xref: /freebsd/sys/vm/uma_core.c (revision 8522d140a568be6044aad4288042c72e8d3b72a7)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org>
5  * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
6  * Copyright (c) 2004-2006 Robert N. M. Watson
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice unmodified, this list of conditions, and the following
14  *    disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 /*
32  * uma_core.c  Implementation of the Universal Memory allocator
33  *
34  * This allocator is intended to replace the multitude of similar object caches
35  * in the standard FreeBSD kernel.  The intent is to be flexible as well as
36  * efficient.  A primary design goal is to return unused memory to the rest of
37  * the system.  This will make the system as a whole more flexible due to the
38  * ability to move memory to subsystems which most need it instead of leaving
39  * pools of reserved memory unused.
40  *
41  * The basic ideas stem from similar slab/zone based allocators whose algorithms
42  * are well known.
43  *
44  */
45 
46 /*
47  * TODO:
48  *	- Improve memory usage for large allocations
49  *	- Investigate cache size adjustments
50  */
51 
52 #include <sys/cdefs.h>
53 __FBSDID("$FreeBSD$");
54 
55 #include "opt_ddb.h"
56 #include "opt_param.h"
57 #include "opt_vm.h"
58 
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/bitset.h>
62 #include <sys/domainset.h>
63 #include <sys/eventhandler.h>
64 #include <sys/kernel.h>
65 #include <sys/types.h>
66 #include <sys/limits.h>
67 #include <sys/queue.h>
68 #include <sys/malloc.h>
69 #include <sys/ktr.h>
70 #include <sys/lock.h>
71 #include <sys/sysctl.h>
72 #include <sys/mutex.h>
73 #include <sys/proc.h>
74 #include <sys/random.h>
75 #include <sys/rwlock.h>
76 #include <sys/sbuf.h>
77 #include <sys/sched.h>
78 #include <sys/smp.h>
79 #include <sys/taskqueue.h>
80 #include <sys/vmmeter.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_domainset.h>
84 #include <vm/vm_object.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_pageout.h>
87 #include <vm/vm_param.h>
88 #include <vm/vm_phys.h>
89 #include <vm/vm_pagequeue.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/uma.h>
94 #include <vm/uma_int.h>
95 #include <vm/uma_dbg.h>
96 
97 #include <ddb/ddb.h>
98 
99 #ifdef DEBUG_MEMGUARD
100 #include <vm/memguard.h>
101 #endif
102 
103 /*
104  * This is the zone and keg from which all zones are spawned.
105  */
106 static uma_zone_t kegs;
107 static uma_zone_t zones;
108 
109 /* This is the zone from which all offpage uma_slab_ts are allocated. */
110 static uma_zone_t slabzone;
111 
112 /*
113  * The initial hash tables come out of this zone so they can be allocated
114  * prior to malloc coming up.
115  */
116 static uma_zone_t hashzone;
117 
118 /* The boot-time adjusted value for cache line alignment. */
119 int uma_align_cache = 64 - 1;
120 
121 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
122 
123 /*
124  * Are we allowed to allocate buckets?
125  */
126 static int bucketdisable = 1;
127 
128 /* Linked list of all kegs in the system */
129 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs);
130 
131 /* Linked list of all cache-only zones in the system */
132 static LIST_HEAD(,uma_zone) uma_cachezones =
133     LIST_HEAD_INITIALIZER(uma_cachezones);
134 
135 /* This RW lock protects the keg list */
136 static struct rwlock_padalign __exclusive_cache_line uma_rwlock;
137 
138 /*
139  * Pointer and counter to pool of pages, that is preallocated at
140  * startup to bootstrap UMA.
141  */
142 static char *bootmem;
143 static int boot_pages;
144 
145 static struct sx uma_drain_lock;
146 
147 /* kmem soft limit. */
148 static unsigned long uma_kmem_limit = LONG_MAX;
149 static volatile unsigned long uma_kmem_total;
150 
151 /* Is the VM done starting up? */
152 static enum { BOOT_COLD = 0, BOOT_STRAPPED, BOOT_PAGEALLOC, BOOT_BUCKETS,
153     BOOT_RUNNING } booted = BOOT_COLD;
154 
155 /*
156  * This is the handle used to schedule events that need to happen
157  * outside of the allocation fast path.
158  */
159 static struct callout uma_callout;
160 #define	UMA_TIMEOUT	20		/* Seconds for callout interval. */
161 
162 /*
163  * This structure is passed as the zone ctor arg so that I don't have to create
164  * a special allocation function just for zones.
165  */
166 struct uma_zctor_args {
167 	const char *name;
168 	size_t size;
169 	uma_ctor ctor;
170 	uma_dtor dtor;
171 	uma_init uminit;
172 	uma_fini fini;
173 	uma_import import;
174 	uma_release release;
175 	void *arg;
176 	uma_keg_t keg;
177 	int align;
178 	uint32_t flags;
179 };
180 
181 struct uma_kctor_args {
182 	uma_zone_t zone;
183 	size_t size;
184 	uma_init uminit;
185 	uma_fini fini;
186 	int align;
187 	uint32_t flags;
188 };
189 
190 struct uma_bucket_zone {
191 	uma_zone_t	ubz_zone;
192 	char		*ubz_name;
193 	int		ubz_entries;	/* Number of items it can hold. */
194 	int		ubz_maxsize;	/* Maximum allocation size per-item. */
195 };
196 
197 /*
198  * Compute the actual number of bucket entries to pack them in power
199  * of two sizes for more efficient space utilization.
200  */
201 #define	BUCKET_SIZE(n)						\
202     (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *))
203 
204 #define	BUCKET_MAX	BUCKET_SIZE(256)
205 
206 struct uma_bucket_zone bucket_zones[] = {
207 	{ NULL, "4 Bucket", BUCKET_SIZE(4), 4096 },
208 	{ NULL, "6 Bucket", BUCKET_SIZE(6), 3072 },
209 	{ NULL, "8 Bucket", BUCKET_SIZE(8), 2048 },
210 	{ NULL, "12 Bucket", BUCKET_SIZE(12), 1536 },
211 	{ NULL, "16 Bucket", BUCKET_SIZE(16), 1024 },
212 	{ NULL, "32 Bucket", BUCKET_SIZE(32), 512 },
213 	{ NULL, "64 Bucket", BUCKET_SIZE(64), 256 },
214 	{ NULL, "128 Bucket", BUCKET_SIZE(128), 128 },
215 	{ NULL, "256 Bucket", BUCKET_SIZE(256), 64 },
216 	{ NULL, NULL, 0}
217 };
218 
219 /*
220  * Flags and enumerations to be passed to internal functions.
221  */
222 enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI };
223 
224 #define	UMA_ANYDOMAIN	-1	/* Special value for domain search. */
225 
226 /* Prototypes.. */
227 
228 int	uma_startup_count(int);
229 void	uma_startup(void *, int);
230 void	uma_startup1(void);
231 void	uma_startup2(void);
232 
233 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
234 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
235 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
236 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
237 static void page_free(void *, vm_size_t, uint8_t);
238 static void pcpu_page_free(void *, vm_size_t, uint8_t);
239 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int);
240 static void cache_drain(uma_zone_t);
241 static void bucket_drain(uma_zone_t, uma_bucket_t);
242 static void bucket_cache_drain(uma_zone_t zone);
243 static int keg_ctor(void *, int, void *, int);
244 static void keg_dtor(void *, int, void *);
245 static int zone_ctor(void *, int, void *, int);
246 static void zone_dtor(void *, int, void *);
247 static int zero_init(void *, int, int);
248 static void keg_small_init(uma_keg_t keg);
249 static void keg_large_init(uma_keg_t keg);
250 static void zone_foreach(void (*zfunc)(uma_zone_t));
251 static void zone_timeout(uma_zone_t zone);
252 static int hash_alloc(struct uma_hash *);
253 static int hash_expand(struct uma_hash *, struct uma_hash *);
254 static void hash_free(struct uma_hash *hash);
255 static void uma_timeout(void *);
256 static void uma_startup3(void);
257 static void *zone_alloc_item(uma_zone_t, void *, int, int);
258 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip);
259 static void bucket_enable(void);
260 static void bucket_init(void);
261 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int);
262 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *);
263 static void bucket_zone_drain(void);
264 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int);
265 static uma_slab_t zone_fetch_slab(uma_zone_t, uma_keg_t, int, int);
266 static uma_slab_t zone_fetch_slab_multi(uma_zone_t, uma_keg_t, int, int);
267 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab);
268 static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item);
269 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
270     uma_fini fini, int align, uint32_t flags);
271 static int zone_import(uma_zone_t, void **, int, int, int);
272 static void zone_release(uma_zone_t, void **, int);
273 static void uma_zero_item(void *, uma_zone_t);
274 
275 void uma_print_zone(uma_zone_t);
276 void uma_print_stats(void);
277 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
278 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
279 
280 #ifdef INVARIANTS
281 static bool uma_dbg_kskip(uma_keg_t keg, void *mem);
282 static bool uma_dbg_zskip(uma_zone_t zone, void *mem);
283 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item);
284 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item);
285 
286 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD, 0,
287     "Memory allocation debugging");
288 
289 static u_int dbg_divisor = 1;
290 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor,
291     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0,
292     "Debug & thrash every this item in memory allocator");
293 
294 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER;
295 static counter_u64_t uma_skip_cnt = EARLY_COUNTER;
296 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD,
297     &uma_dbg_cnt, "memory items debugged");
298 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD,
299     &uma_skip_cnt, "memory items skipped, not debugged");
300 #endif
301 
302 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
303 
304 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT,
305     0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
306 
307 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
308     0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
309 
310 static int zone_warnings = 1;
311 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0,
312     "Warn when UMA zones becomes full");
313 
314 /* Adjust bytes under management by UMA. */
315 static inline void
316 uma_total_dec(unsigned long size)
317 {
318 
319 	atomic_subtract_long(&uma_kmem_total, size);
320 }
321 
322 static inline void
323 uma_total_inc(unsigned long size)
324 {
325 
326 	if (atomic_fetchadd_long(&uma_kmem_total, size) > uma_kmem_limit)
327 		uma_reclaim_wakeup();
328 }
329 
330 /*
331  * This routine checks to see whether or not it's safe to enable buckets.
332  */
333 static void
334 bucket_enable(void)
335 {
336 	bucketdisable = vm_page_count_min();
337 }
338 
339 /*
340  * Initialize bucket_zones, the array of zones of buckets of various sizes.
341  *
342  * For each zone, calculate the memory required for each bucket, consisting
343  * of the header and an array of pointers.
344  */
345 static void
346 bucket_init(void)
347 {
348 	struct uma_bucket_zone *ubz;
349 	int size;
350 
351 	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) {
352 		size = roundup(sizeof(struct uma_bucket), sizeof(void *));
353 		size += sizeof(void *) * ubz->ubz_entries;
354 		ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
355 		    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
356 		    UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | UMA_ZONE_NUMA);
357 	}
358 }
359 
360 /*
361  * Given a desired number of entries for a bucket, return the zone from which
362  * to allocate the bucket.
363  */
364 static struct uma_bucket_zone *
365 bucket_zone_lookup(int entries)
366 {
367 	struct uma_bucket_zone *ubz;
368 
369 	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
370 		if (ubz->ubz_entries >= entries)
371 			return (ubz);
372 	ubz--;
373 	return (ubz);
374 }
375 
376 static int
377 bucket_select(int size)
378 {
379 	struct uma_bucket_zone *ubz;
380 
381 	ubz = &bucket_zones[0];
382 	if (size > ubz->ubz_maxsize)
383 		return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1);
384 
385 	for (; ubz->ubz_entries != 0; ubz++)
386 		if (ubz->ubz_maxsize < size)
387 			break;
388 	ubz--;
389 	return (ubz->ubz_entries);
390 }
391 
392 static uma_bucket_t
393 bucket_alloc(uma_zone_t zone, void *udata, int flags)
394 {
395 	struct uma_bucket_zone *ubz;
396 	uma_bucket_t bucket;
397 
398 	/*
399 	 * This is to stop us from allocating per cpu buckets while we're
400 	 * running out of vm.boot_pages.  Otherwise, we would exhaust the
401 	 * boot pages.  This also prevents us from allocating buckets in
402 	 * low memory situations.
403 	 */
404 	if (bucketdisable)
405 		return (NULL);
406 	/*
407 	 * To limit bucket recursion we store the original zone flags
408 	 * in a cookie passed via zalloc_arg/zfree_arg.  This allows the
409 	 * NOVM flag to persist even through deep recursions.  We also
410 	 * store ZFLAG_BUCKET once we have recursed attempting to allocate
411 	 * a bucket for a bucket zone so we do not allow infinite bucket
412 	 * recursion.  This cookie will even persist to frees of unused
413 	 * buckets via the allocation path or bucket allocations in the
414 	 * free path.
415 	 */
416 	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
417 		udata = (void *)(uintptr_t)zone->uz_flags;
418 	else {
419 		if ((uintptr_t)udata & UMA_ZFLAG_BUCKET)
420 			return (NULL);
421 		udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET);
422 	}
423 	if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY)
424 		flags |= M_NOVM;
425 	ubz = bucket_zone_lookup(zone->uz_count);
426 	if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0)
427 		ubz++;
428 	bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags);
429 	if (bucket) {
430 #ifdef INVARIANTS
431 		bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
432 #endif
433 		bucket->ub_cnt = 0;
434 		bucket->ub_entries = ubz->ubz_entries;
435 	}
436 
437 	return (bucket);
438 }
439 
440 static void
441 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata)
442 {
443 	struct uma_bucket_zone *ubz;
444 
445 	KASSERT(bucket->ub_cnt == 0,
446 	    ("bucket_free: Freeing a non free bucket."));
447 	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
448 		udata = (void *)(uintptr_t)zone->uz_flags;
449 	ubz = bucket_zone_lookup(bucket->ub_entries);
450 	uma_zfree_arg(ubz->ubz_zone, bucket, udata);
451 }
452 
453 static void
454 bucket_zone_drain(void)
455 {
456 	struct uma_bucket_zone *ubz;
457 
458 	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
459 		zone_drain(ubz->ubz_zone);
460 }
461 
462 static void
463 zone_log_warning(uma_zone_t zone)
464 {
465 	static const struct timeval warninterval = { 300, 0 };
466 
467 	if (!zone_warnings || zone->uz_warning == NULL)
468 		return;
469 
470 	if (ratecheck(&zone->uz_ratecheck, &warninterval))
471 		printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning);
472 }
473 
474 static inline void
475 zone_maxaction(uma_zone_t zone)
476 {
477 
478 	if (zone->uz_maxaction.ta_func != NULL)
479 		taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction);
480 }
481 
482 static void
483 zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t))
484 {
485 	uma_klink_t klink;
486 
487 	LIST_FOREACH(klink, &zone->uz_kegs, kl_link)
488 		kegfn(klink->kl_keg);
489 }
490 
491 /*
492  * Routine called by timeout which is used to fire off some time interval
493  * based calculations.  (stats, hash size, etc.)
494  *
495  * Arguments:
496  *	arg   Unused
497  *
498  * Returns:
499  *	Nothing
500  */
501 static void
502 uma_timeout(void *unused)
503 {
504 	bucket_enable();
505 	zone_foreach(zone_timeout);
506 
507 	/* Reschedule this event */
508 	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
509 }
510 
511 /*
512  * Routine to perform timeout driven calculations.  This expands the
513  * hashes and does per cpu statistics aggregation.
514  *
515  *  Returns nothing.
516  */
517 static void
518 keg_timeout(uma_keg_t keg)
519 {
520 
521 	KEG_LOCK(keg);
522 	/*
523 	 * Expand the keg hash table.
524 	 *
525 	 * This is done if the number of slabs is larger than the hash size.
526 	 * What I'm trying to do here is completely reduce collisions.  This
527 	 * may be a little aggressive.  Should I allow for two collisions max?
528 	 */
529 	if (keg->uk_flags & UMA_ZONE_HASH &&
530 	    keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) {
531 		struct uma_hash newhash;
532 		struct uma_hash oldhash;
533 		int ret;
534 
535 		/*
536 		 * This is so involved because allocating and freeing
537 		 * while the keg lock is held will lead to deadlock.
538 		 * I have to do everything in stages and check for
539 		 * races.
540 		 */
541 		newhash = keg->uk_hash;
542 		KEG_UNLOCK(keg);
543 		ret = hash_alloc(&newhash);
544 		KEG_LOCK(keg);
545 		if (ret) {
546 			if (hash_expand(&keg->uk_hash, &newhash)) {
547 				oldhash = keg->uk_hash;
548 				keg->uk_hash = newhash;
549 			} else
550 				oldhash = newhash;
551 
552 			KEG_UNLOCK(keg);
553 			hash_free(&oldhash);
554 			return;
555 		}
556 	}
557 	KEG_UNLOCK(keg);
558 }
559 
560 static void
561 zone_timeout(uma_zone_t zone)
562 {
563 
564 	zone_foreach_keg(zone, &keg_timeout);
565 }
566 
567 /*
568  * Allocate and zero fill the next sized hash table from the appropriate
569  * backing store.
570  *
571  * Arguments:
572  *	hash  A new hash structure with the old hash size in uh_hashsize
573  *
574  * Returns:
575  *	1 on success and 0 on failure.
576  */
577 static int
578 hash_alloc(struct uma_hash *hash)
579 {
580 	int oldsize;
581 	int alloc;
582 
583 	oldsize = hash->uh_hashsize;
584 
585 	/* We're just going to go to a power of two greater */
586 	if (oldsize)  {
587 		hash->uh_hashsize = oldsize * 2;
588 		alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
589 		hash->uh_slab_hash = (struct slabhead *)malloc(alloc,
590 		    M_UMAHASH, M_NOWAIT);
591 	} else {
592 		alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
593 		hash->uh_slab_hash = zone_alloc_item(hashzone, NULL,
594 		    UMA_ANYDOMAIN, M_WAITOK);
595 		hash->uh_hashsize = UMA_HASH_SIZE_INIT;
596 	}
597 	if (hash->uh_slab_hash) {
598 		bzero(hash->uh_slab_hash, alloc);
599 		hash->uh_hashmask = hash->uh_hashsize - 1;
600 		return (1);
601 	}
602 
603 	return (0);
604 }
605 
606 /*
607  * Expands the hash table for HASH zones.  This is done from zone_timeout
608  * to reduce collisions.  This must not be done in the regular allocation
609  * path, otherwise, we can recurse on the vm while allocating pages.
