1 /*- 2 * Copyright (c) 2004, 2005, 3 * Bosko Milekic <bmilekic@freebsd.org> 4 * Copyright (c) 2002, 2003, 2004, 2005, 5 * Jeffrey Roberson <jeff@freebsd.org> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /* 30 * uma_core.c Implementation of the Universal Memory allocator 31 * 32 * This allocator is intended to replace the multitude of similar object caches 33 * in the standard FreeBSD kernel. The intent is to be flexible as well as 34 * effecient. A primary design goal is to return unused memory to the rest of 35 * the system. This will make the system as a whole more flexible due to the 36 * ability to move memory to subsystems which most need it instead of leaving 37 * pools of reserved memory unused. 38 * 39 * The basic ideas stem from similar slab/zone based allocators whose algorithms 40 * are well known. 41 * 42 */ 43 44 /* 45 * TODO: 46 * - Improve memory usage for large allocations 47 * - Investigate cache size adjustments 48 */ 49 50 #include <sys/cdefs.h> 51 __FBSDID("$FreeBSD$"); 52 53 /* I should really use ktr.. */ 54 /* 55 #define UMA_DEBUG 1 56 #define UMA_DEBUG_ALLOC 1 57 #define UMA_DEBUG_ALLOC_1 1 58 */ 59 60 #include "opt_param.h" 61 #include <sys/param.h> 62 #include <sys/systm.h> 63 #include <sys/kernel.h> 64 #include <sys/types.h> 65 #include <sys/queue.h> 66 #include <sys/malloc.h> 67 #include <sys/ktr.h> 68 #include <sys/lock.h> 69 #include <sys/sysctl.h> 70 #include <sys/mutex.h> 71 #include <sys/proc.h> 72 #include <sys/smp.h> 73 #include <sys/vmmeter.h> 74 75 #include <vm/vm.h> 76 #include <vm/vm_object.h> 77 #include <vm/vm_page.h> 78 #include <vm/vm_param.h> 79 #include <vm/vm_map.h> 80 #include <vm/vm_kern.h> 81 #include <vm/vm_extern.h> 82 #include <vm/uma.h> 83 #include <vm/uma_int.h> 84 #include <vm/uma_dbg.h> 85 86 #include <machine/vmparam.h> 87 88 /* 89 * This is the zone and keg from which all zones are spawned. The idea is that 90 * even the zone & keg heads are allocated from the allocator, so we use the 91 * bss section to bootstrap us. 92 */ 93 static struct uma_keg masterkeg; 94 static struct uma_zone masterzone_k; 95 static struct uma_zone masterzone_z; 96 static uma_zone_t kegs = &masterzone_k; 97 static uma_zone_t zones = &masterzone_z; 98 99 /* This is the zone from which all of uma_slab_t's are allocated. */ 100 static uma_zone_t slabzone; 101 static uma_zone_t slabrefzone; /* With refcounters (for UMA_ZONE_REFCNT) */ 102 103 /* 104 * The initial hash tables come out of this zone so they can be allocated 105 * prior to malloc coming up. 106 */ 107 static uma_zone_t hashzone; 108 109 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 110 111 /* 112 * Are we allowed to allocate buckets? 113 */ 114 static int bucketdisable = 1; 115 116 /* Linked list of all kegs in the system */ 117 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(&uma_kegs); 118 119 /* This mutex protects the keg list */ 120 static struct mtx uma_mtx; 121 122 /* These are the pcpu cache locks */ 123 static struct mtx uma_pcpu_mtx[MAXCPU]; 124 125 /* Linked list of boot time pages */ 126 static LIST_HEAD(,uma_slab) uma_boot_pages = 127 LIST_HEAD_INITIALIZER(&uma_boot_pages); 128 129 /* Count of free boottime pages */ 130 static int uma_boot_free = 0; 131 132 /* Is the VM done starting up? */ 133 static int booted = 0; 134 135 /* Maximum number of allowed items-per-slab if the slab header is OFFPAGE */ 136 static u_int uma_max_ipers; 137 static u_int uma_max_ipers_ref; 138 139 /* 140 * This is the handle used to schedule events that need to happen 141 * outside of the allocation fast path. 142 */ 143 static struct callout uma_callout; 144 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 145 146 /* 147 * This structure is passed as the zone ctor arg so that I don't have to create 148 * a special allocation function just for zones. 