1 /*- 2 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org> 3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 4 * Copyright (c) 2004-2006 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /* 30 * uma_core.c Implementation of the Universal Memory allocator 31 * 32 * This allocator is intended to replace the multitude of similar object caches 33 * in the standard FreeBSD kernel. The intent is to be flexible as well as 34 * effecient. A primary design goal is to return unused memory to the rest of 35 * the system. This will make the system as a whole more flexible due to the 36 * ability to move memory to subsystems which most need it instead of leaving 37 * pools of reserved memory unused. 38 * 39 * The basic ideas stem from similar slab/zone based allocators whose algorithms 40 * are well known. 41 * 42 */ 43 44 /* 45 * TODO: 46 * - Improve memory usage for large allocations 47 * - Investigate cache size adjustments 48 */ 49 50 #include <sys/cdefs.h> 51 __FBSDID("$FreeBSD$"); 52 53 /* I should really use ktr.. */ 54 /* 55 #define UMA_DEBUG 1 56 #define UMA_DEBUG_ALLOC 1 57 #define UMA_DEBUG_ALLOC_1 1 58 */ 59 60 #include "opt_ddb.h" 61 #include "opt_param.h" 62 #include "opt_vm.h" 63 64 #include <sys/param.h> 65 #include <sys/systm.h> 66 #include <sys/bitset.h> 67 #include <sys/kernel.h> 68 #include <sys/types.h> 69 #include <sys/queue.h> 70 #include <sys/malloc.h> 71 #include <sys/ktr.h> 72 #include <sys/lock.h> 73 #include <sys/sysctl.h> 74 #include <sys/mutex.h> 75 #include <sys/proc.h> 76 #include <sys/rwlock.h> 77 #include <sys/sbuf.h> 78 #include <sys/smp.h> 79 #include <sys/vmmeter.h> 80 81 #include <vm/vm.h> 82 #include <vm/vm_object.h> 83 #include <vm/vm_page.h> 84 #include <vm/vm_pageout.h> 85 #include <vm/vm_param.h> 86 #include <vm/vm_map.h> 87 #include <vm/vm_kern.h> 88 #include <vm/vm_extern.h> 89 #include <vm/uma.h> 90 #include <vm/uma_int.h> 91 #include <vm/uma_dbg.h> 92 93 #include <ddb/ddb.h> 94 95 #ifdef DEBUG_MEMGUARD 96 #include <vm/memguard.h> 97 #endif 98 99 /* 100 * This is the zone and keg from which all zones are spawned. The idea is that 101 * even the zone & keg heads are allocated from the allocator, so we use the 102 * bss section to bootstrap us. 103 */ 104 static struct uma_keg masterkeg; 105 static struct uma_zone masterzone_k; 106 static struct uma_zone masterzone_z; 107 static uma_zone_t kegs = &masterzone_k; 108 static uma_zone_t zones = &masterzone_z; 109 110 /* This is the zone from which all of uma_slab_t's are allocated. */ 111 static uma_zone_t slabzone; 112 static uma_zone_t slabrefzone; /* With refcounters (for UMA_ZONE_REFCNT) */ 113 114 /* 115 * The initial hash tables come out of this zone so they can be allocated 116 * prior to malloc coming up. 117 */ 118 static uma_zone_t hashzone; 119 120 /* The boot-time adjusted value for cache line alignment. */ 121 int uma_align_cache = 64 - 1; 122 123 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 124 125 /* 126 * Are we allowed to allocate buckets? 127 */ 128 static int bucketdisable = 1; 129 130 /* Linked list of all kegs in the system */ 131 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 132 133 /* This mutex protects the keg list */ 134 static struct mtx uma_mtx; 135 136 /* Linked list of boot time pages */ 137 static LIST_HEAD(,uma_slab) uma_boot_pages = 138 LIST_HEAD_INITIALIZER(uma_boot_pages); 139 140 /* This mutex protects the boot time pages list */ 141 static struct mtx uma_boot_pages_mtx; 142 143 /* Is the VM done starting up? */ 144 static int booted = 0; 145 #define UMA_STARTUP 1 146 #define UMA_STARTUP2 2 147 148 /* Maximum number of allowed items-per-slab if the slab header is OFFPAGE */ 149 static const u_int uma_max_ipers = SLAB_SETSIZE; 150 151 /* 152 * Only mbuf clusters use ref zones. Just provide enough references 153 * to support the one user. New code should not use the ref facility. 154 */ 155 static const u_int uma_max_ipers_ref = PAGE_SIZE / MCLBYTES; 156 157 /* 158 * This is the handle used to schedule events that need to happen 159 * outside of the allocation fast path. 160 */ 161 static struct callout uma_callout; 162 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 163 164 /* 165 * This structure is passed as the zone ctor arg so that I don't have to create 166 * a special allocation function just for zones. 167 */ 168 struct uma_zctor_args { 169 const char *name; 170 size_t size; 171 uma_ctor ctor; 172 uma_dtor dtor; 173 uma_init uminit; 174 uma_fini fini; 175 uma_keg_t keg; 176 int align; 177 uint32_t flags; 178 }; 179 180 struct uma_kctor_args { 181 uma_zone_t zone; 182 size_t size; 183 uma_init uminit; 184 uma_fini fini; 185 int align; 186 uint32_t flags; 187 }; 188 189 struct uma_bucket_zone { 190 uma_zone_t ubz_zone; 191 char *ubz_name; 192 int ubz_entries; 193 }; 194 195 #define BUCKET_MAX 128 196 197 struct uma_bucket_zone bucket_zones[] = { 198 { NULL, "16 Bucket", 16 }, 199 { NULL, "32 Bucket", 32 }, 200 { NULL, "64 Bucket", 64 }, 201 { NULL, "128 Bucket", 128 }, 202 { NULL, NULL, 0} 203 }; 204 205 #define BUCKET_SHIFT 4 206 #define BUCKET_ZONES ((BUCKET_MAX >> BUCKET_SHIFT) + 1) 207 208 /* 209 * bucket_size[] maps requested bucket sizes to zones that allocate a bucket 210 * of approximately the right size. 211 */ 212 static uint8_t bucket_size[BUCKET_ZONES]; 213 214 /* 215 * Flags and enumerations to be passed to internal functions. 216 */ 217 enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI }; 218 219 #define ZFREE_STATFAIL 0x00000001 /* Update zone failure statistic. */ 220 #define ZFREE_STATFREE 0x00000002 /* Update zone free statistic. */ 221 222 /* Prototypes.. */ 223 224 static void *noobj_alloc(uma_zone_t, int, uint8_t *, int); 225 static void *page_alloc(uma_zone_t, int, uint8_t *, int); 226 static void *startup_alloc(uma_zone_t, int, uint8_t *, int); 227 static void page_free(void *, int, uint8_t); 228 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int); 229 static void cache_drain(uma_zone_t); 230 static void bucket_drain(uma_zone_t, uma_bucket_t); 231 static void bucket_cache_drain(uma_zone_t zone); 232 static int keg_ctor(void *, int, void *, int); 233 static void keg_dtor(void *, int, void *); 234 static int zone_ctor(void *, int, void *, int); 235 static void zone_dtor(void *, int, void *); 236 static int zero_init(void *, int, int); 237 static void keg_small_init(uma_keg_t keg); 238 static void keg_large_init(uma_keg_t keg); 239 static void zone_foreach(void (*zfunc)(uma_zone_t)); 240 static void zone_timeout(uma_zone_t zone); 241 static int hash_alloc(struct uma_hash *); 242 static int hash_expand(struct uma_hash *, struct uma_hash *); 243 static void hash_free(struct uma_hash *hash); 244 static void uma_timeout(void *); 245 static void uma_startup3(void); 246 static void *zone_alloc_item(uma_zone_t, void *, int); 247 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip, 248 int); 249 static void bucket_enable(void); 250 static void bucket_init(void); 251 static uma_bucket_t bucket_alloc(int, int); 252 static void bucket_free(uma_bucket_t); 253 static void bucket_zone_drain(void); 254 static int zone_alloc_bucket(uma_zone_t zone, int flags); 255 static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags); 256 static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags); 257 static void *slab_alloc_item(uma_zone_t zone, uma_slab_t slab); 258 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 259 uma_fini fini, int align, uint32_t flags); 260 static inline void zone_relock(uma_zone_t zone, uma_keg_t keg); 261 static inline void keg_relock(uma_keg_t keg, uma_zone_t zone); 262 263 void uma_print_zone(uma_zone_t); 264 void uma_print_stats(void); 265 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 266 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 267 268 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 269 270 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 271 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 272 273 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 274 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 275 276 static int zone_warnings = 1; 277 TUNABLE_INT("vm.zone_warnings", &zone_warnings); 278 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RW, &zone_warnings, 0, 279 "Warn when UMA zones becomes full"); 280 281 /* 282 * This routine checks to see whether or not it's safe to enable buckets. 283 */ 284 285 static void 286 bucket_enable(void) 287 { 288 bucketdisable = vm_page_count_min(); 289 } 290 291 /* 292 * Initialize bucket_zones, the array of zones of buckets of various sizes. 293 * 294 * For each zone, calculate the memory required for each bucket, consisting 295 * of the header and an array of pointers. Initialize bucket_size[] to point 296 * the range of appropriate bucket sizes at the zone. 297 */ 298 static void 299 bucket_init(void) 300 { 301 struct uma_bucket_zone *ubz; 302 int i; 303 int j; 304 305 for (i = 0, j = 0; bucket_zones[j].ubz_entries != 0; j++) { 306 int size; 307 308 ubz = &bucket_zones[j]; 309 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 310 size += sizeof(void *) * ubz->ubz_entries; 311 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 312 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 313 UMA_ZFLAG_INTERNAL | UMA_ZFLAG_BUCKET); 314 for (; i <= ubz->ubz_entries; i += (1 << BUCKET_SHIFT)) 315 bucket_size[i >> BUCKET_SHIFT] = j; 316 } 317 } 318 319 /* 320 * Given a desired number of entries for a bucket, return the zone from which 321 * to allocate the bucket. 322 */ 323 static struct uma_bucket_zone * 324 bucket_zone_lookup(int entries) 325 { 326 int idx; 327 328 idx = howmany(entries, 1 << BUCKET_SHIFT); 329 return (&bucket_zones[bucket_size[idx]]); 330 } 331 332 static uma_bucket_t 333 bucket_alloc(int entries, int bflags) 334 { 335 struct uma_bucket_zone *ubz; 336 uma_bucket_t bucket; 337 338 /* 339 * This is to stop us from allocating per cpu buckets while we're 340 * running out of vm.boot_pages. Otherwise, we would exhaust the 341 * boot pages. This also prevents us from allocating buckets in 342 * low memory situations. 343 */ 344 if (bucketdisable) 345 return (NULL); 346 347 ubz = bucket_zone_lookup(entries); 348 bucket = zone_alloc_item(ubz->ubz_zone, NULL, bflags); 349 if (bucket) { 350 #ifdef INVARIANTS 351 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 352 #endif 353 bucket->ub_cnt = 0; 354 bucket->ub_entries = ubz->ubz_entries; 355 } 356 357 return (bucket); 358 } 359 360 static void 361 bucket_free(uma_bucket_t bucket) 362 { 363 struct uma_bucket_zone *ubz; 364 365 ubz = bucket_zone_lookup(bucket->ub_entries); 366 zone_free_item(ubz->ubz_zone, bucket, NULL, SKIP_NONE, 367 ZFREE_STATFREE); 368 } 369 370 static void 371 bucket_zone_drain(void) 372 { 373 struct uma_bucket_zone *ubz; 374 375 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 376 zone_drain(ubz->ubz_zone); 377 } 378 379 static void 380 zone_log_warning(uma_zone_t zone) 381 { 382 static const struct timeval warninterval = { 300, 0 }; 383 384 if (!zone_warnings || zone->uz_warning == NULL) 385 return; 386 387 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 388 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 389 } 390 391 static inline uma_keg_t 392 zone_first_keg(uma_zone_t zone) 393 { 394 395 return (LIST_FIRST(&zone->uz_kegs)->kl_keg); 396 } 397 398 static void 399 zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t)) 400 { 401 uma_klink_t klink; 402 403 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) 404 kegfn(klink->kl_keg); 405 } 406 407 /* 408 * Routine called by timeout which is used to fire off some time interval 409 * based calculations. (stats, hash size, etc.) 410 * 411 * Arguments: 412 * arg Unused 413 * 414 * Returns: 415 * Nothing 416 */ 417 static void 418 uma_timeout(void *unused) 419 { 420 bucket_enable(); 421 zone_foreach(zone_timeout); 422 423 /* Reschedule this event */ 424 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 425 } 426 427 /* 428 * Routine to perform timeout driven calculations. This expands the 429 * hashes and does per cpu statistics aggregation. 