610  *
611  * Arguments:
612  *	oldhash  The hash you want to expand
613  *	newhash  The hash structure for the new table
614  *
615  * Returns:
616  *	Nothing
617  *
618  * Discussion:
619  */
620 static int
621 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
622 {
623 	uma_slab_t slab;
624 	int hval;
625 	int i;
626 
627 	if (!newhash->uh_slab_hash)
628 		return (0);
629 
630 	if (oldhash->uh_hashsize >= newhash->uh_hashsize)
631 		return (0);
632 
633 	/*
634 	 * I need to investigate hash algorithms for resizing without a
635 	 * full rehash.
636 	 */
637 
638 	for (i = 0; i < oldhash->uh_hashsize; i++)
639 		while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) {
640 			slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]);
641 			SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink);
642 			hval = UMA_HASH(newhash, slab->us_data);
643 			SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
644 			    slab, us_hlink);
645 		}
646 
647 	return (1);
648 }
649 
650 /*
651  * Free the hash bucket to the appropriate backing store.
652  *
653  * Arguments:
654  *	slab_hash  The hash bucket we're freeing
655  *	hashsize   The number of entries in that hash bucket
656  *
657  * Returns:
658  *	Nothing
659  */
660 static void
661 hash_free(struct uma_hash *hash)
662 {
663 	if (hash->uh_slab_hash == NULL)
664 		return;
665 	if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
666 		zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE);
667 	else
668 		free(hash->uh_slab_hash, M_UMAHASH);
669 }
670 
671 /*
672  * Frees all outstanding items in a bucket
673  *
674  * Arguments:
675  *	zone   The zone to free to, must be unlocked.
676  *	bucket The free/alloc bucket with items, cpu queue must be locked.
677  *
678  * Returns:
679  *	Nothing
680  */
681 
682 static void
683 bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
684 {
685 	int i;
686 
687 	if (bucket == NULL)
688 		return;
689 
690 	if (zone->uz_fini)
691 		for (i = 0; i < bucket->ub_cnt; i++)
692 			zone->uz_fini(bucket->ub_bucket[i], zone->uz_size);
693 	zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt);
694 	bucket->ub_cnt = 0;
695 }
696 
697 /*
698  * Drains the per cpu caches for a zone.
699  *
700  * NOTE: This may only be called while the zone is being turn down, and not
701  * during normal operation.  This is necessary in order that we do not have
702  * to migrate CPUs to drain the per-CPU caches.
703  *
704  * Arguments:
705  *	zone     The zone to drain, must be unlocked.
706  *
707  * Returns:
708  *	Nothing
709  */
710 static void
711 cache_drain(uma_zone_t zone)
712 {
713 	uma_cache_t cache;
714 	int cpu;
715 
716 	/*
717 	 * XXX: It is safe to not lock the per-CPU caches, because we're
718 	 * tearing down the zone anyway.  I.e., there will be no further use
719 	 * of the caches at this point.
720 	 *
721 	 * XXX: It would good to be able to assert that the zone is being
722 	 * torn down to prevent improper use of cache_drain().
723 	 *
724 	 * XXX: We lock the zone before passing into bucket_cache_drain() as
725 	 * it is used elsewhere.  Should the tear-down path be made special
726 	 * there in some form?
727 	 */
728 	CPU_FOREACH(cpu) {
729 		cache = &zone->uz_cpu[cpu];
730 		bucket_drain(zone, cache->uc_allocbucket);
731 		bucket_drain(zone, cache->uc_freebucket);
732 		if (cache->uc_allocbucket != NULL)
733 			bucket_free(zone, cache->uc_allocbucket, NULL);
734 		if (cache->uc_freebucket != NULL)
735 			bucket_free(zone, cache->uc_freebucket, NULL);
736 		cache->uc_allocbucket = cache->uc_freebucket = NULL;
737 	}
738 	ZONE_LOCK(zone);
739 	bucket_cache_drain(zone);
740 	ZONE_UNLOCK(zone);
741 }
742 
743 static void
744 cache_shrink(uma_zone_t zone)
745 {
746 
747 	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
748 		return;
749 
750 	ZONE_LOCK(zone);
751 	zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2;
752 	ZONE_UNLOCK(zone);
753 }
754 
755 static void
756 cache_drain_safe_cpu(uma_zone_t zone)
757 {
758 	uma_cache_t cache;
759 	uma_bucket_t b1, b2;
760 	int domain;
761 
762 	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
763 		return;
764 
765 	b1 = b2 = NULL;
766 	ZONE_LOCK(zone);
767 	critical_enter();
768 	if (zone->uz_flags & UMA_ZONE_NUMA)
769 		domain = PCPU_GET(domain);
770 	else
771 		domain = 0;
772 	cache = &zone->uz_cpu[curcpu];
773 	if (cache->uc_allocbucket) {
774 		if (cache->uc_allocbucket->ub_cnt != 0)
775 			LIST_INSERT_HEAD(&zone->uz_domain[domain].uzd_buckets,
776 			    cache->uc_allocbucket, ub_link);
777 		else
778 			b1 = cache->uc_allocbucket;
779 		cache->uc_allocbucket = NULL;
780 	}
781 	if (cache->uc_freebucket) {
782 		if (cache->uc_freebucket->ub_cnt != 0)
783 			LIST_INSERT_HEAD(&zone->uz_domain[domain].uzd_buckets,
784 			    cache->uc_freebucket, ub_link);
785 		else
786 			b2 = cache->uc_freebucket;
787 		cache->uc_freebucket = NULL;
788 	}
789 	critical_exit();
790 	ZONE_UNLOCK(zone);
791 	if (b1)
792 		bucket_free(zone, b1, NULL);
793 	if (b2)
794 		bucket_free(zone, b2, NULL);
795 }
796 
797 /*
798  * Safely drain per-CPU caches of a zone(s) to alloc bucket.
799  * This is an expensive call because it needs to bind to all CPUs
800  * one by one and enter a critical section on each of them in order
801  * to safely access their cache buckets.
802  * Zone lock must not be held on call this function.
803  */
804 static void
805 cache_drain_safe(uma_zone_t zone)
806 {
807 	int cpu;
808 
809 	/*
810 	 * Polite bucket sizes shrinking was not enouth, shrink aggressively.
811 	 */
812 	if (zone)
813 		cache_shrink(zone);
814 	else
815 		zone_foreach(cache_shrink);
816 
817 	CPU_FOREACH(cpu) {
818 		thread_lock(curthread);
819 		sched_bind(curthread, cpu);
820 		thread_unlock(curthread);
821 
822 		if (zone)
823 			cache_drain_safe_cpu(zone);
824 		else
825 			zone_foreach(cache_drain_safe_cpu);
826 	}
827 	thread_lock(curthread);
828 	sched_unbind(curthread);
829 	thread_unlock(curthread);
830 }
831 
832 /*
833  * Drain the cached buckets from a zone.  Expects a locked zone on entry.
834  */
835 static void
836 bucket_cache_drain(uma_zone_t zone)
837 {
838 	uma_zone_domain_t zdom;
839 	uma_bucket_t bucket;
840 	int i;
841 
842 	/*
843 	 * Drain the bucket queues and free the buckets.
844 	 */
845 	for (i = 0; i < vm_ndomains; i++) {
846 		zdom = &zone->uz_domain[i];
847 		while ((bucket = LIST_FIRST(&zdom->uzd_buckets)) != NULL) {
848 			LIST_REMOVE(bucket, ub_link);
849 			ZONE_UNLOCK(zone);
850 			bucket_drain(zone, bucket);
851 			bucket_free(zone, bucket, NULL);
852 			ZONE_LOCK(zone);
853 		}
854 	}
855 
856 	/*
857 	 * Shrink further bucket sizes.  Price of single zone lock collision
858 	 * is probably lower then price of global cache drain.
859 	 */
860 	if (zone->uz_count > zone->uz_count_min)
861 		zone->uz_count--;
862 }
863 
864 static void
865 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start)
866 {
867 	uint8_t *mem;
868 	int i;
869 	uint8_t flags;
870 
871 	CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes",
872 	    keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera);
873 
874 	mem = slab->us_data;
875 	flags = slab->us_flags;
876 	i = start;
877 	if (keg->uk_fini != NULL) {
878 		for (i--; i > -1; i--)
879 #ifdef INVARIANTS
880 		/*
881 		 * trash_fini implies that dtor was trash_dtor. trash_fini
882 		 * would check that memory hasn't been modified since free,
883 		 * which executed trash_dtor.
884 		 * That's why we need to run uma_dbg_kskip() check here,
885 		 * albeit we don't make skip check for other init/fini
886 		 * invocations.
887 		 */
888 		if (!uma_dbg_kskip(keg, slab->us_data + (keg->uk_rsize * i)) ||
889 		    keg->uk_fini != trash_fini)
890 #endif
891 			keg->uk_fini(slab->us_data + (keg->uk_rsize * i),
892 			    keg->uk_size);
893 	}
894 	if (keg->uk_flags & UMA_ZONE_OFFPAGE)
895 		zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE);
896 	keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags);
897 	uma_total_dec(PAGE_SIZE * keg->uk_ppera);
898 }
899 
900 /*
901  * Frees pages from a keg back to the system.  This is done on demand from
902  * the pageout daemon.
903  *
904  * Returns nothing.
905  */
906 static void
907 keg_drain(uma_keg_t keg)
908 {
909 	struct slabhead freeslabs = { 0 };
910 	uma_domain_t dom;
911 	uma_slab_t slab, tmp;
912 	int i;
913 
914 	/*
915 	 * We don't want to take pages from statically allocated kegs at this
916 	 * time
917 	 */
918 	if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL)
919 		return;
920 
921 	CTR3(KTR_UMA, "keg_drain %s(%p) free items: %u",
922 	    keg->uk_name, keg, keg->uk_free);
923 	KEG_LOCK(keg);
924 	if (keg->uk_free == 0)
925 		goto finished;
926 
927 	for (i = 0; i < vm_ndomains; i++) {
928 		dom = &keg->uk_domain[i];
929 		LIST_FOREACH_SAFE(slab, &dom->ud_free_slab, us_link, tmp) {
930 			/* We have nowhere to free these to. */
931 			if (slab->us_flags & UMA_SLAB_BOOT)
932 				continue;
933 
934 			LIST_REMOVE(slab, us_link);
935 			keg->uk_pages -= keg->uk_ppera;
936 			keg->uk_free -= keg->uk_ipers;
937 
938 			if (keg->uk_flags & UMA_ZONE_HASH)
939 				UMA_HASH_REMOVE(&keg->uk_hash, slab,
940 				    slab->us_data);
941 
942 			SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink);
943 		}
944 	}
945 
946 finished:
947 	KEG_UNLOCK(keg);
948 
949 	while ((slab = SLIST_FIRST(&freeslabs)) != NULL) {
950 		SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink);
951 		keg_free_slab(keg, slab, keg->uk_ipers);
952 	}
953 }
954 
955 static void
956 zone_drain_wait(uma_zone_t zone, int waitok)
957 {
958 
959 	/*
960 	 * Set draining to interlock with zone_dtor() so we can release our
961 	 * locks as we go.  Only dtor() should do a WAITOK call since it
962 	 * is the only call that knows the structure will still be available
963 	 * when it wakes up.
964 	 */
965 	ZONE_LOCK(zone);
966 	while (zone->uz_flags & UMA_ZFLAG_DRAINING) {
967 		if (waitok == M_NOWAIT)
968 			goto out;
969 		msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1);
970 	}
971 	zone->uz_flags |= UMA_ZFLAG_DRAINING;
972 	bucket_cache_drain(zone);
973 	ZONE_UNLOCK(zone);
974 	/*
975 	 * The DRAINING flag protects us from being freed while
976 	 * we're running.  Normally the uma_rwlock would protect us but we
977 	 * must be able to release and acquire the right lock for each keg.
978 	 */
979 	zone_foreach_keg(zone, &keg_drain);
980 	ZONE_LOCK(zone);
981 	zone->uz_flags &= ~UMA_ZFLAG_DRAINING;
982 	wakeup(zone);
983 out:
984 	ZONE_UNLOCK(zone);
985 }
986 
987 void
988 zone_drain(uma_zone_t zone)
989 {
990 
991 	zone_drain_wait(zone, M_NOWAIT);
992 }
993 
994 /*
995  * Allocate a new slab for a keg.  This does not insert the slab onto a list.
996  * If the allocation was successful, the keg lock will be held upon return,
997  * otherwise the keg will be left unlocked.
998  *
999  * Arguments:
1000  *	wait  Shall we wait?
1001  *
1002  * Returns:
1003  *	The slab that was allocated or NULL if there is no memory and the
1004  *	caller specified M_NOWAIT.
1005  */
1006 static uma_slab_t
1007 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int wait)
1008 {
1009 	uma_alloc allocf;
1010 	uma_slab_t slab;
1011 	unsigned long size;
1012 	uint8_t *mem;
1013 	uint8_t flags;
1014 	int i;
1015 
1016 	KASSERT(domain >= 0 && domain < vm_ndomains,
1017 	    ("keg_alloc_slab: domain %d out of range", domain));
1018 	mtx_assert(&keg->uk_lock, MA_OWNED);
1019 
1020 	allocf = keg->uk_allocf;
1021 	KEG_UNLOCK(keg);
1022 
1023 	slab = NULL;
1024 	mem = NULL;
1025 	if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
1026 		slab = zone_alloc_item(keg->uk_slabzone, NULL, domain, wait);
1027 		if (slab == NULL)
1028 			goto out;
1029 	}
1030 
1031 	/*
1032 	 * This reproduces the old vm_zone behavior of zero filling pages the
1033 	 * first time they are added to a zone.
1034 	 *
1035 	 * Malloced items are zeroed in uma_zalloc.
1036 	 */
1037 
1038 	if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
1039 		wait |= M_ZERO;
1040 	else
1041 		wait &= ~M_ZERO;
1042 
1043 	if (keg->uk_flags & UMA_ZONE_NODUMP)
1044 		wait |= M_NODUMP;
1045 
1046 	/* zone is passed for legacy reasons. */
1047 	size = keg->uk_ppera * PAGE_SIZE;
1048 	mem = allocf(zone, size, domain, &flags, wait);
1049 	if (mem == NULL) {
1050 		if (keg->uk_flags & UMA_ZONE_OFFPAGE)
1051 			zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE);
1052 		slab = NULL;
1053 		goto out;
1054 	}
1055 	uma_total_inc(size);
1056 
1057 	/* Point the slab into the allocated memory */
1058 	if (!(keg->uk_flags & UMA_ZONE_OFFPAGE))
1059 		slab = (uma_slab_t )(mem + keg->uk_pgoff);
1060 
1061 	if (keg->uk_flags & UMA_ZONE_VTOSLAB)
1062 		for (i = 0; i < keg->uk_ppera; i++)
1063 			vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab);
1064 
1065 	slab->us_keg = keg;
1066 	slab->us_data = mem;
1067 	slab->us_freecount = keg->uk_ipers;
1068 	slab->us_flags = flags;
1069 	slab->us_domain = domain;
1070 	BIT_FILL(SLAB_SETSIZE, &slab->us_free);
1071 #ifdef INVARIANTS
1072 	BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree);
1073 #endif
1074 
1075 	if (keg->uk_init != NULL) {
1076 		for (i = 0; i < keg->uk_ipers; i++)
1077 			if (keg->uk_init(slab->us_data + (keg->uk_rsize * i),
1078 			    keg->uk_size, wait) != 0)
1079 				break;
1080 		if (i != keg->uk_ipers) {
1081 			keg_free_slab(keg, slab, i);
1082 			slab = NULL;
1083 			goto out;
1084 		}
1085 	}
1086 	KEG_LOCK(keg);
1087 
1088 	CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)",
1089 	    slab, keg->uk_name, keg);
1090 
1091 	if (keg->uk_flags & UMA_ZONE_HASH)
1092 		UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
1093 
1094 	keg->uk_pages += keg->uk_ppera;
1095 	keg->uk_free += keg->uk_ipers;
1096 
1097 out:
1098 	return (slab);
1099 }
1100 
1101 /*
1102  * This function is intended to be used early on in place of page_alloc() so
1103  * that we may use the boot time page cache to satisfy allocations before
1104  * the VM is ready.
1105  */
1106 static void *
1107 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1108     int wait)
1109 {
1110 	uma_keg_t keg;
1111 	void *mem;
1112 	int pages;
1113 
1114 	keg = zone_first_keg(zone);
1115 
1116 	/*
1117 	 * If we are in BOOT_BUCKETS or higher, than switch to real
1118 	 * allocator.  Zones with page sized slabs switch at BOOT_PAGEALLOC.
1119 	 */
1120 	switch (booted) {
1121 		case BOOT_COLD:
1122 		case BOOT_STRAPPED:
1123 			break;
1124 		case BOOT_PAGEALLOC:
1125 			if (keg->uk_ppera > 1)
1126 				break;
1127 		case BOOT_BUCKETS:
1128 		case BOOT_RUNNING:
1129 #ifdef UMA_MD_SMALL_ALLOC
1130 			keg->uk_allocf = (keg->uk_ppera > 1) ?
1131 			    page_alloc : uma_small_alloc;
1132 #else
1133 			keg->uk_allocf = page_alloc;
1134 #endif
1135 			return keg->uk_allocf(zone, bytes, domain, pflag, wait);
1136 	}
1137 
1138 	/*
1139 	 * Check our small startup cache to see if it has pages remaining.
1140 	 */
1141 	pages = howmany(bytes, PAGE_SIZE);
1142 	KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__));
1143 	if (pages > boot_pages)
1144 		panic("UMA zone \"%s\": Increase vm.boot_pages", zone->uz_name);
1145 #ifdef DIAGNOSTIC
1146 	printf("%s from \"%s\", %d boot pages left\n", __func__, zone->uz_name,
1147 	    boot_pages);
1148 #endif
1149 	mem = bootmem;
1150 	boot_pages -= pages;
1151 	bootmem += pages * PAGE_SIZE;
1152 	*pflag = UMA_SLAB_BOOT;
1153 
1154 	return (mem);
1155 }
1156 
1157 /*
1158  * Allocates a number of pages from the system
1159  *
1160  * Arguments:
1161  *	bytes  The number of bytes requested
1162  *	wait  Shall we wait?
1163  *
1164  * Returns:
1165  *	A pointer to the alloced memory or possibly
1166  *	NULL if M_NOWAIT is set.
