1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/asan.h> 62 #include <sys/bitset.h> 63 #include <sys/domainset.h> 64 #include <sys/eventhandler.h> 65 #include <sys/kernel.h> 66 #include <sys/types.h> 67 #include <sys/limits.h> 68 #include <sys/queue.h> 69 #include <sys/malloc.h> 70 #include <sys/ktr.h> 71 #include <sys/lock.h> 72 #include <sys/msan.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/random.h> 76 #include <sys/rwlock.h> 77 #include <sys/sbuf.h> 78 #include <sys/sched.h> 79 #include <sys/sleepqueue.h> 80 #include <sys/smp.h> 81 #include <sys/smr.h> 82 #include <sys/sysctl.h> 83 #include <sys/taskqueue.h> 84 #include <sys/vmmeter.h> 85 86 #include <vm/vm.h> 87 #include <vm/vm_param.h> 88 #include <vm/vm_domainset.h> 89 #include <vm/vm_object.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_pageout.h> 92 #include <vm/vm_phys.h> 93 #include <vm/vm_pagequeue.h> 94 #include <vm/vm_map.h> 95 #include <vm/vm_kern.h> 96 #include <vm/vm_extern.h> 97 #include <vm/vm_dumpset.h> 98 #include <vm/uma.h> 99 #include <vm/uma_int.h> 100 #include <vm/uma_dbg.h> 101 102 #include <ddb/ddb.h> 103 104 #ifdef DEBUG_MEMGUARD 105 #include <vm/memguard.h> 106 #endif 107 108 #include <machine/md_var.h> 109 110 #ifdef INVARIANTS 111 #define UMA_ALWAYS_CTORDTOR 1 112 #else 113 #define UMA_ALWAYS_CTORDTOR 0 114 #endif 115 116 /* 117 * This is the zone and keg from which all zones are spawned. 118 */ 119 static uma_zone_t kegs; 120 static uma_zone_t zones; 121 122 /* 123 * On INVARIANTS builds, the slab contains a second bitset of the same size, 124 * "dbg_bits", which is laid out immediately after us_free. 125 */ 126 #ifdef INVARIANTS 127 #define SLAB_BITSETS 2 128 #else 129 #define SLAB_BITSETS 1 130 #endif 131 132 /* 133 * These are the two zones from which all offpage uma_slab_ts are allocated. 134 * 135 * One zone is for slab headers that can represent a larger number of items, 136 * making the slabs themselves more efficient, and the other zone is for 137 * headers that are smaller and represent fewer items, making the headers more 138 * efficient. 139 */ 140 #define SLABZONE_SIZE(setsize) \ 141 (sizeof(struct uma_hash_slab) + BITSET_SIZE(setsize) * SLAB_BITSETS) 142 #define SLABZONE0_SETSIZE (PAGE_SIZE / 16) 143 #define SLABZONE1_SETSIZE SLAB_MAX_SETSIZE 144 #define SLABZONE0_SIZE SLABZONE_SIZE(SLABZONE0_SETSIZE) 145 #define SLABZONE1_SIZE SLABZONE_SIZE(SLABZONE1_SETSIZE) 146 static uma_zone_t slabzones[2]; 147 148 /* 149 * The initial hash tables come out of this zone so they can be allocated 150 * prior to malloc coming up. 151 */ 152 static uma_zone_t hashzone; 153 154 /* The boot-time adjusted value for cache line alignment. */ 155 int uma_align_cache = 64 - 1; 156 157 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 158 static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc"); 159 160 /* 161 * Are we allowed to allocate buckets? 162 */ 163 static int bucketdisable = 1; 164 165 /* Linked list of all kegs in the system */ 166 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 167 168 /* Linked list of all cache-only zones in the system */ 169 static LIST_HEAD(,uma_zone) uma_cachezones = 170 LIST_HEAD_INITIALIZER(uma_cachezones); 171 172 /* 173 * Mutex for global lists: uma_kegs, uma_cachezones, and the per-keg list of 174 * zones. 175 */ 176 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 177 178 static struct sx uma_reclaim_lock; 179 180 /* 181 * First available virual address for boot time allocations. 182 */ 183 static vm_offset_t bootstart; 184 static vm_offset_t bootmem; 185 186 /* 187 * kmem soft limit, initialized by uma_set_limit(). Ensure that early 188 * allocations don't trigger a wakeup of the reclaim thread. 189 */ 190 unsigned long uma_kmem_limit = LONG_MAX; 191 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0, 192 "UMA kernel memory soft limit"); 193 unsigned long uma_kmem_total; 194 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0, 195 "UMA kernel memory usage"); 196 197 /* Is the VM done starting up? */ 198 static enum { 199 BOOT_COLD, 200 BOOT_KVA, 201 BOOT_PCPU, 202 BOOT_RUNNING, 203 BOOT_SHUTDOWN, 204 } booted = BOOT_COLD; 205 206 /* 207 * This is the handle used to schedule events that need to happen 208 * outside of the allocation fast path. 209 */ 210 static struct callout uma_callout; 211 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 212 213 /* 214 * This structure is passed as the zone ctor arg so that I don't have to create 215 * a special allocation function just for zones. 216 */ 217 struct uma_zctor_args { 218 const char *name; 219 size_t size; 220 uma_ctor ctor; 221 uma_dtor dtor; 222 uma_init uminit; 223 uma_fini fini; 224 uma_import import; 225 uma_release release; 226 void *arg; 227 uma_keg_t keg; 228 int align; 229 uint32_t flags; 230 }; 231 232 struct uma_kctor_args { 233 uma_zone_t zone; 234 size_t size; 235 uma_init uminit; 236 uma_fini fini; 237 int align; 238 uint32_t flags; 239 }; 240 241 struct uma_bucket_zone { 242 uma_zone_t ubz_zone; 243 const char *ubz_name; 244 int ubz_entries; /* Number of items it can hold. */ 245 int ubz_maxsize; /* Maximum allocation size per-item. */ 246 }; 247 248 /* 249 * Compute the actual number of bucket entries to pack them in power 250 * of two sizes for more efficient space utilization. 251 */ 252 #define BUCKET_SIZE(n) \ 253 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 254 255 #define BUCKET_MAX BUCKET_SIZE(256) 256 257 struct uma_bucket_zone bucket_zones[] = { 258 /* Literal bucket sizes. */ 259 { NULL, "2 Bucket", 2, 4096 }, 260 { NULL, "4 Bucket", 4, 3072 }, 261 { NULL, "8 Bucket", 8, 2048 }, 262 { NULL, "16 Bucket", 16, 1024 }, 263 /* Rounded down power of 2 sizes for efficiency. */ 264 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 265 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 266 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 267 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 268 { NULL, NULL, 0} 269 }; 270 271 /* 272 * Flags and enumerations to be passed to internal functions. 273 */ 274 enum zfreeskip { 275 SKIP_NONE = 0, 276 SKIP_CNT = 0x00000001, 277 SKIP_DTOR = 0x00010000, 278 SKIP_FINI = 0x00020000, 279 }; 280 281 /* Prototypes.. */ 282 283 void uma_startup1(vm_offset_t); 284 void uma_startup2(void); 285 286 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 287 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 288 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 289 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 290 static void *contig_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 291 static void page_free(void *, vm_size_t, uint8_t); 292 static void pcpu_page_free(void *, vm_size_t, uint8_t); 293 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int); 294 static void cache_drain(uma_zone_t); 295 static void bucket_drain(uma_zone_t, uma_bucket_t); 296 static void bucket_cache_reclaim(uma_zone_t zone, bool, int); 297 static bool bucket_cache_reclaim_domain(uma_zone_t, bool, bool, int); 298 static int keg_ctor(void *, int, void *, int); 299 static void keg_dtor(void *, int, void *); 300 static void keg_drain(uma_keg_t keg, int domain); 301 static int zone_ctor(void *, int, void *, int); 302 static void zone_dtor(void *, int, void *); 303 static inline void item_dtor(uma_zone_t zone, void *item, int size, 304 void *udata, enum zfreeskip skip); 305 static int zero_init(void *, int, int); 306 static void zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 307 int itemdomain, bool ws); 308 static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *); 309 static void zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *), void *); 310 static void zone_timeout(uma_zone_t zone, void *); 311 static int hash_alloc(struct uma_hash *, u_int); 312 static int hash_expand(struct uma_hash *, struct uma_hash *); 313 static void hash_free(struct uma_hash *hash); 314 static void uma_timeout(void *); 315 static void uma_shutdown(void); 316 static void *zone_alloc_item(uma_zone_t, void *, int, int); 317 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 318 static int zone_alloc_limit(uma_zone_t zone, int count, int flags); 319 static void zone_free_limit(uma_zone_t zone, int count); 320 static void bucket_enable(void); 321 static void bucket_init(void); 322 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 323 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 324 static void bucket_zone_drain(int domain); 325 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int); 326 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 327 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item); 328 static size_t slab_sizeof(int nitems); 329 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 330 uma_fini fini, int align, uint32_t flags); 331 static int zone_import(void *, void **, int, int, int); 332 static void zone_release(void *, void **, int); 333 static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int); 334 static bool cache_free(uma_zone_t, uma_cache_t, void *, int); 335 336 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 337 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 338 static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS); 339 static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS); 340 static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS); 341 static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS); 342 static int sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS); 343 344 static uint64_t uma_zone_get_allocs(uma_zone_t zone); 345 346 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 347 "Memory allocation debugging"); 348 349 #ifdef INVARIANTS 350 static uint64_t uma_keg_get_allocs(uma_keg_t zone); 351 static inline struct noslabbits *slab_dbg_bits(uma_slab_t slab, uma_keg_t keg); 352 353 static bool uma_dbg_kskip(uma_keg_t keg, void *mem); 354 static bool uma_dbg_zskip(uma_zone_t zone, void *mem); 355 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 356 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 357 358 static u_int dbg_divisor = 1; 359 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor, 360 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0, 361 "Debug & thrash every this item in memory allocator"); 362 363 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER; 364 static counter_u64_t uma_skip_cnt = EARLY_COUNTER; 365 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD, 366 &uma_dbg_cnt, "memory items debugged"); 367 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD, 368 &uma_skip_cnt, "memory items skipped, not debugged"); 369 #endif 370 371 SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 372 "Universal Memory Allocator"); 373 374 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_INT, 375 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 376 377 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_STRUCT, 378 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 379 380 static int zone_warnings = 1; 381 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 382 "Warn when UMA zones becomes full"); 383 384 static int multipage_slabs = 1; 385 TUNABLE_INT("vm.debug.uma_multipage_slabs", &multipage_slabs); 386 SYSCTL_INT(_vm_debug, OID_AUTO, uma_multipage_slabs, 387 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &multipage_slabs, 0, 388 "UMA may choose larger slab sizes for better efficiency"); 389 390 /* 391 * Select the slab zone for an offpage slab with the given maximum item count. 392 */ 393 static inline uma_zone_t 394 slabzone(int ipers) 395 { 396 397 return (slabzones[ipers > SLABZONE0_SETSIZE]); 398 } 399 400 /* 401 * This routine checks to see whether or not it's safe to enable buckets. 402 */ 403 static void 404 bucket_enable(void) 405 { 406 407 KASSERT(booted >= BOOT_KVA, ("Bucket enable before init")); 408 bucketdisable = vm_page_count_min(); 409 } 410 411 /* 412 * Initialize bucket_zones, the array of zones of buckets of various sizes. 413 * 414 * For each zone, calculate the memory required for each bucket, consisting 415 * of the header and an array of pointers. 416 */ 417 static void 418 bucket_init(void) 419 { 420 struct uma_bucket_zone *ubz; 421 int size; 422 423 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 424 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 425 size += sizeof(void *) * ubz->ubz_entries; 426 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 427 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 428 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | 429 UMA_ZONE_FIRSTTOUCH); 430 } 431 } 432 433 /* 434 * Given a desired number of entries for a bucket, return the zone from which 435 * to allocate the bucket. 436 */ 437 static struct uma_bucket_zone * 438 bucket_zone_lookup(int entries) 439 { 440 struct uma_bucket_zone *ubz; 441 442 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 443 if (ubz->ubz_entries >= entries) 444 return (ubz); 445 ubz--; 446 return (ubz); 447 } 448 449 static int 450 bucket_select(int size) 451 { 452 struct uma_bucket_zone *ubz; 453 454 ubz = &bucket_zones[0]; 455 if (size > ubz->ubz_maxsize) 456 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 457 458 for (; ubz->ubz_entries != 0; ubz++) 459 if (ubz->ubz_maxsize < size) 460 break; 461 ubz--; 462 return (ubz->ubz_entries); 463 } 464 465 static uma_bucket_t 466 bucket_alloc(uma_zone_t zone, void *udata, int flags) 467 { 468 struct uma_bucket_zone *ubz; 469 uma_bucket_t bucket; 470 471 /* 472 * Don't allocate buckets early in boot. 473 */ 474 if (__predict_false(booted < BOOT_KVA)) 475 return (NULL); 476 477 /* 478 * To limit bucket recursion we store the original zone flags 479 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 480 * NOVM flag to persist even through deep recursions. We also 481 * store ZFLAG_BUCKET once we have recursed attempting to allocate 482 * a bucket for a bucket zone so we do not allow infinite bucket 483 * recursion. This cookie will even persist to frees of unused 484 * buckets via the allocation path or bucket allocations in the 485 * free path. 486 */ 487 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 488 udata = (void *)(uintptr_t)zone->uz_flags; 489 else { 490 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 491 return (NULL); 492 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 493 } 494 if (((uintptr_t)udata & UMA_ZONE_VM) != 0) 495 flags |= M_NOVM; 496 ubz = bucket_zone_lookup(atomic_load_16(&zone->uz_bucket_size)); 497 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 498 ubz++; 499 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 500 if (bucket) { 501 #ifdef INVARIANTS 502 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 503 #endif 504 bucket->ub_cnt = 0; 505 bucket->ub_entries = min(ubz->ubz_entries, 506 zone->uz_bucket_size_max); 507 bucket->ub_seq = SMR_SEQ_INVALID; 508 CTR3(KTR_UMA, "bucket_alloc: zone %s(%p) allocated bucket %p", 509 zone->uz_name, zone, bucket); 510 } 511 512 return (bucket); 513 } 514 515 static void 516 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 517 { 518 struct uma_bucket_zone *ubz; 519 520 if (bucket->ub_cnt != 0) 521 bucket_drain(zone, bucket); 522 523 KASSERT(bucket->ub_cnt == 0, 524 ("bucket_free: Freeing a non free bucket.")); 525 KASSERT(bucket->ub_seq == SMR_SEQ_INVALID, 526 ("bucket_free: Freeing an SMR bucket.")); 527 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 528 udata = (void *)(uintptr_t)zone->uz_flags; 529 ubz = bucket_zone_lookup(bucket->ub_entries); 530 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 531 } 532 533 static void 534 bucket_zone_drain(int domain) 535 { 536 struct uma_bucket_zone *ubz; 537 538 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 539 uma_zone_reclaim_domain(ubz->ubz_zone, UMA_RECLAIM_DRAIN, 540 domain); 541 } 542 543 #ifdef KASAN 544 _Static_assert(UMA_SMALLEST_UNIT % KASAN_SHADOW_SCALE == 0, 545 "Base UMA allocation size not a multiple of the KASAN scale factor"); 546 547 static void 548 kasan_mark_item_valid(uma_zone_t zone, void *item) 549 { 550 void *pcpu_item; 551 size_t sz, rsz; 552 int i; 553 554 if ((zone->uz_flags & UMA_ZONE_NOKASAN) != 0) 555 return; 556 557 sz = zone->uz_size; 558 rsz = roundup2(sz, KASAN_SHADOW_SCALE); 559 if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) { 560 kasan_mark(item, sz, rsz, KASAN_GENERIC_REDZONE); 561 } else { 562 pcpu_item = zpcpu_base_to_offset(item); 563 for (i = 0; i <= mp_maxid; i++) 564 kasan_mark(zpcpu_get_cpu(pcpu_item, i), sz, rsz, 565 KASAN_GENERIC_REDZONE); 566 } 567 } 568 569 static void 570 kasan_mark_item_invalid(uma_zone_t zone, void *item) 571 { 572 void *pcpu_item; 573 size_t sz; 574 int i; 575 576 if ((zone->uz_flags & UMA_ZONE_NOKASAN) != 0) 577 return; 578 579 sz = roundup2(zone->uz_size, KASAN_SHADOW_SCALE); 580 if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) { 581 kasan_mark(item, 0, sz, KASAN_UMA_FREED); 582 } else { 583 pcpu_item = zpcpu_base_to_offset(item); 584 for (i = 0; i <= mp_maxid; i++) 585 kasan_mark(zpcpu_get_cpu(pcpu_item, i), 0, sz, 586 KASAN_UMA_FREED); 587 } 588 } 589 590 static void 591 kasan_mark_slab_valid(uma_keg_t keg, void *mem) 592 { 593 size_t sz; 594 595 if ((keg->uk_flags & UMA_ZONE_NOKASAN) == 0) { 596 sz = keg->uk_ppera * PAGE_SIZE; 597 kasan_mark(mem, sz, sz, 0); 598 } 599 } 600 601 static void 602 kasan_mark_slab_invalid(uma_keg_t keg, void *mem) 603 { 604 size_t sz; 605 606 if ((keg->uk_flags & UMA_ZONE_NOKASAN) == 0) { 607 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0) 608 sz = keg->uk_ppera * PAGE_SIZE; 609 else 610 sz = keg->uk_pgoff; 611 kasan_mark(mem, 0, sz, KASAN_UMA_FREED); 612 } 613 } 614 #else /* !KASAN */ 615 static void 616 kasan_mark_item_valid(uma_zone_t zone __unused, void *item __unused) 617 { 618 } 619 620 static void 621 kasan_mark_item_invalid(uma_zone_t zone __unused, void *item __unused) 622 { 623 } 624 625 static void 626 kasan_mark_slab_valid(uma_keg_t keg __unused, void *mem __unused) 627 { 628 } 629 630 static void 631 kasan_mark_slab_invalid(uma_keg_t keg __unused, void *mem __unused) 632 { 633 } 634 #endif /* KASAN */ 635 636 #ifdef KMSAN 637 static inline void 638 kmsan_mark_item_uninitialized(uma_zone_t zone, void *item) 639 { 640 void *pcpu_item; 641 size_t sz; 642 int i; 643 644 if ((zone->uz_flags & 645 (UMA_ZFLAG_CACHE | UMA_ZONE_SECONDARY | UMA_ZONE_MALLOC)) != 0) { 646 /* 647 * Cache zones should not be instrumented by default, as UMA 648 * does not have enough information to do so correctly. 649 * Consumers can mark items themselves if it makes sense to do 650 * so. 651 * 652 * Items from secondary zones are initialized by the parent 653 * zone and thus cannot safely be marked by UMA. 654 * 655 * malloc zones are handled directly by malloc(9) and friends, 656 * since they can provide more precise origin tracking. 657 */ 658 return; 659 } 660 if (zone->uz_keg->uk_init != NULL) { 661 /* 662 * By definition, initialized items cannot be marked. The 663 * best we can do is mark items from these zones after they 664 * are freed to the keg. 665 */ 666 return; 667 } 668 669 sz = zone->uz_size; 670 if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) { 671 kmsan_orig(item, sz, KMSAN_TYPE_UMA, KMSAN_RET_ADDR); 672 kmsan_mark(item, sz, KMSAN_STATE_UNINIT); 673 } else { 674 pcpu_item = zpcpu_base_to_offset(item); 675 for (i = 0; i <= mp_maxid; i++) { 676 kmsan_orig(zpcpu_get_cpu(pcpu_item, i), sz, 677 KMSAN_TYPE_UMA, KMSAN_RET_ADDR); 678 kmsan_mark(zpcpu_get_cpu(pcpu_item, i), sz, 679 KMSAN_STATE_INITED); 680 } 681 } 682 } 683 #else /* !KMSAN */ 684 static inline void 685 kmsan_mark_item_uninitialized(uma_zone_t zone __unused, void *item __unused) 686 { 687 } 688 #endif /* KMSAN */ 689 690 /* 691 * Acquire the domain lock and record contention. 692 */ 693 static uma_zone_domain_t 694 zone_domain_lock(uma_zone_t zone, int domain) 695 { 696 uma_zone_domain_t zdom; 697 bool lockfail; 698 699 zdom = ZDOM_GET(zone, domain); 700 lockfail = false; 701 if (ZDOM_OWNED(zdom)) 702 lockfail = true; 703 ZDOM_LOCK(zdom); 704 /* This is unsynchronized. The counter does not need to be precise. */ 705 if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max) 706 zone->uz_bucket_size++; 707 return (zdom); 708 } 709 710 /* 711 * Search for the domain with the least cached items and return it if it 712 * is out of balance with the preferred domain. 713 */ 714 static __noinline int 715 zone_domain_lowest(uma_zone_t zone, int pref) 716 { 717 long least, nitems, prefitems; 718 int domain; 719 int i; 720 721 prefitems = least = LONG_MAX; 722 domain = 0; 723 for (i = 0; i < vm_ndomains; i++) { 724 nitems = ZDOM_GET(zone, i)->uzd_nitems; 725 if (nitems < least) { 726 domain = i; 727 least = nitems; 728 } 729 if (domain == pref) 730 prefitems = nitems; 731 } 732 if (prefitems < least * 2) 733 return (pref); 734 735 return (domain); 736 } 737 738 /* 739 * Search for the domain with the most cached items and return it or the 740 * preferred domain if it has enough to proceed. 741 */ 742 static __noinline int 743 zone_domain_highest(uma_zone_t zone, int pref) 744 { 745 long most, nitems; 746 int domain; 747 int i; 748 749 if (ZDOM_GET(zone, pref)->uzd_nitems > BUCKET_MAX) 750 return (pref); 751 752 most = 0; 753 domain = 0; 754 for (i = 0; i < vm_ndomains; i++) { 755 nitems = ZDOM_GET(zone, i)->uzd_nitems; 756 if (nitems > most) { 757 domain = i; 758 most = nitems; 759 } 760 } 761 762 return (domain); 763 } 764 765 /* 766 * Set the maximum imax value. 