430 * 431 * Returns nothing. 432 */ 433 static void 434 keg_timeout(uma_keg_t keg) 435 { 436 437 KEG_LOCK(keg); 438 /* 439 * Expand the keg hash table. 440 * 441 * This is done if the number of slabs is larger than the hash size. 442 * What I'm trying to do here is completely reduce collisions. This 443 * may be a little aggressive. Should I allow for two collisions max? 444 */ 445 if (keg->uk_flags & UMA_ZONE_HASH && 446 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) { 447 struct uma_hash newhash; 448 struct uma_hash oldhash; 449 int ret; 450 451 /* 452 * This is so involved because allocating and freeing 453 * while the keg lock is held will lead to deadlock. 454 * I have to do everything in stages and check for 455 * races. 456 */ 457 newhash = keg->uk_hash; 458 KEG_UNLOCK(keg); 459 ret = hash_alloc(&newhash); 460 KEG_LOCK(keg); 461 if (ret) { 462 if (hash_expand(&keg->uk_hash, &newhash)) { 463 oldhash = keg->uk_hash; 464 keg->uk_hash = newhash; 465 } else 466 oldhash = newhash; 467 468 KEG_UNLOCK(keg); 469 hash_free(&oldhash); 470 KEG_LOCK(keg); 471 } 472 } 473 KEG_UNLOCK(keg); 474 } 475 476 static void 477 zone_timeout(uma_zone_t zone) 478 { 479 480 zone_foreach_keg(zone, &keg_timeout); 481 } 482 483 /* 484 * Allocate and zero fill the next sized hash table from the appropriate 485 * backing store. 486 * 487 * Arguments: 488 * hash A new hash structure with the old hash size in uh_hashsize 489 * 490 * Returns: 491 * 1 on sucess and 0 on failure. 492 */ 493 static int 494 hash_alloc(struct uma_hash *hash) 495 { 496 int oldsize; 497 int alloc; 498 499 oldsize = hash->uh_hashsize; 500 501 /* We're just going to go to a power of two greater */ 502 if (oldsize) { 503 hash->uh_hashsize = oldsize * 2; 504 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 505 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 506 M_UMAHASH, M_NOWAIT); 507 } else { 508 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 509 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 510 M_WAITOK); 511 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 512 } 513 if (hash->uh_slab_hash) { 514 bzero(hash->uh_slab_hash, alloc); 515 hash->uh_hashmask = hash->uh_hashsize - 1; 516 return (1); 517 } 518 519 return (0); 520 } 521 522 /* 523 * Expands the hash table for HASH zones. This is done from zone_timeout 524 * to reduce collisions. This must not be done in the regular allocation 525 * path, otherwise, we can recurse on the vm while allocating pages. 526 * 527 * Arguments: 528 * oldhash The hash you want to expand 529 * newhash The hash structure for the new table 530 * 531 * Returns: 532 * Nothing 533 * 534 * Discussion: 535 */ 536 static int 537 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 538 { 539 uma_slab_t slab; 540 int hval; 541 int i; 542 543 if (!newhash->uh_slab_hash) 544 return (0); 545 546 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 547 return (0); 548 549 /* 550 * I need to investigate hash algorithms for resizing without a 551 * full rehash. 552 */ 553 554 for (i = 0; i < oldhash->uh_hashsize; i++) 555 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) { 556 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]); 557 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink); 558 hval = UMA_HASH(newhash, slab->us_data); 559 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 560 slab, us_hlink); 561 } 562 563 return (1); 564 } 565 566 /* 567 * Free the hash bucket to the appropriate backing store. 568 * 569 * Arguments: 570 * slab_hash The hash bucket we're freeing 571 * hashsize The number of entries in that hash bucket 572 * 573 * Returns: 574 * Nothing 575 */ 576 static void 577 hash_free(struct uma_hash *hash) 578 { 579 if (hash->uh_slab_hash == NULL) 580 return; 581 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 582 zone_free_item(hashzone, 583 hash->uh_slab_hash, NULL, SKIP_NONE, ZFREE_STATFREE); 584 else 585 free(hash->uh_slab_hash, M_UMAHASH); 586 } 587 588 /* 589 * Frees all outstanding items in a bucket 590 * 591 * Arguments: 592 * zone The zone to free to, must be unlocked. 593 * bucket The free/alloc bucket with items, cpu queue must be locked. 594 * 595 * Returns: 596 * Nothing 597 */ 598 599 static void 600 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 601 { 602 void *item; 603 604 if (bucket == NULL) 605 return; 606 607 while (bucket->ub_cnt > 0) { 608 bucket->ub_cnt--; 609 item = bucket->ub_bucket[bucket->ub_cnt]; 610 #ifdef INVARIANTS 611 bucket->ub_bucket[bucket->ub_cnt] = NULL; 612 KASSERT(item != NULL, 613 ("bucket_drain: botched ptr, item is NULL")); 614 #endif 615 zone_free_item(zone, item, NULL, SKIP_DTOR, 0); 616 } 617 } 618 619 /* 620 * Drains the per cpu caches for a zone. 621 * 622 * NOTE: This may only be called while the zone is being turn down, and not 623 * during normal operation. This is necessary in order that we do not have 624 * to migrate CPUs to drain the per-CPU caches. 625 * 626 * Arguments: 627 * zone The zone to drain, must be unlocked. 628 * 629 * Returns: 630 * Nothing 631 */ 632 static void 633 cache_drain(uma_zone_t zone) 634 { 635 uma_cache_t cache; 636 int cpu; 637 638 /* 639 * XXX: It is safe to not lock the per-CPU caches, because we're 640 * tearing down the zone anyway. I.e., there will be no further use 641 * of the caches at this point. 642 * 643 * XXX: It would good to be able to assert that the zone is being 644 * torn down to prevent improper use of cache_drain(). 645 * 646 * XXX: We lock the zone before passing into bucket_cache_drain() as 647 * it is used elsewhere. Should the tear-down path be made special 648 * there in some form? 649 */ 650 CPU_FOREACH(cpu) { 651 cache = &zone->uz_cpu[cpu]; 652 bucket_drain(zone, cache->uc_allocbucket); 653 bucket_drain(zone, cache->uc_freebucket); 654 if (cache->uc_allocbucket != NULL) 655 bucket_free(cache->uc_allocbucket); 656 if (cache->uc_freebucket != NULL) 657 bucket_free(cache->uc_freebucket); 658 cache->uc_allocbucket = cache->uc_freebucket = NULL; 659 } 660 ZONE_LOCK(zone); 661 bucket_cache_drain(zone); 662 ZONE_UNLOCK(zone); 663 } 664 665 /* 666 * Drain the cached buckets from a zone. Expects a locked zone on entry. 667 */ 668 static void 669 bucket_cache_drain(uma_zone_t zone) 670 { 671 uma_bucket_t bucket; 672 673 /* 674 * Drain the bucket queues and free the buckets, we just keep two per 675 * cpu (alloc/free). 676 */ 677 while ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) { 678 LIST_REMOVE(bucket, ub_link); 679 ZONE_UNLOCK(zone); 680 bucket_drain(zone, bucket); 681 bucket_free(bucket); 682 ZONE_LOCK(zone); 683 } 684 685 /* Now we do the free queue.. */ 686 while ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) { 687 LIST_REMOVE(bucket, ub_link); 688 bucket_free(bucket); 689 } 690 } 691 692 /* 693 * Frees pages from a keg back to the system. This is done on demand from 694 * the pageout daemon. 695 * 696 * Returns nothing. 697 */ 698 static void 699 keg_drain(uma_keg_t keg) 700 { 701 struct slabhead freeslabs = { 0 }; 702 uma_slab_t slab; 703 uma_slab_t n; 704 uint8_t flags; 705 uint8_t *mem; 706 int i; 707 708 /* 709 * We don't want to take pages from statically allocated kegs at this 710 * time 711 */ 712 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 713 return; 714 715 #ifdef UMA_DEBUG 716 printf("%s free items: %u\n", keg->uk_name, keg->uk_free); 717 #endif 718 KEG_LOCK(keg); 719 if (keg->uk_free == 0) 720 goto finished; 721 722 slab = LIST_FIRST(&keg->uk_free_slab); 723 while (slab) { 724 n = LIST_NEXT(slab, us_link); 725 726 /* We have no where to free these to */ 727 if (slab->us_flags & UMA_SLAB_BOOT) { 728 slab = n; 729 continue; 730 } 731 732 LIST_REMOVE(slab, us_link); 733 keg->uk_pages -= keg->uk_ppera; 734 keg->uk_free -= keg->uk_ipers; 735 736 if (keg->uk_flags & UMA_ZONE_HASH) 737 UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data); 738 739 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 740 741 slab = n; 742 } 743 finished: 744 KEG_UNLOCK(keg); 745 746 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 747 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 748 if (keg->uk_fini) 749 for (i = 0; i < keg->uk_ipers; i++) 750 keg->uk_fini( 751 slab->us_data + (keg->uk_rsize * i), 752 keg->uk_size); 753 flags = slab->us_flags; 754 mem = slab->us_data; 755 756 if (keg->uk_flags & UMA_ZONE_VTOSLAB) { 757 vm_object_t obj; 758 759 if (flags & UMA_SLAB_KMEM) 760 obj = kmem_object; 761 else if (flags & UMA_SLAB_KERNEL) 762 obj = kernel_object; 763 else 764 obj = NULL; 765 for (i = 0; i < keg->uk_ppera; i++) 766 vsetobj((vm_offset_t)mem + (i * PAGE_SIZE), 767 obj); 768 } 769 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 770 zone_free_item(keg->uk_slabzone, slab, NULL, 771 SKIP_NONE, ZFREE_STATFREE); 772 #ifdef UMA_DEBUG 773 printf("%s: Returning %d bytes.\n", 774 keg->uk_name, PAGE_SIZE * keg->uk_ppera); 775 #endif 776 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 777 } 778 } 779 780 static void 781 zone_drain_wait(uma_zone_t zone, int waitok) 782 { 783 784 /* 785 * Set draining to interlock with zone_dtor() so we can release our 786 * locks as we go. Only dtor() should do a WAITOK call since it 787 * is the only call that knows the structure will still be available 788 * when it wakes up. 789 */ 790 ZONE_LOCK(zone); 791 while (zone->uz_flags & UMA_ZFLAG_DRAINING) { 792 if (waitok == M_NOWAIT) 793 goto out; 794 mtx_unlock(&uma_mtx); 795 msleep(zone, zone->uz_lock, PVM, "zonedrain", 1); 796 mtx_lock(&uma_mtx); 797 } 798 zone->uz_flags |= UMA_ZFLAG_DRAINING; 799 bucket_cache_drain(zone); 800 ZONE_UNLOCK(zone); 801 /* 802 * The DRAINING flag protects us from being freed while 803 * we're running. Normally the uma_mtx would protect us but we 804 * must be able to release and acquire the right lock for each keg. 805 */ 806 zone_foreach_keg(zone, &keg_drain); 807 ZONE_LOCK(zone); 808 zone->uz_flags &= ~UMA_ZFLAG_DRAINING; 809 wakeup(zone); 810 out: 811 ZONE_UNLOCK(zone); 812 } 813 814 void 815 zone_drain(uma_zone_t zone) 816 { 817 818 zone_drain_wait(zone, M_NOWAIT); 819 } 820 821 /* 822 * Allocate a new slab for a keg. This does not insert the slab onto a list. 823 * 824 * Arguments: 825 * wait Shall we wait? 826 * 827 * Returns: 828 * The slab that was allocated or NULL if there is no memory and the 829 * caller specified M_NOWAIT. 830 */ 831 static uma_slab_t 832 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait) 833 { 834 uma_slabrefcnt_t slabref; 835 uma_alloc allocf; 836 uma_slab_t slab; 837 uint8_t *mem; 838 uint8_t flags; 839 int i; 840 841 mtx_assert(&keg->uk_lock, MA_OWNED); 842 slab = NULL; 843 844 #ifdef UMA_DEBUG 845 printf("slab_zalloc: Allocating a new slab for %s\n", keg->uk_name); 846 #endif 847 allocf = keg->uk_allocf; 848 KEG_UNLOCK(keg); 849 850 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 851 slab = zone_alloc_item(keg->uk_slabzone, NULL, wait); 852 if (slab == NULL) { 853 KEG_LOCK(keg); 854 return NULL; 855 } 856 } 857 858 /* 859 * This reproduces the old vm_zone behavior of zero filling pages the 860 * first time they are added to a zone. 861 * 862 * Malloced items are zeroed in uma_zalloc. 