1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/bitset.h> 62 #include <sys/eventhandler.h> 63 #include <sys/kernel.h> 64 #include <sys/types.h> 65 #include <sys/limits.h> 66 #include <sys/queue.h> 67 #include <sys/malloc.h> 68 #include <sys/ktr.h> 69 #include <sys/lock.h> 70 #include <sys/sysctl.h> 71 #include <sys/mutex.h> 72 #include <sys/proc.h> 73 #include <sys/random.h> 74 #include <sys/rwlock.h> 75 #include <sys/sbuf.h> 76 #include <sys/sched.h> 77 #include <sys/smp.h> 78 #include <sys/taskqueue.h> 79 #include <sys/vmmeter.h> 80 81 #include <vm/vm.h> 82 #include <vm/vm_object.h> 83 #include <vm/vm_page.h> 84 #include <vm/vm_pageout.h> 85 #include <vm/vm_param.h> 86 #include <vm/vm_phys.h> 87 #include <vm/vm_map.h> 88 #include <vm/vm_kern.h> 89 #include <vm/vm_extern.h> 90 #include <vm/uma.h> 91 #include <vm/uma_int.h> 92 #include <vm/uma_dbg.h> 93 94 #include <ddb/ddb.h> 95 96 #ifdef DEBUG_MEMGUARD 97 #include <vm/memguard.h> 98 #endif 99 100 /* 101 * This is the zone and keg from which all zones are spawned. 102 */ 103 static uma_zone_t kegs; 104 static uma_zone_t zones; 105 106 /* This is the zone from which all offpage uma_slab_ts are allocated. */ 107 static uma_zone_t slabzone; 108 109 /* 110 * The initial hash tables come out of this zone so they can be allocated 111 * prior to malloc coming up. 112 */ 113 static uma_zone_t hashzone; 114 115 /* The boot-time adjusted value for cache line alignment. */ 116 int uma_align_cache = 64 - 1; 117 118 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 119 120 /* 121 * Are we allowed to allocate buckets? 122 */ 123 static int bucketdisable = 1; 124 125 /* Linked list of all kegs in the system */ 126 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 127 128 /* Linked list of all cache-only zones in the system */ 129 static LIST_HEAD(,uma_zone) uma_cachezones = 130 LIST_HEAD_INITIALIZER(uma_cachezones); 131 132 /* This RW lock protects the keg list */ 133 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 134 135 /* 136 * Pointer and counter to pool of pages, that is preallocated at 137 * startup to bootstrap UMA. 138 */ 139 static char *bootmem; 140 static int boot_pages; 141 142 static struct sx uma_drain_lock; 143 144 /* kmem soft limit. */ 145 static unsigned long uma_kmem_limit = LONG_MAX; 146 static volatile unsigned long uma_kmem_total; 147 148 /* Is the VM done starting up? */ 149 static enum { BOOT_COLD = 0, BOOT_STRAPPED, BOOT_PAGEALLOC, BOOT_BUCKETS, 150 BOOT_RUNNING } booted = BOOT_COLD; 151 152 /* 153 * This is the handle used to schedule events that need to happen 154 * outside of the allocation fast path. 155 */ 156 static struct callout uma_callout; 157 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 158 159 /* 160 * This structure is passed as the zone ctor arg so that I don't have to create 161 * a special allocation function just for zones. 162 */ 163 struct uma_zctor_args { 164 const char *name; 165 size_t size; 166 uma_ctor ctor; 167 uma_dtor dtor; 168 uma_init uminit; 169 uma_fini fini; 170 uma_import import; 171 uma_release release; 172 void *arg; 173 uma_keg_t keg; 174 int align; 175 uint32_t flags; 176 }; 177 178 struct uma_kctor_args { 179 uma_zone_t zone; 180 size_t size; 181 uma_init uminit; 182 uma_fini fini; 183 int align; 184 uint32_t flags; 185 }; 186 187 struct uma_bucket_zone { 188 uma_zone_t ubz_zone; 189 char *ubz_name; 190 int ubz_entries; /* Number of items it can hold. */ 191 int ubz_maxsize; /* Maximum allocation size per-item. */ 192 }; 193 194 /* 195 * Compute the actual number of bucket entries to pack them in power 196 * of two sizes for more efficient space utilization. 197 */ 198 #define BUCKET_SIZE(n) \ 199 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 200 201 #define BUCKET_MAX BUCKET_SIZE(256) 202 203 struct uma_bucket_zone bucket_zones[] = { 204 { NULL, "4 Bucket", BUCKET_SIZE(4), 4096 }, 205 { NULL, "6 Bucket", BUCKET_SIZE(6), 3072 }, 206 { NULL, "8 Bucket", BUCKET_SIZE(8), 2048 }, 207 { NULL, "12 Bucket", BUCKET_SIZE(12), 1536 }, 208 { NULL, "16 Bucket", BUCKET_SIZE(16), 1024 }, 209 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 210 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 211 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 212 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 213 { NULL, NULL, 0} 214 }; 215 216 /* 217 * Flags and enumerations to be passed to internal functions. 218 */ 219 enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI }; 220 221 #define UMA_ANYDOMAIN -1 /* Special value for domain search. */ 222 223 /* Prototypes.. */ 224 225 int uma_startup_count(int); 226 void uma_startup(void *, int); 227 void uma_startup1(void); 228 void uma_startup2(void); 229 230 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 231 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 232 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 233 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 234 static void page_free(void *, vm_size_t, uint8_t); 235 static void pcpu_page_free(void *, vm_size_t, uint8_t); 236 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int); 237 static void cache_drain(uma_zone_t); 238 static void bucket_drain(uma_zone_t, uma_bucket_t); 239 static void bucket_cache_drain(uma_zone_t zone); 240 static int keg_ctor(void *, int, void *, int); 241 static void keg_dtor(void *, int, void *); 242 static int zone_ctor(void *, int, void *, int); 243 static void zone_dtor(void *, int, void *); 244 static int zero_init(void *, int, int); 245 static void keg_small_init(uma_keg_t keg); 246 static void keg_large_init(uma_keg_t keg); 247 static void zone_foreach(void (*zfunc)(uma_zone_t)); 248 static void zone_timeout(uma_zone_t zone); 249 static int hash_alloc(struct uma_hash *); 250 static int hash_expand(struct uma_hash *, struct uma_hash *); 251 static void hash_free(struct uma_hash *hash); 252 static void uma_timeout(void *); 253 static void uma_startup3(void); 254 static void *zone_alloc_item(uma_zone_t, void *, int, int); 255 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 256 static void bucket_enable(void); 257 static void bucket_init(void); 258 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 259 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 260 static void bucket_zone_drain(void); 261 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int); 262 static uma_slab_t zone_fetch_slab(uma_zone_t, uma_keg_t, int, int); 263 static uma_slab_t zone_fetch_slab_multi(uma_zone_t, uma_keg_t, int, int); 264 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 265 static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item); 266 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 267 uma_fini fini, int align, uint32_t flags); 268 static int zone_import(uma_zone_t, void **, int, int, int); 269 static void zone_release(uma_zone_t, void **, int); 270 static void uma_zero_item(void *, uma_zone_t); 271 272 void uma_print_zone(uma_zone_t); 273 void uma_print_stats(void); 274 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 275 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 276 277 #ifdef INVARIANTS 278 static bool uma_dbg_kskip(uma_keg_t keg, void *mem); 279 static bool uma_dbg_zskip(uma_zone_t zone, void *mem); 280 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 281 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 282 283 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD, 0, 284 "Memory allocation debugging"); 285 286 static u_int dbg_divisor = 1; 287 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor, 288 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0, 289 "Debug & thrash every this item in memory allocator"); 290 291 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER; 292 static counter_u64_t uma_skip_cnt = EARLY_COUNTER; 293 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD, 294 &uma_dbg_cnt, "memory items debugged"); 295 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD, 296 &uma_skip_cnt, "memory items skipped, not debugged"); 297 #endif 298 299 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 300 301 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 302 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 303 304 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 305 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 306 307 static int zone_warnings = 1; 308 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 309 "Warn when UMA zones becomes full"); 310 311 /* Adjust bytes under management by UMA. */ 312 static inline void 313 uma_total_dec(unsigned long size) 314 { 315 316 atomic_subtract_long(&uma_kmem_total, size); 317 } 318 319 static inline void 320 uma_total_inc(unsigned long size) 321 { 322 323 if (atomic_fetchadd_long(&uma_kmem_total, size) > uma_kmem_limit) 324 uma_reclaim_wakeup(); 325 } 326 327 /* 328 * This routine checks to see whether or not it's safe to enable buckets. 329 */ 330 static void 331 bucket_enable(void) 332 { 333 bucketdisable = vm_page_count_min(); 334 } 335 336 /* 337 * Initialize bucket_zones, the array of zones of buckets of various sizes. 338 * 339 * For each zone, calculate the memory required for each bucket, consisting 340 * of the header and an array of pointers. 341 */ 342 static void 343 bucket_init(void) 344 { 345 struct uma_bucket_zone *ubz; 346 int size; 347 348 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 349 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 350 size += sizeof(void *) * ubz->ubz_entries; 351 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 352 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 353 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | UMA_ZONE_NUMA); 354 } 355 } 356 357 /* 358 * Given a desired number of entries for a bucket, return the zone from which 359 * to allocate the bucket. 360 */ 361 static struct uma_bucket_zone * 362 bucket_zone_lookup(int entries) 363 { 364 struct uma_bucket_zone *ubz; 365 366 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 367 if (ubz->ubz_entries >= entries) 368 return (ubz); 369 ubz--; 370 return (ubz); 371 } 372 373 static int 374 bucket_select(int size) 375 { 376 struct uma_bucket_zone *ubz; 377 378 ubz = &bucket_zones[0]; 379 if (size > ubz->ubz_maxsize) 380 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 381 382 for (; ubz->ubz_entries != 0; ubz++) 383 if (ubz->ubz_maxsize < size) 384 break; 385 ubz--; 386 return (ubz->ubz_entries); 387 } 388 389 static uma_bucket_t 390 bucket_alloc(uma_zone_t zone, void *udata, int flags) 391 { 392 struct uma_bucket_zone *ubz; 393 uma_bucket_t bucket; 394 395 /* 396 * This is to stop us from allocating per cpu buckets while we're 397 * running out of vm.boot_pages. Otherwise, we would exhaust the 398 * boot pages. This also prevents us from allocating buckets in 399 * low memory situations. 400 */ 401 if (bucketdisable) 402 return (NULL); 403 /* 404 * To limit bucket recursion we store the original zone flags 405 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 406 * NOVM flag to persist even through deep recursions. We also 407 * store ZFLAG_BUCKET once we have recursed attempting to allocate 408 * a bucket for a bucket zone so we do not allow infinite bucket 409 * recursion. This cookie will even persist to frees of unused 410 * buckets via the allocation path or bucket allocations in the 411 * free path. 412 */ 413 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 414 udata = (void *)(uintptr_t)zone->uz_flags; 415 else { 416 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 417 return (NULL); 418 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 419 } 420 if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY) 421 flags |= M_NOVM; 422 ubz = bucket_zone_lookup(zone->uz_count); 423 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 424 ubz++; 425 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 426 if (bucket) { 427 #ifdef INVARIANTS 428 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 429 #endif 430 bucket->ub_cnt = 0; 431 bucket->ub_entries = ubz->ubz_entries; 432 } 433 434 return (bucket); 435 } 436 437 static void 438 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 439 { 440 struct uma_bucket_zone *ubz; 441 442 KASSERT(bucket->ub_cnt == 0, 443 ("bucket_free: Freeing a non free bucket.")); 444 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 445 udata = (void *)(uintptr_t)zone->uz_flags; 446 ubz = bucket_zone_lookup(bucket->ub_entries); 447 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 448 } 449 450 static void 451 bucket_zone_drain(void) 452 { 453 struct uma_bucket_zone *ubz; 454 455 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 456 zone_drain(ubz->ubz_zone); 457 } 458 459 static void 460 zone_log_warning(uma_zone_t zone) 461 { 462 static const struct timeval warninterval = { 300, 0 }; 463 464 if (!zone_warnings || zone->uz_warning == NULL) 465 return; 466 467 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 468 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 469 } 470 471 static inline void 472 zone_maxaction(uma_zone_t zone) 473 { 474 475 if (zone->uz_maxaction.ta_func != NULL) 476 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 477 } 478 479 static void 480 zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t)) 481 { 482 uma_klink_t klink; 483 484 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) 485 kegfn(klink->kl_keg); 486 } 487 488 /* 489 * Routine called by timeout which is used to fire off some time interval 490 * based calculations. (stats, hash size, etc.) 491 * 492 * Arguments: 493 * arg Unused 494 * 495 * Returns: 496 * Nothing 497 */ 498 static void 499 uma_timeout(void *unused) 500 { 501 bucket_enable(); 502 zone_foreach(zone_timeout); 503 504 /* Reschedule this event */ 505 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 506 } 507 508 /* 509 * Routine to perform timeout driven calculations. This expands the 510 * hashes and does per cpu statistics aggregation. 511 * 512 * Returns nothing. 513 */ 514 static void 515 keg_timeout(uma_keg_t keg) 516 { 517 518 KEG_LOCK(keg); 519 /* 520 * Expand the keg hash table. 521 * 522 * This is done if the number of slabs is larger than the hash size. 523 * What I'm trying to do here is completely reduce collisions. This 524 * may be a little aggressive. Should I allow for two collisions max? 525 */ 526 if (keg->uk_flags & UMA_ZONE_HASH && 527 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) { 528 struct uma_hash newhash; 529 struct uma_hash oldhash; 530 int ret; 531 532 /* 533 * This is so involved because allocating and freeing 534 * while the keg lock is held will lead to deadlock. 