767 */ 768 static void 769 zone_domain_imax_set(uma_zone_domain_t zdom, int nitems) 770 { 771 long old; 772 773 old = zdom->uzd_imax; 774 do { 775 if (old >= nitems) 776 return; 777 } while (atomic_fcmpset_long(&zdom->uzd_imax, &old, nitems) == 0); 778 779 /* 780 * We are at new maximum, so do the last WSS update for the old 781 * bimin and prepare to measure next allocation batch. 782 */ 783 if (zdom->uzd_wss < old - zdom->uzd_bimin) 784 zdom->uzd_wss = old - zdom->uzd_bimin; 785 zdom->uzd_bimin = nitems; 786 } 787 788 /* 789 * Attempt to satisfy an allocation by retrieving a full bucket from one of the 790 * zone's caches. If a bucket is found the zone is not locked on return. 791 */ 792 static uma_bucket_t 793 zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom, bool reclaim) 794 { 795 uma_bucket_t bucket; 796 long cnt; 797 int i; 798 bool dtor = false; 799 800 ZDOM_LOCK_ASSERT(zdom); 801 802 if ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) == NULL) 803 return (NULL); 804 805 /* SMR Buckets can not be re-used until readers expire. */ 806 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 807 bucket->ub_seq != SMR_SEQ_INVALID) { 808 if (!smr_poll(zone->uz_smr, bucket->ub_seq, false)) 809 return (NULL); 810 bucket->ub_seq = SMR_SEQ_INVALID; 811 dtor = (zone->uz_dtor != NULL) || UMA_ALWAYS_CTORDTOR; 812 if (STAILQ_NEXT(bucket, ub_link) != NULL) 813 zdom->uzd_seq = STAILQ_NEXT(bucket, ub_link)->ub_seq; 814 } 815 STAILQ_REMOVE_HEAD(&zdom->uzd_buckets, ub_link); 816 817 KASSERT(zdom->uzd_nitems >= bucket->ub_cnt, 818 ("%s: item count underflow (%ld, %d)", 819 __func__, zdom->uzd_nitems, bucket->ub_cnt)); 820 KASSERT(bucket->ub_cnt > 0, 821 ("%s: empty bucket in bucket cache", __func__)); 822 zdom->uzd_nitems -= bucket->ub_cnt; 823 824 if (reclaim) { 825 /* 826 * Shift the bounds of the current WSS interval to avoid 827 * perturbing the estimates. 828 */ 829 cnt = lmin(zdom->uzd_bimin, bucket->ub_cnt); 830 atomic_subtract_long(&zdom->uzd_imax, cnt); 831 zdom->uzd_bimin -= cnt; 832 zdom->uzd_imin -= lmin(zdom->uzd_imin, bucket->ub_cnt); 833 if (zdom->uzd_limin >= bucket->ub_cnt) { 834 zdom->uzd_limin -= bucket->ub_cnt; 835 } else { 836 zdom->uzd_limin = 0; 837 zdom->uzd_timin = 0; 838 } 839 } else if (zdom->uzd_bimin > zdom->uzd_nitems) { 840 zdom->uzd_bimin = zdom->uzd_nitems; 841 if (zdom->uzd_imin > zdom->uzd_nitems) 842 zdom->uzd_imin = zdom->uzd_nitems; 843 } 844 845 ZDOM_UNLOCK(zdom); 846 if (dtor) 847 for (i = 0; i < bucket->ub_cnt; i++) 848 item_dtor(zone, bucket->ub_bucket[i], zone->uz_size, 849 NULL, SKIP_NONE); 850 851 return (bucket); 852 } 853 854 /* 855 * Insert a full bucket into the specified cache. The "ws" parameter indicates 856 * whether the bucket's contents should be counted as part of the zone's working 857 * set. The bucket may be freed if it exceeds the bucket limit. 858 */ 859 static void 860 zone_put_bucket(uma_zone_t zone, int domain, uma_bucket_t bucket, void *udata, 861 const bool ws) 862 { 863 uma_zone_domain_t zdom; 864 865 /* We don't cache empty buckets. This can happen after a reclaim. */ 866 if (bucket->ub_cnt == 0) 867 goto out; 868 zdom = zone_domain_lock(zone, domain); 869 870 /* 871 * Conditionally set the maximum number of items. 872 */ 873 zdom->uzd_nitems += bucket->ub_cnt; 874 if (__predict_true(zdom->uzd_nitems < zone->uz_bucket_max)) { 875 if (ws) { 876 zone_domain_imax_set(zdom, zdom->uzd_nitems); 877 } else { 878 /* 879 * Shift the bounds of the current WSS interval to 880 * avoid perturbing the estimates. 881 */ 882 atomic_add_long(&zdom->uzd_imax, bucket->ub_cnt); 883 zdom->uzd_imin += bucket->ub_cnt; 884 zdom->uzd_bimin += bucket->ub_cnt; 885 zdom->uzd_limin += bucket->ub_cnt; 886 } 887 if (STAILQ_EMPTY(&zdom->uzd_buckets)) 888 zdom->uzd_seq = bucket->ub_seq; 889 890 /* 891 * Try to promote reuse of recently used items. For items 892 * protected by SMR, try to defer reuse to minimize polling. 893 */ 894 if (bucket->ub_seq == SMR_SEQ_INVALID) 895 STAILQ_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); 896 else 897 STAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link); 898 ZDOM_UNLOCK(zdom); 899 return; 900 } 901 zdom->uzd_nitems -= bucket->ub_cnt; 902 ZDOM_UNLOCK(zdom); 903 out: 904 bucket_free(zone, bucket, udata); 905 } 906 907 /* Pops an item out of a per-cpu cache bucket. */ 908 static inline void * 909 cache_bucket_pop(uma_cache_t cache, uma_cache_bucket_t bucket) 910 { 911 void *item; 912 913 CRITICAL_ASSERT(curthread); 914 915 bucket->ucb_cnt--; 916 item = bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt]; 917 #ifdef INVARIANTS 918 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = NULL; 919 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 920 #endif 921 cache->uc_allocs++; 922 923 return (item); 924 } 925 926 /* Pushes an item into a per-cpu cache bucket. */ 927 static inline void 928 cache_bucket_push(uma_cache_t cache, uma_cache_bucket_t bucket, void *item) 929 { 930 931 CRITICAL_ASSERT(curthread); 932 KASSERT(bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] == NULL, 933 ("uma_zfree: Freeing to non free bucket index.")); 934 935 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = item; 936 bucket->ucb_cnt++; 937 cache->uc_frees++; 938 } 939 940 /* 941 * Unload a UMA bucket from a per-cpu cache. 942 */ 943 static inline uma_bucket_t 944 cache_bucket_unload(uma_cache_bucket_t bucket) 945 { 946 uma_bucket_t b; 947 948 b = bucket->ucb_bucket; 949 if (b != NULL) { 950 MPASS(b->ub_entries == bucket->ucb_entries); 951 b->ub_cnt = bucket->ucb_cnt; 952 bucket->ucb_bucket = NULL; 953 bucket->ucb_entries = bucket->ucb_cnt = 0; 954 } 955 956 return (b); 957 } 958 959 static inline uma_bucket_t 960 cache_bucket_unload_alloc(uma_cache_t cache) 961 { 962 963 return (cache_bucket_unload(&cache->uc_allocbucket)); 964 } 965 966 static inline uma_bucket_t 967 cache_bucket_unload_free(uma_cache_t cache) 968 { 969 970 return (cache_bucket_unload(&cache->uc_freebucket)); 971 } 972 973 static inline uma_bucket_t 974 cache_bucket_unload_cross(uma_cache_t cache) 975 { 976 977 return (cache_bucket_unload(&cache->uc_crossbucket)); 978 } 979 980 /* 981 * Load a bucket into a per-cpu cache bucket. 982 */ 983 static inline void 984 cache_bucket_load(uma_cache_bucket_t bucket, uma_bucket_t b) 985 { 986 987 CRITICAL_ASSERT(curthread); 988 MPASS(bucket->ucb_bucket == NULL); 989 MPASS(b->ub_seq == SMR_SEQ_INVALID); 990 991 bucket->ucb_bucket = b; 992 bucket->ucb_cnt = b->ub_cnt; 993 bucket->ucb_entries = b->ub_entries; 994 } 995 996 static inline void 997 cache_bucket_load_alloc(uma_cache_t cache, uma_bucket_t b) 998 { 999 1000 cache_bucket_load(&cache->uc_allocbucket, b); 1001 } 1002 1003 static inline void 1004 cache_bucket_load_free(uma_cache_t cache, uma_bucket_t b) 1005 { 1006 1007 cache_bucket_load(&cache->uc_freebucket, b); 1008 } 1009 1010 #ifdef NUMA 1011 static inline void 1012 cache_bucket_load_cross(uma_cache_t cache, uma_bucket_t b) 1013 { 1014 1015 cache_bucket_load(&cache->uc_crossbucket, b); 1016 } 1017 #endif 1018 1019 /* 1020 * Copy and preserve ucb_spare. 1021 */ 1022 static inline void 1023 cache_bucket_copy(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 1024 { 1025 1026 b1->ucb_bucket = b2->ucb_bucket; 1027 b1->ucb_entries = b2->ucb_entries; 1028 b1->ucb_cnt = b2->ucb_cnt; 1029 } 1030 1031 /* 1032 * Swap two cache buckets. 1033 */ 1034 static inline void 1035 cache_bucket_swap(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 1036 { 1037 struct uma_cache_bucket b3; 1038 1039 CRITICAL_ASSERT(curthread); 1040 1041 cache_bucket_copy(&b3, b1); 1042 cache_bucket_copy(b1, b2); 1043 cache_bucket_copy(b2, &b3); 1044 } 1045 1046 /* 1047 * Attempt to fetch a bucket from a zone on behalf of the current cpu cache. 1048 */ 1049 static uma_bucket_t 1050 cache_fetch_bucket(uma_zone_t zone, uma_cache_t cache, int domain) 1051 { 1052 uma_zone_domain_t zdom; 1053 uma_bucket_t bucket; 1054 smr_seq_t seq; 1055 1056 /* 1057 * Avoid the lock if possible. 1058 */ 1059 zdom = ZDOM_GET(zone, domain); 1060 if (zdom->uzd_nitems == 0) 1061 return (NULL); 1062 1063 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) != 0 && 1064 (seq = atomic_load_32(&zdom->uzd_seq)) != SMR_SEQ_INVALID && 1065 !smr_poll(zone->uz_smr, seq, false)) 1066 return (NULL); 1067 1068 /* 1069 * Check the zone's cache of buckets. 1070 */ 1071 zdom = zone_domain_lock(zone, domain); 1072 if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) 1073 return (bucket); 1074 ZDOM_UNLOCK(zdom); 1075 1076 return (NULL); 1077 } 1078 1079 static void 1080 zone_log_warning(uma_zone_t zone) 1081 { 1082 static const struct timeval warninterval = { 300, 0 }; 1083 1084 if (!zone_warnings || zone->uz_warning == NULL) 1085 return; 1086 1087 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 1088 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 1089 } 1090 1091 static inline void 1092 zone_maxaction(uma_zone_t zone) 1093 { 1094 1095 if (zone->uz_maxaction.ta_func != NULL) 1096 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 1097 } 1098 1099 /* 1100 * Routine called by timeout which is used to fire off some time interval 1101 * based calculations. (stats, hash size, etc.) 1102 * 1103 * Arguments: 1104 * arg Unused 1105 * 1106 * Returns: 1107 * Nothing 1108 */ 1109 static void 1110 uma_timeout(void *unused) 1111 { 1112 bucket_enable(); 1113 zone_foreach(zone_timeout, NULL); 1114 1115 /* Reschedule this event */ 1116 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 1117 } 1118 1119 /* 1120 * Update the working set size estimates for the zone's bucket cache. 1121 * The constants chosen here are somewhat arbitrary. 1122 */ 1123 static void 1124 zone_domain_update_wss(uma_zone_domain_t zdom) 1125 { 1126 long m; 1127 1128 ZDOM_LOCK_ASSERT(zdom); 1129 MPASS(zdom->uzd_imax >= zdom->uzd_nitems); 1130 MPASS(zdom->uzd_nitems >= zdom->uzd_bimin); 1131 MPASS(zdom->uzd_bimin >= zdom->uzd_imin); 1132 1133 /* 1134 * Estimate WSS as modified moving average of biggest allocation 1135 * batches for each period over few minutes (UMA_TIMEOUT of 20s). 1136 */ 1137 zdom->uzd_wss = lmax(zdom->uzd_wss * 3 / 4, 1138 zdom->uzd_imax - zdom->uzd_bimin); 1139 1140 /* 1141 * Estimate longtime minimum item count as a combination of recent 1142 * minimum item count, adjusted by WSS for safety, and the modified 1143 * moving average over the last several hours (UMA_TIMEOUT of 20s). 1144 * timin measures time since limin tried to go negative, that means 1145 * we were dangerously close to or got out of cache. 1146 */ 1147 m = zdom->uzd_imin - zdom->uzd_wss; 1148 if (m >= 0) { 1149 if (zdom->uzd_limin >= m) 1150 zdom->uzd_limin = m; 1151 else 1152 zdom->uzd_limin = (m + zdom->uzd_limin * 255) / 256; 1153 zdom->uzd_timin++; 1154 } else { 1155 zdom->uzd_limin = 0; 1156 zdom->uzd_timin = 0; 1157 } 1158 1159 /* To reduce period edge effects on WSS keep half of the imax. */ 1160 atomic_subtract_long(&zdom->uzd_imax, 1161 (zdom->uzd_imax - zdom->uzd_nitems + 1) / 2); 1162 zdom->uzd_imin = zdom->uzd_bimin = zdom->uzd_nitems; 1163 } 1164 1165 /* 1166 * Routine to perform timeout driven calculations. This expands the 1167 * hashes and does per cpu statistics aggregation. 1168 * 1169 * Returns nothing. 1170 */ 1171 static void 1172 zone_timeout(uma_zone_t zone, void *unused) 1173 { 1174 uma_keg_t keg; 1175 u_int slabs, pages; 1176 1177 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 1178 goto trim; 1179 1180 keg = zone->uz_keg; 1181 1182 /* 1183 * Hash zones are non-numa by definition so the first domain 1184 * is the only one present. 1185 */ 1186 KEG_LOCK(keg, 0); 1187 pages = keg->uk_domain[0].ud_pages; 1188 1189 /* 1190 * Expand the keg hash table. 1191 * 1192 * This is done if the number of slabs is larger than the hash size. 1193 * What I'm trying to do here is completely reduce collisions. This 1194 * may be a little aggressive. Should I allow for two collisions max? 1195 */ 1196 if ((slabs = pages / keg->uk_ppera) > keg->uk_hash.uh_hashsize) { 1197 struct uma_hash newhash; 1198 struct uma_hash oldhash; 1199 int ret; 1200 1201 /* 1202 * This is so involved because allocating and freeing 1203 * while the keg lock is held will lead to deadlock. 1204 * I have to do everything in stages and check for 1205 * races. 1206 */ 1207 KEG_UNLOCK(keg, 0); 1208 ret = hash_alloc(&newhash, 1 << fls(slabs)); 1209 KEG_LOCK(keg, 0); 1210 if (ret) { 1211 if (hash_expand(&keg->uk_hash, &newhash)) { 1212 oldhash = keg->uk_hash; 1213 keg->uk_hash = newhash; 1214 } else 1215 oldhash = newhash; 1216 1217 KEG_UNLOCK(keg, 0); 1218 hash_free(&oldhash); 1219 goto trim; 1220 } 1221 } 1222 KEG_UNLOCK(keg, 0); 1223 1224 trim: 1225 /* Trim caches not used for a long time. */ 1226 for (int i = 0; i < vm_ndomains; i++) { 1227 if (bucket_cache_reclaim_domain(zone, false, false, i) && 1228 (zone->uz_flags & UMA_ZFLAG_CACHE) == 0) 1229 keg_drain(zone->uz_keg, i); 1230 } 1231 } 1232 1233 /* 1234 * Allocate and zero fill the next sized hash table from the appropriate 1235 * backing store. 1236 * 1237 * Arguments: 1238 * hash A new hash structure with the old hash size in uh_hashsize 1239 * 1240 * Returns: 1241 * 1 on success and 0 on failure. 1242 */ 1243 static int 1244 hash_alloc(struct uma_hash *hash, u_int size) 1245 { 1246 size_t alloc; 1247 1248 KASSERT(powerof2(size), ("hash size must be power of 2")); 1249 if (size > UMA_HASH_SIZE_INIT) { 1250 hash->uh_hashsize = size; 1251 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 1252 hash->uh_slab_hash = malloc(alloc, M_UMAHASH, M_NOWAIT); 1253 } else { 1254 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 1255 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 1256 UMA_ANYDOMAIN, M_WAITOK); 1257 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 1258 } 1259 if (hash->uh_slab_hash) { 1260 bzero(hash->uh_slab_hash, alloc); 1261 hash->uh_hashmask = hash->uh_hashsize - 1; 1262 return (1); 1263 } 1264 1265 return (0); 1266 } 1267 1268 /* 1269 * Expands the hash table for HASH zones. This is done from zone_timeout 1270 * to reduce collisions. This must not be done in the regular allocation 1271 * path, otherwise, we can recurse on the vm while allocating pages. 1272 * 1273 * Arguments: 1274 * oldhash The hash you want to expand 1275 * newhash The hash structure for the new table 1276 * 1277 * Returns: 1278 * Nothing 1279 * 1280 * Discussion: 1281 */ 1282 static int 1283 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 1284 { 1285 uma_hash_slab_t slab; 1286 u_int hval; 1287 u_int idx; 1288 1289 if (!newhash->uh_slab_hash) 1290 return (0); 1291 1292 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 1293 return (0); 1294 1295 /* 1296 * I need to investigate hash algorithms for resizing without a 1297 * full rehash. 1298 */ 1299 1300 for (idx = 0; idx < oldhash->uh_hashsize; idx++) 1301 while (!LIST_EMPTY(&oldhash->uh_slab_hash[idx])) { 1302 slab = LIST_FIRST(&oldhash->uh_slab_hash[idx]); 1303 LIST_REMOVE(slab, uhs_hlink); 1304 hval = UMA_HASH(newhash, slab->uhs_data); 1305 LIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 1306 slab, uhs_hlink); 1307 } 1308 1309 return (1); 1310 } 1311 1312 /* 1313 * Free the hash bucket to the appropriate backing store. 1314 * 1315 * Arguments: 1316 * slab_hash The hash bucket we're freeing 1317 * hashsize The number of entries in that hash bucket 1318 * 1319 * Returns: 1320 * Nothing 1321 */ 1322 static void 1323 hash_free(struct uma_hash *hash) 1324 { 1325 if (hash->uh_slab_hash == NULL) 1326 return; 1327 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 1328 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 1329 else 1330 free(hash->uh_slab_hash, M_UMAHASH); 1331 } 1332 1333 /* 1334 * Frees all outstanding items in a bucket 1335 * 1336 * Arguments: 1337 * zone The zone to free to, must be unlocked. 1338 * bucket The free/alloc bucket with items. 1339 * 1340 * Returns: 1341 * Nothing 1342 */ 1343 static void 1344 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 1345 { 1346 int i; 1347 1348 if (bucket->ub_cnt == 0) 1349 return; 1350 1351 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 1352 bucket->ub_seq != SMR_SEQ_INVALID) { 1353 smr_wait(zone->uz_smr, bucket->ub_seq); 1354 bucket->ub_seq = SMR_SEQ_INVALID; 1355 for (i = 0; i < bucket->ub_cnt; i++) 1356 item_dtor(zone, bucket->ub_bucket[i], 1357 zone->uz_size, NULL, SKIP_NONE); 1358 } 1359 if (zone->uz_fini) 1360 for (i = 0; i < bucket->ub_cnt; i++) { 1361 kasan_mark_item_valid(zone, bucket->ub_bucket[i]); 1362 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 1363 kasan_mark_item_invalid(zone, bucket->ub_bucket[i]); 1364 } 1365 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 1366 if (zone->uz_max_items > 0) 1367 zone_free_limit(zone, bucket->ub_cnt); 1368 #ifdef INVARIANTS 1369 bzero(bucket->ub_bucket, sizeof(void *) * bucket->ub_cnt); 1370 #endif 1371 bucket->ub_cnt = 0; 1372 } 1373 1374 /* 1375 * Drains the per cpu caches for a zone. 1376 * 1377 * NOTE: This may only be called while the zone is being torn down, and not 1378 * during normal operation. This is necessary in order that we do not have 1379 * to migrate CPUs to drain the per-CPU caches. 1380 * 1381 * Arguments: 1382 * zone The zone to drain, must be unlocked. 1383 * 1384 * Returns: 1385 * Nothing 1386 */ 1387 static void 1388 cache_drain(uma_zone_t zone) 1389 { 1390 uma_cache_t cache; 1391 uma_bucket_t bucket; 1392 smr_seq_t seq; 1393 int cpu; 1394 1395 /* 1396 * XXX: It is safe to not lock the per-CPU caches, because we're 1397 * tearing down the zone anyway. I.e., there will be no further use 1398 * of the caches at this point. 1399 * 1400 * XXX: It would good to be able to assert that the zone is being 1401 * torn down to prevent improper use of cache_drain(). 1402 */ 1403 seq = SMR_SEQ_INVALID; 1404 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 1405 seq = smr_advance(zone->uz_smr); 1406 CPU_FOREACH(cpu) { 1407 cache = &zone->uz_cpu[cpu]; 1408 bucket = cache_bucket_unload_alloc(cache); 1409 if (bucket != NULL) 1410 bucket_free(zone, bucket, NULL); 1411 bucket = cache_bucket_unload_free(cache); 1412 if (bucket != NULL) { 1413 bucket->ub_seq = seq; 1414 bucket_free(zone, bucket, NULL); 1415 } 1416 bucket = cache_bucket_unload_cross(cache); 1417 if (bucket != NULL) { 1418 bucket->ub_seq = seq; 1419 bucket_free(zone, bucket, NULL); 1420 } 1421 } 1422 bucket_cache_reclaim(zone, true, UMA_ANYDOMAIN); 1423 } 1424 1425 static void 1426 cache_shrink(uma_zone_t zone, void *unused) 1427 { 1428 1429 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1430 return; 1431 1432 ZONE_LOCK(zone); 1433 zone->uz_bucket_size = 1434 (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2; 1435 ZONE_UNLOCK(zone); 1436 } 1437 1438 static void 1439 cache_drain_safe_cpu(uma_zone_t zone, void *unused) 1440 { 1441 uma_cache_t cache; 1442 uma_bucket_t b1, b2, b3; 1443 int domain; 1444 1445 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1446 return; 1447 1448 b1 = b2 = b3 = NULL; 1449 critical_enter(); 1450 cache = &zone->uz_cpu[curcpu]; 1451 domain = PCPU_GET(domain); 1452 b1 = cache_bucket_unload_alloc(cache); 1453 1454 /* 1455 * Don't flush SMR zone buckets. This leaves the zone without a 1456 * bucket and forces every free to synchronize(). 1457 */ 1458 if ((zone->uz_flags & UMA_ZONE_SMR) == 0) { 1459 b2 = cache_bucket_unload_free(cache); 1460 b3 = cache_bucket_unload_cross(cache); 1461 } 1462 critical_exit(); 1463 1464 if (b1 != NULL) 1465 zone_free_bucket(zone, b1, NULL, domain, false); 1466 if (b2 != NULL) 1467 zone_free_bucket(zone, b2, NULL, domain, false); 1468 if (b3 != NULL) { 1469 /* Adjust the domain so it goes to zone_free_cross. */ 1470 domain = (domain + 1) % vm_ndomains; 1471 zone_free_bucket(zone, b3, NULL, domain, false); 1472 } 1473 } 1474 1475 /* 1476 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 1477 * This is an expensive call because it needs to bind to all CPUs 1478 * one by one and enter a critical section on each of them in order 1479 * to safely access their cache buckets. 1480 * Zone lock must not be held on call this function. 1481 */ 1482 static void 1483 pcpu_cache_drain_safe(uma_zone_t zone) 1484 { 1485 int cpu; 1486 1487 /* 1488 * Polite bucket sizes shrinking was not enough, shrink aggressively. 