863 */ 864 865 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 866 wait |= M_ZERO; 867 else 868 wait &= ~M_ZERO; 869 870 if (keg->uk_flags & UMA_ZONE_NODUMP) 871 wait |= M_NODUMP; 872 873 /* zone is passed for legacy reasons. */ 874 mem = allocf(zone, keg->uk_ppera * PAGE_SIZE, &flags, wait); 875 if (mem == NULL) { 876 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 877 zone_free_item(keg->uk_slabzone, slab, NULL, 878 SKIP_NONE, ZFREE_STATFREE); 879 KEG_LOCK(keg); 880 return (NULL); 881 } 882 883 /* Point the slab into the allocated memory */ 884 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 885 slab = (uma_slab_t )(mem + keg->uk_pgoff); 886 887 if (keg->uk_flags & UMA_ZONE_VTOSLAB) 888 for (i = 0; i < keg->uk_ppera; i++) 889 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 890 891 slab->us_keg = keg; 892 slab->us_data = mem; 893 slab->us_freecount = keg->uk_ipers; 894 slab->us_flags = flags; 895 BIT_FILL(SLAB_SETSIZE, &slab->us_free); 896 #ifdef INVARIANTS 897 BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree); 898 #endif 899 if (keg->uk_flags & UMA_ZONE_REFCNT) { 900 slabref = (uma_slabrefcnt_t)slab; 901 for (i = 0; i < keg->uk_ipers; i++) 902 slabref->us_refcnt[i] = 0; 903 } 904 905 if (keg->uk_init != NULL) { 906 for (i = 0; i < keg->uk_ipers; i++) 907 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 908 keg->uk_size, wait) != 0) 909 break; 910 if (i != keg->uk_ipers) { 911 if (keg->uk_fini != NULL) { 912 for (i--; i > -1; i--) 913 keg->uk_fini(slab->us_data + 914 (keg->uk_rsize * i), 915 keg->uk_size); 916 } 917 if (keg->uk_flags & UMA_ZONE_VTOSLAB) { 918 vm_object_t obj; 919 920 if (flags & UMA_SLAB_KMEM) 921 obj = kmem_object; 922 else if (flags & UMA_SLAB_KERNEL) 923 obj = kernel_object; 924 else 925 obj = NULL; 926 for (i = 0; i < keg->uk_ppera; i++) 927 vsetobj((vm_offset_t)mem + 928 (i * PAGE_SIZE), obj); 929 } 930 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 931 zone_free_item(keg->uk_slabzone, slab, 932 NULL, SKIP_NONE, ZFREE_STATFREE); 933 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, 934 flags); 935 KEG_LOCK(keg); 936 return (NULL); 937 } 938 } 939 KEG_LOCK(keg); 940 941 if (keg->uk_flags & UMA_ZONE_HASH) 942 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 943 944 keg->uk_pages += keg->uk_ppera; 945 keg->uk_free += keg->uk_ipers; 946 947 return (slab); 948 } 949 950 /* 951 * This function is intended to be used early on in place of page_alloc() so 952 * that we may use the boot time page cache to satisfy allocations before 953 * the VM is ready. 954 */ 955 static void * 956 startup_alloc(uma_zone_t zone, int bytes, uint8_t *pflag, int wait) 957 { 958 uma_keg_t keg; 959 uma_slab_t tmps; 960 int pages, check_pages; 961 962 keg = zone_first_keg(zone); 963 pages = howmany(bytes, PAGE_SIZE); 964 check_pages = pages - 1; 965 KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n")); 966 967 /* 968 * Check our small startup cache to see if it has pages remaining. 969 */ 970 mtx_lock(&uma_boot_pages_mtx); 971 972 /* First check if we have enough room. */ 973 tmps = LIST_FIRST(&uma_boot_pages); 974 while (tmps != NULL && check_pages-- > 0) 975 tmps = LIST_NEXT(tmps, us_link); 976 if (tmps != NULL) { 977 /* 978 * It's ok to lose tmps references. The last one will 979 * have tmps->us_data pointing to the start address of 980 * "pages" contiguous pages of memory. 981 */ 982 while (pages-- > 0) { 983 tmps = LIST_FIRST(&uma_boot_pages); 984 LIST_REMOVE(tmps, us_link); 985 } 986 mtx_unlock(&uma_boot_pages_mtx); 987 *pflag = tmps->us_flags; 988 return (tmps->us_data); 989 } 990 mtx_unlock(&uma_boot_pages_mtx); 991 if (booted < UMA_STARTUP2) 992 panic("UMA: Increase vm.boot_pages"); 993 /* 994 * Now that we've booted reset these users to their real allocator. 995 */ 996 #ifdef UMA_MD_SMALL_ALLOC 997 keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc; 998 #else 999 keg->uk_allocf = page_alloc; 1000 #endif 1001 return keg->uk_allocf(zone, bytes, pflag, wait); 1002 } 1003 1004 /* 1005 * Allocates a number of pages from the system 1006 * 1007 * Arguments: 1008 * bytes The number of bytes requested 1009 * wait Shall we wait? 1010 * 1011 * Returns: 1012 * A pointer to the alloced memory or possibly 1013 * NULL if M_NOWAIT is set. 1014 */ 1015 static void * 1016 page_alloc(uma_zone_t zone, int bytes, uint8_t *pflag, int wait) 1017 { 1018 void *p; /* Returned page */ 1019 1020 *pflag = UMA_SLAB_KMEM; 1021 p = (void *) kmem_malloc(kmem_map, bytes, wait); 1022 1023 return (p); 1024 } 1025 1026 /* 1027 * Allocates a number of pages from within an object 1028 * 1029 * Arguments: 1030 * bytes The number of bytes requested 1031 * wait Shall we wait? 1032 * 1033 * Returns: 1034 * A pointer to the alloced memory or possibly 1035 * NULL if M_NOWAIT is set. 1036 */ 1037 static void * 1038 noobj_alloc(uma_zone_t zone, int bytes, uint8_t *flags, int wait) 1039 { 1040 TAILQ_HEAD(, vm_page) alloctail; 1041 u_long npages; 1042 vm_offset_t retkva, zkva; 1043 vm_page_t p, p_next; 1044 uma_keg_t keg; 1045 1046 TAILQ_INIT(&alloctail); 1047 keg = zone_first_keg(zone); 1048 1049 npages = howmany(bytes, PAGE_SIZE); 1050 while (npages > 0) { 1051 p = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT | 1052 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ); 1053 if (p != NULL) { 1054 /* 1055 * Since the page does not belong to an object, its 1056 * listq is unused. 1057 */ 1058 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1059 npages--; 1060 continue; 1061 } 1062 if (wait & M_WAITOK) { 1063 VM_WAIT; 1064 continue; 1065 } 1066 1067 /* 1068 * Page allocation failed, free intermediate pages and 1069 * exit. 1070 */ 1071 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1072 vm_page_unwire(p, 0); 1073 vm_page_free(p); 1074 } 1075 return (NULL); 1076 } 1077 *flags = UMA_SLAB_PRIV; 1078 zkva = keg->uk_kva + 1079 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1080 retkva = zkva; 1081 TAILQ_FOREACH(p, &alloctail, listq) { 1082 pmap_qenter(zkva, &p, 1); 1083 zkva += PAGE_SIZE; 1084 } 1085 1086 return ((void *)retkva); 1087 } 1088 1089 /* 1090 * Frees a number of pages to the system 1091 * 1092 * Arguments: 1093 * mem A pointer to the memory to be freed 1094 * size The size of the memory being freed 1095 * flags The original p->us_flags field 1096 * 1097 * Returns: 1098 * Nothing 1099 */ 1100 static void 1101 page_free(void *mem, int size, uint8_t flags) 1102 { 1103 vm_map_t map; 1104 1105 if (flags & UMA_SLAB_KMEM) 1106 map = kmem_map; 1107 else if (flags & UMA_SLAB_KERNEL) 1108 map = kernel_map; 1109 else 1110 panic("UMA: page_free used with invalid flags %d", flags); 1111 1112 kmem_free(map, (vm_offset_t)mem, size); 1113 } 1114 1115 /* 1116 * Zero fill initializer 1117 * 1118 * Arguments/Returns follow uma_init specifications 1119 */ 1120 static int 1121 zero_init(void *mem, int size, int flags) 1122 { 1123 bzero(mem, size); 1124 return (0); 1125 } 1126 1127 /* 1128 * Finish creating a small uma keg. This calculates ipers, and the keg size. 1129 * 1130 * Arguments 1131 * keg The zone we should initialize 1132 * 1133 * Returns 1134 * Nothing 1135 */ 1136 static void 1137 keg_small_init(uma_keg_t keg) 1138 { 1139 u_int rsize; 1140 u_int memused; 1141 u_int wastedspace; 1142 u_int shsize; 1143 1144 if (keg->uk_flags & UMA_ZONE_PCPU) { 1145 KASSERT(mp_ncpus > 0, ("%s: ncpus %d\n", __func__, mp_ncpus)); 1146 keg->uk_slabsize = sizeof(struct pcpu); 1147 keg->uk_ppera = howmany(mp_ncpus * sizeof(struct pcpu), 1148 PAGE_SIZE); 1149 } else { 1150 keg->uk_slabsize = UMA_SLAB_SIZE; 1151 keg->uk_ppera = 1; 1152 } 1153 1154 /* 1155 * Calculate the size of each allocation (rsize) according to 1156 * alignment. If the requested size is smaller than we have 1157 * allocation bits for we round it up. 1158 */ 1159 rsize = keg->uk_size; 1160 if (rsize < keg->uk_slabsize / SLAB_SETSIZE) 1161 rsize = keg->uk_slabsize / SLAB_SETSIZE; 1162 if (rsize & keg->uk_align) 1163 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1164 keg->uk_rsize = rsize; 1165 1166 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 1167 keg->uk_rsize < sizeof(struct pcpu), 1168 ("%s: size %u too large", __func__, keg->uk_rsize)); 1169 1170 if (keg->uk_flags & UMA_ZONE_REFCNT) 1171 rsize += sizeof(uint32_t); 1172 1173 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1174 shsize = 0; 1175 else 1176 shsize = sizeof(struct uma_slab); 1177 1178 keg->uk_ipers = (keg->uk_slabsize - shsize) / rsize; 1179 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1180 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1181 1182 memused = keg->uk_ipers * rsize + shsize; 1183 wastedspace = keg->uk_slabsize - memused; 1184 1185 /* 1186 * We can't do OFFPAGE if we're internal or if we've been 1187 * asked to not go to the VM for buckets. If we do this we 1188 * may end up going to the VM (kmem_map) for slabs which we 1189 * do not want to do if we're UMA_ZFLAG_CACHEONLY as a 1190 * result of UMA_ZONE_VM, which clearly forbids it. 1191 */ 1192 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1193 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1194 return; 1195 1196 /* 1197 * See if using an OFFPAGE slab will limit our waste. Only do 1198 * this if it permits more items per-slab. 1199 * 1200 * XXX We could try growing slabsize to limit max waste as well. 1201 * Historically this was not done because the VM could not 1202 * efficiently handle contiguous allocations. 1203 */ 1204 if ((wastedspace >= keg->uk_slabsize / UMA_MAX_WASTE) && 1205 (keg->uk_ipers < (keg->uk_slabsize / keg->uk_rsize))) { 1206 keg->uk_ipers = keg->uk_slabsize / keg->uk_rsize; 1207 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1208 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1209 #ifdef UMA_DEBUG 1210 printf("UMA decided we need offpage slab headers for " 1211 "keg: %s, calculated wastedspace = %d, " 1212 "maximum wasted space allowed = %d, " 1213 "calculated ipers = %d, " 1214 "new wasted space = %d\n", keg->uk_name, wastedspace, 1215 keg->uk_slabsize / UMA_MAX_WASTE, keg->uk_ipers, 1216 keg->uk_slabsize - keg->uk_ipers * keg->uk_rsize); 1217 #endif 1218 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1219 } 1220 1221 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1222 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1223 keg->uk_flags |= UMA_ZONE_HASH; 1224 } 1225 1226 /* 1227 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do 1228 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1229 * more complicated. 