1167  */
1168 static void *
1169 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1170     int wait)
1171 {
1172 	void *p;	/* Returned page */
1173 
1174 	*pflag = UMA_SLAB_KERNEL;
1175 	p = (void *) kmem_malloc_domain(domain, bytes, wait);
1176 
1177 	return (p);
1178 }
1179 
1180 static void *
1181 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1182     int wait)
1183 {
1184 	struct pglist alloctail;
1185 	vm_offset_t addr, zkva;
1186 	int cpu, flags;
1187 	vm_page_t p, p_next;
1188 #ifdef NUMA
1189 	struct pcpu *pc;
1190 #endif
1191 
1192 	MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE);
1193 
1194 	TAILQ_INIT(&alloctail);
1195 	flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ |
1196 	    malloc2vm_flags(wait);
1197 	*pflag = UMA_SLAB_KERNEL;
1198 	for (cpu = 0; cpu <= mp_maxid; cpu++) {
1199 		if (CPU_ABSENT(cpu)) {
1200 			p = vm_page_alloc(NULL, 0, flags);
1201 		} else {
1202 #ifndef NUMA
1203 			p = vm_page_alloc(NULL, 0, flags);
1204 #else
1205 			pc = pcpu_find(cpu);
1206 			p = vm_page_alloc_domain(NULL, 0, pc->pc_domain, flags);
1207 			if (__predict_false(p == NULL))
1208 				p = vm_page_alloc(NULL, 0, flags);
1209 #endif
1210 		}
1211 		if (__predict_false(p == NULL))
1212 			goto fail;
1213 		TAILQ_INSERT_TAIL(&alloctail, p, listq);
1214 	}
1215 	if ((addr = kva_alloc(bytes)) == 0)
1216 		goto fail;
1217 	zkva = addr;
1218 	TAILQ_FOREACH(p, &alloctail, listq) {
1219 		pmap_qenter(zkva, &p, 1);
1220 		zkva += PAGE_SIZE;
1221 	}
1222 	return ((void*)addr);
1223  fail:
1224 	TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
1225 		vm_page_unwire(p, PQ_NONE);
1226 		vm_page_free(p);
1227 	}
1228 	return (NULL);
1229 }
1230 
1231 /*
1232  * Allocates a number of pages from within an object
1233  *
1234  * Arguments:
1235  *	bytes  The number of bytes requested
1236  *	wait   Shall we wait?
1237  *
1238  * Returns:
1239  *	A pointer to the alloced memory or possibly
1240  *	NULL if M_NOWAIT is set.
1241  */
1242 static void *
1243 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags,
1244     int wait)
1245 {
1246 	TAILQ_HEAD(, vm_page) alloctail;
1247 	u_long npages;
1248 	vm_offset_t retkva, zkva;
1249 	vm_page_t p, p_next;
1250 	uma_keg_t keg;
1251 
1252 	TAILQ_INIT(&alloctail);
1253 	keg = zone_first_keg(zone);
1254 
1255 	npages = howmany(bytes, PAGE_SIZE);
1256 	while (npages > 0) {
1257 		p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT |
1258 		    VM_ALLOC_WIRED | VM_ALLOC_NOOBJ |
1259 		    ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK :
1260 		    VM_ALLOC_NOWAIT));
1261 		if (p != NULL) {
1262 			/*
1263 			 * Since the page does not belong to an object, its
1264 			 * listq is unused.
1265 			 */
1266 			TAILQ_INSERT_TAIL(&alloctail, p, listq);
1267 			npages--;
1268 			continue;
1269 		}
1270 		/*
1271 		 * Page allocation failed, free intermediate pages and
1272 		 * exit.
1273 		 */
1274 		TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
1275 			vm_page_unwire(p, PQ_NONE);
1276 			vm_page_free(p);
1277 		}
1278 		return (NULL);
1279 	}
1280 	*flags = UMA_SLAB_PRIV;
1281 	zkva = keg->uk_kva +
1282 	    atomic_fetchadd_long(&keg->uk_offset, round_page(bytes));
1283 	retkva = zkva;
1284 	TAILQ_FOREACH(p, &alloctail, listq) {
1285 		pmap_qenter(zkva, &p, 1);
1286 		zkva += PAGE_SIZE;
1287 	}
1288 
1289 	return ((void *)retkva);
1290 }
1291 
1292 /*
1293  * Frees a number of pages to the system
1294  *
1295  * Arguments:
1296  *	mem   A pointer to the memory to be freed
1297  *	size  The size of the memory being freed
1298  *	flags The original p->us_flags field
1299  *
1300  * Returns:
1301  *	Nothing
1302  */
1303 static void
1304 page_free(void *mem, vm_size_t size, uint8_t flags)
1305 {
1306 
1307 	if ((flags & UMA_SLAB_KERNEL) == 0)
1308 		panic("UMA: page_free used with invalid flags %x", flags);
1309 
1310 	kmem_free((vm_offset_t)mem, size);
1311 }
1312 
1313 /*
1314  * Frees pcpu zone allocations
1315  *
1316  * Arguments:
1317  *	mem   A pointer to the memory to be freed
1318  *	size  The size of the memory being freed
1319  *	flags The original p->us_flags field
1320  *
1321  * Returns:
1322  *	Nothing
1323  */
1324 static void
1325 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags)
1326 {
1327 	vm_offset_t sva, curva;
1328 	vm_paddr_t paddr;
1329 	vm_page_t m;
1330 
1331 	MPASS(size == (mp_maxid+1)*PAGE_SIZE);
1332 	sva = (vm_offset_t)mem;
1333 	for (curva = sva; curva < sva + size; curva += PAGE_SIZE) {
1334 		paddr = pmap_kextract(curva);
1335 		m = PHYS_TO_VM_PAGE(paddr);
1336 		vm_page_unwire(m, PQ_NONE);
1337 		vm_page_free(m);
1338 	}
1339 	pmap_qremove(sva, size >> PAGE_SHIFT);
1340 	kva_free(sva, size);
1341 }
1342 
1343 
1344 /*
1345  * Zero fill initializer
1346  *
1347  * Arguments/Returns follow uma_init specifications
1348  */
1349 static int
1350 zero_init(void *mem, int size, int flags)
1351 {
1352 	bzero(mem, size);
1353 	return (0);
1354 }
1355 
1356 /*
1357  * Finish creating a small uma keg.  This calculates ipers, and the keg size.
1358  *
1359  * Arguments
1360  *	keg  The zone we should initialize
1361  *
1362  * Returns
1363  *	Nothing
1364  */
1365 static void
1366 keg_small_init(uma_keg_t keg)
1367 {
1368 	u_int rsize;
1369 	u_int memused;
1370 	u_int wastedspace;
1371 	u_int shsize;
1372 	u_int slabsize;
1373 
1374 	if (keg->uk_flags & UMA_ZONE_PCPU) {
1375 		u_int ncpus = (mp_maxid + 1) ? (mp_maxid + 1) : MAXCPU;
1376 
1377 		slabsize = UMA_PCPU_ALLOC_SIZE;
1378 		keg->uk_ppera = ncpus;
1379 	} else {
1380 		slabsize = UMA_SLAB_SIZE;
1381 		keg->uk_ppera = 1;
1382 	}
1383 
1384 	/*
1385 	 * Calculate the size of each allocation (rsize) according to
1386 	 * alignment.  If the requested size is smaller than we have
1387 	 * allocation bits for we round it up.
1388 	 */
1389 	rsize = keg->uk_size;
1390 	if (rsize < slabsize / SLAB_SETSIZE)
1391 		rsize = slabsize / SLAB_SETSIZE;
1392 	if (rsize & keg->uk_align)
1393 		rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1);
1394 	keg->uk_rsize = rsize;
1395 
1396 	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 ||
1397 	    keg->uk_rsize < UMA_PCPU_ALLOC_SIZE,
1398 	    ("%s: size %u too large", __func__, keg->uk_rsize));
1399 
1400 	if (keg->uk_flags & UMA_ZONE_OFFPAGE)
1401 		shsize = 0;
1402 	else
1403 		shsize = sizeof(struct uma_slab);
1404 
1405 	if (rsize <= slabsize - shsize)
1406 		keg->uk_ipers = (slabsize - shsize) / rsize;
1407 	else {
1408 		/* Handle special case when we have 1 item per slab, so
1409 		 * alignment requirement can be relaxed. */
1410 		KASSERT(keg->uk_size <= slabsize - shsize,
1411 		    ("%s: size %u greater than slab", __func__, keg->uk_size));
1412 		keg->uk_ipers = 1;
1413 	}
1414 	KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE,
1415 	    ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers));
1416 
1417 	memused = keg->uk_ipers * rsize + shsize;
1418 	wastedspace = slabsize - memused;
1419 
1420 	/*
1421 	 * We can't do OFFPAGE if we're internal or if we've been
1422 	 * asked to not go to the VM for buckets.  If we do this we
1423 	 * may end up going to the VM  for slabs which we do not
1424 	 * want to do if we're UMA_ZFLAG_CACHEONLY as a result
1425 	 * of UMA_ZONE_VM, which clearly forbids it.
1426 	 */
1427 	if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) ||
1428 	    (keg->uk_flags & UMA_ZFLAG_CACHEONLY))
1429 		return;
1430 
1431 	/*
1432 	 * See if using an OFFPAGE slab will limit our waste.  Only do
1433 	 * this if it permits more items per-slab.
1434 	 *
1435 	 * XXX We could try growing slabsize to limit max waste as well.
1436 	 * Historically this was not done because the VM could not
1437 	 * efficiently handle contiguous allocations.
1438 	 */
1439 	if ((wastedspace >= slabsize / UMA_MAX_WASTE) &&
1440 	    (keg->uk_ipers < (slabsize / keg->uk_rsize))) {
1441 		keg->uk_ipers = slabsize / keg->uk_rsize;
1442 		KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE,
1443 		    ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers));
1444 		CTR6(KTR_UMA, "UMA decided we need offpage slab headers for "
1445 		    "keg: %s(%p), calculated wastedspace = %d, "
1446 		    "maximum wasted space allowed = %d, "
1447 		    "calculated ipers = %d, "
1448 		    "new wasted space = %d\n", keg->uk_name, keg, wastedspace,
1449 		    slabsize / UMA_MAX_WASTE, keg->uk_ipers,
1450 		    slabsize - keg->uk_ipers * keg->uk_rsize);
1451 		keg->uk_flags |= UMA_ZONE_OFFPAGE;
1452 	}
1453 
1454 	if ((keg->uk_flags & UMA_ZONE_OFFPAGE) &&
1455 	    (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1456 		keg->uk_flags |= UMA_ZONE_HASH;
1457 }
1458 
1459 /*
1460  * Finish creating a large (> UMA_SLAB_SIZE) uma kegs.  Just give in and do
1461  * OFFPAGE for now.  When I can allow for more dynamic slab sizes this will be
1462  * more complicated.
1463  *
1464  * Arguments
1465  *	keg  The keg we should initialize
1466  *
1467  * Returns
1468  *	Nothing
1469  */
1470 static void
1471 keg_large_init(uma_keg_t keg)
1472 {
1473 	u_int shsize;
1474 
1475 	KASSERT(keg != NULL, ("Keg is null in keg_large_init"));
1476 	KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0,
1477 	    ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg"));
1478 	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0,
1479 	    ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__));
1480 
1481 	keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE);
1482 	keg->uk_ipers = 1;
1483 	keg->uk_rsize = keg->uk_size;
1484 
1485 	/* Check whether we have enough space to not do OFFPAGE. */
1486 	if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) {
1487 		shsize = sizeof(struct uma_slab);
1488 		if (shsize & UMA_ALIGN_PTR)
1489 			shsize = (shsize & ~UMA_ALIGN_PTR) +
1490 			    (UMA_ALIGN_PTR + 1);
1491 
1492 		if (PAGE_SIZE * keg->uk_ppera - keg->uk_rsize < shsize) {
1493 			/*
1494 			 * We can't do OFFPAGE if we're internal, in which case
1495 			 * we need an extra page per allocation to contain the
1496 			 * slab header.
1497 			 */
1498 			if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) == 0)
1499 				keg->uk_flags |= UMA_ZONE_OFFPAGE;
1500 			else
1501 				keg->uk_ppera++;
1502 		}
1503 	}
1504 
1505 	if ((keg->uk_flags & UMA_ZONE_OFFPAGE) &&
1506 	    (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1507 		keg->uk_flags |= UMA_ZONE_HASH;
1508 }
1509 
1510 static void
1511 keg_cachespread_init(uma_keg_t keg)
1512 {
1513 	int alignsize;
1514 	int trailer;
1515 	int pages;
1516 	int rsize;
1517 
1518 	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0,
1519 	    ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__));
1520 
1521 	alignsize = keg->uk_align + 1;
1522 	rsize = keg->uk_size;
1523 	/*
1524 	 * We want one item to start on every align boundary in a page.  To
1525 	 * do this we will span pages.  We will also extend the item by the
1526 	 * size of align if it is an even multiple of align.  Otherwise, it
1527 	 * would fall on the same boundary every time.
1528 	 */
1529 	if (rsize & keg->uk_align)
1530 		rsize = (rsize & ~keg->uk_align) + alignsize;
1531 	if ((rsize & alignsize) == 0)
1532 		rsize += alignsize;
1533 	trailer = rsize - keg->uk_size;
1534 	pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE;
1535 	pages = MIN(pages, (128 * 1024) / PAGE_SIZE);
1536 	keg->uk_rsize = rsize;
1537 	keg->uk_ppera = pages;
1538 	keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize;
1539 	keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB;
1540 	KASSERT(keg->uk_ipers <= SLAB_SETSIZE,
1541 	    ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__,
1542 	    keg->uk_ipers));
1543 }
1544 
1545 /*
1546  * Keg header ctor.  This initializes all fields, locks, etc.  And inserts
1547  * the keg onto the global keg list.
1548  *
1549  * Arguments/Returns follow uma_ctor specifications
1550  *	udata  Actually uma_kctor_args
1551  */
1552 static int
1553 keg_ctor(void *mem, int size, void *udata, int flags)
1554 {
1555 	struct uma_kctor_args *arg = udata;
1556 	uma_keg_t keg = mem;
1557 	uma_zone_t zone;
1558 
1559 	bzero(keg, size);
1560 	keg->uk_size = arg->size;
1561 	keg->uk_init = arg->uminit;
1562 	keg->uk_fini = arg->fini;
1563 	keg->uk_align = arg->align;
1564 	keg->uk_free = 0;
1565 	keg->uk_reserve = 0;
1566 	keg->uk_pages = 0;
1567 	keg->uk_flags = arg->flags;
1568 	keg->uk_slabzone = NULL;
1569 
1570 	/*
1571 	 * We use a global round-robin policy by default.  Zones with
1572 	 * UMA_ZONE_NUMA set will use first-touch instead, in which case the
1573 	 * iterator is never run.
1574 	 */
1575 	keg->uk_dr.dr_policy = DOMAINSET_RR();
1576 	keg->uk_dr.dr_iter = 0;
1577 
1578 	/*
1579 	 * The master zone is passed to us at keg-creation time.
1580 	 */
1581 	zone = arg->zone;
1582 	keg->uk_name = zone->uz_name;
1583 
1584 	if (arg->flags & UMA_ZONE_VM)
1585 		keg->uk_flags |= UMA_ZFLAG_CACHEONLY;
1586 
1587 	if (arg->flags & UMA_ZONE_ZINIT)
1588 		keg->uk_init = zero_init;
1589 
1590 	if (arg->flags & UMA_ZONE_MALLOC)
1591 		keg->uk_flags |= UMA_ZONE_VTOSLAB;
1592 
1593 	if (arg->flags & UMA_ZONE_PCPU)
1594 #ifdef SMP
1595 		keg->uk_flags |= UMA_ZONE_OFFPAGE;
1596 #else
1597 		keg->uk_flags &= ~UMA_ZONE_PCPU;
1598 #endif
1599 
1600 	if (keg->uk_flags & UMA_ZONE_CACHESPREAD) {
1601 		keg_cachespread_init(keg);
1602 	} else {
1603 		if (keg->uk_size > UMA_SLAB_SPACE)
1604 			keg_large_init(keg);
1605 		else
1606 			keg_small_init(keg);
1607 	}
1608 
1609 	if (keg->uk_flags & UMA_ZONE_OFFPAGE)
1610 		keg->uk_slabzone = slabzone;
1611 
1612 	/*
1613 	 * If we haven't booted yet we need allocations to go through the
1614 	 * startup cache until the vm is ready.
1615 	 */
1616 	if (booted < BOOT_PAGEALLOC)
1617 		keg->uk_allocf = startup_alloc;
1618 #ifdef UMA_MD_SMALL_ALLOC
1619 	else if (keg->uk_ppera == 1)
1620 		keg->uk_allocf = uma_small_alloc;
1621 #endif
1622 	else if (keg->uk_flags & UMA_ZONE_PCPU)
1623 		keg->uk_allocf = pcpu_page_alloc;
1624 	else
1625 		keg->uk_allocf = page_alloc;
1626 #ifdef UMA_MD_SMALL_ALLOC
1627 	if (keg->uk_ppera == 1)
1628 		keg->uk_freef = uma_small_free;
1629 	else
1630 #endif
1631 	if (keg->uk_flags & UMA_ZONE_PCPU)
1632 		keg->uk_freef = pcpu_page_free;
1633 	else
1634 		keg->uk_freef = page_free;
1635 
1636 	/*
1637 	 * Initialize keg's lock
1638 	 */
1639 	KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS));
1640 
1641 	/*
1642 	 * If we're putting the slab header in the actual page we need to
1643 	 * figure out where in each page it goes.  This calculates a right
1644 	 * justified offset into the memory on an ALIGN_PTR boundary.
1645 	 */
1646 	if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) {
1647 		u_int totsize;
1648 
1649 		/* Size of the slab struct and free list */
1650 		totsize = sizeof(struct uma_slab);
1651 
1652 		if (totsize & UMA_ALIGN_PTR)
1653 			totsize = (totsize & ~UMA_ALIGN_PTR) +
1654 			    (UMA_ALIGN_PTR + 1);
1655 		keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize;
1656 
1657 		/*
1658 		 * The only way the following is possible is if with our
1659 		 * UMA_ALIGN_PTR adjustments we are now bigger than
1660 		 * UMA_SLAB_SIZE.  I haven't checked whether this is
1661 		 * mathematically possible for all cases, so we make
1662 		 * sure here anyway.
