1 /* 2 * Copyright (c) 2002, Jeffrey Roberson <jeff@freebsd.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 /* 28 * uma_core.c Implementation of the Universal Memory allocator 29 * 30 * This allocator is intended to replace the multitude of similar object caches 31 * in the standard FreeBSD kernel. The intent is to be flexible as well as 32 * effecient. A primary design goal is to return unused memory to the rest of 33 * the system. This will make the system as a whole more flexible due to the 34 * ability to move memory to subsystems which most need it instead of leaving 35 * pools of reserved memory unused. 36 * 37 * The basic ideas stem from similar slab/zone based allocators whose algorithms 38 * are well known. 39 * 40 */ 41 42 /* 43 * TODO: 44 * - Improve memory usage for large allocations 45 * - Investigate cache size adjustments 46 */ 47 48 #include <sys/cdefs.h> 49 __FBSDID("$FreeBSD$"); 50 51 /* I should really use ktr.. */ 52 /* 53 #define UMA_DEBUG 1 54 #define UMA_DEBUG_ALLOC 1 55 #define UMA_DEBUG_ALLOC_1 1 56 */ 57 58 #include "opt_param.h" 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/kernel.h> 62 #include <sys/types.h> 63 #include <sys/queue.h> 64 #include <sys/malloc.h> 65 #include <sys/lock.h> 66 #include <sys/sysctl.h> 67 #include <sys/mutex.h> 68 #include <sys/proc.h> 69 #include <sys/smp.h> 70 #include <sys/vmmeter.h> 71 #include <sys/mbuf.h> 72 73 #include <vm/vm.h> 74 #include <vm/vm_object.h> 75 #include <vm/vm_page.h> 76 #include <vm/vm_param.h> 77 #include <vm/vm_map.h> 78 #include <vm/vm_kern.h> 79 #include <vm/vm_extern.h> 80 #include <vm/uma.h> 81 #include <vm/uma_int.h> 82 #include <vm/uma_dbg.h> 83 84 #include <machine/vmparam.h> 85 86 /* 87 * This is the zone from which all zones are spawned. The idea is that even 88 * the zone heads are allocated from the allocator, so we use the bss section 89 * to bootstrap us. 90 */ 91 static struct uma_zone masterzone; 92 static uma_zone_t zones = &masterzone; 93 94 /* This is the zone from which all of uma_slab_t's are allocated. */ 95 static uma_zone_t slabzone; 96 97 /* 98 * The initial hash tables come out of this zone so they can be allocated 99 * prior to malloc coming up. 100 */ 101 static uma_zone_t hashzone; 102 103 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 104 105 /* 106 * Are we allowed to allocate buckets? 107 */ 108 static int bucketdisable = 1; 109 110 /* Linked list of all zones in the system */ 111 static LIST_HEAD(,uma_zone) uma_zones = LIST_HEAD_INITIALIZER(&uma_zones); 112 113 /* This mutex protects the zone list */ 114 static struct mtx uma_mtx; 115 116 /* These are the pcpu cache locks */ 117 static struct mtx uma_pcpu_mtx[MAXCPU]; 118 119 /* Linked list of boot time pages */ 120 static LIST_HEAD(,uma_slab) uma_boot_pages = 121 LIST_HEAD_INITIALIZER(&uma_boot_pages); 122 123 /* Count of free boottime pages */ 124 static int uma_boot_free = 0; 125 126 /* Is the VM done starting up? */ 127 static int booted = 0; 128 129 /* 130 * This is the handle used to schedule events that need to happen 131 * outside of the allocation fast path. 132 */ 133 static struct callout uma_callout; 134 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 135 136 /* This is mp_maxid + 1, for use while looping over each cpu */ 137 static int maxcpu; 138 139 /* 140 * This structure is passed as the zone ctor arg so that I don't have to create 141 * a special allocation function just for zones. 142 */ 143 struct uma_zctor_args { 144 char *name; 145 size_t size; 146 uma_ctor ctor; 147 uma_dtor dtor; 148 uma_init uminit; 149 uma_fini fini; 150 int align; 151 u_int16_t flags; 152 }; 153 154 struct uma_bucket_zone { 155 uma_zone_t ubz_zone; 156 char *ubz_name; 157 int ubz_entries; 158 }; 159 160 #define BUCKET_MAX 128 161 162 struct uma_bucket_zone bucket_zones[] = { 163 { NULL, "16 Bucket", 16 }, 164 { NULL, "32 Bucket", 32 }, 165 { NULL, "64 Bucket", 64 }, 166 { NULL, "128 Bucket", 128 }, 167 { NULL, NULL, 0} 168 }; 169 170 #define BUCKET_SHIFT 4 171 #define BUCKET_ZONES ((BUCKET_MAX >> BUCKET_SHIFT) + 1) 172 173 uint8_t bucket_size[BUCKET_ZONES]; 174 175 /* Prototypes.. */ 176 177 static void *obj_alloc(uma_zone_t, int, u_int8_t *, int); 178 static void *page_alloc(uma_zone_t, int, u_int8_t *, int); 179 static void *startup_alloc(uma_zone_t, int, u_int8_t *, int); 180 static void page_free(void *, int, u_int8_t); 181 static uma_slab_t slab_zalloc(uma_zone_t, int); 182 static void cache_drain(uma_zone_t); 183 static void bucket_drain(uma_zone_t, uma_bucket_t); 184 static void zone_ctor(void *, int, void *); 185 static void zone_dtor(void *, int, void *); 186 static void zero_init(void *, int); 187 static void zone_small_init(uma_zone_t zone); 188 static void zone_large_init(uma_zone_t zone); 189 static void zone_foreach(void (*zfunc)(uma_zone_t)); 190 static void zone_timeout(uma_zone_t zone); 191 static int hash_alloc(struct uma_hash *); 192 static int hash_expand(struct uma_hash *, struct uma_hash *); 193 static void hash_free(struct uma_hash *hash); 194 static void uma_timeout(void *); 195 static void uma_startup3(void); 196 static void *uma_zalloc_internal(uma_zone_t, void *, int); 197 static void uma_zfree_internal(uma_zone_t, void *, void *, int); 198 static void bucket_enable(void); 199 static void bucket_init(void); 200 static uma_bucket_t bucket_alloc(int, int); 201 static void bucket_free(uma_bucket_t); 202 static void bucket_zone_drain(void); 203 static int uma_zalloc_bucket(uma_zone_t zone, int flags); 204 static uma_slab_t uma_zone_slab(uma_zone_t zone, int flags); 205 static void *uma_slab_alloc(uma_zone_t zone, uma_slab_t slab); 206 static void zone_drain(uma_zone_t); 207 208 void uma_print_zone(uma_zone_t); 209 void uma_print_stats(void); 210 static int sysctl_vm_zone(SYSCTL_HANDLER_ARGS); 211 212 SYSCTL_OID(_vm, OID_AUTO, zone, CTLTYPE_STRING|CTLFLAG_RD, 213 NULL, 0, sysctl_vm_zone, "A", "Zone Info"); 214 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 215 216 /* 217 * This routine checks to see whether or not it's safe to enable buckets. 218 */ 219 220 static void 221 bucket_enable(void) 222 { 223 if (cnt.v_free_count < cnt.v_free_min) 224 bucketdisable = 1; 225 else 226 bucketdisable = 0; 227 } 228 229 static void 230 bucket_init(void) 231 { 232 struct uma_bucket_zone *ubz; 233 int i; 234 int j; 235 236 for (i = 0, j = 0; bucket_zones[j].ubz_entries != 0; j++) { 237 int size; 238 239 ubz = &bucket_zones[j]; 240 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 241 size += sizeof(void *) * ubz->ubz_entries; 242 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 243 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 244 for (; i <= ubz->ubz_entries; i += (1 << BUCKET_SHIFT)) 245 bucket_size[i >> BUCKET_SHIFT] = j; 246 } 247 } 248 249 static uma_bucket_t 250 bucket_alloc(int entries, int bflags) 251 { 252 struct uma_bucket_zone *ubz; 253 uma_bucket_t bucket; 254 int idx; 255 256 /* 257 * This is to stop us from allocating per cpu buckets while we're 258 * running out of UMA_BOOT_PAGES. Otherwise, we would exhaust the 259 * boot pages. This also prevents us from allocating buckets in 260 * low memory situations. 