1230 * 1231 * Arguments 1232 * keg The keg we should initialize 1233 * 1234 * Returns 1235 * Nothing 1236 */ 1237 static void 1238 keg_large_init(uma_keg_t keg) 1239 { 1240 1241 KASSERT(keg != NULL, ("Keg is null in keg_large_init")); 1242 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0, 1243 ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg")); 1244 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1245 ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__)); 1246 1247 keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE); 1248 keg->uk_slabsize = keg->uk_ppera * PAGE_SIZE; 1249 keg->uk_ipers = 1; 1250 keg->uk_rsize = keg->uk_size; 1251 1252 /* We can't do OFFPAGE if we're internal, bail out here. */ 1253 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) 1254 return; 1255 1256 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1257 if ((keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1258 keg->uk_flags |= UMA_ZONE_HASH; 1259 } 1260 1261 static void 1262 keg_cachespread_init(uma_keg_t keg) 1263 { 1264 int alignsize; 1265 int trailer; 1266 int pages; 1267 int rsize; 1268 1269 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1270 ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__)); 1271 1272 alignsize = keg->uk_align + 1; 1273 rsize = keg->uk_size; 1274 /* 1275 * We want one item to start on every align boundary in a page. To 1276 * do this we will span pages. We will also extend the item by the 1277 * size of align if it is an even multiple of align. Otherwise, it 1278 * would fall on the same boundary every time. 1279 */ 1280 if (rsize & keg->uk_align) 1281 rsize = (rsize & ~keg->uk_align) + alignsize; 1282 if ((rsize & alignsize) == 0) 1283 rsize += alignsize; 1284 trailer = rsize - keg->uk_size; 1285 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE; 1286 pages = MIN(pages, (128 * 1024) / PAGE_SIZE); 1287 keg->uk_rsize = rsize; 1288 keg->uk_ppera = pages; 1289 keg->uk_slabsize = UMA_SLAB_SIZE; 1290 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize; 1291 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1292 KASSERT(keg->uk_ipers <= uma_max_ipers, 1293 ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__, 1294 keg->uk_ipers)); 1295 } 1296 1297 /* 1298 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1299 * the keg onto the global keg list. 1300 * 1301 * Arguments/Returns follow uma_ctor specifications 1302 * udata Actually uma_kctor_args 1303 */ 1304 static int 1305 keg_ctor(void *mem, int size, void *udata, int flags) 1306 { 1307 struct uma_kctor_args *arg = udata; 1308 uma_keg_t keg = mem; 1309 uma_zone_t zone; 1310 1311 bzero(keg, size); 1312 keg->uk_size = arg->size; 1313 keg->uk_init = arg->uminit; 1314 keg->uk_fini = arg->fini; 1315 keg->uk_align = arg->align; 1316 keg->uk_free = 0; 1317 keg->uk_pages = 0; 1318 keg->uk_flags = arg->flags; 1319 keg->uk_allocf = page_alloc; 1320 keg->uk_freef = page_free; 1321 keg->uk_recurse = 0; 1322 keg->uk_slabzone = NULL; 1323 1324 /* 1325 * The master zone is passed to us at keg-creation time. 1326 */ 1327 zone = arg->zone; 1328 keg->uk_name = zone->uz_name; 1329 1330 if (arg->flags & UMA_ZONE_VM) 1331 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1332 1333 if (arg->flags & UMA_ZONE_ZINIT) 1334 keg->uk_init = zero_init; 1335 1336 if (arg->flags & UMA_ZONE_REFCNT || arg->flags & UMA_ZONE_MALLOC) 1337 keg->uk_flags |= UMA_ZONE_VTOSLAB; 1338 1339 if (arg->flags & UMA_ZONE_PCPU) 1340 #ifdef SMP 1341 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1342 #else 1343 keg->uk_flags &= ~UMA_ZONE_PCPU; 1344 #endif 1345 1346 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) { 1347 keg_cachespread_init(keg); 1348 } else if (keg->uk_flags & UMA_ZONE_REFCNT) { 1349 if (keg->uk_size > 1350 (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt) - 1351 sizeof(uint32_t))) 1352 keg_large_init(keg); 1353 else 1354 keg_small_init(keg); 1355 } else { 1356 if (keg->uk_size > (UMA_SLAB_SIZE - sizeof(struct uma_slab))) 1357 keg_large_init(keg); 1358 else 1359 keg_small_init(keg); 1360 } 1361 1362 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 1363 if (keg->uk_flags & UMA_ZONE_REFCNT) { 1364 if (keg->uk_ipers > uma_max_ipers_ref) 1365 panic("Too many ref items per zone: %d > %d\n", 1366 keg->uk_ipers, uma_max_ipers_ref); 1367 keg->uk_slabzone = slabrefzone; 1368 } else 1369 keg->uk_slabzone = slabzone; 1370 } 1371 1372 /* 1373 * If we haven't booted yet we need allocations to go through the 1374 * startup cache until the vm is ready. 1375 */ 1376 if (keg->uk_ppera == 1) { 1377 #ifdef UMA_MD_SMALL_ALLOC 1378 keg->uk_allocf = uma_small_alloc; 1379 keg->uk_freef = uma_small_free; 1380 1381 if (booted < UMA_STARTUP) 1382 keg->uk_allocf = startup_alloc; 1383 #else 1384 if (booted < UMA_STARTUP2) 1385 keg->uk_allocf = startup_alloc; 1386 #endif 1387 } else if (booted < UMA_STARTUP2 && 1388 (keg->uk_flags & UMA_ZFLAG_INTERNAL)) 1389 keg->uk_allocf = startup_alloc; 1390 1391 /* 1392 * Initialize keg's lock (shared among zones). 1393 */ 1394 if (arg->flags & UMA_ZONE_MTXCLASS) 1395 KEG_LOCK_INIT(keg, 1); 1396 else 1397 KEG_LOCK_INIT(keg, 0); 1398 1399 /* 1400 * If we're putting the slab header in the actual page we need to 1401 * figure out where in each page it goes. This calculates a right 1402 * justified offset into the memory on an ALIGN_PTR boundary. 1403 */ 1404 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1405 u_int totsize; 1406 1407 /* Size of the slab struct and free list */ 1408 totsize = sizeof(struct uma_slab); 1409 1410 /* Size of the reference counts. */ 1411 if (keg->uk_flags & UMA_ZONE_REFCNT) 1412 totsize += keg->uk_ipers * sizeof(uint32_t); 1413 1414 if (totsize & UMA_ALIGN_PTR) 1415 totsize = (totsize & ~UMA_ALIGN_PTR) + 1416 (UMA_ALIGN_PTR + 1); 1417 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize; 1418 1419 /* 1420 * The only way the following is possible is if with our 1421 * UMA_ALIGN_PTR adjustments we are now bigger than 1422 * UMA_SLAB_SIZE. I haven't checked whether this is 1423 * mathematically possible for all cases, so we make 1424 * sure here anyway. 1425 */ 1426 totsize = keg->uk_pgoff + sizeof(struct uma_slab); 1427 if (keg->uk_flags & UMA_ZONE_REFCNT) 1428 totsize += keg->uk_ipers * sizeof(uint32_t); 1429 if (totsize > PAGE_SIZE * keg->uk_ppera) { 1430 printf("zone %s ipers %d rsize %d size %d\n", 1431 zone->uz_name, keg->uk_ipers, keg->uk_rsize, 1432 keg->uk_size); 1433 panic("UMA slab won't fit."); 1434 } 1435 } 1436 1437 if (keg->uk_flags & UMA_ZONE_HASH) 1438 hash_alloc(&keg->uk_hash); 1439 1440 #ifdef UMA_DEBUG 1441 printf("UMA: %s(%p) size %d(%d) flags %#x ipers %d ppera %d out %d free %d\n", 1442 zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags, 1443 keg->uk_ipers, keg->uk_ppera, 1444 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free); 1445 #endif 1446 1447 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1448 1449 mtx_lock(&uma_mtx); 1450 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1451 mtx_unlock(&uma_mtx); 1452 return (0); 1453 } 1454 1455 /* 1456 * Zone header ctor. This initializes all fields, locks, etc. 1457 * 1458 * Arguments/Returns follow uma_ctor specifications 1459 * udata Actually uma_zctor_args 1460 */ 1461 static int 1462 zone_ctor(void *mem, int size, void *udata, int flags) 1463 { 1464 struct uma_zctor_args *arg = udata; 1465 uma_zone_t zone = mem; 1466 uma_zone_t z; 1467 uma_keg_t keg; 1468 1469 bzero(zone, size); 1470 zone->uz_name = arg->name; 1471 zone->uz_ctor = arg->ctor; 1472 zone->uz_dtor = arg->dtor; 1473 zone->uz_slab = zone_fetch_slab; 1474 zone->uz_init = NULL; 1475 zone->uz_fini = NULL; 1476 zone->uz_allocs = 0; 1477 zone->uz_frees = 0; 1478 zone->uz_fails = 0; 1479 zone->uz_sleeps = 0; 1480 zone->uz_fills = zone->uz_count = 0; 1481 zone->uz_flags = 0; 1482 zone->uz_warning = NULL; 1483 timevalclear(&zone->uz_ratecheck); 1484 keg = arg->keg; 1485 1486 if (arg->flags & UMA_ZONE_SECONDARY) { 1487 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 1488 zone->uz_init = arg->uminit; 1489 zone->uz_fini = arg->fini; 1490 zone->uz_lock = &keg->uk_lock; 1491 zone->uz_flags |= UMA_ZONE_SECONDARY; 1492 mtx_lock(&uma_mtx); 1493 ZONE_LOCK(zone); 1494 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 1495 if (LIST_NEXT(z, uz_link) == NULL) { 1496 LIST_INSERT_AFTER(z, zone, uz_link); 1497 break; 1498 } 1499 } 1500 ZONE_UNLOCK(zone); 1501 mtx_unlock(&uma_mtx); 1502 } else if (keg == NULL) { 1503 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 1504 arg->align, arg->flags)) == NULL) 1505 return (ENOMEM); 1506 } else { 1507 struct uma_kctor_args karg; 1508 int error; 1509 1510 /* We should only be here from uma_startup() */ 1511 karg.size = arg->size; 1512 karg.uminit = arg->uminit; 1513 karg.fini = arg->fini; 1514 karg.align = arg->align; 1515 karg.flags = arg->flags; 1516 karg.zone = zone; 1517 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 1518 flags); 1519 if (error) 1520 return (error); 1521 } 1522 /* 1523 * Link in the first keg. 1524 */ 1525 zone->uz_klink.kl_keg = keg; 1526 LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link); 1527 zone->uz_lock = &keg->uk_lock; 1528 zone->uz_size = keg->uk_size; 1529 zone->uz_flags |= (keg->uk_flags & 1530 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 1531 1532 /* 1533 * Some internal zones don't have room allocated for the per cpu 1534 * caches. If we're internal, bail out here. 1535 */ 1536 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { 1537 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 1538 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 1539 return (0); 1540 } 1541 1542 if (keg->uk_flags & UMA_ZONE_MAXBUCKET) 1543 zone->uz_count = BUCKET_MAX; 1544 else if (keg->uk_ipers <= BUCKET_MAX) 1545 zone->uz_count = keg->uk_ipers; 1546 else 1547 zone->uz_count = BUCKET_MAX; 1548 return (0); 1549 } 1550 1551 /* 1552 * Keg header dtor. This frees all data, destroys locks, frees the hash 1553 * table and removes the keg from the global list. 1554 * 1555 * Arguments/Returns follow uma_dtor specifications 1556 * udata unused 1557 */ 1558 static void 1559 keg_dtor(void *arg, int size, void *udata) 1560 { 1561 uma_keg_t keg; 1562 1563 keg = (uma_keg_t)arg; 1564 KEG_LOCK(keg); 1565 if (keg->uk_free != 0) { 1566 printf("Freed UMA keg was not empty (%d items). " 1567 " Lost %d pages of memory.\n", 1568 keg->uk_free, keg->uk_pages); 1569 } 1570 KEG_UNLOCK(keg); 1571 1572 hash_free(&keg->uk_hash); 1573 1574 KEG_LOCK_FINI(keg); 1575 } 1576 1577 /* 1578 * Zone header dtor. 1579 * 1580 * Arguments/Returns follow uma_dtor specifications 1581 * udata unused 1582 */ 1583 static void 1584 zone_dtor(void *arg, int size, void *udata) 1585 { 1586 uma_klink_t klink; 1587 uma_zone_t zone; 1588 uma_keg_t keg; 1589 1590 zone = (uma_zone_t)arg; 1591 keg = zone_first_keg(zone); 1592 1593 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 1594 cache_drain(zone); 1595 1596 mtx_lock(&uma_mtx); 1597 LIST_REMOVE(zone, uz_link); 1598 mtx_unlock(&uma_mtx); 1599 /* 1600 * XXX there are some races here where 1601 * the zone can be drained but zone lock 1602 * released and then refilled before we 1603 * remove it... we dont care for now 1604 */ 1605 zone_drain_wait(zone, M_WAITOK); 1606 /* 1607 * Unlink all of our kegs. 1608 */ 1609 while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) { 1610 klink->kl_keg = NULL; 1611 LIST_REMOVE(klink, kl_link); 1612 if (klink == &zone->uz_klink) 1613 continue; 1614 free(klink, M_TEMP); 1615 } 1616 /* 1617 * We only destroy kegs from non secondary zones. 1618 */ 1619 if ((zone->uz_flags & UMA_ZONE_SECONDARY) == 0) { 1620 mtx_lock(&uma_mtx); 1621 LIST_REMOVE(keg, uk_link); 1622 mtx_unlock(&uma_mtx); 1623 zone_free_item(kegs, keg, NULL, SKIP_NONE, 1624 ZFREE_STATFREE); 1625 } 1626 } 1627 1628 /* 1629 * Traverses every zone in the system and calls a callback 1630 * 1631 * Arguments: 1632 * zfunc A pointer to a function which accepts a zone 1633 * as an argument. 1634 * 1635 * Returns: 1636 * Nothing 1637 */ 1638 static void 1639 zone_foreach(void (*zfunc)(uma_zone_t)) 1640 { 1641 uma_keg_t keg; 1642 uma_zone_t zone; 1643 1644 mtx_lock(&uma_mtx); 1645 LIST_FOREACH(keg, &uma_kegs, uk_link) { 1646 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 1647 zfunc(zone); 1648 } 1649 mtx_unlock(&uma_mtx); 1650 } 1651 1652 /* Public functions */ 1653 /* See uma.h */ 1654 void 1655 uma_startup(void *bootmem, int boot_pages) 1656 { 1657 struct uma_zctor_args args; 1658 uma_slab_t slab; 1659 u_int slabsize; 1660 int i; 1661 1662 #ifdef UMA_DEBUG 1663 printf("Creating uma keg headers zone and keg.\n"); 1664 #endif 1665 mtx_init(&uma_mtx, "UMA lock", NULL, MTX_DEF); 1666 1667 /* "manually" create the initial zone */ 1668 args.name = "UMA Kegs"; 1669 args.size = sizeof(struct uma_keg); 1670 args.ctor = keg_ctor; 1671 args.dtor = keg_dtor; 1672 args.uminit = zero_init; 1673 args.fini = NULL; 1674 args.keg = &masterkeg; 1675 args.align = 32 - 1; 1676 args.flags = UMA_ZFLAG_INTERNAL; 1677 /* The initial zone has no Per cpu queues so it's smaller */ 1678 zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK); 1679 1680 #ifdef UMA_DEBUG 1681 printf("Filling boot free list.