535 * I have to do everything in stages and check for 536 * races. 537 */ 538 newhash = keg->uk_hash; 539 KEG_UNLOCK(keg); 540 ret = hash_alloc(&newhash); 541 KEG_LOCK(keg); 542 if (ret) { 543 if (hash_expand(&keg->uk_hash, &newhash)) { 544 oldhash = keg->uk_hash; 545 keg->uk_hash = newhash; 546 } else 547 oldhash = newhash; 548 549 KEG_UNLOCK(keg); 550 hash_free(&oldhash); 551 return; 552 } 553 } 554 KEG_UNLOCK(keg); 555 } 556 557 static void 558 zone_timeout(uma_zone_t zone) 559 { 560 561 zone_foreach_keg(zone, &keg_timeout); 562 } 563 564 /* 565 * Allocate and zero fill the next sized hash table from the appropriate 566 * backing store. 567 * 568 * Arguments: 569 * hash A new hash structure with the old hash size in uh_hashsize 570 * 571 * Returns: 572 * 1 on success and 0 on failure. 573 */ 574 static int 575 hash_alloc(struct uma_hash *hash) 576 { 577 int oldsize; 578 int alloc; 579 580 oldsize = hash->uh_hashsize; 581 582 /* We're just going to go to a power of two greater */ 583 if (oldsize) { 584 hash->uh_hashsize = oldsize * 2; 585 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 586 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 587 M_UMAHASH, M_NOWAIT); 588 } else { 589 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 590 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 591 UMA_ANYDOMAIN, M_WAITOK); 592 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 593 } 594 if (hash->uh_slab_hash) { 595 bzero(hash->uh_slab_hash, alloc); 596 hash->uh_hashmask = hash->uh_hashsize - 1; 597 return (1); 598 } 599 600 return (0); 601 } 602 603 /* 604 * Expands the hash table for HASH zones. This is done from zone_timeout 605 * to reduce collisions. This must not be done in the regular allocation 606 * path, otherwise, we can recurse on the vm while allocating pages. 607 * 608 * Arguments: 609 * oldhash The hash you want to expand 610 * newhash The hash structure for the new table 611 * 612 * Returns: 613 * Nothing 614 * 615 * Discussion: 616 */ 617 static int 618 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 619 { 620 uma_slab_t slab; 621 int hval; 622 int i; 623 624 if (!newhash->uh_slab_hash) 625 return (0); 626 627 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 628 return (0); 629 630 /* 631 * I need to investigate hash algorithms for resizing without a 632 * full rehash. 633 */ 634 635 for (i = 0; i < oldhash->uh_hashsize; i++) 636 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) { 637 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]); 638 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink); 639 hval = UMA_HASH(newhash, slab->us_data); 640 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 641 slab, us_hlink); 642 } 643 644 return (1); 645 } 646 647 /* 648 * Free the hash bucket to the appropriate backing store. 649 * 650 * Arguments: 651 * slab_hash The hash bucket we're freeing 652 * hashsize The number of entries in that hash bucket 653 * 654 * Returns: 655 * Nothing 656 */ 657 static void 658 hash_free(struct uma_hash *hash) 659 { 660 if (hash->uh_slab_hash == NULL) 661 return; 662 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 663 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 664 else 665 free(hash->uh_slab_hash, M_UMAHASH); 666 } 667 668 /* 669 * Frees all outstanding items in a bucket 670 * 671 * Arguments: 672 * zone The zone to free to, must be unlocked. 673 * bucket The free/alloc bucket with items, cpu queue must be locked. 674 * 675 * Returns: 676 * Nothing 677 */ 678 679 static void 680 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 681 { 682 int i; 683 684 if (bucket == NULL) 685 return; 686 687 if (zone->uz_fini) 688 for (i = 0; i < bucket->ub_cnt; i++) 689 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 690 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 691 bucket->ub_cnt = 0; 692 } 693 694 /* 695 * Drains the per cpu caches for a zone. 696 * 697 * NOTE: This may only be called while the zone is being turn down, and not 698 * during normal operation. This is necessary in order that we do not have 699 * to migrate CPUs to drain the per-CPU caches. 700 * 701 * Arguments: 702 * zone The zone to drain, must be unlocked. 703 * 704 * Returns: 705 * Nothing 706 */ 707 static void 708 cache_drain(uma_zone_t zone) 709 { 710 uma_cache_t cache; 711 int cpu; 712 713 /* 714 * XXX: It is safe to not lock the per-CPU caches, because we're 715 * tearing down the zone anyway. I.e., there will be no further use 716 * of the caches at this point. 717 * 718 * XXX: It would good to be able to assert that the zone is being 719 * torn down to prevent improper use of cache_drain(). 720 * 721 * XXX: We lock the zone before passing into bucket_cache_drain() as 722 * it is used elsewhere. Should the tear-down path be made special 723 * there in some form? 724 */ 725 CPU_FOREACH(cpu) { 726 cache = &zone->uz_cpu[cpu]; 727 bucket_drain(zone, cache->uc_allocbucket); 728 bucket_drain(zone, cache->uc_freebucket); 729 if (cache->uc_allocbucket != NULL) 730 bucket_free(zone, cache->uc_allocbucket, NULL); 731 if (cache->uc_freebucket != NULL) 732 bucket_free(zone, cache->uc_freebucket, NULL); 733 cache->uc_allocbucket = cache->uc_freebucket = NULL; 734 } 735 ZONE_LOCK(zone); 736 bucket_cache_drain(zone); 737 ZONE_UNLOCK(zone); 738 } 739 740 static void 741 cache_shrink(uma_zone_t zone) 742 { 743 744 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 745 return; 746 747 ZONE_LOCK(zone); 748 zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2; 749 ZONE_UNLOCK(zone); 750 } 751 752 static void 753 cache_drain_safe_cpu(uma_zone_t zone) 754 { 755 uma_cache_t cache; 756 uma_bucket_t b1, b2; 757 int domain; 758 759 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 760 return; 761 762 b1 = b2 = NULL; 763 ZONE_LOCK(zone); 764 critical_enter(); 765 if (zone->uz_flags & UMA_ZONE_NUMA) 766 domain = PCPU_GET(domain); 767 else 768 domain = 0; 769 cache = &zone->uz_cpu[curcpu]; 770 if (cache->uc_allocbucket) { 771 if (cache->uc_allocbucket->ub_cnt != 0) 772 LIST_INSERT_HEAD(&zone->uz_domain[domain].uzd_buckets, 773 cache->uc_allocbucket, ub_link); 774 else 775 b1 = cache->uc_allocbucket; 776 cache->uc_allocbucket = NULL; 777 } 778 if (cache->uc_freebucket) { 779 if (cache->uc_freebucket->ub_cnt != 0) 780 LIST_INSERT_HEAD(&zone->uz_domain[domain].uzd_buckets, 781 cache->uc_freebucket, ub_link); 782 else 783 b2 = cache->uc_freebucket; 784 cache->uc_freebucket = NULL; 785 } 786 critical_exit(); 787 ZONE_UNLOCK(zone); 788 if (b1) 789 bucket_free(zone, b1, NULL); 790 if (b2) 791 bucket_free(zone, b2, NULL); 792 } 793 794 /* 795 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 796 * This is an expensive call because it needs to bind to all CPUs 797 * one by one and enter a critical section on each of them in order 798 * to safely access their cache buckets. 799 * Zone lock must not be held on call this function. 800 */ 801 static void 802 cache_drain_safe(uma_zone_t zone) 803 { 804 int cpu; 805 806 /* 807 * Polite bucket sizes shrinking was not enouth, shrink aggressively. 808 */ 809 if (zone) 810 cache_shrink(zone); 811 else 812 zone_foreach(cache_shrink); 813 814 CPU_FOREACH(cpu) { 815 thread_lock(curthread); 816 sched_bind(curthread, cpu); 817 thread_unlock(curthread); 818 819 if (zone) 820 cache_drain_safe_cpu(zone); 821 else 822 zone_foreach(cache_drain_safe_cpu); 823 } 824 thread_lock(curthread); 825 sched_unbind(curthread); 826 thread_unlock(curthread); 827 } 828 829 /* 830 * Drain the cached buckets from a zone. Expects a locked zone on entry. 831 */ 832 static void 833 bucket_cache_drain(uma_zone_t zone) 834 { 835 uma_zone_domain_t zdom; 836 uma_bucket_t bucket; 837 int i; 838 839 /* 840 * Drain the bucket queues and free the buckets. 841 */ 842 for (i = 0; i < vm_ndomains; i++) { 843 zdom = &zone->uz_domain[i]; 844 while ((bucket = LIST_FIRST(&zdom->uzd_buckets)) != NULL) { 845 LIST_REMOVE(bucket, ub_link); 846 ZONE_UNLOCK(zone); 847 bucket_drain(zone, bucket); 848 bucket_free(zone, bucket, NULL); 849 ZONE_LOCK(zone); 850 } 851 } 852 853 /* 854 * Shrink further bucket sizes. Price of single zone lock collision 855 * is probably lower then price of global cache drain. 856 */ 857 if (zone->uz_count > zone->uz_count_min) 858 zone->uz_count--; 859 } 860 861 static void 862 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 863 { 864 uint8_t *mem; 865 int i; 866 uint8_t flags; 867 868 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 869 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 870 871 mem = slab->us_data; 872 flags = slab->us_flags; 873 i = start; 874 if (keg->uk_fini != NULL) { 875 for (i--; i > -1; i--) 876 #ifdef INVARIANTS 877 /* 878 * trash_fini implies that dtor was trash_dtor. trash_fini 879 * would check that memory hasn't been modified since free, 880 * which executed trash_dtor. 881 * That's why we need to run uma_dbg_kskip() check here, 882 * albeit we don't make skip check for other init/fini 883 * invocations. 884 */ 885 if (!uma_dbg_kskip(keg, slab->us_data + (keg->uk_rsize * i)) || 886 keg->uk_fini != trash_fini) 887 #endif 888 keg->uk_fini(slab->us_data + (keg->uk_rsize * i), 889 keg->uk_size); 890 } 891 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 892 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 893 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 894 uma_total_dec(PAGE_SIZE * keg->uk_ppera); 895 } 896 897 /* 898 * Frees pages from a keg back to the system. This is done on demand from 899 * the pageout daemon. 900 * 901 * Returns nothing. 902 */ 903 static void 904 keg_drain(uma_keg_t keg) 905 { 906 struct slabhead freeslabs = { 0 }; 907 uma_domain_t dom; 908 uma_slab_t slab, tmp; 909 int i; 910 911 /* 912 * We don't want to take pages from statically allocated kegs at this 913 * time 914 */ 915 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 916 return; 917 918 CTR3(KTR_UMA, "keg_drain %s(%p) free items: %u", 919 keg->uk_name, keg, keg->uk_free); 920 KEG_LOCK(keg); 921 if (keg->uk_free == 0) 922 goto finished; 923 924 for (i = 0; i < vm_ndomains; i++) { 925 dom = &keg->uk_domain[i]; 926 LIST_FOREACH_SAFE(slab, &dom->ud_free_slab, us_link, tmp) { 927 /* We have nowhere to free these to. */ 928 if (slab->us_flags & UMA_SLAB_BOOT) 929 continue; 930 931 LIST_REMOVE(slab, us_link); 932 keg->uk_pages -= keg->uk_ppera; 933 keg->uk_free -= keg->uk_ipers; 934 935 if (keg->uk_flags & UMA_ZONE_HASH) 936 UMA_HASH_REMOVE(&keg->uk_hash, slab, 937 slab->us_data); 938 939 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 940 } 941 } 942 943 finished: 944 KEG_UNLOCK(keg); 945 946 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 947 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 948 keg_free_slab(keg, slab, keg->uk_ipers); 949 } 950 } 951 952 static void 953 zone_drain_wait(uma_zone_t zone, int waitok) 954 { 955 956 /* 957 * Set draining to interlock with zone_dtor() so we can release our 958 * locks as we go. Only dtor() should do a WAITOK call since it 959 * is the only call that knows the structure will still be available 960 * when it wakes up. 961 */ 962 ZONE_LOCK(zone); 963 while (zone->uz_flags & UMA_ZFLAG_DRAINING) { 964 if (waitok == M_NOWAIT) 965 goto out; 966 msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1); 967 } 968 zone->uz_flags |= UMA_ZFLAG_DRAINING; 969 bucket_cache_drain(zone); 970 ZONE_UNLOCK(zone); 971 /* 972 * The DRAINING flag protects us from being freed while 973 * we're running. Normally the uma_rwlock would protect us but we 974 * must be able to release and acquire the right lock for each keg. 975 */ 976 zone_foreach_keg(zone, &keg_drain); 977 ZONE_LOCK(zone); 978 zone->uz_flags &= ~UMA_ZFLAG_DRAINING; 979 wakeup(zone); 980 out: 981 ZONE_UNLOCK(zone); 982 } 983 984 void 985 zone_drain(uma_zone_t zone) 986 { 987 988 zone_drain_wait(zone, M_NOWAIT); 989 } 990 991 /* 992 * Allocate a new slab for a keg. This does not insert the slab onto a list. 993 * 994 * Arguments: 995 * wait Shall we wait? 996 * 997 * Returns: 998 * The slab that was allocated or NULL if there is no memory and the 999 * caller specified M_NOWAIT. 1000 */ 1001 static uma_slab_t 1002 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int wait) 1003 { 1004 uma_alloc allocf; 1005 uma_slab_t slab; 1006 unsigned long size; 1007 uint8_t *mem; 1008 uint8_t flags; 1009 int i; 1010 1011 KASSERT(domain >= 0 && domain < vm_ndomains, 1012 ("keg_alloc_slab: domain %d out of range", domain)); 1013 mtx_assert(&keg->uk_lock, MA_OWNED); 1014 slab = NULL; 1015 mem = NULL; 1016 1017 allocf = keg->uk_allocf; 1018 KEG_UNLOCK(keg); 1019 size = keg->uk_ppera * PAGE_SIZE; 1020 1021 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 1022 slab = zone_alloc_item(keg->uk_slabzone, NULL, domain, wait); 1023 if (slab == NULL) 1024 goto out; 1025 } 1026 1027 /* 1028 * This reproduces the old vm_zone behavior of zero filling pages the 1029 * first time they are added to a zone. 1030 * 1031 * Malloced items are zeroed in uma_zalloc. 1032 */ 1033 1034 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1035 wait |= M_ZERO; 1036 else 1037 wait &= ~M_ZERO; 1038 1039 if (keg->uk_flags & UMA_ZONE_NODUMP) 1040 wait |= M_NODUMP; 1041 1042 /* zone is passed for legacy reasons. */ 1043 mem = allocf(zone, size, domain, &flags, wait); 1044 if (mem == NULL) { 1045 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1046 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 1047 slab = NULL; 1048 goto out; 1049 } 1050 uma_total_inc(size); 1051 1052 /* Point the slab into the allocated memory */ 1053 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 1054 slab = (uma_slab_t )(mem + keg->uk_pgoff); 1055 1056 if (keg->uk_flags & UMA_ZONE_VTOSLAB) 1057 for (i = 0; i < keg->uk_ppera; i++) 1058 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 1059 1060 slab->us_keg = keg; 1061 slab->us_data = mem; 1062 slab->us_freecount = keg->uk_ipers; 1063 slab->us_flags = flags; 1064 slab->us_domain = domain; 1065 BIT_FILL(SLAB_SETSIZE, &slab->us_free); 1066 #ifdef INVARIANTS 1067 BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree); 1068 #endif 1069 1070 if (keg->uk_init != NULL) { 1071 for (i = 0; i < keg->uk_ipers; i++) 1072 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 1073 keg->uk_size, wait) != 0) 1074 break; 1075 if (i != keg->uk_ipers) { 1076 keg_free_slab(keg, slab, i); 1077 slab = NULL; 1078 goto out; 1079 } 1080 } 1081 out: 1082 KEG_LOCK(keg); 1083 1084 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1085 slab, keg->uk_name, keg); 1086 1087 if (slab != NULL) { 1088 if (keg->uk_flags & UMA_ZONE_HASH) 1089 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1090 1091 keg->uk_pages += keg->uk_ppera; 1092 keg->uk_free += keg->uk_ipers; 1093 } 1094 1095 return (slab); 1096 } 1097 1098 /* 1099 * This function is intended to be used early on in place of page_alloc() so 1100 * that we may use the boot time page cache to satisfy allocations before 1101 * the VM is ready. 