149 */ 150 struct uma_zctor_args { 151 char *name; 152 size_t size; 153 uma_ctor ctor; 154 uma_dtor dtor; 155 uma_init uminit; 156 uma_fini fini; 157 uma_keg_t keg; 158 int align; 159 u_int16_t flags; 160 }; 161 162 struct uma_kctor_args { 163 uma_zone_t zone; 164 size_t size; 165 uma_init uminit; 166 uma_fini fini; 167 int align; 168 u_int16_t flags; 169 }; 170 171 struct uma_bucket_zone { 172 uma_zone_t ubz_zone; 173 char *ubz_name; 174 int ubz_entries; 175 }; 176 177 #define BUCKET_MAX 128 178 179 struct uma_bucket_zone bucket_zones[] = { 180 { NULL, "16 Bucket", 16 }, 181 { NULL, "32 Bucket", 32 }, 182 { NULL, "64 Bucket", 64 }, 183 { NULL, "128 Bucket", 128 }, 184 { NULL, NULL, 0} 185 }; 186 187 #define BUCKET_SHIFT 4 188 #define BUCKET_ZONES ((BUCKET_MAX >> BUCKET_SHIFT) + 1) 189 190 /* 191 * bucket_size[] maps requested bucket sizes to zones that allocate a bucket 192 * of approximately the right size. 193 */ 194 static uint8_t bucket_size[BUCKET_ZONES]; 195 196 enum zfreeskip { SKIP_NONE, SKIP_DTOR, SKIP_FINI }; 197 198 /* Prototypes.. */ 199 200 static void *obj_alloc(uma_zone_t, int, u_int8_t *, int); 201 static void *page_alloc(uma_zone_t, int, u_int8_t *, int); 202 static void *startup_alloc(uma_zone_t, int, u_int8_t *, int); 203 static void page_free(void *, int, u_int8_t); 204 static uma_slab_t slab_zalloc(uma_zone_t, int); 205 static void cache_drain(uma_zone_t); 206 static void bucket_drain(uma_zone_t, uma_bucket_t); 207 static void bucket_cache_drain(uma_zone_t zone); 208 static int keg_ctor(void *, int, void *, int); 209 static void keg_dtor(void *, int, void *); 210 static int zone_ctor(void *, int, void *, int); 211 static void zone_dtor(void *, int, void *); 212 static int zero_init(void *, int, int); 213 static void zone_small_init(uma_zone_t zone); 214 static void zone_large_init(uma_zone_t zone); 215 static void zone_foreach(void (*zfunc)(uma_zone_t)); 216 static void zone_timeout(uma_zone_t zone); 217 static int hash_alloc(struct uma_hash *); 218 static int hash_expand(struct uma_hash *, struct uma_hash *); 219 static void hash_free(struct uma_hash *hash); 220 static void uma_timeout(void *); 221 static void uma_startup3(void); 222 static void *uma_zalloc_internal(uma_zone_t, void *, int); 223 static void uma_zfree_internal(uma_zone_t, void *, void *, enum zfreeskip); 224 static void bucket_enable(void); 225 static void bucket_init(void); 226 static uma_bucket_t bucket_alloc(int, int); 227 static void bucket_free(uma_bucket_t); 228 static void bucket_zone_drain(void); 229 static int uma_zalloc_bucket(uma_zone_t zone, int flags); 230 static uma_slab_t uma_zone_slab(uma_zone_t zone, int flags); 231 static void *uma_slab_alloc(uma_zone_t zone, uma_slab_t slab); 232 static void zone_drain(uma_zone_t); 233 static uma_zone_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 234 uma_fini fini, int align, u_int16_t flags); 235 236 void uma_print_zone(uma_zone_t); 237 void uma_print_stats(void); 238 static int sysctl_vm_zone(SYSCTL_HANDLER_ARGS); 239 240 #ifdef WITNESS 241 static int nosleepwithlocks = 1; 242 SYSCTL_INT(_debug, OID_AUTO, nosleepwithlocks, CTLFLAG_RW, &nosleepwithlocks, 243 0, "Convert M_WAITOK to M_NOWAIT to avoid lock-held-across-sleep paths"); 244 #else 245 static int nosleepwithlocks = 0; 246 SYSCTL_INT(_debug, OID_AUTO, nosleepwithlocks, CTLFLAG_RW, &nosleepwithlocks, 247 0, "Convert M_WAITOK to M_NOWAIT to avoid lock-held-across-sleep paths"); 248 #endif 249 SYSCTL_OID(_vm, OID_AUTO, zone, CTLTYPE_STRING|CTLFLAG_RD, 250 NULL, 0, sysctl_vm_zone, "A", "Zone Info"); 251 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 252 253 /* 254 * This routine checks to see whether or not it's safe to enable buckets. 