\n"); 1682 #endif 1683 for (i = 0; i < boot_pages; i++) { 1684 slab = (uma_slab_t)((uint8_t *)bootmem + (i * UMA_SLAB_SIZE)); 1685 slab->us_data = (uint8_t *)slab; 1686 slab->us_flags = UMA_SLAB_BOOT; 1687 LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link); 1688 } 1689 mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF); 1690 1691 #ifdef UMA_DEBUG 1692 printf("Creating uma zone headers zone and keg.\n"); 1693 #endif 1694 args.name = "UMA Zones"; 1695 args.size = sizeof(struct uma_zone) + 1696 (sizeof(struct uma_cache) * (mp_maxid + 1)); 1697 args.ctor = zone_ctor; 1698 args.dtor = zone_dtor; 1699 args.uminit = zero_init; 1700 args.fini = NULL; 1701 args.keg = NULL; 1702 args.align = 32 - 1; 1703 args.flags = UMA_ZFLAG_INTERNAL; 1704 /* The initial zone has no Per cpu queues so it's smaller */ 1705 zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK); 1706 1707 #ifdef UMA_DEBUG 1708 printf("Initializing pcpu cache locks.\n"); 1709 #endif 1710 #ifdef UMA_DEBUG 1711 printf("Creating slab and hash zones.\n"); 1712 #endif 1713 1714 /* Now make a zone for slab headers */ 1715 slabzone = uma_zcreate("UMA Slabs", 1716 sizeof(struct uma_slab), 1717 NULL, NULL, NULL, NULL, 1718 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1719 1720 /* 1721 * We also create a zone for the bigger slabs with reference 1722 * counts in them, to accomodate UMA_ZONE_REFCNT zones. 1723 */ 1724 slabsize = sizeof(struct uma_slab_refcnt); 1725 slabsize += uma_max_ipers_ref * sizeof(uint32_t); 1726 slabrefzone = uma_zcreate("UMA RCntSlabs", 1727 slabsize, 1728 NULL, NULL, NULL, NULL, 1729 UMA_ALIGN_PTR, 1730 UMA_ZFLAG_INTERNAL); 1731 1732 hashzone = uma_zcreate("UMA Hash", 1733 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 1734 NULL, NULL, NULL, NULL, 1735 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1736 1737 bucket_init(); 1738 1739 booted = UMA_STARTUP; 1740 1741 #ifdef UMA_DEBUG 1742 printf("UMA startup complete.\n"); 1743 #endif 1744 } 1745 1746 /* see uma.h */ 1747 void 1748 uma_startup2(void) 1749 { 1750 booted = UMA_STARTUP2; 1751 bucket_enable(); 1752 #ifdef UMA_DEBUG 1753 printf("UMA startup2 complete.\n"); 1754 #endif 1755 } 1756 1757 /* 1758 * Initialize our callout handle 1759 * 1760 */ 1761 1762 static void 1763 uma_startup3(void) 1764 { 1765 #ifdef UMA_DEBUG 1766 printf("Starting callout.\n"); 1767 #endif 1768 callout_init(&uma_callout, CALLOUT_MPSAFE); 1769 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 1770 #ifdef UMA_DEBUG 1771 printf("UMA startup3 complete.\n"); 1772 #endif 1773 } 1774 1775 static uma_keg_t 1776 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 1777 int align, uint32_t flags) 1778 { 1779 struct uma_kctor_args args; 1780 1781 args.size = size; 1782 args.uminit = uminit; 1783 args.fini = fini; 1784 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 1785 args.flags = flags; 1786 args.zone = zone; 1787 return (zone_alloc_item(kegs, &args, M_WAITOK)); 1788 } 1789 1790 /* See uma.h */ 1791 void 1792 uma_set_align(int align) 1793 { 1794 1795 if (align != UMA_ALIGN_CACHE) 1796 uma_align_cache = align; 1797 } 1798 1799 /* See uma.h */ 1800 uma_zone_t 1801 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 1802 uma_init uminit, uma_fini fini, int align, uint32_t flags) 1803 1804 { 1805 struct uma_zctor_args args; 1806 1807 /* This stuff is essential for the zone ctor */ 1808 args.name = name; 1809 args.size = size; 1810 args.ctor = ctor; 1811 args.dtor = dtor; 1812 args.uminit = uminit; 1813 args.fini = fini; 1814 args.align = align; 1815 args.flags = flags; 1816 args.keg = NULL; 1817 1818 return (zone_alloc_item(zones, &args, M_WAITOK)); 1819 } 1820 1821 /* See uma.h */ 1822 uma_zone_t 1823 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 1824 uma_init zinit, uma_fini zfini, uma_zone_t master) 1825 { 1826 struct uma_zctor_args args; 1827 uma_keg_t keg; 1828 1829 keg = zone_first_keg(master); 1830 args.name = name; 1831 args.size = keg->uk_size; 1832 args.ctor = ctor; 1833 args.dtor = dtor; 1834 args.uminit = zinit; 1835 args.fini = zfini; 1836 args.align = keg->uk_align; 1837 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 1838 args.keg = keg; 1839 1840 /* XXX Attaches only one keg of potentially many. */ 1841 return (zone_alloc_item(zones, &args, M_WAITOK)); 1842 } 1843 1844 static void 1845 zone_lock_pair(uma_zone_t a, uma_zone_t b) 1846 { 1847 if (a < b) { 1848 ZONE_LOCK(a); 1849 mtx_lock_flags(b->uz_lock, MTX_DUPOK); 1850 } else { 1851 ZONE_LOCK(b); 1852 mtx_lock_flags(a->uz_lock, MTX_DUPOK); 1853 } 1854 } 1855 1856 static void 1857 zone_unlock_pair(uma_zone_t a, uma_zone_t b) 1858 { 1859 1860 ZONE_UNLOCK(a); 1861 ZONE_UNLOCK(b); 1862 } 1863 1864 int 1865 uma_zsecond_add(uma_zone_t zone, uma_zone_t master) 1866 { 1867 uma_klink_t klink; 1868 uma_klink_t kl; 1869 int error; 1870 1871 error = 0; 1872 klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO); 1873 1874 zone_lock_pair(zone, master); 1875 /* 1876 * zone must use vtoslab() to resolve objects and must already be 1877 * a secondary. 1878 */ 1879 if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) 1880 != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) { 1881 error = EINVAL; 1882 goto out; 1883 } 1884 /* 1885 * The new master must also use vtoslab(). 1886 */ 1887 if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) { 1888 error = EINVAL; 1889 goto out; 1890 } 1891 /* 1892 * Both must either be refcnt, or not be refcnt. 1893 */ 1894 if ((zone->uz_flags & UMA_ZONE_REFCNT) != 1895 (master->uz_flags & UMA_ZONE_REFCNT)) { 1896 error = EINVAL; 1897 goto out; 1898 } 1899 /* 1900 * The underlying object must be the same size. rsize 1901 * may be different. 1902 */ 1903 if (master->uz_size != zone->uz_size) { 1904 error = E2BIG; 1905 goto out; 1906 } 1907 /* 1908 * Put it at the end of the list. 1909 */ 1910 klink->kl_keg = zone_first_keg(master); 1911 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) { 1912 if (LIST_NEXT(kl, kl_link) == NULL) { 1913 LIST_INSERT_AFTER(kl, klink, kl_link); 1914 break; 1915 } 1916 } 1917 klink = NULL; 1918 zone->uz_flags |= UMA_ZFLAG_MULTI; 1919 zone->uz_slab = zone_fetch_slab_multi; 1920 1921 out: 1922 zone_unlock_pair(zone, master); 1923 if (klink != NULL) 1924 free(klink, M_TEMP); 1925 1926 return (error); 1927 } 1928 1929 1930 /* See uma.h */ 1931 void 1932 uma_zdestroy(uma_zone_t zone) 1933 { 1934 1935 zone_free_item(zones, zone, NULL, SKIP_NONE, ZFREE_STATFREE); 1936 } 1937 1938 /* See uma.h */ 1939 void * 1940 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 1941 { 1942 void *item; 1943 uma_cache_t cache; 1944 uma_bucket_t bucket; 1945 int cpu; 1946 1947 /* This is the fast path allocation */ 1948 #ifdef UMA_DEBUG_ALLOC_1 1949 printf("Allocating one item from %s(%p)\n", zone->uz_name, zone); 1950 #endif 1951 CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread, 1952 zone->uz_name, flags); 1953 1954 if (flags & M_WAITOK) { 1955 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 1956 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 1957 } 1958 #ifdef DEBUG_MEMGUARD 1959 if (memguard_cmp_zone(zone)) { 1960 item = memguard_alloc(zone->uz_size, flags); 1961 if (item != NULL) { 1962 /* 1963 * Avoid conflict with the use-after-free 1964 * protecting infrastructure from INVARIANTS. 1965 */ 1966 if (zone->uz_init != NULL && 1967 zone->uz_init != mtrash_init && 1968 zone->uz_init(item, zone->uz_size, flags) != 0) 1969 return (NULL); 1970 if (zone->uz_ctor != NULL && 1971 zone->uz_ctor != mtrash_ctor && 1972 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 1973 zone->uz_fini(item, zone->uz_size); 1974 return (NULL); 1975 } 1976 return (item); 1977 } 1978 /* This is unfortunate but should not be fatal. */ 1979 } 1980 #endif 1981 /* 1982 * If possible, allocate from the per-CPU cache. There are two 1983 * requirements for safe access to the per-CPU cache: (1) the thread 1984 * accessing the cache must not be preempted or yield during access, 1985 * and (2) the thread must not migrate CPUs without switching which 1986 * cache it accesses. We rely on a critical section to prevent 1987 * preemption and migration. We release the critical section in 1988 * order to acquire the zone mutex if we are unable to allocate from 1989 * the current cache; when we re-acquire the critical section, we 1990 * must detect and handle migration if it has occurred. 1991 */ 1992 zalloc_restart: 1993 critical_enter(); 1994 cpu = curcpu; 1995 cache = &zone->uz_cpu[cpu]; 1996 1997 zalloc_start: 1998 bucket = cache->uc_allocbucket; 1999 2000 if (bucket) { 2001 if (bucket->ub_cnt > 0) { 2002 bucket->ub_cnt--; 2003 item = bucket->ub_bucket[bucket->ub_cnt]; 2004 #ifdef INVARIANTS 2005 bucket->ub_bucket[bucket->ub_cnt] = NULL; 2006 #endif 2007 KASSERT(item != NULL, 2008 ("uma_zalloc: Bucket pointer mangled.")); 2009 cache->uc_allocs++; 2010 critical_exit(); 2011 if (zone->uz_ctor != NULL) { 2012 if (zone->uz_ctor(item, zone->uz_size, 2013 udata, flags) != 0) { 2014 zone_free_item(zone, item, udata, 2015 SKIP_DTOR, ZFREE_STATFAIL | 2016 ZFREE_STATFREE); 2017 return (NULL); 2018 } 2019 } 2020 #ifdef INVARIANTS 2021 uma_dbg_alloc(zone, NULL, item); 2022 #endif 2023 if (flags & M_ZERO) 2024 bzero(item, zone->uz_size); 2025 return (item); 2026 } else if (cache->uc_freebucket) { 2027 /* 2028 * We have run out of items in our allocbucket. 2029 * See if we can switch with our free bucket. 2030 */ 2031 if (cache->uc_freebucket->ub_cnt > 0) { 2032 #ifdef UMA_DEBUG_ALLOC 2033 printf("uma_zalloc: Swapping empty with" 2034 " alloc.\n"); 2035 #endif 2036 bucket = cache->uc_freebucket; 2037 cache->uc_freebucket = cache->uc_allocbucket; 2038 cache->uc_allocbucket = bucket; 2039 2040 goto zalloc_start; 2041 } 2042 } 2043 } 2044 /* 2045 * Attempt to retrieve the item from the per-CPU cache has failed, so 2046 * we must go back to the zone. This requires the zone lock, so we 2047 * must drop the critical section, then re-acquire it when we go back 2048 * to the cache. Since the critical section is released, we may be 2049 * preempted or migrate. As such, make sure not to maintain any 2050 * thread-local state specific to the cache from prior to releasing 2051 * the critical section. 2052 */ 2053 critical_exit(); 2054 ZONE_LOCK(zone); 2055 critical_enter(); 2056 cpu = curcpu; 2057 cache = &zone->uz_cpu[cpu]; 2058 bucket = cache->uc_allocbucket; 2059 if (bucket != NULL) { 2060 if (bucket->ub_cnt > 0) { 2061 ZONE_UNLOCK(zone); 2062 goto zalloc_start; 2063 } 2064 bucket = cache->uc_freebucket; 2065 if (bucket != NULL && bucket->ub_cnt > 0) { 2066 ZONE_UNLOCK(zone); 2067 goto zalloc_start; 2068 } 2069 } 2070 2071 /* Since we have locked the zone we may as well send back our stats */ 2072 zone->uz_allocs += cache->uc_allocs; 2073 cache->uc_allocs = 0; 2074 zone->uz_frees += cache->uc_frees; 2075 cache->uc_frees = 0; 2076 2077 /* Our old one is now a free bucket */ 2078 if (cache->uc_allocbucket) { 2079 KASSERT(cache->uc_allocbucket->ub_cnt == 0, 2080 ("uma_zalloc_arg: Freeing a non free bucket.")); 2081 LIST_INSERT_HEAD(&zone->uz_free_bucket, 2082 cache->uc_allocbucket, ub_link); 2083 cache->uc_allocbucket = NULL; 2084 } 2085 2086 /* Check the free list for a new alloc bucket */ 2087 if ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) { 2088 KASSERT(bucket->ub_cnt != 0, 2089 ("uma_zalloc_arg: Returning an empty bucket.")); 2090 2091 LIST_REMOVE(bucket, ub_link); 2092 cache->uc_allocbucket = bucket; 2093 ZONE_UNLOCK(zone); 2094 goto zalloc_start; 2095 } 2096 /* We are no longer associated with this CPU. */ 2097 critical_exit(); 2098 2099 /* Bump up our uz_count so we get here less */ 2100 if (zone->uz_count < BUCKET_MAX) 2101 zone->uz_count++; 2102 2103 /* 2104 * Now lets just fill a bucket and put it on the free list. If that 2105 * works we'll restart the allocation from the begining. 