1489 */ 1490 if (zone) 1491 cache_shrink(zone, NULL); 1492 else 1493 zone_foreach(cache_shrink, NULL); 1494 1495 CPU_FOREACH(cpu) { 1496 thread_lock(curthread); 1497 sched_bind(curthread, cpu); 1498 thread_unlock(curthread); 1499 1500 if (zone) 1501 cache_drain_safe_cpu(zone, NULL); 1502 else 1503 zone_foreach(cache_drain_safe_cpu, NULL); 1504 } 1505 thread_lock(curthread); 1506 sched_unbind(curthread); 1507 thread_unlock(curthread); 1508 } 1509 1510 /* 1511 * Reclaim cached buckets from a zone. All buckets are reclaimed if the caller 1512 * requested a drain, otherwise the per-domain caches are trimmed to either 1513 * estimated working set size. 1514 */ 1515 static bool 1516 bucket_cache_reclaim_domain(uma_zone_t zone, bool drain, bool trim, int domain) 1517 { 1518 uma_zone_domain_t zdom; 1519 uma_bucket_t bucket; 1520 long target; 1521 bool done = false; 1522 1523 /* 1524 * The cross bucket is partially filled and not part of 1525 * the item count. Reclaim it individually here. 1526 */ 1527 zdom = ZDOM_GET(zone, domain); 1528 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 || drain) { 1529 ZONE_CROSS_LOCK(zone); 1530 bucket = zdom->uzd_cross; 1531 zdom->uzd_cross = NULL; 1532 ZONE_CROSS_UNLOCK(zone); 1533 if (bucket != NULL) 1534 bucket_free(zone, bucket, NULL); 1535 } 1536 1537 /* 1538 * If we were asked to drain the zone, we are done only once 1539 * this bucket cache is empty. If trim, we reclaim items in 1540 * excess of the zone's estimated working set size. Multiple 1541 * consecutive calls will shrink the WSS and so reclaim more. 1542 * If neither drain nor trim, then voluntarily reclaim 1/4 1543 * (to reduce first spike) of items not used for a long time. 1544 */ 1545 ZDOM_LOCK(zdom); 1546 zone_domain_update_wss(zdom); 1547 if (drain) 1548 target = 0; 1549 else if (trim) 1550 target = zdom->uzd_wss; 1551 else if (zdom->uzd_timin > 900 / UMA_TIMEOUT) 1552 target = zdom->uzd_nitems - zdom->uzd_limin / 4; 1553 else { 1554 ZDOM_UNLOCK(zdom); 1555 return (done); 1556 } 1557 while ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) != NULL && 1558 zdom->uzd_nitems >= target + bucket->ub_cnt) { 1559 bucket = zone_fetch_bucket(zone, zdom, true); 1560 if (bucket == NULL) 1561 break; 1562 bucket_free(zone, bucket, NULL); 1563 done = true; 1564 ZDOM_LOCK(zdom); 1565 } 1566 ZDOM_UNLOCK(zdom); 1567 return (done); 1568 } 1569 1570 static void 1571 bucket_cache_reclaim(uma_zone_t zone, bool drain, int domain) 1572 { 1573 int i; 1574 1575 /* 1576 * Shrink the zone bucket size to ensure that the per-CPU caches 1577 * don't grow too large. 1578 */ 1579 if (zone->uz_bucket_size > zone->uz_bucket_size_min) 1580 zone->uz_bucket_size--; 1581 1582 if (domain != UMA_ANYDOMAIN && 1583 (zone->uz_flags & UMA_ZONE_ROUNDROBIN) == 0) { 1584 bucket_cache_reclaim_domain(zone, drain, true, domain); 1585 } else { 1586 for (i = 0; i < vm_ndomains; i++) 1587 bucket_cache_reclaim_domain(zone, drain, true, i); 1588 } 1589 } 1590 1591 static void 1592 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 1593 { 1594 uint8_t *mem; 1595 size_t size; 1596 int i; 1597 uint8_t flags; 1598 1599 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 1600 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 1601 1602 mem = slab_data(slab, keg); 1603 size = PAGE_SIZE * keg->uk_ppera; 1604 1605 kasan_mark_slab_valid(keg, mem); 1606 if (keg->uk_fini != NULL) { 1607 for (i = start - 1; i > -1; i--) 1608 #ifdef INVARIANTS 1609 /* 1610 * trash_fini implies that dtor was trash_dtor. trash_fini 1611 * would check that memory hasn't been modified since free, 1612 * which executed trash_dtor. 1613 * That's why we need to run uma_dbg_kskip() check here, 1614 * albeit we don't make skip check for other init/fini 1615 * invocations. 1616 */ 1617 if (!uma_dbg_kskip(keg, slab_item(slab, keg, i)) || 1618 keg->uk_fini != trash_fini) 1619 #endif 1620 keg->uk_fini(slab_item(slab, keg, i), keg->uk_size); 1621 } 1622 flags = slab->us_flags; 1623 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) { 1624 zone_free_item(slabzone(keg->uk_ipers), slab_tohashslab(slab), 1625 NULL, SKIP_NONE); 1626 } 1627 keg->uk_freef(mem, size, flags); 1628 uma_total_dec(size); 1629 } 1630 1631 static void 1632 keg_drain_domain(uma_keg_t keg, int domain) 1633 { 1634 struct slabhead freeslabs; 1635 uma_domain_t dom; 1636 uma_slab_t slab, tmp; 1637 uint32_t i, stofree, stokeep, partial; 1638 1639 dom = &keg->uk_domain[domain]; 1640 LIST_INIT(&freeslabs); 1641 1642 CTR4(KTR_UMA, "keg_drain %s(%p) domain %d free items: %u", 1643 keg->uk_name, keg, domain, dom->ud_free_items); 1644 1645 KEG_LOCK(keg, domain); 1646 1647 /* 1648 * Are the free items in partially allocated slabs sufficient to meet 1649 * the reserve? If not, compute the number of fully free slabs that must 1650 * be kept. 1651 */ 1652 partial = dom->ud_free_items - dom->ud_free_slabs * keg->uk_ipers; 1653 if (partial < keg->uk_reserve) { 1654 stokeep = min(dom->ud_free_slabs, 1655 howmany(keg->uk_reserve - partial, keg->uk_ipers)); 1656 } else { 1657 stokeep = 0; 1658 } 1659 stofree = dom->ud_free_slabs - stokeep; 1660 1661 /* 1662 * Partition the free slabs into two sets: those that must be kept in 1663 * order to maintain the reserve, and those that may be released back to 1664 * the system. Since one set may be much larger than the other, 1665 * populate the smaller of the two sets and swap them if necessary. 1666 */ 1667 for (i = min(stofree, stokeep); i > 0; i--) { 1668 slab = LIST_FIRST(&dom->ud_free_slab); 1669 LIST_REMOVE(slab, us_link); 1670 LIST_INSERT_HEAD(&freeslabs, slab, us_link); 1671 } 1672 if (stofree > stokeep) 1673 LIST_SWAP(&freeslabs, &dom->ud_free_slab, uma_slab, us_link); 1674 1675 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) { 1676 LIST_FOREACH(slab, &freeslabs, us_link) 1677 UMA_HASH_REMOVE(&keg->uk_hash, slab); 1678 } 1679 dom->ud_free_items -= stofree * keg->uk_ipers; 1680 dom->ud_free_slabs -= stofree; 1681 dom->ud_pages -= stofree * keg->uk_ppera; 1682 KEG_UNLOCK(keg, domain); 1683 1684 LIST_FOREACH_SAFE(slab, &freeslabs, us_link, tmp) 1685 keg_free_slab(keg, slab, keg->uk_ipers); 1686 } 1687 1688 /* 1689 * Frees pages from a keg back to the system. This is done on demand from 1690 * the pageout daemon. 1691 * 1692 * Returns nothing. 1693 */ 1694 static void 1695 keg_drain(uma_keg_t keg, int domain) 1696 { 1697 int i; 1698 1699 if ((keg->uk_flags & UMA_ZONE_NOFREE) != 0) 1700 return; 1701 if (domain != UMA_ANYDOMAIN) { 1702 keg_drain_domain(keg, domain); 1703 } else { 1704 for (i = 0; i < vm_ndomains; i++) 1705 keg_drain_domain(keg, i); 1706 } 1707 } 1708 1709 static void 1710 zone_reclaim(uma_zone_t zone, int domain, int waitok, bool drain) 1711 { 1712 /* 1713 * Count active reclaim operations in order to interlock with 1714 * zone_dtor(), which removes the zone from global lists before 1715 * attempting to reclaim items itself. 1716 * 1717 * The zone may be destroyed while sleeping, so only zone_dtor() should 1718 * specify M_WAITOK. 1719 */ 1720 ZONE_LOCK(zone); 1721 if (waitok == M_WAITOK) { 1722 while (zone->uz_reclaimers > 0) 1723 msleep(zone, ZONE_LOCKPTR(zone), PVM, "zonedrain", 1); 1724 } 1725 zone->uz_reclaimers++; 1726 ZONE_UNLOCK(zone); 1727 bucket_cache_reclaim(zone, drain, domain); 1728 1729 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) 1730 keg_drain(zone->uz_keg, domain); 1731 ZONE_LOCK(zone); 1732 zone->uz_reclaimers--; 1733 if (zone->uz_reclaimers == 0) 1734 wakeup(zone); 1735 ZONE_UNLOCK(zone); 1736 } 1737 1738 static void 1739 zone_drain(uma_zone_t zone, void *arg) 1740 { 1741 int domain; 1742 1743 domain = (int)(uintptr_t)arg; 1744 zone_reclaim(zone, domain, M_NOWAIT, true); 1745 } 1746 1747 static void 1748 zone_trim(uma_zone_t zone, void *arg) 1749 { 1750 int domain; 1751 1752 domain = (int)(uintptr_t)arg; 1753 zone_reclaim(zone, domain, M_NOWAIT, false); 1754 } 1755 1756 /* 1757 * Allocate a new slab for a keg and inserts it into the partial slab list. 1758 * The keg should be unlocked on entry. If the allocation succeeds it will 1759 * be locked on return. 1760 * 1761 * Arguments: 1762 * flags Wait flags for the item initialization routine 1763 * aflags Wait flags for the slab allocation 1764 * 1765 * Returns: 1766 * The slab that was allocated or NULL if there is no memory and the 1767 * caller specified M_NOWAIT. 1768 */ 1769 static uma_slab_t 1770 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags, 1771 int aflags) 1772 { 1773 uma_domain_t dom; 1774 uma_slab_t slab; 1775 unsigned long size; 1776 uint8_t *mem; 1777 uint8_t sflags; 1778 int i; 1779 1780 KASSERT(domain >= 0 && domain < vm_ndomains, 1781 ("keg_alloc_slab: domain %d out of range", domain)); 1782 1783 slab = NULL; 1784 mem = NULL; 1785 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) { 1786 uma_hash_slab_t hslab; 1787 hslab = zone_alloc_item(slabzone(keg->uk_ipers), NULL, 1788 domain, aflags); 1789 if (hslab == NULL) 1790 goto fail; 1791 slab = &hslab->uhs_slab; 1792 } 1793 1794 /* 1795 * This reproduces the old vm_zone behavior of zero filling pages the 1796 * first time they are added to a zone. 1797 * 1798 * Malloced items are zeroed in uma_zalloc. 1799 */ 1800 1801 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1802 aflags |= M_ZERO; 1803 else 1804 aflags &= ~M_ZERO; 1805 1806 if (keg->uk_flags & UMA_ZONE_NODUMP) 1807 aflags |= M_NODUMP; 1808 1809 /* zone is passed for legacy reasons. */ 1810 size = keg->uk_ppera * PAGE_SIZE; 1811 mem = keg->uk_allocf(zone, size, domain, &sflags, aflags); 1812 if (mem == NULL) { 1813 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) 1814 zone_free_item(slabzone(keg->uk_ipers), 1815 slab_tohashslab(slab), NULL, SKIP_NONE); 1816 goto fail; 1817 } 1818 uma_total_inc(size); 1819 1820 /* For HASH zones all pages go to the same uma_domain. */ 1821 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 1822 domain = 0; 1823 1824 /* Point the slab into the allocated memory */ 1825 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) 1826 slab = (uma_slab_t)(mem + keg->uk_pgoff); 1827 else 1828 slab_tohashslab(slab)->uhs_data = mem; 1829 1830 if (keg->uk_flags & UMA_ZFLAG_VTOSLAB) 1831 for (i = 0; i < keg->uk_ppera; i++) 1832 vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE), 1833 zone, slab); 1834 1835 slab->us_freecount = keg->uk_ipers; 1836 slab->us_flags = sflags; 1837 slab->us_domain = domain; 1838 1839 BIT_FILL(keg->uk_ipers, &slab->us_free); 1840 #ifdef INVARIANTS 1841 BIT_ZERO(keg->uk_ipers, slab_dbg_bits(slab, keg)); 1842 #endif 1843 1844 if (keg->uk_init != NULL) { 1845 for (i = 0; i < keg->uk_ipers; i++) 1846 if (keg->uk_init(slab_item(slab, keg, i), 1847 keg->uk_size, flags) != 0) 1848 break; 1849 if (i != keg->uk_ipers) { 1850 keg_free_slab(keg, slab, i); 1851 goto fail; 1852 } 1853 } 1854 kasan_mark_slab_invalid(keg, mem); 1855 KEG_LOCK(keg, domain); 1856 1857 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1858 slab, keg->uk_name, keg); 1859 1860 if (keg->uk_flags & UMA_ZFLAG_HASH) 1861 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1862 1863 /* 1864 * If we got a slab here it's safe to mark it partially used 1865 * and return. We assume that the caller is going to remove 1866 * at least one item. 1867 */ 1868 dom = &keg->uk_domain[domain]; 1869 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 1870 dom->ud_pages += keg->uk_ppera; 1871 dom->ud_free_items += keg->uk_ipers; 1872 1873 return (slab); 1874 1875 fail: 1876 return (NULL); 1877 } 1878 1879 /* 1880 * This function is intended to be used early on in place of page_alloc(). It 1881 * performs contiguous physical memory allocations and uses a bump allocator for 1882 * KVA, so is usable before the kernel map is initialized. 1883 */ 1884 static void * 1885 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1886 int wait) 1887 { 1888 vm_paddr_t pa; 1889 vm_page_t m; 1890 int i, pages; 1891 1892 pages = howmany(bytes, PAGE_SIZE); 1893 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1894 1895 *pflag = UMA_SLAB_BOOT; 1896 m = vm_page_alloc_noobj_contig_domain(domain, malloc2vm_flags(wait) | 1897 VM_ALLOC_WIRED, pages, (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0, 1898 VM_MEMATTR_DEFAULT); 1899 if (m == NULL) 1900 return (NULL); 1901 1902 pa = VM_PAGE_TO_PHYS(m); 1903 for (i = 0; i < pages; i++, pa += PAGE_SIZE) { 1904 #if defined(__aarch64__) || defined(__amd64__) || \ 1905 defined(__riscv) || defined(__powerpc64__) 1906 if ((wait & M_NODUMP) == 0) 1907 dump_add_page(pa); 1908 #endif 1909 } 1910 1911 /* Allocate KVA and indirectly advance bootmem. */ 1912 return ((void *)pmap_map(&bootmem, m->phys_addr, 1913 m->phys_addr + (pages * PAGE_SIZE), VM_PROT_READ | VM_PROT_WRITE)); 1914 } 1915 1916 static void 1917 startup_free(void *mem, vm_size_t bytes) 1918 { 1919 vm_offset_t va; 1920 vm_page_t m; 1921 1922 va = (vm_offset_t)mem; 1923 m = PHYS_TO_VM_PAGE(pmap_kextract(va)); 1924 1925 /* 1926 * startup_alloc() returns direct-mapped slabs on some platforms. Avoid 1927 * unmapping ranges of the direct map. 1928 */ 1929 if (va >= bootstart && va + bytes <= bootmem) 1930 pmap_remove(kernel_pmap, va, va + bytes); 1931 for (; bytes != 0; bytes -= PAGE_SIZE, m++) { 1932 #if defined(__aarch64__) || defined(__amd64__) || \ 1933 defined(__riscv) || defined(__powerpc64__) 1934 dump_drop_page(VM_PAGE_TO_PHYS(m)); 1935 #endif 1936 vm_page_unwire_noq(m); 1937 vm_page_free(m); 1938 } 1939 } 1940 1941 /* 1942 * Allocates a number of pages from the system 1943 * 1944 * Arguments: 1945 * bytes The number of bytes requested 1946 * wait Shall we wait? 1947 * 1948 * Returns: 1949 * A pointer to the alloced memory or possibly 1950 * NULL if M_NOWAIT is set. 1951 */ 1952 static void * 1953 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1954 int wait) 1955 { 1956 void *p; /* Returned page */ 1957 1958 *pflag = UMA_SLAB_KERNEL; 1959 p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait); 1960 1961 return (p); 1962 } 1963 1964 static void * 1965 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1966 int wait) 1967 { 1968 struct pglist alloctail; 1969 vm_offset_t addr, zkva; 1970 int cpu, flags; 1971 vm_page_t p, p_next; 1972 #ifdef NUMA 1973 struct pcpu *pc; 1974 #endif 1975 1976 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE); 1977 1978 TAILQ_INIT(&alloctail); 1979 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | malloc2vm_flags(wait); 1980 *pflag = UMA_SLAB_KERNEL; 1981 for (cpu = 0; cpu <= mp_maxid; cpu++) { 1982 if (CPU_ABSENT(cpu)) { 1983 p = vm_page_alloc_noobj(flags); 1984 } else { 1985 #ifndef NUMA 1986 p = vm_page_alloc_noobj(flags); 1987 #else 1988 pc = pcpu_find(cpu); 1989 if (__predict_false(VM_DOMAIN_EMPTY(pc->pc_domain))) 1990 p = NULL; 1991 else 1992 p = vm_page_alloc_noobj_domain(pc->pc_domain, 1993 flags); 1994 if (__predict_false(p == NULL)) 1995 p = vm_page_alloc_noobj(flags); 1996 #endif 1997 } 1998 if (__predict_false(p == NULL)) 1999 goto fail; 2000 TAILQ_INSERT_TAIL(&alloctail, p, listq); 2001 } 2002 if ((addr = kva_alloc(bytes)) == 0) 2003 goto fail; 2004 zkva = addr; 2005 TAILQ_FOREACH(p, &alloctail, listq) { 2006 pmap_qenter(zkva, &p, 1); 2007 zkva += PAGE_SIZE; 2008 } 2009 return ((void*)addr); 2010 fail: 2011 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 2012 vm_page_unwire_noq(p); 2013 vm_page_free(p); 2014 } 2015 return (NULL); 2016 } 2017 2018 /* 2019 * Allocates a number of pages not belonging to a VM object 2020 * 2021 * Arguments: 2022 * bytes The number of bytes requested 2023 * wait Shall we wait? 2024 * 2025 * Returns: 2026 * A pointer to the alloced memory or possibly 2027 * NULL if M_NOWAIT is set. 2028 */ 2029 static void * 2030 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 2031 int wait) 2032 { 2033 TAILQ_HEAD(, vm_page) alloctail; 2034 u_long npages; 2035 vm_offset_t retkva, zkva; 2036 vm_page_t p, p_next; 2037 uma_keg_t keg; 2038 int req; 2039 2040 TAILQ_INIT(&alloctail); 2041 keg = zone->uz_keg; 2042 req = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED; 2043 if ((wait & M_WAITOK) != 0) 2044 req |= VM_ALLOC_WAITOK; 2045 2046 npages = howmany(bytes, PAGE_SIZE); 2047 while (npages > 0) { 2048 p = vm_page_alloc_noobj_domain(domain, req); 2049 if (p != NULL) { 2050 /* 2051 * Since the page does not belong to an object, its 2052 * listq is unused. 2053 */ 2054 TAILQ_INSERT_TAIL(&alloctail, p, listq); 2055 npages--; 2056 continue; 2057 } 2058 /* 2059 * Page allocation failed, free intermediate pages and 2060 * exit. 2061 */ 2062 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 2063 vm_page_unwire_noq(p); 2064 vm_page_free(p); 2065 } 2066 return (NULL); 2067 } 2068 *flags = UMA_SLAB_PRIV; 2069 zkva = keg->uk_kva + 2070 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 2071 retkva = zkva; 2072 TAILQ_FOREACH(p, &alloctail, listq) { 2073 pmap_qenter(zkva, &p, 1); 2074 zkva += PAGE_SIZE; 2075 } 2076 2077 return ((void *)retkva); 2078 } 2079 2080 /* 2081 * Allocate physically contiguous pages. 2082 */ 2083 static void * 2084 contig_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 2085 int wait) 2086 { 2087 2088 *pflag = UMA_SLAB_KERNEL; 2089 return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain), 2090 bytes, wait, 0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT)); 2091 } 2092 2093 /* 2094 * Frees a number of pages to the system 2095 * 2096 * Arguments: 2097 * mem A pointer to the memory to be freed 2098 * size The size of the memory being freed 2099 * flags The original p->us_flags field 2100 * 2101 * Returns: 2102 * Nothing 2103 */ 2104 static void 2105 page_free(void *mem, vm_size_t size, uint8_t flags) 2106 { 2107 2108 if ((flags & UMA_SLAB_BOOT) != 0) { 2109 startup_free(mem, size); 2110 return; 2111 } 2112 2113 KASSERT((flags & UMA_SLAB_KERNEL) != 0, 2114 ("UMA: page_free used with invalid flags %x", flags)); 2115 2116 kmem_free((vm_offset_t)mem, size); 2117 } 2118 2119 /* 2120 * Frees pcpu zone allocations 2121 * 2122 * Arguments: 2123 * mem A pointer to the memory to be freed 2124 * size The size of the memory being freed 2125 * flags The original p->us_flags field 2126 * 2127 * Returns: 2128 * Nothing 2129 */ 2130 static void 2131 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags) 2132 { 2133 vm_offset_t sva, curva; 2134 vm_paddr_t paddr; 2135 vm_page_t m; 2136 2137 MPASS(size == (mp_maxid+1)*PAGE_SIZE); 2138 2139 if ((flags & UMA_SLAB_BOOT) != 0) { 2140 startup_free(mem, size); 2141 return; 2142 } 2143 2144 sva = (vm_offset_t)mem; 2145 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) { 2146 paddr = pmap_kextract(curva); 2147 m = PHYS_TO_VM_PAGE(paddr); 2148 vm_page_unwire_noq(m); 2149 vm_page_free(m); 2150 } 2151 pmap_qremove(sva, size >> PAGE_SHIFT); 2152 kva_free(sva, size); 2153 } 2154 2155 /* 2156 * Zero fill initializer 2157 * 2158 * Arguments/Returns follow uma_init specifications 2159 */ 2160 static int 2161 zero_init(void *mem, int size, int flags) 2162 { 2163 bzero(mem, size); 2164 return (0); 2165 } 2166 2167 #ifdef INVARIANTS 2168 static struct noslabbits * 2169 slab_dbg_bits(uma_slab_t slab, uma_keg_t keg) 2170 { 2171 2172 return ((void *)((char *)&slab->us_free + BITSET_SIZE(keg->uk_ipers))); 2173 } 2174 #endif 2175 2176 /* 2177 * Actual size of embedded struct slab (!OFFPAGE). 2178 */ 2179 static size_t 2180 slab_sizeof(int nitems) 2181 { 2182 size_t s; 2183 2184 s = sizeof(struct uma_slab) + BITSET_SIZE(nitems) * SLAB_BITSETS; 2185 return (roundup(s, UMA_ALIGN_PTR + 1)); 2186 } 2187 2188 #define UMA_FIXPT_SHIFT 31 2189 #define UMA_FRAC_FIXPT(n, d) \ 2190 ((uint32_t)(((uint64_t)(n) << UMA_FIXPT_SHIFT) / (d))) 2191 #define UMA_FIXPT_PCT(f) \ 2192 ((u_int)(((uint64_t)100 * (f)) >> UMA_FIXPT_SHIFT)) 2193 #define UMA_PCT_FIXPT(pct) UMA_FRAC_FIXPT((pct), 100) 2194 #define UMA_MIN_EFF UMA_PCT_FIXPT(100 - UMA_MAX_WASTE) 2195 2196 /* 2197 * Compute the number of items that will fit in a slab. If hdr is true, the 2198 * item count may be limited to provide space in the slab for an inline slab 2199 * header. Otherwise, all slab space will be provided for item storage. 2200 */ 2201 static u_int 2202 slab_ipers_hdr(u_int size, u_int rsize, u_int slabsize, bool hdr) 2203 { 2204 u_int ipers; 2205 u_int padpi; 2206 2207 /* The padding between items is not needed after the last item. */ 2208 padpi = rsize - size; 2209 2210 if (hdr) { 2211 /* 2212 * Start with the maximum item count and remove items until 2213 * the slab header first alongside the allocatable memory. 2214 */ 2215 for (ipers = MIN(SLAB_MAX_SETSIZE, 2216 (slabsize + padpi - slab_sizeof(1)) / rsize); 2217 ipers > 0 && 2218 ipers * rsize - padpi + slab_sizeof(ipers) > slabsize; 2219 ipers--) 2220 continue; 2221 } else { 2222 ipers = MIN((slabsize + padpi) / rsize, SLAB_MAX_SETSIZE); 2223 } 2224 2225 return (ipers); 2226 } 2227 2228 struct keg_layout_result { 2229 u_int format; 2230 u_int slabsize; 2231 u_int ipers; 2232 u_int eff; 2233 }; 2234 2235 static void 2236 keg_layout_one(uma_keg_t keg, u_int rsize, u_int slabsize, u_int fmt, 2237 struct keg_layout_result *kl) 2238 { 2239 u_int total; 2240 2241 kl->format = fmt; 2242 kl->slabsize = slabsize; 2243 2244 /* Handle INTERNAL as inline with an extra page. */ 2245 if ((fmt & UMA_ZFLAG_INTERNAL) != 0) { 2246 kl->format &= ~UMA_ZFLAG_INTERNAL; 2247 kl->slabsize += PAGE_SIZE; 2248 } 2249 2250 kl->ipers = slab_ipers_hdr(keg->uk_size, rsize, kl->slabsize, 2251 (fmt & UMA_ZFLAG_OFFPAGE) == 0); 2252 2253 /* Account for memory used by an offpage slab header. */ 2254 total = kl->slabsize; 2255 if ((fmt & UMA_ZFLAG_OFFPAGE) != 0) 2256 total += slabzone(kl->ipers)->uz_keg->uk_rsize; 2257 2258 kl->eff = UMA_FRAC_FIXPT(kl->ipers * rsize, total); 2259 } 2260 2261 /* 2262 * Determine the format of a uma keg. This determines where the slab header 2263 * will be placed (inline or offpage) and calculates ipers, rsize, and ppera. 2264 * 2265 * Arguments 2266 * keg The zone we should initialize 2267 * 2268 * Returns 2269 * Nothing 2270 */ 2271 static void 2272 keg_layout(uma_keg_t keg) 2273 { 2274 struct keg_layout_result kl = {}, kl_tmp; 2275 u_int fmts[2]; 2276 u_int alignsize; 2277 u_int nfmt; 2278 u_int pages; 2279 u_int rsize; 2280 u_int slabsize; 2281 u_int i, j; 2282 2283 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 2284 (keg->uk_size <= UMA_PCPU_ALLOC_SIZE && 2285 (keg->uk_flags & UMA_ZONE_CACHESPREAD) == 0), 2286 ("%s: cannot configure for PCPU: keg=%s, size=%u, flags=0x%b", 2287 __func__, keg->uk_name, keg->uk_size, keg->uk_flags, 2288 PRINT_UMA_ZFLAGS)); 2289 KASSERT((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) == 0 || 2290 (keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0, 2291 ("%s: incompatible flags 0x%b", __func__, keg->uk_flags, 2292 PRINT_UMA_ZFLAGS)); 2293 2294 alignsize = keg->uk_align + 1; 2295 #ifdef KASAN 2296 /* 2297 * ASAN requires that each allocation be aligned to the shadow map 2298 * scale factor. 