255 */ 256 257 static void 258 bucket_enable(void) 259 { 260 if (cnt.v_free_count < cnt.v_free_min) 261 bucketdisable = 1; 262 else 263 bucketdisable = 0; 264 } 265 266 /* 267 * Initialize bucket_zones, the array of zones of buckets of various sizes. 268 * 269 * For each zone, calculate the memory required for each bucket, consisting 270 * of the header and an array of pointers. Initialize bucket_size[] to point 271 * the range of appropriate bucket sizes at the zone. 272 */ 273 static void 274 bucket_init(void) 275 { 276 struct uma_bucket_zone *ubz; 277 int i; 278 int j; 279 280 for (i = 0, j = 0; bucket_zones[j].ubz_entries != 0; j++) { 281 int size; 282 283 ubz = &bucket_zones[j]; 284 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 285 size += sizeof(void *) * ubz->ubz_entries; 286 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 287 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 288 for (; i <= ubz->ubz_entries; i += (1 << BUCKET_SHIFT)) 289 bucket_size[i >> BUCKET_SHIFT] = j; 290 } 291 } 292 293 /* 294 * Given a desired number of entries for a bucket, return the zone from which 295 * to allocate the bucket. 296 */ 297 static struct uma_bucket_zone * 298 bucket_zone_lookup(int entries) 299 { 300 int idx; 301 302 idx = howmany(entries, 1 << BUCKET_SHIFT); 303 return (&bucket_zones[bucket_size[idx]]); 304 } 305 306 static uma_bucket_t 307 bucket_alloc(int entries, int bflags) 308 { 309 struct uma_bucket_zone *ubz; 310 uma_bucket_t bucket; 311 312 /* 313 * This is to stop us from allocating per cpu buckets while we're 314 * running out of UMA_BOOT_PAGES. Otherwise, we would exhaust the 315 * boot pages. This also prevents us from allocating buckets in 316 * low memory situations. 317 */ 318 if (bucketdisable) 319 return (NULL); 320 321 ubz = bucket_zone_lookup(entries); 322 bucket = uma_zalloc_internal(ubz->ubz_zone, NULL, bflags); 323 if (bucket) { 324 #ifdef INVARIANTS 325 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 326 #endif 327 bucket->ub_cnt = 0; 328 bucket->ub_entries = ubz->ubz_entries; 329 } 330 331 return (bucket); 332 } 333 334 static void 335 bucket_free(uma_bucket_t bucket) 336 { 337 struct uma_bucket_zone *ubz; 338 339 ubz = bucket_zone_lookup(bucket->ub_entries); 340 uma_zfree_internal(ubz->ubz_zone, bucket, NULL, SKIP_NONE); 341 } 342 343 static void 344 bucket_zone_drain(void) 345 { 346 struct uma_bucket_zone *ubz; 347 348 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 349 zone_drain(ubz->ubz_zone); 350 } 351 352 353 /* 354 * Routine called by timeout which is used to fire off some time interval 355 * based calculations. (stats, hash size, etc.) 356 * 357 * Arguments: 358 * arg Unused 359 * 360 * Returns: 361 * Nothing 362 */ 363 static void 364 uma_timeout(void *unused) 365 { 366 bucket_enable(); 367 zone_foreach(zone_timeout); 368 369 /* Reschedule this event */ 370 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 371 } 372 373 /* 374 * Routine to perform timeout driven calculations. This expands the 375 * hashes and does per cpu statistics aggregation. 376 * 377 * Arguments: 378 * zone The zone to operate on 379 * 380 * Returns: 381 * Nothing 382 */ 383 static void 384 zone_timeout(uma_zone_t zone) 385 { 386 uma_keg_t keg; 387 uma_cache_t cache; 388 u_int64_t alloc; 389 int cpu; 390 391 keg = zone->uz_keg; 392 alloc = 0; 393 394 /* 395 * Aggregate per cpu cache statistics back to the zone. 396 * 397 * XXX This should be done in the sysctl handler. 