261 */ 262 263 if (bucketdisable) 264 return (NULL); 265 idx = howmany(entries, 1 << BUCKET_SHIFT); 266 ubz = &bucket_zones[bucket_size[idx]]; 267 bucket = uma_zalloc_internal(ubz->ubz_zone, NULL, bflags); 268 if (bucket) { 269 #ifdef INVARIANTS 270 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 271 #endif 272 bucket->ub_cnt = 0; 273 bucket->ub_entries = ubz->ubz_entries; 274 } 275 276 return (bucket); 277 } 278 279 static void 280 bucket_free(uma_bucket_t bucket) 281 { 282 struct uma_bucket_zone *ubz; 283 int idx; 284 285 idx = howmany(bucket->ub_entries, 1 << BUCKET_SHIFT); 286 ubz = &bucket_zones[bucket_size[idx]]; 287 uma_zfree_internal(ubz->ubz_zone, bucket, NULL, 0); 288 } 289 290 static void 291 bucket_zone_drain(void) 292 { 293 struct uma_bucket_zone *ubz; 294 295 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 296 zone_drain(ubz->ubz_zone); 297 } 298 299 300 /* 301 * Routine called by timeout which is used to fire off some time interval 302 * based calculations. (stats, hash size, etc.) 303 * 304 * Arguments: 305 * arg Unused 306 * 307 * Returns: 308 * Nothing 309 */ 310 static void 311 uma_timeout(void *unused) 312 { 313 bucket_enable(); 314 zone_foreach(zone_timeout); 315 316 /* Reschedule this event */ 317 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 318 } 319 320 /* 321 * Routine to perform timeout driven calculations. This expands the 322 * hashes and does per cpu statistics aggregation. 323 * 324 * Arguments: 325 * zone The zone to operate on 326 * 327 * Returns: 328 * Nothing 329 */ 330 static void 331 zone_timeout(uma_zone_t zone) 332 { 333 uma_cache_t cache; 334 u_int64_t alloc; 335 int cpu; 336 337 alloc = 0; 338 339 /* 340 * Aggregate per cpu cache statistics back to the zone. 341 * 342 * I may rewrite this to set a flag in the per cpu cache instead of 343 * locking. If the flag is not cleared on the next round I will have 344 * to lock and do it here instead so that the statistics don't get too 345 * far out of sync. 346 */ 347 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) { 348 for (cpu = 0; cpu < maxcpu; cpu++) { 349 if (CPU_ABSENT(cpu)) 350 continue; 351 CPU_LOCK(cpu); 352 cache = &zone->uz_cpu[cpu]; 353 /* Add them up, and reset */ 354 alloc += cache->uc_allocs; 355 cache->uc_allocs = 0; 356 CPU_UNLOCK(cpu); 357 } 358 } 359 360 /* Now push these stats back into the zone.. */ 361 ZONE_LOCK(zone); 362 zone->uz_allocs += alloc; 363 364 /* 365 * Expand the zone hash table. 366 * 367 * This is done if the number of slabs is larger than the hash size. 368 * What I'm trying to do here is completely reduce collisions. This 369 * may be a little aggressive. Should I allow for two collisions max? 370 */ 371 372 if (zone->uz_flags & UMA_ZONE_HASH && 373 zone->uz_pages / zone->uz_ppera >= zone->uz_hash.uh_hashsize) { 374 struct uma_hash newhash; 375 struct uma_hash oldhash; 376 int ret; 377 378 /* 379 * This is so involved because allocating and freeing 380 * while the zone lock is held will lead to deadlock. 381 * I have to do everything in stages and check for 382 * races. 383 */ 384 newhash = zone->uz_hash; 385 ZONE_UNLOCK(zone); 386 ret = hash_alloc(&newhash); 387 ZONE_LOCK(zone); 388 if (ret) { 389 if (hash_expand(&zone->uz_hash, &newhash)) { 390 oldhash = zone->uz_hash; 391 zone->uz_hash = newhash; 392 } else 393 oldhash = newhash; 394 395 ZONE_UNLOCK(zone); 396 hash_free(&oldhash); 397 ZONE_LOCK(zone); 398 } 399 } 400 ZONE_UNLOCK(zone); 401 } 402 403 /* 404 * Allocate and zero fill the next sized hash table from the appropriate 405 * backing store. 406 * 407 * Arguments: 408 * hash A new hash structure with the old hash size in uh_hashsize 409 * 410 * Returns: 411 * 1 on sucess and 0 on failure. 412 */ 413 static int 414 hash_alloc(struct uma_hash *hash) 415 { 416 int oldsize; 417 int alloc; 418 419 oldsize = hash->uh_hashsize; 420 421 /* We're just going to go to a power of two greater */ 422 if (oldsize) { 423 hash->uh_hashsize = oldsize * 2; 424 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 425 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 426 M_UMAHASH, M_NOWAIT); 427 } else { 428 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 429 hash->uh_slab_hash = uma_zalloc_internal(hashzone, NULL, 430 M_WAITOK); 431 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 432 } 433 if (hash->uh_slab_hash) { 434 bzero(hash->uh_slab_hash, alloc); 435 hash->uh_hashmask = hash->uh_hashsize - 1; 436 return (1); 437 } 438 439 return (0); 440 } 441 442 /* 443 * Expands the hash table for HASH zones. This is done from zone_timeout 444 * to reduce collisions. This must not be done in the regular allocation 445 * path, otherwise, we can recurse on the vm while allocating pages. 446 * 447 * Arguments: 448 * oldhash The hash you want to expand 449 * newhash The hash structure for the new table 450 * 451 * Returns: 452 * Nothing 453 * 454 * Discussion: 455 */ 456 static int 457 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 458 { 459 uma_slab_t slab; 460 int hval; 461 int i; 462 463 if (!newhash->uh_slab_hash) 464 return (0); 465 466 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 467 return (0); 468 469 /* 470 * I need to investigate hash algorithms for resizing without a 471 * full rehash. 472 */ 473 474 for (i = 0; i < oldhash->uh_hashsize; i++) 475 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) { 476 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]); 477 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink); 478 hval = UMA_HASH(newhash, slab->us_data); 479 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 480 slab, us_hlink); 481 } 482 483 return (1); 484 } 485 486 /* 487 * Free the hash bucket to the appropriate backing store. 488 * 489 * Arguments: 490 * slab_hash The hash bucket we're freeing 491 * hashsize The number of entries in that hash bucket 492 * 493 * Returns: 494 * Nothing 495 */ 496 static void 497 hash_free(struct uma_hash *hash) 498 { 499 if (hash->uh_slab_hash == NULL) 500 return; 501 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 502 uma_zfree_internal(hashzone, 503 hash->uh_slab_hash, NULL, 0); 504 else 505 free(hash->uh_slab_hash, M_UMAHASH); 506 } 507 508 /* 509 * Frees all outstanding items in a bucket 510 * 511 * Arguments: 512 * zone The zone to free to, must be unlocked. 513 * bucket The free/alloc bucket with items, cpu queue must be locked. 514 * 515 * Returns: 516 * Nothing 517 */ 518 519 static void 520 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 521 { 522 uma_slab_t slab; 523 int mzone; 524 void *item; 525 526 if (bucket == NULL) 527 return; 528 529 slab = NULL; 530 mzone = 0; 531 532 /* We have to lookup the slab again for malloc.. */ 533 if (zone->uz_flags & UMA_ZONE_MALLOC) 534 mzone = 1; 535 536 while (bucket->ub_cnt > 0) { 537 bucket->ub_cnt--; 538 item = bucket->ub_bucket[bucket->ub_cnt]; 539 #ifdef INVARIANTS 540 bucket->ub_bucket[bucket->ub_cnt] = NULL; 541 KASSERT(item != NULL, 542 ("bucket_drain: botched ptr, item is NULL")); 543 #endif 544 /* 545 * This is extremely inefficient. The slab pointer was passed 546 * to uma_zfree_arg, but we lost it because the buckets don't 547 * hold them. This will go away when free() gets a size passed 548 * to it. 549 */ 550 if (mzone) 551 slab = vtoslab((vm_offset_t)item & (~UMA_SLAB_MASK)); 552 uma_zfree_internal(zone, item, slab, 1); 553 } 554 } 555 556 /* 557 * Drains the per cpu caches for a zone. 558 * 559 * Arguments: 560 * zone The zone to drain, must be unlocked. 