1102 */ 1103 static void * 1104 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1105 int wait) 1106 { 1107 uma_keg_t keg; 1108 void *mem; 1109 int pages; 1110 1111 keg = zone_first_keg(zone); 1112 1113 /* 1114 * If we are in BOOT_BUCKETS or higher, than switch to real 1115 * allocator. Zones with page sized slabs switch at BOOT_PAGEALLOC. 1116 */ 1117 switch (booted) { 1118 case BOOT_COLD: 1119 case BOOT_STRAPPED: 1120 break; 1121 case BOOT_PAGEALLOC: 1122 if (keg->uk_ppera > 1) 1123 break; 1124 case BOOT_BUCKETS: 1125 case BOOT_RUNNING: 1126 #ifdef UMA_MD_SMALL_ALLOC 1127 keg->uk_allocf = (keg->uk_ppera > 1) ? 1128 page_alloc : uma_small_alloc; 1129 #else 1130 keg->uk_allocf = page_alloc; 1131 #endif 1132 return keg->uk_allocf(zone, bytes, domain, pflag, wait); 1133 } 1134 1135 /* 1136 * Check our small startup cache to see if it has pages remaining. 1137 */ 1138 pages = howmany(bytes, PAGE_SIZE); 1139 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1140 if (pages > boot_pages) 1141 panic("UMA zone \"%s\": Increase vm.boot_pages", zone->uz_name); 1142 #ifdef DIAGNOSTIC 1143 printf("%s from \"%s\", %d boot pages left\n", __func__, zone->uz_name, 1144 boot_pages); 1145 #endif 1146 mem = bootmem; 1147 boot_pages -= pages; 1148 bootmem += pages * PAGE_SIZE; 1149 *pflag = UMA_SLAB_BOOT; 1150 1151 return (mem); 1152 } 1153 1154 /* 1155 * Allocates a number of pages from the system 1156 * 1157 * Arguments: 1158 * bytes The number of bytes requested 1159 * wait Shall we wait? 1160 * 1161 * Returns: 1162 * A pointer to the alloced memory or possibly 1163 * NULL if M_NOWAIT is set. 1164 */ 1165 static void * 1166 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1167 int wait) 1168 { 1169 void *p; /* Returned page */ 1170 1171 *pflag = UMA_SLAB_KERNEL; 1172 p = (void *) kmem_malloc_domain(kernel_arena, domain, bytes, wait); 1173 1174 return (p); 1175 } 1176 1177 static void * 1178 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1179 int wait) 1180 { 1181 struct pglist alloctail; 1182 vm_offset_t addr, zkva; 1183 int cpu, flags; 1184 vm_page_t p, p_next; 1185 #ifdef NUMA 1186 struct pcpu *pc; 1187 #endif 1188 1189 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE); 1190 1191 TAILQ_INIT(&alloctail); 1192 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1193 malloc2vm_flags(wait); 1194 *pflag = UMA_SLAB_KERNEL; 1195 for (cpu = 0; cpu <= mp_maxid; cpu++) { 1196 if (CPU_ABSENT(cpu)) { 1197 p = vm_page_alloc(NULL, 0, flags); 1198 } else { 1199 #ifndef NUMA 1200 p = vm_page_alloc(NULL, 0, flags); 1201 #else 1202 pc = pcpu_find(cpu); 1203 p = vm_page_alloc_domain(NULL, 0, pc->pc_domain, flags); 1204 if (__predict_false(p == NULL)) 1205 p = vm_page_alloc(NULL, 0, flags); 1206 #endif 1207 } 1208 if (__predict_false(p == NULL)) 1209 goto fail; 1210 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1211 } 1212 if ((addr = kva_alloc(bytes)) == 0) 1213 goto fail; 1214 zkva = addr; 1215 TAILQ_FOREACH(p, &alloctail, listq) { 1216 pmap_qenter(zkva, &p, 1); 1217 zkva += PAGE_SIZE; 1218 } 1219 return ((void*)addr); 1220 fail: 1221 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1222 vm_page_unwire(p, PQ_NONE); 1223 vm_page_free(p); 1224 } 1225 return (NULL); 1226 } 1227 1228 /* 1229 * Allocates a number of pages from within an object 1230 * 1231 * Arguments: 1232 * bytes The number of bytes requested 1233 * wait Shall we wait? 1234 * 1235 * Returns: 1236 * A pointer to the alloced memory or possibly 1237 * NULL if M_NOWAIT is set. 1238 */ 1239 static void * 1240 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 1241 int wait) 1242 { 1243 TAILQ_HEAD(, vm_page) alloctail; 1244 u_long npages; 1245 vm_offset_t retkva, zkva; 1246 vm_page_t p, p_next; 1247 uma_keg_t keg; 1248 1249 TAILQ_INIT(&alloctail); 1250 keg = zone_first_keg(zone); 1251 1252 npages = howmany(bytes, PAGE_SIZE); 1253 while (npages > 0) { 1254 p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT | 1255 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1256 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK : 1257 VM_ALLOC_NOWAIT)); 1258 if (p != NULL) { 1259 /* 1260 * Since the page does not belong to an object, its 1261 * listq is unused. 1262 */ 1263 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1264 npages--; 1265 continue; 1266 } 1267 /* 1268 * Page allocation failed, free intermediate pages and 1269 * exit. 1270 */ 1271 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1272 vm_page_unwire(p, PQ_NONE); 1273 vm_page_free(p); 1274 } 1275 return (NULL); 1276 } 1277 *flags = UMA_SLAB_PRIV; 1278 zkva = keg->uk_kva + 1279 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1280 retkva = zkva; 1281 TAILQ_FOREACH(p, &alloctail, listq) { 1282 pmap_qenter(zkva, &p, 1); 1283 zkva += PAGE_SIZE; 1284 } 1285 1286 return ((void *)retkva); 1287 } 1288 1289 /* 1290 * Frees a number of pages to the system 1291 * 1292 * Arguments: 1293 * mem A pointer to the memory to be freed 1294 * size The size of the memory being freed 1295 * flags The original p->us_flags field 1296 * 1297 * Returns: 1298 * Nothing 1299 */ 1300 static void 1301 page_free(void *mem, vm_size_t size, uint8_t flags) 1302 { 1303 struct vmem *vmem; 1304 1305 if (flags & UMA_SLAB_KERNEL) 1306 vmem = kernel_arena; 1307 else 1308 panic("UMA: page_free used with invalid flags %x", flags); 1309 1310 kmem_free(vmem, (vm_offset_t)mem, size); 1311 } 1312 1313 /* 1314 * Frees pcpu zone allocations 1315 * 1316 * Arguments: 1317 * mem A pointer to the memory to be freed 1318 * size The size of the memory being freed 1319 * flags The original p->us_flags field 1320 * 1321 * Returns: 1322 * Nothing 1323 */ 1324 static void 1325 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags) 1326 { 1327 vm_offset_t sva, curva; 1328 vm_paddr_t paddr; 1329 vm_page_t m; 1330 1331 MPASS(size == (mp_maxid+1)*PAGE_SIZE); 1332 sva = (vm_offset_t)mem; 1333 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) { 1334 paddr = pmap_kextract(curva); 1335 m = PHYS_TO_VM_PAGE(paddr); 1336 vm_page_unwire(m, PQ_NONE); 1337 vm_page_free(m); 1338 } 1339 pmap_qremove(sva, size >> PAGE_SHIFT); 1340 kva_free(sva, size); 1341 } 1342 1343 1344 /* 1345 * Zero fill initializer 1346 * 1347 * Arguments/Returns follow uma_init specifications 1348 */ 1349 static int 1350 zero_init(void *mem, int size, int flags) 1351 { 1352 bzero(mem, size); 1353 return (0); 1354 } 1355 1356 /* 1357 * Finish creating a small uma keg. This calculates ipers, and the keg size. 1358 * 1359 * Arguments 1360 * keg The zone we should initialize 1361 * 1362 * Returns 1363 * Nothing 1364 */ 1365 static void 1366 keg_small_init(uma_keg_t keg) 1367 { 1368 u_int rsize; 1369 u_int memused; 1370 u_int wastedspace; 1371 u_int shsize; 1372 u_int slabsize; 1373 1374 if (keg->uk_flags & UMA_ZONE_PCPU) { 1375 u_int ncpus = (mp_maxid + 1) ? (mp_maxid + 1) : MAXCPU; 1376 1377 slabsize = UMA_PCPU_ALLOC_SIZE; 1378 keg->uk_ppera = ncpus; 1379 } else { 1380 slabsize = UMA_SLAB_SIZE; 1381 keg->uk_ppera = 1; 1382 } 1383 1384 /* 1385 * Calculate the size of each allocation (rsize) according to 1386 * alignment. If the requested size is smaller than we have 1387 * allocation bits for we round it up. 1388 */ 1389 rsize = keg->uk_size; 1390 if (rsize < slabsize / SLAB_SETSIZE) 1391 rsize = slabsize / SLAB_SETSIZE; 1392 if (rsize & keg->uk_align) 1393 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1394 keg->uk_rsize = rsize; 1395 1396 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 1397 keg->uk_rsize < UMA_PCPU_ALLOC_SIZE, 1398 ("%s: size %u too large", __func__, keg->uk_rsize)); 1399 1400 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1401 shsize = 0; 1402 else 1403 shsize = sizeof(struct uma_slab); 1404 1405 if (rsize <= slabsize - shsize) 1406 keg->uk_ipers = (slabsize - shsize) / rsize; 1407 else { 1408 /* Handle special case when we have 1 item per slab, so 1409 * alignment requirement can be relaxed. */ 1410 KASSERT(keg->uk_size <= slabsize - shsize, 1411 ("%s: size %u greater than slab", __func__, keg->uk_size)); 1412 keg->uk_ipers = 1; 1413 } 1414 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1415 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1416 1417 memused = keg->uk_ipers * rsize + shsize; 1418 wastedspace = slabsize - memused; 1419 1420 /* 1421 * We can't do OFFPAGE if we're internal or if we've been 1422 * asked to not go to the VM for buckets. If we do this we 1423 * may end up going to the VM for slabs which we do not 1424 * want to do if we're UMA_ZFLAG_CACHEONLY as a result 1425 * of UMA_ZONE_VM, which clearly forbids it. 1426 */ 1427 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1428 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1429 return; 1430 1431 /* 1432 * See if using an OFFPAGE slab will limit our waste. Only do 1433 * this if it permits more items per-slab. 1434 * 1435 * XXX We could try growing slabsize to limit max waste as well. 1436 * Historically this was not done because the VM could not 1437 * efficiently handle contiguous allocations. 1438 */ 1439 if ((wastedspace >= slabsize / UMA_MAX_WASTE) && 1440 (keg->uk_ipers < (slabsize / keg->uk_rsize))) { 1441 keg->uk_ipers = slabsize / keg->uk_rsize; 1442 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1443 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1444 CTR6(KTR_UMA, "UMA decided we need offpage slab headers for " 1445 "keg: %s(%p), calculated wastedspace = %d, " 1446 "maximum wasted space allowed = %d, " 1447 "calculated ipers = %d, " 1448 "new wasted space = %d\n", keg->uk_name, keg, wastedspace, 1449 slabsize / UMA_MAX_WASTE, keg->uk_ipers, 1450 slabsize - keg->uk_ipers * keg->uk_rsize); 1451 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1452 } 1453 1454 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1455 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1456 keg->uk_flags |= UMA_ZONE_HASH; 1457 } 1458 1459 /* 1460 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do 1461 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1462 * more complicated. 1463 * 1464 * Arguments 1465 * keg The keg we should initialize 1466 * 1467 * Returns 1468 * Nothing 1469 */ 1470 static void 1471 keg_large_init(uma_keg_t keg) 1472 { 1473 u_int shsize; 1474 1475 KASSERT(keg != NULL, ("Keg is null in keg_large_init")); 1476 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0, 1477 ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg")); 1478 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1479 ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__)); 1480 1481 keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE); 1482 keg->uk_ipers = 1; 1483 keg->uk_rsize = keg->uk_size; 1484 1485 /* Check whether we have enough space to not do OFFPAGE. */ 1486 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) { 1487 shsize = sizeof(struct uma_slab); 1488 if (shsize & UMA_ALIGN_PTR) 1489 shsize = (shsize & ~UMA_ALIGN_PTR) + 1490 (UMA_ALIGN_PTR + 1); 1491 1492 if (PAGE_SIZE * keg->uk_ppera - keg->uk_rsize < shsize) { 1493 /* 1494 * We can't do OFFPAGE if we're internal, in which case 1495 * we need an extra page per allocation to contain the 1496 * slab header. 1497 */ 1498 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) == 0) 1499 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1500 else 1501 keg->uk_ppera++; 1502 } 1503 } 1504 1505 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1506 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1507 keg->uk_flags |= UMA_ZONE_HASH; 1508 } 1509 1510 static void 1511 keg_cachespread_init(uma_keg_t keg) 1512 { 1513 int alignsize; 1514 int trailer; 1515 int pages; 1516 int rsize; 1517 1518 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1519 ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__)); 1520 1521 alignsize = keg->uk_align + 1; 1522 rsize = keg->uk_size; 1523 /* 1524 * We want one item to start on every align boundary in a page. To 1525 * do this we will span pages. We will also extend the item by the 1526 * size of align if it is an even multiple of align. Otherwise, it 1527 * would fall on the same boundary every time. 1528 */ 1529 if (rsize & keg->uk_align) 1530 rsize = (rsize & ~keg->uk_align) + alignsize; 1531 if ((rsize & alignsize) == 0) 1532 rsize += alignsize; 1533 trailer = rsize - keg->uk_size; 1534 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE; 1535 pages = MIN(pages, (128 * 1024) / PAGE_SIZE); 1536 keg->uk_rsize = rsize; 1537 keg->uk_ppera = pages; 1538 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize; 1539 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1540 KASSERT(keg->uk_ipers <= SLAB_SETSIZE, 1541 ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__, 1542 keg->uk_ipers)); 1543 } 1544 1545 /* 1546 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1547 * the keg onto the global keg list. 1548 * 1549 * Arguments/Returns follow uma_ctor specifications 1550 * udata Actually uma_kctor_args 1551 */ 1552 static int 1553 keg_ctor(void *mem, int size, void *udata, int flags) 1554 { 1555 struct uma_kctor_args *arg = udata; 1556 uma_keg_t keg = mem; 1557 uma_zone_t zone; 1558 1559 bzero(keg, size); 1560 keg->uk_size = arg->size; 1561 keg->uk_init = arg->uminit; 1562 keg->uk_fini = arg->fini; 1563 keg->uk_align = arg->align; 1564 keg->uk_cursor = 0; 1565 keg->uk_free = 0; 1566 keg->uk_reserve = 0; 1567 keg->uk_pages = 0; 1568 keg->uk_flags = arg->flags; 1569 keg->uk_slabzone = NULL; 1570 1571 /* 1572 * The master zone is passed to us at keg-creation time. 1573 */ 1574 zone = arg->zone; 1575 keg->uk_name = zone->uz_name; 1576 1577 if (arg->flags & UMA_ZONE_VM) 1578 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1579 1580 if (arg->flags & UMA_ZONE_ZINIT) 1581 keg->uk_init = zero_init; 1582 1583 if (arg->flags & UMA_ZONE_MALLOC) 1584 keg->uk_flags |= UMA_ZONE_VTOSLAB; 1585 1586 if (arg->flags & UMA_ZONE_PCPU) 1587 #ifdef SMP 1588 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1589 #else 1590 keg->uk_flags &= ~UMA_ZONE_PCPU; 1591 #endif 1592 1593 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) { 1594 keg_cachespread_init(keg); 1595 } else { 1596 if (keg->uk_size > UMA_SLAB_SPACE) 1597 keg_large_init(keg); 1598 else 1599 keg_small_init(keg); 1600 } 1601 1602 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1603 keg->uk_slabzone = slabzone; 1604 1605 /* 1606 * If we haven't booted yet we need allocations to go through the 1607 * startup cache until the vm is ready. 