2299 */ 2300 if (alignsize < KASAN_SHADOW_SCALE) 2301 alignsize = KASAN_SHADOW_SCALE; 2302 #endif 2303 2304 /* 2305 * Calculate the size of each allocation (rsize) according to 2306 * alignment. If the requested size is smaller than we have 2307 * allocation bits for we round it up. 2308 */ 2309 rsize = MAX(keg->uk_size, UMA_SMALLEST_UNIT); 2310 rsize = roundup2(rsize, alignsize); 2311 2312 if ((keg->uk_flags & UMA_ZONE_CACHESPREAD) != 0) { 2313 /* 2314 * We want one item to start on every align boundary in a page. 2315 * To do this we will span pages. We will also extend the item 2316 * by the size of align if it is an even multiple of align. 2317 * Otherwise, it would fall on the same boundary every time. 2318 */ 2319 if ((rsize & alignsize) == 0) 2320 rsize += alignsize; 2321 slabsize = rsize * (PAGE_SIZE / alignsize); 2322 slabsize = MIN(slabsize, rsize * SLAB_MAX_SETSIZE); 2323 slabsize = MIN(slabsize, UMA_CACHESPREAD_MAX_SIZE); 2324 slabsize = round_page(slabsize); 2325 } else { 2326 /* 2327 * Start with a slab size of as many pages as it takes to 2328 * represent a single item. We will try to fit as many 2329 * additional items into the slab as possible. 2330 */ 2331 slabsize = round_page(keg->uk_size); 2332 } 2333 2334 /* Build a list of all of the available formats for this keg. */ 2335 nfmt = 0; 2336 2337 /* Evaluate an inline slab layout. */ 2338 if ((keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0) 2339 fmts[nfmt++] = 0; 2340 2341 /* TODO: vm_page-embedded slab. */ 2342 2343 /* 2344 * We can't do OFFPAGE if we're internal or if we've been 2345 * asked to not go to the VM for buckets. If we do this we 2346 * may end up going to the VM for slabs which we do not want 2347 * to do if we're UMA_ZONE_VM, which clearly forbids it. 2348 * In those cases, evaluate a pseudo-format called INTERNAL 2349 * which has an inline slab header and one extra page to 2350 * guarantee that it fits. 2351 * 2352 * Otherwise, see if using an OFFPAGE slab will improve our 2353 * efficiency. 2354 */ 2355 if ((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) != 0) 2356 fmts[nfmt++] = UMA_ZFLAG_INTERNAL; 2357 else 2358 fmts[nfmt++] = UMA_ZFLAG_OFFPAGE; 2359 2360 /* 2361 * Choose a slab size and format which satisfy the minimum efficiency. 2362 * Prefer the smallest slab size that meets the constraints. 2363 * 2364 * Start with a minimum slab size, to accommodate CACHESPREAD. Then, 2365 * for small items (up to PAGE_SIZE), the iteration increment is one 2366 * page; and for large items, the increment is one item. 2367 */ 2368 i = (slabsize + rsize - keg->uk_size) / MAX(PAGE_SIZE, rsize); 2369 KASSERT(i >= 1, ("keg %s(%p) flags=0x%b slabsize=%u, rsize=%u, i=%u", 2370 keg->uk_name, keg, keg->uk_flags, PRINT_UMA_ZFLAGS, slabsize, 2371 rsize, i)); 2372 for ( ; ; i++) { 2373 slabsize = (rsize <= PAGE_SIZE) ? ptoa(i) : 2374 round_page(rsize * (i - 1) + keg->uk_size); 2375 2376 for (j = 0; j < nfmt; j++) { 2377 /* Only if we have no viable format yet. */ 2378 if ((fmts[j] & UMA_ZFLAG_INTERNAL) != 0 && 2379 kl.ipers > 0) 2380 continue; 2381 2382 keg_layout_one(keg, rsize, slabsize, fmts[j], &kl_tmp); 2383 if (kl_tmp.eff <= kl.eff) 2384 continue; 2385 2386 kl = kl_tmp; 2387 2388 CTR6(KTR_UMA, "keg %s layout: format %#x " 2389 "(ipers %u * rsize %u) / slabsize %#x = %u%% eff", 2390 keg->uk_name, kl.format, kl.ipers, rsize, 2391 kl.slabsize, UMA_FIXPT_PCT(kl.eff)); 2392 2393 /* Stop when we reach the minimum efficiency. */ 2394 if (kl.eff >= UMA_MIN_EFF) 2395 break; 2396 } 2397 2398 if (kl.eff >= UMA_MIN_EFF || !multipage_slabs || 2399 slabsize >= SLAB_MAX_SETSIZE * rsize || 2400 (keg->uk_flags & (UMA_ZONE_PCPU | UMA_ZONE_CONTIG)) != 0) 2401 break; 2402 } 2403 2404 pages = atop(kl.slabsize); 2405 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 2406 pages *= mp_maxid + 1; 2407 2408 keg->uk_rsize = rsize; 2409 keg->uk_ipers = kl.ipers; 2410 keg->uk_ppera = pages; 2411 keg->uk_flags |= kl.format; 2412 2413 /* 2414 * How do we find the slab header if it is offpage or if not all item 2415 * start addresses are in the same page? We could solve the latter 2416 * case with vaddr alignment, but we don't. 2417 */ 2418 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0 || 2419 (keg->uk_ipers - 1) * rsize >= PAGE_SIZE) { 2420 if ((keg->uk_flags & UMA_ZONE_NOTPAGE) != 0) 2421 keg->uk_flags |= UMA_ZFLAG_HASH; 2422 else 2423 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2424 } 2425 2426 CTR6(KTR_UMA, "%s: keg=%s, flags=%#x, rsize=%u, ipers=%u, ppera=%u", 2427 __func__, keg->uk_name, keg->uk_flags, rsize, keg->uk_ipers, 2428 pages); 2429 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE, 2430 ("%s: keg=%s, flags=0x%b, rsize=%u, ipers=%u, ppera=%u", __func__, 2431 keg->uk_name, keg->uk_flags, PRINT_UMA_ZFLAGS, rsize, 2432 keg->uk_ipers, pages)); 2433 } 2434 2435 /* 2436 * Keg header ctor. This initializes all fields, locks, etc. And inserts 2437 * the keg onto the global keg list. 2438 * 2439 * Arguments/Returns follow uma_ctor specifications 2440 * udata Actually uma_kctor_args 2441 */ 2442 static int 2443 keg_ctor(void *mem, int size, void *udata, int flags) 2444 { 2445 struct uma_kctor_args *arg = udata; 2446 uma_keg_t keg = mem; 2447 uma_zone_t zone; 2448 int i; 2449 2450 bzero(keg, size); 2451 keg->uk_size = arg->size; 2452 keg->uk_init = arg->uminit; 2453 keg->uk_fini = arg->fini; 2454 keg->uk_align = arg->align; 2455 keg->uk_reserve = 0; 2456 keg->uk_flags = arg->flags; 2457 2458 /* 2459 * We use a global round-robin policy by default. Zones with 2460 * UMA_ZONE_FIRSTTOUCH set will use first-touch instead, in which 2461 * case the iterator is never run. 2462 */ 2463 keg->uk_dr.dr_policy = DOMAINSET_RR(); 2464 keg->uk_dr.dr_iter = 0; 2465 2466 /* 2467 * The primary zone is passed to us at keg-creation time. 2468 */ 2469 zone = arg->zone; 2470 keg->uk_name = zone->uz_name; 2471 2472 if (arg->flags & UMA_ZONE_ZINIT) 2473 keg->uk_init = zero_init; 2474 2475 if (arg->flags & UMA_ZONE_MALLOC) 2476 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2477 2478 #ifndef SMP 2479 keg->uk_flags &= ~UMA_ZONE_PCPU; 2480 #endif 2481 2482 keg_layout(keg); 2483 2484 /* 2485 * Use a first-touch NUMA policy for kegs that pmap_extract() will 2486 * work on. Use round-robin for everything else. 2487 * 2488 * Zones may override the default by specifying either. 2489 */ 2490 #ifdef NUMA 2491 if ((keg->uk_flags & 2492 (UMA_ZONE_ROUNDROBIN | UMA_ZFLAG_CACHE | UMA_ZONE_NOTPAGE)) == 0) 2493 keg->uk_flags |= UMA_ZONE_FIRSTTOUCH; 2494 else if ((keg->uk_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2495 keg->uk_flags |= UMA_ZONE_ROUNDROBIN; 2496 #endif 2497 2498 /* 2499 * If we haven't booted yet we need allocations to go through the 2500 * startup cache until the vm is ready. 2501 */ 2502 #ifdef UMA_MD_SMALL_ALLOC 2503 if (keg->uk_ppera == 1) 2504 keg->uk_allocf = uma_small_alloc; 2505 else 2506 #endif 2507 if (booted < BOOT_KVA) 2508 keg->uk_allocf = startup_alloc; 2509 else if (keg->uk_flags & UMA_ZONE_PCPU) 2510 keg->uk_allocf = pcpu_page_alloc; 2511 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && keg->uk_ppera > 1) 2512 keg->uk_allocf = contig_alloc; 2513 else 2514 keg->uk_allocf = page_alloc; 2515 #ifdef UMA_MD_SMALL_ALLOC 2516 if (keg->uk_ppera == 1) 2517 keg->uk_freef = uma_small_free; 2518 else 2519 #endif 2520 if (keg->uk_flags & UMA_ZONE_PCPU) 2521 keg->uk_freef = pcpu_page_free; 2522 else 2523 keg->uk_freef = page_free; 2524 2525 /* 2526 * Initialize keg's locks. 2527 */ 2528 for (i = 0; i < vm_ndomains; i++) 2529 KEG_LOCK_INIT(keg, i, (arg->flags & UMA_ZONE_MTXCLASS)); 2530 2531 /* 2532 * If we're putting the slab header in the actual page we need to 2533 * figure out where in each page it goes. See slab_sizeof 2534 * definition. 2535 */ 2536 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) { 2537 size_t shsize; 2538 2539 shsize = slab_sizeof(keg->uk_ipers); 2540 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize; 2541 /* 2542 * The only way the following is possible is if with our 2543 * UMA_ALIGN_PTR adjustments we are now bigger than 2544 * UMA_SLAB_SIZE. I haven't checked whether this is 2545 * mathematically possible for all cases, so we make 2546 * sure here anyway. 2547 */ 2548 KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera, 2549 ("zone %s ipers %d rsize %d size %d slab won't fit", 2550 zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size)); 2551 } 2552 2553 if (keg->uk_flags & UMA_ZFLAG_HASH) 2554 hash_alloc(&keg->uk_hash, 0); 2555 2556 CTR3(KTR_UMA, "keg_ctor %p zone %s(%p)", keg, zone->uz_name, zone); 2557 2558 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 2559 2560 rw_wlock(&uma_rwlock); 2561 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 2562 rw_wunlock(&uma_rwlock); 2563 return (0); 2564 } 2565 2566 static void 2567 zone_kva_available(uma_zone_t zone, void *unused) 2568 { 2569 uma_keg_t keg; 2570 2571 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 2572 return; 2573 KEG_GET(zone, keg); 2574 2575 if (keg->uk_allocf == startup_alloc) { 2576 /* Switch to the real allocator. */ 2577 if (keg->uk_flags & UMA_ZONE_PCPU) 2578 keg->uk_allocf = pcpu_page_alloc; 2579 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && 2580 keg->uk_ppera > 1) 2581 keg->uk_allocf = contig_alloc; 2582 else 2583 keg->uk_allocf = page_alloc; 2584 } 2585 } 2586 2587 static void 2588 zone_alloc_counters(uma_zone_t zone, void *unused) 2589 { 2590 2591 zone->uz_allocs = counter_u64_alloc(M_WAITOK); 2592 zone->uz_frees = counter_u64_alloc(M_WAITOK); 2593 zone->uz_fails = counter_u64_alloc(M_WAITOK); 2594 zone->uz_xdomain = counter_u64_alloc(M_WAITOK); 2595 } 2596 2597 static void 2598 zone_alloc_sysctl(uma_zone_t zone, void *unused) 2599 { 2600 uma_zone_domain_t zdom; 2601 uma_domain_t dom; 2602 uma_keg_t keg; 2603 struct sysctl_oid *oid, *domainoid; 2604 int domains, i, cnt; 2605 static const char *nokeg = "cache zone"; 2606 char *c; 2607 2608 /* 2609 * Make a sysctl safe copy of the zone name by removing 2610 * any special characters and handling dups by appending 2611 * an index. 2612 */ 2613 if (zone->uz_namecnt != 0) { 2614 /* Count the number of decimal digits and '_' separator. */ 2615 for (i = 1, cnt = zone->uz_namecnt; cnt != 0; i++) 2616 cnt /= 10; 2617 zone->uz_ctlname = malloc(strlen(zone->uz_name) + i + 1, 2618 M_UMA, M_WAITOK); 2619 sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name, 2620 zone->uz_namecnt); 2621 } else 2622 zone->uz_ctlname = strdup(zone->uz_name, M_UMA); 2623 for (c = zone->uz_ctlname; *c != '\0'; c++) 2624 if (strchr("./\\ -", *c) != NULL) 2625 *c = '_'; 2626 2627 /* 2628 * Basic parameters at the root. 2629 */ 2630 zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma), 2631 OID_AUTO, zone->uz_ctlname, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2632 oid = zone->uz_oid; 2633 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2634 "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size"); 2635 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2636 "flags", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE, 2637 zone, 0, sysctl_handle_uma_zone_flags, "A", 2638 "Allocator configuration flags"); 2639 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2640 "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0, 2641 "Desired per-cpu cache size"); 2642 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2643 "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0, 2644 "Maximum allowed per-cpu cache size"); 2645 2646 /* 2647 * keg if present. 2648 */ 2649 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 2650 domains = vm_ndomains; 2651 else 2652 domains = 1; 2653 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2654 "keg", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2655 keg = zone->uz_keg; 2656 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) { 2657 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2658 "name", CTLFLAG_RD, keg->uk_name, "Keg name"); 2659 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2660 "rsize", CTLFLAG_RD, &keg->uk_rsize, 0, 2661 "Real object size with alignment"); 2662 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2663 "ppera", CTLFLAG_RD, &keg->uk_ppera, 0, 2664 "pages per-slab allocation"); 2665 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2666 "ipers", CTLFLAG_RD, &keg->uk_ipers, 0, 2667 "items available per-slab"); 2668 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2669 "align", CTLFLAG_RD, &keg->uk_align, 0, 2670 "item alignment mask"); 2671 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2672 "reserve", CTLFLAG_RD, &keg->uk_reserve, 0, 2673 "number of reserved items"); 2674 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2675 "efficiency", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2676 keg, 0, sysctl_handle_uma_slab_efficiency, "I", 2677 "Slab utilization (100 - internal fragmentation %)"); 2678 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(oid), 2679 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2680 for (i = 0; i < domains; i++) { 2681 dom = &keg->uk_domain[i]; 2682 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2683 OID_AUTO, VM_DOMAIN(i)->vmd_name, 2684 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2685 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2686 "pages", CTLFLAG_RD, &dom->ud_pages, 0, 2687 "Total pages currently allocated from VM"); 2688 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2689 "free_items", CTLFLAG_RD, &dom->ud_free_items, 0, 2690 "Items free in the slab layer"); 2691 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2692 "free_slabs", CTLFLAG_RD, &dom->ud_free_slabs, 0, 2693 "Unused slabs"); 2694 } 2695 } else 2696 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2697 "name", CTLFLAG_RD, nokeg, "Keg name"); 2698 2699 /* 2700 * Information about zone limits. 2701 */ 2702 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2703 "limit", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2704 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2705 "items", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2706 zone, 0, sysctl_handle_uma_zone_items, "QU", 2707 "Current number of allocated items if limit is set"); 2708 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2709 "max_items", CTLFLAG_RD, &zone->uz_max_items, 0, 2710 "Maximum number of allocated and cached items"); 2711 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2712 "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0, 2713 "Number of threads sleeping at limit"); 2714 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2715 "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0, 2716 "Total zone limit sleeps"); 2717 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2718 "bucket_max", CTLFLAG_RD, &zone->uz_bucket_max, 0, 2719 "Maximum number of items in each domain's bucket cache"); 2720 2721 /* 2722 * Per-domain zone information. 2723 */ 2724 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), 2725 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2726 for (i = 0; i < domains; i++) { 2727 zdom = ZDOM_GET(zone, i); 2728 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2729 OID_AUTO, VM_DOMAIN(i)->vmd_name, 2730 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2731 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2732 "nitems", CTLFLAG_RD, &zdom->uzd_nitems, 2733 "number of items in this domain"); 2734 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2735 "imax", CTLFLAG_RD, &zdom->uzd_imax, 2736 "maximum item count in this period"); 2737 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2738 "imin", CTLFLAG_RD, &zdom->uzd_imin, 2739 "minimum item count in this period"); 2740 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2741 "bimin", CTLFLAG_RD, &zdom->uzd_bimin, 2742 "Minimum item count in this batch"); 2743 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2744 "wss", CTLFLAG_RD, &zdom->uzd_wss, 2745 "Working set size"); 2746 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2747 "limin", CTLFLAG_RD, &zdom->uzd_limin, 2748 "Long time minimum item count"); 2749 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2750 "timin", CTLFLAG_RD, &zdom->uzd_timin, 0, 2751 "Time since zero long time minimum item count"); 2752 } 2753 2754 /* 2755 * General statistics. 2756 */ 2757 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2758 "stats", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2759 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2760 "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2761 zone, 1, sysctl_handle_uma_zone_cur, "I", 2762 "Current number of allocated items"); 2763 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2764 "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2765 zone, 0, sysctl_handle_uma_zone_allocs, "QU", 2766 "Total allocation calls"); 2767 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2768 "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2769 zone, 0, sysctl_handle_uma_zone_frees, "QU", 2770 "Total free calls"); 2771 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2772 "fails", CTLFLAG_RD, &zone->uz_fails, 2773 "Number of allocation failures"); 2774 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2775 "xdomain", CTLFLAG_RD, &zone->uz_xdomain, 2776 "Free calls from the wrong domain"); 2777 } 2778 2779 struct uma_zone_count { 2780 const char *name; 2781 int count; 2782 }; 2783 2784 static void 2785 zone_count(uma_zone_t zone, void *arg) 2786 { 2787 struct uma_zone_count *cnt; 2788 2789 cnt = arg; 2790 /* 2791 * Some zones are rapidly created with identical names and 2792 * destroyed out of order. This can lead to gaps in the count. 2793 * Use one greater than the maximum observed for this name. 2794 */ 2795 if (strcmp(zone->uz_name, cnt->name) == 0) 2796 cnt->count = MAX(cnt->count, 2797 zone->uz_namecnt + 1); 2798 } 2799 2800 static void 2801 zone_update_caches(uma_zone_t zone) 2802 { 2803 int i; 2804 2805 for (i = 0; i <= mp_maxid; i++) { 2806 cache_set_uz_size(&zone->uz_cpu[i], zone->uz_size); 2807 cache_set_uz_flags(&zone->uz_cpu[i], zone->uz_flags); 2808 } 2809 } 2810 2811 /* 2812 * Zone header ctor. This initializes all fields, locks, etc. 2813 * 2814 * Arguments/Returns follow uma_ctor specifications 2815 * udata Actually uma_zctor_args 2816 */ 2817 static int 2818 zone_ctor(void *mem, int size, void *udata, int flags) 2819 { 2820 struct uma_zone_count cnt; 2821 struct uma_zctor_args *arg = udata; 2822 uma_zone_domain_t zdom; 2823 uma_zone_t zone = mem; 2824 uma_zone_t z; 2825 uma_keg_t keg; 2826 int i; 2827 2828 bzero(zone, size); 2829 zone->uz_name = arg->name; 2830 zone->uz_ctor = arg->ctor; 2831 zone->uz_dtor = arg->dtor; 2832 zone->uz_init = NULL; 2833 zone->uz_fini = NULL; 2834 zone->uz_sleeps = 0; 2835 zone->uz_bucket_size = 0; 2836 zone->uz_bucket_size_min = 0; 2837 zone->uz_bucket_size_max = BUCKET_MAX; 2838 zone->uz_flags = (arg->flags & UMA_ZONE_SMR); 2839 zone->uz_warning = NULL; 2840 /* The domain structures follow the cpu structures. */ 2841 zone->uz_bucket_max = ULONG_MAX; 2842 timevalclear(&zone->uz_ratecheck); 2843 2844 /* Count the number of duplicate names. */ 2845 cnt.name = arg->name; 2846 cnt.count = 0; 2847 zone_foreach(zone_count, &cnt); 2848 zone->uz_namecnt = cnt.count; 2849 ZONE_CROSS_LOCK_INIT(zone); 2850 2851 for (i = 0; i < vm_ndomains; i++) { 2852 zdom = ZDOM_GET(zone, i); 2853 ZDOM_LOCK_INIT(zone, zdom, (arg->flags & UMA_ZONE_MTXCLASS)); 2854 STAILQ_INIT(&zdom->uzd_buckets); 2855 } 2856 2857 #if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN) 2858 if (arg->uminit == trash_init && arg->fini == trash_fini) 2859 zone->uz_flags |= UMA_ZFLAG_TRASH | UMA_ZFLAG_CTORDTOR; 2860 #elif defined(KASAN) 2861 if ((arg->flags & (UMA_ZONE_NOFREE | UMA_ZFLAG_CACHE)) != 0) 2862 arg->flags |= UMA_ZONE_NOKASAN; 2863 #endif 2864 2865 /* 2866 * This is a pure cache zone, no kegs. 2867 */ 2868 if (arg->import) { 2869 KASSERT((arg->flags & UMA_ZFLAG_CACHE) != 0, 2870 ("zone_ctor: Import specified for non-cache zone.")); 2871 zone->uz_flags = arg->flags; 2872 zone->uz_size = arg->size; 2873 zone->uz_import = arg->import; 2874 zone->uz_release = arg->release; 2875 zone->uz_arg = arg->arg; 2876 #ifdef NUMA 2877 /* 2878 * Cache zones are round-robin unless a policy is 2879 * specified because they may have incompatible 2880 * constraints. 2881 */ 2882 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2883 zone->uz_flags |= UMA_ZONE_ROUNDROBIN; 2884 #endif 2885 rw_wlock(&uma_rwlock); 2886 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 2887 rw_wunlock(&uma_rwlock); 2888 goto out; 2889 } 2890 2891 /* 2892 * Use the regular zone/keg/slab allocator. 