1663 		 */
1664 		totsize = keg->uk_pgoff + sizeof(struct uma_slab);
1665 		if (totsize > PAGE_SIZE * keg->uk_ppera) {
1666 			printf("zone %s ipers %d rsize %d size %d\n",
1667 			    zone->uz_name, keg->uk_ipers, keg->uk_rsize,
1668 			    keg->uk_size);
1669 			panic("UMA slab won't fit.");
1670 		}
1671 	}
1672 
1673 	if (keg->uk_flags & UMA_ZONE_HASH)
1674 		hash_alloc(&keg->uk_hash);
1675 
1676 	CTR5(KTR_UMA, "keg_ctor %p zone %s(%p) out %d free %d\n",
1677 	    keg, zone->uz_name, zone,
1678 	    (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free,
1679 	    keg->uk_free);
1680 
1681 	LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
1682 
1683 	rw_wlock(&uma_rwlock);
1684 	LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
1685 	rw_wunlock(&uma_rwlock);
1686 	return (0);
1687 }
1688 
1689 /*
1690  * Zone header ctor.  This initializes all fields, locks, etc.
1691  *
1692  * Arguments/Returns follow uma_ctor specifications
1693  *	udata  Actually uma_zctor_args
1694  */
1695 static int
1696 zone_ctor(void *mem, int size, void *udata, int flags)
1697 {
1698 	struct uma_zctor_args *arg = udata;
1699 	uma_zone_t zone = mem;
1700 	uma_zone_t z;
1701 	uma_keg_t keg;
1702 
1703 	bzero(zone, size);
1704 	zone->uz_name = arg->name;
1705 	zone->uz_ctor = arg->ctor;
1706 	zone->uz_dtor = arg->dtor;
1707 	zone->uz_slab = zone_fetch_slab;
1708 	zone->uz_init = NULL;
1709 	zone->uz_fini = NULL;
1710 	zone->uz_allocs = 0;
1711 	zone->uz_frees = 0;
1712 	zone->uz_fails = 0;
1713 	zone->uz_sleeps = 0;
1714 	zone->uz_count = 0;
1715 	zone->uz_count_min = 0;
1716 	zone->uz_flags = 0;
1717 	zone->uz_warning = NULL;
1718 	/* The domain structures follow the cpu structures. */
1719 	zone->uz_domain = (struct uma_zone_domain *)&zone->uz_cpu[mp_ncpus];
1720 	timevalclear(&zone->uz_ratecheck);
1721 	keg = arg->keg;
1722 
1723 	ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS));
1724 
1725 	/*
1726 	 * This is a pure cache zone, no kegs.
1727 	 */
1728 	if (arg->import) {
1729 		if (arg->flags & UMA_ZONE_VM)
1730 			arg->flags |= UMA_ZFLAG_CACHEONLY;
1731 		zone->uz_flags = arg->flags;
1732 		zone->uz_size = arg->size;
1733 		zone->uz_import = arg->import;
1734 		zone->uz_release = arg->release;
1735 		zone->uz_arg = arg->arg;
1736 		zone->uz_lockptr = &zone->uz_lock;
1737 		rw_wlock(&uma_rwlock);
1738 		LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link);
1739 		rw_wunlock(&uma_rwlock);
1740 		goto out;
1741 	}
1742 
1743 	/*
1744 	 * Use the regular zone/keg/slab allocator.
1745 	 */
1746 	zone->uz_import = (uma_import)zone_import;
1747 	zone->uz_release = (uma_release)zone_release;
1748 	zone->uz_arg = zone;
1749 
1750 	if (arg->flags & UMA_ZONE_SECONDARY) {
1751 		KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
1752 		zone->uz_init = arg->uminit;
1753 		zone->uz_fini = arg->fini;
1754 		zone->uz_lockptr = &keg->uk_lock;
1755 		zone->uz_flags |= UMA_ZONE_SECONDARY;
1756 		rw_wlock(&uma_rwlock);
1757 		ZONE_LOCK(zone);
1758 		LIST_FOREACH(z, &keg->uk_zones, uz_link) {
1759 			if (LIST_NEXT(z, uz_link) == NULL) {
1760 				LIST_INSERT_AFTER(z, zone, uz_link);
1761 				break;
1762 			}
1763 		}
1764 		ZONE_UNLOCK(zone);
1765 		rw_wunlock(&uma_rwlock);
1766 	} else if (keg == NULL) {
1767 		if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
1768 		    arg->align, arg->flags)) == NULL)
1769 			return (ENOMEM);
1770 	} else {
1771 		struct uma_kctor_args karg;
1772 		int error;
1773 
1774 		/* We should only be here from uma_startup() */
1775 		karg.size = arg->size;
1776 		karg.uminit = arg->uminit;
1777 		karg.fini = arg->fini;
1778 		karg.align = arg->align;
1779 		karg.flags = arg->flags;
1780 		karg.zone = zone;
1781 		error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
1782 		    flags);
1783 		if (error)
1784 			return (error);
1785 	}
1786 
1787 	/*
1788 	 * Link in the first keg.
1789 	 */
1790 	zone->uz_klink.kl_keg = keg;
1791 	LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link);
1792 	zone->uz_lockptr = &keg->uk_lock;
1793 	zone->uz_size = keg->uk_size;
1794 	zone->uz_flags |= (keg->uk_flags &
1795 	    (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT));
1796 
1797 	/*
1798 	 * Some internal zones don't have room allocated for the per cpu
1799 	 * caches.  If we're internal, bail out here.
1800 	 */
1801 	if (keg->uk_flags & UMA_ZFLAG_INTERNAL) {
1802 		KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0,
1803 		    ("Secondary zone requested UMA_ZFLAG_INTERNAL"));
1804 		return (0);
1805 	}
1806 
1807 out:
1808 	KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) !=
1809 	    (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET),
1810 	    ("Invalid zone flag combination"));
1811 	if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0)
1812 		zone->uz_count = BUCKET_MAX;
1813 	else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0)
1814 		zone->uz_count = 0;
1815 	else
1816 		zone->uz_count = bucket_select(zone->uz_size);
1817 	zone->uz_count_min = zone->uz_count;
1818 
1819 	return (0);
1820 }
1821 
1822 /*
1823  * Keg header dtor.  This frees all data, destroys locks, frees the hash
1824  * table and removes the keg from the global list.
1825  *
1826  * Arguments/Returns follow uma_dtor specifications
1827  *	udata  unused
1828  */
1829 static void
1830 keg_dtor(void *arg, int size, void *udata)
1831 {
1832 	uma_keg_t keg;
1833 
1834 	keg = (uma_keg_t)arg;
1835 	KEG_LOCK(keg);
1836 	if (keg->uk_free != 0) {
1837 		printf("Freed UMA keg (%s) was not empty (%d items). "
1838 		    " Lost %d pages of memory.\n",
1839 		    keg->uk_name ? keg->uk_name : "",
1840 		    keg->uk_free, keg->uk_pages);
1841 	}
1842 	KEG_UNLOCK(keg);
1843 
1844 	hash_free(&keg->uk_hash);
1845 
1846 	KEG_LOCK_FINI(keg);
1847 }
1848 
1849 /*
1850  * Zone header dtor.
1851  *
1852  * Arguments/Returns follow uma_dtor specifications
1853  *	udata  unused
1854  */
1855 static void
1856 zone_dtor(void *arg, int size, void *udata)
1857 {
1858 	uma_klink_t klink;
1859 	uma_zone_t zone;
1860 	uma_keg_t keg;
1861 
1862 	zone = (uma_zone_t)arg;
1863 	keg = zone_first_keg(zone);
1864 
1865 	if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
1866 		cache_drain(zone);
1867 
1868 	rw_wlock(&uma_rwlock);
1869 	LIST_REMOVE(zone, uz_link);
1870 	rw_wunlock(&uma_rwlock);
1871 	/*
1872 	 * XXX there are some races here where
1873 	 * the zone can be drained but zone lock
1874 	 * released and then refilled before we
1875 	 * remove it... we dont care for now
1876 	 */
1877 	zone_drain_wait(zone, M_WAITOK);
1878 	/*
1879 	 * Unlink all of our kegs.
1880 	 */
1881 	while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) {
1882 		klink->kl_keg = NULL;
1883 		LIST_REMOVE(klink, kl_link);
1884 		if (klink == &zone->uz_klink)
1885 			continue;
1886 		free(klink, M_TEMP);
1887 	}
1888 	/*
1889 	 * We only destroy kegs from non secondary zones.
1890 	 */
1891 	if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0)  {
1892 		rw_wlock(&uma_rwlock);
1893 		LIST_REMOVE(keg, uk_link);
1894 		rw_wunlock(&uma_rwlock);
1895 		zone_free_item(kegs, keg, NULL, SKIP_NONE);
1896 	}
1897 	ZONE_LOCK_FINI(zone);
1898 }
1899 
1900 /*
1901  * Traverses every zone in the system and calls a callback
1902  *
1903  * Arguments:
1904  *	zfunc  A pointer to a function which accepts a zone
1905  *		as an argument.
1906  *
1907  * Returns:
1908  *	Nothing
1909  */
1910 static void
1911 zone_foreach(void (*zfunc)(uma_zone_t))
1912 {
1913 	uma_keg_t keg;
1914 	uma_zone_t zone;
1915 
1916 	rw_rlock(&uma_rwlock);
1917 	LIST_FOREACH(keg, &uma_kegs, uk_link) {
1918 		LIST_FOREACH(zone, &keg->uk_zones, uz_link)
1919 			zfunc(zone);
1920 	}
1921 	rw_runlock(&uma_rwlock);
1922 }
1923 
1924 /*
1925  * Count how many pages do we need to bootstrap.  VM supplies
1926  * its need in early zones in the argument, we add up our zones,
1927  * which consist of: UMA Slabs, UMA Hash and 9 Bucket zones. The
1928  * zone of zones and zone of kegs are accounted separately.
1929  */
1930 #define	UMA_BOOT_ZONES	11
1931 /* Zone of zones and zone of kegs have arbitrary alignment. */
1932 #define	UMA_BOOT_ALIGN	32
1933 static int zsize, ksize;
1934 int
1935 uma_startup_count(int vm_zones)
1936 {
1937 	int zones, pages;
1938 
1939 	ksize = sizeof(struct uma_keg) +
1940 	    (sizeof(struct uma_domain) * vm_ndomains);
1941 	zsize = sizeof(struct uma_zone) +
1942 	    (sizeof(struct uma_cache) * (mp_maxid + 1)) +
1943 	    (sizeof(struct uma_zone_domain) * vm_ndomains);
1944 
1945 	/*
1946 	 * Memory for the zone of kegs and its keg,
1947 	 * and for zone of zones.
1948 	 */
1949 	pages = howmany(roundup(zsize, CACHE_LINE_SIZE) * 2 +
1950 	    roundup(ksize, CACHE_LINE_SIZE), PAGE_SIZE);
1951 
1952 #ifdef	UMA_MD_SMALL_ALLOC
1953 	zones = UMA_BOOT_ZONES;
1954 #else
1955 	zones = UMA_BOOT_ZONES + vm_zones;
1956 	vm_zones = 0;
1957 #endif
1958 
1959 	/* Memory for the rest of startup zones, UMA and VM, ... */
1960 	if (zsize > UMA_SLAB_SPACE)
1961 		pages += (zones + vm_zones) *
1962 		    howmany(roundup2(zsize, UMA_BOOT_ALIGN), UMA_SLAB_SIZE);
1963 	else if (roundup2(zsize, UMA_BOOT_ALIGN) > UMA_SLAB_SPACE)
1964 		pages += zones;
1965 	else
1966 		pages += howmany(zones,
1967 		    UMA_SLAB_SPACE / roundup2(zsize, UMA_BOOT_ALIGN));
1968 
1969 	/* ... and their kegs. Note that zone of zones allocates a keg! */
1970 	pages += howmany(zones + 1,
1971 	    UMA_SLAB_SPACE / roundup2(ksize, UMA_BOOT_ALIGN));
1972 
1973 	/*
1974 	 * Most of startup zones are not going to be offpages, that's
1975 	 * why we use UMA_SLAB_SPACE instead of UMA_SLAB_SIZE in all
1976 	 * calculations.  Some large bucket zones will be offpage, and
1977 	 * thus will allocate hashes.  We take conservative approach
1978 	 * and assume that all zones may allocate hash.  This may give
1979 	 * us some positive inaccuracy, usually an extra single page.
1980 	 */
1981 	pages += howmany(zones, UMA_SLAB_SPACE /
1982 	    (sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT));
1983 
1984 	return (pages);
1985 }
1986 
1987 void
1988 uma_startup(void *mem, int npages)
1989 {
1990 	struct uma_zctor_args args;
1991 	uma_keg_t masterkeg;
1992 	uintptr_t m;
1993 
1994 #ifdef DIAGNOSTIC
1995 	printf("Entering %s with %d boot pages configured\n", __func__, npages);
1996 #endif
1997 
1998 	rw_init(&uma_rwlock, "UMA lock");
1999 
2000 	/* Use bootpages memory for the zone of zones and zone of kegs. */
2001 	m = (uintptr_t)mem;
2002 	zones = (uma_zone_t)m;
2003 	m += roundup(zsize, CACHE_LINE_SIZE);
2004 	kegs = (uma_zone_t)m;
2005 	m += roundup(zsize, CACHE_LINE_SIZE);
2006 	masterkeg = (uma_keg_t)m;
2007 	m += roundup(ksize, CACHE_LINE_SIZE);
2008 	m = roundup(m, PAGE_SIZE);
2009 	npages -= (m - (uintptr_t)mem) / PAGE_SIZE;
2010 	mem = (void *)m;
2011 
2012 	/* "manually" create the initial zone */
2013 	memset(&args, 0, sizeof(args));
2014 	args.name = "UMA Kegs";
2015 	args.size = ksize;
2016 	args.ctor = keg_ctor;
2017 	args.dtor = keg_dtor;
2018 	args.uminit = zero_init;
2019 	args.fini = NULL;
2020 	args.keg = masterkeg;
2021 	args.align = UMA_BOOT_ALIGN - 1;
2022 	args.flags = UMA_ZFLAG_INTERNAL;
2023 	zone_ctor(kegs, zsize, &args, M_WAITOK);
2024 
2025 	bootmem = mem;
2026 	boot_pages = npages;
2027 
2028 	args.name = "UMA Zones";
2029 	args.size = zsize;
2030 	args.ctor = zone_ctor;
2031 	args.dtor = zone_dtor;
2032 	args.uminit = zero_init;
2033 	args.fini = NULL;
2034 	args.keg = NULL;
2035 	args.align = UMA_BOOT_ALIGN - 1;
2036 	args.flags = UMA_ZFLAG_INTERNAL;
2037 	zone_ctor(zones, zsize, &args, M_WAITOK);
2038 
2039 	/* Now make a zone for slab headers */
2040 	slabzone = uma_zcreate("UMA Slabs",
2041 				sizeof(struct uma_slab),
2042 				NULL, NULL, NULL, NULL,
2043 				UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
2044 
2045 	hashzone = uma_zcreate("UMA Hash",
2046 	    sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
2047 	    NULL, NULL, NULL, NULL,
2048 	    UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
2049 
2050 	bucket_init();
2051 
2052 	booted = BOOT_STRAPPED;
2053 }
2054 
2055 void
2056 uma_startup1(void)
2057 {
2058 
2059 #ifdef DIAGNOSTIC
2060 	printf("Entering %s with %d boot pages left\n", __func__, boot_pages);
2061 #endif
2062 	booted = BOOT_PAGEALLOC;
2063 }
2064 
2065 void
2066 uma_startup2(void)
2067 {
2068 
2069 #ifdef DIAGNOSTIC
2070 	printf("Entering %s with %d boot pages left\n", __func__, boot_pages);
2071 #endif
2072 	booted = BOOT_BUCKETS;
2073 	sx_init(&uma_drain_lock, "umadrain");
2074 	bucket_enable();
2075 }
2076 
2077 /*
2078  * Initialize our callout handle
2079  *
2080  */
2081 static void
2082 uma_startup3(void)
2083 {
2084 
2085 #ifdef INVARIANTS
2086 	TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor);
2087 	uma_dbg_cnt = counter_u64_alloc(M_WAITOK);
2088 	uma_skip_cnt = counter_u64_alloc(M_WAITOK);
2089 #endif
2090 	callout_init(&uma_callout, 1);
2091 	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
2092 	booted = BOOT_RUNNING;
2093 }
2094 
2095 static uma_keg_t
2096 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
2097 		int align, uint32_t flags)
2098 {
2099 	struct uma_kctor_args args;
2100 
2101 	args.size = size;
2102 	args.uminit = uminit;
2103 	args.fini = fini;
2104 	args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align;
2105 	args.flags = flags;
2106 	args.zone = zone;
2107 	return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK));
2108 }
2109 
2110 /* Public functions */
2111 /* See uma.h */
2112 void
2113 uma_set_align(int align)
2114 {
2115 
2116 	if (align != UMA_ALIGN_CACHE)
2117 		uma_align_cache = align;
2118 }
2119 
2120 /* See uma.h */
2121 uma_zone_t
2122 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
2123 		uma_init uminit, uma_fini fini, int align, uint32_t flags)
2124 
2125 {
2126 	struct uma_zctor_args args;
2127 	uma_zone_t res;
2128 	bool locked;
2129 
2130 	KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"",
2131 	    align, name));
2132 
2133 	/* This stuff is essential for the zone ctor */
2134 	memset(&args, 0, sizeof(args));
2135 	args.name = name;
2136 	args.size = size;
2137 	args.ctor = ctor;
2138 	args.dtor = dtor;
2139 	args.uminit = uminit;
2140 	args.fini = fini;
2141 #ifdef  INVARIANTS
2142 	/*
2143 	 * If a zone is being created with an empty constructor and
2144 	 * destructor, pass UMA constructor/destructor which checks for
2145 	 * memory use after free.