1608 */ 1609 if (booted < BOOT_PAGEALLOC) 1610 keg->uk_allocf = startup_alloc; 1611 #ifdef UMA_MD_SMALL_ALLOC 1612 else if (keg->uk_ppera == 1) 1613 keg->uk_allocf = uma_small_alloc; 1614 #endif 1615 else if (keg->uk_flags & UMA_ZONE_PCPU) 1616 keg->uk_allocf = pcpu_page_alloc; 1617 else 1618 keg->uk_allocf = page_alloc; 1619 #ifdef UMA_MD_SMALL_ALLOC 1620 if (keg->uk_ppera == 1) 1621 keg->uk_freef = uma_small_free; 1622 else 1623 #endif 1624 if (keg->uk_flags & UMA_ZONE_PCPU) 1625 keg->uk_freef = pcpu_page_free; 1626 else 1627 keg->uk_freef = page_free; 1628 1629 /* 1630 * Initialize keg's lock 1631 */ 1632 KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS)); 1633 1634 /* 1635 * If we're putting the slab header in the actual page we need to 1636 * figure out where in each page it goes. This calculates a right 1637 * justified offset into the memory on an ALIGN_PTR boundary. 1638 */ 1639 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1640 u_int totsize; 1641 1642 /* Size of the slab struct and free list */ 1643 totsize = sizeof(struct uma_slab); 1644 1645 if (totsize & UMA_ALIGN_PTR) 1646 totsize = (totsize & ~UMA_ALIGN_PTR) + 1647 (UMA_ALIGN_PTR + 1); 1648 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize; 1649 1650 /* 1651 * The only way the following is possible is if with our 1652 * UMA_ALIGN_PTR adjustments we are now bigger than 1653 * UMA_SLAB_SIZE. I haven't checked whether this is 1654 * mathematically possible for all cases, so we make 1655 * sure here anyway. 1656 */ 1657 totsize = keg->uk_pgoff + sizeof(struct uma_slab); 1658 if (totsize > PAGE_SIZE * keg->uk_ppera) { 1659 printf("zone %s ipers %d rsize %d size %d\n", 1660 zone->uz_name, keg->uk_ipers, keg->uk_rsize, 1661 keg->uk_size); 1662 panic("UMA slab won't fit."); 1663 } 1664 } 1665 1666 if (keg->uk_flags & UMA_ZONE_HASH) 1667 hash_alloc(&keg->uk_hash); 1668 1669 CTR5(KTR_UMA, "keg_ctor %p zone %s(%p) out %d free %d\n", 1670 keg, zone->uz_name, zone, 1671 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 1672 keg->uk_free); 1673 1674 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1675 1676 rw_wlock(&uma_rwlock); 1677 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1678 rw_wunlock(&uma_rwlock); 1679 return (0); 1680 } 1681 1682 /* 1683 * Zone header ctor. This initializes all fields, locks, etc. 1684 * 1685 * Arguments/Returns follow uma_ctor specifications 1686 * udata Actually uma_zctor_args 1687 */ 1688 static int 1689 zone_ctor(void *mem, int size, void *udata, int flags) 1690 { 1691 struct uma_zctor_args *arg = udata; 1692 uma_zone_t zone = mem; 1693 uma_zone_t z; 1694 uma_keg_t keg; 1695 1696 bzero(zone, size); 1697 zone->uz_name = arg->name; 1698 zone->uz_ctor = arg->ctor; 1699 zone->uz_dtor = arg->dtor; 1700 zone->uz_slab = zone_fetch_slab; 1701 zone->uz_init = NULL; 1702 zone->uz_fini = NULL; 1703 zone->uz_allocs = 0; 1704 zone->uz_frees = 0; 1705 zone->uz_fails = 0; 1706 zone->uz_sleeps = 0; 1707 zone->uz_count = 0; 1708 zone->uz_count_min = 0; 1709 zone->uz_flags = 0; 1710 zone->uz_warning = NULL; 1711 /* The domain structures follow the cpu structures. */ 1712 zone->uz_domain = (struct uma_zone_domain *)&zone->uz_cpu[mp_ncpus]; 1713 timevalclear(&zone->uz_ratecheck); 1714 keg = arg->keg; 1715 1716 ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS)); 1717 1718 /* 1719 * This is a pure cache zone, no kegs. 1720 */ 1721 if (arg->import) { 1722 if (arg->flags & UMA_ZONE_VM) 1723 arg->flags |= UMA_ZFLAG_CACHEONLY; 1724 zone->uz_flags = arg->flags; 1725 zone->uz_size = arg->size; 1726 zone->uz_import = arg->import; 1727 zone->uz_release = arg->release; 1728 zone->uz_arg = arg->arg; 1729 zone->uz_lockptr = &zone->uz_lock; 1730 rw_wlock(&uma_rwlock); 1731 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 1732 rw_wunlock(&uma_rwlock); 1733 goto out; 1734 } 1735 1736 /* 1737 * Use the regular zone/keg/slab allocator. 1738 */ 1739 zone->uz_import = (uma_import)zone_import; 1740 zone->uz_release = (uma_release)zone_release; 1741 zone->uz_arg = zone; 1742 1743 if (arg->flags & UMA_ZONE_SECONDARY) { 1744 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 1745 zone->uz_init = arg->uminit; 1746 zone->uz_fini = arg->fini; 1747 zone->uz_lockptr = &keg->uk_lock; 1748 zone->uz_flags |= UMA_ZONE_SECONDARY; 1749 rw_wlock(&uma_rwlock); 1750 ZONE_LOCK(zone); 1751 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 1752 if (LIST_NEXT(z, uz_link) == NULL) { 1753 LIST_INSERT_AFTER(z, zone, uz_link); 1754 break; 1755 } 1756 } 1757 ZONE_UNLOCK(zone); 1758 rw_wunlock(&uma_rwlock); 1759 } else if (keg == NULL) { 1760 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 1761 arg->align, arg->flags)) == NULL) 1762 return (ENOMEM); 1763 } else { 1764 struct uma_kctor_args karg; 1765 int error; 1766 1767 /* We should only be here from uma_startup() */ 1768 karg.size = arg->size; 1769 karg.uminit = arg->uminit; 1770 karg.fini = arg->fini; 1771 karg.align = arg->align; 1772 karg.flags = arg->flags; 1773 karg.zone = zone; 1774 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 1775 flags); 1776 if (error) 1777 return (error); 1778 } 1779 1780 /* 1781 * Link in the first keg. 1782 */ 1783 zone->uz_klink.kl_keg = keg; 1784 LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link); 1785 zone->uz_lockptr = &keg->uk_lock; 1786 zone->uz_size = keg->uk_size; 1787 zone->uz_flags |= (keg->uk_flags & 1788 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 1789 1790 /* 1791 * Some internal zones don't have room allocated for the per cpu 1792 * caches. If we're internal, bail out here. 1793 */ 1794 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { 1795 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 1796 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 1797 return (0); 1798 } 1799 1800 out: 1801 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != 1802 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), 1803 ("Invalid zone flag combination")); 1804 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) 1805 zone->uz_count = BUCKET_MAX; 1806 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) 1807 zone->uz_count = 0; 1808 else 1809 zone->uz_count = bucket_select(zone->uz_size); 1810 zone->uz_count_min = zone->uz_count; 1811 1812 return (0); 1813 } 1814 1815 /* 1816 * Keg header dtor. This frees all data, destroys locks, frees the hash 1817 * table and removes the keg from the global list. 1818 * 1819 * Arguments/Returns follow uma_dtor specifications 1820 * udata unused 1821 */ 1822 static void 1823 keg_dtor(void *arg, int size, void *udata) 1824 { 1825 uma_keg_t keg; 1826 1827 keg = (uma_keg_t)arg; 1828 KEG_LOCK(keg); 1829 if (keg->uk_free != 0) { 1830 printf("Freed UMA keg (%s) was not empty (%d items). " 1831 " Lost %d pages of memory.\n", 1832 keg->uk_name ? keg->uk_name : "", 1833 keg->uk_free, keg->uk_pages); 1834 } 1835 KEG_UNLOCK(keg); 1836 1837 hash_free(&keg->uk_hash); 1838 1839 KEG_LOCK_FINI(keg); 1840 } 1841 1842 /* 1843 * Zone header dtor. 1844 * 1845 * Arguments/Returns follow uma_dtor specifications 1846 * udata unused 1847 */ 1848 static void 1849 zone_dtor(void *arg, int size, void *udata) 1850 { 1851 uma_klink_t klink; 1852 uma_zone_t zone; 1853 uma_keg_t keg; 1854 1855 zone = (uma_zone_t)arg; 1856 keg = zone_first_keg(zone); 1857 1858 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 1859 cache_drain(zone); 1860 1861 rw_wlock(&uma_rwlock); 1862 LIST_REMOVE(zone, uz_link); 1863 rw_wunlock(&uma_rwlock); 1864 /* 1865 * XXX there are some races here where 1866 * the zone can be drained but zone lock 1867 * released and then refilled before we 1868 * remove it... we dont care for now 1869 */ 1870 zone_drain_wait(zone, M_WAITOK); 1871 /* 1872 * Unlink all of our kegs. 1873 */ 1874 while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) { 1875 klink->kl_keg = NULL; 1876 LIST_REMOVE(klink, kl_link); 1877 if (klink == &zone->uz_klink) 1878 continue; 1879 free(klink, M_TEMP); 1880 } 1881 /* 1882 * We only destroy kegs from non secondary zones. 1883 */ 1884 if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0) { 1885 rw_wlock(&uma_rwlock); 1886 LIST_REMOVE(keg, uk_link); 1887 rw_wunlock(&uma_rwlock); 1888 zone_free_item(kegs, keg, NULL, SKIP_NONE); 1889 } 1890 ZONE_LOCK_FINI(zone); 1891 } 1892 1893 /* 1894 * Traverses every zone in the system and calls a callback 1895 * 1896 * Arguments: 1897 * zfunc A pointer to a function which accepts a zone 1898 * as an argument. 1899 * 1900 * Returns: 1901 * Nothing 1902 */ 1903 static void 1904 zone_foreach(void (*zfunc)(uma_zone_t)) 1905 { 1906 uma_keg_t keg; 1907 uma_zone_t zone; 1908 1909 rw_rlock(&uma_rwlock); 1910 LIST_FOREACH(keg, &uma_kegs, uk_link) { 1911 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 1912 zfunc(zone); 1913 } 1914 rw_runlock(&uma_rwlock); 1915 } 1916 1917 /* 1918 * Count how many pages do we need to bootstrap. VM supplies 1919 * its need in early zones in the argument, we add up our zones, 1920 * which consist of: UMA Slabs, UMA Hash and 9 Bucket zones. The 1921 * zone of zones and zone of kegs are accounted separately. 1922 */ 1923 #define UMA_BOOT_ZONES 11 1924 /* Zone of zones and zone of kegs have arbitrary alignment. */ 1925 #define UMA_BOOT_ALIGN 32 1926 static int zsize, ksize; 1927 int 1928 uma_startup_count(int vm_zones) 1929 { 1930 int zones, pages; 1931 1932 ksize = sizeof(struct uma_keg) + 1933 (sizeof(struct uma_domain) * vm_ndomains); 1934 zsize = sizeof(struct uma_zone) + 1935 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 1936 (sizeof(struct uma_zone_domain) * vm_ndomains); 1937 1938 /* 1939 * Memory for the zone of kegs and its keg, 1940 * and for zone of zones. 1941 */ 1942 pages = howmany(roundup(zsize, CACHE_LINE_SIZE) * 2 + 1943 roundup(ksize, CACHE_LINE_SIZE), PAGE_SIZE); 1944 1945 #ifdef UMA_MD_SMALL_ALLOC 1946 zones = UMA_BOOT_ZONES; 1947 #else 1948 zones = UMA_BOOT_ZONES + vm_zones; 1949 vm_zones = 0; 1950 #endif 1951 1952 /* Memory for the rest of startup zones, UMA and VM, ... */ 1953 if (zsize > UMA_SLAB_SPACE) 1954 pages += (zones + vm_zones) * 1955 howmany(roundup2(zsize, UMA_BOOT_ALIGN), UMA_SLAB_SIZE); 1956 else if (roundup2(zsize, UMA_BOOT_ALIGN) > UMA_SLAB_SPACE) 1957 pages += zones; 1958 else 1959 pages += howmany(zones, 1960 UMA_SLAB_SPACE / roundup2(zsize, UMA_BOOT_ALIGN)); 1961 1962 /* ... and their kegs. Note that zone of zones allocates a keg! */ 1963 pages += howmany(zones + 1, 1964 UMA_SLAB_SPACE / roundup2(ksize, UMA_BOOT_ALIGN)); 1965 1966 /* 1967 * Most of startup zones are not going to be offpages, that's 1968 * why we use UMA_SLAB_SPACE instead of UMA_SLAB_SIZE in all 1969 * calculations. Some large bucket zones will be offpage, and 1970 * thus will allocate hashes. We take conservative approach 1971 * and assume that all zones may allocate hash. This may give 1972 * us some positive inaccuracy, usually an extra single page. 1973 */ 1974 pages += howmany(zones, UMA_SLAB_SPACE / 1975 (sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT)); 1976 1977 return (pages); 1978 } 1979 1980 void 1981 uma_startup(void *mem, int npages) 1982 { 1983 struct uma_zctor_args args; 1984 uma_keg_t masterkeg; 1985 uintptr_t m; 1986 1987 #ifdef DIAGNOSTIC 1988 printf("Entering %s with %d boot pages configured\n", __func__, npages); 1989 #endif 1990 1991 rw_init(&uma_rwlock, "UMA lock"); 1992 1993 /* Use bootpages memory for the zone of zones and zone of kegs. */ 1994 m = (uintptr_t)mem; 1995 zones = (uma_zone_t)m; 1996 m += roundup(zsize, CACHE_LINE_SIZE); 1997 kegs = (uma_zone_t)m; 1998 m += roundup(zsize, CACHE_LINE_SIZE); 1999 masterkeg = (uma_keg_t)m; 2000 m += roundup(ksize, CACHE_LINE_SIZE); 2001 m = roundup(m, PAGE_SIZE); 2002 npages -= (m - (uintptr_t)mem) / PAGE_SIZE; 2003 mem = (void *)m; 2004 2005 /* "manually" create the initial zone */ 2006 memset(&args, 0, sizeof(args)); 2007 args.name = "UMA Kegs"; 2008 args.size = ksize; 2009 args.ctor = keg_ctor; 2010 args.dtor = keg_dtor; 2011 args.uminit = zero_init; 2012 args.fini = NULL; 2013 args.keg = masterkeg; 2014 args.align = UMA_BOOT_ALIGN - 1; 2015 args.flags = UMA_ZFLAG_INTERNAL; 2016 zone_ctor(kegs, zsize, &args, M_WAITOK); 2017 2018 bootmem = mem; 2019 boot_pages = npages; 2020 2021 args.name = "UMA Zones"; 2022 args.size = zsize; 2023 args.ctor = zone_ctor; 2024 args.dtor = zone_dtor; 2025 args.uminit = zero_init; 2026 args.fini = NULL; 2027 args.keg = NULL; 2028 args.align = UMA_BOOT_ALIGN - 1; 2029 args.flags = UMA_ZFLAG_INTERNAL; 2030 zone_ctor(zones, zsize, &args, M_WAITOK); 2031 2032 /* Now make a zone for slab headers */ 2033 slabzone = uma_zcreate("UMA Slabs", 2034 sizeof(struct uma_slab), 2035 NULL, NULL, NULL, NULL, 2036 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2037 2038 hashzone = uma_zcreate("UMA Hash", 2039 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 2040 NULL, NULL, NULL, NULL, 2041 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2042 2043 bucket_init(); 2044 2045 booted = BOOT_STRAPPED; 2046 } 2047 2048 void 2049 uma_startup1(void) 2050 { 2051 2052 #ifdef DIAGNOSTIC 2053 printf("Entering %s with %d boot pages left\n", __func__, boot_pages); 2054 #endif 2055 booted = BOOT_PAGEALLOC; 2056 } 2057 2058 void 2059 uma_startup2(void) 2060 { 2061 2062 #ifdef DIAGNOSTIC 2063 printf("Entering %s with %d boot pages left\n", __func__, boot_pages); 2064 #endif 2065 booted = BOOT_BUCKETS; 2066 sx_init(&uma_drain_lock, "umadrain"); 2067 bucket_enable(); 2068 } 2069 2070 /* 2071 * Initialize our callout handle 2072 * 2073 */ 2074 static void 2075 uma_startup3(void) 2076 { 2077 2078 #ifdef INVARIANTS 2079 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor); 2080 uma_dbg_cnt = counter_u64_alloc(M_WAITOK); 2081 uma_skip_cnt = counter_u64_alloc(M_WAITOK); 2082 #endif 2083 callout_init(&uma_callout, 1); 2084 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 2085 booted = BOOT_RUNNING; 2086 } 2087 2088 static uma_keg_t 2089 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 2090 int align, uint32_t flags) 2091 { 2092 struct uma_kctor_args args; 2093 2094 args.size = size; 2095 args.uminit = uminit; 2096 args.fini = fini; 2097 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 2098 args.flags = flags; 2099 args.zone = zone; 2100 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 2101 } 2102 2103 /* Public functions */ 2104 /* See uma.h */ 2105 void 2106 uma_set_align(int align) 2107 { 2108 2109 if (align != UMA_ALIGN_CACHE) 2110 uma_align_cache = align; 2111 } 2112 2113 /* See uma.h */ 2114 uma_zone_t 2115 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 2116 uma_init uminit, uma_fini fini, int align, uint32_t flags) 2117 2118 { 2119 struct uma_zctor_args args; 2120 uma_zone_t res; 2121 bool locked; 2122 2123 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 2124 align, name)); 2125 2126 /* This stuff is essential for the zone ctor */ 2127 memset(&args, 0, sizeof(args)); 2128 args.name = name; 2129 args.size = size; 2130 args.ctor = ctor; 2131 args.dtor = dtor; 2132 args.uminit = uminit; 2133 args.fini = fini; 2134 #ifdef INVARIANTS 2135 /* 2136 * If a zone is being created with an empty constructor and 2137 * destructor, pass UMA constructor/destructor which checks for 2138 * memory use after free. 2139 */ 2140 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOFREE))) && 2141 ctor == NULL && dtor == NULL && uminit == NULL && fini == NULL) { 2142 args.ctor = trash_ctor; 2143 args.dtor = trash_dtor; 2144 args.uminit = trash_init; 2145 args.fini = trash_fini; 2146 } 2147 #endif 2148 args.align = align; 2149 args.flags = flags; 2150 args.keg = NULL; 2151 2152 if (booted < BOOT_BUCKETS) { 2153 locked = false; 2154 } else { 2155 sx_slock(&uma_drain_lock); 2156 locked = true; 2157 } 2158 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2159 if (locked) 2160 sx_sunlock(&uma_drain_lock); 2161 return (res); 2162 } 2163 2164 /* See uma.h */ 2165 uma_zone_t 2166 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 2167 uma_init zinit, uma_fini zfini, uma_zone_t master) 2168 { 2169 struct uma_zctor_args args; 2170 uma_keg_t keg; 2171 uma_zone_t res; 2172 bool locked; 2173 2174 keg = zone_first_keg(master); 2175 memset(&args, 0, sizeof(args)); 2176 args.name = name; 2177 args.size = keg->uk_size; 2178 args.ctor = ctor; 2179 args.dtor = dtor; 2180 args.uminit = zinit; 2181 args.fini = zfini; 2182 args.align = keg->uk_align; 2183 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 2184 args.keg = keg; 2185 2186 if (booted < BOOT_BUCKETS) { 2187 locked = false; 2188 } else { 2189 sx_slock(&uma_drain_lock); 2190 locked = true; 2191 } 2192 /* XXX Attaches only one keg of potentially many. */ 2193 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2194 if (locked) 2195 sx_sunlock(&uma_drain_lock); 2196 return (res); 2197 } 2198 2199 /* See uma.h */ 2200 uma_zone_t 2201 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor, 2202 uma_init zinit, uma_fini zfini, uma_import zimport, 2203 uma_release zrelease, void *arg, int flags) 2204 { 2205 struct uma_zctor_args args; 2206 2207 memset(&args, 0, sizeof(args)); 2208 args.name = name; 2209 args.size = size; 2210 args.ctor = ctor; 2211 args.dtor = dtor; 2212 args.uminit = zinit; 2213 args.fini = zfini; 2214 args.import = zimport; 2215 args.release = zrelease; 2216 args.arg = arg; 2217 args.align = 0; 2218 args.flags = flags; 2219 2220 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 2221 } 2222 2223 static void 2224 zone_lock_pair(uma_zone_t a, uma_zone_t b) 2225 { 2226 if (a < b) { 2227 ZONE_LOCK(a); 2228 mtx_lock_flags(b->uz_lockptr, MTX_DUPOK); 2229 } else { 2230 ZONE_LOCK(b); 2231 mtx_lock_flags(a->uz_lockptr, MTX_DUPOK); 2232 } 2233 } 2234 2235 static void 2236 zone_unlock_pair(uma_zone_t a, uma_zone_t b) 2237 { 2238 2239 ZONE_UNLOCK(a); 2240 ZONE_UNLOCK(b); 2241 } 2242 2243 int 2244 uma_zsecond_add(uma_zone_t zone, uma_zone_t master) 2245 { 2246 uma_klink_t klink; 2247 uma_klink_t kl; 2248 int error; 2249 2250 error = 0; 2251 klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO); 2252 2253 zone_lock_pair(zone, master); 2254 /* 2255 * zone must use vtoslab() to resolve objects and must already be 2256 * a secondary. 2257 */ 2258 if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) 2259 != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) { 2260 error = EINVAL; 2261 goto out; 2262 } 2263 /* 2264 * The new master must also use vtoslab(). 2265 */ 2266 if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) { 2267 error = EINVAL; 2268 goto out; 2269 } 2270 2271 /* 2272 * The underlying object must be the same size. rsize 2273 * may be different. 2274 */ 2275 if (master->uz_size != zone->uz_size) { 2276 error = E2BIG; 2277 goto out; 2278 } 2279 /* 2280 * Put it at the end of the list. 2281 */ 2282 klink->kl_keg = zone_first_keg(master); 2283 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) { 2284 if (LIST_NEXT(kl, kl_link) == NULL) { 2285 LIST_INSERT_AFTER(kl, klink, kl_link); 2286 break; 2287 } 2288 } 2289 klink = NULL; 2290 zone->uz_flags |= UMA_ZFLAG_MULTI; 2291 zone->uz_slab = zone_fetch_slab_multi; 2292 2293 out: 2294 zone_unlock_pair(zone, master); 2295 if (klink != NULL) 2296 free(klink, M_TEMP); 2297 2298 return (error); 2299 } 2300 2301 2302 /* See uma.h */ 2303 void 2304 uma_zdestroy(uma_zone_t zone) 2305 { 2306 2307 sx_slock(&uma_drain_lock); 2308 zone_free_item(zones, zone, NULL, SKIP_NONE); 2309 sx_sunlock(&uma_drain_lock); 2310 } 2311 2312 void 2313 uma_zwait(uma_zone_t zone) 2314 { 2315 void *item; 2316 2317 item = uma_zalloc_arg(zone, NULL, M_WAITOK); 2318 uma_zfree(zone, item); 2319 } 2320 2321 void * 2322 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags) 2323 { 2324 void *item; 2325 #ifdef SMP 2326 int i; 2327 2328 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 2329 #endif 2330 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO); 2331 if (item != NULL && (flags & M_ZERO)) { 2332 #ifdef SMP 2333 for (i = 0; i <= mp_maxid; i++) 2334 bzero(zpcpu_get_cpu(item, i), zone->uz_size); 2335 #else 2336 bzero(item, zone->uz_size); 2337 #endif 2338 } 2339 return (item); 2340 } 2341 2342 /* 2343 * A stub while both regular and pcpu cases are identical. 2344 */ 2345 void 2346 uma_zfree_pcpu_arg(uma_zone_t zone, void *item, void *udata) 2347 { 2348 2349 #ifdef SMP 2350 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 2351 #endif 2352 uma_zfree_arg(zone, item, udata); 2353 } 2354 2355 /* See uma.h */ 2356 void * 2357 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 2358 { 2359 uma_zone_domain_t zdom; 2360 uma_bucket_t bucket; 2361 uma_cache_t cache; 2362 void *item; 2363 int cpu, domain, lockfail; 2364 #ifdef INVARIANTS 2365 bool skipdbg; 2366 #endif 2367 2368 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2369 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 2370 2371 /* This is the fast path allocation */ 2372 CTR4(KTR_UMA, "uma_zalloc_arg thread %x zone %s(%p) flags %d", 2373 curthread, zone->uz_name, zone, flags); 2374 2375 if (flags & M_WAITOK) { 2376 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2377 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 2378 } 2379 KASSERT((flags & M_EXEC) == 0, ("uma_zalloc_arg: called with M_EXEC")); 2380 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2381 ("uma_zalloc_arg: called with spinlock or critical section held")); 2382 if (zone->uz_flags & UMA_ZONE_PCPU) 2383 KASSERT((flags & M_ZERO) == 0, ("allocating from a pcpu zone " 2384 "with M_ZERO passed")); 2385 2386 #ifdef DEBUG_MEMGUARD 2387 if (memguard_cmp_zone(zone)) { 2388 item = memguard_alloc(zone->uz_size, flags); 2389 if (item != NULL) { 2390 if (zone->uz_init != NULL && 2391 zone->uz_init(item, zone->uz_size, flags) != 0) 2392 return (NULL); 2393 if (zone->uz_ctor != NULL && 2394 zone->uz_ctor(item, zone->uz_size, udata, 2395 flags) != 0) { 2396 zone->uz_fini(item, zone->uz_size); 2397 return (NULL); 2398 } 2399 return (item); 2400 } 2401 /* This is unfortunate but should not be fatal. */ 2402 } 2403 #endif 2404 /* 2405 * If possible, allocate from the per-CPU cache. There are two 2406 * requirements for safe access to the per-CPU cache: (1) the thread 2407 * accessing the cache must not be preempted or yield during access, 2408 * and (2) the thread must not migrate CPUs without switching which 2409 * cache it accesses. We rely on a critical section to prevent 2410 * preemption and migration. We release the critical section in 2411 * order to acquire the zone mutex if we are unable to allocate from 2412 * the current cache; when we re-acquire the critical section, we 2413 * must detect and handle migration if it has occurred. 2414 */ 2415 critical_enter(); 2416 cpu = curcpu; 2417 cache = &zone->uz_cpu[cpu]; 2418 2419 zalloc_start: 2420 bucket = cache->uc_allocbucket; 2421 if (bucket != NULL && bucket->ub_cnt > 0) { 2422 bucket->ub_cnt--; 2423 item = bucket->ub_bucket[bucket->ub_cnt]; 2424 #ifdef INVARIANTS 2425 bucket->ub_bucket[bucket->ub_cnt] = NULL; 2426 #endif 2427 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 2428 cache->uc_allocs++; 2429 critical_exit(); 2430 #ifdef INVARIANTS 2431 skipdbg = uma_dbg_zskip(zone, item); 2432 #endif 2433 if (zone->uz_ctor != NULL && 2434 #ifdef INVARIANTS 2435 (!skipdbg || zone->uz_ctor != trash_ctor || 2436 zone->uz_dtor != trash_dtor) && 2437 #endif 2438 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2439 atomic_add_long(&zone->uz_fails, 1); 2440 zone_free_item(zone, item, udata, SKIP_DTOR); 2441 return (NULL); 2442 } 2443 #ifdef INVARIANTS 2444 if (!skipdbg) 2445 uma_dbg_alloc(zone, NULL, item); 2446 #endif 2447 if (flags & M_ZERO) 2448 uma_zero_item(item, zone); 2449 return (item); 2450 } 2451 2452 /* 2453 * We have run out of items in our alloc bucket. 2454 * See if we can switch with our free bucket. 2455 */ 2456 bucket = cache->uc_freebucket; 2457 if (bucket != NULL && bucket->ub_cnt > 0) { 2458 CTR2(KTR_UMA, 2459 "uma_zalloc: zone %s(%p) swapping empty with alloc", 2460 zone->uz_name, zone); 2461 cache->uc_freebucket = cache->uc_allocbucket; 2462 cache->uc_allocbucket = bucket; 2463 goto zalloc_start; 2464 } 2465 2466 /* 2467 * Discard any empty allocation bucket while we hold no locks. 2468 */ 2469 bucket = cache->uc_allocbucket; 2470 cache->uc_allocbucket = NULL; 2471 critical_exit(); 2472 if (bucket != NULL) 2473 bucket_free(zone, bucket, udata); 2474 2475 if (zone->uz_flags & UMA_ZONE_NUMA) 2476 domain = PCPU_GET(domain); 2477 else 2478 domain = UMA_ANYDOMAIN; 2479 2480 /* Short-circuit for zones without buckets and low memory. */ 2481 if (zone->uz_count == 0 || bucketdisable) 2482 goto zalloc_item; 2483 2484 /* 2485 * Attempt to retrieve the item from the per-CPU cache has failed, so 2486 * we must go back to the zone. This requires the zone lock, so we 2487 * must drop the critical section, then re-acquire it when we go back 2488 * to the cache. Since the critical section is released, we may be 2489 * preempted or migrate. As such, make sure not to maintain any 2490 * thread-local state specific to the cache from prior to releasing 2491 * the critical section. 2492 */ 2493 lockfail = 0; 2494 if (ZONE_TRYLOCK(zone) == 0) { 2495 /* Record contention to size the buckets. */ 2496 ZONE_LOCK(zone); 2497 lockfail = 1; 2498 } 2499 critical_enter(); 2500 cpu = curcpu; 2501 cache = &zone->uz_cpu[cpu]; 2502 2503 /* See if we lost the race to fill the cache. */ 2504 if (cache->uc_allocbucket != NULL) { 2505 ZONE_UNLOCK(zone); 2506 goto zalloc_start; 2507 } 2508 2509 /* 2510 * Check the zone's cache of buckets. 2511 */ 2512 if (domain == UMA_ANYDOMAIN) 2513 zdom = &zone->uz_domain[0]; 2514 else 2515 zdom = &zone->uz_domain[domain]; 2516 if ((bucket = LIST_FIRST(&zdom->uzd_buckets)) != NULL) { 2517 KASSERT(bucket->ub_cnt != 0, 2518 ("uma_zalloc_arg: Returning an empty bucket.")); 2519 2520 LIST_REMOVE(bucket, ub_link); 2521 cache->uc_allocbucket = bucket; 2522 ZONE_UNLOCK(zone); 2523 goto zalloc_start; 2524 } 2525 /* We are no longer associated with this CPU. */ 2526 critical_exit(); 2527 2528 /* 2529 * We bump the uz count when the cache size is insufficient to 2530 * handle the working set. 2531 */ 2532 if (lockfail && zone->uz_count < BUCKET_MAX) 2533 zone->uz_count++; 2534 ZONE_UNLOCK(zone); 2535 2536 /* 2537 * Now lets just fill a bucket and put it on the free list. If that 2538 * works we'll restart the allocation from the beginning and it 2539 * will use the just filled bucket. 2540 */ 2541 bucket = zone_alloc_bucket(zone, udata, domain, flags); 2542 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 2543 zone->uz_name, zone, bucket); 2544 if (bucket != NULL) { 2545 ZONE_LOCK(zone); 2546 critical_enter(); 2547 cpu = curcpu; 2548 cache = &zone->uz_cpu[cpu]; 2549 /* 2550 * See if we lost the race or were migrated. Cache the 2551 * initialized bucket to make this less likely or claim 2552 * the memory directly. 2553 */ 2554 if (cache->uc_allocbucket != NULL || 2555 (zone->uz_flags & UMA_ZONE_NUMA && 2556 domain != PCPU_GET(domain))) 2557 LIST_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); 2558 else 2559 cache->uc_allocbucket = bucket; 2560 ZONE_UNLOCK(zone); 2561 goto zalloc_start; 2562 } 2563 2564 /* 2565 * We may not be able to get a bucket so return an actual item. 2566 */ 2567 zalloc_item: 2568 item = zone_alloc_item(zone, udata, domain, flags); 2569 2570 return (item); 2571 } 2572 2573 void * 2574 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 2575 { 2576 2577 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2578 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 2579 2580 /* This is the fast path allocation */ 2581 CTR5(KTR_UMA, 2582 "uma_zalloc_domain thread %x zone %s(%p) domain %d flags %d", 2583 curthread, zone->uz_name, zone, domain, flags); 2584 2585 if (flags & M_WAITOK) { 2586 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2587 "uma_zalloc_domain: zone \"%s\"", zone->uz_name); 2588 } 2589 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2590 ("uma_zalloc_domain: called with spinlock or critical section held")); 2591 2592 return (zone_alloc_item(zone, udata, domain, flags)); 2593 } 2594 2595 /* 2596 * Find a slab with some space. Prefer slabs that are partially used over those 2597 * that are totally full. This helps to reduce fragmentation. 2598 * 2599 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 2600 * only 'domain'. 2601 */ 2602 static uma_slab_t 2603 keg_first_slab(uma_keg_t keg, int domain, int rr) 2604 { 2605 uma_domain_t dom; 2606 uma_slab_t slab; 2607 int start; 2608 2609 KASSERT(domain >= 0 && domain < vm_ndomains, 2610 ("keg_first_slab: domain %d out of range", domain)); 2611 2612 slab = NULL; 2613 start = domain; 2614 do { 2615 dom = &keg->uk_domain[domain]; 2616 if (!LIST_EMPTY(&dom->ud_part_slab)) 2617 return (LIST_FIRST(&dom->ud_part_slab)); 2618 if (!LIST_EMPTY(&dom->ud_free_slab)) { 2619 slab = LIST_FIRST(&dom->ud_free_slab); 2620 LIST_REMOVE(slab, us_link); 2621 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 2622 return (slab); 2623 } 2624 if (rr) 2625 domain = (domain + 1) % vm_ndomains; 2626 } while (domain != start); 2627 2628 return (NULL); 2629 } 2630 2631 static uma_slab_t 2632 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, int flags) 2633 { 2634 uma_domain_t dom; 2635 uma_slab_t slab; 2636 int allocflags, domain, reserve, rr, start; 2637 2638 mtx_assert(&keg->uk_lock, MA_OWNED); 2639 slab = NULL; 2640 reserve = 0; 2641 allocflags = flags; 2642 if ((flags & M_USE_RESERVE) == 0) 2643 reserve = keg->uk_reserve; 2644 2645 /* 2646 * Round-robin for non first-touch zones when there is more than one 2647 * domain. 