2893 */ 2894 zone->uz_import = zone_import; 2895 zone->uz_release = zone_release; 2896 zone->uz_arg = zone; 2897 keg = arg->keg; 2898 2899 if (arg->flags & UMA_ZONE_SECONDARY) { 2900 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 2901 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 2902 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 2903 zone->uz_init = arg->uminit; 2904 zone->uz_fini = arg->fini; 2905 zone->uz_flags |= UMA_ZONE_SECONDARY; 2906 rw_wlock(&uma_rwlock); 2907 ZONE_LOCK(zone); 2908 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 2909 if (LIST_NEXT(z, uz_link) == NULL) { 2910 LIST_INSERT_AFTER(z, zone, uz_link); 2911 break; 2912 } 2913 } 2914 ZONE_UNLOCK(zone); 2915 rw_wunlock(&uma_rwlock); 2916 } else if (keg == NULL) { 2917 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 2918 arg->align, arg->flags)) == NULL) 2919 return (ENOMEM); 2920 } else { 2921 struct uma_kctor_args karg; 2922 int error; 2923 2924 /* We should only be here from uma_startup() */ 2925 karg.size = arg->size; 2926 karg.uminit = arg->uminit; 2927 karg.fini = arg->fini; 2928 karg.align = arg->align; 2929 karg.flags = (arg->flags & ~UMA_ZONE_SMR); 2930 karg.zone = zone; 2931 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 2932 flags); 2933 if (error) 2934 return (error); 2935 } 2936 2937 /* Inherit properties from the keg. */ 2938 zone->uz_keg = keg; 2939 zone->uz_size = keg->uk_size; 2940 zone->uz_flags |= (keg->uk_flags & 2941 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 2942 2943 out: 2944 if (booted >= BOOT_PCPU) { 2945 zone_alloc_counters(zone, NULL); 2946 if (booted >= BOOT_RUNNING) 2947 zone_alloc_sysctl(zone, NULL); 2948 } else { 2949 zone->uz_allocs = EARLY_COUNTER; 2950 zone->uz_frees = EARLY_COUNTER; 2951 zone->uz_fails = EARLY_COUNTER; 2952 } 2953 2954 /* Caller requests a private SMR context. */ 2955 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 2956 zone->uz_smr = smr_create(zone->uz_name, 0, 0); 2957 2958 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != 2959 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), 2960 ("Invalid zone flag combination")); 2961 if (arg->flags & UMA_ZFLAG_INTERNAL) 2962 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 2963 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) 2964 zone->uz_bucket_size = BUCKET_MAX; 2965 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) 2966 zone->uz_bucket_size = 0; 2967 else 2968 zone->uz_bucket_size = bucket_select(zone->uz_size); 2969 zone->uz_bucket_size_min = zone->uz_bucket_size; 2970 if (zone->uz_dtor != NULL || zone->uz_ctor != NULL) 2971 zone->uz_flags |= UMA_ZFLAG_CTORDTOR; 2972 zone_update_caches(zone); 2973 2974 return (0); 2975 } 2976 2977 /* 2978 * Keg header dtor. This frees all data, destroys locks, frees the hash 2979 * table and removes the keg from the global list. 2980 * 2981 * Arguments/Returns follow uma_dtor specifications 2982 * udata unused 2983 */ 2984 static void 2985 keg_dtor(void *arg, int size, void *udata) 2986 { 2987 uma_keg_t keg; 2988 uint32_t free, pages; 2989 int i; 2990 2991 keg = (uma_keg_t)arg; 2992 free = pages = 0; 2993 for (i = 0; i < vm_ndomains; i++) { 2994 free += keg->uk_domain[i].ud_free_items; 2995 pages += keg->uk_domain[i].ud_pages; 2996 KEG_LOCK_FINI(keg, i); 2997 } 2998 if (pages != 0) 2999 printf("Freed UMA keg (%s) was not empty (%u items). " 3000 " Lost %u pages of memory.\n", 3001 keg->uk_name ? keg->uk_name : "", 3002 pages / keg->uk_ppera * keg->uk_ipers - free, pages); 3003 3004 hash_free(&keg->uk_hash); 3005 } 3006 3007 /* 3008 * Zone header dtor. 3009 * 3010 * Arguments/Returns follow uma_dtor specifications 3011 * udata unused 3012 */ 3013 static void 3014 zone_dtor(void *arg, int size, void *udata) 3015 { 3016 uma_zone_t zone; 3017 uma_keg_t keg; 3018 int i; 3019 3020 zone = (uma_zone_t)arg; 3021 3022 sysctl_remove_oid(zone->uz_oid, 1, 1); 3023 3024 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 3025 cache_drain(zone); 3026 3027 rw_wlock(&uma_rwlock); 3028 LIST_REMOVE(zone, uz_link); 3029 rw_wunlock(&uma_rwlock); 3030 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { 3031 keg = zone->uz_keg; 3032 keg->uk_reserve = 0; 3033 } 3034 zone_reclaim(zone, UMA_ANYDOMAIN, M_WAITOK, true); 3035 3036 /* 3037 * We only destroy kegs from non secondary/non cache zones. 3038 */ 3039 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { 3040 keg = zone->uz_keg; 3041 rw_wlock(&uma_rwlock); 3042 LIST_REMOVE(keg, uk_link); 3043 rw_wunlock(&uma_rwlock); 3044 zone_free_item(kegs, keg, NULL, SKIP_NONE); 3045 } 3046 counter_u64_free(zone->uz_allocs); 3047 counter_u64_free(zone->uz_frees); 3048 counter_u64_free(zone->uz_fails); 3049 counter_u64_free(zone->uz_xdomain); 3050 free(zone->uz_ctlname, M_UMA); 3051 for (i = 0; i < vm_ndomains; i++) 3052 ZDOM_LOCK_FINI(ZDOM_GET(zone, i)); 3053 ZONE_CROSS_LOCK_FINI(zone); 3054 } 3055 3056 static void 3057 zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *arg), void *arg) 3058 { 3059 uma_keg_t keg; 3060 uma_zone_t zone; 3061 3062 LIST_FOREACH(keg, &uma_kegs, uk_link) { 3063 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 3064 zfunc(zone, arg); 3065 } 3066 LIST_FOREACH(zone, &uma_cachezones, uz_link) 3067 zfunc(zone, arg); 3068 } 3069 3070 /* 3071 * Traverses every zone in the system and calls a callback 3072 * 3073 * Arguments: 3074 * zfunc A pointer to a function which accepts a zone 3075 * as an argument. 3076 * 3077 * Returns: 3078 * Nothing 3079 */ 3080 static void 3081 zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg) 3082 { 3083 3084 rw_rlock(&uma_rwlock); 3085 zone_foreach_unlocked(zfunc, arg); 3086 rw_runlock(&uma_rwlock); 3087 } 3088 3089 /* 3090 * Initialize the kernel memory allocator. This is done after pages can be 3091 * allocated but before general KVA is available. 3092 */ 3093 void 3094 uma_startup1(vm_offset_t virtual_avail) 3095 { 3096 struct uma_zctor_args args; 3097 size_t ksize, zsize, size; 3098 uma_keg_t primarykeg; 3099 uintptr_t m; 3100 int domain; 3101 uint8_t pflag; 3102 3103 bootstart = bootmem = virtual_avail; 3104 3105 rw_init(&uma_rwlock, "UMA lock"); 3106 sx_init(&uma_reclaim_lock, "umareclaim"); 3107 3108 ksize = sizeof(struct uma_keg) + 3109 (sizeof(struct uma_domain) * vm_ndomains); 3110 ksize = roundup(ksize, UMA_SUPER_ALIGN); 3111 zsize = sizeof(struct uma_zone) + 3112 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 3113 (sizeof(struct uma_zone_domain) * vm_ndomains); 3114 zsize = roundup(zsize, UMA_SUPER_ALIGN); 3115 3116 /* Allocate the zone of zones, zone of kegs, and zone of zones keg. */ 3117 size = (zsize * 2) + ksize; 3118 for (domain = 0; domain < vm_ndomains; domain++) { 3119 m = (uintptr_t)startup_alloc(NULL, size, domain, &pflag, 3120 M_NOWAIT | M_ZERO); 3121 if (m != 0) 3122 break; 3123 } 3124 zones = (uma_zone_t)m; 3125 m += zsize; 3126 kegs = (uma_zone_t)m; 3127 m += zsize; 3128 primarykeg = (uma_keg_t)m; 3129 3130 /* "manually" create the initial zone */ 3131 memset(&args, 0, sizeof(args)); 3132 args.name = "UMA Kegs"; 3133 args.size = ksize; 3134 args.ctor = keg_ctor; 3135 args.dtor = keg_dtor; 3136 args.uminit = zero_init; 3137 args.fini = NULL; 3138 args.keg = primarykeg; 3139 args.align = UMA_SUPER_ALIGN - 1; 3140 args.flags = UMA_ZFLAG_INTERNAL; 3141 zone_ctor(kegs, zsize, &args, M_WAITOK); 3142 3143 args.name = "UMA Zones"; 3144 args.size = zsize; 3145 args.ctor = zone_ctor; 3146 args.dtor = zone_dtor; 3147 args.uminit = zero_init; 3148 args.fini = NULL; 3149 args.keg = NULL; 3150 args.align = UMA_SUPER_ALIGN - 1; 3151 args.flags = UMA_ZFLAG_INTERNAL; 3152 zone_ctor(zones, zsize, &args, M_WAITOK); 3153 3154 /* Now make zones for slab headers */ 3155 slabzones[0] = uma_zcreate("UMA Slabs 0", SLABZONE0_SIZE, 3156 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 3157 slabzones[1] = uma_zcreate("UMA Slabs 1", SLABZONE1_SIZE, 3158 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 3159 3160 hashzone = uma_zcreate("UMA Hash", 3161 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 3162 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 3163 3164 bucket_init(); 3165 smr_init(); 3166 } 3167 3168 #ifndef UMA_MD_SMALL_ALLOC 3169 extern void vm_radix_reserve_kva(void); 3170 #endif 3171 3172 /* 3173 * Advertise the availability of normal kva allocations and switch to 3174 * the default back-end allocator. Marks the KVA we consumed on startup 3175 * as used in the map. 3176 */ 3177 void 3178 uma_startup2(void) 3179 { 3180 3181 if (bootstart != bootmem) { 3182 vm_map_lock(kernel_map); 3183 (void)vm_map_insert(kernel_map, NULL, 0, bootstart, bootmem, 3184 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT); 3185 vm_map_unlock(kernel_map); 3186 } 3187 3188 #ifndef UMA_MD_SMALL_ALLOC 3189 /* Set up radix zone to use noobj_alloc. */ 3190 vm_radix_reserve_kva(); 3191 #endif 3192 3193 booted = BOOT_KVA; 3194 zone_foreach_unlocked(zone_kva_available, NULL); 3195 bucket_enable(); 3196 } 3197 3198 /* 3199 * Allocate counters as early as possible so that boot-time allocations are 3200 * accounted more precisely. 3201 */ 3202 static void 3203 uma_startup_pcpu(void *arg __unused) 3204 { 3205 3206 zone_foreach_unlocked(zone_alloc_counters, NULL); 3207 booted = BOOT_PCPU; 3208 } 3209 SYSINIT(uma_startup_pcpu, SI_SUB_COUNTER, SI_ORDER_ANY, uma_startup_pcpu, NULL); 3210 3211 /* 3212 * Finish our initialization steps. 3213 */ 3214 static void 3215 uma_startup3(void *arg __unused) 3216 { 3217 3218 #ifdef INVARIANTS 3219 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor); 3220 uma_dbg_cnt = counter_u64_alloc(M_WAITOK); 3221 uma_skip_cnt = counter_u64_alloc(M_WAITOK); 3222 #endif 3223 zone_foreach_unlocked(zone_alloc_sysctl, NULL); 3224 callout_init(&uma_callout, 1); 3225 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 3226 booted = BOOT_RUNNING; 3227 3228 EVENTHANDLER_REGISTER(shutdown_post_sync, uma_shutdown, NULL, 3229 EVENTHANDLER_PRI_FIRST); 3230 } 3231 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 3232 3233 static void 3234 uma_shutdown(void) 3235 { 3236 3237 booted = BOOT_SHUTDOWN; 3238 } 3239 3240 static uma_keg_t 3241 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 3242 int align, uint32_t flags) 3243 { 3244 struct uma_kctor_args args; 3245 3246 args.size = size; 3247 args.uminit = uminit; 3248 args.fini = fini; 3249 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 3250 args.flags = flags; 3251 args.zone = zone; 3252 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 3253 } 3254 3255 /* Public functions */ 3256 /* See uma.h */ 3257 void 3258 uma_set_align(int align) 3259 { 3260 3261 if (align != UMA_ALIGN_CACHE) 3262 uma_align_cache = align; 3263 } 3264 3265 /* See uma.h */ 3266 uma_zone_t 3267 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 3268 uma_init uminit, uma_fini fini, int align, uint32_t flags) 3269 3270 { 3271 struct uma_zctor_args args; 3272 uma_zone_t res; 3273 3274 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 3275 align, name)); 3276 3277 /* This stuff is essential for the zone ctor */ 3278 memset(&args, 0, sizeof(args)); 3279 args.name = name; 3280 args.size = size; 3281 args.ctor = ctor; 3282 args.dtor = dtor; 3283 args.uminit = uminit; 3284 args.fini = fini; 3285 #if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN) 3286 /* 3287 * Inject procedures which check for memory use after free if we are 3288 * allowed to scramble the memory while it is not allocated. This 3289 * requires that: UMA is actually able to access the memory, no init 3290 * or fini procedures, no dependency on the initial value of the 3291 * memory, and no (legitimate) use of the memory after free. Note, 3292 * the ctor and dtor do not need to be empty. 3293 */ 3294 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOTOUCH | 3295 UMA_ZONE_NOFREE))) && uminit == NULL && fini == NULL) { 3296 args.uminit = trash_init; 3297 args.fini = trash_fini; 3298 } 3299 #endif 3300 args.align = align; 3301 args.flags = flags; 3302 args.keg = NULL; 3303 3304 sx_xlock(&uma_reclaim_lock); 3305 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 3306 sx_xunlock(&uma_reclaim_lock); 3307 3308 return (res); 3309 } 3310 3311 /* See uma.h */ 3312 uma_zone_t 3313 uma_zsecond_create(const char *name, uma_ctor ctor, uma_dtor dtor, 3314 uma_init zinit, uma_fini zfini, uma_zone_t primary) 3315 { 3316 struct uma_zctor_args args; 3317 uma_keg_t keg; 3318 uma_zone_t res; 3319 3320 keg = primary->uz_keg; 3321 memset(&args, 0, sizeof(args)); 3322 args.name = name; 3323 args.size = keg->uk_size; 3324 args.ctor = ctor; 3325 args.dtor = dtor; 3326 args.uminit = zinit; 3327 args.fini = zfini; 3328 args.align = keg->uk_align; 3329 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 3330 args.keg = keg; 3331 3332 sx_xlock(&uma_reclaim_lock); 3333 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 3334 sx_xunlock(&uma_reclaim_lock); 3335 3336 return (res); 3337 } 3338 3339 /* See uma.h */ 3340 uma_zone_t 3341 uma_zcache_create(const char *name, int size, uma_ctor ctor, uma_dtor dtor, 3342 uma_init zinit, uma_fini zfini, uma_import zimport, uma_release zrelease, 3343 void *arg, int flags) 3344 { 3345 struct uma_zctor_args args; 3346 3347 memset(&args, 0, sizeof(args)); 3348 args.name = name; 3349 args.size = size; 3350 args.ctor = ctor; 3351 args.dtor = dtor; 3352 args.uminit = zinit; 3353 args.fini = zfini; 3354 args.import = zimport; 3355 args.release = zrelease; 3356 args.arg = arg; 3357 args.align = 0; 3358 args.flags = flags | UMA_ZFLAG_CACHE; 3359 3360 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 3361 } 3362 3363 /* See uma.h */ 3364 void 3365 uma_zdestroy(uma_zone_t zone) 3366 { 3367 3368 /* 3369 * Large slabs are expensive to reclaim, so don't bother doing 3370 * unnecessary work if we're shutting down. 3371 */ 3372 if (booted == BOOT_SHUTDOWN && 3373 zone->uz_fini == NULL && zone->uz_release == zone_release) 3374 return; 3375 sx_xlock(&uma_reclaim_lock); 3376 zone_free_item(zones, zone, NULL, SKIP_NONE); 3377 sx_xunlock(&uma_reclaim_lock); 3378 } 3379 3380 void 3381 uma_zwait(uma_zone_t zone) 3382 { 3383 3384 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 3385 uma_zfree_smr(zone, uma_zalloc_smr(zone, M_WAITOK)); 3386 else if ((zone->uz_flags & UMA_ZONE_PCPU) != 0) 3387 uma_zfree_pcpu(zone, uma_zalloc_pcpu(zone, M_WAITOK)); 3388 else 3389 uma_zfree(zone, uma_zalloc(zone, M_WAITOK)); 3390 } 3391 3392 void * 3393 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags) 3394 { 3395 void *item, *pcpu_item; 3396 #ifdef SMP 3397 int i; 3398 3399 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 3400 #endif 3401 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO); 3402 if (item == NULL) 3403 return (NULL); 3404 pcpu_item = zpcpu_base_to_offset(item); 3405 if (flags & M_ZERO) { 3406 #ifdef SMP 3407 for (i = 0; i <= mp_maxid; i++) 3408 bzero(zpcpu_get_cpu(pcpu_item, i), zone->uz_size); 3409 #else 3410 bzero(item, zone->uz_size); 3411 #endif 3412 } 3413 return (pcpu_item); 3414 } 3415 3416 /* 3417 * A stub while both regular and pcpu cases are identical. 3418 */ 3419 void 3420 uma_zfree_pcpu_arg(uma_zone_t zone, void *pcpu_item, void *udata) 3421 { 3422 void *item; 3423 3424 #ifdef SMP 3425 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 3426 #endif 3427 3428 /* uma_zfree_pcu_*(..., NULL) does nothing, to match free(9). */ 3429 if (pcpu_item == NULL) 3430 return; 3431 3432 item = zpcpu_offset_to_base(pcpu_item); 3433 uma_zfree_arg(zone, item, udata); 3434 } 3435 3436 static inline void * 3437 item_ctor(uma_zone_t zone, int uz_flags, int size, void *udata, int flags, 3438 void *item) 3439 { 3440 #ifdef INVARIANTS 3441 bool skipdbg; 3442 #endif 3443 3444 kasan_mark_item_valid(zone, item); 3445 kmsan_mark_item_uninitialized(zone, item); 3446 3447 #ifdef INVARIANTS 3448 skipdbg = uma_dbg_zskip(zone, item); 3449 if (!skipdbg && (uz_flags & UMA_ZFLAG_TRASH) != 0 && 3450 zone->uz_ctor != trash_ctor) 3451 trash_ctor(item, size, udata, flags); 3452 #endif 3453 3454 /* Check flags before loading ctor pointer. */ 3455 if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0) && 3456 __predict_false(zone->uz_ctor != NULL) && 3457 zone->uz_ctor(item, size, udata, flags) != 0) { 3458 counter_u64_add(zone->uz_fails, 1); 3459 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT); 3460 return (NULL); 3461 } 3462 #ifdef INVARIANTS 3463 if (!skipdbg) 3464 uma_dbg_alloc(zone, NULL, item); 3465 #endif 3466 if (__predict_false(flags & M_ZERO)) 3467 return (memset(item, 0, size)); 3468 3469 return (item); 3470 } 3471 3472 static inline void 3473 item_dtor(uma_zone_t zone, void *item, int size, void *udata, 3474 enum zfreeskip skip) 3475 { 3476 #ifdef INVARIANTS 3477 bool skipdbg; 3478 3479 skipdbg = uma_dbg_zskip(zone, item); 3480 if (skip == SKIP_NONE && !skipdbg) { 3481 if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0) 3482 uma_dbg_free(zone, udata, item); 3483 else 3484 uma_dbg_free(zone, NULL, item); 3485 } 3486 #endif 3487 if (__predict_true(skip < SKIP_DTOR)) { 3488 if (zone->uz_dtor != NULL) 3489 zone->uz_dtor(item, size, udata); 3490 #ifdef INVARIANTS 3491 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 3492 zone->uz_dtor != trash_dtor) 3493 trash_dtor(item, size, udata); 3494 #endif 3495 } 3496 kasan_mark_item_invalid(zone, item); 3497 } 3498 3499 #ifdef NUMA 3500 static int 3501 item_domain(void *item) 3502 { 3503 int domain; 3504 3505 domain = vm_phys_domain(vtophys(item)); 3506 KASSERT(domain >= 0 && domain < vm_ndomains, 3507 ("%s: unknown domain for item %p", __func__, item)); 3508 return (domain); 3509 } 3510 #endif 3511 3512 #if defined(INVARIANTS) || defined(DEBUG_MEMGUARD) || defined(WITNESS) 3513 #define UMA_ZALLOC_DEBUG 3514 static int 3515 uma_zalloc_debug(uma_zone_t zone, void **itemp, void *udata, int flags) 3516 { 3517 int error; 3518 3519 error = 0; 3520 #ifdef WITNESS 3521 if (flags & M_WAITOK) { 3522 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3523 "uma_zalloc_debug: zone \"%s\"", zone->uz_name); 3524 } 3525 #endif 3526 3527 #ifdef INVARIANTS 3528 KASSERT((flags & M_EXEC) == 0, 3529 ("uma_zalloc_debug: called with M_EXEC")); 3530 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3531 ("uma_zalloc_debug: called within spinlock or critical section")); 3532 KASSERT((zone->uz_flags & UMA_ZONE_PCPU) == 0 || (flags & M_ZERO) == 0, 3533 ("uma_zalloc_debug: allocating from a pcpu zone with M_ZERO")); 3534 #endif 3535 3536 #ifdef DEBUG_MEMGUARD 3537 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && memguard_cmp_zone(zone)) { 3538 void *item; 3539 item = memguard_alloc(zone->uz_size, flags); 3540 if (item != NULL) { 3541 error = EJUSTRETURN; 3542 if (zone->uz_init != NULL && 3543 zone->uz_init(item, zone->uz_size, flags) != 0) { 3544 *itemp = NULL; 3545 return (error); 3546 } 3547 if (zone->uz_ctor != NULL && 3548 zone->uz_ctor(item, zone->uz_size, udata, 3549 flags) != 0) { 3550 counter_u64_add(zone->uz_fails, 1); 3551 zone->uz_fini(item, zone->uz_size); 3552 *itemp = NULL; 3553 return (error); 3554 } 3555 *itemp = item; 3556 return (error); 3557 } 3558 /* This is unfortunate but should not be fatal. */ 3559 } 3560 #endif 3561 return (error); 3562 } 3563 3564 static int 3565 uma_zfree_debug(uma_zone_t zone, void *item, void *udata) 3566 { 3567 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3568 ("uma_zfree_debug: called with spinlock or critical section held")); 3569 3570 #ifdef DEBUG_MEMGUARD 3571 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && is_memguard_addr(item)) { 3572 if (zone->uz_dtor != NULL) 3573 zone->uz_dtor(item, zone->uz_size, udata); 3574 if (zone->uz_fini != NULL) 3575 zone->uz_fini(item, zone->uz_size); 3576 memguard_free(item); 3577 return (EJUSTRETURN); 3578 } 3579 #endif 3580 return (0); 3581 } 3582 #endif 3583 3584 static inline void * 3585 cache_alloc_item(uma_zone_t zone, uma_cache_t cache, uma_cache_bucket_t bucket, 3586 void *udata, int flags) 3587 { 3588 void *item; 3589 int size, uz_flags; 3590 3591 item = cache_bucket_pop(cache, bucket); 3592 size = cache_uz_size(cache); 3593 uz_flags = cache_uz_flags(cache); 3594 critical_exit(); 3595 return (item_ctor(zone, uz_flags, size, udata, flags, item)); 3596 } 3597 3598 static __noinline void * 3599 cache_alloc_retry(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3600 { 3601 uma_cache_bucket_t bucket; 3602 int domain; 3603 3604 while (cache_alloc(zone, cache, udata, flags)) { 3605 cache = &zone->uz_cpu[curcpu]; 3606 bucket = &cache->uc_allocbucket; 3607 if (__predict_false(bucket->ucb_cnt == 0)) 3608 continue; 3609 return (cache_alloc_item(zone, cache, bucket, udata, flags)); 3610 } 3611 critical_exit(); 3612 3613 /* 3614 * We can not get a bucket so try to return a single item. 3615 */ 3616 if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH) 3617 domain = PCPU_GET(domain); 3618 else 3619 domain = UMA_ANYDOMAIN; 3620 return (zone_alloc_item(zone, udata, domain, flags)); 3621 } 3622 3623 /* See uma.h */ 3624 void * 3625 uma_zalloc_smr(uma_zone_t zone, int flags) 3626 { 3627 uma_cache_bucket_t bucket; 3628 uma_cache_t cache; 3629 3630 CTR3(KTR_UMA, "uma_zalloc_smr zone %s(%p) flags %d", zone->uz_name, 3631 zone, flags); 3632 3633 #ifdef UMA_ZALLOC_DEBUG 3634 void *item; 3635 3636 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 3637 ("uma_zalloc_arg: called with non-SMR zone.")); 3638 if (uma_zalloc_debug(zone, &item, NULL, flags) == EJUSTRETURN) 3639 return (item); 3640 #endif 3641 3642 critical_enter(); 3643 cache = &zone->uz_cpu[curcpu]; 3644 bucket = &cache->uc_allocbucket; 3645 if (__predict_false(bucket->ucb_cnt == 0)) 3646 return (cache_alloc_retry(zone, cache, NULL, flags)); 3647 return (cache_alloc_item(zone, cache, bucket, NULL, flags)); 3648 } 3649 3650 /* See uma.h */ 3651 void * 3652 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 3653 { 3654 uma_cache_bucket_t bucket; 3655 uma_cache_t cache; 3656 3657 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3658 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3659 3660 /* This is the fast path allocation */ 3661 CTR3(KTR_UMA, "uma_zalloc_arg zone %s(%p) flags %d", zone->uz_name, 3662 zone, flags); 3663 3664 #ifdef UMA_ZALLOC_DEBUG 3665 void *item; 3666 3667 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 3668 ("uma_zalloc_arg: called with SMR zone.")); 3669 if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN) 3670 return (item); 3671 #endif 3672 3673 /* 3674 * If possible, allocate from the per-CPU cache. There are two 3675 * requirements for safe access to the per-CPU cache: (1) the thread 3676 * accessing the cache must not be preempted or yield during access, 3677 * and (2) the thread must not migrate CPUs without switching which 3678 * cache it accesses. We rely on a critical section to prevent 3679 * preemption and migration. We release the critical section in 3680 * order to acquire the zone mutex if we are unable to allocate from 3681 * the current cache; when we re-acquire the critical section, we 3682 * must detect and handle migration if it has occurred. 