2146 	 */
2147 	if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOFREE))) &&
2148 	    ctor == NULL && dtor == NULL && uminit == NULL && fini == NULL) {
2149 		args.ctor = trash_ctor;
2150 		args.dtor = trash_dtor;
2151 		args.uminit = trash_init;
2152 		args.fini = trash_fini;
2153 	}
2154 #endif
2155 	args.align = align;
2156 	args.flags = flags;
2157 	args.keg = NULL;
2158 
2159 	if (booted < BOOT_BUCKETS) {
2160 		locked = false;
2161 	} else {
2162 		sx_slock(&uma_drain_lock);
2163 		locked = true;
2164 	}
2165 	res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK);
2166 	if (locked)
2167 		sx_sunlock(&uma_drain_lock);
2168 	return (res);
2169 }
2170 
2171 /* See uma.h */
2172 uma_zone_t
2173 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor,
2174 		    uma_init zinit, uma_fini zfini, uma_zone_t master)
2175 {
2176 	struct uma_zctor_args args;
2177 	uma_keg_t keg;
2178 	uma_zone_t res;
2179 	bool locked;
2180 
2181 	keg = zone_first_keg(master);
2182 	memset(&args, 0, sizeof(args));
2183 	args.name = name;
2184 	args.size = keg->uk_size;
2185 	args.ctor = ctor;
2186 	args.dtor = dtor;
2187 	args.uminit = zinit;
2188 	args.fini = zfini;
2189 	args.align = keg->uk_align;
2190 	args.flags = keg->uk_flags | UMA_ZONE_SECONDARY;
2191 	args.keg = keg;
2192 
2193 	if (booted < BOOT_BUCKETS) {
2194 		locked = false;
2195 	} else {
2196 		sx_slock(&uma_drain_lock);
2197 		locked = true;
2198 	}
2199 	/* XXX Attaches only one keg of potentially many. */
2200 	res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK);
2201 	if (locked)
2202 		sx_sunlock(&uma_drain_lock);
2203 	return (res);
2204 }
2205 
2206 /* See uma.h */
2207 uma_zone_t
2208 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor,
2209 		    uma_init zinit, uma_fini zfini, uma_import zimport,
2210 		    uma_release zrelease, void *arg, int flags)
2211 {
2212 	struct uma_zctor_args args;
2213 
2214 	memset(&args, 0, sizeof(args));
2215 	args.name = name;
2216 	args.size = size;
2217 	args.ctor = ctor;
2218 	args.dtor = dtor;
2219 	args.uminit = zinit;
2220 	args.fini = zfini;
2221 	args.import = zimport;
2222 	args.release = zrelease;
2223 	args.arg = arg;
2224 	args.align = 0;
2225 	args.flags = flags;
2226 
2227 	return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK));
2228 }
2229 
2230 static void
2231 zone_lock_pair(uma_zone_t a, uma_zone_t b)
2232 {
2233 	if (a < b) {
2234 		ZONE_LOCK(a);
2235 		mtx_lock_flags(b->uz_lockptr, MTX_DUPOK);
2236 	} else {
2237 		ZONE_LOCK(b);
2238 		mtx_lock_flags(a->uz_lockptr, MTX_DUPOK);
2239 	}
2240 }
2241 
2242 static void
2243 zone_unlock_pair(uma_zone_t a, uma_zone_t b)
2244 {
2245 
2246 	ZONE_UNLOCK(a);
2247 	ZONE_UNLOCK(b);
2248 }
2249 
2250 int
2251 uma_zsecond_add(uma_zone_t zone, uma_zone_t master)
2252 {
2253 	uma_klink_t klink;
2254 	uma_klink_t kl;
2255 	int error;
2256 
2257 	error = 0;
2258 	klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO);
2259 
2260 	zone_lock_pair(zone, master);
2261 	/*
2262 	 * zone must use vtoslab() to resolve objects and must already be
2263 	 * a secondary.
2264 	 */
2265 	if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY))
2266 	    != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) {
2267 		error = EINVAL;
2268 		goto out;
2269 	}
2270 	/*
2271 	 * The new master must also use vtoslab().
2272 	 */
2273 	if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) {
2274 		error = EINVAL;
2275 		goto out;
2276 	}
2277 
2278 	/*
2279 	 * The underlying object must be the same size.  rsize
2280 	 * may be different.
2281 	 */
2282 	if (master->uz_size != zone->uz_size) {
2283 		error = E2BIG;
2284 		goto out;
2285 	}
2286 	/*
2287 	 * Put it at the end of the list.
2288 	 */
2289 	klink->kl_keg = zone_first_keg(master);
2290 	LIST_FOREACH(kl, &zone->uz_kegs, kl_link) {
2291 		if (LIST_NEXT(kl, kl_link) == NULL) {
2292 			LIST_INSERT_AFTER(kl, klink, kl_link);
2293 			break;
2294 		}
2295 	}
2296 	klink = NULL;
2297 	zone->uz_flags |= UMA_ZFLAG_MULTI;
2298 	zone->uz_slab = zone_fetch_slab_multi;
2299 
2300 out:
2301 	zone_unlock_pair(zone, master);
2302 	if (klink != NULL)
2303 		free(klink, M_TEMP);
2304 
2305 	return (error);
2306 }
2307 
2308 
2309 /* See uma.h */
2310 void
2311 uma_zdestroy(uma_zone_t zone)
2312 {
2313 
2314 	sx_slock(&uma_drain_lock);
2315 	zone_free_item(zones, zone, NULL, SKIP_NONE);
2316 	sx_sunlock(&uma_drain_lock);
2317 }
2318 
2319 void
2320 uma_zwait(uma_zone_t zone)
2321 {
2322 	void *item;
2323 
2324 	item = uma_zalloc_arg(zone, NULL, M_WAITOK);
2325 	uma_zfree(zone, item);
2326 }
2327 
2328 void *
2329 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags)
2330 {
2331 	void *item;
2332 #ifdef SMP
2333 	int i;
2334 
2335 	MPASS(zone->uz_flags & UMA_ZONE_PCPU);
2336 #endif
2337 	item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO);
2338 	if (item != NULL && (flags & M_ZERO)) {
2339 #ifdef SMP
2340 		for (i = 0; i <= mp_maxid; i++)
2341 			bzero(zpcpu_get_cpu(item, i), zone->uz_size);
2342 #else
2343 		bzero(item, zone->uz_size);
2344 #endif
2345 	}
2346 	return (item);
2347 }
2348 
2349 /*
2350  * A stub while both regular and pcpu cases are identical.
2351  */
2352 void
2353 uma_zfree_pcpu_arg(uma_zone_t zone, void *item, void *udata)
2354 {
2355 
2356 #ifdef SMP
2357 	MPASS(zone->uz_flags & UMA_ZONE_PCPU);
2358 #endif
2359 	uma_zfree_arg(zone, item, udata);
2360 }
2361 
2362 /* See uma.h */
2363 void *
2364 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
2365 {
2366 	uma_zone_domain_t zdom;
2367 	uma_bucket_t bucket;
2368 	uma_cache_t cache;
2369 	void *item;
2370 	int cpu, domain, lockfail;
2371 #ifdef INVARIANTS
2372 	bool skipdbg;
2373 #endif
2374 
2375 	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
2376 	random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
2377 
2378 	/* This is the fast path allocation */
2379 	CTR4(KTR_UMA, "uma_zalloc_arg thread %x zone %s(%p) flags %d",
2380 	    curthread, zone->uz_name, zone, flags);
2381 
2382 	if (flags & M_WAITOK) {
2383 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2384 		    "uma_zalloc_arg: zone \"%s\"", zone->uz_name);
2385 	}
2386 	KASSERT((flags & M_EXEC) == 0, ("uma_zalloc_arg: called with M_EXEC"));
2387 	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
2388 	    ("uma_zalloc_arg: called with spinlock or critical section held"));
2389 	if (zone->uz_flags & UMA_ZONE_PCPU)
2390 		KASSERT((flags & M_ZERO) == 0, ("allocating from a pcpu zone "
2391 		    "with M_ZERO passed"));
2392 
2393 #ifdef DEBUG_MEMGUARD
2394 	if (memguard_cmp_zone(zone)) {
2395 		item = memguard_alloc(zone->uz_size, flags);
2396 		if (item != NULL) {
2397 			if (zone->uz_init != NULL &&
2398 			    zone->uz_init(item, zone->uz_size, flags) != 0)
2399 				return (NULL);
2400 			if (zone->uz_ctor != NULL &&
2401 			    zone->uz_ctor(item, zone->uz_size, udata,
2402 			    flags) != 0) {
2403 			    	zone->uz_fini(item, zone->uz_size);
2404 				return (NULL);
2405 			}
2406 			return (item);
2407 		}
2408 		/* This is unfortunate but should not be fatal. */
2409 	}
2410 #endif
2411 	/*
2412 	 * If possible, allocate from the per-CPU cache.  There are two
2413 	 * requirements for safe access to the per-CPU cache: (1) the thread
2414 	 * accessing the cache must not be preempted or yield during access,
2415 	 * and (2) the thread must not migrate CPUs without switching which
2416 	 * cache it accesses.  We rely on a critical section to prevent
2417 	 * preemption and migration.  We release the critical section in
2418 	 * order to acquire the zone mutex if we are unable to allocate from
2419 	 * the current cache; when we re-acquire the critical section, we
2420 	 * must detect and handle migration if it has occurred.
2421 	 */
2422 zalloc_restart:
2423 	critical_enter();
2424 	cpu = curcpu;
2425 	cache = &zone->uz_cpu[cpu];
2426 
2427 zalloc_start:
2428 	bucket = cache->uc_allocbucket;
2429 	if (bucket != NULL && bucket->ub_cnt > 0) {
2430 		bucket->ub_cnt--;
2431 		item = bucket->ub_bucket[bucket->ub_cnt];
2432 #ifdef INVARIANTS
2433 		bucket->ub_bucket[bucket->ub_cnt] = NULL;
2434 #endif
2435 		KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled."));
2436 		cache->uc_allocs++;
2437 		critical_exit();
2438 #ifdef INVARIANTS
2439 		skipdbg = uma_dbg_zskip(zone, item);
2440 #endif
2441 		if (zone->uz_ctor != NULL &&
2442 #ifdef INVARIANTS
2443 		    (!skipdbg || zone->uz_ctor != trash_ctor ||
2444 		    zone->uz_dtor != trash_dtor) &&
2445 #endif
2446 		    zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
2447 			atomic_add_long(&zone->uz_fails, 1);
2448 			zone_free_item(zone, item, udata, SKIP_DTOR);
2449 			return (NULL);
2450 		}
2451 #ifdef INVARIANTS
2452 		if (!skipdbg)
2453 			uma_dbg_alloc(zone, NULL, item);
2454 #endif
2455 		if (flags & M_ZERO)
2456 			uma_zero_item(item, zone);
2457 		return (item);
2458 	}
2459 
2460 	/*
2461 	 * We have run out of items in our alloc bucket.
2462 	 * See if we can switch with our free bucket.
2463 	 */
2464 	bucket = cache->uc_freebucket;
2465 	if (bucket != NULL && bucket->ub_cnt > 0) {
2466 		CTR2(KTR_UMA,
2467 		    "uma_zalloc: zone %s(%p) swapping empty with alloc",
2468 		    zone->uz_name, zone);
2469 		cache->uc_freebucket = cache->uc_allocbucket;
2470 		cache->uc_allocbucket = bucket;
2471 		goto zalloc_start;
2472 	}
2473 
2474 	/*
2475 	 * Discard any empty allocation bucket while we hold no locks.
2476 	 */
2477 	bucket = cache->uc_allocbucket;
2478 	cache->uc_allocbucket = NULL;
2479 	critical_exit();
2480 	if (bucket != NULL)
2481 		bucket_free(zone, bucket, udata);
2482 
2483 	if (zone->uz_flags & UMA_ZONE_NUMA) {
2484 		domain = PCPU_GET(domain);
2485 		if (VM_DOMAIN_EMPTY(domain))
2486 			domain = UMA_ANYDOMAIN;
2487 	} else
2488 		domain = UMA_ANYDOMAIN;
2489 
2490 	/* Short-circuit for zones without buckets and low memory. */
2491 	if (zone->uz_count == 0 || bucketdisable)
2492 		goto zalloc_item;
2493 
2494 	/*
2495 	 * Attempt to retrieve the item from the per-CPU cache has failed, so
2496 	 * we must go back to the zone.  This requires the zone lock, so we
2497 	 * must drop the critical section, then re-acquire it when we go back
2498 	 * to the cache.  Since the critical section is released, we may be
2499 	 * preempted or migrate.  As such, make sure not to maintain any
2500 	 * thread-local state specific to the cache from prior to releasing
2501 	 * the critical section.
2502 	 */
2503 	lockfail = 0;
2504 	if (ZONE_TRYLOCK(zone) == 0) {
2505 		/* Record contention to size the buckets. */
2506 		ZONE_LOCK(zone);
2507 		lockfail = 1;
2508 	}
2509 	critical_enter();
2510 	cpu = curcpu;
2511 	cache = &zone->uz_cpu[cpu];
2512 
2513 	/* See if we lost the race to fill the cache. */
2514 	if (cache->uc_allocbucket != NULL) {
2515 		ZONE_UNLOCK(zone);
2516 		goto zalloc_start;
2517 	}
2518 
2519 	/*
2520 	 * Check the zone's cache of buckets.
2521 	 */
2522 	if (domain == UMA_ANYDOMAIN)
2523 		zdom = &zone->uz_domain[0];
2524 	else
2525 		zdom = &zone->uz_domain[domain];
2526 	if ((bucket = LIST_FIRST(&zdom->uzd_buckets)) != NULL) {
2527 		KASSERT(bucket->ub_cnt != 0,
2528 		    ("uma_zalloc_arg: Returning an empty bucket."));
2529 
2530 		LIST_REMOVE(bucket, ub_link);
2531 		cache->uc_allocbucket = bucket;
2532 		ZONE_UNLOCK(zone);
2533 		goto zalloc_start;
2534 	}
2535 	/* We are no longer associated with this CPU. */
2536 	critical_exit();
2537 
2538 	/*
2539 	 * We bump the uz count when the cache size is insufficient to
2540 	 * handle the working set.
2541 	 */
2542 	if (lockfail && zone->uz_count < BUCKET_MAX)
2543 		zone->uz_count++;
2544 	ZONE_UNLOCK(zone);
2545 
2546 	/*
2547 	 * Now lets just fill a bucket and put it on the free list.  If that
2548 	 * works we'll restart the allocation from the beginning and it
2549 	 * will use the just filled bucket.
2550 	 */
2551 	bucket = zone_alloc_bucket(zone, udata, domain, flags);
2552 	CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p",
2553 	    zone->uz_name, zone, bucket);
2554 	if (bucket != NULL) {
2555 		ZONE_LOCK(zone);
2556 		critical_enter();
2557 		cpu = curcpu;
2558 		cache = &zone->uz_cpu[cpu];
2559 		/*
2560 		 * See if we lost the race or were migrated.  Cache the
2561 		 * initialized bucket to make this less likely or claim
2562 		 * the memory directly.
2563 		 */
2564 		if (cache->uc_allocbucket == NULL &&
2565 		    ((zone->uz_flags & UMA_ZONE_NUMA) == 0 ||
2566 		    domain == PCPU_GET(domain))) {
2567 			cache->uc_allocbucket = bucket;
2568 		} else if ((zone->uz_flags & UMA_ZONE_NOBUCKETCACHE) != 0) {
2569 			critical_exit();
2570 			ZONE_UNLOCK(zone);
2571 			bucket_drain(zone, bucket);
2572 			bucket_free(zone, bucket, udata);
2573 			goto zalloc_restart;
2574 		} else
2575 			LIST_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link);
2576 		ZONE_UNLOCK(zone);
2577 		goto zalloc_start;
2578 	}
2579 
2580 	/*
2581 	 * We may not be able to get a bucket so return an actual item.
2582 	 */
2583 zalloc_item:
2584 	item = zone_alloc_item(zone, udata, domain, flags);
2585 
2586 	return (item);
2587 }
2588 
2589 void *
2590 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags)
2591 {
2592 
2593 	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
2594 	random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
2595 
2596 	/* This is the fast path allocation */
2597 	CTR5(KTR_UMA,
2598 	    "uma_zalloc_domain thread %x zone %s(%p) domain %d flags %d",
2599 	    curthread, zone->uz_name, zone, domain, flags);
2600 
2601 	if (flags & M_WAITOK) {
2602 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2603 		    "uma_zalloc_domain: zone \"%s\"", zone->uz_name);
2604 	}
2605 	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
2606 	    ("uma_zalloc_domain: called with spinlock or critical section held"));
2607 
2608 	return (zone_alloc_item(zone, udata, domain, flags));
2609 }
2610 
2611 /*
2612  * Find a slab with some space.  Prefer slabs that are partially used over those
2613  * that are totally full.  This helps to reduce fragmentation.
2614  *
2615  * If 'rr' is 1, search all domains starting from 'domain'.  Otherwise check
2616  * only 'domain'.
2617  */
2618 static uma_slab_t
2619 keg_first_slab(uma_keg_t keg, int domain, bool rr)
2620 {
2621 	uma_domain_t dom;
2622 	uma_slab_t slab;
2623 	int start;
2624 
2625 	KASSERT(domain >= 0 && domain < vm_ndomains,
2626 	    ("keg_first_slab: domain %d out of range", domain));
2627 
2628 	slab = NULL;
2629 	start = domain;
2630 	do {
2631 		dom = &keg->uk_domain[domain];
2632 		if (!LIST_EMPTY(&dom->ud_part_slab))
2633 			return (LIST_FIRST(&dom->ud_part_slab));
2634 		if (!LIST_EMPTY(&dom->ud_free_slab)) {
2635 			slab = LIST_FIRST(&dom->ud_free_slab);
2636 			LIST_REMOVE(slab, us_link);
2637 			LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
2638 			return (slab);
2639 		}
2640 		if (rr)
2641 			domain = (domain + 1) % vm_ndomains;
2642 	} while (domain != start);
2643 
2644 	return (NULL);
2645 }
2646 
2647 static uma_slab_t
2648 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags)
2649 {
2650 	uint32_t reserve;
2651 
2652 	mtx_assert(&keg->uk_lock, MA_OWNED);
2653 
2654 	reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve;
2655 	if (keg->uk_free <= reserve)
2656 		return (NULL);
2657 	return (keg_first_slab(keg, domain, rr));
2658 }
2659 
2660 static uma_slab_t
2661 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags)
2662 {
2663 	struct vm_domainset_iter di;
2664 	uma_domain_t dom;
2665 	uma_slab_t slab;
2666 	int aflags, domain;
2667 	bool rr;
2668 
2669 restart:
2670 	mtx_assert(&keg->uk_lock, MA_OWNED);
2671 
2672 	/*
2673 	 * Use the keg's policy if upper layers haven't already specified a
2674 	 * domain (as happens with first-touch zones).
2675 	 *
2676 	 * To avoid races we run the iterator with the keg lock held, but that
2677 	 * means that we cannot allow the vm_domainset layer to sleep.  Thus,
2678 	 * clear M_WAITOK and handle low memory conditions locally.