2648 */ 2649 if (vm_ndomains == 1) 2650 rdomain = 0; 2651 rr = rdomain == UMA_ANYDOMAIN; 2652 if (rr) { 2653 keg->uk_cursor = (keg->uk_cursor + 1) % vm_ndomains; 2654 domain = start = keg->uk_cursor; 2655 /* Only block on the second pass. */ 2656 if ((flags & (M_WAITOK | M_NOVM)) == M_WAITOK) 2657 allocflags = (allocflags & ~M_WAITOK) | M_NOWAIT; 2658 } else 2659 domain = start = rdomain; 2660 2661 again: 2662 do { 2663 if (keg->uk_free > reserve && 2664 (slab = keg_first_slab(keg, domain, rr)) != NULL) { 2665 MPASS(slab->us_keg == keg); 2666 return (slab); 2667 } 2668 2669 /* 2670 * M_NOVM means don't ask at all! 2671 */ 2672 if (flags & M_NOVM) 2673 break; 2674 2675 if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) { 2676 keg->uk_flags |= UMA_ZFLAG_FULL; 2677 /* 2678 * If this is not a multi-zone, set the FULL bit. 2679 * Otherwise slab_multi() takes care of it. 2680 */ 2681 if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) { 2682 zone->uz_flags |= UMA_ZFLAG_FULL; 2683 zone_log_warning(zone); 2684 zone_maxaction(zone); 2685 } 2686 if (flags & M_NOWAIT) 2687 return (NULL); 2688 zone->uz_sleeps++; 2689 msleep(keg, &keg->uk_lock, PVM, "keglimit", 0); 2690 continue; 2691 } 2692 slab = keg_alloc_slab(keg, zone, domain, allocflags); 2693 /* 2694 * If we got a slab here it's safe to mark it partially used 2695 * and return. We assume that the caller is going to remove 2696 * at least one item. 2697 */ 2698 if (slab) { 2699 MPASS(slab->us_keg == keg); 2700 dom = &keg->uk_domain[slab->us_domain]; 2701 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 2702 return (slab); 2703 } 2704 if (rr) { 2705 keg->uk_cursor = (keg->uk_cursor + 1) % vm_ndomains; 2706 domain = keg->uk_cursor; 2707 } 2708 } while (domain != start); 2709 2710 /* Retry domain scan with blocking. */ 2711 if (allocflags != flags) { 2712 allocflags = flags; 2713 goto again; 2714 } 2715 2716 /* 2717 * We might not have been able to get a slab but another cpu 2718 * could have while we were unlocked. Check again before we 2719 * fail. 2720 */ 2721 if (keg->uk_free > reserve && 2722 (slab = keg_first_slab(keg, domain, rr)) != NULL) { 2723 MPASS(slab->us_keg == keg); 2724 return (slab); 2725 } 2726 return (NULL); 2727 } 2728 2729 static uma_slab_t 2730 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int domain, int flags) 2731 { 2732 uma_slab_t slab; 2733 2734 if (keg == NULL) { 2735 keg = zone_first_keg(zone); 2736 KEG_LOCK(keg); 2737 } 2738 2739 for (;;) { 2740 slab = keg_fetch_slab(keg, zone, domain, flags); 2741 if (slab) 2742 return (slab); 2743 if (flags & (M_NOWAIT | M_NOVM)) 2744 break; 2745 } 2746 KEG_UNLOCK(keg); 2747 return (NULL); 2748 } 2749 2750 /* 2751 * uma_zone_fetch_slab_multi: Fetches a slab from one available keg. Returns 2752 * with the keg locked. On NULL no lock is held. 2753 * 2754 * The last pointer is used to seed the search. It is not required. 2755 */ 2756 static uma_slab_t 2757 zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int domain, int rflags) 2758 { 2759 uma_klink_t klink; 2760 uma_slab_t slab; 2761 uma_keg_t keg; 2762 int flags; 2763 int empty; 2764 int full; 2765 2766 /* 2767 * Don't wait on the first pass. This will skip limit tests 2768 * as well. We don't want to block if we can find a provider 2769 * without blocking. 2770 */ 2771 flags = (rflags & ~M_WAITOK) | M_NOWAIT; 2772 /* 2773 * Use the last slab allocated as a hint for where to start 2774 * the search. 2775 */ 2776 if (last != NULL) { 2777 slab = keg_fetch_slab(last, zone, domain, flags); 2778 if (slab) 2779 return (slab); 2780 KEG_UNLOCK(last); 2781 } 2782 /* 2783 * Loop until we have a slab incase of transient failures 2784 * while M_WAITOK is specified. I'm not sure this is 100% 2785 * required but we've done it for so long now. 2786 */ 2787 for (;;) { 2788 empty = 0; 2789 full = 0; 2790 /* 2791 * Search the available kegs for slabs. Be careful to hold the 2792 * correct lock while calling into the keg layer. 2793 */ 2794 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) { 2795 keg = klink->kl_keg; 2796 KEG_LOCK(keg); 2797 if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) { 2798 slab = keg_fetch_slab(keg, zone, domain, flags); 2799 if (slab) 2800 return (slab); 2801 } 2802 if (keg->uk_flags & UMA_ZFLAG_FULL) 2803 full++; 2804 else 2805 empty++; 2806 KEG_UNLOCK(keg); 2807 } 2808 if (rflags & (M_NOWAIT | M_NOVM)) 2809 break; 2810 flags = rflags; 2811 /* 2812 * All kegs are full. XXX We can't atomically check all kegs 2813 * and sleep so just sleep for a short period and retry. 2814 */ 2815 if (full && !empty) { 2816 ZONE_LOCK(zone); 2817 zone->uz_flags |= UMA_ZFLAG_FULL; 2818 zone->uz_sleeps++; 2819 zone_log_warning(zone); 2820 zone_maxaction(zone); 2821 msleep(zone, zone->uz_lockptr, PVM, 2822 "zonelimit", hz/100); 2823 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2824 ZONE_UNLOCK(zone); 2825 continue; 2826 } 2827 } 2828 return (NULL); 2829 } 2830 2831 static void * 2832 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 2833 { 2834 uma_domain_t dom; 2835 void *item; 2836 uint8_t freei; 2837 2838 MPASS(keg == slab->us_keg); 2839 mtx_assert(&keg->uk_lock, MA_OWNED); 2840 2841 freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1; 2842 BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free); 2843 item = slab->us_data + (keg->uk_rsize * freei); 2844 slab->us_freecount--; 2845 keg->uk_free--; 2846 2847 /* Move this slab to the full list */ 2848 if (slab->us_freecount == 0) { 2849 LIST_REMOVE(slab, us_link); 2850 dom = &keg->uk_domain[slab->us_domain]; 2851 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 2852 } 2853 2854 return (item); 2855 } 2856 2857 static int 2858 zone_import(uma_zone_t zone, void **bucket, int max, int domain, int flags) 2859 { 2860 uma_slab_t slab; 2861 uma_keg_t keg; 2862 #ifdef NUMA 2863 int stripe; 2864 #endif 2865 int i; 2866 2867 slab = NULL; 2868 keg = NULL; 2869 /* Try to keep the buckets totally full */ 2870 for (i = 0; i < max; ) { 2871 if ((slab = zone->uz_slab(zone, keg, domain, flags)) == NULL) 2872 break; 2873 keg = slab->us_keg; 2874 #ifdef NUMA 2875 stripe = howmany(max, vm_ndomains); 2876 #endif 2877 while (slab->us_freecount && i < max) { 2878 bucket[i++] = slab_alloc_item(keg, slab); 2879 if (keg->uk_free <= keg->uk_reserve) 2880 break; 2881 #ifdef NUMA 2882 /* 2883 * If the zone is striped we pick a new slab for every 2884 * N allocations. Eliminating this conditional will 2885 * instead pick a new domain for each bucket rather 2886 * than stripe within each bucket. The current option 2887 * produces more fragmentation and requires more cpu 2888 * time but yields better distribution. 2889 */ 2890 if ((zone->uz_flags & UMA_ZONE_NUMA) == 0 && 2891 vm_ndomains > 1 && --stripe == 0) 2892 break; 2893 #endif 2894 } 2895 /* Don't block if we allocated any successfully. */ 2896 flags &= ~M_WAITOK; 2897 flags |= M_NOWAIT; 2898 } 2899 if (slab != NULL) 2900 KEG_UNLOCK(keg); 2901 2902 return i; 2903 } 2904 2905 static uma_bucket_t 2906 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags) 2907 { 2908 uma_bucket_t bucket; 2909 int max; 2910 2911 /* Don't wait for buckets, preserve caller's NOVM setting. */ 2912 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 2913 if (bucket == NULL) 2914 return (NULL); 2915 2916 max = MIN(bucket->ub_entries, zone->uz_count); 2917 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 2918 max, domain, flags); 2919 2920 /* 2921 * Initialize the memory if necessary. 2922 */ 2923 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 2924 int i; 2925 2926 for (i = 0; i < bucket->ub_cnt; i++) 2927 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 2928 flags) != 0) 2929 break; 2930 /* 2931 * If we couldn't initialize the whole bucket, put the 2932 * rest back onto the freelist. 2933 */ 2934 if (i != bucket->ub_cnt) { 2935 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 2936 bucket->ub_cnt - i); 2937 #ifdef INVARIANTS 2938 bzero(&bucket->ub_bucket[i], 2939 sizeof(void *) * (bucket->ub_cnt - i)); 2940 #endif 2941 bucket->ub_cnt = i; 2942 } 2943 } 2944 2945 if (bucket->ub_cnt == 0) { 2946 bucket_free(zone, bucket, udata); 2947 atomic_add_long(&zone->uz_fails, 1); 2948 return (NULL); 2949 } 2950 2951 return (bucket); 2952 } 2953 2954 /* 2955 * Allocates a single item from a zone. 2956 * 2957 * Arguments 2958 * zone The zone to alloc for. 2959 * udata The data to be passed to the constructor. 2960 * domain The domain to allocate from or UMA_ANYDOMAIN. 2961 * flags M_WAITOK, M_NOWAIT, M_ZERO. 2962 * 2963 * Returns 2964 * NULL if there is no memory and M_NOWAIT is set 2965 * An item if successful 2966 */ 2967 2968 static void * 2969 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 2970 { 2971 void *item; 2972 #ifdef INVARIANTS 2973 bool skipdbg; 2974 #endif 2975 2976 item = NULL; 2977 2978 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 2979 goto fail; 2980 atomic_add_long(&zone->uz_allocs, 1); 2981 2982 #ifdef INVARIANTS 2983 skipdbg = uma_dbg_zskip(zone, item); 2984 #endif 2985 /* 2986 * We have to call both the zone's init (not the keg's init) 2987 * and the zone's ctor. This is because the item is going from 2988 * a keg slab directly to the user, and the user is expecting it 2989 * to be both zone-init'd as well as zone-ctor'd. 2990 */ 2991 if (zone->uz_init != NULL) { 2992 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 2993 zone_free_item(zone, item, udata, SKIP_FINI); 2994 goto fail; 2995 } 2996 } 2997 if (zone->uz_ctor != NULL && 2998 #ifdef INVARIANTS 2999 (!skipdbg || zone->uz_ctor != trash_ctor || 3000 zone->uz_dtor != trash_dtor) && 3001 #endif 3002 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 3003 zone_free_item(zone, item, udata, SKIP_DTOR); 3004 goto fail; 3005 } 3006 #ifdef INVARIANTS 3007 if (!skipdbg) 3008 uma_dbg_alloc(zone, NULL, item); 3009 #endif 3010 if (flags & M_ZERO) 3011 uma_zero_item(item, zone); 3012 3013 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 3014 zone->uz_name, zone); 3015 3016 return (item); 3017 3018 fail: 3019 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 3020 zone->uz_name, zone); 3021 atomic_add_long(&zone->uz_fails, 1); 3022 return (NULL); 3023 } 3024 3025 /* See uma.h */ 3026 void 3027 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 3028 { 3029 uma_cache_t cache; 3030 uma_bucket_t bucket; 3031 uma_zone_domain_t zdom; 3032 int cpu, domain, lockfail; 3033 #ifdef INVARIANTS 3034 bool skipdbg; 3035 #endif 3036 3037 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3038 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 3039 3040 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 3041 zone->uz_name); 3042 3043 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3044 ("uma_zfree_arg: called with spinlock or critical section held")); 3045 3046 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 3047 if (item == NULL) 3048 return; 3049 #ifdef DEBUG_MEMGUARD 3050 if (is_memguard_addr(item)) { 3051 if (zone->uz_dtor != NULL) 3052 zone->uz_dtor(item, zone->uz_size, udata); 3053 if (zone->uz_fini != NULL) 3054 zone->uz_fini(item, zone->uz_size); 3055 memguard_free(item); 3056 return; 3057 } 3058 #endif 3059 #ifdef INVARIANTS 3060 skipdbg = uma_dbg_zskip(zone, item); 3061 if (skipdbg == false) { 3062 if (zone->uz_flags & UMA_ZONE_MALLOC) 3063 uma_dbg_free(zone, udata, item); 3064 else 3065 uma_dbg_free(zone, NULL, item); 3066 } 3067 if (zone->uz_dtor != NULL && (!skipdbg || 3068 zone->uz_dtor != trash_dtor || zone->uz_ctor != trash_ctor)) 3069 #else 3070 if (zone->uz_dtor != NULL) 3071 #endif 3072 zone->uz_dtor(item, zone->uz_size, udata); 3073 3074 /* 3075 * The race here is acceptable. If we miss it we'll just have to wait 3076 * a little longer for the limits to be reset. 3077 */ 3078 if (zone->uz_flags & UMA_ZFLAG_FULL) 3079 goto zfree_item; 3080 3081 /* 3082 * If possible, free to the per-CPU cache. There are two 3083 * requirements for safe access to the per-CPU cache: (1) the thread 3084 * accessing the cache must not be preempted or yield during access, 3085 * and (2) the thread must not migrate CPUs without switching which 3086 * cache it accesses. We rely on a critical section to prevent 3087 * preemption and migration. We release the critical section in 3088 * order to acquire the zone mutex if we are unable to free to the 3089 * current cache; when we re-acquire the critical section, we must 3090 * detect and handle migration if it has occurred. 3091 */ 3092 zfree_restart: 3093 critical_enter(); 3094 cpu = curcpu; 3095 cache = &zone->uz_cpu[cpu]; 3096 3097 zfree_start: 3098 /* 3099 * Try to free into the allocbucket first to give LIFO ordering 3100 * for cache-hot datastructures. Spill over into the freebucket 3101 * if necessary. Alloc will swap them if one runs dry. 3102 */ 3103 bucket = cache->uc_allocbucket; 3104 if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries) 3105 bucket = cache->uc_freebucket; 3106 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 3107 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 3108 ("uma_zfree: Freeing to non free bucket index.")); 3109 bucket->ub_bucket[bucket->ub_cnt] = item; 3110 bucket->ub_cnt++; 3111 cache->uc_frees++; 3112 critical_exit(); 3113 return; 3114 } 3115 3116 /* 3117 * We must go back the zone, which requires acquiring the zone lock, 3118 * which in turn means we must release and re-acquire the critical 3119 * section. Since the critical section is released, we may be 3120 * preempted or migrate. As such, make sure not to maintain any 3121 * thread-local state specific to the cache from prior to releasing 3122 * the critical section. 