561 * 562 * Returns: 563 * Nothing 564 */ 565 static void 566 cache_drain(uma_zone_t zone) 567 { 568 uma_bucket_t bucket; 569 uma_cache_t cache; 570 int cpu; 571 572 /* 573 * We have to lock each cpu cache before locking the zone 574 */ 575 for (cpu = 0; cpu < maxcpu; cpu++) { 576 if (CPU_ABSENT(cpu)) 577 continue; 578 CPU_LOCK(cpu); 579 cache = &zone->uz_cpu[cpu]; 580 bucket_drain(zone, cache->uc_allocbucket); 581 bucket_drain(zone, cache->uc_freebucket); 582 if (cache->uc_allocbucket != NULL) 583 bucket_free(cache->uc_allocbucket); 584 if (cache->uc_freebucket != NULL) 585 bucket_free(cache->uc_freebucket); 586 cache->uc_allocbucket = cache->uc_freebucket = NULL; 587 } 588 589 /* 590 * Drain the bucket queues and free the buckets, we just keep two per 591 * cpu (alloc/free). 592 */ 593 ZONE_LOCK(zone); 594 while ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) { 595 LIST_REMOVE(bucket, ub_link); 596 ZONE_UNLOCK(zone); 597 bucket_drain(zone, bucket); 598 bucket_free(bucket); 599 ZONE_LOCK(zone); 600 } 601 602 /* Now we do the free queue.. */ 603 while ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) { 604 LIST_REMOVE(bucket, ub_link); 605 bucket_free(bucket); 606 } 607 for (cpu = 0; cpu < maxcpu; cpu++) { 608 if (CPU_ABSENT(cpu)) 609 continue; 610 CPU_UNLOCK(cpu); 611 } 612 ZONE_UNLOCK(zone); 613 } 614 615 /* 616 * Frees pages from a zone back to the system. This is done on demand from 617 * the pageout daemon. 618 * 619 * Arguments: 620 * zone The zone to free pages from 621 * all Should we drain all items? 622 * 623 * Returns: 624 * Nothing. 625 */ 626 static void 627 zone_drain(uma_zone_t zone) 628 { 629 struct slabhead freeslabs = {}; 630 uma_slab_t slab; 631 uma_slab_t n; 632 u_int8_t flags; 633 u_int8_t *mem; 634 int i; 635 636 /* 637 * We don't want to take pages from staticly allocated zones at this 638 * time 639 */ 640 if (zone->uz_flags & UMA_ZONE_NOFREE || zone->uz_freef == NULL) 641 return; 642 643 ZONE_LOCK(zone); 644 645 #ifdef UMA_DEBUG 646 printf("%s free items: %u\n", zone->uz_name, zone->uz_free); 647 #endif 648 if (zone->uz_free == 0) 649 goto finished; 650 651 slab = LIST_FIRST(&zone->uz_free_slab); 652 while (slab) { 653 n = LIST_NEXT(slab, us_link); 654 655 /* We have no where to free these to */ 656 if (slab->us_flags & UMA_SLAB_BOOT) { 657 slab = n; 658 continue; 659 } 660 661 LIST_REMOVE(slab, us_link); 662 zone->uz_pages -= zone->uz_ppera; 663 zone->uz_free -= zone->uz_ipers; 664 665 if (zone->uz_flags & UMA_ZONE_HASH) 666 UMA_HASH_REMOVE(&zone->uz_hash, slab, slab->us_data); 667 668 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 669 670 slab = n; 671 } 672 finished: 673 ZONE_UNLOCK(zone); 674 675 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 676 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 677 if (zone->uz_fini) 678 for (i = 0; i < zone->uz_ipers; i++) 679 zone->uz_fini( 680 slab->us_data + (zone->uz_rsize * i), 681 zone->uz_size); 682 flags = slab->us_flags; 683 mem = slab->us_data; 684 685 if (zone->uz_flags & UMA_ZONE_OFFPAGE) 686 uma_zfree_internal(slabzone, slab, NULL, 0); 687 if (zone->uz_flags & UMA_ZONE_MALLOC) { 688 vm_object_t obj; 689 690 if (flags & UMA_SLAB_KMEM) 691 obj = kmem_object; 692 else 693 obj = NULL; 694 for (i = 0; i < zone->uz_ppera; i++) 695 vsetobj((vm_offset_t)mem + (i * PAGE_SIZE), 696 obj); 697 } 698 #ifdef UMA_DEBUG 699 printf("%s: Returning %d bytes.\n", 700 zone->uz_name, UMA_SLAB_SIZE * zone->uz_ppera); 701 #endif 702 zone->uz_freef(mem, UMA_SLAB_SIZE * zone->uz_ppera, flags); 703 } 704 705 } 706 707 /* 708 * Allocate a new slab for a zone. This does not insert the slab onto a list. 709 * 710 * Arguments: 711 * zone The zone to allocate slabs for 712 * wait Shall we wait? 713 * 714 * Returns: 715 * The slab that was allocated or NULL if there is no memory and the 716 * caller specified M_NOWAIT. 717 */ 718 static uma_slab_t 719 slab_zalloc(uma_zone_t zone, int wait) 720 { 721 uma_slab_t slab; /* Starting slab */ 722 u_int8_t *mem; 723 u_int8_t flags; 724 int i; 725 726 slab = NULL; 727 728 #ifdef UMA_DEBUG 729 printf("slab_zalloc: Allocating a new slab for %s\n", zone->uz_name); 730 #endif 731 ZONE_UNLOCK(zone); 732 733 if (zone->uz_flags & UMA_ZONE_OFFPAGE) { 734 slab = uma_zalloc_internal(slabzone, NULL, wait); 735 if (slab == NULL) { 736 ZONE_LOCK(zone); 737 return NULL; 738 } 739 } 740 741 /* 742 * This reproduces the old vm_zone behavior of zero filling pages the 743 * first time they are added to a zone. 744 * 745 * Malloced items are zeroed in uma_zalloc. 746 */ 747 748 if ((zone->uz_flags & UMA_ZONE_MALLOC) == 0) 749 wait |= M_ZERO; 750 else 751 wait &= ~M_ZERO; 752 753 mem = zone->uz_allocf(zone, zone->uz_ppera * UMA_SLAB_SIZE, 754 &flags, wait); 755 if (mem == NULL) { 756 ZONE_LOCK(zone); 757 return (NULL); 758 } 759 760 /* Point the slab into the allocated memory */ 761 if (!(zone->uz_flags & UMA_ZONE_OFFPAGE)) 762 slab = (uma_slab_t )(mem + zone->uz_pgoff); 763 764 if (zone->uz_flags & UMA_ZONE_MALLOC) 765 for (i = 0; i < zone->uz_ppera; i++) 766 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 767 768 slab->us_zone = zone; 769 slab->us_data = mem; 770 slab->us_freecount = zone->uz_ipers; 771 slab->us_firstfree = 0; 772 slab->us_flags = flags; 773 for (i = 0; i < zone->uz_ipers; i++) 774 slab->us_freelist[i] = i+1; 775 776 if (zone->uz_init) 777 for (i = 0; i < zone->uz_ipers; i++) 778 zone->uz_init(slab->us_data + (zone->uz_rsize * i), 779 zone->uz_size); 780 ZONE_LOCK(zone); 781 782 if (zone->uz_flags & UMA_ZONE_HASH) 783 UMA_HASH_INSERT(&zone->uz_hash, slab, mem); 784 785 zone->uz_pages += zone->uz_ppera; 786 zone->uz_free += zone->uz_ipers; 787 788 return (slab); 789 } 790 791 /* 792 * This function is intended to be used early on in place of page_alloc() so 793 * that we may use the boot time page cache to satisfy allocations before 794 * the VM is ready. 795 */ 796 static void * 797 startup_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait) 798 { 799 /* 800 * Check our small startup cache to see if it has pages remaining. 801 */ 802 mtx_lock(&uma_mtx); 803 if (uma_boot_free != 0) { 804 uma_slab_t tmps; 805 806 tmps = LIST_FIRST(&uma_boot_pages); 807 LIST_REMOVE(tmps, us_link); 808 uma_boot_free--; 809 mtx_unlock(&uma_mtx); 810 *pflag = tmps->us_flags; 811 return (tmps->us_data); 812 } 813 mtx_unlock(&uma_mtx); 814 if (booted == 0) 815 panic("UMA: Increase UMA_BOOT_PAGES"); 816 /* 817 * Now that we've booted reset these users to their real allocator. 