 * Frees an item to an INTERNAL zone or allocates a free bucket 2707 * 2708 * Arguments: 2709 * zone The zone to free to 2710 * item The item we're freeing 2711 * udata User supplied data for the dtor 2712 * skip Skip dtors and finis 2713 */ 2714 static void 2715 zone_free_item(uma_zone_t zone, void *item, void *udata, 2716 enum zfreeskip skip, int flags) 2717 { 2718 uma_slab_t slab; 2719 uma_slabrefcnt_t slabref; 2720 uma_keg_t keg; 2721 u_int8_t *mem; 2722 u_int8_t freei; 2723 int clearfull; 2724 2725 if (skip < SKIP_DTOR && zone->uz_dtor) 2726 zone->uz_dtor(item, zone->uz_size, udata); 2727 2728 if (skip < SKIP_FINI && zone->uz_fini) 2729 zone->uz_fini(item, zone->uz_size); 2730 2731 ZONE_LOCK(zone); 2732 2733 if (flags & ZFREE_STATFAIL) 2734 zone->uz_fails++; 2735 if (flags & ZFREE_STATFREE) 2736 zone->uz_frees++; 2737 2738 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) { 2739 mem = (u_int8_t *)((unsigned long)item & (~UMA_SLAB_MASK)); 2740 keg = zone_first_keg(zone); /* Must only be one. */ 2741 if (zone->uz_flags & UMA_ZONE_HASH) { 2742 slab = hash_sfind(&keg->uk_hash, mem); 2743 } else { 2744 mem += keg->uk_pgoff; 2745 slab = (uma_slab_t)mem; 2746 } 2747 } else { 2748 /* This prevents redundant lookups via free(). */ 2749 if ((zone->uz_flags & UMA_ZONE_MALLOC) && udata != NULL) 2750 slab = (uma_slab_t)udata; 2751 else 2752 slab = vtoslab((vm_offset_t)item); 2753 keg = slab->us_keg; 2754 keg_relock(keg, zone); 2755 } 2756 MPASS(keg == slab->us_keg); 2757 2758 /* Do we need to remove from any lists? */ 2759 if (slab->us_freecount+1 == keg->uk_ipers) { 2760 LIST_REMOVE(slab, us_link); 2761 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 2762 } else if (slab->us_freecount == 0) { 2763 LIST_REMOVE(slab, us_link); 2764 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2765 } 2766 2767 /* Slab management stuff */ 2768 freei = ((unsigned long)item - (unsigned long)slab->us_data) 2769 / keg->uk_rsize; 2770 2771 #ifdef INVARIANTS 2772 if (!skip) 2773 uma_dbg_free(zone, slab, item); 2774 #endif 2775 2776 if (keg->uk_flags & UMA_ZONE_REFCNT) { 2777 slabref = (uma_slabrefcnt_t)slab; 2778 slabref->us_freelist[freei].us_item = slab->us_firstfree; 2779 } else { 2780 slab->us_freelist[freei].us_item = slab->us_firstfree; 2781 } 2782 slab->us_firstfree = freei; 2783 slab->us_freecount++; 2784 2785 /* Zone statistics */ 2786 keg->uk_free++; 2787 2788 clearfull = 0; 2789 if (keg->uk_flags & UMA_ZFLAG_FULL) { 2790 if (keg->uk_pages < keg->uk_maxpages) { 2791 keg->uk_flags &= ~UMA_ZFLAG_FULL; 2792 clearfull = 1; 2793 } 2794 2795 /* 2796 * We can handle one more allocation. Since we're clearing ZFLAG_FULL, 2797 * wake up all procs blocked on pages. This should be uncommon, so 2798 * keeping this simple for now (rather than adding count of blocked 2799 * threads etc). 2800 */ 2801 wakeup(keg); 2802 } 2803 if (clearfull) { 2804 zone_relock(zone, keg); 2805 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2806 wakeup(zone); 2807 ZONE_UNLOCK(zone); 2808 } else 2809 KEG_UNLOCK(keg); 2810 } 2811 2812 /* See uma.h */ 2813 int 2814 uma_zone_set_max(uma_zone_t zone, int nitems) 2815 { 2816 uma_keg_t keg; 2817 2818 ZONE_LOCK(zone); 2819 keg = zone_first_keg(zone); 2820 keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera; 2821 if (keg->uk_maxpages * keg->uk_ipers < nitems) 2822 keg->uk_maxpages += keg->uk_ppera; 2823 nitems = keg->uk_maxpages * keg->uk_ipers; 2824 ZONE_UNLOCK(zone); 2825 2826 return (nitems); 2827 } 2828 2829 /* See uma.h */ 2830 int 2831 uma_zone_get_max(uma_zone_t