2679 	 */
2680 	rr = rdomain == UMA_ANYDOMAIN;
2681 	if (rr) {
2682 		aflags = (flags & ~M_WAITOK) | M_NOWAIT;
2683 		vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain,
2684 		    &aflags);
2685 	} else {
2686 		aflags = flags;
2687 		domain = rdomain;
2688 	}
2689 
2690 	for (;;) {
2691 		slab = keg_fetch_free_slab(keg, domain, rr, flags);
2692 		if (slab != NULL) {
2693 			MPASS(slab->us_keg == keg);
2694 			return (slab);
2695 		}
2696 
2697 		/*
2698 		 * M_NOVM means don't ask at all!
2699 		 */
2700 		if (flags & M_NOVM)
2701 			break;
2702 
2703 		if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) {
2704 			keg->uk_flags |= UMA_ZFLAG_FULL;
2705 			/*
2706 			 * If this is not a multi-zone, set the FULL bit.
2707 			 * Otherwise slab_multi() takes care of it.
2708 			 */
2709 			if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) {
2710 				zone->uz_flags |= UMA_ZFLAG_FULL;
2711 				zone_log_warning(zone);
2712 				zone_maxaction(zone);
2713 			}
2714 			if (flags & M_NOWAIT)
2715 				return (NULL);
2716 			zone->uz_sleeps++;
2717 			msleep(keg, &keg->uk_lock, PVM, "keglimit", 0);
2718 			continue;
2719 		}
2720 		slab = keg_alloc_slab(keg, zone, domain, aflags);
2721 		/*
2722 		 * If we got a slab here it's safe to mark it partially used
2723 		 * and return.  We assume that the caller is going to remove
2724 		 * at least one item.
2725 		 */
2726 		if (slab) {
2727 			MPASS(slab->us_keg == keg);
2728 			dom = &keg->uk_domain[slab->us_domain];
2729 			LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
2730 			return (slab);
2731 		}
2732 		KEG_LOCK(keg);
2733 		if (rr && vm_domainset_iter_policy(&di, &domain) != 0) {
2734 			if ((flags & M_WAITOK) != 0) {
2735 				KEG_UNLOCK(keg);
2736 				vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask);
2737 				KEG_LOCK(keg);
2738 				goto restart;
2739 			}
2740 			break;
2741 		}
2742 	}
2743 
2744 	/*
2745 	 * We might not have been able to get a slab but another cpu
2746 	 * could have while we were unlocked.  Check again before we
2747 	 * fail.
2748 	 */
2749 	if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL) {
2750 		MPASS(slab->us_keg == keg);
2751 		return (slab);
2752 	}
2753 	return (NULL);
2754 }
2755 
2756 static uma_slab_t
2757 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int domain, int flags)
2758 {
2759 	uma_slab_t slab;
2760 
2761 	if (keg == NULL) {
2762 		keg = zone_first_keg(zone);
2763 		KEG_LOCK(keg);
2764 	}
2765 
2766 	for (;;) {
2767 		slab = keg_fetch_slab(keg, zone, domain, flags);
2768 		if (slab)
2769 			return (slab);
2770 		if (flags & (M_NOWAIT | M_NOVM))
2771 			break;
2772 	}
2773 	KEG_UNLOCK(keg);
2774 	return (NULL);
2775 }
2776 
2777 /*
2778  * uma_zone_fetch_slab_multi:  Fetches a slab from one available keg.  Returns
2779  * with the keg locked.  On NULL no lock is held.
2780  *
2781  * The last pointer is used to seed the search.  It is not required.
2782  */
2783 static uma_slab_t
2784 zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int domain, int rflags)
2785 {
2786 	uma_klink_t klink;
2787 	uma_slab_t slab;
2788 	uma_keg_t keg;
2789 	int flags;
2790 	int empty;
2791 	int full;
2792 
2793 	/*
2794 	 * Don't wait on the first pass.  This will skip limit tests
2795 	 * as well.  We don't want to block if we can find a provider
2796 	 * without blocking.
2797 	 */
2798 	flags = (rflags & ~M_WAITOK) | M_NOWAIT;
2799 	/*
2800 	 * Use the last slab allocated as a hint for where to start
2801 	 * the search.
2802 	 */
2803 	if (last != NULL) {
2804 		slab = keg_fetch_slab(last, zone, domain, flags);
2805 		if (slab)
2806 			return (slab);
2807 		KEG_UNLOCK(last);
2808 	}
2809 	/*
2810 	 * Loop until we have a slab incase of transient failures
2811 	 * while M_WAITOK is specified.  I'm not sure this is 100%
2812 	 * required but we've done it for so long now.
2813 	 */
2814 	for (;;) {
2815 		empty = 0;
2816 		full = 0;
2817 		/*
2818 		 * Search the available kegs for slabs.  Be careful to hold the
2819 		 * correct lock while calling into the keg layer.
2820 		 */
2821 		LIST_FOREACH(klink, &zone->uz_kegs, kl_link) {
2822 			keg = klink->kl_keg;
2823 			KEG_LOCK(keg);
2824 			if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) {
2825 				slab = keg_fetch_slab(keg, zone, domain, flags);
2826 				if (slab)
2827 					return (slab);
2828 			}
2829 			if (keg->uk_flags & UMA_ZFLAG_FULL)
2830 				full++;
2831 			else
2832 				empty++;
2833 			KEG_UNLOCK(keg);
2834 		}
2835 		if (rflags & (M_NOWAIT | M_NOVM))
2836 			break;
2837 		flags = rflags;
2838 		/*
2839 		 * All kegs are full.  XXX We can't atomically check all kegs
2840 		 * and sleep so just sleep for a short period and retry.
2841 		 */
2842 		if (full && !empty) {
2843 			ZONE_LOCK(zone);
2844 			zone->uz_flags |= UMA_ZFLAG_FULL;
2845 			zone->uz_sleeps++;
2846 			zone_log_warning(zone);
2847 			zone_maxaction(zone);
2848 			msleep(zone, zone->uz_lockptr, PVM,
2849 			    "zonelimit", hz/100);
2850 			zone->uz_flags &= ~UMA_ZFLAG_FULL;
2851 			ZONE_UNLOCK(zone);
2852 			continue;
2853 		}
2854 	}
2855 	return (NULL);
2856 }
2857 
2858 static void *
2859 slab_alloc_item(uma_keg_t keg, uma_slab_t slab)
2860 {
2861 	uma_domain_t dom;
2862 	void *item;
2863 	uint8_t freei;
2864 
2865 	MPASS(keg == slab->us_keg);
2866 	mtx_assert(&keg->uk_lock, MA_OWNED);
2867 
2868 	freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1;
2869 	BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free);
2870 	item = slab->us_data + (keg->uk_rsize * freei);
2871 	slab->us_freecount--;
2872 	keg->uk_free--;
2873 
2874 	/* Move this slab to the full list */
2875 	if (slab->us_freecount == 0) {
2876 		LIST_REMOVE(slab, us_link);
2877 		dom = &keg->uk_domain[slab->us_domain];
2878 		LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link);
2879 	}
2880 
2881 	return (item);
2882 }
2883 
2884 static int
2885 zone_import(uma_zone_t zone, void **bucket, int max, int domain, int flags)
2886 {
2887 	uma_slab_t slab;
2888 	uma_keg_t keg;
2889 #ifdef NUMA
2890 	int stripe;
2891 #endif
2892 	int i;
2893 
2894 	slab = NULL;
2895 	keg = NULL;
2896 	/* Try to keep the buckets totally full */
2897 	for (i = 0; i < max; ) {
2898 		if ((slab = zone->uz_slab(zone, keg, domain, flags)) == NULL)
2899 			break;
2900 		keg = slab->us_keg;
2901 #ifdef NUMA
2902 		stripe = howmany(max, vm_ndomains);
2903 #endif
2904 		while (slab->us_freecount && i < max) {
2905 			bucket[i++] = slab_alloc_item(keg, slab);
2906 			if (keg->uk_free <= keg->uk_reserve)
2907 				break;
2908 #ifdef NUMA
2909 			/*
2910 			 * If the zone is striped we pick a new slab for every
2911 			 * N allocations.  Eliminating this conditional will
2912 			 * instead pick a new domain for each bucket rather
2913 			 * than stripe within each bucket.  The current option
2914 			 * produces more fragmentation and requires more cpu
2915 			 * time but yields better distribution.
2916 			 */
2917 			if ((zone->uz_flags & UMA_ZONE_NUMA) == 0 &&
2918 			    vm_ndomains > 1 && --stripe == 0)
2919 				break;
2920 #endif
2921 		}
2922 		/* Don't block if we allocated any successfully. */
2923 		flags &= ~M_WAITOK;
2924 		flags |= M_NOWAIT;
2925 	}
2926 	if (slab != NULL)
2927 		KEG_UNLOCK(keg);
2928 
2929 	return i;
2930 }
2931 
2932 static uma_bucket_t
2933 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags)
2934 {
2935 	uma_bucket_t bucket;
2936 	int max;
2937 
2938 	CTR1(KTR_UMA, "zone_alloc:_bucket domain %d)", domain);
2939 
2940 	/* Don't wait for buckets, preserve caller's NOVM setting. */
2941 	bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM));
2942 	if (bucket == NULL)
2943 		return (NULL);
2944 
2945 	max = MIN(bucket->ub_entries, zone->uz_count);
2946 	bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket,
2947 	    max, domain, flags);
2948 
2949 	/*
2950 	 * Initialize the memory if necessary.
2951 	 */
2952 	if (bucket->ub_cnt != 0 && zone->uz_init != NULL) {
2953 		int i;
2954 
2955 		for (i = 0; i < bucket->ub_cnt; i++)
2956 			if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size,
2957 			    flags) != 0)
2958 				break;
2959 		/*
2960 		 * If we couldn't initialize the whole bucket, put the
2961 		 * rest back onto the freelist.
2962 		 */
2963 		if (i != bucket->ub_cnt) {
2964 			zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i],
2965 			    bucket->ub_cnt - i);
2966 #ifdef INVARIANTS
2967 			bzero(&bucket->ub_bucket[i],
2968 			    sizeof(void *) * (bucket->ub_cnt - i));
2969 #endif
2970 			bucket->ub_cnt = i;
2971 		}
2972 	}
2973 
2974 	if (bucket->ub_cnt == 0) {
2975 		bucket_free(zone, bucket, udata);
2976 		atomic_add_long(&zone->uz_fails, 1);
2977 		return (NULL);
2978 	}
2979 
2980 	return (bucket);
2981 }
2982 
2983 /*
2984  * Allocates a single item from a zone.
2985  *
2986  * Arguments
2987  *	zone   The zone to alloc for.
2988  *	udata  The data to be passed to the constructor.
2989  *	domain The domain to allocate from or UMA_ANYDOMAIN.
2990  *	flags  M_WAITOK, M_NOWAIT, M_ZERO.
2991  *
2992  * Returns
2993  *	NULL if there is no memory and M_NOWAIT is set
2994  *	An item if successful
2995  */
2996 
2997 static void *
2998 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags)
2999 {
3000 	void *item;
3001 #ifdef INVARIANTS
3002 	bool skipdbg;
3003 #endif
3004 
3005 	item = NULL;
3006 
3007 	if (domain != UMA_ANYDOMAIN) {
3008 		/* avoid allocs targeting empty domains */
3009 		if (VM_DOMAIN_EMPTY(domain))
3010 			domain = UMA_ANYDOMAIN;
3011 	}
3012 	if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1)
3013 		goto fail;
3014 	atomic_add_long(&zone->uz_allocs, 1);
3015 
3016 #ifdef INVARIANTS
3017 	skipdbg = uma_dbg_zskip(zone, item);
3018 #endif
3019 	/*
3020 	 * We have to call both the zone's init (not the keg's init)
3021 	 * and the zone's ctor.  This is because the item is going from
3022 	 * a keg slab directly to the user, and the user is expecting it
3023 	 * to be both zone-init'd as well as zone-ctor'd.
3024 	 */
3025 	if (zone->uz_init != NULL) {
3026 		if (zone->uz_init(item, zone->uz_size, flags) != 0) {
3027 			zone_free_item(zone, item, udata, SKIP_FINI);
3028 			goto fail;
3029 		}
3030 	}
3031 	if (zone->uz_ctor != NULL &&
3032 #ifdef INVARIANTS
3033 	    (!skipdbg || zone->uz_ctor != trash_ctor ||
3034 	    zone->uz_dtor != trash_dtor) &&
3035 #endif
3036 	    zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
3037 		zone_free_item(zone, item, udata, SKIP_DTOR);
3038 		goto fail;
3039 	}
3040 #ifdef INVARIANTS
3041 	if (!skipdbg)
3042 		uma_dbg_alloc(zone, NULL, item);
3043 #endif
3044 	if (flags & M_ZERO)
3045 		uma_zero_item(item, zone);
3046 
3047 	CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item,
3048 	    zone->uz_name, zone);
3049 
3050 	return (item);
3051 
3052 fail:
3053 	CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)",
3054 	    zone->uz_name, zone);
3055 	atomic_add_long(&zone->uz_fails, 1);
3056 	return (NULL);
3057 }
3058 
3059 /* See uma.h */
3060 void
3061 uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
3062 {
3063 	uma_cache_t cache;
3064 	uma_bucket_t bucket;
3065 	uma_zone_domain_t zdom;
3066 	int cpu, domain, lockfail;
3067 #ifdef INVARIANTS
3068 	bool skipdbg;
3069 #endif
3070 
3071 	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
3072 	random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
3073 
3074 	CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread,
3075 	    zone->uz_name);
3076 
3077 	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
3078 	    ("uma_zfree_arg: called with spinlock or critical section held"));
3079 
3080         /* uma_zfree(..., NULL) does nothing, to match free(9). */
3081         if (item == NULL)
3082                 return;
3083 #ifdef DEBUG_MEMGUARD
3084 	if (is_memguard_addr(item)) {
3085 		if (zone->uz_dtor != NULL)
3086 			zone->uz_dtor(item, zone->uz_size, udata);
3087 		if (zone->uz_fini != NULL)
3088 			zone->uz_fini(item, zone->uz_size);
3089 		memguard_free(item);
3090 		return;
3091 	}
3092 #endif
3093 #ifdef INVARIANTS
3094 	skipdbg = uma_dbg_zskip(zone, item);
3095 	if (skipdbg == false) {
3096 		if (zone->uz_flags & UMA_ZONE_MALLOC)
3097 			uma_dbg_free(zone, udata, item);
3098 		else
3099 			uma_dbg_free(zone, NULL, item);
3100 	}
3101 	if (zone->uz_dtor != NULL && (!skipdbg ||
3102 	    zone->uz_dtor != trash_dtor || zone->uz_ctor != trash_ctor))
3103 #else
3104 	if (zone->uz_dtor != NULL)
3105 #endif
3106 		zone->uz_dtor(item, zone->uz_size, udata);
3107 
3108 	/*
3109 	 * The race here is acceptable.  If we miss it we'll just have to wait
3110 	 * a little longer for the limits to be reset.
3111 	 */
3112 	if (zone->uz_flags & UMA_ZFLAG_FULL)
3113 		goto zfree_item;
3114 
3115 	/*
3116 	 * If possible, free to the per-CPU cache.  There are two
3117 	 * requirements for safe access to the per-CPU cache: (1) the thread
3118 	 * accessing the cache must not be preempted or yield during access,
3119 	 * and (2) the thread must not migrate CPUs without switching which
3120 	 * cache it accesses.  We rely on a critical section to prevent
3121 	 * preemption and migration.  We release the critical section in
3122 	 * order to acquire the zone mutex if we are unable to free to the
3123 	 * current cache; when we re-acquire the critical section, we must
3124 	 * detect and handle migration if it has occurred.
3125 	 */
3126 zfree_restart:
3127 	critical_enter();
3128 	cpu = curcpu;
3129 	cache = &zone->uz_cpu[cpu];
3130 
3131 zfree_start:
3132 	/*
3133 	 * Try to free into the allocbucket first to give LIFO ordering
3134 	 * for cache-hot datastructures.  Spill over into the freebucket
3135 	 * if necessary.  Alloc will swap them if one runs dry.
3136 	 */
3137 	bucket = cache->uc_allocbucket;
3138 	if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries)
3139 		bucket = cache->uc_freebucket;
3140 	if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) {
3141 		KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL,
3142 		    ("uma_zfree: Freeing to non free bucket index."));
3143 		bucket->ub_bucket[bucket->ub_cnt] = item;
3144 		bucket->ub_cnt++;
3145 		cache->uc_frees++;
3146 		critical_exit();
3147 		return;
3148 	}
3149 
3150 	/*
3151 	 * We must go back the zone, which requires acquiring the zone lock,
3152 	 * which in turn means we must release and re-acquire the critical
3153 	 * section.  Since the critical section is released, we may be
3154 	 * preempted or migrate.  As such, make sure not to maintain any
3155 	 * thread-local state specific to the cache from prior to releasing
3156 	 * the critical section.
3157 	 */
3158 	critical_exit();
3159 	if (zone->uz_count == 0 || bucketdisable)
3160 		goto zfree_item;
3161 
3162 	lockfail = 0;
3163 	if (ZONE_TRYLOCK(zone) == 0) {
3164 		/* Record contention to size the buckets. */
3165 		ZONE_LOCK(zone);
3166 		lockfail = 1;
3167 	}
3168 	critical_enter();
3169 	cpu = curcpu;
3170 	cache = &zone->uz_cpu[cpu];
3171 
3172 	bucket = cache->uc_freebucket;
3173 	if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) {
3174 		ZONE_UNLOCK(zone);
3175 		goto zfree_start;
3176 	}
3177 	cache->uc_freebucket = NULL;
3178 	/* We are no longer associated with this CPU. */
3179 	critical_exit();
3180 
3181 	if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) {
3182 		domain = PCPU_GET(domain);
3183 		if (VM_DOMAIN_EMPTY(domain))
3184 			domain = UMA_ANYDOMAIN;
3185 	} else
3186 		domain = 0;
3187 	zdom = &zone->uz_domain[0];
3188 
3189 	/* Can we throw this on the zone full list? */
3190 	if (bucket != NULL) {
3191 		CTR3(KTR_UMA,
3192 		    "uma_zfree: zone %s(%p) putting bucket %p on free list",
3193 		    zone->uz_name, zone, bucket);
3194 		/* ub_cnt is pointing to the last free item */
3195 		KASSERT(bucket->ub_cnt != 0,
3196 		    ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n"));
3197 		if ((zone->uz_flags & UMA_ZONE_NOBUCKETCACHE) != 0) {
3198 			ZONE_UNLOCK(zone);
3199 			bucket_drain(zone, bucket);
3200 			bucket_free(zone, bucket, udata);
3201 			goto zfree_restart;
3202 		} else
3203 			LIST_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link);
3204 	}
3205 
3206 	/*
3207 	 * We bump the uz count when the cache size is insufficient to
3208 	 * handle the working set.