818 */ 819 #ifdef UMA_MD_SMALL_ALLOC 820 zone->uz_allocf = uma_small_alloc; 821 #else 822 zone->uz_allocf = page_alloc; 823 #endif 824 return zone->uz_allocf(zone, bytes, pflag, wait); 825 } 826 827 /* 828 * Allocates a number of pages from the system 829 * 830 * Arguments: 831 * zone Unused 832 * bytes The number of bytes requested 833 * wait Shall we wait? 834 * 835 * Returns: 836 * A pointer to the alloced memory or possibly 837 * NULL if M_NOWAIT is set. 838 */ 839 static void * 840 page_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait) 841 { 842 void *p; /* Returned page */ 843 844 *pflag = UMA_SLAB_KMEM; 845 p = (void *) kmem_malloc(kmem_map, bytes, wait); 846 847 return (p); 848 } 849 850 /* 851 * Allocates a number of pages from within an object 852 * 853 * Arguments: 854 * zone Unused 855 * bytes The number of bytes requested 856 * wait Shall we wait? 857 * 858 * Returns: 859 * A pointer to the alloced memory or possibly 860 * NULL if M_NOWAIT is set. 861 */ 862 static void * 863 obj_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait) 864 { 865 vm_object_t object; 866 vm_offset_t retkva, zkva; 867 vm_page_t p; 868 int pages, startpages; 869 870 object = zone->uz_obj; 871 retkva = 0; 872 873 /* 874 * This looks a little weird since we're getting one page at a time. 875 */ 876 VM_OBJECT_LOCK(object); 877 p = TAILQ_LAST(&object->memq, pglist); 878 pages = p != NULL ? p->pindex + 1 : 0; 879 startpages = pages; 880 zkva = zone->uz_kva + pages * PAGE_SIZE; 881 for (; bytes > 0; bytes -= PAGE_SIZE) { 882 p = vm_page_alloc(object, pages, 883 VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED); 884 if (p == NULL) { 885 if (pages != startpages) 886 pmap_qremove(retkva, pages - startpages); 887 while (pages != startpages) { 888 pages--; 889 p = TAILQ_LAST(&object->memq, pglist); 890 vm_page_lock_queues(); 891 vm_page_unwire(p, 0); 892 vm_page_free(p); 893 vm_page_unlock_queues(); 894 } 895 retkva = 0; 896 goto done; 897 } 898 pmap_qenter(zkva, &p, 1); 899 if (retkva == 0) 900 retkva = zkva; 901 zkva += PAGE_SIZE; 902 pages += 1; 903 } 904 done: 905 VM_OBJECT_UNLOCK(object); 906 *flags = UMA_SLAB_PRIV; 907 908 return ((void *)retkva); 909 } 910 911 /* 912 * Frees a number of pages to the system 913 * 914 * Arguments: 915 * mem A pointer to the memory to be freed 916 * size The size of the memory being freed 917 * flags The original p->us_flags field 918 * 919 * Returns: 920 * Nothing 921 */ 922 static void 923 page_free(void *mem, int size, u_int8_t flags) 924 { 925 vm_map_t map; 926 927 if (flags & UMA_SLAB_KMEM) 928 map = kmem_map; 929 else 930 panic("UMA: page_free used with invalid flags %d\n", flags); 931 932 kmem_free(map, (vm_offset_t)mem, size); 933 } 934 935 /* 936 * Zero fill initializer 937 * 938 * Arguments/Returns follow uma_init specifications 939 */ 940 static void 941 zero_init(void *mem, int size) 942 { 943 bzero(mem, size); 944 } 945 946 /* 947 * Finish creating a small uma zone. This calculates ipers, and the zone size. 948 * 949 * Arguments 950 * zone The zone we should initialize 951 * 952 * Returns 953 * Nothing 954 */ 955 static void 956 zone_small_init(uma_zone_t zone) 957 { 958 int rsize; 959 int memused; 960 int ipers; 961 962 rsize = zone->uz_size; 963 964 if (rsize < UMA_SMALLEST_UNIT) 965 rsize = UMA_SMALLEST_UNIT; 966 967 if (rsize & zone->uz_align) 968 rsize = (rsize & ~zone->uz_align) + (zone->uz_align + 1); 969 970 zone->uz_rsize = rsize; 971 972 rsize += 1; /* Account for the byte of linkage */ 973 zone->uz_ipers = (UMA_SLAB_SIZE - sizeof(struct uma_slab)) / rsize; 974 zone->uz_ppera = 1; 975 976 KASSERT(zone->uz_ipers != 0, ("zone_small_init: ipers is 0, uh-oh!")); 977 memused = zone->uz_ipers * zone->uz_rsize; 978 979 /* Can we do any better? */ 980 if ((UMA_SLAB_SIZE - memused) >= UMA_MAX_WASTE) { 981 /* 982 * We can't do this if we're internal or if we've been 983 * asked to not go to the VM for buckets. If we do this we 984 * may end up going to the VM (kmem_map) for slabs which we 985 * do not want to do if we're UMA_ZFLAG_CACHEONLY as a 986 * result of UMA_ZONE_VM, which clearly forbids it. 987 */ 988 if ((zone->uz_flags & UMA_ZFLAG_INTERNAL) || 989 (zone->uz_flags & UMA_ZFLAG_CACHEONLY)) 990 return; 991 ipers = UMA_SLAB_SIZE / zone->uz_rsize; 992 if (ipers > zone->uz_ipers) { 993 zone->uz_flags |= UMA_ZONE_OFFPAGE; 994 if ((zone->uz_flags & UMA_ZONE_MALLOC) == 0) 995 zone->uz_flags |= UMA_ZONE_HASH; 996 zone->uz_ipers = ipers; 997 } 998 } 999 } 1000 1001 /* 1002 * Finish creating a large (> UMA_SLAB_SIZE) uma zone. Just give in and do 1003 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1004 * more complicated. 1005 * 1006 * Arguments 1007 * zone The zone we should initialize 1008 * 1009 * Returns 1010 * Nothing 1011 */ 1012 static void 1013 zone_large_init(uma_zone_t zone) 1014 { 1015 int pages; 1016 1017 KASSERT((zone->uz_flags & UMA_ZFLAG_CACHEONLY) == 0, 1018 ("zone_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY zone")); 1019 1020 pages = zone->uz_size / UMA_SLAB_SIZE; 1021 1022 /* Account for remainder */ 1023 if ((pages * UMA_SLAB_SIZE) < zone->uz_size) 1024 pages++; 1025 1026 zone->uz_ppera = pages; 1027 zone->uz_ipers = 1; 1028 1029 zone->uz_flags |= UMA_ZONE_OFFPAGE; 1030 if ((zone->uz_flags & UMA_ZONE_MALLOC) == 0) 1031 zone->uz_flags |= UMA_ZONE_HASH; 1032 1033 zone->uz_rsize = zone->uz_size; 1034 } 1035 1036 /* 1037 * Zone header ctor. This initializes all fields, locks, etc. And inserts 1038 * the zone onto the global zone list. 1039 * 1040 * Arguments/Returns follow uma_ctor specifications 1041 * udata Actually uma_zcreat_args 1042 */ 1043 1044 static void 1045 zone_ctor(void *mem, int size, void *udata) 1046 { 1047 struct uma_zctor_args *arg = udata; 1048 uma_zone_t zone = mem; 1049 int privlc; 1050 1051 bzero(zone, size); 1052 zone->uz_name = arg->name; 1053 zone->uz_size = arg->size; 1054 zone->uz_ctor = arg->ctor; 1055 zone->uz_dtor = arg->dtor; 1056 zone->uz_init = arg->uminit; 1057 zone->uz_fini = arg->fini; 1058 zone->uz_align = arg->align; 1059 zone->uz_free = 0; 1060 zone->uz_pages = 0; 1061 zone->uz_flags = arg->flags; 1062 zone->uz_allocf = page_alloc; 1063 zone->uz_freef = page_free; 1064 1065 if (arg->flags & UMA_ZONE_ZINIT) 1066 zone->uz_init = zero_init; 1067 1068 if (arg->flags & UMA_ZONE_VM) 1069 zone->uz_flags |= UMA_ZFLAG_CACHEONLY; 1070 1071 /* 1072 * XXX: 1073 * The +1 byte added to uz_size is to account for the byte of 1074 * linkage that is added to the size in zone_small_init(). If 1075 * we don't account for this here then we may end up in 1076 * zone_small_init() with a calculated 'ipers' of 0. 1077 */ 1078 if ((zone->uz_size+1) > (UMA_SLAB_SIZE - sizeof(struct uma_slab))) 1079 zone_large_init(zone); 1080 else 1081 zone_small_init(zone); 1082 /* 1083 * If we haven't booted yet we need allocations to go through the 1084 * startup cache until the vm is ready. 1085 */ 1086 if (zone->uz_ppera == 1) { 1087 #ifdef UMA_MD_SMALL_ALLOC 1088 zone->uz_allocf = uma_small_alloc; 1089 zone->uz_freef = uma_small_free; 1090 #endif 1091 if (booted == 0) 1092 zone->uz_allocf = startup_alloc; 1093 } 1094 if (arg->flags & UMA_ZONE_MTXCLASS) 1095 privlc = 1; 1096 else 1097 privlc = 0; 1098 1099 /* 1100 * If we're putting the slab header in the actual page we need to 1101 * figure out where in each page it goes. This calculates a right 1102 * justified offset into the memory on an ALIGN_PTR boundary. 