398 * 399 * I may rewrite this to set a flag in the per cpu cache instead of 400 * locking. If the flag is not cleared on the next round I will have 401 * to lock and do it here instead so that the statistics don't get too 402 * far out of sync. 403 */ 404 if (!(keg->uk_flags & UMA_ZFLAG_INTERNAL)) { 405 for (cpu = 0; cpu <= mp_maxid; cpu++) { 406 if (CPU_ABSENT(cpu)) 407 continue; 408 CPU_LOCK(cpu); 409 cache = &zone->uz_cpu[cpu]; 410 /* Add them up, and reset */ 411 alloc += cache->uc_allocs; 412 cache->uc_allocs = 0; 413 CPU_UNLOCK(cpu); 414 } 415 } 416 417 /* Now push these stats back into the zone.. */ 418 ZONE_LOCK(zone); 419 zone->uz_allocs += alloc; 420 421 /* 422 * Expand the zone hash table. 423 * 424 * This is done if the number of slabs is larger than the hash size. 425 * What I'm trying to do here is completely reduce collisions. This 426 * may be a little aggressive. Should I allow for two collisions max? 427 */ 428 429 if (keg->uk_flags & UMA_ZONE_HASH && 430 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) { 431 struct uma_hash newhash; 432 struct uma_hash oldhash; 433 int ret; 434 435 /* 436 * This is so involved because allocating and freeing 437 * while the zone lock is held will lead to deadlock. 438 * I have to do everything in stages and check for 439 * races. 440 */ 441 newhash = keg->uk_hash; 442 ZONE_UNLOCK(zone); 443 ret = hash_alloc(&newhash); 444 ZONE_LOCK(zone); 445 if (ret) { 446 if (hash_expand(&keg->uk_hash, &newhash)) { 447 oldhash = keg->uk_hash; 448 keg->uk_hash = newhash; 449 } else 450 oldhash = newhash; 451 452 ZONE_UNLOCK(zone); 453 hash_free(&oldhash); 454 ZONE_LOCK(zone); 455 } 456 } 457 ZONE_UNLOCK(zone); 458 } 459 460 /* 461 * Allocate and zero fill the next sized hash table from the appropriate 462 * backing store. 463 * 464 * Arguments: 465 * hash A new hash structure with the old hash size in uh_hashsize 466 * 467 * Returns: 468 * 1 on sucess and 0 on failure. 469 */ 470 static int 471 hash_alloc(struct uma_hash *hash) 472 { 473 int oldsize; 474 int alloc; 475 476 oldsize = hash->uh_hashsize; 477 478 /* We're just going to go to a power of two greater */ 479 if (oldsize) { 480 hash->uh_hashsize = oldsize * 2; 481 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 482 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 483 M_UMAHASH, M_NOWAIT); 484 } else { 485 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 486 hash->uh_slab_hash = uma_zalloc_internal(hashzone, NULL, 487 M_WAITOK); 488 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 489 } 490 if (hash->uh_slab_hash) { 491 bzero(hash->uh_slab_hash, alloc); 492 hash->uh_hashmask = hash->uh_hashsize - 1; 493 return (1); 494 } 495 496 return (0); 497 } 498 499 /* 500 * Expands the hash table for HASH zones. This is done from zone_timeout 501 * to reduce collisions. This must not be done in the regular allocation 502 * path, otherwise, we can recurse on the vm while allocating pages. 503 * 504 * Arguments: 505 * oldhash The hash you want to expand 506 * newhash The hash structure for the new table 507 * 508 * Returns: 509 * Nothing 510 * 511 * Discussion: 512 */ 513 static int 514 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 515 { 516 uma_slab_t slab; 517 int hval; 518 int i; 519 520 if (!newhash->uh_slab_hash) 521 return (0); 522 523 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 524 return (0); 525 526 /* 527 * I need to investigate hash algorithms for resizing without a 528 * full rehash. 