3209 	 */
3210 	if (lockfail && zone->uz_count < BUCKET_MAX)
3211 		zone->uz_count++;
3212 	ZONE_UNLOCK(zone);
3213 
3214 	bucket = bucket_alloc(zone, udata, M_NOWAIT);
3215 	CTR3(KTR_UMA, "uma_zfree: zone %s(%p) allocated bucket %p",
3216 	    zone->uz_name, zone, bucket);
3217 	if (bucket) {
3218 		critical_enter();
3219 		cpu = curcpu;
3220 		cache = &zone->uz_cpu[cpu];
3221 		if (cache->uc_freebucket == NULL &&
3222 		    ((zone->uz_flags & UMA_ZONE_NUMA) == 0 ||
3223 		    domain == PCPU_GET(domain))) {
3224 			cache->uc_freebucket = bucket;
3225 			goto zfree_start;
3226 		}
3227 		/*
3228 		 * We lost the race, start over.  We have to drop our
3229 		 * critical section to free the bucket.
3230 		 */
3231 		critical_exit();
3232 		bucket_free(zone, bucket, udata);
3233 		goto zfree_restart;
3234 	}
3235 
3236 	/*
3237 	 * If nothing else caught this, we'll just do an internal free.
3238 	 */
3239 zfree_item:
3240 	zone_free_item(zone, item, udata, SKIP_DTOR);
3241 
3242 	return;
3243 }
3244 
3245 void
3246 uma_zfree_domain(uma_zone_t zone, void *item, void *udata)
3247 {
3248 
3249 	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
3250 	random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
3251 
3252 	CTR2(KTR_UMA, "uma_zfree_domain thread %x zone %s", curthread,
3253 	    zone->uz_name);
3254 
3255 	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
3256 	    ("uma_zfree_domain: called with spinlock or critical section held"));
3257 
3258         /* uma_zfree(..., NULL) does nothing, to match free(9). */
3259         if (item == NULL)
3260                 return;
3261 	zone_free_item(zone, item, udata, SKIP_NONE);
3262 }
3263 
3264 static void
3265 slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item)
3266 {
3267 	uma_domain_t dom;
3268 	uint8_t freei;
3269 
3270 	mtx_assert(&keg->uk_lock, MA_OWNED);
3271 	MPASS(keg == slab->us_keg);
3272 
3273 	dom = &keg->uk_domain[slab->us_domain];
3274 
3275 	/* Do we need to remove from any lists? */
3276 	if (slab->us_freecount+1 == keg->uk_ipers) {
3277 		LIST_REMOVE(slab, us_link);
3278 		LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link);
3279 	} else if (slab->us_freecount == 0) {
3280 		LIST_REMOVE(slab, us_link);
3281 		LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
3282 	}
3283 
3284 	/* Slab management. */
3285 	freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
3286 	BIT_SET(SLAB_SETSIZE, freei, &slab->us_free);
3287 	slab->us_freecount++;
3288 
3289 	/* Keg statistics. */
3290 	keg->uk_free++;
3291 }
3292 
3293 static void
3294 zone_release(uma_zone_t zone, void **bucket, int cnt)
3295 {
3296 	void *item;
3297 	uma_slab_t slab;
3298 	uma_keg_t keg;
3299 	uint8_t *mem;
3300 	int clearfull;
3301 	int i;
3302 
3303 	clearfull = 0;
3304 	keg = zone_first_keg(zone);
3305 	KEG_LOCK(keg);
3306 	for (i = 0; i < cnt; i++) {
3307 		item = bucket[i];
3308 		if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) {
3309 			mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
3310 			if (zone->uz_flags & UMA_ZONE_HASH) {
3311 				slab = hash_sfind(&keg->uk_hash, mem);
3312 			} else {
3313 				mem += keg->uk_pgoff;
3314 				slab = (uma_slab_t)mem;
3315 			}
3316 		} else {
3317 			slab = vtoslab((vm_offset_t)item);
3318 			if (slab->us_keg != keg) {
3319 				KEG_UNLOCK(keg);
3320 				keg = slab->us_keg;
3321 				KEG_LOCK(keg);
3322 			}
3323 		}
3324 		slab_free_item(keg, slab, item);
3325 		if (keg->uk_flags & UMA_ZFLAG_FULL) {
3326 			if (keg->uk_pages < keg->uk_maxpages) {
3327 				keg->uk_flags &= ~UMA_ZFLAG_FULL;
3328 				clearfull = 1;
3329 			}
3330 
3331 			/*
3332 			 * We can handle one more allocation. Since we're
3333 			 * clearing ZFLAG_FULL, wake up all procs blocked
3334 			 * on pages. This should be uncommon, so keeping this
3335 			 * simple for now (rather than adding count of blocked
3336 			 * threads etc).
3337 			 */
3338 			wakeup(keg);
3339 		}
3340 	}
3341 	KEG_UNLOCK(keg);
3342 	if (clearfull) {
3343 		ZONE_LOCK(zone);
3344 		zone->uz_flags &= ~UMA_ZFLAG_FULL;
3345 		wakeup(zone);
3346 		ZONE_UNLOCK(zone);
3347 	}
3348 
3349 }
3350 
3351 /*
3352  * Frees a single item to any zone.
3353  *
3354  * Arguments:
3355  *	zone   The zone to free to
3356  *	item   The item we're freeing
3357  *	udata  User supplied data for the dtor
3358  *	skip   Skip dtors and finis
3359  */
3360 static void
3361 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip)
3362 {
3363 #ifdef INVARIANTS
3364 	bool skipdbg;
3365 
3366 	skipdbg = uma_dbg_zskip(zone, item);
3367 	if (skip == SKIP_NONE && !skipdbg) {
3368 		if (zone->uz_flags & UMA_ZONE_MALLOC)
3369 			uma_dbg_free(zone, udata, item);
3370 		else
3371 			uma_dbg_free(zone, NULL, item);
3372 	}
3373 
3374 	if (skip < SKIP_DTOR && zone->uz_dtor != NULL &&
3375 	    (!skipdbg || zone->uz_dtor != trash_dtor ||
3376 	    zone->uz_ctor != trash_ctor))
3377 #else
3378 	if (skip < SKIP_DTOR && zone->uz_dtor != NULL)
3379 #endif
3380 		zone->uz_dtor(item, zone->uz_size, udata);
3381 
3382 	if (skip < SKIP_FINI && zone->uz_fini)
3383 		zone->uz_fini(item, zone->uz_size);
3384 
3385 	atomic_add_long(&zone->uz_frees, 1);
3386 	zone->uz_release(zone->uz_arg, &item, 1);
3387 }
3388 
3389 /* See uma.h */
3390 int
3391 uma_zone_set_max(uma_zone_t zone, int nitems)
3392 {
3393 	uma_keg_t keg;
3394 
3395 	keg = zone_first_keg(zone);
3396 	if (keg == NULL)
3397 		return (0);
3398 	KEG_LOCK(keg);
3399 	keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera;
3400 	if (keg->uk_maxpages * keg->uk_ipers < nitems)
3401 		keg->uk_maxpages += keg->uk_ppera;
3402 	nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers;
3403 	KEG_UNLOCK(keg);
3404 
3405 	return (nitems);
3406 }
3407 
3408 /* See uma.h */
3409 int
3410 uma_zone_get_max(uma_zone_t zone)
3411 {
3412 	int nitems;
3413 	uma_keg_t keg;
3414 
3415 	keg = zone_first_keg(zone);
3416 	if (keg == NULL)
3417 		return (0);
3418 	KEG_LOCK(keg);
3419 	nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers;
3420 	KEG_UNLOCK(keg);
3421 
3422 	return (nitems);
3423 }
3424 
3425 /* See uma.h */
3426 void
3427 uma_zone_set_warning(uma_zone_t zone, const char *warning)
3428 {
3429 
3430 	ZONE_LOCK(zone);
3431 	zone->uz_warning = warning;
3432 	ZONE_UNLOCK(zone);
3433 }
3434 
3435 /* See uma.h */
3436 void
3437 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction)
3438 {
3439 
3440 	ZONE_LOCK(zone);
3441 	TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone);
3442 	ZONE_UNLOCK(zone);
3443 }
3444 
3445 /* See uma.h */
3446 int
3447 uma_zone_get_cur(uma_zone_t zone)
3448 {
3449 	int64_t nitems;
3450 	u_int i;
3451 
3452 	ZONE_LOCK(zone);
3453 	nitems = zone->uz_allocs - zone->uz_frees;
3454 	CPU_FOREACH(i) {
3455 		/*
3456 		 * See the comment in sysctl_vm_zone_stats() regarding the
3457 		 * safety of accessing the per-cpu caches. With the zone lock
3458 		 * held, it is safe, but can potentially result in stale data.
3459 		 */
3460 		nitems += zone->uz_cpu[i].uc_allocs -
3461 		    zone->uz_cpu[i].uc_frees;
3462 	}
3463 	ZONE_UNLOCK(zone);
3464 
3465 	return (nitems < 0 ? 0 : nitems);
3466 }
3467 
3468 /* See uma.h */
3469 void
3470 uma_zone_set_init(uma_zone_t zone, uma_init uminit)
3471 {
3472 	uma_keg_t keg;
3473 
3474 	keg = zone_first_keg(zone);
3475 	KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type"));
3476 	KEG_LOCK(keg);
3477 	KASSERT(keg->uk_pages == 0,
3478 	    ("uma_zone_set_init on non-empty keg"));
3479 	keg->uk_init = uminit;
3480 	KEG_UNLOCK(keg);
3481 }
3482 
3483 /* See uma.h */
3484 void
3485 uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
3486 {
3487 	uma_keg_t keg;
3488 
3489 	keg = zone_first_keg(zone);
3490 	KASSERT(keg != NULL, ("uma_zone_set_fini: Invalid zone type"));
3491 	KEG_LOCK(keg);
3492 	KASSERT(keg->uk_pages == 0,
3493 	    ("uma_zone_set_fini on non-empty keg"));
3494 	keg->uk_fini = fini;
3495 	KEG_UNLOCK(keg);
3496 }
3497 
3498 /* See uma.h */
3499 void
3500 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
3501 {
3502 
3503 	ZONE_LOCK(zone);
3504 	KASSERT(zone_first_keg(zone)->uk_pages == 0,
3505 	    ("uma_zone_set_zinit on non-empty keg"));
3506 	zone->uz_init = zinit;
3507 	ZONE_UNLOCK(zone);
3508 }
3509 
3510 /* See uma.h */
3511 void
3512 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
3513 {
3514 
3515 	ZONE_LOCK(zone);
3516 	KASSERT(zone_first_keg(zone)->uk_pages == 0,
3517 	    ("uma_zone_set_zfini on non-empty keg"));
3518 	zone->uz_fini = zfini;
3519 	ZONE_UNLOCK(zone);
3520 }
3521 
3522 /* See uma.h */
3523 /* XXX uk_freef is not actually used with the zone locked */
3524 void
3525 uma_zone_set_freef(uma_zone_t zone, uma_free freef)
3526 {
3527 	uma_keg_t keg;
3528 
3529 	keg = zone_first_keg(zone);
3530 	KASSERT(keg != NULL, ("uma_zone_set_freef: Invalid zone type"));
3531 	KEG_LOCK(keg);
3532 	keg->uk_freef = freef;
3533 	KEG_UNLOCK(keg);
3534 }
3535 
3536 /* See uma.h */
3537 /* XXX uk_allocf is not actually used with the zone locked */
3538 void
3539 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
3540 {
3541 	uma_keg_t keg;
3542 
3543 	keg = zone_first_keg(zone);
3544 	KEG_LOCK(keg);
3545 	keg->uk_allocf = allocf;
3546 	KEG_UNLOCK(keg);
3547 }
3548 
3549 /* See uma.h */
3550 void
3551 uma_zone_reserve(uma_zone_t zone, int items)
3552 {
3553 	uma_keg_t keg;
3554 
3555 	keg = zone_first_keg(zone);
3556 	if (keg == NULL)
3557 		return;
3558 	KEG_LOCK(keg);
3559 	keg->uk_reserve = items;
3560 	KEG_UNLOCK(keg);
3561 
3562 	return;
3563 }
3564 
3565 /* See uma.h */
3566 int
3567 uma_zone_reserve_kva(uma_zone_t zone, int count)
3568 {
3569 	uma_keg_t keg;
3570 	vm_offset_t kva;
3571 	u_int pages;
3572 
3573 	keg = zone_first_keg(zone);
3574 	if (keg == NULL)
3575 		return (0);
3576 	pages = count / keg->uk_ipers;
3577 
3578 	if (pages * keg->uk_ipers < count)
3579 		pages++;
3580 	pages *= keg->uk_ppera;
3581 
3582 #ifdef UMA_MD_SMALL_ALLOC
3583 	if (keg->uk_ppera > 1) {
3584 #else
3585 	if (1) {
3586 #endif
3587 		kva = kva_alloc((vm_size_t)pages * PAGE_SIZE);
3588 		if (kva == 0)
3589 			return (0);
3590 	} else
3591 		kva = 0;
3592 	KEG_LOCK(keg);
3593 	keg->uk_kva = kva;
3594 	keg->uk_offset = 0;
3595 	keg->uk_maxpages = pages;
3596 #ifdef UMA_MD_SMALL_ALLOC
3597 	keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc;
3598 #else
3599 	keg->uk_allocf = noobj_alloc;
3600 #endif
3601 	keg->uk_flags |= UMA_ZONE_NOFREE;
3602 	KEG_UNLOCK(keg);
3603 
3604 	return (1);
3605 }
3606 
3607 /* See uma.h */
3608 void
3609 uma_prealloc(uma_zone_t zone, int items)
3610 {
3611 	uma_domain_t dom;
3612 	uma_slab_t slab;
3613 	uma_keg_t keg;
3614 	int domain, slabs;
3615 
3616 	keg = zone_first_keg(zone);
3617 	if (keg == NULL)
3618 		return;
3619 	KEG_LOCK(keg);
3620 	slabs = items / keg->uk_ipers;
3621 	domain = 0;
3622 	if (slabs * keg->uk_ipers < items)
3623 		slabs++;
3624 	while (slabs-- > 0) {
3625 		slab = keg_alloc_slab(keg, zone, domain, M_WAITOK);
3626 		if (slab == NULL)
3627 			return;
3628 		MPASS(slab->us_keg == keg);
3629 		dom = &keg->uk_domain[slab->us_domain];
3630 		LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link);
3631 		do {
3632 			domain = (domain + 1) % vm_ndomains;
3633 		} while (VM_DOMAIN_EMPTY(domain));
3634 	}
3635 	KEG_UNLOCK(keg);
3636 }
3637 
3638 /* See uma.h */
3639 static void
3640 uma_reclaim_locked(bool kmem_danger)
3641 {
3642 
3643 	CTR0(KTR_UMA, "UMA: vm asked us to release pages!");
3644 	sx_assert(&uma_drain_lock, SA_XLOCKED);
3645 	bucket_enable();
3646 	zone_foreach(zone_drain);
3647 	if (vm_page_count_min() || kmem_danger) {
3648 		cache_drain_safe(NULL);
3649 		zone_foreach(zone_drain);
3650 	}
3651 	/*
3652 	 * Some slabs may have been freed but this zone will be visited early
3653 	 * we visit again so that we can free pages that are empty once other
3654 	 * zones are drained.  We have to do the same for buckets.