1103 */ 1104 if (!(zone->uz_flags & UMA_ZONE_OFFPAGE)) { 1105 int totsize; 1106 1107 /* Size of the slab struct and free list */ 1108 totsize = sizeof(struct uma_slab) + zone->uz_ipers; 1109 if (totsize & UMA_ALIGN_PTR) 1110 totsize = (totsize & ~UMA_ALIGN_PTR) + 1111 (UMA_ALIGN_PTR + 1); 1112 zone->uz_pgoff = UMA_SLAB_SIZE - totsize; 1113 totsize = zone->uz_pgoff + sizeof(struct uma_slab) 1114 + zone->uz_ipers; 1115 /* I don't think it's possible, but I'll make sure anyway */ 1116 if (totsize > UMA_SLAB_SIZE) { 1117 printf("zone %s ipers %d rsize %d size %d\n", 1118 zone->uz_name, zone->uz_ipers, zone->uz_rsize, 1119 zone->uz_size); 1120 panic("UMA slab won't fit.\n"); 1121 } 1122 } 1123 1124 if (zone->uz_flags & UMA_ZONE_HASH) 1125 hash_alloc(&zone->uz_hash); 1126 1127 #ifdef UMA_DEBUG 1128 printf("%s(%p) size = %d ipers = %d ppera = %d pgoff = %d\n", 1129 zone->uz_name, zone, 1130 zone->uz_size, zone->uz_ipers, 1131 zone->uz_ppera, zone->uz_pgoff); 1132 #endif 1133 ZONE_LOCK_INIT(zone, privlc); 1134 1135 mtx_lock(&uma_mtx); 1136 LIST_INSERT_HEAD(&uma_zones, zone, uz_link); 1137 mtx_unlock(&uma_mtx); 1138 1139 /* 1140 * Some internal zones don't have room allocated for the per cpu 1141 * caches. If we're internal, bail out here. 1142 */ 1143 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1144 return; 1145 1146 if (zone->uz_ipers <= BUCKET_MAX) 1147 zone->uz_count = zone->uz_ipers; 1148 else 1149 zone->uz_count = BUCKET_MAX; 1150 } 1151 1152 /* 1153 * Zone header dtor. This frees all data, destroys locks, frees the hash table 1154 * and removes the zone from the global list. 1155 * 1156 * Arguments/Returns follow uma_dtor specifications 1157 * udata unused 1158 */ 1159 1160 static void 1161 zone_dtor(void *arg, int size, void *udata) 1162 { 1163 uma_zone_t zone; 1164 1165 zone = (uma_zone_t)arg; 1166 1167 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 1168 cache_drain(zone); 1169 mtx_lock(&uma_mtx); 1170 LIST_REMOVE(zone, uz_link); 1171 zone_drain(zone); 1172 mtx_unlock(&uma_mtx); 1173 1174 ZONE_LOCK(zone); 1175 if (zone->uz_free != 0) 1176 printf("Zone %s was not empty (%d items). " 1177 " Lost %d pages of memory.\n", 1178 zone->uz_name, zone->uz_free, zone->uz_pages); 1179 1180 ZONE_UNLOCK(zone); 1181 if (zone->uz_flags & UMA_ZONE_HASH) 1182 hash_free(&zone->uz_hash); 1183 1184 ZONE_LOCK_FINI(zone); 1185 } 1186 /* 1187 * Traverses every zone in the system and calls a callback 1188 * 1189 * Arguments: 1190 * zfunc A pointer to a function which accepts a zone 1191 * as an argument. 1192 * 1193 * Returns: 1194 * Nothing 1195 */ 1196 static void 1197 zone_foreach(void (*zfunc)(uma_zone_t)) 1198 { 1199 uma_zone_t zone; 1200 1201 mtx_lock(&uma_mtx); 1202 LIST_FOREACH(zone, &uma_zones, uz_link) 1203 zfunc(zone); 1204 mtx_unlock(&uma_mtx); 1205 } 1206 1207 /* Public functions */ 1208 /* See uma.h */ 1209 void 1210 uma_startup(void *bootmem) 1211 { 1212 struct uma_zctor_args args; 1213 uma_slab_t slab; 1214 int slabsize; 1215 int i; 1216 1217 #ifdef UMA_DEBUG 1218 printf("Creating uma zone headers zone.\n"); 1219 #endif 1220 #ifdef SMP 1221 maxcpu = mp_maxid + 1; 1222 #else 1223 maxcpu = 1; 1224 #endif 1225 #ifdef UMA_DEBUG 1226 printf("Max cpu = %d, mp_maxid = %d\n", maxcpu, mp_maxid); 1227 #endif 1228 mtx_init(&uma_mtx, "UMA lock", NULL, MTX_DEF); 1229 /* "manually" Create the initial zone */ 1230 args.name = "UMA Zones"; 1231 args.size = sizeof(struct uma_zone) + 1232 (sizeof(struct uma_cache) * (maxcpu - 1)); 1233 args.ctor = zone_ctor; 1234 args.dtor = zone_dtor; 1235 args.uminit = zero_init; 1236 args.fini = NULL; 1237 args.align = 32 - 1; 1238 args.flags = UMA_ZFLAG_INTERNAL; 1239 /* The initial zone has no Per cpu queues so it's smaller */ 1240 zone_ctor(zones, sizeof(struct uma_zone), &args); 1241 1242 /* Initialize the pcpu cache lock set once and for all */ 1243 for (i = 0; i < maxcpu; i++) 1244 CPU_LOCK_INIT(i); 1245 1246 #ifdef UMA_DEBUG 1247 printf("Filling boot free list.\n"); 1248 #endif 1249 for (i = 0; i < UMA_BOOT_PAGES; i++) { 1250 slab = (uma_slab_t)((u_int8_t *)bootmem + (i * UMA_SLAB_SIZE)); 1251 slab->us_data = (u_int8_t *)slab; 1252 slab->us_flags = UMA_SLAB_BOOT; 1253 LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link); 1254 uma_boot_free++; 1255 } 1256 1257 #ifdef UMA_DEBUG 1258 printf("Creating slab zone.\n"); 1259 #endif 1260 1261 /* 1262 * This is the max number of free list items we'll have with 1263 * offpage slabs. 1264 */ 1265 slabsize = UMA_SLAB_SIZE - sizeof(struct uma_slab); 1266 slabsize /= UMA_MAX_WASTE; 1267 slabsize++; /* In case there it's rounded */ 1268 slabsize += sizeof(struct uma_slab); 1269 1270 /* Now make a zone for slab headers */ 1271 slabzone = uma_zcreate("UMA Slabs", 1272 slabsize, 1273 NULL, NULL, NULL, NULL, 1274 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1275 1276 hashzone = uma_zcreate("UMA Hash", 1277 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 1278 NULL, NULL, NULL, NULL, 1279 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1280 1281 bucket_init(); 1282 1283 #ifdef UMA_MD_SMALL_ALLOC 1284 booted = 1; 1285 #endif 1286 1287 #ifdef UMA_DEBUG 1288 printf("UMA startup complete.\n"); 1289 #endif 1290 } 1291 1292 /* see uma.h */ 1293 void 1294 uma_startup2(void) 1295 { 1296 booted = 1; 1297 bucket_enable(); 1298 #ifdef UMA_DEBUG 1299 printf("UMA startup2 complete.\n"); 1300 #endif 1301 } 1302 1303 /* 1304 * Initialize our callout handle 1305 * 1306 */ 1307 1308 static void 1309 uma_startup3(void) 1310 { 1311 #ifdef UMA_DEBUG 1312 printf("Starting callout.\n"); 1313 #endif 1314 callout_init(&uma_callout, 0); 1315 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 1316 #ifdef UMA_DEBUG 1317 printf("UMA startup3 complete.\n"); 1318 #endif 1319 } 1320 1321 /* See uma.h */ 1322 uma_zone_t 1323 uma_zcreate(char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 1324 uma_init uminit, uma_fini fini, int align, u_int16_t flags) 1325 1326 { 1327 struct uma_zctor_args args; 1328 1329 /* This stuff is essential for the zone ctor */ 1330 args.name = name; 1331 args.size = size; 1332 args.ctor = ctor; 1333 args.dtor = dtor; 1334 args.uminit = uminit; 1335 args.fini = fini; 1336 args.align = align; 1337 args.flags = flags; 1338 1339 return (uma_zalloc_internal(zones, &args, M_WAITOK)); 1340 } 1341 1342 /* See uma.h */ 1343 void 1344 uma_zdestroy(uma_zone_t zone) 1345 { 1346 uma_zfree_internal(zones, zone, NULL, 0); 1347 } 1348 1349 /* See uma.h */ 1350 void * 1351 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 1352 { 1353 void *item; 1354 uma_cache_t cache; 1355 uma_bucket_t bucket; 1356 int cpu; 1357 1358 /* This is the fast path allocation */ 1359 #ifdef UMA_DEBUG_ALLOC_1 1360 printf("Allocating one item from %s(%p)\n", zone->uz_name, zone); 1361 #endif 1362 1363 #ifdef INVARIANTS 1364 /* 1365 * To make sure that WAITOK or NOWAIT is set, but not more than 1366 * one, and check against the API botches that are common. 