3123 */ 3124 critical_exit(); 3125 if (zone->uz_count == 0 || bucketdisable) 3126 goto zfree_item; 3127 3128 lockfail = 0; 3129 if (ZONE_TRYLOCK(zone) == 0) { 3130 /* Record contention to size the buckets. */ 3131 ZONE_LOCK(zone); 3132 lockfail = 1; 3133 } 3134 critical_enter(); 3135 cpu = curcpu; 3136 cache = &zone->uz_cpu[cpu]; 3137 3138 bucket = cache->uc_freebucket; 3139 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 3140 ZONE_UNLOCK(zone); 3141 goto zfree_start; 3142 } 3143 cache->uc_freebucket = NULL; 3144 /* We are no longer associated with this CPU. */ 3145 critical_exit(); 3146 3147 if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) 3148 domain = PCPU_GET(domain); 3149 else 3150 domain = 0; 3151 zdom = &zone->uz_domain[0]; 3152 3153 /* Can we throw this on the zone full list? */ 3154 if (bucket != NULL) { 3155 CTR3(KTR_UMA, 3156 "uma_zfree: zone %s(%p) putting bucket %p on free list", 3157 zone->uz_name, zone, bucket); 3158 /* ub_cnt is pointing to the last free item */ 3159 KASSERT(bucket->ub_cnt != 0, 3160 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n")); 3161 if ((zone->uz_flags & UMA_ZONE_NOBUCKETCACHE) != 0) { 3162 ZONE_UNLOCK(zone); 3163 bucket_drain(zone, bucket); 3164 bucket_free(zone, bucket, udata); 3165 goto zfree_restart; 3166 } else 3167 LIST_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); 3168 } 3169 3170 /* 3171 * We bump the uz count when the cache size is insufficient to 3172 * handle the working set. 3173 */ 3174 if (lockfail && zone->uz_count < BUCKET_MAX) 3175 zone->uz_count++; 3176 ZONE_UNLOCK(zone); 3177 3178 bucket = bucket_alloc(zone, udata, M_NOWAIT); 3179 CTR3(KTR_UMA, "uma_zfree: zone %s(%p) allocated bucket %p", 3180 zone->uz_name, zone, bucket); 3181 if (bucket) { 3182 critical_enter(); 3183 cpu = curcpu; 3184 cache = &zone->uz_cpu[cpu]; 3185 if (cache->uc_freebucket == NULL && 3186 ((zone->uz_flags & UMA_ZONE_NUMA) == 0 || 3187 domain == PCPU_GET(domain))) { 3188 cache->uc_freebucket = bucket; 3189 goto zfree_start; 3190 } 3191 /* 3192 * We lost the race, start over. We have to drop our 3193 * critical section to free the bucket. 3194 */ 3195 critical_exit(); 3196 bucket_free(zone, bucket, udata); 3197 goto zfree_restart; 3198 } 3199 3200 /* 3201 * If nothing else caught this, we'll just do an internal free. 3202 */ 3203 zfree_item: 3204 zone_free_item(zone, item, udata, SKIP_DTOR); 3205 3206 return; 3207 } 3208 3209 void 3210 uma_zfree_domain(uma_zone_t zone, void *item, void *udata) 3211 { 3212 3213 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3214 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 3215 3216 CTR2(KTR_UMA, "uma_zfree_domain thread %x zone %s", curthread, 3217 zone->uz_name); 3218 3219 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3220 ("uma_zfree_domain: called with spinlock or critical section held")); 3221 3222 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 3223 if (item == NULL) 3224 return; 3225 zone_free_item(zone, item, udata, SKIP_NONE); 3226 } 3227 3228 static void 3229 slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item) 3230 { 3231 uma_domain_t dom; 3232 uint8_t freei; 3233 3234 mtx_assert(&keg->uk_lock, MA_OWNED); 3235 MPASS(keg == slab->us_keg); 3236 3237 dom = &keg->uk_domain[slab->us_domain]; 3238 3239 /* Do we need to remove from any lists? */ 3240 if (slab->us_freecount+1 == keg->uk_ipers) { 3241 LIST_REMOVE(slab, us_link); 3242 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 3243 } else if (slab->us_freecount == 0) { 3244 LIST_REMOVE(slab, us_link); 3245 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3246 } 3247 3248 /* Slab management. */ 3249 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3250 BIT_SET(SLAB_SETSIZE, freei, &slab->us_free); 3251 slab->us_freecount++; 3252 3253 /* Keg statistics. */ 3254 keg->uk_free++; 3255 } 3256 3257 static void 3258 zone_release(uma_zone_t zone, void **bucket, int cnt) 3259 { 3260 void *item; 3261 uma_slab_t slab; 3262 uma_keg_t keg; 3263 uint8_t *mem; 3264 int clearfull; 3265 int i; 3266 3267 clearfull = 0; 3268 keg = zone_first_keg(zone); 3269 KEG_LOCK(keg); 3270 for (i = 0; i < cnt; i++) { 3271 item = bucket[i]; 3272 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) { 3273 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 3274 if (zone->uz_flags & UMA_ZONE_HASH) { 3275 slab = hash_sfind(&keg->uk_hash, mem); 3276 } else { 3277 mem += keg->uk_pgoff; 3278 slab = (uma_slab_t)mem; 3279 } 3280 } else { 3281 slab = vtoslab((vm_offset_t)item); 3282 if (slab->us_keg != keg) { 3283 KEG_UNLOCK(keg); 3284 keg = slab->us_keg; 3285 KEG_LOCK(keg); 3286 } 3287 } 3288 slab_free_item(keg, slab, item); 3289 if (keg->uk_flags & UMA_ZFLAG_FULL) { 3290 if (keg->uk_pages < keg->uk_maxpages) { 3291 keg->uk_flags &= ~UMA_ZFLAG_FULL; 3292 clearfull = 1; 3293 } 3294 3295 /* 3296 * We can handle one more allocation. Since we're 3297 * clearing ZFLAG_FULL, wake up all procs blocked 3298 * on pages. This should be uncommon, so keeping this 3299 * simple for now (rather than adding count of blocked 3300 * threads etc). 3301 */ 3302 wakeup(keg); 3303 } 3304 } 3305 KEG_UNLOCK(keg); 3306 if (clearfull) { 3307 ZONE_LOCK(zone); 3308 zone->uz_flags &= ~UMA_ZFLAG_FULL; 3309 wakeup(zone); 3310 ZONE_UNLOCK(zone); 3311 } 3312 3313 } 3314 3315 /* 3316 * Frees a single item to any zone. 3317 * 3318 * Arguments: 3319 * zone The zone to free to 3320 * item The item we're freeing 3321 * udata User supplied data for the dtor 3322 * skip Skip dtors and finis 3323 */ 3324 static void 3325 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 3326 { 3327 #ifdef INVARIANTS 3328 bool skipdbg; 3329 3330 skipdbg = uma_dbg_zskip(zone, item); 3331 if (skip == SKIP_NONE && !skipdbg) { 3332 if (zone->uz_flags & UMA_ZONE_MALLOC) 3333 uma_dbg_free(zone, udata, item); 3334 else 3335 uma_dbg_free(zone, NULL, item); 3336 } 3337 3338 if (skip < SKIP_DTOR && zone->uz_dtor != NULL && 3339 (!skipdbg || zone->uz_dtor != trash_dtor || 3340 zone->uz_ctor != trash_ctor)) 3341 #else 3342 if (skip < SKIP_DTOR && zone->uz_dtor != NULL) 3343 #endif 3344 zone->uz_dtor(item, zone->uz_size, udata); 3345 3346 if (skip < SKIP_FINI && zone->uz_fini) 3347 zone->uz_fini(item, zone->uz_size); 3348 3349 atomic_add_long(&zone->uz_frees, 1); 3350 zone->uz_release(zone->uz_arg, &item, 1); 3351 } 3352 3353 /* See uma.h */ 3354 int 3355 uma_zone_set_max(uma_zone_t zone, int nitems) 3356 { 3357 uma_keg_t keg; 3358 3359 keg = zone_first_keg(zone); 3360 if (keg == NULL) 3361 return (0); 3362 KEG_LOCK(keg); 3363 keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera; 3364 if (keg->uk_maxpages * keg->uk_ipers < nitems) 3365 keg->uk_maxpages += keg->uk_ppera; 3366 nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers; 3367 KEG_UNLOCK(keg); 3368 3369 return (nitems); 3370 } 3371 3372 /* See uma.h */ 3373 int 3374 uma_zone_get_max(uma_zone_t zone) 3375 { 3376 int nitems; 3377 uma_keg_t keg; 3378 3379 keg = zone_first_keg(zone); 3380 if (keg == NULL) 3381 return (0); 3382 KEG_LOCK(keg); 3383 nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers; 3384 KEG_UNLOCK(keg); 3385 3386 return (nitems); 3387 } 3388 3389 /* See uma.h */ 3390 void 3391 uma_zone_set_warning(uma_zone_t zone, const char *warning) 3392 { 3393 3394 ZONE_LOCK(zone); 3395 zone->uz_warning = warning; 3396 ZONE_UNLOCK(zone); 3397 } 3398 3399 /* See uma.h */ 3400 void 3401 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 3402 { 3403 3404 ZONE_LOCK(zone); 3405 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 3406 ZONE_UNLOCK(zone); 3407 } 3408 3409 /* See uma.h */ 3410 int 3411 uma_zone_get_cur(uma_zone_t zone) 3412 { 3413 int64_t nitems; 3414 u_int i; 3415 3416 ZONE_LOCK(zone); 3417 nitems = zone->uz_allocs - zone->uz_frees; 3418 CPU_FOREACH(i) { 3419 /* 3420 * See the comment in sysctl_vm_zone_stats() regarding the 3421 * safety of accessing the per-cpu caches. With the zone lock 3422 * held, it is safe, but can potentially result in stale data. 3423 */ 3424 nitems += zone->uz_cpu[i].uc_allocs - 3425 zone->uz_cpu[i].uc_frees; 3426 } 3427 ZONE_UNLOCK(zone); 3428 3429 return (nitems < 0 ? 0 : nitems); 3430 } 3431 3432 /* See uma.h */ 3433 void 3434 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 3435 { 3436 uma_keg_t keg; 3437 3438 keg = zone_first_keg(zone); 3439 KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type")); 3440 KEG_LOCK(keg); 3441 KASSERT(keg->uk_pages == 0, 3442 ("uma_zone_set_init on non-empty keg")); 3443 keg->uk_init = uminit; 3444 KEG_UNLOCK(keg); 3445 } 3446 3447 /* See uma.h */ 3448 void 3449 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 3450 { 3451 uma_keg_t keg; 3452 3453 keg = zone_first_keg(zone); 3454 KASSERT(keg != NULL, ("uma_zone_set_fini: Invalid zone type")); 3455 KEG_LOCK(keg); 3456 KASSERT(keg->uk_pages == 0, 3457 ("uma_zone_set_fini on non-empty keg")); 3458 keg->uk_fini = fini; 3459 KEG_UNLOCK(keg); 3460 } 3461 3462 /* See uma.h */ 3463 void 3464 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 3465 { 3466 3467 ZONE_LOCK(zone); 3468 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3469 ("uma_zone_set_zinit on non-empty keg")); 3470 zone->uz_init = zinit; 3471 ZONE_UNLOCK(zone); 3472 } 3473 3474 /* See uma.h */ 3475 void 3476 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 3477 { 3478 3479 ZONE_LOCK(zone); 3480 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3481 ("uma_zone_set_zfini on non-empty keg")); 3482 zone->uz_fini = zfini; 3483 ZONE_UNLOCK(zone); 3484 } 3485 3486 /* See uma.h */ 3487 /* XXX uk_freef is not actually used with the zone locked */ 3488 void 3489 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 3490 { 3491 uma_keg_t keg; 3492 3493 keg = zone_first_keg(zone); 3494 KASSERT(keg != NULL, ("uma_zone_set_freef: Invalid zone type")); 3495 KEG_LOCK(keg); 3496 keg->uk_freef = freef; 3497 KEG_UNLOCK(keg); 3498 } 3499 3500 /* See uma.h */ 3501 /* XXX uk_allocf is not actually used with the zone locked */ 3502 void 3503 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 3504 { 3505 uma_keg_t keg; 3506 3507 keg = zone_first_keg(zone); 3508 KEG_LOCK(keg); 3509 keg->uk_allocf = allocf; 3510 KEG_UNLOCK(keg); 3511 } 3512 3513 /* See uma.h */ 3514 void 3515 uma_zone_reserve(uma_zone_t zone, int items) 3516 { 3517 uma_keg_t keg; 3518 3519 keg = zone_first_keg(zone); 3520 if (keg == NULL) 3521 return; 3522 KEG_LOCK(keg); 3523 keg->uk_reserve = items; 3524 KEG_UNLOCK(keg); 3525 3526 return; 3527 } 3528 3529 /* See uma.h */ 3530 int 3531 uma_zone_reserve_kva(uma_zone_t zone, int count) 3532 { 3533 uma_keg_t keg; 3534 vm_offset_t kva; 3535 u_int pages; 3536 3537 keg = zone_first_keg(zone); 3538 if (keg == NULL) 3539 return (0); 3540 pages = count / keg->uk_ipers; 3541 3542 if (pages * keg->uk_ipers < count) 3543 pages++; 3544 pages *= keg->uk_ppera; 3545 3546 #ifdef UMA_MD_SMALL_ALLOC 3547 if (keg->uk_ppera > 1) { 3548 #else 3549 if (1) { 3550 #endif 3551 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 3552 if (kva == 0) 3553 return (0); 3554 } else 3555 kva = 0; 3556 KEG_LOCK(keg); 3557 keg->uk_kva = kva; 3558 keg->uk_offset = 0; 3559 keg->uk_maxpages = pages; 3560 #ifdef UMA_MD_SMALL_ALLOC 3561 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 3562 #else 3563 keg->uk_allocf = noobj_alloc; 3564 #endif 3565 keg->uk_flags |= UMA_ZONE_NOFREE; 3566 KEG_UNLOCK(keg); 3567 3568 return (1); 3569 } 3570 3571 /* See uma.h */ 3572 void 3573 uma_prealloc(uma_zone_t zone, int items) 3574 { 3575 uma_domain_t dom; 3576 uma_slab_t slab; 3577 uma_keg_t keg; 3578 int domain, slabs; 3579 3580 keg = zone_first_keg(zone); 3581 if (keg == NULL) 3582 return; 3583 KEG_LOCK(keg); 3584 slabs = items / keg->uk_ipers; 3585 domain = 0; 3586 if (slabs * keg->uk_ipers < items) 3587 slabs++; 3588 while (slabs > 0) { 3589 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK); 3590 if (slab == NULL) 3591 break; 3592 MPASS(slab->us_keg == keg); 3593 dom = &keg->uk_domain[slab->us_domain]; 3594 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 3595 slabs--; 3596 domain = (domain + 1) % vm_ndomains; 3597 } 3598 KEG_UNLOCK(keg); 3599 } 3600 3601 /* See uma.h */ 3602 static void 3603 uma_reclaim_locked(bool kmem_danger) 3604 { 3605 3606 CTR0(KTR_UMA, "UMA: vm asked us to release pages!"); 3607 sx_assert(&uma_drain_lock, SA_XLOCKED); 3608 bucket_enable(); 3609 zone_foreach(zone_drain); 3610 if (vm_page_count_min() || kmem_danger) { 3611 cache_drain_safe(NULL); 3612 zone_foreach(zone_drain); 3613 } 3614 /* 3615 * Some slabs may have been freed but this zone will be visited early 3616 * we visit again so that we can free pages that are empty once other 3617 * zones are drained. We have to do the same for buckets. 3618 */ 3619 zone_drain(slabzone); 3620 bucket_zone_drain(); 3621 } 3622 3623 void 3624 uma_reclaim(void) 3625 { 3626 3627 sx_xlock(&uma_drain_lock); 3628 uma_reclaim_locked(false); 3629 sx_xunlock(&uma_drain_lock); 3630 } 3631 3632 static volatile int uma_reclaim_needed; 3633 3634 void 3635 uma_reclaim_wakeup(void) 3636 { 3637 3638 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 3639 wakeup(uma_reclaim); 3640 } 3641 3642 void 3643 uma_reclaim_worker(void *arg __unused) 3644 { 3645 3646 for (;;) { 3647 sx_xlock(&uma_drain_lock); 3648 while (atomic_load_int(&uma_reclaim_needed) == 0) 3649 sx_sleep(uma_reclaim, &uma_drain_lock, PVM, "umarcl", 3650 hz); 3651 sx_xunlock(&uma_drain_lock); 3652 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 3653 sx_xlock(&uma_drain_lock); 3654 uma_reclaim_locked(true); 3655 atomic_store_int(&uma_reclaim_needed, 0); 3656 sx_xunlock(&uma_drain_lock); 3657 /* Don't fire more than once per-second. */ 3658 pause("umarclslp", hz); 3659 } 3660 } 3661 3662 /* See uma.h */ 3663 int 3664 uma_zone_exhausted(uma_zone_t zone) 3665 { 3666 int full; 3667 3668 ZONE_LOCK(zone); 3669 full = (zone->uz_flags & UMA_ZFLAG_FULL); 3670 ZONE_UNLOCK(zone); 3671 return (full); 3672 } 3673 3674 int 3675 uma_zone_exhausted_nolock(uma_zone_t zone) 3676 { 3677 return (zone->uz_flags & UMA_ZFLAG_FULL); 3678 } 3679 3680 void * 3681 uma_large_malloc_domain(vm_size_t size, int domain, int wait) 3682 { 3683 struct vmem *arena; 3684 vm_offset_t addr; 3685 uma_slab_t slab; 3686 3687 #if VM_NRESERVLEVEL > 0 3688 if (__predict_true((wait & M_EXEC) == 0)) 3689 arena = kernel_arena; 3690 else 3691 arena = kernel_rwx_arena; 3692 #else 3693 arena = kernel_arena; 3694 #endif 3695 3696 slab = zone_alloc_item(slabzone, NULL, domain, wait); 3697 if (slab == NULL) 3698 return (NULL); 3699 if (domain == UMA_ANYDOMAIN) 3700 addr = kmem_malloc(arena, size, wait); 3701 else 3702 addr = kmem_malloc_domain(arena, domain, size, wait); 3703 if (addr != 0) { 3704 vsetslab(addr, slab); 3705 slab->us_data = (void *)addr; 3706 slab->us_flags = UMA_SLAB_KERNEL | UMA_SLAB_MALLOC; 3707 #if VM_NRESERVLEVEL > 0 3708 if (__predict_false(arena == kernel_rwx_arena)) 3709 slab->us_flags |= UMA_SLAB_KRWX; 3710 #endif 3711 slab->us_size = size; 3712 slab->us_domain = vm_phys_domain(PHYS_TO_VM_PAGE( 3713 