2106 */ 2107 if (zone_alloc_bucket(zone, flags)) { 2108 ZONE_UNLOCK(zone); 2109 goto zalloc_restart; 2110 } 2111 ZONE_UNLOCK(zone); 2112 /* 2113 * We may not be able to get a bucket so return an actual item. 2114 */ 2115 #ifdef UMA_DEBUG 2116 printf("uma_zalloc_arg: Bucketzone returned NULL\n"); 2117 #endif 2118 2119 item = zone_alloc_item(zone, udata, flags); 2120 return (item); 2121 } 2122 2123 static uma_slab_t 2124 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags) 2125 { 2126 uma_slab_t slab; 2127 2128 mtx_assert(&keg->uk_lock, MA_OWNED); 2129 slab = NULL; 2130 2131 for (;;) { 2132 /* 2133 * Find a slab with some space. Prefer slabs that are partially 2134 * used over those that are totally full. This helps to reduce 2135 * fragmentation. 2136 */ 2137 if (keg->uk_free != 0) { 2138 if (!LIST_EMPTY(&keg->uk_part_slab)) { 2139 slab = LIST_FIRST(&keg->uk_part_slab); 2140 } else { 2141 slab = LIST_FIRST(&keg->uk_free_slab); 2142 LIST_REMOVE(slab, us_link); 2143 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, 2144 us_link); 2145 } 2146 MPASS(slab->us_keg == keg); 2147 return (slab); 2148 } 2149 2150 /* 2151 * M_NOVM means don't ask at all! 2152 */ 2153 if (flags & M_NOVM) 2154 break; 2155 2156 if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) { 2157 keg->uk_flags |= UMA_ZFLAG_FULL; 2158 /* 2159 * If this is not a multi-zone, set the FULL bit. 2160 * Otherwise slab_multi() takes care of it. 2161 */ 2162 if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) { 2163 zone->uz_flags |= UMA_ZFLAG_FULL; 2164 zone_log_warning(zone); 2165 } 2166 if (flags & M_NOWAIT) 2167 break; 2168 zone->uz_sleeps++; 2169 msleep(keg, &keg->uk_lock, PVM, "keglimit", 0); 2170 continue; 2171 } 2172 keg->uk_recurse++; 2173 slab = keg_alloc_slab(keg, zone, flags); 2174 keg->uk_recurse--; 2175 /* 2176 * If we got a slab here it's safe to mark it partially used 2177 * and return. We assume that the caller is going to remove 2178 * at least one item. 2179 */ 2180 if (slab) { 2181 MPASS(slab->us_keg == keg); 2182 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2183 return (slab); 2184 } 2185 /* 2186 * We might not have been able to get a slab but another cpu 2187 * could have while we were unlocked. Check again before we 2188 * fail. 2189 */ 2190 flags |= M_NOVM; 2191 } 2192 return (slab); 2193 } 2194 2195 static inline void 2196 zone_relock(uma_zone_t zone, uma_keg_t keg) 2197 { 2198 if (zone->uz_lock != &keg->uk_lock) { 2199 KEG_UNLOCK(keg); 2200 ZONE_LOCK(zone); 2201 } 2202 } 2203 2204 static inline void 2205 keg_relock(uma_keg_t keg, uma_zone_t zone) 2206 { 2207 if (zone->uz_lock != &keg->uk_lock) { 2208 ZONE_UNLOCK(zone); 2209 KEG_LOCK(keg); 2210 } 2211 } 2212 2213 static uma_slab_t 2214 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags) 2215 { 2216 uma_slab_t slab; 2217 2218 if (keg == NULL) 2219 keg = zone_first_keg(zone); 2220 /* 2221 * This is to prevent us from recursively trying to allocate 2222 * buckets. The problem is that if an allocation forces us to 2223 * grab a new bucket we will call page_alloc, which will go off 2224 * and cause the vm to allocate vm_map_entries. If we need new 2225 * buckets there too we will recurse in kmem_alloc and bad 2226 * things happen. So instead we return a NULL bucket, and make 2227 * the code that allocates buckets smart enough to deal with it 2228 */ 2229 if (keg->uk_flags & UMA_ZFLAG_BUCKET && keg->uk_recurse != 0) 2230 return (NULL); 2231 2232 for (;;) { 2233 slab = keg_fetch_slab(keg, zone, flags); 2234 if (slab) 2235 return (slab); 2236 if (flags & (M_NOWAIT | M_NOVM)) 2237 break; 2238 } 2239 return (NULL); 2240 } 2241 2242 /* 2243 * uma_zone_fetch_slab_multi: Fetches a slab from one available keg. Returns 2244 * with the keg locked. Caller must call zone_relock() afterwards if the 2245 * zone lock is required. On NULL the zone lock is held. 2246 * 2247 * The last pointer is used to seed the search. It is not required. 2248 */ 2249 static uma_slab_t 2250 zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags) 2251 { 2252 uma_klink_t klink; 2253 uma_slab_t slab; 2254 uma_keg_t keg; 2255 int flags; 2256 int empty; 2257 int full; 2258 2259 /* 2260 * Don't wait on the first pass. This will skip limit tests 2261 * as well. We don't want to block if we can find a provider 2262 * without blocking. 2263 */ 2264 flags = (rflags & ~M_WAITOK) | M_NOWAIT; 2265 /* 2266 * Use the last slab allocated as a hint for where to start 2267 * the search. 2268 */ 2269 if (last) { 2270 slab = keg_fetch_slab(last, zone, flags); 2271 if (slab) 2272 return (slab); 2273 zone_relock(zone, last); 2274 last = NULL; 2275 } 2276 /* 2277 * Loop until we have a slab incase of transient failures 2278 * while M_WAITOK is specified. I'm not sure this is 100% 2279 * required but we've done it for so long now. 2280 */ 2281 for (;;) { 2282 empty = 0; 2283 full = 0; 2284 /* 2285 * Search the available kegs for slabs. Be careful to hold the 2286 * correct lock while calling into the keg layer. 2287 */ 2288 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) { 2289 keg = klink->kl_keg; 2290 keg_relock(keg, zone); 2291 if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) { 2292 slab = keg_fetch_slab(keg, zone, flags); 2293 if (slab) 2294 return (slab); 2295 } 2296 if (keg->uk_flags & UMA_ZFLAG_FULL) 2297 full++; 2298 else 2299 empty++; 2300 zone_relock(zone, keg); 2301 } 2302 if (rflags & (M_NOWAIT | M_NOVM)) 2303 break; 2304 flags = rflags; 2305 /* 2306 * All kegs are full. XXX We can't atomically check all kegs 2307 * and sleep so just sleep for a short period and retry. 2308 */ 2309 if (full && !empty) { 2310 zone->uz_flags |= UMA_ZFLAG_FULL; 2311 zone->uz_sleeps++; 2312 zone_log_warning(zone); 2313 msleep(zone, zone->uz_lock, PVM, "zonelimit", hz/100); 2314 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2315 continue; 2316 } 2317 } 2318 return (NULL); 2319 } 2320 2321 static void * 2322 slab_alloc_item(uma_zone_t zone, uma_slab_t slab) 2323 { 2324 uma_keg_t keg; 2325 void *item; 2326 uint8_t freei; 2327 2328 keg = slab->us_keg; 2329 mtx_assert(&keg->uk_lock, MA_OWNED); 2330 2331 freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1; 2332 BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free); 2333 item = slab->us_data + (keg->uk_rsize * freei); 2334 slab->us_freecount--; 2335 keg->uk_free--; 2336 2337 /* Move this slab to the full list */ 2338 if (slab->us_freecount == 0) { 2339 LIST_REMOVE(slab, us_link); 2340 LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link); 2341 } 2342 2343 return (item); 2344 } 2345 2346 static int 2347 zone_alloc_bucket(uma_zone_t zone, int flags) 2348 { 2349 uma_bucket_t bucket; 2350 uma_slab_t slab; 2351 uma_keg_t keg; 2352 int16_t saved; 2353 int max, origflags = flags; 2354 2355 /* 2356 * Try this zone's free list first so we don't allocate extra buckets. 2357 */ 2358 if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) { 2359 KASSERT(bucket->ub_cnt == 0, 2360 ("zone_alloc_bucket: Bucket on free list is not empty.")); 2361 LIST_REMOVE(bucket, ub_link); 2362 } else { 2363 int bflags; 2364 2365 bflags = (flags & ~M_ZERO); 2366 if (zone->uz_flags & UMA_ZFLAG_CACHEONLY) 2367 bflags |= M_NOVM; 2368 2369 ZONE_UNLOCK(zone); 2370 bucket = bucket_alloc(zone->uz_count, bflags); 2371 ZONE_LOCK(zone); 2372 } 2373 2374 if (bucket == NULL) { 2375 return (0); 2376 } 2377 2378 #ifdef SMP 2379 /* 2380 * This code is here to limit the number of simultaneous bucket fills 2381 * for any given zone to the number of per cpu caches in this zone. This 2382 * is done so that we don't allocate more memory than we really need. 2383 */ 2384 if (zone->uz_fills >= mp_ncpus) 2385 goto done; 2386 2387 #endif 2388 zone->uz_fills++; 2389 2390 max = MIN(bucket->ub_entries, zone->uz_count); 2391 /* Try to keep the buckets totally full */ 2392 saved = bucket->ub_cnt; 2393 slab = NULL; 2394 keg = NULL; 2395 while (bucket->ub_cnt < max && 2396 (slab = zone->uz_slab(zone, keg, flags)) != NULL) { 2397 keg = slab->us_keg; 2398 while (slab->us_freecount && bucket->ub_cnt < max) { 2399 bucket->ub_bucket[bucket->ub_cnt++] = 2400 slab_alloc_item(zone, slab); 2401 } 2402 2403 /* Don't block on the next fill */ 2404 flags |= M_NOWAIT; 2405 } 2406 if (slab) 2407 zone_relock(zone, keg); 2408 2409 /* 2410 * We unlock here because we need to call the zone's init. 2411 * It should be safe to unlock because the slab dealt with 2412 * above is already on the appropriate list within the keg 2413 * and the bucket we filled is not yet on any list, so we 2414 * own it. 2415 */ 2416 if (zone->uz_init != NULL) { 2417 int i; 2418 2419 ZONE_UNLOCK(zone); 2420 for (i = saved; i < bucket->ub_cnt; i++) 2421 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 2422 origflags) != 0) 2423 break; 2424 /* 2425 * If we couldn't initialize the whole bucket, put the 2426 * rest back onto the freelist. 2427 */ 2428 if (i != bucket->ub_cnt) { 2429 int j; 2430 2431 for (j = i; j < bucket->ub_cnt; j++) { 2432 zone_free_item(zone, bucket->ub_bucket[j], 2433 NULL, SKIP_FINI, 0); 2434 #ifdef INVARIANTS 2435 bucket->ub_bucket[j] = NULL; 2436 #endif 2437 } 2438 bucket->ub_cnt = i; 2439 } 2440 ZONE_LOCK(zone); 2441 } 2442 2443 zone->uz_fills--; 2444 if (bucket->ub_cnt != 0) { 2445 LIST_INSERT_HEAD(&zone->uz_full_bucket, 2446 bucket, ub_link); 2447 return (1); 2448 } 2449 #ifdef SMP 2450 done: 2451 #endif 2452 bucket_free(bucket); 2453 2454 return (0); 2455 } 2456 /* 2457 * Allocates an item for an internal zone 2458 * 2459 * Arguments 2460 * zone The zone to alloc for. 2461 * udata The data to be passed to the constructor. 2462 * flags M_WAITOK, M_NOWAIT, M_ZERO. 2463 * 2464 * Returns 2465 * NULL if there is no memory and M_NOWAIT is set 2466 * An item if successful 2467 */ 2468 2469 static void * 2470 zone_alloc_item(uma_zone_t zone, void *udata, int flags) 2471 { 2472 uma_slab_t slab; 2473 void *item; 2474 2475 item = NULL; 2476 2477 #ifdef UMA_DEBUG_ALLOC 2478 printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone); 2479 #endif 2480 ZONE_LOCK(zone); 2481 2482 slab = zone->uz_slab(zone, NULL, flags); 2483 if (slab == NULL) { 2484 zone->uz_fails++; 2485 ZONE_UNLOCK(zone); 2486 return (NULL); 2487 } 2488 2489 item = slab_alloc_item(zone, slab); 2490 2491 zone_relock(zone, slab->us_keg); 2492 zone->uz_allocs++; 2493 ZONE_UNLOCK(zone); 2494 2495 /* 2496 * We have to call both the zone's init (not the keg's init) 2497 * and the zone's ctor. This is because the item is going from 2498 * a keg slab directly to the user, and the user is expecting it 2499 * to be both zone-init'd as well as zone-ctor'd. 2500 */ 2501 if (zone->uz_init != NULL) { 2502 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 2503 zone_free_item(zone, item, udata, SKIP_FINI, 2504 ZFREE_STATFAIL | ZFREE_STATFREE); 2505 return (NULL); 2506 } 2507 } 2508 if (zone->uz_ctor != NULL) { 2509 if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2510 zone_free_item(zone, item, udata, SKIP_DTOR, 2511 ZFREE_STATFAIL | ZFREE_STATFREE); 2512 return (NULL); 2513 } 2514 } 2515 #ifdef INVARIANTS 2516 uma_dbg_alloc(zone, slab, item); 2517 #endif 2518 if (flags & M_ZERO) 2519 bzero(item, zone->uz_size); 2520 2521 return (item); 2522 } 2523 2524 /* See uma.h */ 2525 void 2526 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 2527 { 2528 uma_cache_t cache; 2529 uma_bucket_t bucket; 2530 int bflags; 2531 int cpu; 2532 2533 #ifdef UMA_DEBUG_ALLOC_1 2534 printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone); 2535 #endif 2536 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 2537 zone->uz_name); 2538 2539 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 2540 if (item == NULL) 2541 return; 2542 #ifdef DEBUG_MEMGUARD 2543 if (is_memguard_addr(item)) { 2544 if (zone->uz_dtor != NULL && zone->uz_dtor != mtrash_dtor) 2545 zone->uz_dtor(item, zone->uz_size, udata); 2546 if (zone->uz_fini != NULL && zone->uz_fini != mtrash_fini) 2547 zone->uz_fini(item, zone->uz_size); 2548 memguard_free(item); 2549 return; 2550 } 2551 #endif 2552 #ifdef INVARIANTS 2553 if (zone->uz_flags & UMA_ZONE_MALLOC) 2554 uma_dbg_free(zone, udata, item); 2555 else 2556 uma_dbg_free(zone, NULL, item); 2557 #endif 2558 if (zone->uz_dtor) 2559 zone->uz_dtor(item, zone->uz_size, udata); 2560 2561 /* 2562 * The race here is acceptable. If we miss it we'll just have to wait 2563 * a little longer for the limits to be reset. 