3683 */ 3684 critical_enter(); 3685 cache = &zone->uz_cpu[curcpu]; 3686 bucket = &cache->uc_allocbucket; 3687 if (__predict_false(bucket->ucb_cnt == 0)) 3688 return (cache_alloc_retry(zone, cache, udata, flags)); 3689 return (cache_alloc_item(zone, cache, bucket, udata, flags)); 3690 } 3691 3692 /* 3693 * Replenish an alloc bucket and possibly restore an old one. Called in 3694 * a critical section. Returns in a critical section. 3695 * 3696 * A false return value indicates an allocation failure. 3697 * A true return value indicates success and the caller should retry. 3698 */ 3699 static __noinline bool 3700 cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3701 { 3702 uma_bucket_t bucket; 3703 int curdomain, domain; 3704 bool new; 3705 3706 CRITICAL_ASSERT(curthread); 3707 3708 /* 3709 * If we have run out of items in our alloc bucket see 3710 * if we can switch with the free bucket. 3711 * 3712 * SMR Zones can't re-use the free bucket until the sequence has 3713 * expired. 3714 */ 3715 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) == 0 && 3716 cache->uc_freebucket.ucb_cnt != 0) { 3717 cache_bucket_swap(&cache->uc_freebucket, 3718 &cache->uc_allocbucket); 3719 return (true); 3720 } 3721 3722 /* 3723 * Discard any empty allocation bucket while we hold no locks. 3724 */ 3725 bucket = cache_bucket_unload_alloc(cache); 3726 critical_exit(); 3727 3728 if (bucket != NULL) { 3729 KASSERT(bucket->ub_cnt == 0, 3730 ("cache_alloc: Entered with non-empty alloc bucket.")); 3731 bucket_free(zone, bucket, udata); 3732 } 3733 3734 /* 3735 * Attempt to retrieve the item from the per-CPU cache has failed, so 3736 * we must go back to the zone. This requires the zdom lock, so we 3737 * must drop the critical section, then re-acquire it when we go back 3738 * to the cache. Since the critical section is released, we may be 3739 * preempted or migrate. As such, make sure not to maintain any 3740 * thread-local state specific to the cache from prior to releasing 3741 * the critical section. 3742 */ 3743 domain = PCPU_GET(domain); 3744 if ((cache_uz_flags(cache) & UMA_ZONE_ROUNDROBIN) != 0 || 3745 VM_DOMAIN_EMPTY(domain)) 3746 domain = zone_domain_highest(zone, domain); 3747 bucket = cache_fetch_bucket(zone, cache, domain); 3748 if (bucket == NULL && zone->uz_bucket_size != 0 && !bucketdisable) { 3749 bucket = zone_alloc_bucket(zone, udata, domain, flags); 3750 new = true; 3751 } else { 3752 new = false; 3753 } 3754 3755 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 3756 zone->uz_name, zone, bucket); 3757 if (bucket == NULL) { 3758 critical_enter(); 3759 return (false); 3760 } 3761 3762 /* 3763 * See if we lost the race or were migrated. Cache the 3764 * initialized bucket to make this less likely or claim 3765 * the memory directly. 3766 */ 3767 critical_enter(); 3768 cache = &zone->uz_cpu[curcpu]; 3769 if (cache->uc_allocbucket.ucb_bucket == NULL && 3770 ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) == 0 || 3771 (curdomain = PCPU_GET(domain)) == domain || 3772 VM_DOMAIN_EMPTY(curdomain))) { 3773 if (new) 3774 atomic_add_long(&ZDOM_GET(zone, domain)->uzd_imax, 3775 bucket->ub_cnt); 3776 cache_bucket_load_alloc(cache, bucket); 3777 return (true); 3778 } 3779 3780 /* 3781 * We lost the race, release this bucket and start over. 3782 */ 3783 critical_exit(); 3784 zone_put_bucket(zone, domain, bucket, udata, !new); 3785 critical_enter(); 3786 3787 return (true); 3788 } 3789 3790 void * 3791 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 3792 { 3793 #ifdef NUMA 3794 uma_bucket_t bucket; 3795 uma_zone_domain_t zdom; 3796 void *item; 3797 #endif 3798 3799 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3800 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3801 3802 /* This is the fast path allocation */ 3803 CTR4(KTR_UMA, "uma_zalloc_domain zone %s(%p) domain %d flags %d", 3804 zone->uz_name, zone, domain, flags); 3805 3806 if (flags & M_WAITOK) { 3807 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3808 "uma_zalloc_domain: zone \"%s\"", zone->uz_name); 3809 } 3810 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3811 ("uma_zalloc_domain: called with spinlock or critical section held")); 3812 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 3813 ("uma_zalloc_domain: called with SMR zone.")); 3814 #ifdef NUMA 3815 KASSERT((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0, 3816 ("uma_zalloc_domain: called with non-FIRSTTOUCH zone.")); 3817 3818 if (vm_ndomains == 1) 3819 return (uma_zalloc_arg(zone, udata, flags)); 3820 3821 /* 3822 * Try to allocate from the bucket cache before falling back to the keg. 3823 * We could try harder and attempt to allocate from per-CPU caches or 3824 * the per-domain cross-domain buckets, but the complexity is probably 3825 * not worth it. It is more important that frees of previous 3826 * cross-domain allocations do not blow up the cache. 3827 */ 3828 zdom = zone_domain_lock(zone, domain); 3829 if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) { 3830 item = bucket->ub_bucket[bucket->ub_cnt - 1]; 3831 #ifdef INVARIANTS 3832 bucket->ub_bucket[bucket->ub_cnt - 1] = NULL; 3833 #endif 3834 bucket->ub_cnt--; 3835 zone_put_bucket(zone, domain, bucket, udata, true); 3836 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, 3837 flags, item); 3838 if (item != NULL) { 3839 KASSERT(item_domain(item) == domain, 3840 ("%s: bucket cache item %p from wrong domain", 3841 __func__, item)); 3842 counter_u64_add(zone->uz_allocs, 1); 3843 } 3844 return (item); 3845 } 3846 ZDOM_UNLOCK(zdom); 3847 return (zone_alloc_item(zone, udata, domain, flags)); 3848 #else 3849 return (uma_zalloc_arg(zone, udata, flags)); 3850 #endif 3851 } 3852 3853 /* 3854 * Find a slab with some space. Prefer slabs that are partially used over those 3855 * that are totally full. This helps to reduce fragmentation. 3856 * 3857 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 3858 * only 'domain'. 3859 */ 3860 static uma_slab_t 3861 keg_first_slab(uma_keg_t keg, int domain, bool rr) 3862 { 3863 uma_domain_t dom; 3864 uma_slab_t slab; 3865 int start; 3866 3867 KASSERT(domain >= 0 && domain < vm_ndomains, 3868 ("keg_first_slab: domain %d out of range", domain)); 3869 KEG_LOCK_ASSERT(keg, domain); 3870 3871 slab = NULL; 3872 start = domain; 3873 do { 3874 dom = &keg->uk_domain[domain]; 3875 if ((slab = LIST_FIRST(&dom->ud_part_slab)) != NULL) 3876 return (slab); 3877 if ((slab = LIST_FIRST(&dom->ud_free_slab)) != NULL) { 3878 LIST_REMOVE(slab, us_link); 3879 dom->ud_free_slabs--; 3880 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3881 return (slab); 3882 } 3883 if (rr) 3884 domain = (domain + 1) % vm_ndomains; 3885 } while (domain != start); 3886 3887 return (NULL); 3888 } 3889 3890 /* 3891 * Fetch an existing slab from a free or partial list. Returns with the 3892 * keg domain lock held if a slab was found or unlocked if not. 3893 */ 3894 static uma_slab_t 3895 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags) 3896 { 3897 uma_slab_t slab; 3898 uint32_t reserve; 3899 3900 /* HASH has a single free list. */ 3901 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 3902 domain = 0; 3903 3904 KEG_LOCK(keg, domain); 3905 reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve; 3906 if (keg->uk_domain[domain].ud_free_items <= reserve || 3907 (slab = keg_first_slab(keg, domain, rr)) == NULL) { 3908 KEG_UNLOCK(keg, domain); 3909 return (NULL); 3910 } 3911 return (slab); 3912 } 3913 3914 static uma_slab_t 3915 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags) 3916 { 3917 struct vm_domainset_iter di; 3918 uma_slab_t slab; 3919 int aflags, domain; 3920 bool rr; 3921 3922 KASSERT((flags & (M_WAITOK | M_NOVM)) != (M_WAITOK | M_NOVM), 3923 ("%s: invalid flags %#x", __func__, flags)); 3924 3925 restart: 3926 /* 3927 * Use the keg's policy if upper layers haven't already specified a 3928 * domain (as happens with first-touch zones). 3929 * 3930 * To avoid races we run the iterator with the keg lock held, but that 3931 * means that we cannot allow the vm_domainset layer to sleep. Thus, 3932 * clear M_WAITOK and handle low memory conditions locally. 3933 */ 3934 rr = rdomain == UMA_ANYDOMAIN; 3935 if (rr) { 3936 aflags = (flags & ~M_WAITOK) | M_NOWAIT; 3937 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 3938 &aflags); 3939 } else { 3940 aflags = flags; 3941 domain = rdomain; 3942 } 3943 3944 for (;;) { 3945 slab = keg_fetch_free_slab(keg, domain, rr, flags); 3946 if (slab != NULL) 3947 return (slab); 3948 3949 /* 3950 * M_NOVM is used to break the recursion that can otherwise 3951 * occur if low-level memory management routines use UMA. 3952 */ 3953 if ((flags & M_NOVM) == 0) { 3954 slab = keg_alloc_slab(keg, zone, domain, flags, aflags); 3955 if (slab != NULL) 3956 return (slab); 3957 } 3958 3959 if (!rr) { 3960 if ((flags & M_USE_RESERVE) != 0) { 3961 /* 3962 * Drain reserves from other domains before 3963 * giving up or sleeping. It may be useful to 3964 * support per-domain reserves eventually. 3965 */ 3966 rdomain = UMA_ANYDOMAIN; 3967 goto restart; 3968 } 3969 if ((flags & M_WAITOK) == 0) 3970 break; 3971 vm_wait_domain(domain); 3972 } else if (vm_domainset_iter_policy(&di, &domain) != 0) { 3973 if ((flags & M_WAITOK) != 0) { 3974 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0); 3975 goto restart; 3976 } 3977 break; 3978 } 3979 } 3980 3981 /* 3982 * We might not have been able to get a slab but another cpu 3983 * could have while we were unlocked. Check again before we 3984 * fail. 3985 */ 3986 if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL) 3987 return (slab); 3988 3989 return (NULL); 3990 } 3991 3992 static void * 3993 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 3994 { 3995 uma_domain_t dom; 3996 void *item; 3997 int freei; 3998 3999 KEG_LOCK_ASSERT(keg, slab->us_domain); 4000 4001 dom = &keg->uk_domain[slab->us_domain]; 4002 freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1; 4003 BIT_CLR(keg->uk_ipers, freei, &slab->us_free); 4004 item = slab_item(slab, keg, freei); 4005 slab->us_freecount--; 4006 dom->ud_free_items--; 4007 4008 /* 4009 * Move this slab to the full list. It must be on the partial list, so 4010 * we do not need to update the free slab count. In particular, 4011 * keg_fetch_slab() always returns slabs on the partial list. 4012 */ 4013 if (slab->us_freecount == 0) { 4014 LIST_REMOVE(slab, us_link); 4015 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 4016 } 4017 4018 return (item); 4019 } 4020 4021 static int 4022 zone_import(void *arg, void **bucket, int max, int domain, int flags) 4023 { 4024 uma_domain_t dom; 4025 uma_zone_t zone; 4026 uma_slab_t slab; 4027 uma_keg_t keg; 4028 #ifdef NUMA 4029 int stripe; 4030 #endif 4031 int i; 4032 4033 zone = arg; 4034 slab = NULL; 4035 keg = zone->uz_keg; 4036 /* Try to keep the buckets totally full */ 4037 for (i = 0; i < max; ) { 4038 if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL) 4039 break; 4040 #ifdef NUMA 4041 stripe = howmany(max, vm_ndomains); 4042 #endif 4043 dom = &keg->uk_domain[slab->us_domain]; 4044 do { 4045 bucket[i++] = slab_alloc_item(keg, slab); 4046 if (keg->uk_reserve > 0 && 4047 dom->ud_free_items <= keg->uk_reserve) { 4048 /* 4049 * Avoid depleting the reserve after a 4050 * successful item allocation, even if 4051 * M_USE_RESERVE is specified. 4052 */ 4053 KEG_UNLOCK(keg, slab->us_domain); 4054 goto out; 4055 } 4056 #ifdef NUMA 4057 /* 4058 * If the zone is striped we pick a new slab for every 4059 * N allocations. Eliminating this conditional will 4060 * instead pick a new domain for each bucket rather 4061 * than stripe within each bucket. The current option 4062 * produces more fragmentation and requires more cpu 4063 * time but yields better distribution. 4064 */ 4065 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0 && 4066 vm_ndomains > 1 && --stripe == 0) 4067 break; 4068 #endif 4069 } while (slab->us_freecount != 0 && i < max); 4070 KEG_UNLOCK(keg, slab->us_domain); 4071 4072 /* Don't block if we allocated any successfully. */ 4073 flags &= ~M_WAITOK; 4074 flags |= M_NOWAIT; 4075 } 4076 out: 4077 return i; 4078 } 4079 4080 static int 4081 zone_alloc_limit_hard(uma_zone_t zone, int count, int flags) 4082 { 4083 uint64_t old, new, total, max; 4084 4085 /* 4086 * The hard case. We're going to sleep because there were existing 4087 * sleepers or because we ran out of items. This routine enforces 4088 * fairness by keeping fifo order. 4089 * 4090 * First release our ill gotten gains and make some noise. 4091 */ 4092 for (;;) { 4093 zone_free_limit(zone, count); 4094 zone_log_warning(zone); 4095 zone_maxaction(zone); 4096 if (flags & M_NOWAIT) 4097 return (0); 4098 4099 /* 4100 * We need to allocate an item or set ourself as a sleeper 4101 * while the sleepq lock is held to avoid wakeup races. This 4102 * is essentially a home rolled semaphore. 4103 */ 4104 sleepq_lock(&zone->uz_max_items); 4105 old = zone->uz_items; 4106 do { 4107 MPASS(UZ_ITEMS_SLEEPERS(old) < UZ_ITEMS_SLEEPERS_MAX); 4108 /* Cache the max since we will evaluate twice. */ 4109 max = zone->uz_max_items; 4110 if (UZ_ITEMS_SLEEPERS(old) != 0 || 4111 UZ_ITEMS_COUNT(old) >= max) 4112 new = old + UZ_ITEMS_SLEEPER; 4113 else 4114 new = old + MIN(count, max - old); 4115 } while (atomic_fcmpset_64(&zone->uz_items, &old, new) == 0); 4116 4117 /* We may have successfully allocated under the sleepq lock. */ 4118 if (UZ_ITEMS_SLEEPERS(new) == 0) { 4119 sleepq_release(&zone->uz_max_items); 4120 return (new - old); 4121 } 4122 4123 /* 4124 * This is in a different cacheline from uz_items so that we 4125 * don't constantly invalidate the fastpath cacheline when we 4126 * adjust item counts. This could be limited to toggling on 4127 * transitions. 4128 */ 4129 atomic_add_32(&zone->uz_sleepers, 1); 4130 atomic_add_64(&zone->uz_sleeps, 1); 4131 4132 /* 4133 * We have added ourselves as a sleeper. The sleepq lock 4134 * protects us from wakeup races. Sleep now and then retry. 4135 */ 4136 sleepq_add(&zone->uz_max_items, NULL, "zonelimit", 0, 0); 4137 sleepq_wait(&zone->uz_max_items, PVM); 4138 4139 /* 4140 * After wakeup, remove ourselves as a sleeper and try 4141 * again. We no longer have the sleepq lock for protection. 4142 * 4143 * Subract ourselves as a sleeper while attempting to add 4144 * our count. 4145 */ 4146 atomic_subtract_32(&zone->uz_sleepers, 1); 4147 old = atomic_fetchadd_64(&zone->uz_items, 4148 -(UZ_ITEMS_SLEEPER - count)); 4149 /* We're no longer a sleeper. */ 4150 old -= UZ_ITEMS_SLEEPER; 4151 4152 /* 4153 * If we're still at the limit, restart. Notably do not 4154 * block on other sleepers. Cache the max value to protect 4155 * against changes via sysctl. 4156 */ 4157 total = UZ_ITEMS_COUNT(old); 4158 max = zone->uz_max_items; 4159 if (total >= max) 4160 continue; 4161 /* Truncate if necessary, otherwise wake other sleepers. */ 4162 if (total + count > max) { 4163 zone_free_limit(zone, total + count - max); 4164 count = max - total; 4165 } else if (total + count < max && UZ_ITEMS_SLEEPERS(old) != 0) 4166 wakeup_one(&zone->uz_max_items); 4167 4168 return (count); 4169 } 4170 } 4171 4172 /* 4173 * Allocate 'count' items from our max_items limit. Returns the number 4174 * available. If M_NOWAIT is not specified it will sleep until at least 4175 * one item can be allocated. 4176 */ 4177 static int 4178 zone_alloc_limit(uma_zone_t zone, int count, int flags) 4179 { 4180 uint64_t old; 4181 uint64_t max; 4182 4183 max = zone->uz_max_items; 4184 MPASS(max > 0); 4185 4186 /* 4187 * We expect normal allocations to succeed with a simple 4188 * fetchadd. 4189 */ 4190 old = atomic_fetchadd_64(&zone->uz_items, count); 4191 if (__predict_true(old + count <= max)) 4192 return (count); 4193 4194 /* 4195 * If we had some items and no sleepers just return the 4196 * truncated value. We have to release the excess space 4197 * though because that may wake sleepers who weren't woken 4198 * because we were temporarily over the limit. 4199 */ 4200 if (old < max) { 4201 zone_free_limit(zone, (old + count) - max); 4202 return (max - old); 4203 } 4204 return (zone_alloc_limit_hard(zone, count, flags)); 4205 } 4206 4207 /* 4208 * Free a number of items back to the limit. 4209 */ 4210 static void 4211 zone_free_limit(uma_zone_t zone, int count) 4212 { 4213 uint64_t old; 4214 4215 MPASS(count > 0); 4216 4217 /* 4218 * In the common case we either have no sleepers or 4219 * are still over the limit and can just return. 4220 */ 4221 old = atomic_fetchadd_64(&zone->uz_items, -count); 4222 if (__predict_true(UZ_ITEMS_SLEEPERS(old) == 0 || 4223 UZ_ITEMS_COUNT(old) - count >= zone->uz_max_items)) 4224 return; 4225 4226 /* 4227 * Moderate the rate of wakeups. Sleepers will continue 4228 * to generate wakeups if necessary. 4229 */ 4230 wakeup_one(&zone->uz_max_items); 4231 } 4232 4233 static uma_bucket_t 4234 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags) 4235 { 4236 uma_bucket_t bucket; 4237 int error, maxbucket, cnt; 4238 4239 CTR3(KTR_UMA, "zone_alloc_bucket zone %s(%p) domain %d", zone->uz_name, 4240 zone, domain); 4241 4242 /* Avoid allocs targeting empty domains. */ 4243 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 4244 domain = UMA_ANYDOMAIN; 4245 else if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) 4246 domain = UMA_ANYDOMAIN; 4247 4248 if (zone->uz_max_items > 0) 4249 maxbucket = zone_alloc_limit(zone, zone->uz_bucket_size, 4250 M_NOWAIT); 4251 else 4252 maxbucket = zone->uz_bucket_size; 4253 if (maxbucket == 0) 4254 return (false); 4255 4256 /* Don't wait for buckets, preserve caller's NOVM setting. */ 4257 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 4258 if (bucket == NULL) { 4259 cnt = 0; 4260 goto out; 4261 } 4262 4263 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 4264 MIN(maxbucket, bucket->ub_entries), domain, flags); 4265 4266 /* 4267 * Initialize the memory if necessary. 4268 */ 4269 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 4270 int i; 4271 4272 for (i = 0; i < bucket->ub_cnt; i++) { 4273 kasan_mark_item_valid(zone, bucket->ub_bucket[i]); 4274 error = zone->uz_init(bucket->ub_bucket[i], 4275 zone->uz_size, flags); 4276 kasan_mark_item_invalid(zone, bucket->ub_bucket[i]); 4277 if (error != 0) 4278 break; 4279 } 4280 4281 /* 4282 * If we couldn't initialize the whole bucket, put the 4283 * rest back onto the freelist. 4284 */ 4285 if (i != bucket->ub_cnt) { 4286 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 4287 bucket->ub_cnt - i); 4288 #ifdef INVARIANTS 4289 bzero(&bucket->ub_bucket[i], 4290 sizeof(void *) * (bucket->ub_cnt - i)); 4291 #endif 4292 bucket->ub_cnt = i; 4293 } 4294 } 4295 4296 cnt = bucket->ub_cnt; 4297 if (bucket->ub_cnt == 0) { 4298 bucket_free(zone, bucket, udata); 4299 counter_u64_add(zone->uz_fails, 1); 4300 bucket = NULL; 4301 } 4302 out: 4303 if (zone->uz_max_items > 0 && cnt < maxbucket) 4304 zone_free_limit(zone, maxbucket - cnt); 4305 4306 return (bucket); 4307 } 4308 4309 /* 4310 * Allocates a single item from a zone. 4311 * 4312 * Arguments 4313 * zone The zone to alloc for. 4314 * udata The data to be passed to the constructor. 4315 * domain The domain to allocate from or UMA_ANYDOMAIN. 