zone) 2832 { 2833 int nitems; 2834 uma_keg_t keg; 2835 2836 ZONE_LOCK(zone); 2837 keg = zone_first_keg(zone); 2838 nitems = keg->uk_maxpages * keg->uk_ipers; 2839 ZONE_UNLOCK(zone); 2840 2841 return (nitems); 2842 } 2843 2844 /* See uma.h */ 2845 int 2846 uma_zone_get_cur(uma_zone_t zone) 2847 { 2848 int64_t nitems; 2849 u_int i; 2850 2851 ZONE_LOCK(zone); 2852 nitems = zone->uz_allocs - zone->uz_frees; 2853 CPU_FOREACH(i) { 2854 /* 2855 * See the comment in sysctl_vm_zone_stats() regarding the 2856 * safety of accessing the per-cpu caches. With the zone lock 2857 * held, it is safe, but can potentially result in stale data. 2858 */ 2859 nitems += zone->uz_cpu[i].uc_allocs - 2860 zone->uz_cpu[i].uc_frees; 2861 } 2862 ZONE_UNLOCK(zone); 2863 2864 return (nitems < 0 ? 0 : nitems); 2865 } 2866 2867 /* See uma.h */ 2868 void 2869 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 2870 { 2871 uma_keg_t keg; 2872 2873 ZONE_LOCK(zone); 2874 keg = zone_first_keg(zone); 2875 KASSERT(keg->uk_pages == 0, 2876 ("uma_zone_set_init on non-empty keg")); 2877 keg->uk_init = uminit; 2878 ZONE_UNLOCK(zone); 2879 } 2880 2881 /* See uma.h */ 2882 void 2883 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 2884 { 2885 uma_keg_t keg; 2886 2887 ZONE_LOCK(zone); 2888 keg = zone_first_keg(zone); 2889 KASSERT(keg->uk_pages == 0, 2890 ("uma_zone_set_fini on non-empty keg")); 2891 keg->uk_fini = fini; 2892 ZONE_UNLOCK(zone); 2893 } 2894 2895 /* See uma.h */ 2896 void 2897 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 2898 { 2899 ZONE_LOCK(zone); 2900 KASSERT(zone_first_keg(zone)->uk_pages == 0, 2901 ("uma_zone_set_zinit on non-empty keg")); 2902 zone->uz_init = zinit; 2903 ZONE_UNLOCK(zone); 2904 } 2905 2906 /* See uma.h */ 2907 void 2908 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 2909 { 2910 ZONE_LOCK(zone); 2911 KASSERT(zone_first_keg(zone)->uk_pages == 0, 2912 ("uma_zone_set_zfini on non-empty keg")); 2913 zone->uz_fini = zfini; 2914 ZONE_UNLOCK(zone); 2915 } 2916 2917 /* See uma.h */ 2918 /* XXX uk_freef is not actually used with the zone locked */ 2919 void 2920 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 2921 { 2922 2923 ZONE_LOCK(zone); 2924 zone_first_keg(zone)->uk_freef = freef; 2925 ZONE_UNLOCK(zone); 2926 } 2927 2928 /* See uma.h */ 2929 /* XXX uk_allocf is not actually used with the zone locked */ 2930 void 2931 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 2932 { 2933 uma_keg_t keg; 2934 2935 ZONE_LOCK(zone); 2936 keg = zone_first_keg(zone); 2937 keg->uk_flags |= UMA_ZFLAG_PRIVALLOC; 2938 keg->uk_allocf = allocf; 2939 ZONE_UNLOCK(zone); 2940 } 2941 2942 /* See uma.h */ 2943 int 2944 uma_zone_set_obj(uma_zone_t zone, struct vm_object *obj, int count) 2945 { 2946 uma_keg_t keg; 2947 vm_offset_t kva; 2948 int pages; 2949 2950 keg = zone_first_keg(zone); 2951 pages = count / keg->uk_ipers; 2952 2953 if (pages * keg->uk_ipers < count) 2954 pages++; 2955 2956 kva = kmem_alloc_nofault(kernel_map, pages * UMA_SLAB_SIZE); 2957 2958 if (kva == 0) 2959 return (0); 2960 if (obj == NULL) 2961 obj = vm_object_allocate(OBJT_PHYS, pages); 2962 else { 2963 VM_OBJECT_LOCK_INIT(obj, "uma object"); 2964 _vm_object_allocate(OBJT_PHYS, pages, obj); 2965 } 2966 ZONE_LOCK(zone); 2967 keg->uk_kva = kva; 2968 keg->uk_obj = obj; 2969 keg->uk_maxpages = pages; 2970 keg->uk_allocf = obj_alloc; 2971 keg->uk_flags |= UMA_ZONE_NOFREE | UMA_ZFLAG_PRIVALLOC; 2972 ZONE_UNLOCK(zone); 2973 return (1); 2974 } 2975 2976 /* See uma.h */ 2977 void 2978 uma_prealloc(uma_zone_t zone, int