2564 */ 2565 if (zone->uz_flags & UMA_ZFLAG_FULL) 2566 goto zfree_internal; 2567 2568 /* 2569 * If possible, free to the per-CPU cache. There are two 2570 * requirements for safe access to the per-CPU cache: (1) the thread 2571 * accessing the cache must not be preempted or yield during access, 2572 * and (2) the thread must not migrate CPUs without switching which 2573 * cache it accesses. We rely on a critical section to prevent 2574 * preemption and migration. We release the critical section in 2575 * order to acquire the zone mutex if we are unable to free to the 2576 * current cache; when we re-acquire the critical section, we must 2577 * detect and handle migration if it has occurred. 2578 */ 2579 zfree_restart: 2580 critical_enter(); 2581 cpu = curcpu; 2582 cache = &zone->uz_cpu[cpu]; 2583 2584 zfree_start: 2585 bucket = cache->uc_freebucket; 2586 2587 if (bucket) { 2588 /* 2589 * Do we have room in our bucket? It is OK for this uz count 2590 * check to be slightly out of sync. 2591 */ 2592 2593 if (bucket->ub_cnt < bucket->ub_entries) { 2594 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 2595 ("uma_zfree: Freeing to non free bucket index.")); 2596 bucket->ub_bucket[bucket->ub_cnt] = item; 2597 bucket->ub_cnt++; 2598 cache->uc_frees++; 2599 critical_exit(); 2600 return; 2601 } else if (cache->uc_allocbucket) { 2602 #ifdef UMA_DEBUG_ALLOC 2603 printf("uma_zfree: Swapping buckets.\n"); 2604 #endif 2605 /* 2606 * We have run out of space in our freebucket. 2607 * See if we can switch with our alloc bucket. 2608 */ 2609 if (cache->uc_allocbucket->ub_cnt < 2610 cache->uc_freebucket->ub_cnt) { 2611 bucket = cache->uc_freebucket; 2612 cache->uc_freebucket = cache->uc_allocbucket; 2613 cache->uc_allocbucket = bucket; 2614 goto zfree_start; 2615 } 2616 } 2617 } 2618 /* 2619 * We can get here for two reasons: 2620 * 2621 * 1) The buckets are NULL 2622 * 2) The alloc and free buckets are both somewhat full. 2623 * 2624 * We must go back the zone, which requires acquiring the zone lock, 2625 * which in turn means we must release and re-acquire the critical 2626 * section. Since the critical section is released, we may be 2627 * preempted or migrate. As such, make sure not to maintain any 2628 * thread-local state specific to the cache from prior to releasing 2629 * the critical section. 2630 */ 2631 critical_exit(); 2632 ZONE_LOCK(zone); 2633 critical_enter(); 2634 cpu = curcpu; 2635 cache = &zone->uz_cpu[cpu]; 2636 if (cache->uc_freebucket != NULL) { 2637 if (cache->uc_freebucket->ub_cnt < 2638 cache->uc_freebucket->ub_entries) { 2639 ZONE_UNLOCK(zone); 2640 goto zfree_start; 2641 } 2642 if (cache->uc_allocbucket != NULL && 2643 (cache->uc_allocbucket->ub_cnt < 2644 cache->uc_freebucket->ub_cnt)) { 2645 ZONE_UNLOCK(zone); 2646 goto zfree_start; 2647 } 2648 } 2649 2650 /* Since we have locked the zone we may as well send back our stats */ 2651 zone->uz_allocs += cache->uc_allocs; 2652 cache->uc_allocs = 0; 2653 zone->uz_frees += cache->uc_frees; 2654 cache->uc_frees = 0; 2655 2656 bucket = cache->uc_freebucket; 2657 cache->uc_freebucket = NULL; 2658 2659 /* Can we throw this on the zone full list? */ 2660 if (bucket != NULL) { 2661 #ifdef UMA_DEBUG_ALLOC 2662 printf("uma_zfree: Putting old bucket on the free list.\n"); 2663 #endif 2664 /* ub_cnt is pointing to the last free item */ 2665 KASSERT(bucket->ub_cnt != 0, 2666 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n")); 2667 LIST_INSERT_HEAD(&zone->uz_full_bucket, 2668 bucket, ub_link); 2669 } 2670 if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) { 2671 LIST_REMOVE(bucket, ub_link); 2672 ZONE_UNLOCK(zone); 2673 cache->uc_freebucket = bucket; 2674 goto zfree_start; 2675 } 2676 /* We are no longer associated with this CPU. */ 2677 critical_exit(); 2678 2679 /* And the zone.. */ 2680 ZONE_UNLOCK(zone); 2681 2682 #ifdef UMA_DEBUG_ALLOC 2683 printf("uma_zfree: Allocating new free bucket.\n"); 2684 #endif 2685 bflags = M_NOWAIT; 2686 2687 if (zone->uz_flags & UMA_ZFLAG_CACHEONLY) 2688 bflags |= M_NOVM; 2689 bucket = bucket_alloc(zone->uz_count, bflags); 2690 if (bucket) { 2691 ZONE_LOCK(zone); 2692 LIST_INSERT_HEAD(&zone->uz_free_bucket, 2693 bucket, ub_link); 2694 ZONE_UNLOCK(zone); 2695 goto zfree_restart; 2696 } 2697 2698 /* 2699 * If nothing else caught this, we'll just do an internal free. 2700 */ 2701 zfree_internal: 2702 zone_free_item(zone, item, udata, SKIP_DTOR, ZFREE_STATFREE); 2703 2704 return; 2705 } 2706 2707 /* 2708 * Frees an item to an INTERNAL zone or allocates a free bucket 2709 * 2710 * Arguments: 2711 * zone The zone to free to 2712 * item The item we're freeing 2713 * udata User supplied data for the dtor 2714 * skip Skip dtors and finis 2715 */ 2716 static void 2717 zone_free_item(uma_zone_t zone, void *item, void *udata, 2718 enum zfreeskip skip, int flags) 2719 { 2720 uma_slab_t slab; 2721 uma_keg_t keg; 2722 uint8_t *mem; 2723 uint8_t freei; 2724 int clearfull; 2725 2726 #ifdef INVARIANTS 2727 if (skip == SKIP_NONE) { 2728 if (zone->uz_flags & UMA_ZONE_MALLOC) 2729 uma_dbg_free(zone, udata, item); 2730 else 2731 uma_dbg_free(zone, NULL, item); 2732 } 2733 #endif 2734 if (skip < SKIP_DTOR && zone->uz_dtor) 2735 zone->uz_dtor(item, zone->uz_size, udata); 2736 2737 if (skip < SKIP_FINI && zone->uz_fini) 2738 zone->uz_fini(item, zone->uz_size); 2739 2740 ZONE_LOCK(zone); 2741 2742 if (flags & ZFREE_STATFAIL) 2743 zone->uz_fails++; 2744 if (flags & ZFREE_STATFREE) 2745 zone->uz_frees++; 2746 2747 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) { 2748 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 2749 keg = zone_first_keg(zone); /* Must only be one. */ 2750 if (zone->uz_flags & UMA_ZONE_HASH) { 2751 slab = hash_sfind(&keg->uk_hash, mem); 2752 } else { 2753 mem += keg->uk_pgoff; 2754 slab = (uma_slab_t)mem; 2755 } 2756 } else { 2757 /* This prevents redundant lookups via free(). */ 2758 if ((zone->uz_flags & UMA_ZONE_MALLOC) && udata != NULL) 2759 slab = (uma_slab_t)udata; 2760 else 2761 slab = vtoslab((vm_offset_t)item); 2762 keg = slab->us_keg; 2763 keg_relock(keg, zone); 2764 } 2765 MPASS(keg == slab->us_keg); 2766 2767 /* Do we need to remove from any lists? */ 2768 if (slab->us_freecount+1 == keg->uk_ipers) { 2769 LIST_REMOVE(slab, us_link); 2770 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 2771 } else if (slab->us_freecount == 0) { 2772 LIST_REMOVE(slab, us_link); 2773 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2774 } 2775 2776 /* Slab management. */ 2777 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 2778 BIT_SET(SLAB_SETSIZE, freei, &slab->us_free); 2779 slab->us_freecount++; 2780 2781 /* Keg statistics. */ 2782 keg->uk_free++; 2783 2784 clearfull = 0; 2785 if (keg->uk_flags & UMA_ZFLAG_FULL) { 2786 if (keg->uk_pages < keg->uk_maxpages) { 2787 keg->uk_flags &= ~UMA_ZFLAG_FULL; 2788 clearfull = 1; 2789 } 2790 2791 /* 2792 * We can handle one more allocation. Since we're 2793 * clearing ZFLAG_FULL, wake up all procs blocked 2794 * on pages. This should be uncommon, so keeping this 2795 * simple for now (rather than adding count of blocked 2796 * threads etc). 2797 */ 2798 wakeup(keg); 2799 } 2800 if (clearfull) { 2801 zone_relock(zone, keg); 2802 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2803 wakeup(zone); 2804 ZONE_UNLOCK(zone); 2805 } else 2806 KEG_UNLOCK(keg); 2807 2808 } 2809 2810 /* See uma.h */ 2811 int 2812 uma_zone_set_max(uma_zone_t zone, int nitems) 2813 { 2814 uma_keg_t keg; 2815 2816 ZONE_LOCK(zone); 2817 keg = zone_first_keg(zone); 2818 keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera; 2819 if (keg->uk_maxpages * keg->uk_ipers < nitems) 2820 keg->uk_maxpages += keg->uk_ppera; 2821 nitems = keg->uk_maxpages * keg->uk_ipers; 2822 ZONE_UNLOCK(zone); 2823 2824 return (nitems); 2825 } 2826 2827 /* See uma.h */ 2828 int 2829 uma_zone_get_max(uma_zone_t zone) 2830 { 2831 int nitems; 2832 uma_keg_t keg; 2833 2834 ZONE_LOCK(zone); 2835 keg = zone_first_keg(zone); 2836 nitems = keg->uk_maxpages * keg->uk_ipers; 2837 ZONE_UNLOCK(zone); 2838 2839 return (nitems); 2840 } 2841 2842 /* See uma.h */ 2843 void 2844 uma_zone_set_warning(uma_zone_t zone, const char *warning) 2845 { 2846 2847 ZONE_LOCK(zone); 2848 zone->uz_warning = warning; 2849 ZONE_UNLOCK(zone); 2850 } 2851 2852 /* See uma.h */ 2853 int 2854 uma_zone_get_cur(uma_zone_t zone) 2855 { 2856 int64_t nitems; 2857 u_int i; 2858 2859 ZONE_LOCK(zone); 2860 nitems = zone->uz_allocs - zone->uz_frees; 2861 CPU_FOREACH(i) { 2862 /* 2863 * See the comment in sysctl_vm_zone_stats() regarding the 2864 * safety of accessing the per-cpu caches. With the zone lock 2865 * held, it is safe, but can potentially result in stale data. 2866 */ 2867 nitems += zone->uz_cpu[i].uc_allocs - 2868 zone->uz_cpu[i].uc_frees; 2869 } 2870 ZONE_UNLOCK(zone); 2871 2872 return (nitems < 0 ? 