1367 * The uma code implies M_WAITOK if M_NOWAIT is not set, so 1368 * we default to waiting if none of the flags is set. 1369 */ 1370 cpu = flags & (M_WAITOK | M_NOWAIT | M_DONTWAIT | M_TRYWAIT); 1371 if (cpu != M_NOWAIT && cpu != M_WAITOK) { 1372 static struct timeval lasterr; 1373 static int curerr, once; 1374 if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) { 1375 printf("Bad uma_zalloc flags: %x\n", cpu); 1376 backtrace(); 1377 once++; 1378 } 1379 } 1380 #endif 1381 if (!(flags & M_NOWAIT)) { 1382 KASSERT(curthread->td_intr_nesting_level == 0, 1383 ("malloc(M_WAITOK) in interrupt context")); 1384 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 1385 "malloc() of \"%s\"", zone->uz_name); 1386 } 1387 1388 zalloc_restart: 1389 cpu = PCPU_GET(cpuid); 1390 CPU_LOCK(cpu); 1391 cache = &zone->uz_cpu[cpu]; 1392 1393 zalloc_start: 1394 bucket = cache->uc_allocbucket; 1395 1396 if (bucket) { 1397 if (bucket->ub_cnt > 0) { 1398 bucket->ub_cnt--; 1399 item = bucket->ub_bucket[bucket->ub_cnt]; 1400 #ifdef INVARIANTS 1401 bucket->ub_bucket[bucket->ub_cnt] = NULL; 1402 #endif 1403 KASSERT(item != NULL, 1404 ("uma_zalloc: Bucket pointer mangled.")); 1405 cache->uc_allocs++; 1406 #ifdef INVARIANTS 1407 ZONE_LOCK(zone); 1408 uma_dbg_alloc(zone, NULL, item); 1409 ZONE_UNLOCK(zone); 1410 #endif 1411 CPU_UNLOCK(cpu); 1412 if (zone->uz_ctor) 1413 zone->uz_ctor(item, zone->uz_size, udata); 1414 if (flags & M_ZERO) 1415 bzero(item, zone->uz_size); 1416 return (item); 1417 } else if (cache->uc_freebucket) { 1418 /* 1419 * We have run out of items in our allocbucket. 1420 * See if we can switch with our free bucket. 1421 */ 1422 if (cache->uc_freebucket->ub_cnt > 0) { 1423 #ifdef UMA_DEBUG_ALLOC 1424 printf("uma_zalloc: Swapping empty with" 1425 " alloc.\n"); 1426 #endif 1427 bucket = cache->uc_freebucket; 1428 cache->uc_freebucket = cache->uc_allocbucket; 1429 cache->uc_allocbucket = bucket; 1430 1431 goto zalloc_start; 1432 } 1433 } 1434 } 1435 ZONE_LOCK(zone); 1436 /* Since we have locked the zone we may as well send back our stats */ 1437 zone->uz_allocs += cache->uc_allocs; 1438 cache->uc_allocs = 0; 1439 1440 /* Our old one is now a free bucket */ 1441 if (cache->uc_allocbucket) { 1442 KASSERT(cache->uc_allocbucket->ub_cnt == 0, 1443 ("uma_zalloc_arg: Freeing a non free bucket.")); 1444 LIST_INSERT_HEAD(&zone->uz_free_bucket, 1445 cache->uc_allocbucket, ub_link); 1446 cache->uc_allocbucket = NULL; 1447 } 1448 1449 /* Check the free list for a new alloc bucket */ 1450 if ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) { 1451 KASSERT(bucket->ub_cnt != 0, 1452 ("uma_zalloc_arg: Returning an empty bucket.")); 1453 1454 LIST_REMOVE(bucket, ub_link); 1455 cache->uc_allocbucket = bucket; 1456 ZONE_UNLOCK(zone); 1457 goto zalloc_start; 1458 } 1459 /* We are no longer associated with this cpu!!! */ 1460 CPU_UNLOCK(cpu); 1461 1462 /* Bump up our uz_count so we get here less */ 1463 if (zone->uz_count < BUCKET_MAX) 1464 zone->uz_count++; 1465 /* 1466 * Now lets just fill a bucket and put it on the free list. If that 1467 * works we'll restart the allocation from the begining. 1468 */ 1469 if (uma_zalloc_bucket(zone, flags)) { 1470 ZONE_UNLOCK(zone); 1471 goto zalloc_restart; 1472 } 1473 ZONE_UNLOCK(zone); 1474 /* 1475 * We may not be able to get a bucket so return an actual item. 1476 */ 1477 #ifdef UMA_DEBUG 1478 printf("uma_zalloc_arg: Bucketzone returned NULL\n"); 1479 #endif 1480 1481 return (uma_zalloc_internal(zone, udata, flags)); 1482 } 1483 1484 static uma_slab_t 1485 uma_zone_slab(uma_zone_t zone, int flags) 1486 { 1487 uma_slab_t slab; 1488 1489 /* 1490 * This is to prevent us from recursively trying to allocate 1491 * buckets. The problem is that if an allocation forces us to 1492 * grab a new bucket we will call page_alloc, which will go off 1493 * and cause the vm to allocate vm_map_entries. If we need new 1494 * buckets there too we will recurse in kmem_alloc and bad 1495 * things happen. So instead we return a NULL bucket, and make 1496 * the code that allocates buckets smart enough to deal with it 1497 */ 1498 if (zone->uz_flags & UMA_ZFLAG_INTERNAL && zone->uz_recurse != 0) 1499 return (NULL); 1500 1501 slab = NULL; 1502 1503 for (;;) { 1504 /* 1505 * Find a slab with some space. Prefer slabs that are partially 1506 * used over those that are totally full. This helps to reduce 1507 * fragmentation. 1508 */ 1509 if (zone->uz_free != 0) { 1510 if (!LIST_EMPTY(&zone->uz_part_slab)) { 1511 slab = LIST_FIRST(&zone->uz_part_slab); 1512 } else { 1513 slab = LIST_FIRST(&zone->uz_free_slab); 1514 LIST_REMOVE(slab, us_link); 1515 LIST_INSERT_HEAD(&zone->uz_part_slab, slab, 1516 us_link); 1517 } 1518 return (slab); 1519 } 1520 1521 /* 1522 * M_NOVM means don't ask at all! 1523 */ 1524 if (flags & M_NOVM) 1525 break; 1526 1527 if (zone->uz_maxpages && 1528 zone->uz_pages >= zone->uz_maxpages) { 1529 zone->uz_flags |= UMA_ZFLAG_FULL; 1530 1531 if (flags & M_NOWAIT) 1532 break; 1533 else 1534 msleep(zone, &zone->uz_lock, PVM, 1535 "zonelimit", 0); 1536 continue; 1537 } 1538 zone->uz_recurse++; 1539 slab = slab_zalloc(zone, flags); 1540 zone->uz_recurse--; 1541 /* 1542 * If we got a slab here it's safe to mark it partially used 1543 * and return. We assume that the caller is going to remove 1544 * at least one item. 1545 */ 1546 if (slab) { 1547 LIST_INSERT_HEAD(&zone->uz_part_slab, slab, us_link); 1548 return (slab); 1549 } 1550 /* 1551 * We might not have been able to get a slab but another cpu 1552 * could have while we were unlocked. Check again before we 1553 * fail. 1554 */ 1555 if (flags & M_NOWAIT) 1556 flags |= M_NOVM; 1557 } 1558 return (slab); 1559 } 1560 1561 static void * 1562 uma_slab_alloc(uma_zone_t zone, uma_slab_t slab) 1563 { 1564 void *item; 1565 u_int8_t freei; 1566 1567 freei = slab->us_firstfree; 1568 slab->us_firstfree = slab->us_freelist[freei]; 1569 item = slab->us_data + (zone->uz_rsize * freei); 1570 1571 slab->us_freecount--; 1572 zone->uz_free--; 1573 #ifdef INVARIANTS 1574 uma_dbg_alloc(zone, slab, item); 1575 #endif 1576 /* Move this slab to the full list */ 1577 if (slab->us_freecount == 0) { 1578 LIST_REMOVE(slab, us_link); 1579 LIST_INSERT_HEAD(&zone->uz_full_slab, slab, us_link); 1580 } 1581 1582 return (item); 1583 } 1584 1585 static int 1586 uma_zalloc_bucket(uma_zone_t zone, int flags) 1587 { 1588 uma_bucket_t bucket; 1589 uma_slab_t slab; 1590 int max; 1591 1592 /* 1593 * Try this zone's free list first so we don't allocate extra buckets. 