529 */ 530 531 for (i = 0; i < oldhash->uh_hashsize; i++) 532 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) { 533 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]); 534 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink); 535 hval = UMA_HASH(newhash, slab->us_data); 536 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 537 slab, us_hlink); 538 } 539 540 return (1); 541 } 542 543 /* 544 * Free the hash bucket to the appropriate backing store. 545 * 546 * Arguments: 547 * slab_hash The hash bucket we're freeing 548 * hashsize The number of entries in that hash bucket 549 * 550 * Returns: 551 * Nothing 552 */ 553 static void 554 hash_free(struct uma_hash *hash) 555 { 556 if (hash->uh_slab_hash == NULL) 557 return; 558 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 559 uma_zfree_internal(hashzone, 560 hash->uh_slab_hash, NULL, SKIP_NONE); 561 else 562 free(hash->uh_slab_hash, M_UMAHASH); 563 } 564 565 /* 566 * Frees all outstanding items in a bucket 567 * 568 * Arguments: 569 * zone The zone to free to, must be unlocked. 570 * bucket The free/alloc bucket with items, cpu queue must be locked. 571 * 572 * Returns: 573 * Nothing 574 */ 575 576 static void 577 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 578 { 579 uma_slab_t slab; 580 int mzone; 581 void *item; 582 583 if (bucket == NULL) 584 return; 585 586 slab = NULL; 587 mzone = 0; 588 589 /* We have to lookup the slab again for malloc.. */ 590 if (zone->uz_keg->uk_flags & UMA_ZONE_MALLOC) 591 mzone = 1; 592 593 while (bucket->ub_cnt > 0) { 594 bucket->ub_cnt--; 595 item = bucket->ub_bucket[bucket->ub_cnt]; 596 #ifdef INVARIANTS 597 bucket->ub_bucket[bucket->ub_cnt] = NULL; 598 KASSERT(item != NULL, 599 ("bucket_drain: botched ptr, item is NULL")); 600 #endif 601 /* 602 * This is extremely inefficient. The slab pointer was passed 603 * to uma_zfree_arg, but we lost it because the buckets don't 604 * hold them. This will go away when free() gets a size passed 605 * to it. 606 */ 607 if (mzone) 608 slab = vtoslab((vm_offset_t)item & (~UMA_SLAB_MASK)); 609 uma_zfree_internal(zone, item, slab, SKIP_DTOR); 610 } 611 } 612 613 /* 614 * Drains the per cpu caches for a zone. 615 * 616 * Arguments: 617 * zone The zone to drain, must be unlocked. 618 * 619 * Returns: 620 * Nothing 621 */ 622 static void 623 cache_drain(uma_zone_t zone) 624 { 625 uma_cache_t cache; 626 int cpu; 627 628 /* 629 * We have to lock each cpu cache before locking the zone 630 */ 631 for (cpu = 0; cpu <= mp_maxid; cpu++) { 632 if (CPU_ABSENT(cpu)) 633 continue; 634 CPU_LOCK(cpu); 635 cache = &zone->uz_cpu[cpu]; 636 bucket_drain(zone, cache->uc_allocbucket); 637 bucket_drain(zone, cache->uc_freebucket); 638 if (cache->uc_allocbucket != NULL) 639 bucket_free(cache->uc_allocbucket); 640 if (cache->uc_freebucket != NULL) 641 bucket_free(cache->uc_freebucket); 642 cache->uc_allocbucket = cache->uc_freebucket = NULL; 643 } 644 ZONE_LOCK(zone); 645 bucket_cache_drain(zone); 646 ZONE_UNLOCK(zone); 647 for (cpu = 0; cpu <= mp_maxid; cpu++) { 648 if (CPU_ABSENT(cpu)) 649 continue; 650 CPU_UNLOCK(cpu); 651 } 652 } 653 654 /* 655 * Drain the cached buckets from a zone. Expects a locked zone on entry. 656 */ 657 static void 658 bucket_cache_drain(uma_zone_t zone) 659 { 660 uma_bucket_t bucket; 661 662 /* 663 * Drain the bucket queues and free the buckets, we just keep two per 664 * cpu (alloc/free). 665 */ 666 while ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) { 667 LIST_REMOVE(bucket, ub_link); 668 ZONE_UNLOCK(zone); 669 bucket_drain(zone, bucket); 670 bucket_free(bucket); 671 ZONE_LOCK(zone); 672 } 673 674 /* Now we do the free queue.. */ 675 while ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) { 676 LIST_REMOVE(bucket, ub_link); 677 bucket_free(bucket); 678 } 679 } 680 681 /* 682 * Frees pages from a zone back to the system. This is done on demand from 683 * the pageout daemon. 