items) 2979 { 2980 int slabs; 2981 uma_slab_t slab; 2982 uma_keg_t keg; 2983 2984 keg = zone_first_keg(zone); 2985 ZONE_LOCK(zone); 2986 slabs = items / keg->uk_ipers; 2987 if (slabs * keg->uk_ipers < items) 2988 slabs++; 2989 while (slabs > 0) { 2990 slab = keg_alloc_slab(keg, zone, M_WAITOK); 2991 if (slab == NULL) 2992 break; 2993 MPASS(slab->us_keg == keg); 2994 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 2995 slabs--; 2996 } 2997 ZONE_UNLOCK(zone); 2998 } 2999 3000 /* See uma.h */ 3001 u_int32_t * 3002 uma_find_refcnt(uma_zone_t zone, void *item) 3003 { 3004 uma_slabrefcnt_t slabref; 3005 uma_keg_t keg; 3006 u_int32_t *refcnt; 3007 int idx; 3008 3009 slabref = (uma_slabrefcnt_t)vtoslab((vm_offset_t)item & 3010 (~UMA_SLAB_MASK)); 3011 keg = slabref->us_keg; 3012 KASSERT(slabref != NULL && slabref->us_keg->uk_flags & UMA_ZONE_REFCNT, 3013 ("uma_find_refcnt(): zone possibly not UMA_ZONE_REFCNT")); 3014 idx = ((unsigned long)item - (unsigned long)slabref->us_data) 3015 / keg->uk_rsize; 3016 refcnt = &slabref->us_freelist[idx].us_refcnt; 3017 return refcnt; 3018 } 3019 3020 /* See uma.h */ 3021 void 3022 uma_reclaim(void) 3023 { 3024 #ifdef UMA_DEBUG 3025 printf("UMA: vm asked us to release pages!\n"); 3026 #endif 3027 bucket_enable(); 3028 zone_foreach(zone_drain); 3029 /* 3030 * Some slabs may have been freed but this zone will be visited early 3031 * we visit again so that we can free pages that are empty once other 3032 * zones are drained. We have to do the same for buckets. 3033 */ 3034 zone_drain(slabzone); 3035 zone_drain(slabrefzone); 3036 bucket_zone_drain(); 3037 } 3038 3039 /* See uma.h */ 3040 int 3041 uma_zone_exhausted(uma_zone_t zone) 3042 { 3043 int full; 3044 3045 ZONE_LOCK(zone); 3046 full = (zone->uz_flags & UMA_ZFLAG_FULL); 3047 ZONE_UNLOCK(zone); 3048 return (full); 3049 } 3050 3051 int 3052 uma_zone_exhausted_nolock(uma_zone_t zone) 3053 { 3054 return (zone->uz_flags & UMA_ZFLAG_FULL); 3055 } 3056 3057 void * 3058 uma_large_malloc(int size, int wait) 3059 { 3060 void *mem; 3061 uma_slab_t slab; 3062 u_int8_t flags; 3063 3064 slab = zone_alloc_item(slabzone, NULL, wait); 3065 if (slab == NULL) 3066 return (NULL); 3067 mem = page_alloc(NULL, size, &flags, wait); 3068 if (mem) { 3069 vsetslab((vm_offset_t)mem, slab); 3070 slab->us_data = mem; 3071 slab->us_flags = flags | UMA_SLAB_MALLOC; 3072 slab->us_size = size; 3073 } else { 3074 zone_free_item(slabzone, slab, NULL, SKIP_NONE, 3075 ZFREE_STATFAIL | ZFREE_STATFREE); 3076 } 3077 3078 return (mem); 3079 } 3080 3081 void 3082 uma_large_free(uma_slab_t slab) 3083 { 3084 vsetobj((vm_offset_t)slab->us_data, kmem_object); 3085 page_free(slab->us_data, slab->us_size, slab->us_flags); 3086 zone_free_item(slabzone, slab, NULL, SKIP_NONE, ZFREE_STATFREE); 3087 } 3088 3089 void 3090 uma_print_stats(void) 3091 { 3092 zone_foreach(uma_print_zone); 3093 } 3094 3095 static void 3096 slab_print(uma_slab_t slab) 3097 { 3098 printf("slab: keg %p, data %p, freecount %d, firstfree %d\n", 3099 slab->us_keg, slab->us_data, slab->us_freecount, 3100 slab->us_firstfree); 3101 } 3102 3103 static void 3104 cache_print(uma_cache_t cache) 3105 { 3106 printf("alloc: %p(%d), free: %p(%d)\n", 3107 cache->uc_allocbucket, 3108 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, 3109 cache->uc_freebucket, 3110 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0); 3111 } 3112 3113 static void 3114 uma_print_keg(uma_keg_t keg) 3115 { 3116 uma_slab_t slab; 3117 3118 printf("keg: %s(%p) size %d(%d) flags %d ipers %d ppera %d " 