1594 */ 1595 if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) { 1596 KASSERT(bucket->ub_cnt == 0, 1597 ("uma_zalloc_bucket: Bucket on free list is not empty.")); 1598 LIST_REMOVE(bucket, ub_link); 1599 } else { 1600 int bflags; 1601 1602 bflags = (flags & ~M_ZERO); 1603 if (zone->uz_flags & UMA_ZFLAG_CACHEONLY) 1604 bflags |= M_NOVM; 1605 1606 ZONE_UNLOCK(zone); 1607 bucket = bucket_alloc(zone->uz_count, bflags); 1608 ZONE_LOCK(zone); 1609 } 1610 1611 if (bucket == NULL) 1612 return (0); 1613 1614 #ifdef SMP 1615 /* 1616 * This code is here to limit the number of simultaneous bucket fills 1617 * for any given zone to the number of per cpu caches in this zone. This 1618 * is done so that we don't allocate more memory than we really need. 1619 */ 1620 if (zone->uz_fills >= mp_ncpus) 1621 goto done; 1622 1623 #endif 1624 zone->uz_fills++; 1625 1626 max = MIN(bucket->ub_entries, zone->uz_count); 1627 /* Try to keep the buckets totally full */ 1628 while (bucket->ub_cnt < max && 1629 (slab = uma_zone_slab(zone, flags)) != NULL) { 1630 while (slab->us_freecount && bucket->ub_cnt < max) { 1631 bucket->ub_bucket[bucket->ub_cnt++] = 1632 uma_slab_alloc(zone, slab); 1633 } 1634 /* Don't block on the next fill */ 1635 flags |= M_NOWAIT; 1636 } 1637 1638 zone->uz_fills--; 1639 1640 if (bucket->ub_cnt != 0) { 1641 LIST_INSERT_HEAD(&zone->uz_full_bucket, 1642 bucket, ub_link); 1643 return (1); 1644 } 1645 #ifdef SMP 1646 done: 1647 #endif 1648 bucket_free(bucket); 1649 1650 return (0); 1651 } 1652 /* 1653 * Allocates an item for an internal zone 1654 * 1655 * Arguments 1656 * zone The zone to alloc for. 1657 * udata The data to be passed to the constructor. 1658 * flags M_WAITOK, M_NOWAIT, M_ZERO. 1659 * 1660 * Returns 1661 * NULL if there is no memory and M_NOWAIT is set 1662 * An item if successful 1663 */ 1664 1665 static void * 1666 uma_zalloc_internal(uma_zone_t zone, void *udata, int flags) 1667 { 1668 uma_slab_t slab; 1669 void *item; 1670 1671 item = NULL; 1672 1673 #ifdef UMA_DEBUG_ALLOC 1674 printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone); 1675 #endif 1676 ZONE_LOCK(zone); 1677 1678 slab = uma_zone_slab(zone, flags); 1679 if (slab == NULL) { 1680 ZONE_UNLOCK(zone); 1681 return (NULL); 1682 } 1683 1684 item = uma_slab_alloc(zone, slab); 1685 1686 ZONE_UNLOCK(zone); 1687 1688 if (zone->uz_ctor != NULL) 1689 zone->uz_ctor(item, zone->uz_size, udata); 1690 if (flags & M_ZERO) 1691 bzero(item, zone->uz_size); 1692 1693 return (item); 1694 } 1695 1696 /* See uma.h */ 1697 void 1698 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 1699 { 1700 uma_cache_t cache; 1701 uma_bucket_t bucket; 1702 int bflags; 1703 int cpu; 1704 int skip; 1705 1706 /* This is the fast path free */ 1707 skip = 0; 1708 #ifdef UMA_DEBUG_ALLOC_1 1709 printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone); 1710 #endif 1711 /* 1712 * The race here is acceptable. If we miss it we'll just have to wait 1713 * a little longer for the limits to be reset. 1714 */ 1715 1716 if (zone->uz_flags & UMA_ZFLAG_FULL) 1717 goto zfree_internal; 1718 1719 if (zone->uz_dtor) { 1720 zone->uz_dtor(item, zone->uz_size, udata); 1721 skip = 1; 1722 } 1723 1724 zfree_restart: 1725 cpu = PCPU_GET(cpuid); 1726 CPU_LOCK(cpu); 1727 cache = &zone->uz_cpu[cpu]; 1728 1729 zfree_start: 1730 bucket = cache->uc_freebucket; 1731 1732 if (bucket) { 1733 /* 1734 * Do we have room in our bucket? It is OK for this uz count 1735 * check to be slightly out of sync. 1736 */ 1737 1738 if (bucket->ub_cnt < bucket->ub_entries) { 1739 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 1740 ("uma_zfree: Freeing to non free bucket index.")); 1741 bucket->ub_bucket[bucket->ub_cnt] = item; 1742 bucket->ub_cnt++; 1743 #ifdef INVARIANTS 1744 ZONE_LOCK(zone); 1745 if (zone->uz_flags & UMA_ZONE_MALLOC) 1746 uma_dbg_free(zone, udata, item); 1747 else 1748 uma_dbg_free(zone, NULL, item); 1749 ZONE_UNLOCK(zone); 1750 #endif 1751 CPU_UNLOCK(cpu); 1752 return; 1753 } else if (cache->uc_allocbucket) { 1754 #ifdef UMA_DEBUG_ALLOC 1755 printf("uma_zfree: Swapping buckets.\n"); 1756 #endif 1757 /* 1758 * We have run out of space in our freebucket. 1759 * See if we can switch with our alloc bucket. 1760 */ 1761 if (cache->uc_allocbucket->ub_cnt < 1762 cache->uc_freebucket->ub_cnt) { 1763 bucket = cache->uc_freebucket; 1764 cache->uc_freebucket = cache->uc_allocbucket; 1765 cache->uc_allocbucket = bucket; 1766 goto zfree_start; 1767 } 1768 } 1769 } 1770 /* 1771 * We can get here for two reasons: 1772 * 1773 * 1) The buckets are NULL 1774 * 2) The alloc and free buckets are both somewhat full. 1775 */ 1776 1777 ZONE_LOCK(zone); 1778 1779 bucket = cache->uc_freebucket; 1780 cache->uc_freebucket = NULL; 1781 1782 /* Can we throw this on the zone full list? */ 1783 if (bucket != NULL) { 1784 #ifdef UMA_DEBUG_ALLOC 1785 printf("uma_zfree: Putting old bucket on the free list.\n"); 1786 #endif 1787 /* ub_cnt is pointing to the last free item */ 1788 KASSERT(bucket->ub_cnt != 0, 1789 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n")); 1790 LIST_INSERT_HEAD(&zone->uz_full_bucket, 1791 bucket, ub_link); 1792 } 1793 if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) { 1794 LIST_REMOVE(bucket, ub_link); 1795 ZONE_UNLOCK(zone); 1796 cache->uc_freebucket = bucket; 1797 goto zfree_start; 1798 } 1799 /* We're done with this CPU now */ 1800 CPU_UNLOCK(cpu); 1801 1802 /* And the zone.. */ 1803 ZONE_UNLOCK(zone); 1804 1805 #ifdef UMA_DEBUG_ALLOC 1806 printf("uma_zfree: Allocating new free bucket.\n"); 1807 #endif 1808 bflags = M_NOWAIT; 1809 1810 if (zone->uz_flags & UMA_ZFLAG_CACHEONLY) 1811 bflags |= M_NOVM; 1812 bucket = bucket_alloc(zone->uz_count, bflags); 1813 if (bucket) { 1814 ZONE_LOCK(zone); 1815 LIST_INSERT_HEAD(&zone->uz_free_bucket, 1816 bucket, ub_link); 1817 ZONE_UNLOCK(zone); 1818 goto zfree_restart; 1819 } 1820 1821 /* 1822 * If nothing else caught this, we'll just do an internal free. 1823 */ 1824 1825 zfree_internal: 1826 1827 #ifdef INVARIANTS 1828 /* 1829 * If we need to skip the dtor and the uma_dbg_free in 1830 * uma_zfree_internal because we've already called the dtor 1831 * above, but we ended up here, then we need to make sure 1832 * that we take care of the uma_dbg_free immediately. 1833 */ 1834 if (skip) { 1835 ZONE_LOCK(zone); 1836 if (zone->uz_flags & UMA_ZONE_MALLOC) 1837 uma_dbg_free(zone, udata, item); 1838 else 1839 uma_dbg_free(zone, NULL, item); 1840 ZONE_UNLOCK(zone); 1841 } 1842 #endif 1843 uma_zfree_internal(zone, item, udata, skip); 1844 1845 return; 1846 1847 } 1848 1849 /* 1850 * Frees an item to an INTERNAL zone or allocates a free bucket 1851 * 1852 * Arguments: 1853 * zone The zone to free to 1854 * item The item we're freeing 1855 * udata User supplied data for the dtor 1856 * skip Skip the dtor, it was done in uma_zfree_arg 1857 */ 1858 static void 1859 uma_zfree_internal(uma_zone_t zone, void *item, void *udata, int skip) 1860 { 1861 uma_slab_t slab; 1862 u_int8_t *mem; 1863 u_int8_t freei; 1864 1865 if (!skip && zone->uz_dtor) 1866 zone->uz_dtor(item, zone->uz_size, udata); 1867 1868 ZONE_LOCK(zone); 1869 1870 if (!