684 * 685 * Arguments: 686 * zone The zone to free pages from 687 * all Should we drain all items? 688 * 689 * Returns: 690 * Nothing. 691 */ 692 static void 693 zone_drain(uma_zone_t zone) 694 { 695 struct slabhead freeslabs = { 0 }; 696 uma_keg_t keg; 697 uma_slab_t slab; 698 uma_slab_t n; 699 u_int8_t flags; 700 u_int8_t *mem; 701 int i; 702 703 keg = zone->uz_keg; 704 705 /* 706 * We don't want to take pages from statically allocated zones at this 707 * time 708 */ 709 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 710 return; 711 712 ZONE_LOCK(zone); 713 714 #ifdef UMA_DEBUG 715 printf("%s free items: %u\n", zone->uz_name, keg->uk_free); 716 #endif 717 bucket_cache_drain(zone); 718 if (keg->uk_free == 0) 719 goto finished; 720 721 slab = LIST_FIRST(&keg->uk_free_slab); 722 while (slab) { 723 n = LIST_NEXT(slab, us_link); 724 725 /* We have no where to free these to */ 726 if (slab->us_flags & UMA_SLAB_BOOT) { 727 slab = n; 728 continue; 729 } 730 731 LIST_REMOVE(slab, us_link); 732 keg->uk_pages -= keg->uk_ppera; 733 keg->uk_free -= keg->uk_ipers; 734 735 if (keg->uk_flags & UMA_ZONE_HASH) 736 UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data); 737 738 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 739 740 slab = n; 741 } 742 finished: 743 ZONE_UNLOCK(zone); 744 745 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 746 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 747 if (keg->uk_fini) 748 for (i = 0; i < keg->uk_ipers; i++) 749 keg->uk_fini( 750 slab->us_data + (keg->uk_rsize * i), 751 keg->uk_size); 752 flags = slab->us_flags; 753 mem = slab->us_data; 754 755 if ((keg->uk_flags & UMA_ZONE_MALLOC) || 756 (keg->uk_flags & UMA_ZONE_REFCNT)) { 757 vm_object_t obj; 758 759 if (flags & UMA_SLAB_KMEM) 760 obj = kmem_object; 761 else 762 obj = NULL; 763 for (i = 0; i < keg->uk_ppera; i++) 764 vsetobj((vm_offset_t)mem + (i * PAGE_SIZE), 765 obj); 766 } 767 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 768 uma_zfree_internal(keg->uk_slabzone, slab, NULL, 769 SKIP_NONE); 770 #ifdef UMA_DEBUG 771 printf("%s: Returning %d bytes.\n", 772 zone->uz_name, UMA_SLAB_SIZE * keg->uk_ppera); 773 #endif 774 keg->uk_freef(mem, UMA_SLAB_SIZE * keg->uk_ppera, flags); 775 } 776 } 777 778 /* 779 * Allocate a new slab for a zone. This does not insert the slab onto a list. 780 * 781 * Arguments: 782 * zone The zone to allocate slabs for 783 * wait Shall we wait? 784 * 785 * Returns: 786 * The slab that was allocated or NULL if there is no memory and the 787 * caller specified M_NOWAIT. 788 */ 789 static uma_slab_t 790 slab_zalloc(uma_zone_t zone, int wait) 791 { 792 uma_slabrefcnt_t slabref; 793 uma_slab_t slab; 794 uma_keg_t keg; 795 u_int8_t *mem; 796 u_int8_t flags; 797 int i; 798 799 slab = NULL; 800 keg = zone->uz_keg; 801 802 #ifdef UMA_DEBUG 803 printf("slab_zalloc: Allocating a new slab for %s\n", zone->uz_name); 804 #endif 805 ZONE_UNLOCK(zone); 806 807 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 808 slab = uma_zalloc_internal(keg->uk_slabzone, NULL, wait); 809 if (slab == NULL) { 810 ZONE_LOCK(zone); 811 return NULL; 812 } 813 } 814 815 /* 816 * This reproduces the old vm_zone behavior of zero filling pages the 817 * first time they are added to a zone. 818 * 819 * Malloced items are zeroed in uma_zalloc. 