4316 * flags M_WAITOK, M_NOWAIT, M_ZERO. 4317 * 4318 * Returns 4319 * NULL if there is no memory and M_NOWAIT is set 4320 * An item if successful 4321 */ 4322 4323 static void * 4324 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 4325 { 4326 void *item; 4327 4328 if (zone->uz_max_items > 0 && zone_alloc_limit(zone, 1, flags) == 0) { 4329 counter_u64_add(zone->uz_fails, 1); 4330 return (NULL); 4331 } 4332 4333 /* Avoid allocs targeting empty domains. */ 4334 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 4335 domain = UMA_ANYDOMAIN; 4336 4337 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 4338 goto fail_cnt; 4339 4340 /* 4341 * We have to call both the zone's init (not the keg's init) 4342 * and the zone's ctor. This is because the item is going from 4343 * a keg slab directly to the user, and the user is expecting it 4344 * to be both zone-init'd as well as zone-ctor'd. 4345 */ 4346 if (zone->uz_init != NULL) { 4347 int error; 4348 4349 kasan_mark_item_valid(zone, item); 4350 error = zone->uz_init(item, zone->uz_size, flags); 4351 kasan_mark_item_invalid(zone, item); 4352 if (error != 0) { 4353 zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT); 4354 goto fail_cnt; 4355 } 4356 } 4357 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, flags, 4358 item); 4359 if (item == NULL) 4360 goto fail; 4361 4362 counter_u64_add(zone->uz_allocs, 1); 4363 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 4364 zone->uz_name, zone); 4365 4366 return (item); 4367 4368 fail_cnt: 4369 counter_u64_add(zone->uz_fails, 1); 4370 fail: 4371 if (zone->uz_max_items > 0) 4372 zone_free_limit(zone, 1); 4373 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 4374 zone->uz_name, zone); 4375 4376 return (NULL); 4377 } 4378 4379 /* See uma.h */ 4380 void 4381 uma_zfree_smr(uma_zone_t zone, void *item) 4382 { 4383 uma_cache_t cache; 4384 uma_cache_bucket_t bucket; 4385 int itemdomain, uz_flags; 4386 4387 CTR3(KTR_UMA, "uma_zfree_smr zone %s(%p) item %p", 4388 zone->uz_name, zone, item); 4389 4390 #ifdef UMA_ZALLOC_DEBUG 4391 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 4392 ("uma_zfree_smr: called with non-SMR zone.")); 4393 KASSERT(item != NULL, ("uma_zfree_smr: Called with NULL pointer.")); 4394 SMR_ASSERT_NOT_ENTERED(zone->uz_smr); 4395 if (uma_zfree_debug(zone, item, NULL) == EJUSTRETURN) 4396 return; 4397 #endif 4398 cache = &zone->uz_cpu[curcpu]; 4399 uz_flags = cache_uz_flags(cache); 4400 itemdomain = 0; 4401 #ifdef NUMA 4402 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4403 itemdomain = item_domain(item); 4404 #endif 4405 critical_enter(); 4406 do { 4407 cache = &zone->uz_cpu[curcpu]; 4408 /* SMR Zones must free to the free bucket. */ 4409 bucket = &cache->uc_freebucket; 4410 #ifdef NUMA 4411 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4412 PCPU_GET(domain) != itemdomain) { 4413 bucket = &cache->uc_crossbucket; 4414 } 4415 #endif 4416 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 4417 cache_bucket_push(cache, bucket, item); 4418 critical_exit(); 4419 return; 4420 } 4421 } while (cache_free(zone, cache, NULL, itemdomain)); 4422 critical_exit(); 4423 4424 /* 4425 * If nothing else caught this, we'll just do an internal free. 4426 */ 4427 zone_free_item(zone, item, NULL, SKIP_NONE); 4428 } 4429 4430 /* See uma.h */ 4431 void 4432 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 4433 { 4434 uma_cache_t cache; 4435 uma_cache_bucket_t bucket; 4436 int itemdomain, uz_flags; 4437 4438 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 4439 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 4440 4441 CTR3(KTR_UMA, "uma_zfree_arg zone %s(%p) item %p", 4442 zone->uz_name, zone, item); 4443 4444 #ifdef UMA_ZALLOC_DEBUG 4445 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 4446 ("uma_zfree_arg: called with SMR zone.")); 4447 if (uma_zfree_debug(zone, item, udata) == EJUSTRETURN) 4448 return; 4449 #endif 4450 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 4451 if (item == NULL) 4452 return; 4453 4454 /* 4455 * We are accessing the per-cpu cache without a critical section to 4456 * fetch size and flags. This is acceptable, if we are preempted we 4457 * will simply read another cpu's line. 4458 */ 4459 cache = &zone->uz_cpu[curcpu]; 4460 uz_flags = cache_uz_flags(cache); 4461 if (UMA_ALWAYS_CTORDTOR || 4462 __predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0)) 4463 item_dtor(zone, item, cache_uz_size(cache), udata, SKIP_NONE); 4464 4465 /* 4466 * The race here is acceptable. If we miss it we'll just have to wait 4467 * a little longer for the limits to be reset. 4468 */ 4469 if (__predict_false(uz_flags & UMA_ZFLAG_LIMIT)) { 4470 if (atomic_load_32(&zone->uz_sleepers) > 0) 4471 goto zfree_item; 4472 } 4473 4474 /* 4475 * If possible, free to the per-CPU cache. There are two 4476 * requirements for safe access to the per-CPU cache: (1) the thread 4477 * accessing the cache must not be preempted or yield during access, 4478 * and (2) the thread must not migrate CPUs without switching which 4479 * cache it accesses. We rely on a critical section to prevent 4480 * preemption and migration. We release the critical section in 4481 * order to acquire the zone mutex if we are unable to free to the 4482 * current cache; when we re-acquire the critical section, we must 4483 * detect and handle migration if it has occurred. 4484 */ 4485 itemdomain = 0; 4486 #ifdef NUMA 4487 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4488 itemdomain = item_domain(item); 4489 #endif 4490 critical_enter(); 4491 do { 4492 cache = &zone->uz_cpu[curcpu]; 4493 /* 4494 * Try to free into the allocbucket first to give LIFO 4495 * ordering for cache-hot datastructures. Spill over 4496 * into the freebucket if necessary. Alloc will swap 4497 * them if one runs dry. 4498 */ 4499 bucket = &cache->uc_allocbucket; 4500 #ifdef NUMA 4501 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4502 PCPU_GET(domain) != itemdomain) { 4503 bucket = &cache->uc_crossbucket; 4504 } else 4505 #endif 4506 if (bucket->ucb_cnt == bucket->ucb_entries && 4507 cache->uc_freebucket.ucb_cnt < 4508 cache->uc_freebucket.ucb_entries) 4509 cache_bucket_swap(&cache->uc_freebucket, 4510 &cache->uc_allocbucket); 4511 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 4512 cache_bucket_push(cache, bucket, item); 4513 critical_exit(); 4514 return; 4515 } 4516 } while (cache_free(zone, cache, udata, itemdomain)); 4517 critical_exit(); 4518 4519 /* 4520 * If nothing else caught this, we'll just do an internal free. 4521 */ 4522 zfree_item: 4523 zone_free_item(zone, item, udata, SKIP_DTOR); 4524 } 4525 4526 #ifdef NUMA 4527 /* 4528 * sort crossdomain free buckets to domain correct buckets and cache 4529 * them. 4530 */ 4531 static void 4532 zone_free_cross(uma_zone_t zone, uma_bucket_t bucket, void *udata) 4533 { 4534 struct uma_bucketlist emptybuckets, fullbuckets; 4535 uma_zone_domain_t zdom; 4536 uma_bucket_t b; 4537 smr_seq_t seq; 4538 void *item; 4539 int domain; 4540 4541 CTR3(KTR_UMA, 4542 "uma_zfree: zone %s(%p) draining cross bucket %p", 4543 zone->uz_name, zone, bucket); 4544 4545 /* 4546 * It is possible for buckets to arrive here out of order so we fetch 4547 * the current smr seq rather than accepting the bucket's. 4548 */ 4549 seq = SMR_SEQ_INVALID; 4550 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 4551 seq = smr_advance(zone->uz_smr); 4552 4553 /* 4554 * To avoid having ndomain * ndomain buckets for sorting we have a 4555 * lock on the current crossfree bucket. A full matrix with 4556 * per-domain locking could be used if necessary. 4557 */ 4558 STAILQ_INIT(&emptybuckets); 4559 STAILQ_INIT(&fullbuckets); 4560 ZONE_CROSS_LOCK(zone); 4561 for (; bucket->ub_cnt > 0; bucket->ub_cnt--) { 4562 item = bucket->ub_bucket[bucket->ub_cnt - 1]; 4563 domain = item_domain(item); 4564 zdom = ZDOM_GET(zone, domain); 4565 if (zdom->uzd_cross == NULL) { 4566 if ((b = STAILQ_FIRST(&emptybuckets)) != NULL) { 4567 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link); 4568 zdom->uzd_cross = b; 4569 } else { 4570 /* 4571 * Avoid allocating a bucket with the cross lock 4572 * held, since allocation can trigger a 4573 * cross-domain free and bucket zones may 4574 * allocate from each other. 4575 */ 4576 ZONE_CROSS_UNLOCK(zone); 4577 b = bucket_alloc(zone, udata, M_NOWAIT); 4578 if (b == NULL) 4579 goto out; 4580 ZONE_CROSS_LOCK(zone); 4581 if (zdom->uzd_cross != NULL) { 4582 STAILQ_INSERT_HEAD(&emptybuckets, b, 4583 ub_link); 4584 } else { 4585 zdom->uzd_cross = b; 4586 } 4587 } 4588 } 4589 b = zdom->uzd_cross; 4590 b->ub_bucket[b->ub_cnt++] = item; 4591 b->ub_seq = seq; 4592 if (b->ub_cnt == b->ub_entries) { 4593 STAILQ_INSERT_HEAD(&fullbuckets, b, ub_link); 4594 if ((b = STAILQ_FIRST(&emptybuckets)) != NULL) 4595 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link); 4596 zdom->uzd_cross = b; 4597 } 4598 } 4599 ZONE_CROSS_UNLOCK(zone); 4600 out: 4601 if (bucket->ub_cnt == 0) 4602 bucket->ub_seq = SMR_SEQ_INVALID; 4603 bucket_free(zone, bucket, udata); 4604 4605 while ((b = STAILQ_FIRST(&emptybuckets)) != NULL) { 4606 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link); 4607 bucket_free(zone, b, udata); 4608 } 4609 while ((b = STAILQ_FIRST(&fullbuckets)) != NULL) { 4610 STAILQ_REMOVE_HEAD(&fullbuckets, ub_link); 4611 domain = item_domain(b->ub_bucket[0]); 4612 zone_put_bucket(zone, domain, b, udata, true); 4613 } 4614 } 4615 #endif 4616 4617 static void 4618 zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 4619 int itemdomain, bool ws) 4620 { 4621 4622 #ifdef NUMA 4623 /* 4624 * Buckets coming from the wrong domain will be entirely for the 4625 * only other domain on two domain systems. In this case we can 4626 * simply cache them. Otherwise we need to sort them back to 4627 * correct domains. 4628 */ 4629 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4630 vm_ndomains > 2 && PCPU_GET(domain) != itemdomain) { 4631 zone_free_cross(zone, bucket, udata); 4632 return; 4633 } 4634 #endif 4635 4636 /* 4637 * Attempt to save the bucket in the zone's domain bucket cache. 4638 */ 4639 CTR3(KTR_UMA, 4640 "uma_zfree: zone %s(%p) putting bucket %p on free list", 4641 zone->uz_name, zone, bucket); 4642 /* ub_cnt is pointing to the last free item */ 4643 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) 4644 itemdomain = zone_domain_lowest(zone, itemdomain); 4645 zone_put_bucket(zone, itemdomain, bucket, udata, ws); 4646 } 4647 4648 /* 4649 * Populate a free or cross bucket for the current cpu cache. Free any 4650 * existing full bucket either to the zone cache or back to the slab layer. 4651 * 4652 * Enters and returns in a critical section. false return indicates that 4653 * we can not satisfy this free in the cache layer. true indicates that 4654 * the caller should retry. 4655 */ 4656 static __noinline bool 4657 cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, int itemdomain) 4658 { 4659 uma_cache_bucket_t cbucket; 4660 uma_bucket_t newbucket, bucket; 4661 4662 CRITICAL_ASSERT(curthread); 4663 4664 if (zone->uz_bucket_size == 0) 4665 return false; 4666 4667 cache = &zone->uz_cpu[curcpu]; 4668 newbucket = NULL; 4669 4670 /* 4671 * FIRSTTOUCH domains need to free to the correct zdom. When 4672 * enabled this is the zdom of the item. The bucket is the 4673 * cross bucket if the current domain and itemdomain do not match. 4674 */ 4675 cbucket = &cache->uc_freebucket; 4676 #ifdef NUMA 4677 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { 4678 if (PCPU_GET(domain) != itemdomain) { 4679 cbucket = &cache->uc_crossbucket; 4680 if (cbucket->ucb_cnt != 0) 4681 counter_u64_add(zone->uz_xdomain, 4682 cbucket->ucb_cnt); 4683 } 4684 } 4685 #endif 4686 bucket = cache_bucket_unload(cbucket); 4687 KASSERT(bucket == NULL || bucket->ub_cnt == bucket->ub_entries, 4688 ("cache_free: Entered with non-full free bucket.")); 4689 4690 /* We are no longer associated with this CPU. */ 4691 critical_exit(); 4692 4693 /* 4694 * Don't let SMR zones operate without a free bucket. Force 4695 * a synchronize and re-use this one. We will only degrade 4696 * to a synchronize every bucket_size items rather than every 4697 * item if we fail to allocate a bucket. 4698 */ 4699 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) { 4700 if (bucket != NULL) 4701 bucket->ub_seq = smr_advance(zone->uz_smr); 4702 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4703 if (newbucket == NULL && bucket != NULL) { 4704 bucket_drain(zone, bucket); 4705 newbucket = bucket; 4706 bucket = NULL; 4707 } 4708 } else if (!bucketdisable) 4709 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4710 4711 if (bucket != NULL) 4712 zone_free_bucket(zone, bucket, udata, itemdomain, true); 4713 4714 critical_enter(); 4715 if ((bucket = newbucket) == NULL) 4716 return (false); 4717 cache = &zone->uz_cpu[curcpu]; 4718 #ifdef NUMA 4719 /* 4720 * Check to see if we should be populating the cross bucket. If it 4721 * is already populated we will fall through and attempt to populate 4722 * the free bucket. 4723 */ 4724 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { 4725 if (PCPU_GET(domain) != itemdomain && 4726 cache->uc_crossbucket.ucb_bucket == NULL) { 4727 cache_bucket_load_cross(cache, bucket); 4728 return (true); 4729 } 4730 } 4731 #endif 4732 /* 4733 * We may have lost the race to fill the bucket or switched CPUs. 4734 */ 4735 if (cache->uc_freebucket.ucb_bucket != NULL) { 4736 critical_exit(); 4737 bucket_free(zone, bucket, udata); 4738 critical_enter(); 4739 } else 4740 cache_bucket_load_free(cache, bucket); 4741 4742 return (true); 4743 } 4744 4745 static void 4746 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item) 4747 { 4748 uma_keg_t keg; 4749 uma_domain_t dom; 4750 int freei; 4751 4752 keg = zone->uz_keg; 4753 KEG_LOCK_ASSERT(keg, slab->us_domain); 4754 4755 /* Do we need to remove from any lists? */ 4756 dom = &keg->uk_domain[slab->us_domain]; 4757 if (slab->us_freecount + 1 == keg->uk_ipers) { 4758 LIST_REMOVE(slab, us_link); 4759 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 4760 dom->ud_free_slabs++; 4761 } else if (slab->us_freecount == 0) { 4762 LIST_REMOVE(slab, us_link); 4763 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 4764 } 4765 4766 /* Slab management. */ 4767 freei = slab_item_index(slab, keg, item); 4768 BIT_SET(keg->uk_ipers, freei, &slab->us_free); 4769 slab->us_freecount++; 4770 4771 /* Keg statistics. */ 4772 dom->ud_free_items++; 4773 } 4774 4775 static void 4776 zone_release(void *arg, void **bucket, int cnt) 4777 { 4778 struct mtx *lock; 4779 uma_zone_t zone; 4780 uma_slab_t slab; 4781 uma_keg_t keg; 4782 uint8_t *mem; 4783 void *item; 4784 int i; 4785 4786 zone = arg; 4787 keg = zone->uz_keg; 4788 lock = NULL; 4789 if (__predict_false((zone->uz_flags & UMA_ZFLAG_HASH) != 0)) 4790 lock = KEG_LOCK(keg, 0); 4791 for (i = 0; i < cnt; i++) { 4792 item = bucket[i]; 4793 if (__predict_true((zone->uz_flags & UMA_ZFLAG_VTOSLAB) != 0)) { 4794 slab = vtoslab((vm_offset_t)item); 4795 } else { 4796 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 4797 if ((zone->uz_flags & UMA_ZFLAG_HASH) != 0) 4798 slab = hash_sfind(&keg->uk_hash, mem); 4799 else 4800 slab = (uma_slab_t)(mem + keg->uk_pgoff); 4801 } 4802 if (lock != KEG_LOCKPTR(keg, slab->us_domain)) { 4803 if (lock != NULL) 4804 mtx_unlock(lock); 4805 lock = KEG_LOCK(keg, slab->us_domain); 4806 } 4807 slab_free_item(zone, slab, item); 4808 } 4809 if (lock != NULL) 4810 mtx_unlock(lock); 4811 } 4812 4813 /* 4814 * Frees a single item to any zone. 4815 * 4816 * Arguments: 4817 * zone The zone to free to 4818 * item The item we're freeing 4819 * udata User supplied data for the dtor 4820 * skip Skip dtors and finis 4821 */ 4822 static __noinline void 4823 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 4824 { 4825 4826 /* 4827 * If a free is sent directly to an SMR zone we have to 4828 * synchronize immediately because the item can instantly 4829 * be reallocated. This should only happen in degenerate 4830 * cases when no memory is available for per-cpu caches. 4831 */ 4832 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && skip == SKIP_NONE) 4833 smr_synchronize(zone->uz_smr); 4834 4835 item_dtor(zone, item, zone->uz_size, udata, skip); 4836 4837 if (skip < SKIP_FINI && zone->uz_fini) { 4838 kasan_mark_item_valid(zone, item); 4839 zone->uz_fini(item, zone->uz_size); 4840 kasan_mark_item_invalid(zone, item); 4841 } 4842 4843 zone->uz_release(zone->uz_arg, &item, 1); 4844 4845 if (skip & SKIP_CNT) 4846 return; 4847 4848 counter_u64_add(zone->uz_frees, 1); 4849 4850 if (zone->uz_max_items > 0) 4851 zone_free_limit(zone, 1); 4852 } 4853 4854 /* See uma.h */ 4855 int 4856 uma_zone_set_max(uma_zone_t zone, int nitems) 4857 { 4858 4859 /* 4860 * If the limit is small, we may need to constrain the maximum per-CPU 4861 * cache size, or disable caching entirely. 4862 */ 4863 uma_zone_set_maxcache(zone, nitems); 4864 4865 /* 4866 * XXX This can misbehave if the zone has any allocations with 4867 * no limit and a limit is imposed. There is currently no 4868 * way to clear a limit. 4869 */ 4870 ZONE_LOCK(zone); 4871 zone->uz_max_items = nitems; 4872 zone->uz_flags |= UMA_ZFLAG_LIMIT; 4873 zone_update_caches(zone); 4874 /* We may need to wake waiters. */ 4875 wakeup(&zone->uz_max_items); 4876 ZONE_UNLOCK(zone); 4877 4878 return (nitems); 4879 } 4880 4881 /* See uma.h */ 4882 void 4883 uma_zone_set_maxcache(uma_zone_t zone, int nitems) 4884 { 4885 int bpcpu, bpdom, bsize, nb; 4886 4887 ZONE_LOCK(zone); 4888 4889 /* 4890 * Compute a lower bound on the number of items that may be cached in 4891 * the zone. Each CPU gets at least two buckets, and for cross-domain 4892 * frees we use an additional bucket per CPU and per domain. Select the 4893 * largest bucket size that does not exceed half of the requested limit, 4894 * with the left over space given to the full bucket cache. 4895 */ 4896 bpdom = 0; 4897 bpcpu = 2; 4898 #ifdef NUMA 4899 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && vm_ndomains > 1) { 4900 bpcpu++; 4901 bpdom++; 4902 } 4903 #endif 4904 nb = bpcpu * mp_ncpus + bpdom * vm_ndomains; 4905 bsize = nitems / nb / 2; 4906 if (bsize > BUCKET_MAX) 4907 bsize = BUCKET_MAX; 4908 else if (bsize == 0 && nitems / nb > 0) 4909 bsize = 1; 4910 zone->uz_bucket_size_max = zone->uz_bucket_size = bsize; 4911 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 4912 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 4913 zone->uz_bucket_max = nitems - nb * bsize; 4914 ZONE_UNLOCK(zone); 4915 } 4916 4917 /* See uma.h */ 4918 int 4919 uma_zone_get_max(uma_zone_t zone) 4920 { 4921 int nitems; 4922 4923 nitems = atomic_load_64(&zone->uz_max_items); 4924 4925 return (nitems); 4926 } 4927 4928 /* See uma.h */ 4929 void 4930 uma_zone_set_warning(uma_zone_t zone, const char *warning) 4931 { 4932 4933 ZONE_ASSERT_COLD(zone); 4934 zone->uz_warning = warning; 4935 } 4936 4937 /* See uma.h */ 4938 void 4939 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 4940 { 4941 4942 ZONE_ASSERT_COLD(zone); 4943 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 4944 } 4945 4946 /* See uma.h */ 4947 int 4948 uma_zone_get_cur(uma_zone_t zone) 4949 { 4950 int64_t nitems; 4951 u_int i; 4952 4953 nitems = 0; 4954 if (zone->uz_allocs != EARLY_COUNTER && zone->uz_frees != EARLY_COUNTER) 4955 nitems = counter_u64_fetch(zone->uz_allocs) - 4956 counter_u64_fetch(zone->uz_frees); 4957 CPU_FOREACH(i) 4958 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs) - 4959 atomic_load_64(&zone->uz_cpu[i].uc_frees); 4960 4961 return (nitems < 0 ? 0 : nitems); 4962 } 4963 4964 static uint64_t 4965 uma_zone_get_allocs(uma_zone_t zone) 4966 { 4967 uint64_t nitems; 4968 u_int i; 4969 4970 nitems = 0; 4971 if (zone->uz_allocs != EARLY_COUNTER) 4972 nitems = counter_u64_fetch(zone->uz_allocs); 4973 CPU_FOREACH(i) 4974 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs); 4975 4976 return (nitems); 4977 } 4978 4979 static uint64_t 4980 uma_zone_get_frees(uma_zone_t zone) 4981 { 4982 uint64_t nitems; 4983 u_int i; 4984 4985 nitems = 0; 4986 if (zone->uz_frees != EARLY_COUNTER) 4987 nitems = counter_u64_fetch(zone->uz_frees); 4988 CPU_FOREACH(i) 4989 nitems += atomic_load_64(&zone->uz_cpu[i].uc_frees); 4990 4991 return (nitems); 4992 } 4993 4994 #ifdef INVARIANTS 4995 /* Used only for KEG_ASSERT_COLD(). */ 4996 static uint64_t 4997 uma_keg_get_allocs(uma_keg_t keg) 4998 { 4999 uma_zone_t z; 5000 uint64_t nitems; 5001 5002 nitems = 0; 5003 LIST_FOREACH(z, &keg->uk_zones, uz_link) 5004 nitems += uma_zone_get_allocs(z); 5005 5006 return (nitems); 5007 } 5008 #endif 5009 5010 /* See uma.h */ 5011 void 5012 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 5013 { 5014 uma_keg_t keg; 5015 5016 KEG_GET(zone, keg); 5017 KEG_ASSERT_COLD(keg); 5018 keg->uk_init = uminit; 5019 } 5020 5021 /* See uma.h */ 5022 void 5023 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 5024 { 5025 uma_keg_t keg; 5026 5027 KEG_GET(zone, keg); 5028 KEG_ASSERT_COLD(keg); 5029 keg->uk_fini = fini; 5030 } 5031 5032 /* See uma.h */ 5033 void 5034 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 5035 { 5036 5037 ZONE_ASSERT_COLD(zone); 5038 zone->uz_init = zinit; 5039 } 5040 5041 /* See uma.h */ 5042 void 5043 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 5044 { 5045 5046 ZONE_ASSERT_COLD(zone); 5047 zone->uz_fini = zfini; 5048 } 5049 5050 /* See uma.h */ 5051 void 5052 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 5053 { 5054 uma_keg_t keg; 5055 5056 KEG_GET(zone, keg); 5057 KEG_ASSERT_COLD(keg); 5058 keg->uk_freef = freef; 5059 } 5060 5061 /* See uma.h */ 5062 void 5063 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 5064 { 5065 uma_keg_t keg; 5066 5067 KEG_GET(zone, keg); 5068 KEG_ASSERT_COLD(keg); 5069 keg->uk_allocf = allocf; 5070 } 5071 5072 /* See uma.h */ 5073 void 5074 uma_zone_set_smr(uma_zone_t zone, smr_t smr) 5075 { 5076 5077 ZONE_ASSERT_COLD(zone); 5078 5079 KASSERT(smr != NULL, ("Got NULL smr")); 5080 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 5081 ("zone %p (%s) already uses SMR", zone, zone->uz_name)); 5082 zone->uz_flags |= UMA_ZONE_SMR; 5083 zone->uz_smr = smr; 5084 zone_update_caches(zone); 5085 } 5086 5087 smr_t 5088 uma_zone_get_smr(uma_zone_t zone) 5089 { 5090 5091 return (zone->uz_smr); 5092 } 5093 5094 /* See uma.h */ 5095 void 5096 uma_zone_reserve(uma_zone_t zone, int items) 5097 { 5098 uma_keg_t keg; 5099 5100 KEG_GET(zone, keg); 5101 KEG_ASSERT_COLD(keg); 5102 keg->uk_reserve = items; 5103 } 5104 5105 /* See uma.h */ 5106 int 5107 uma_zone_reserve_kva(uma_zone_t zone, int count) 5108 { 5109 uma_keg_t keg; 5110 vm_offset_t kva; 5111 u_int pages; 5112 5113 KEG_GET(zone, keg); 5114 KEG_ASSERT_COLD(keg); 5115 ZONE_ASSERT_COLD(zone); 5116 5117 pages = howmany(count, keg->uk_ipers) * keg->uk_ppera; 5118 5119 #ifdef UMA_MD_SMALL_ALLOC 5120 if (keg->uk_ppera > 1) { 5121 #else 5122 if (1) { 5123 #endif 5124 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 5125 if (kva == 0) 5126 return (0); 5127 } else 5128 kva = 0; 5129 5130 MPASS(keg->uk_kva == 0); 5131 keg->uk_kva = kva; 5132 keg->uk_offset = 0; 5133 zone->uz_max_items = pages * keg->uk_ipers; 5134 #ifdef UMA_MD_SMALL_ALLOC 5135 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 5136 #else 5137 keg->uk_allocf = noobj_alloc; 5138 #endif 5139 keg->uk_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 5140 zone->uz_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 5141 zone_update_caches(zone); 5142 5143 return (1); 5144 } 5145 5146 /* See uma.h */ 5147 void 5148 uma_prealloc(uma_zone_t zone, int items) 5149 { 5150 struct vm_domainset_iter di; 5151 uma_domain_t dom; 5152 uma_slab_t slab; 5153 uma_keg_t keg; 5154 int aflags, domain, slabs; 5155 5156 KEG_GET(zone, keg); 5157 slabs = howmany(items, keg->uk_ipers); 5158 while (slabs-- > 0) { 5159 aflags = M_NOWAIT; 5160 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 5161 &aflags); 5162 for (;;) { 5163 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK, 5164 aflags); 5165 if (slab != NULL) { 5166 dom = &keg->uk_domain[slab->us_domain]; 5167 /* 5168 * keg_alloc_slab() always returns a slab on the 5169 * partial list. 5170 */ 5171 LIST_REMOVE(slab, us_link); 5172 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, 5173 us_link); 5174 dom->ud_free_slabs++; 5175 KEG_UNLOCK(keg, slab->us_domain); 5176 break; 5177 } 5178 if (vm_domainset_iter_policy(&di, &domain) != 0) 5179 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0); 5180 } 5181 } 5182 } 5183 5184 /* 5185 * Returns a snapshot of memory consumption in bytes. 