pmap_kextract(addr))); 3714 uma_total_inc(size); 3715 } else { 3716 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3717 } 3718 3719 return ((void *)addr); 3720 } 3721 3722 void * 3723 uma_large_malloc(vm_size_t size, int wait) 3724 { 3725 3726 return uma_large_malloc_domain(size, UMA_ANYDOMAIN, wait); 3727 } 3728 3729 void 3730 uma_large_free(uma_slab_t slab) 3731 { 3732 struct vmem *arena; 3733 3734 KASSERT((slab->us_flags & UMA_SLAB_KERNEL) != 0, 3735 ("uma_large_free: Memory not allocated with uma_large_malloc.")); 3736 #if VM_NRESERVLEVEL > 0 3737 if (__predict_true((slab->us_flags & UMA_SLAB_KRWX) == 0)) 3738 arena = kernel_arena; 3739 else 3740 arena = kernel_rwx_arena; 3741 #else 3742 arena = kernel_arena; 3743 #endif 3744 kmem_free(arena, (vm_offset_t)slab->us_data, slab->us_size); 3745 uma_total_dec(slab->us_size); 3746 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3747 } 3748 3749 static void 3750 uma_zero_item(void *item, uma_zone_t zone) 3751 { 3752 3753 bzero(item, zone->uz_size); 3754 } 3755 3756 unsigned long 3757 uma_limit(void) 3758 { 3759 3760 return (uma_kmem_limit); 3761 } 3762 3763 void 3764 uma_set_limit(unsigned long limit) 3765 { 3766 3767 uma_kmem_limit = limit; 3768 } 3769 3770 unsigned long 3771 uma_size(void) 3772 { 3773 3774 return (uma_kmem_total); 3775 } 3776 3777 long 3778 uma_avail(void) 3779 { 3780 3781 return (uma_kmem_limit - uma_kmem_total); 3782 } 3783 3784 void 3785 uma_print_stats(void) 3786 { 3787 zone_foreach(uma_print_zone); 3788 } 3789 3790 static void 3791 slab_print(uma_slab_t slab) 3792 { 3793 printf("slab: keg %p, data %p, freecount %d\n", 3794 slab->us_keg, slab->us_data, slab->us_freecount); 3795 } 3796 3797 static void 3798 cache_print(uma_cache_t cache) 3799 { 3800 printf("alloc: %p(%d), free: %p(%d)\n", 3801 cache->uc_allocbucket, 3802 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, 3803 cache->uc_freebucket, 3804 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0); 3805 } 3806 3807 static void 3808 uma_print_keg(uma_keg_t keg) 3809 { 3810 uma_domain_t dom; 3811 uma_slab_t slab; 3812 int i; 3813 3814 printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d " 3815 "out %d free %d limit %d\n", 3816 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags, 3817 keg->uk_ipers, keg->uk_ppera, 3818 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 3819 keg->uk_free, (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers); 3820 for (i = 0; i < vm_ndomains; i++) { 3821 dom = &keg->uk_domain[i]; 3822 printf("Part slabs:\n"); 3823 LIST_FOREACH(slab, &dom->ud_part_slab, us_link) 3824 slab_print(slab); 3825 printf("Free slabs:\n"); 3826 LIST_FOREACH(slab, &dom->ud_free_slab, us_link) 3827 slab_print(slab); 3828 printf("Full slabs:\n"); 3829 LIST_FOREACH(slab, &dom->ud_full_slab, us_link) 3830 slab_print(slab); 3831 } 3832 } 3833 3834 void 3835 uma_print_zone(uma_zone_t zone) 3836 { 3837 uma_cache_t cache; 3838 uma_klink_t kl; 3839 int i; 3840 3841 printf("zone: %s(%p) size %d flags %#x\n", 3842 zone->uz_name, zone, zone->uz_size, zone->uz_flags); 3843 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) 3844 uma_print_keg(kl->kl_keg); 3845 CPU_FOREACH(i) { 3846 cache = &zone->uz_cpu[i]; 3847 printf("CPU %d Cache:\n", i); 3848 cache_print(cache); 3849 } 3850 } 3851 3852 #ifdef DDB 3853 /* 3854 * Generate statistics across both the zone and its per-cpu cache's. Return 3855 * desired statistics if the pointer is non-NULL for that statistic. 3856 * 3857 * Note: does not update the zone statistics, as it can't safely clear the 3858 * per-CPU cache statistic. 3859 * 3860 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't 3861 * safe from off-CPU; we should modify the caches to track this information 3862 * directly so that we don't have to. 3863 */ 3864 static void 3865 uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp, 3866 uint64_t *freesp, uint64_t *sleepsp) 3867 { 3868 uma_cache_t cache; 3869 uint64_t allocs, frees, sleeps; 3870 int cachefree, cpu; 3871 3872 allocs = frees = sleeps = 0; 3873 cachefree = 0; 3874 CPU_FOREACH(cpu) { 3875 cache = &z->uz_cpu[cpu]; 3876 if (cache->uc_allocbucket != NULL) 3877 cachefree += cache->uc_allocbucket->ub_cnt; 3878 if (cache->uc_freebucket != NULL) 3879 cachefree += cache->uc_freebucket->ub_cnt; 3880 allocs += cache->uc_allocs; 3881 frees += cache->uc_frees; 3882 } 3883 allocs += z->uz_allocs; 3884 frees += z->uz_frees; 3885 sleeps += z->uz_sleeps; 3886 if (cachefreep != NULL) 3887 *cachefreep = cachefree; 3888 if (allocsp != NULL) 3889 *allocsp = allocs; 3890 if (freesp != NULL) 3891 *freesp = frees; 3892 if (sleepsp != NULL) 3893 *sleepsp = sleeps; 3894 } 3895 #endif /* DDB */ 3896 3897 static int 3898 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 3899 { 3900 uma_keg_t kz; 3901 uma_zone_t z; 3902 int count; 3903 3904 count = 0; 3905 rw_rlock(&uma_rwlock); 3906 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3907 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3908 count++; 3909 } 3910 rw_runlock(&uma_rwlock); 3911 return (sysctl_handle_int(oidp, &count, 0, req)); 3912 } 3913 3914 static int 3915 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 3916 { 3917 struct uma_stream_header ush; 3918 struct uma_type_header uth; 3919 struct uma_percpu_stat *ups; 3920 uma_bucket_t bucket; 3921 uma_zone_domain_t zdom; 3922 struct sbuf sbuf; 3923 uma_cache_t cache; 3924 uma_klink_t kl; 3925 uma_keg_t kz; 3926 uma_zone_t z; 3927 uma_keg_t k; 3928 int count, error, i; 3929 3930 error = sysctl_wire_old_buffer(req, 0); 3931 if (error != 0) 3932 return (error); 3933 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 3934 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 3935 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 3936 3937 count = 0; 3938 rw_rlock(&uma_rwlock); 3939 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3940 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3941 count++; 3942 } 3943 3944 /* 3945 * Insert stream header. 3946 */ 3947 bzero(&ush, sizeof(ush)); 3948 ush.ush_version = UMA_STREAM_VERSION; 3949 ush.ush_maxcpus = (mp_maxid + 1); 3950 ush.ush_count = count; 3951 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 3952 3953 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3954 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3955 bzero(&uth, sizeof(uth)); 3956 ZONE_LOCK(z); 3957 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 3958 uth.uth_align = kz->uk_align; 3959 uth.uth_size = kz->uk_size; 3960 uth.uth_rsize = kz->uk_rsize; 3961 LIST_FOREACH(kl, &z->uz_kegs, kl_link) { 3962 k = kl->kl_keg; 3963 uth.uth_maxpages += k->uk_maxpages; 3964 uth.uth_pages += k->uk_pages; 3965 uth.uth_keg_free += k->uk_free; 3966 uth.uth_limit = (k->uk_maxpages / k->uk_ppera) 3967 * k->uk_ipers; 3968 } 3969 3970 /* 3971 * A zone is secondary is it is not the first entry 3972 * on the keg's zone list. 3973 */ 3974 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 3975 (LIST_FIRST(&kz->uk_zones) != z)) 3976 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 3977 3978 for (i = 0; i < vm_ndomains; i++) { 3979 zdom = &z->uz_domain[i]; 3980 LIST_FOREACH(bucket, &zdom->uzd_buckets, 3981 ub_link) 3982 uth.uth_zone_free += bucket->ub_cnt; 3983 } 3984 uth.uth_allocs = z->uz_allocs; 3985 uth.uth_frees = z->uz_frees; 3986 uth.uth_fails = z->uz_fails; 3987 uth.uth_sleeps = z->uz_sleeps; 3988 /* 3989 * While it is not normally safe to access the cache 3990 * bucket pointers while not on the CPU that owns the 3991 * cache, we only allow the pointers to be exchanged 3992 * without the zone lock held, not invalidated, so 3993 * accept the possible race associated with bucket 3994 * exchange during monitoring. 3995 */ 3996 for (i = 0; i < mp_maxid + 1; i++) { 3997 bzero(&ups[i], sizeof(*ups)); 3998 if (kz->uk_flags & UMA_ZFLAG_INTERNAL || 3999 CPU_ABSENT(i)) 4000 continue; 4001 cache = &z->uz_cpu[i]; 4002 if (cache->uc_allocbucket != NULL) 4003 ups[i].ups_cache_free += 4004 cache->uc_allocbucket->ub_cnt; 4005 if (cache->uc_freebucket != NULL) 4006 ups[i].ups_cache_free += 4007 cache->uc_freebucket->ub_cnt; 4008 ups[i].ups_allocs = cache->uc_allocs; 4009 ups[i].ups_frees = cache->uc_frees; 4010 } 4011 ZONE_UNLOCK(z); 4012 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 4013 for (i = 0; i < mp_maxid + 1; i++) 4014 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 4015 } 4016 } 4017 rw_runlock(&uma_rwlock); 4018 error = sbuf_finish(&sbuf); 4019 sbuf_delete(&sbuf); 4020 free(ups, M_TEMP); 4021 return (error); 4022 } 4023 4024 int 4025 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 4026 { 4027 uma_zone_t zone = *(uma_zone_t *)arg1; 4028 int error, max; 4029 4030 max = uma_zone_get_max(zone); 4031 error = sysctl_handle_int(oidp, &max, 0, req); 4032 if (error || !req->newptr) 4033 return (error); 4034 4035 uma_zone_set_max(zone, max); 4036 4037 return (0); 4038 } 4039 4040 int 4041 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 4042 { 4043 uma_zone_t zone = *(uma_zone_t *)arg1; 4044 int cur; 4045 4046 cur = uma_zone_get_cur(zone); 4047 return (sysctl_handle_int(oidp, &cur, 0, req)); 4048 } 4049 4050 #ifdef INVARIANTS 4051 static uma_slab_t 4052 uma_dbg_getslab(uma_zone_t zone, void *item) 4053 { 4054 uma_slab_t slab; 4055 uma_keg_t keg; 4056 uint8_t *mem; 4057 4058 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 4059 if (zone->uz_flags & UMA_ZONE_VTOSLAB) { 4060 slab = vtoslab((vm_offset_t)mem); 4061 } else { 4062 /* 4063 * It is safe to return the slab here even though the 4064 * zone is unlocked because the item's allocation state 4065 * essentially holds a reference. 4066 */ 4067 ZONE_LOCK(zone); 4068 keg = LIST_FIRST(&zone->uz_kegs)->kl_keg; 4069 if (keg->uk_flags & UMA_ZONE_HASH) 4070 slab = hash_sfind(&keg->uk_hash, mem); 4071 else 4072 slab = (uma_slab_t)(mem + keg->uk_pgoff); 4073 ZONE_UNLOCK(zone); 4074 } 4075 4076 return (slab); 4077 } 4078 4079 static bool 4080 uma_dbg_zskip(uma_zone_t zone, void *mem) 4081 { 4082 uma_keg_t keg; 4083 4084 if ((keg = zone_first_keg(zone)) == NULL) 4085 return (true); 4086 4087 return (uma_dbg_kskip(keg, mem)); 4088 } 4089 4090 static bool 4091 uma_dbg_kskip(uma_keg_t keg, void *mem) 4092 { 4093 uintptr_t idx; 4094 4095 if (dbg_divisor == 0) 4096 return (true); 4097 4098 if (dbg_divisor == 1) 4099 return (false); 4100 4101 idx = (uintptr_t)mem >> PAGE_SHIFT; 4102 if (keg->uk_ipers > 1) { 4103 idx *= keg->uk_ipers; 4104 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize; 4105 } 4106 4107 if ((idx / dbg_divisor) * dbg_divisor != idx) { 4108 counter_u64_add(uma_skip_cnt, 1); 4109 return (true); 4110 } 4111 counter_u64_add(uma_dbg_cnt, 1); 4112 4113 return (false); 4114 } 4115 4116 /* 4117 * Set up the slab's freei data such that uma_dbg_free can function. 4118 * 4119 */ 4120 static void 4121 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 4122 { 4123 uma_keg_t keg; 4124 int freei; 4125 4126 if (slab == NULL) { 4127 slab = uma_dbg_getslab(zone, item); 4128 if (slab == NULL) 4129 panic("uma: item %p did not belong to zone %s\n", 4130 item, zone->uz_name); 4131 } 4132 keg = slab->us_keg; 4133 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 4134 4135 if (BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 4136 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n", 4137 item, zone, zone->uz_name, slab, freei); 4138 BIT_SET_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 4139 4140 return; 4141 } 4142 4143 /* 4144 * Verifies freed addresses. Checks for alignment, valid slab membership 4145 * and duplicate frees. 4146 * 4147 */ 4148 static void 4149 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 4150 { 4151 uma_keg_t keg; 4152 int freei; 4153 4154 if (slab == NULL) { 4155 slab = uma_dbg_getslab(zone, item); 4156 if (slab == NULL) 4157 panic("uma: Freed item %p did not belong to zone %s\n", 4158 item, zone->uz_name); 4159 } 4160 keg = slab->us_keg; 4161 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 4162 4163 if (freei >= keg->uk_ipers) 4164 panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n", 4165 item, zone, zone->uz_name, slab, freei); 4166 4167 if (((freei * keg->uk_rsize) + slab->us_data) != item) 4168 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n", 4169 item, zone, zone->uz_name, slab, freei); 4170 4171 if (!BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 4172 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n", 4173 item, zone, zone->uz_name, slab, freei); 4174 4175 BIT_CLR_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 4176 } 4177 #endif /* INVARIANTS */ 4178 4179 #ifdef DDB 4180 DB_SHOW_COMMAND(uma, db_show_uma) 4181 { 4182 uma_bucket_t bucket; 4183 uma_keg_t kz; 4184 uma_zone_t z; 4185 uma_zone_domain_t zdom; 4186 uint64_t allocs, frees, sleeps; 4187 int cachefree, i; 4188 4189 db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used", 4190 "Free", "Requests", "Sleeps", "Bucket"); 4191 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4192 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 4193 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 4194 allocs = z->uz_allocs; 4195 frees = z->uz_frees; 4196 sleeps = z->uz_sleeps; 4197 cachefree = 0; 4198 } else 4199 uma_zone_sumstat(z, &cachefree, &allocs, 4200 &frees, &sleeps); 4201 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 4202 (LIST_FIRST(&kz->uk_zones) != z))) 4203 cachefree += kz->uk_free; 4204 for (i = 0; i < vm_ndomains; i++) { 4205 zdom = &z->uz_domain[i]; 4206 LIST_FOREACH(bucket, &zdom->uzd_buckets, 4207 ub_link) 4208 cachefree += bucket->ub_cnt; 4209 } 4210 db_printf("%18s %8ju %8jd %8d %12ju %8ju %8u\n", 4211 z->uz_name, (uintmax_t)kz->uk_size, 4212 (intmax_t)(allocs - frees), cachefree, 4213 (uintmax_t)allocs, sleeps, z->uz_count); 4214 if (db_pager_quit) 4215 return; 4216 } 4217 } 4218 } 4219 4220 DB_SHOW_COMMAND(umacache, db_show_umacache) 4221 { 4222 uma_bucket_t bucket; 4223 uma_zone_t z; 4224 uma_zone_domain_t zdom; 4225 uint64_t allocs, frees; 4226 int cachefree, i; 4227 4228 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 4229 "Requests", "Bucket"); 4230 LIST_FOREACH(z, &uma_cachezones, uz_link) { 4231 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL); 4232 for (i = 0; i < vm_ndomains; i++) { 4233 zdom = &z->uz_domain[i]; 4234 LIST_FOREACH(bucket, &zdom->uzd_buckets, ub_link) 4235 cachefree += bucket->ub_cnt; 4236 } 4237 db_printf("%18s %8ju %8jd %8d %12ju %8u\n", 4238 z->uz_name, (uintmax_t)z->uz_size, 4239 (intmax_t)(allocs - frees), cachefree, 4240 (uintmax_t)allocs, z->uz_count); 4241 if (db_pager_quit) 4242 return; 4243 } 4244 } 4245 #endif /* DDB */ 4246