3119 "out %d free %d limit %d\n", 3120 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags, 3121 keg->uk_ipers, keg->uk_ppera, 3122 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free, 3123 (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers); 3124 printf("Part slabs:\n"); 3125 LIST_FOREACH(slab, &keg->uk_part_slab, us_link) 3126 slab_print(slab); 3127 printf("Free slabs:\n"); 3128 LIST_FOREACH(slab, &keg->uk_free_slab, us_link) 3129 slab_print(slab); 3130 printf("Full slabs:\n"); 3131 LIST_FOREACH(slab, &keg->uk_full_slab, us_link) 3132 slab_print(slab); 3133 } 3134 3135 void 3136 uma_print_zone(uma_zone_t zone) 3137 { 3138 uma_cache_t cache; 3139 uma_klink_t kl; 3140 int i; 3141 3142 printf("zone: %s(%p) size %d flags %d\n", 3143 zone->uz_name, zone, zone->uz_size, zone->uz_flags); 3144 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) 3145 uma_print_keg(kl->kl_keg); 3146 CPU_FOREACH(i) { 3147 cache = &zone->uz_cpu[i]; 3148 printf("CPU %d Cache:\n", i); 3149 cache_print(cache); 3150 } 3151 } 3152 3153 #ifdef DDB 3154 /* 3155 * Generate statistics across both the zone and its per-cpu cache's. Return 3156 * desired statistics if the pointer is non-NULL for that statistic. 3157 * 3158 * Note: does not update the zone statistics, as it can't safely clear the 3159 * per-CPU cache statistic. 3160 * 3161 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't 3162 * safe from off-CPU; we should modify the caches to track this information 3163 * directly so that we don't have to. 3164 */ 3165 static void 3166 uma_zone_sumstat(uma_zone_t z, int *cachefreep, u_int64_t *allocsp, 3167 u_int64_t *freesp, u_int64_t *sleepsp) 3168 { 3169 uma_cache_t cache; 3170 u_int64_t allocs, frees, sleeps; 3171 int cachefree, cpu; 3172 3173 allocs = frees = sleeps = 0; 3174 cachefree = 0; 3175 CPU_FOREACH(cpu) { 3176 cache = &z->uz_cpu[cpu]; 3177 if (cache->uc_allocbucket != NULL) 3178 cachefree += cache->uc_allocbucket->ub_cnt; 3179 if (cache->uc_freebucket != NULL) 3180 cachefree += cache->uc_freebucket->ub_cnt; 3181 allocs += cache->uc_allocs; 3182 frees += cache->uc_frees; 3183 } 3184 allocs += z->uz_allocs; 3185 frees += z->uz_frees; 3186 sleeps += z->uz_sleeps; 3187 if (cachefreep != NULL) 3188 *cachefreep = cachefree; 3189 if (allocsp != NULL) 3190 *allocsp = allocs; 3191 if (freesp != NULL) 3192 *freesp = frees; 3193 if (sleepsp != NULL) 3194 *sleepsp = sleeps; 3195 } 3196 #endif /* DDB */ 3197 3198 static int 3199 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 3200 { 3201 uma_keg_t kz; 3202 uma_zone_t z; 3203 int count; 3204 3205 count = 0; 3206 mtx_lock(&uma_mtx); 3207 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3208 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3209 count++; 3210 } 3211 mtx_unlock(&uma_mtx); 3212 return (sysctl_handle_int(oidp, &count, 0, req)); 3213 } 3214 3215 static int 3216 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 3217 { 3218 struct uma_stream_header ush; 3219 struct uma_type_header uth; 3220 struct uma_percpu_stat ups; 3221 uma_bucket_t bucket; 3222 struct sbuf sbuf; 3223 uma_cache_t cache; 3224 uma_klink_t kl; 3225 uma_keg_t kz; 3226 uma_zone_t z; 3227 uma_keg_t k; 3228 int count, error, i; 3229 3230 error = sysctl_wire_old_buffer(req, 0); 3231 if (error != 0) 3232 return (error); 3233 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 3234 3235 count = 0; 3236 mtx_lock(&uma_mtx); 3237 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3238 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3239 count++; 3240 } 3241 3242 /* 3243 * Insert stream header. 