(zone->uz_flags & UMA_ZONE_MALLOC)) { 1871 mem = (u_int8_t *)((unsigned long)item & (~UMA_SLAB_MASK)); 1872 if (zone->uz_flags & UMA_ZONE_HASH) 1873 slab = hash_sfind(&zone->uz_hash, mem); 1874 else { 1875 mem += zone->uz_pgoff; 1876 slab = (uma_slab_t)mem; 1877 } 1878 } else { 1879 slab = (uma_slab_t)udata; 1880 } 1881 1882 /* Do we need to remove from any lists? */ 1883 if (slab->us_freecount+1 == zone->uz_ipers) { 1884 LIST_REMOVE(slab, us_link); 1885 LIST_INSERT_HEAD(&zone->uz_free_slab, slab, us_link); 1886 } else if (slab->us_freecount == 0) { 1887 LIST_REMOVE(slab, us_link); 1888 LIST_INSERT_HEAD(&zone->uz_part_slab, slab, us_link); 1889 } 1890 1891 /* Slab management stuff */ 1892 freei = ((unsigned long)item - (unsigned long)slab->us_data) 1893 / zone->uz_rsize; 1894 1895 #ifdef INVARIANTS 1896 if (!skip) 1897 uma_dbg_free(zone, slab, item); 1898 #endif 1899 1900 slab->us_freelist[freei] = slab->us_firstfree; 1901 slab->us_firstfree = freei; 1902 slab->us_freecount++; 1903 1904 /* Zone statistics */ 1905 zone->uz_free++; 1906 1907 if (zone->uz_flags & UMA_ZFLAG_FULL) { 1908 if (zone->uz_pages < zone->uz_maxpages) 1909 zone->uz_flags &= ~UMA_ZFLAG_FULL; 1910 1911 /* We can handle one more allocation */ 1912 wakeup_one(zone); 1913 } 1914 1915 ZONE_UNLOCK(zone); 1916 } 1917 1918 /* See uma.h */ 1919 void 1920 uma_zone_set_max(uma_zone_t zone, int nitems) 1921 { 1922 ZONE_LOCK(zone); 1923 if (zone->uz_ppera > 1) 1924 zone->uz_maxpages = nitems * zone->uz_ppera; 1925 else 1926 zone->uz_maxpages = nitems / zone->uz_ipers; 1927 1928 if (zone->uz_maxpages * zone->uz_ipers < nitems) 1929 zone->uz_maxpages++; 1930 1931 ZONE_UNLOCK(zone); 1932 } 1933 1934 /* See uma.h */ 1935 void 1936 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 1937 { 1938 ZONE_LOCK(zone); 1939 zone->uz_freef = freef; 1940 ZONE_UNLOCK(zone); 1941 } 1942 1943 /* See uma.h */ 1944 void 1945 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 1946 { 1947 ZONE_LOCK(zone); 1948 zone->uz_flags |= UMA_ZFLAG_PRIVALLOC; 1949 zone->uz_allocf = allocf; 1950 ZONE_UNLOCK(zone); 1951 } 1952 1953 /* See uma.h */ 1954 int 1955 uma_zone_set_obj(uma_zone_t zone, struct vm_object *obj, int count) 1956 { 1957 int pages; 1958 vm_offset_t kva; 1959 1960 mtx_lock(&Giant); 1961 1962 pages = count / zone->uz_ipers; 1963 1964 if (pages * zone->uz_ipers < count) 1965 pages++; 1966 1967 kva = kmem_alloc_pageable(kernel_map, pages * UMA_SLAB_SIZE); 1968 1969 if (kva == 0) { 1970 mtx_unlock(&Giant); 1971 return (0); 1972 } 1973 if (obj == NULL) { 1974 obj = vm_object_allocate(OBJT_DEFAULT, 1975 pages); 1976 } else { 1977 VM_OBJECT_LOCK_INIT(obj); 1978 _vm_object_allocate(OBJT_DEFAULT, 1979 pages, obj); 1980 } 1981 ZONE_LOCK(zone); 1982 zone->uz_kva = kva; 1983 zone->uz_obj = obj; 1984 zone->uz_maxpages = pages; 1985 zone->uz_allocf = obj_alloc; 1986 zone->uz_flags |= UMA_ZONE_NOFREE | UMA_ZFLAG_PRIVALLOC; 1987 ZONE_UNLOCK(zone); 1988 mtx_unlock(&Giant); 1989 1990 return (1); 1991 } 1992 1993 /* See uma.h */ 1994 void 1995 uma_prealloc(uma_zone_t zone, int items) 1996 { 1997 int slabs; 1998 uma_slab_t slab; 1999 2000 ZONE_LOCK(zone); 2001 slabs = items / zone->uz_ipers; 2002 if (slabs * zone->uz_ipers < items) 2003 slabs++; 2004 while (slabs > 0) { 2005 slab = slab_zalloc(zone, M_WAITOK); 2006 LIST_INSERT_HEAD(&zone->uz_free_slab, slab, us_link); 2007 slabs--; 2008 } 2009 ZONE_UNLOCK(zone); 2010 } 2011 2012 /* See uma.h */ 2013 void 2014 uma_reclaim(void) 2015 { 2016 #ifdef UMA_DEBUG 2017 printf("UMA: vm asked us to release pages!\n"); 2018 #endif 2019 bucket_enable(); 2020 zone_foreach(zone_drain); 2021 /* 2022 * Some slabs may have been freed but this zone will be visited early 2023 * we visit again so that we can free pages that are empty once other 2024 * zones are drained. We have to do the same for buckets. 2025 */ 2026 zone_drain(slabzone); 2027 bucket_zone_drain(); 2028 } 2029 2030 void * 2031 uma_large_malloc(int size, int wait) 2032 { 2033 void *mem; 2034 uma_slab_t slab; 2035 u_int8_t flags; 2036 2037 slab = uma_zalloc_internal(slabzone, NULL, wait); 2038 if (slab == NULL) 2039 return (NULL); 2040 mem = page_alloc(NULL, size, &flags, wait); 2041 if (mem) { 2042 vsetslab((vm_offset_t)mem, slab); 2043 slab->us_data = mem; 2044 slab->us_flags = flags | UMA_SLAB_MALLOC; 2045 slab->us_size = size; 2046 } else { 2047 uma_zfree_internal(slabzone, slab, NULL, 0); 2048 } 2049 2050 2051 return (mem); 2052 } 2053 2054 void 2055 uma_large_free(uma_slab_t slab) 2056 { 2057 vsetobj((vm_offset_t)slab->us_data, kmem_object); 2058 /* 2059 * XXX: We get a lock order reversal if we don't have Giant: 2060 * vm_map_remove (locks system map) -> vm_map_delete -> 2061 * vm_map_entry_unwire -> vm_fault_unwire -> mtx_lock(&Giant) 2062 */ 2063 if (!mtx_owned(&Giant)) { 2064 mtx_lock(&Giant); 2065 page_free(slab->us_data, slab->us_size, slab->us_flags); 2066 mtx_unlock(&Giant); 2067 } else 2068 page_free(slab->us_data, slab->us_size, slab->us_flags); 2069 uma_zfree_internal(slabzone, slab, NULL, 0); 2070 } 2071 2072 void 2073 uma_print_stats(void) 2074 { 2075 zone_foreach(uma_print_zone); 2076 } 2077 2078 void 2079 uma_print_zone(uma_zone_t zone) 2080 { 2081 printf("%s(%p) size %d(%d) flags %d ipers %d ppera %d out %d free %d\n", 2082 zone->uz_name, zone, zone->uz_size, zone->uz_rsize, zone->uz_flags, 2083 zone->uz_ipers, zone->uz_ppera, 2084 (zone->uz_ipers * zone->uz_pages) - zone->uz_free, zone->uz_free); 2085 } 2086 2087 /* 2088 * Sysctl handler for vm.zone 2089 * 2090 * stolen from vm_zone.c 2091 */ 2092 static int 2093 sysctl_vm_zone(SYSCTL_HANDLER_ARGS) 2094 { 2095 int error, len, cnt; 2096 const int linesize = 128; /* conservative */ 2097 int totalfree; 2098 char *tmpbuf, *offset; 2099 uma_zone_t z; 2100 char *p; 2101 int cpu; 2102 int cachefree; 2103 uma_bucket_t bucket; 2104 uma_cache_t cache; 2105 2106 cnt = 0; 2107 mtx_lock(&uma_mtx); 2108 LIST_FOREACH(z, &uma_zones, uz_link) 2109 cnt++; 2110 mtx_unlock(&uma_mtx); 2111 MALLOC(tmpbuf, char *, (cnt == 0 ? 1 : cnt) * linesize, 2112 M_TEMP, M_WAITOK); 2113 len = snprintf(tmpbuf, linesize, 2114 "\nITEM SIZE LIMIT USED FREE REQUESTS\n\n"); 2115 if (cnt == 0) 2116 tmpbuf[len - 1] = '\0'; 2117 error = SYSCTL_OUT(req, tmpbuf, cnt == 0 ? len-1 : len); 2118 if (error || cnt == 0) 2119 goto out; 2120 offset = tmpbuf; 2121 mtx_lock(&uma_mtx); 2122 LIST_FOREACH(z, &uma_zones, uz_link) { 2123 if (cnt == 0) /* list may have changed size */ 2124 break; 2125 if (!(z->uz_flags & UMA_ZFLAG_INTERNAL)) { 2126 for (cpu = 0; cpu < maxcpu; cpu++) { 2127 if (CPU_ABSENT(cpu)) 2128 continue; 2129 CPU_LOCK(cpu); 2130 } 2131 } 2132 ZONE_LOCK(z); 2133 cachefree = 0; 2134 if (!(z->uz_flags & UMA_ZFLAG_INTERNAL)) { 2135 for (cpu = 0; cpu < maxcpu; cpu++) { 2136 if (CPU_ABSENT(cpu)) 2137 continue; 2138 cache = &z->uz_cpu[cpu]; 2139 if (cache->uc_allocbucket != NULL) 2140 cachefree += cache->uc_allocbucket->ub_cnt; 2141 if (cache->uc_freebucket != NULL) 2142 cachefree += cache->uc_freebucket->ub_cnt; 2143 CPU_UNLOCK(cpu); 2144 } 2145 } 2146 LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link) { 2147 cachefree += bucket->ub_cnt; 2148 } 2149 totalfree = z->uz_free + cachefree; 2150 len = snprintf(offset, linesize, 2151 "%-12.12s %6.6u, %8.8u, %6.6u, %6.6u, %8.8llu\n", 2152 z->uz_name, z->uz_size, 2153 z->uz_maxpages * z->uz_ipers, 2154 (z->uz_ipers * (z->uz_pages / z->uz_ppera)) - totalfree, 2155 totalfree, 2156 (unsigned long long)z->uz_allocs); 2157 ZONE_UNLOCK(z); 2158 for (p = offset + 12; p > offset && *p == ' '; --p) 2159 /* nothing */ ; 2160 p[1] = ':'; 2161 cnt--; 2162 offset += len; 2163 } 2164 mtx_unlock(&uma_mtx); 2165 *offset++ = '\0'; 2166 error = SYSCTL_OUT(req, tmpbuf, offset - tmpbuf); 2167 out: 2168 FREE(tmpbuf, M_TEMP); 2169 return (error); 2170 } 2171