5186 */ 5187 size_t 5188 uma_zone_memory(uma_zone_t zone) 5189 { 5190 size_t sz; 5191 int i; 5192 5193 sz = 0; 5194 if (zone->uz_flags & UMA_ZFLAG_CACHE) { 5195 for (i = 0; i < vm_ndomains; i++) 5196 sz += ZDOM_GET(zone, i)->uzd_nitems; 5197 return (sz * zone->uz_size); 5198 } 5199 for (i = 0; i < vm_ndomains; i++) 5200 sz += zone->uz_keg->uk_domain[i].ud_pages; 5201 5202 return (sz * PAGE_SIZE); 5203 } 5204 5205 /* See uma.h */ 5206 void 5207 uma_reclaim(int req) 5208 { 5209 uma_reclaim_domain(req, UMA_ANYDOMAIN); 5210 } 5211 5212 void 5213 uma_reclaim_domain(int req, int domain) 5214 { 5215 void *arg; 5216 5217 bucket_enable(); 5218 5219 arg = (void *)(uintptr_t)domain; 5220 sx_slock(&uma_reclaim_lock); 5221 switch (req) { 5222 case UMA_RECLAIM_TRIM: 5223 zone_foreach(zone_trim, arg); 5224 break; 5225 case UMA_RECLAIM_DRAIN: 5226 zone_foreach(zone_drain, arg); 5227 break; 5228 case UMA_RECLAIM_DRAIN_CPU: 5229 zone_foreach(zone_drain, arg); 5230 pcpu_cache_drain_safe(NULL); 5231 zone_foreach(zone_drain, arg); 5232 break; 5233 default: 5234 panic("unhandled reclamation request %d", req); 5235 } 5236 5237 /* 5238 * Some slabs may have been freed but this zone will be visited early 5239 * we visit again so that we can free pages that are empty once other 5240 * zones are drained. We have to do the same for buckets. 5241 */ 5242 zone_drain(slabzones[0], arg); 5243 zone_drain(slabzones[1], arg); 5244 bucket_zone_drain(domain); 5245 sx_sunlock(&uma_reclaim_lock); 5246 } 5247 5248 static volatile int uma_reclaim_needed; 5249 5250 void 5251 uma_reclaim_wakeup(void) 5252 { 5253 5254 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 5255 wakeup(uma_reclaim); 5256 } 5257 5258 void 5259 uma_reclaim_worker(void *arg __unused) 5260 { 5261 5262 for (;;) { 5263 sx_xlock(&uma_reclaim_lock); 5264 while (atomic_load_int(&uma_reclaim_needed) == 0) 5265 sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl", 5266 hz); 5267 sx_xunlock(&uma_reclaim_lock); 5268 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 5269 uma_reclaim(UMA_RECLAIM_DRAIN_CPU); 5270 atomic_store_int(&uma_reclaim_needed, 0); 5271 /* Don't fire more than once per-second. */ 5272 pause("umarclslp", hz); 5273 } 5274 } 5275 5276 /* See uma.h */ 5277 void 5278 uma_zone_reclaim(uma_zone_t zone, int req) 5279 { 5280 uma_zone_reclaim_domain(zone, req, UMA_ANYDOMAIN); 5281 } 5282 5283 void 5284 uma_zone_reclaim_domain(uma_zone_t zone, int req, int domain) 5285 { 5286 void *arg; 5287 5288 arg = (void *)(uintptr_t)domain; 5289 switch (req) { 5290 case UMA_RECLAIM_TRIM: 5291 zone_trim(zone, arg); 5292 break; 5293 case UMA_RECLAIM_DRAIN: 5294 zone_drain(zone, arg); 5295 break; 5296 case UMA_RECLAIM_DRAIN_CPU: 5297 pcpu_cache_drain_safe(zone); 5298 zone_drain(zone, arg); 5299 break; 5300 default: 5301 panic("unhandled reclamation request %d", req); 5302 } 5303 } 5304 5305 /* See uma.h */ 5306 int 5307 uma_zone_exhausted(uma_zone_t zone) 5308 { 5309 5310 return (atomic_load_32(&zone->uz_sleepers) > 0); 5311 } 5312 5313 unsigned long 5314 uma_limit(void) 5315 { 5316 5317 return (uma_kmem_limit); 5318 } 5319 5320 void 5321 uma_set_limit(unsigned long limit) 5322 { 5323 5324 uma_kmem_limit = limit; 5325 } 5326 5327 unsigned long 5328 uma_size(void) 5329 { 5330 5331 return (atomic_load_long(&uma_kmem_total)); 5332 } 5333 5334 long 5335 uma_avail(void) 5336 { 5337 5338 return (uma_kmem_limit - uma_size()); 5339 } 5340 5341 #ifdef DDB 5342 /* 5343 * Generate statistics across both the zone and its per-cpu cache's. Return 5344 * desired statistics if the pointer is non-NULL for that statistic. 5345 * 5346 * Note: does not update the zone statistics, as it can't safely clear the 5347 * per-CPU cache statistic. 5348 * 5349 */ 5350 static void 5351 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp, 5352 uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp) 5353 { 5354 uma_cache_t cache; 5355 uint64_t allocs, frees, sleeps, xdomain; 5356 int cachefree, cpu; 5357 5358 allocs = frees = sleeps = xdomain = 0; 5359 cachefree = 0; 5360 CPU_FOREACH(cpu) { 5361 cache = &z->uz_cpu[cpu]; 5362 cachefree += cache->uc_allocbucket.ucb_cnt; 5363 cachefree += cache->uc_freebucket.ucb_cnt; 5364 xdomain += cache->uc_crossbucket.ucb_cnt; 5365 cachefree += cache->uc_crossbucket.ucb_cnt; 5366 allocs += cache->uc_allocs; 5367 frees += cache->uc_frees; 5368 } 5369 allocs += counter_u64_fetch(z->uz_allocs); 5370 frees += counter_u64_fetch(z->uz_frees); 5371 xdomain += counter_u64_fetch(z->uz_xdomain); 5372 sleeps += z->uz_sleeps; 5373 if (cachefreep != NULL) 5374 *cachefreep = cachefree; 5375 if (allocsp != NULL) 5376 *allocsp = allocs; 5377 if (freesp != NULL) 5378 *freesp = frees; 5379 if (sleepsp != NULL) 5380 *sleepsp = sleeps; 5381 if (xdomainp != NULL) 5382 *xdomainp = xdomain; 5383 } 5384 #endif /* DDB */ 5385 5386 static int 5387 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 5388 { 5389 uma_keg_t kz; 5390 uma_zone_t z; 5391 int count; 5392 5393 count = 0; 5394 rw_rlock(&uma_rwlock); 5395 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5396 LIST_FOREACH(z, &kz->uk_zones, uz_link) 5397 count++; 5398 } 5399 LIST_FOREACH(z, &uma_cachezones, uz_link) 5400 count++; 5401 5402 rw_runlock(&uma_rwlock); 5403 return (sysctl_handle_int(oidp, &count, 0, req)); 5404 } 5405 5406 static void 5407 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf, 5408 struct uma_percpu_stat *ups, bool internal) 5409 { 5410 uma_zone_domain_t zdom; 5411 uma_cache_t cache; 5412 int i; 5413 5414 for (i = 0; i < vm_ndomains; i++) { 5415 zdom = ZDOM_GET(z, i); 5416 uth->uth_zone_free += zdom->uzd_nitems; 5417 } 5418 uth->uth_allocs = counter_u64_fetch(z->uz_allocs); 5419 uth->uth_frees = counter_u64_fetch(z->uz_frees); 5420 uth->uth_fails = counter_u64_fetch(z->uz_fails); 5421 uth->uth_xdomain = counter_u64_fetch(z->uz_xdomain); 5422 uth->uth_sleeps = z->uz_sleeps; 5423 5424 for (i = 0; i < mp_maxid + 1; i++) { 5425 bzero(&ups[i], sizeof(*ups)); 5426 if (internal || CPU_ABSENT(i)) 5427 continue; 5428 cache = &z->uz_cpu[i]; 5429 ups[i].ups_cache_free += cache->uc_allocbucket.ucb_cnt; 5430 ups[i].ups_cache_free += cache->uc_freebucket.ucb_cnt; 5431 ups[i].ups_cache_free += cache->uc_crossbucket.ucb_cnt; 5432 ups[i].ups_allocs = cache->uc_allocs; 5433 ups[i].ups_frees = cache->uc_frees; 5434 } 5435 } 5436 5437 static int 5438 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 5439 { 5440 struct uma_stream_header ush; 5441 struct uma_type_header uth; 5442 struct uma_percpu_stat *ups; 5443 struct sbuf sbuf; 5444 uma_keg_t kz; 5445 uma_zone_t z; 5446 uint64_t items; 5447 uint32_t kfree, pages; 5448 int count, error, i; 5449 5450 error = sysctl_wire_old_buffer(req, 0); 5451 if (error != 0) 5452 return (error); 5453 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 5454 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 5455 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 5456 5457 count = 0; 5458 rw_rlock(&uma_rwlock); 5459 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5460 LIST_FOREACH(z, &kz->uk_zones, uz_link) 5461 count++; 5462 } 5463 5464 LIST_FOREACH(z, &uma_cachezones, uz_link) 5465 count++; 5466 5467 /* 5468 * Insert stream header. 5469 */ 5470 bzero(&ush, sizeof(ush)); 5471 ush.ush_version = UMA_STREAM_VERSION; 5472 ush.ush_maxcpus = (mp_maxid + 1); 5473 ush.ush_count = count; 5474 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 5475 5476 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5477 kfree = pages = 0; 5478 for (i = 0; i < vm_ndomains; i++) { 5479 kfree += kz->uk_domain[i].ud_free_items; 5480 pages += kz->uk_domain[i].ud_pages; 5481 } 5482 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5483 bzero(&uth, sizeof(uth)); 5484 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 5485 uth.uth_align = kz->uk_align; 5486 uth.uth_size = kz->uk_size; 5487 uth.uth_rsize = kz->uk_rsize; 5488 if (z->uz_max_items > 0) { 5489 items = UZ_ITEMS_COUNT(z->uz_items); 5490 uth.uth_pages = (items / kz->uk_ipers) * 5491 kz->uk_ppera; 5492 } else 5493 uth.uth_pages = pages; 5494 uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) * 5495 kz->uk_ppera; 5496 uth.uth_limit = z->uz_max_items; 5497 uth.uth_keg_free = kfree; 5498 5499 /* 5500 * A zone is secondary is it is not the first entry 5501 * on the keg's zone list. 5502 */ 5503 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 5504 (LIST_FIRST(&kz->uk_zones) != z)) 5505 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 5506 uma_vm_zone_stats(&uth, z, &sbuf, ups, 5507 kz->uk_flags & UMA_ZFLAG_INTERNAL); 5508 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 5509 for (i = 0; i < mp_maxid + 1; i++) 5510 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 5511 } 5512 } 5513 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5514 bzero(&uth, sizeof(uth)); 5515 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 5516 uth.uth_size = z->uz_size; 5517 uma_vm_zone_stats(&uth, z, &sbuf, ups, false); 5518 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 5519 for (i = 0; i < mp_maxid + 1; i++) 5520 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 5521 } 5522 5523 rw_runlock(&uma_rwlock); 5524 error = sbuf_finish(&sbuf); 5525 sbuf_delete(&sbuf); 5526 free(ups, M_TEMP); 5527 return (error); 5528 } 5529 5530 int 5531 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 5532 { 5533 uma_zone_t zone = *(uma_zone_t *)arg1; 5534 int error, max; 5535 5536 max = uma_zone_get_max(zone); 5537 error = sysctl_handle_int(oidp, &max, 0, req); 5538 if (error || !req->newptr) 5539 return (error); 5540 5541 uma_zone_set_max(zone, max); 5542 5543 return (0); 5544 } 5545 5546 int 5547 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 5548 { 5549 uma_zone_t zone; 5550 int cur; 5551 5552 /* 5553 * Some callers want to add sysctls for global zones that 5554 * may not yet exist so they pass a pointer to a pointer. 5555 */ 5556 if (arg2 == 0) 5557 zone = *(uma_zone_t *)arg1; 5558 else 5559 zone = arg1; 5560 cur = uma_zone_get_cur(zone); 5561 return (sysctl_handle_int(oidp, &cur, 0, req)); 5562 } 5563 5564 static int 5565 sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS) 5566 { 5567 uma_zone_t zone = arg1; 5568 uint64_t cur; 5569 5570 cur = uma_zone_get_allocs(zone); 5571 return (sysctl_handle_64(oidp, &cur, 0, req)); 5572 } 5573 5574 static int 5575 sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS) 5576 { 5577 uma_zone_t zone = arg1; 5578 uint64_t cur; 5579 5580 cur = uma_zone_get_frees(zone); 5581 return (sysctl_handle_64(oidp, &cur, 0, req)); 5582 } 5583 5584 static int 5585 sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS) 5586 { 5587 struct sbuf sbuf; 5588 uma_zone_t zone = arg1; 5589 int error; 5590 5591 sbuf_new_for_sysctl(&sbuf, NULL, 0, req); 5592 if (zone->uz_flags != 0) 5593 sbuf_printf(&sbuf, "0x%b", zone->uz_flags, PRINT_UMA_ZFLAGS); 5594 else 5595 sbuf_printf(&sbuf, "0"); 5596 error = sbuf_finish(&sbuf); 5597 sbuf_delete(&sbuf); 5598 5599 return (error); 5600 } 5601 5602 static int 5603 sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS) 5604 { 5605 uma_keg_t keg = arg1; 5606 int avail, effpct, total; 5607 5608 total = keg->uk_ppera * PAGE_SIZE; 5609 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0) 5610 total += slabzone(keg->uk_ipers)->uz_keg->uk_rsize; 5611 /* 5612 * We consider the client's requested size and alignment here, not the 5613 * real size determination uk_rsize, because we also adjust the real 5614 * size for internal implementation reasons (max bitset size). 5615 */ 5616 avail = keg->uk_ipers * roundup2(keg->uk_size, keg->uk_align + 1); 5617 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 5618 avail *= mp_maxid + 1; 5619 effpct = 100 * avail / total; 5620 return (sysctl_handle_int(oidp, &effpct, 0, req)); 5621 } 5622 5623 static int 5624 sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS) 5625 { 5626 uma_zone_t zone = arg1; 5627 uint64_t cur; 5628 5629 cur = UZ_ITEMS_COUNT(atomic_load_64(&zone->uz_items)); 5630 return (sysctl_handle_64(oidp, &cur, 0, req)); 5631 } 5632 5633 #ifdef INVARIANTS 5634 static uma_slab_t 5635 uma_dbg_getslab(uma_zone_t zone, void *item) 5636 { 5637 uma_slab_t slab; 5638 uma_keg_t keg; 5639 uint8_t *mem; 5640 5641 /* 5642 * It is safe to return the slab here even though the 5643 * zone is unlocked because the item's allocation state 5644 * essentially holds a reference. 5645 */ 5646 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 5647 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5648 return (NULL); 5649 if (zone->uz_flags & UMA_ZFLAG_VTOSLAB) 5650 return (vtoslab((vm_offset_t)mem)); 5651 keg = zone->uz_keg; 5652 if ((keg->uk_flags & UMA_ZFLAG_HASH) == 0) 5653 return ((uma_slab_t)(mem + keg->uk_pgoff)); 5654 KEG_LOCK(keg, 0); 5655 slab = hash_sfind(&keg->uk_hash, mem); 5656 KEG_UNLOCK(keg, 0); 5657 5658 return (slab); 5659 } 5660 5661 static bool 5662 uma_dbg_zskip(uma_zone_t zone, void *mem) 5663 { 5664 5665 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5666 return (true); 5667 5668 return (uma_dbg_kskip(zone->uz_keg, mem)); 5669 } 5670 5671 static bool 5672 uma_dbg_kskip(uma_keg_t keg, void *mem) 5673 { 5674 uintptr_t idx; 5675 5676 if (dbg_divisor == 0) 5677 return (true); 5678 5679 if (dbg_divisor == 1) 5680 return (false); 5681 5682 idx = (uintptr_t)mem >> PAGE_SHIFT; 5683 if (keg->uk_ipers > 1) { 5684 idx *= keg->uk_ipers; 5685 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize; 5686 } 5687 5688 if ((idx / dbg_divisor) * dbg_divisor != idx) { 5689 counter_u64_add(uma_skip_cnt, 1); 5690 return (true); 5691 } 5692 counter_u64_add(uma_dbg_cnt, 1); 5693 5694 return (false); 5695 } 5696 5697 /* 5698 * Set up the slab's freei data such that uma_dbg_free can function. 5699 * 5700 */ 5701 static void 5702 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 5703 { 5704 uma_keg_t keg; 5705 int freei; 5706 5707 if (slab == NULL) { 5708 slab = uma_dbg_getslab(zone, item); 5709 if (slab == NULL) 5710 panic("uma: item %p did not belong to zone %s", 5711 item, zone->uz_name); 5712 } 5713 keg = zone->uz_keg; 5714 freei = slab_item_index(slab, keg, item); 5715 5716 if (BIT_TEST_SET_ATOMIC(keg->uk_ipers, freei, 5717 slab_dbg_bits(slab, keg))) 5718 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)", 5719 item, zone, zone->uz_name, slab, freei); 5720 } 5721 5722 /* 5723 * Verifies freed addresses. Checks for alignment, valid slab membership 5724 * and duplicate frees. 5725 * 5726 */ 5727 static void 5728 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 5729 { 5730 uma_keg_t keg; 5731 int freei; 5732 5733 if (slab == NULL) { 5734 slab = uma_dbg_getslab(zone, item); 5735 if (slab == NULL) 5736 panic("uma: Freed item %p did not belong to zone %s", 5737 item, zone->uz_name); 5738 } 5739 keg = zone->uz_keg; 5740 freei = slab_item_index(slab, keg, item); 5741 5742 if (freei >= keg->uk_ipers) 5743 panic("Invalid free of %p from zone %p(%s) slab %p(%d)", 5744 item, zone, zone->uz_name, slab, freei); 5745 5746 if (slab_item(slab, keg, freei) != item) 5747 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)", 5748 item, zone, zone->uz_name, slab, freei); 5749 5750 if (!BIT_TEST_CLR_ATOMIC(keg->uk_ipers, freei, 5751 slab_dbg_bits(slab, keg))) 5752 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)", 5753 item, zone, zone->uz_name, slab, freei); 5754 } 5755 #endif /* INVARIANTS */ 5756 5757 #ifdef DDB 5758 static int64_t 5759 get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used, 5760 uint64_t *sleeps, long *cachefree, uint64_t *xdomain) 5761 { 5762 uint64_t frees; 5763 int i; 5764 5765 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 5766 *allocs = counter_u64_fetch(z->uz_allocs); 5767 frees = counter_u64_fetch(z->uz_frees); 5768 *sleeps = z->uz_sleeps; 5769 *cachefree = 0; 5770 *xdomain = 0; 5771 } else 5772 uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps, 5773 xdomain); 5774 for (i = 0; i < vm_ndomains; i++) { 5775 *cachefree += ZDOM_GET(z, i)->uzd_nitems; 5776 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 5777 (LIST_FIRST(&kz->uk_zones) != z))) 5778 *cachefree += kz->uk_domain[i].ud_free_items; 5779 } 5780 *used = *allocs - frees; 5781 return (((int64_t)*used + *cachefree) * kz->uk_size); 5782 } 5783 5784 DB_SHOW_COMMAND(uma, db_show_uma) 5785 { 5786 const char *fmt_hdr, *fmt_entry; 5787 uma_keg_t kz; 5788 uma_zone_t z; 5789 uint64_t allocs, used, sleeps, xdomain; 5790 long cachefree; 5791 /* variables for sorting */ 5792 uma_keg_t cur_keg; 5793 uma_zone_t cur_zone, last_zone; 5794 int64_t cur_size, last_size, size; 5795 int ties; 5796 5797 /* /i option produces machine-parseable CSV output */ 5798 if (modif[0] == 'i') { 5799 fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n"; 5800 fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n"; 5801 } else { 5802 fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n"; 5803 fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n"; 5804 } 5805 5806 db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests", 5807 "Sleeps", "Bucket", "Total Mem", "XFree"); 5808 5809 /* Sort the zones with largest size first. */ 5810 last_zone = NULL; 5811 last_size = INT64_MAX; 5812 for (;;) { 5813 cur_zone = NULL; 5814 cur_size = -1; 5815 ties = 0; 5816 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5817 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5818 /* 5819 * In the case of size ties, print out zones 5820 * in the order they are encountered. That is, 5821 * when we encounter the most recently output 5822 * zone, we have already printed all preceding 5823 * ties, and we must print all following ties. 5824 */ 5825 if (z == last_zone) { 5826 ties = 1; 5827 continue; 5828 } 5829 size = get_uma_stats(kz, z, &allocs, &used, 5830 &sleeps, &cachefree, &xdomain); 5831 if (size > cur_size && size < last_size + ties) 5832 { 5833 cur_size = size; 5834 cur_zone = z; 5835 cur_keg = kz; 5836 } 5837 } 5838 } 5839 if (cur_zone == NULL) 5840 break; 5841 5842 size = get_uma_stats(cur_keg, cur_zone, &allocs, &used, 5843 &sleeps, &cachefree, &xdomain); 5844 db_printf(fmt_entry, cur_zone->uz_name, 5845 (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree, 5846 (uintmax_t)allocs, (uintmax_t)sleeps, 5847 (unsigned)cur_zone->uz_bucket_size, (intmax_t)size, 5848 xdomain); 5849 5850 if (db_pager_quit) 5851 return; 5852 last_zone = cur_zone; 5853 last_size = cur_size; 5854 } 5855 } 5856 5857 DB_SHOW_COMMAND(umacache, db_show_umacache) 5858 { 5859 uma_zone_t z; 5860 uint64_t allocs, frees; 5861 long cachefree; 5862 int i; 5863 5864 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 5865 "Requests", "Bucket"); 5866 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5867 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL); 5868 for (i = 0; i < vm_ndomains; i++) 5869 cachefree += ZDOM_GET(z, i)->uzd_nitems; 5870 db_printf("%18s %8ju %8jd %8ld %12ju %8u\n", 5871 z->uz_name, (uintmax_t)z->uz_size, 5872 (intmax_t)(allocs - frees), cachefree, 5873 (uintmax_t)allocs, z->uz_bucket_size); 5874 if (db_pager_quit) 5875 return; 5876 } 5877 } 5878 #endif /* DDB */ 5879