3244 */ 3245 bzero(&ush, sizeof(ush)); 3246 ush.ush_version = UMA_STREAM_VERSION; 3247 ush.ush_maxcpus = (mp_maxid + 1); 3248 ush.ush_count = count; 3249 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 3250 3251 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3252 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3253 bzero(&uth, sizeof(uth)); 3254 ZONE_LOCK(z); 3255 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 3256 uth.uth_align = kz->uk_align; 3257 uth.uth_size = kz->uk_size; 3258 uth.uth_rsize = kz->uk_rsize; 3259 LIST_FOREACH(kl, &z->uz_kegs, kl_link) { 3260 k = kl->kl_keg; 3261 uth.uth_maxpages += k->uk_maxpages; 3262 uth.uth_pages += k->uk_pages; 3263 uth.uth_keg_free += k->uk_free; 3264 uth.uth_limit = (k->uk_maxpages / k->uk_ppera) 3265 * k->uk_ipers; 3266 } 3267 3268 /* 3269 * A zone is secondary is it is not the first entry 3270 * on the keg's zone list. 3271 */ 3272 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 3273 (LIST_FIRST(&kz->uk_zones) != z)) 3274 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 3275 3276 LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link) 3277 uth.uth_zone_free += bucket->ub_cnt; 3278 uth.uth_allocs = z->uz_allocs; 3279 uth.uth_frees = z->uz_frees; 3280 uth.uth_fails = z->uz_fails; 3281 uth.uth_sleeps = z->uz_sleeps; 3282 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 3283 /* 3284 * While it is not normally safe to access the cache 3285 * bucket pointers while not on the CPU that owns the 3286 * cache, we only allow the pointers to be exchanged 3287 * without the zone lock held, not invalidated, so 3288 * accept the possible race associated with bucket 3289 * exchange during monitoring. 3290 */ 3291 for (i = 0; i < (mp_maxid + 1); i++) { 3292 bzero(&ups, sizeof(ups)); 3293 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) 3294 goto skip; 3295 if (CPU_ABSENT(i)) 3296 goto skip; 3297 cache = &z->uz_cpu[i]; 3298 if (cache->uc_allocbucket != NULL) 3299 ups.ups_cache_free += 3300 cache->uc_allocbucket->ub_cnt; 3301 if (cache->uc_freebucket != NULL) 3302 ups.ups_cache_free += 3303 cache->uc_freebucket->ub_cnt; 3304 ups.ups_allocs = cache->uc_allocs; 3305 ups.ups_frees = cache->uc_frees; 3306 skip: 3307 (void)sbuf_bcat(&sbuf, &ups, sizeof(ups)); 3308 } 3309 ZONE_UNLOCK(z); 3310 } 3311 } 3312 mtx_unlock(&uma_mtx); 3313 error = sbuf_finish(&sbuf); 3314 sbuf_delete(&sbuf); 3315 return (error); 3316 } 3317 3318 #ifdef DDB 3319 DB_SHOW_COMMAND(uma, db_show_uma) 3320 { 3321 u_int64_t allocs, frees, sleeps; 3322 uma_bucket_t bucket; 3323 uma_keg_t kz; 3324 uma_zone_t z; 3325 int cachefree; 3326 3327 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 3328 "Requests", "Sleeps"); 3329 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3330 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3331 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 3332 allocs = z->uz_allocs; 3333 frees = z->uz_frees; 3334 sleeps = z->uz_sleeps; 3335 cachefree = 0; 3336 } else 3337 uma_zone_sumstat(z, &cachefree, &allocs, 3338 &frees, &sleeps); 3339 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 3340 (LIST_FIRST(&kz->uk_zones) != z))) 3341 cachefree += kz->uk_free; 3342 LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link) 3343 cachefree += bucket->ub_cnt; 3344 db_printf("%18s %8ju %8jd %8d %12ju %8ju\n", z->uz_name, 3345 (uintmax_t)kz->uk_size, 3346 (intmax_t)(allocs - frees), cachefree, 3347 (uintmax_t)allocs, sleeps); 3348 } 3349 } 3350 } 3351 #endif 3352