3655 	 */
3656 	zone_drain(slabzone);
3657 	bucket_zone_drain();
3658 }
3659 
3660 void
3661 uma_reclaim(void)
3662 {
3663 
3664 	sx_xlock(&uma_drain_lock);
3665 	uma_reclaim_locked(false);
3666 	sx_xunlock(&uma_drain_lock);
3667 }
3668 
3669 static volatile int uma_reclaim_needed;
3670 
3671 void
3672 uma_reclaim_wakeup(void)
3673 {
3674 
3675 	if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0)
3676 		wakeup(uma_reclaim);
3677 }
3678 
3679 void
3680 uma_reclaim_worker(void *arg __unused)
3681 {
3682 
3683 	for (;;) {
3684 		sx_xlock(&uma_drain_lock);
3685 		while (atomic_load_int(&uma_reclaim_needed) == 0)
3686 			sx_sleep(uma_reclaim, &uma_drain_lock, PVM, "umarcl",
3687 			    hz);
3688 		sx_xunlock(&uma_drain_lock);
3689 		EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM);
3690 		sx_xlock(&uma_drain_lock);
3691 		uma_reclaim_locked(true);
3692 		atomic_store_int(&uma_reclaim_needed, 0);
3693 		sx_xunlock(&uma_drain_lock);
3694 		/* Don't fire more than once per-second. */
3695 		pause("umarclslp", hz);
3696 	}
3697 }
3698 
3699 /* See uma.h */
3700 int
3701 uma_zone_exhausted(uma_zone_t zone)
3702 {
3703 	int full;
3704 
3705 	ZONE_LOCK(zone);
3706 	full = (zone->uz_flags & UMA_ZFLAG_FULL);
3707 	ZONE_UNLOCK(zone);
3708 	return (full);
3709 }
3710 
3711 int
3712 uma_zone_exhausted_nolock(uma_zone_t zone)
3713 {
3714 	return (zone->uz_flags & UMA_ZFLAG_FULL);
3715 }
3716 
3717 void *
3718 uma_large_malloc_domain(vm_size_t size, int domain, int wait)
3719 {
3720 	vm_offset_t addr;
3721 	uma_slab_t slab;
3722 
3723 	if (domain != UMA_ANYDOMAIN) {
3724 		/* avoid allocs targeting empty domains */
3725 		if (VM_DOMAIN_EMPTY(domain))
3726 			domain = UMA_ANYDOMAIN;
3727 	}
3728 	slab = zone_alloc_item(slabzone, NULL, domain, wait);
3729 	if (slab == NULL)
3730 		return (NULL);
3731 	if (domain == UMA_ANYDOMAIN)
3732 		addr = kmem_malloc(size, wait);
3733 	else
3734 		addr = kmem_malloc_domain(domain, size, wait);
3735 	if (addr != 0) {
3736 		vsetslab(addr, slab);
3737 		slab->us_data = (void *)addr;
3738 		slab->us_flags = UMA_SLAB_KERNEL | UMA_SLAB_MALLOC;
3739 		slab->us_size = size;
3740 		slab->us_domain = vm_phys_domain(PHYS_TO_VM_PAGE(
3741 		    pmap_kextract(addr)));
3742 		uma_total_inc(size);
3743 	} else {
3744 		zone_free_item(slabzone, slab, NULL, SKIP_NONE);
3745 	}
3746 
3747 	return ((void *)addr);
3748 }
3749 
3750 void *
3751 uma_large_malloc(vm_size_t size, int wait)
3752 {
3753 
3754 	return uma_large_malloc_domain(size, UMA_ANYDOMAIN, wait);
3755 }
3756 
3757 void
3758 uma_large_free(uma_slab_t slab)
3759 {
3760 
3761 	KASSERT((slab->us_flags & UMA_SLAB_KERNEL) != 0,
3762 	    ("uma_large_free:  Memory not allocated with uma_large_malloc."));
3763 	kmem_free((vm_offset_t)slab->us_data, slab->us_size);
3764 	uma_total_dec(slab->us_size);
3765 	zone_free_item(slabzone, slab, NULL, SKIP_NONE);
3766 }
3767 
3768 static void
3769 uma_zero_item(void *item, uma_zone_t zone)
3770 {
3771 
3772 	bzero(item, zone->uz_size);
3773 }
3774 
3775 unsigned long
3776 uma_limit(void)
3777 {
3778 
3779 	return (uma_kmem_limit);
3780 }
3781 
3782 void
3783 uma_set_limit(unsigned long limit)
3784 {
3785 
3786 	uma_kmem_limit = limit;
3787 }
3788 
3789 unsigned long
3790 uma_size(void)
3791 {
3792 
3793 	return (uma_kmem_total);
3794 }
3795 
3796 long
3797 uma_avail(void)
3798 {
3799 
3800 	return (uma_kmem_limit - uma_kmem_total);
3801 }
3802 
3803 void
3804 uma_print_stats(void)
3805 {
3806 	zone_foreach(uma_print_zone);
3807 }
3808 
3809 static void
3810 slab_print(uma_slab_t slab)
3811 {
3812 	printf("slab: keg %p, data %p, freecount %d\n",
3813 		slab->us_keg, slab->us_data, slab->us_freecount);
3814 }
3815 
3816 static void
3817 cache_print(uma_cache_t cache)
3818 {
3819 	printf("alloc: %p(%d), free: %p(%d)\n",
3820 		cache->uc_allocbucket,
3821 		cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0,
3822 		cache->uc_freebucket,
3823 		cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0);
3824 }
3825 
3826 static void
3827 uma_print_keg(uma_keg_t keg)
3828 {
3829 	uma_domain_t dom;
3830 	uma_slab_t slab;
3831 	int i;
3832 
3833 	printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d "
3834 	    "out %d free %d limit %d\n",
3835 	    keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags,
3836 	    keg->uk_ipers, keg->uk_ppera,
3837 	    (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free,
3838 	    keg->uk_free, (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers);
3839 	for (i = 0; i < vm_ndomains; i++) {
3840 		dom = &keg->uk_domain[i];
3841 		printf("Part slabs:\n");
3842 		LIST_FOREACH(slab, &dom->ud_part_slab, us_link)
3843 			slab_print(slab);
3844 		printf("Free slabs:\n");
3845 		LIST_FOREACH(slab, &dom->ud_free_slab, us_link)
3846 			slab_print(slab);
3847 		printf("Full slabs:\n");
3848 		LIST_FOREACH(slab, &dom->ud_full_slab, us_link)
3849 			slab_print(slab);
3850 	}
3851 }
3852 
3853 void
3854 uma_print_zone(uma_zone_t zone)
3855 {
3856 	uma_cache_t cache;
3857 	uma_klink_t kl;
3858 	int i;
3859 
3860 	printf("zone: %s(%p) size %d flags %#x\n",
3861 	    zone->uz_name, zone, zone->uz_size, zone->uz_flags);
3862 	LIST_FOREACH(kl, &zone->uz_kegs, kl_link)
3863 		uma_print_keg(kl->kl_keg);
3864 	CPU_FOREACH(i) {
3865 		cache = &zone->uz_cpu[i];
3866 		printf("CPU %d Cache:\n", i);
3867 		cache_print(cache);
3868 	}
3869 }
3870 
3871 #ifdef DDB
3872 /*
3873  * Generate statistics across both the zone and its per-cpu cache's.  Return
3874  * desired statistics if the pointer is non-NULL for that statistic.
3875  *
3876  * Note: does not update the zone statistics, as it can't safely clear the
3877  * per-CPU cache statistic.
3878  *
3879  * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't
3880  * safe from off-CPU; we should modify the caches to track this information
3881  * directly so that we don't have to.
3882  */
3883 static void
3884 uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp,
3885     uint64_t *freesp, uint64_t *sleepsp)
3886 {
3887 	uma_cache_t cache;
3888 	uint64_t allocs, frees, sleeps;
3889 	int cachefree, cpu;
3890 
3891 	allocs = frees = sleeps = 0;
3892 	cachefree = 0;
3893 	CPU_FOREACH(cpu) {
3894 		cache = &z->uz_cpu[cpu];
3895 		if (cache->uc_allocbucket != NULL)
3896 			cachefree += cache->uc_allocbucket->ub_cnt;
3897 		if (cache->uc_freebucket != NULL)
3898 			cachefree += cache->uc_freebucket->ub_cnt;
3899 		allocs += cache->uc_allocs;
3900 		frees += cache->uc_frees;
3901 	}
3902 	allocs += z->uz_allocs;
3903 	frees += z->uz_frees;
3904 	sleeps += z->uz_sleeps;
3905 	if (cachefreep != NULL)
3906 		*cachefreep = cachefree;
3907 	if (allocsp != NULL)
3908 		*allocsp = allocs;
3909 	if (freesp != NULL)
3910 		*freesp = frees;
3911 	if (sleepsp != NULL)
3912 		*sleepsp = sleeps;
3913 }
3914 #endif /* DDB */
3915 
3916 static int
3917 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
3918 {
3919 	uma_keg_t kz;
3920 	uma_zone_t z;
3921 	int count;
3922 
3923 	count = 0;
3924 	rw_rlock(&uma_rwlock);
3925 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3926 		LIST_FOREACH(z, &kz->uk_zones, uz_link)
3927 			count++;
3928 	}
3929 	rw_runlock(&uma_rwlock);
3930 	return (sysctl_handle_int(oidp, &count, 0, req));
3931 }
3932 
3933 static int
3934 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
3935 {
3936 	struct uma_stream_header ush;
3937 	struct uma_type_header uth;
3938 	struct uma_percpu_stat *ups;
3939 	uma_bucket_t bucket;
3940 	uma_zone_domain_t zdom;
3941 	struct sbuf sbuf;
3942 	uma_cache_t cache;
3943 	uma_klink_t kl;
3944 	uma_keg_t kz;
3945 	uma_zone_t z;
3946 	uma_keg_t k;
3947 	int count, error, i;
3948 
3949 	error = sysctl_wire_old_buffer(req, 0);
3950 	if (error != 0)
3951 		return (error);
3952 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
3953 	sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL);
3954 	ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK);
3955 
3956 	count = 0;
3957 	rw_rlock(&uma_rwlock);
3958 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3959 		LIST_FOREACH(z, &kz->uk_zones, uz_link)
3960 			count++;
3961 	}
3962 
3963 	/*
3964 	 * Insert stream header.
3965 	 */
3966 	bzero(&ush, sizeof(ush));
3967 	ush.ush_version = UMA_STREAM_VERSION;
3968 	ush.ush_maxcpus = (mp_maxid + 1);
3969 	ush.ush_count = count;
3970 	(void)sbuf_bcat(&sbuf, &ush, sizeof(ush));
3971 
3972 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3973 		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3974 			bzero(&uth, sizeof(uth));
3975 			ZONE_LOCK(z);
3976 			strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
3977 			uth.uth_align = kz->uk_align;
3978 			uth.uth_size = kz->uk_size;
3979 			uth.uth_rsize = kz->uk_rsize;
3980 			LIST_FOREACH(kl, &z->uz_kegs, kl_link) {
3981 				k = kl->kl_keg;
3982 				uth.uth_maxpages += k->uk_maxpages;
3983 				uth.uth_pages += k->uk_pages;
3984 				uth.uth_keg_free += k->uk_free;
3985 				uth.uth_limit = (k->uk_maxpages / k->uk_ppera)
3986 				    * k->uk_ipers;
3987 			}
3988 
3989 			/*
3990 			 * A zone is secondary is it is not the first entry
3991 			 * on the keg's zone list.
3992 			 */
3993 			if ((z->uz_flags & UMA_ZONE_SECONDARY) &&
3994 			    (LIST_FIRST(&kz->uk_zones) != z))
3995 				uth.uth_zone_flags = UTH_ZONE_SECONDARY;
3996 
3997 			for (i = 0; i < vm_ndomains; i++) {
3998 				zdom = &z->uz_domain[i];
3999 				LIST_FOREACH(bucket, &zdom->uzd_buckets,
4000 				    ub_link)
4001 					uth.uth_zone_free += bucket->ub_cnt;
4002 			}
4003 			uth.uth_allocs = z->uz_allocs;
4004 			uth.uth_frees = z->uz_frees;
4005 			uth.uth_fails = z->uz_fails;
4006 			uth.uth_sleeps = z->uz_sleeps;
4007 			/*
4008 			 * While it is not normally safe to access the cache
4009 			 * bucket pointers while not on the CPU that owns the
4010 			 * cache, we only allow the pointers to be exchanged
4011 			 * without the zone lock held, not invalidated, so
4012 			 * accept the possible race associated with bucket
4013 			 * exchange during monitoring.
4014 			 */
4015 			for (i = 0; i < mp_maxid + 1; i++) {
4016 				bzero(&ups[i], sizeof(*ups));
4017 				if (kz->uk_flags & UMA_ZFLAG_INTERNAL ||
4018 				    CPU_ABSENT(i))
4019 					continue;
4020 				cache = &z->uz_cpu[i];
4021 				if (cache->uc_allocbucket != NULL)
4022 					ups[i].ups_cache_free +=
4023 					    cache->uc_allocbucket->ub_cnt;
4024 				if (cache->uc_freebucket != NULL)
4025 					ups[i].ups_cache_free +=
4026 					    cache->uc_freebucket->ub_cnt;
4027 				ups[i].ups_allocs = cache->uc_allocs;
4028 				ups[i].ups_frees = cache->uc_frees;
4029 			}
4030 			ZONE_UNLOCK(z);
4031 			(void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
4032 			for (i = 0; i < mp_maxid + 1; i++)
4033 				(void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i]));
4034 		}
4035 	}
4036 	rw_runlock(&uma_rwlock);
4037 	error = sbuf_finish(&sbuf);
4038 	sbuf_delete(&sbuf);
4039 	free(ups, M_TEMP);
4040 	return (error);
4041 }
4042 
4043 int
4044 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS)
4045 {
4046 	uma_zone_t zone = *(uma_zone_t *)arg1;
4047 	int error, max;
4048 
4049 	max = uma_zone_get_max(zone);
4050 	error = sysctl_handle_int(oidp, &max, 0, req);
4051 	if (error || !req->newptr)
4052 		return (error);
4053 
4054 	uma_zone_set_max(zone, max);
4055 
4056 	return (0);
4057 }
4058 
4059 int
4060 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS)
4061 {
4062 	uma_zone_t zone = *(uma_zone_t *)arg1;
4063 	int cur;
4064 
4065 	cur = uma_zone_get_cur(zone);
4066 	return (sysctl_handle_int(oidp, &cur, 0, req));
4067 }
4068 
4069 #ifdef INVARIANTS
4070 static uma_slab_t
4071 uma_dbg_getslab(uma_zone_t zone, void *item)
4072 {
4073 	uma_slab_t slab;
4074 	uma_keg_t keg;
4075 	uint8_t *mem;
4076 
4077 	mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
4078 	if (zone->uz_flags & UMA_ZONE_VTOSLAB) {
4079 		slab = vtoslab((vm_offset_t)mem);
4080 	} else {
4081 		/*
4082 		 * It is safe to return the slab here even though the
4083 		 * zone is unlocked because the item's allocation state
4084 		 * essentially holds a reference.
4085 		 */
4086 		ZONE_LOCK(zone);
4087 		keg = LIST_FIRST(&zone->uz_kegs)->kl_keg;
4088 		if (keg->uk_flags & UMA_ZONE_HASH)
4089 			slab = hash_sfind(&keg->uk_hash, mem);
4090 		else
4091 			slab = (uma_slab_t)(mem + keg->uk_pgoff);
4092 		ZONE_UNLOCK(zone);
4093 	}
4094 
4095 	return (slab);
4096 }
4097 
4098 static bool
4099 uma_dbg_zskip(uma_zone_t zone, void *mem)
4100 {
4101 	uma_keg_t keg;
4102 
4103 	if ((keg = zone_first_keg(zone)) == NULL)
4104 		return (true);
4105 
4106 	return (uma_dbg_kskip(keg, mem));
4107 }
4108 
4109 static bool
4110 uma_dbg_kskip(uma_keg_t keg, void *mem)
4111 {
4112 	uintptr_t idx;
4113 
4114 	if (dbg_divisor == 0)
4115 		return (true);
4116 
4117 	if (dbg_divisor == 1)
4118 		return (false);
4119 
4120 	idx = (uintptr_t)mem >> PAGE_SHIFT;
4121 	if (keg->uk_ipers > 1) {
4122 		idx *= keg->uk_ipers;
4123 		idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize;
4124 	}
4125 
4126 	if ((idx / dbg_divisor) * dbg_divisor != idx) {
4127 		counter_u64_add(uma_skip_cnt, 1);
4128 		return (true);
4129 	}
4130 	counter_u64_add(uma_dbg_cnt, 1);
4131 
4132 	return (false);
4133 }
4134 
4135 /*
4136  * Set up the slab's freei data such that uma_dbg_free can function.
4137  *
4138  */
4139 static void
4140 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item)
4141 {
4142 	uma_keg_t keg;
4143 	int freei;
4144 
4145 	if (slab == NULL) {
4146 		slab = uma_dbg_getslab(zone, item);
4147 		if (slab == NULL)
4148 			panic("uma: item %p did not belong to zone %s\n",
4149 			    item, zone->uz_name);
4150 	}
4151 	keg = slab->us_keg;
4152 	freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
4153 
4154 	if (BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree))
4155 		panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n",
4156 		    item, zone, zone->uz_name, slab, freei);
4157 	BIT_SET_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree);
4158 
4159 	return;
4160 }
4161 
4162 /*
4163  * Verifies freed addresses.  Checks for alignment, valid slab membership
4164  * and duplicate frees.
4165  *
4166  */
4167 static void
4168 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item)
4169 {
4170 	uma_keg_t keg;
4171 	int freei;
4172 
4173 	if (slab == NULL) {
4174 		slab = uma_dbg_getslab(zone, item);
4175 		if (slab == NULL)
4176 			panic("uma: Freed item %p did not belong to zone %s\n",
4177 			    item, zone->uz_name);
4178 	}
4179 	keg = slab->us_keg;
4180 	freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
4181 
4182 	if (freei >= keg->uk_ipers)
4183 		panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n",
4184 		    item, zone, zone->uz_name, slab, freei);
4185 
4186 	if (((freei * keg->uk_rsize) + slab->us_data) != item)
4187 		panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n",
4188 		    item, zone, zone->uz_name, slab, freei);
4189 
4190 	if (!BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree))
4191 		panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n",
4192 		    item, zone, zone->uz_name, slab, freei);
4193 
4194 	BIT_CLR_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree);
4195 }
4196 #endif /* INVARIANTS */
4197 
4198 #ifdef DDB
4199 DB_SHOW_COMMAND(uma, db_show_uma)
4200 {
4201 	uma_bucket_t bucket;
4202 	uma_keg_t kz;
4203 	uma_zone_t z;
4204 	uma_zone_domain_t zdom;
4205 	uint64_t allocs, frees, sleeps;
4206 	int cachefree, i;
4207 
4208 	db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used",
4209 	    "Free", "Requests", "Sleeps", "Bucket");
4210 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
4211 		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
4212 			if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
4213 				allocs = z->uz_allocs;
4214 				frees = z->uz_frees;
4215 				sleeps = z->uz_sleeps;
4216 				cachefree = 0;
4217 			} else
4218 				uma_zone_sumstat(z, &cachefree, &allocs,
4219 				    &frees, &sleeps);
4220 			if (!((z->uz_flags & UMA_ZONE_SECONDARY) &&
4221 			    (LIST_FIRST(&kz->uk_zones) != z)))
4222 				cachefree += kz->uk_free;
4223 			for (i = 0; i < vm_ndomains; i++) {
4224 				zdom = &z->uz_domain[i];
4225 				LIST_FOREACH(bucket, &zdom->uzd_buckets,
4226 				    ub_link)
4227 					cachefree += bucket->ub_cnt;
4228 			}
4229 			db_printf("%18s %8ju %8jd %8d %12ju %8ju %8u\n",
4230 			    z->uz_name, (uintmax_t)kz->uk_size,
4231 			    (intmax_t)(allocs - frees), cachefree,
4232 			    (uintmax_t)allocs, sleeps, z->uz_count);
4233 			if (db_pager_quit)
4234 				return;
4235 		}
4236 	}
4237 }
4238 
4239 DB_SHOW_COMMAND(umacache, db_show_umacache)
4240 {
4241 	uma_bucket_t bucket;
4242 	uma_zone_t z;
4243 	uma_zone_domain_t zdom;
4244 	uint64_t allocs, frees;
4245 	int cachefree, i;
4246 
4247 	db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free",
4248 	    "Requests", "Bucket");
4249 	LIST_FOREACH(z, &uma_cachezones, uz_link) {
4250 		uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL);
4251 		for (i = 0; i < vm_ndomains; i++) {
4252 			zdom = &z->uz_domain[i];
4253 			LIST_FOREACH(bucket, &zdom->uzd_buckets, ub_link)
4254 				cachefree += bucket->ub_cnt;
4255 		}
4256 		db_printf("%18s %8ju %8jd %8d %12ju %8u\n",
4257 		    z->uz_name, (uintmax_t)z->uz_size,
4258 		    (intmax_t)(allocs - frees), cachefree,
4259 		    (uintmax_t)allocs, z->uz_count);
4260 		if (db_pager_quit)
4261 			return;
4262 	}
4263 }
4264 #endif	/* DDB */
4265