0 : nitems); 2873 } 2874 2875 /* See uma.h */ 2876 void 2877 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 2878 { 2879 uma_keg_t keg; 2880 2881 ZONE_LOCK(zone); 2882 keg = zone_first_keg(zone); 2883 KASSERT(keg->uk_pages == 0, 2884 ("uma_zone_set_init on non-empty keg")); 2885 keg->uk_init = uminit; 2886 ZONE_UNLOCK(zone); 2887 } 2888 2889 /* See uma.h */ 2890 void 2891 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 2892 { 2893 uma_keg_t keg; 2894 2895 ZONE_LOCK(zone); 2896 keg = zone_first_keg(zone); 2897 KASSERT(keg->uk_pages == 0, 2898 ("uma_zone_set_fini on non-empty keg")); 2899 keg->uk_fini = fini; 2900 ZONE_UNLOCK(zone); 2901 } 2902 2903 /* See uma.h */ 2904 void 2905 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 2906 { 2907 ZONE_LOCK(zone); 2908 KASSERT(zone_first_keg(zone)->uk_pages == 0, 2909 ("uma_zone_set_zinit on non-empty keg")); 2910 zone->uz_init = zinit; 2911 ZONE_UNLOCK(zone); 2912 } 2913 2914 /* See uma.h */ 2915 void 2916 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 2917 { 2918 ZONE_LOCK(zone); 2919 KASSERT(zone_first_keg(zone)->uk_pages == 0, 2920 ("uma_zone_set_zfini on non-empty keg")); 2921 zone->uz_fini = zfini; 2922 ZONE_UNLOCK(zone); 2923 } 2924 2925 /* See uma.h */ 2926 /* XXX uk_freef is not actually used with the zone locked */ 2927 void 2928 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 2929 { 2930 2931 ZONE_LOCK(zone); 2932 zone_first_keg(zone)->uk_freef = freef; 2933 ZONE_UNLOCK(zone); 2934 } 2935 2936 /* See uma.h */ 2937 /* XXX uk_allocf is not actually used with the zone locked */ 2938 void 2939 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 2940 { 2941 uma_keg_t keg; 2942 2943 ZONE_LOCK(zone); 2944 keg = zone_first_keg(zone); 2945 keg->uk_flags |= UMA_ZFLAG_PRIVALLOC; 2946 keg->uk_allocf = allocf; 2947 ZONE_UNLOCK(zone); 2948 } 2949 2950 /* See uma.h */ 2951 int 2952 uma_zone_reserve_kva(uma_zone_t zone, int count) 2953 { 2954 uma_keg_t keg; 2955 vm_offset_t kva; 2956 int pages; 2957 2958 keg = zone_first_keg(zone); 2959 pages = count / keg->uk_ipers; 2960 2961 if (pages * keg->uk_ipers < count) 2962 pages++; 2963 2964 #ifdef UMA_MD_SMALL_ALLOC 2965 if (keg->uk_ppera > 1) { 2966 #else 2967 if (1) { 2968 #endif 2969 kva = kmem_alloc_nofault(kernel_map, pages * UMA_SLAB_SIZE); 2970 if (kva == 0) 2971 return (0); 2972 } else 2973 kva = 0; 2974 ZONE_LOCK(zone); 2975 keg->uk_kva = kva; 2976 keg->uk_offset = 0; 2977 keg->uk_maxpages = pages; 2978 #ifdef UMA_MD_SMALL_ALLOC 2979 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 2980 #else 2981 keg->uk_allocf = noobj_alloc; 2982 #endif 2983 keg->uk_flags |= UMA_ZONE_NOFREE | UMA_ZFLAG_PRIVALLOC; 2984 ZONE_UNLOCK(zone); 2985 return (1); 2986 } 2987 2988 /* See uma.h */ 2989 void 2990 uma_prealloc(uma_zone_t zone, int items) 2991 { 2992 int slabs; 2993 uma_slab_t slab; 2994 uma_keg_t keg; 2995 2996 keg = zone_first_keg(zone); 2997 ZONE_LOCK(zone); 2998 slabs = items / keg->uk_ipers; 2999 if (slabs * keg->uk_ipers < items) 3000 slabs++; 3001 while (slabs > 0) { 3002 slab = keg_alloc_slab(keg, zone, M_WAITOK); 3003 if (slab == NULL) 3004 break; 3005 MPASS(slab->us_keg == keg); 3006 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 3007 slabs--; 3008 } 3009 ZONE_UNLOCK(zone); 3010 } 3011 3012 /* See uma.h */ 3013 uint32_t * 3014 uma_find_refcnt(uma_zone_t zone, void *item) 3015 { 3016 uma_slabrefcnt_t slabref; 3017 uma_slab_t slab; 3018 uma_keg_t keg; 3019 uint32_t *refcnt; 3020 int idx; 3021 3022 slab = vtoslab((vm_offset_t)item & (~UMA_SLAB_MASK)); 3023 slabref = (uma_slabrefcnt_t)slab; 3024 keg = slab->us_keg; 3025 KASSERT(keg->uk_flags & UMA_ZONE_REFCNT, 3026 ("uma_find_refcnt(): zone possibly not UMA_ZONE_REFCNT")); 3027 idx = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3028 refcnt = &slabref->us_refcnt[idx]; 3029 return refcnt; 3030 } 3031 3032 /* See uma.h */ 3033 void 3034 uma_reclaim(void) 3035 { 3036 #ifdef UMA_DEBUG 3037 printf("UMA: vm asked us to release pages!\n"); 3038 #endif 3039 bucket_enable(); 3040 zone_foreach(zone_drain); 3041 /* 3042 * Some slabs may have been freed but this zone will be visited early 3043 * we visit again so that we can free pages that are empty once other 3044 * zones are drained. We have to do the same for buckets. 3045 */ 3046 zone_drain(slabzone); 3047 zone_drain(slabrefzone); 3048 bucket_zone_drain(); 3049 } 3050 3051 /* See uma.h */ 3052 int 3053 uma_zone_exhausted(uma_zone_t zone) 3054 { 3055 int full; 3056 3057 ZONE_LOCK(zone); 3058 full = (zone->uz_flags & UMA_ZFLAG_FULL); 3059 ZONE_UNLOCK(zone); 3060 return (full); 3061 } 3062 3063 int 3064 uma_zone_exhausted_nolock(uma_zone_t zone) 3065 { 3066 return (zone->uz_flags & UMA_ZFLAG_FULL); 3067 } 3068 3069 void * 3070 uma_large_malloc(int size, int wait) 3071 { 3072 void *mem; 3073 uma_slab_t slab; 3074 uint8_t flags; 3075 3076 slab = zone_alloc_item(slabzone, NULL, wait); 3077 if (slab == NULL) 3078 return (NULL); 3079 mem = page_alloc(NULL, size, &flags, wait); 3080 if (mem) { 3081 vsetslab((vm_offset_t)mem, slab); 3082 slab->us_data = mem; 3083 slab->us_flags = flags | UMA_SLAB_MALLOC; 3084 slab->us_size = size; 3085 } else { 3086 zone_free_item(slabzone, slab, NULL, SKIP_NONE, 3087 ZFREE_STATFAIL | ZFREE_STATFREE); 3088 } 3089 3090 return (mem); 3091 } 3092 3093 void 3094 uma_large_free(uma_slab_t slab) 3095 { 3096 vsetobj((vm_offset_t)slab->us_data, kmem_object); 3097 page_free(slab->us_data, slab->us_size, slab->us_flags); 3098 zone_free_item(slabzone, slab, NULL, SKIP_NONE, ZFREE_STATFREE); 3099 } 3100 3101 void 3102 uma_print_stats(void) 3103 { 3104 zone_foreach(uma_print_zone); 3105 } 3106 3107 static void 3108 slab_print(uma_slab_t slab) 3109 { 3110 printf("slab: keg %p, data %p, freecount %d\n", 3111 slab->us_keg, slab->us_data, slab->us_freecount); 3112 } 3113 3114 static void 3115 cache_print(uma_cache_t cache) 3116 { 3117 printf("alloc: %p(%d), free: %p(%d)\n", 3118 cache->uc_allocbucket, 3119 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, 3120 cache->uc_freebucket, 3121 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0); 3122 } 3123 3124 static void 3125 uma_print_keg(uma_keg_t keg) 3126 { 3127 uma_slab_t slab; 3128 3129 printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d " 3130 "out %d free %d limit %d\n", 3131 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags, 3132 keg->uk_ipers, keg->uk_ppera, 3133 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free, 3134 (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers); 3135 printf("Part slabs:\n"); 3136 LIST_FOREACH(slab, &keg->uk_part_slab, us_link) 3137 slab_print(slab); 3138 printf("Free slabs:\n"); 3139 LIST_FOREACH(slab, &keg->uk_free_slab, us_link) 3140 slab_print(slab); 3141 printf("Full slabs:\n"); 3142 LIST_FOREACH(slab, &keg->uk_full_slab, us_link) 3143 slab_print(slab); 3144 } 3145 3146 void 3147 uma_print_zone(uma_zone_t zone) 3148 { 3149 uma_cache_t cache; 3150 uma_klink_t kl; 3151 int i; 3152 3153 printf("zone: %s(%p) size %d flags %#x\n", 3154 zone->uz_name, zone, zone->uz_size, zone->uz_flags); 3155 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) 3156 uma_print_keg(kl->kl_keg); 3157 CPU_FOREACH(i) { 3158 cache = &zone->uz_cpu[i]; 3159 printf("CPU %d Cache:\n", i); 3160 cache_print(cache); 3161 } 3162 } 3163 3164 #ifdef DDB 3165 /* 3166 * Generate statistics across both the zone and its per-cpu cache's. Return 3167 * desired statistics if the pointer is non-NULL for that statistic. 3168 * 3169 * Note: does not update the zone statistics, as it can't safely clear the 3170 * per-CPU cache statistic. 3171 * 3172 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't 3173 * safe from off-CPU; we should modify the caches to track this information 3174 * directly so that we don't have to. 3175 */ 3176 static void 3177 uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp, 3178 uint64_t *freesp, uint64_t *sleepsp) 3179 { 3180 uma_cache_t cache; 3181 uint64_t allocs, frees, sleeps; 3182 int cachefree, cpu; 3183 3184 allocs = frees = sleeps = 0; 3185 cachefree = 0; 3186 CPU_FOREACH(cpu) { 3187 cache = &z->uz_cpu[cpu]; 3188 if (cache->uc_allocbucket != NULL) 3189 cachefree += cache->uc_allocbucket->ub_cnt; 3190 if (cache->uc_freebucket != NULL) 3191 cachefree += cache->uc_freebucket->ub_cnt; 3192 allocs += cache->uc_allocs; 3193 frees += cache->uc_frees; 3194 } 3195 allocs += z->uz_allocs; 3196 frees += z->uz_frees; 3197 sleeps += z->uz_sleeps; 3198 if (cachefreep != NULL) 3199 *cachefreep = cachefree; 3200 if (allocsp != NULL) 3201 *allocsp = allocs; 3202 if (freesp != NULL) 3203 *freesp = frees; 3204 if (sleepsp != NULL) 3205 *sleepsp = sleeps; 3206 } 3207 #endif /* DDB */ 3208 3209 static int 3210 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 3211 { 3212 uma_keg_t kz; 3213 uma_zone_t z; 3214 int count; 3215 3216 count = 0; 3217 mtx_lock(&uma_mtx); 3218 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3219 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3220 count++; 3221 } 3222 mtx_unlock(&uma_mtx); 3223 return (sysctl_handle_int(oidp, &count, 0, req)); 3224 } 3225 3226 static int 3227 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 3228 { 3229 struct uma_stream_header ush; 3230 struct uma_type_header uth; 3231 struct uma_percpu_stat ups; 3232 uma_bucket_t bucket; 3233 struct sbuf sbuf; 3234 uma_cache_t cache; 3235 uma_klink_t kl; 3236 uma_keg_t kz; 3237 uma_zone_t z; 3238 uma_keg_t k; 3239 int count, error, i; 3240 3241 error = sysctl_wire_old_buffer(req, 0); 3242 if (error != 0) 3243 return (error); 3244 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 3245 3246 count = 0; 3247 mtx_lock(&uma_mtx); 3248 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3249 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3250 count++; 3251 } 3252 3253 /* 3254 * Insert stream header. 3255 */ 3256 bzero(&ush, sizeof(ush)); 3257 ush.ush_version = UMA_STREAM_VERSION; 3258 ush.ush_maxcpus = (mp_maxid + 1); 3259 ush.ush_count = count; 3260 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 3261 3262 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3263 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3264 bzero(&uth, sizeof(uth)); 3265 ZONE_LOCK(z); 3266 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 3267 uth.uth_align = kz->uk_align; 3268 uth.uth_size = kz->uk_size; 3269 uth.uth_rsize = kz->uk_rsize; 3270 LIST_FOREACH(kl, &z->uz_kegs, kl_link) { 3271 k = kl->kl_keg; 3272 uth.uth_maxpages += k->uk_maxpages; 3273 uth.uth_pages += k->uk_pages; 3274 uth.uth_keg_free += k->uk_free; 3275 uth.uth_limit = (k->uk_maxpages / k->uk_ppera) 3276 * k->uk_ipers; 3277 } 3278 3279 /* 3280 * A zone is secondary is it is not the first entry 3281 * on the keg's zone list. 3282 */ 3283 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 3284 (LIST_FIRST(&kz->uk_zones) != z)) 3285 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 3286 3287 LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link) 3288 uth.uth_zone_free += bucket->ub_cnt; 3289 uth.uth_allocs = z->uz_allocs; 3290 uth.uth_frees = z->uz_frees; 3291 uth.uth_fails = z->uz_fails; 3292 uth.uth_sleeps = z->uz_sleeps; 3293 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 3294 /* 3295 * While it is not normally safe to access the cache 3296 * bucket pointers while not on the CPU that owns the 3297 * cache, we only allow the pointers to be exchanged 3298 * without the zone lock held, not invalidated, so 3299 * accept the possible race associated with bucket 3300 * exchange during monitoring. 3301 */ 3302 for (i = 0; i < (mp_maxid + 1); i++) { 3303 bzero(&ups, sizeof(ups)); 3304 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) 3305 goto skip; 3306 if (CPU_ABSENT(i)) 3307 goto skip; 3308 cache = &z->uz_cpu[i]; 3309 if (cache->uc_allocbucket != NULL) 3310 ups.ups_cache_free += 3311 cache->uc_allocbucket->ub_cnt; 3312 if (cache->uc_freebucket != NULL) 3313 ups.ups_cache_free += 3314 cache->uc_freebucket->ub_cnt; 3315 ups.ups_allocs = cache->uc_allocs; 3316 ups.ups_frees = cache->uc_frees; 3317 skip: 3318 (void)sbuf_bcat(&sbuf, &ups, sizeof(ups)); 3319 } 3320 ZONE_UNLOCK(z); 3321 } 3322 } 3323 mtx_unlock(&uma_mtx); 3324 error = sbuf_finish(&sbuf); 3325 sbuf_delete(&sbuf); 3326 return (error); 3327 } 3328 3329 #ifdef DDB 3330 DB_SHOW_COMMAND(uma, db_show_uma) 3331 { 3332 uint64_t allocs, frees, sleeps; 3333 uma_bucket_t bucket; 3334 uma_keg_t kz; 3335 uma_zone_t z; 3336 int cachefree; 3337 3338 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 3339 "Requests", "Sleeps"); 3340 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3341 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3342 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 3343 allocs = z->uz_allocs; 3344 frees = z->uz_frees; 3345 sleeps = z->uz_sleeps; 3346 cachefree = 0; 3347 } else 3348 uma_zone_sumstat(z, &cachefree, &allocs, 3349 &frees, &sleeps); 3350 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 3351 (LIST_FIRST(&kz->uk_zones) != z))) 3352 cachefree += kz->uk_free; 3353 LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link) 3354 cachefree += bucket->ub_cnt; 3355 db_printf("%18s %8ju %8jd %8d %12ju %8ju\n", z->uz_name, 3356 (uintmax_t)kz->uk_size, 3357 (intmax_t)(allocs - frees), cachefree, 3358 (uintmax_t)allocs, sleeps); 3359 if (db_pager_quit) 3360 return; 3361 } 3362 } 3363 } 3364 #endif 3365