820 */ 821 822 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 823 wait |= M_ZERO; 824 else 825 wait &= ~M_ZERO; 826 827 mem = keg->uk_allocf(zone, keg->uk_ppera * UMA_SLAB_SIZE, 828 &flags, wait); 829 if (mem == NULL) { 830 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 831 uma_zfree_internal(keg->uk_slabzone, slab, NULL, 0); 832 ZONE_LOCK(zone); 833 return (NULL); 834 } 835 836 /* Point the slab into the allocated memory */ 837 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 838 slab = (uma_slab_t )(mem + keg->uk_pgoff); 839 840 if ((keg->uk_flags & UMA_ZONE_MALLOC) || 841 (keg->uk_flags & UMA_ZONE_REFCNT)) 842 for (i = 0; i < keg->uk_ppera; i++) 843 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 844 845 slab->us_keg = keg; 846 slab->us_data = mem; 847 slab->us_freecount = keg->uk_ipers; 848 slab->us_firstfree = 0; 849 slab->us_flags = flags; 850 851 if (keg->uk_flags & UMA_ZONE_REFCNT) { 852 slabref = (uma_slabrefcnt_t)slab; 853 for (i = 0; i < keg->uk_ipers; i++) { 854 slabref->us_freelist[i].us_refcnt = 0; 855 slabref->us_freelist[i].us_item = i+1; 856 } 857 } else { 858 for (i = 0; i < keg->uk_ipers; i++) 859 slab->us_freelist[i].us_item = i+1; 860 } 861 862 if (keg->uk_init != NULL) { 863 for (i = 0; i < keg->uk_ipers; i++) 864 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 865 keg->uk_size, wait) != 0) 866 break; 867 if (i != keg->uk_ipers) { 868 if (keg->uk_fini != NULL) { 869 for (i--; i > -1; i--) 870 keg->uk_fini(slab->us_data + 871 (keg->uk_rsize * i), 872 keg->uk_size); 873 } 874 if ((keg->uk_flags & UMA_ZONE_MALLOC) || 875 (keg->uk_flags & UMA_ZONE_REFCNT)) 876 for (i = 0; i < keg->uk_ppera; i++) 877 vsetobj((vm_offset_t)mem + 878 (i * PAGE_SIZE), NULL); 879 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 880 uma_zfree_internal(keg->uk_slabzone, slab, 881 NULL, SKIP_NONE); 882 keg->uk_freef(mem, UMA_SLAB_SIZE * keg->uk_ppera, 883 flags); 884 ZONE_LOCK(zone); 885 return (NULL); 886 } 887 } 888 ZONE_LOCK(zone); 889 890 if (keg->uk_flags & UMA_ZONE_HASH) 891 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 892 893 keg->uk_pages += keg->uk_ppera; 894 keg->uk_free += keg->uk_ipers; 895 896 return (slab); 897 } 898 899 /* 900 * This function is intended to be used early on in place of page_alloc() so 901 * that we may use the boot time page cache to satisfy allocations before 902 * the VM is ready. 903 */ 904 static void * 905 startup_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait) 906 { 907 uma_keg_t keg; 908 909 keg = zone->uz_keg; 910 911 /* 912 * Check our small startup cache to see if it has pages remaining. 913 */ 914 mtx_lock(&uma_mtx); 915 if (uma_boot_free != 0) { 916 uma_slab_t tmps; 917 918 tmps = LIST_FIRST(&uma_boot_pages); 919 LIST_REMOVE(tmps, us_link); 920 uma_boot_free--; 921 mtx_unlock(&uma_mtx); 922 *pflag = tmps->us_flags; 923 return (tmps->us_data); 924 } 925 mtx_unlock(&uma_mtx); 926 if (booted == 0) 927 panic("UMA: Increase UMA_BOOT_PAGES"); 928 /* 929 * Now that we've booted reset these users to their real allocator. 930 */ 931 #ifdef UMA_MD_SMALL_ALLOC 932 keg->uk_allocf = uma_small_alloc; 933 #else 934 keg->uk_allocf = page_alloc; 935 #endif 936 return keg->uk_allocf(zone, bytes, pflag, wait); 937 } 938 939 /* 940 * Allocates a number of pages from the system 941 * 942 * Arguments: 943 * zone Unused 944 * bytes The number of bytes requested 945 * wait Shall we wait? 946 * 947 * Returns: 948 * A pointer to the alloced memory or possibly 949 * NULL if M_NOWAIT is set. 950 */ 951 static void * 952 page_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait) 953 { 954 void *p; /* Returned page */ 955 956 *pflag = UMA_SLAB_KMEM; 957 p = (void *) kmem_malloc(kmem_map, bytes, wait); 958 959 return (p); 960 } 961 962 /* 963 * Allocates a number of pages from within an object 964 * 965 * Arguments: 966 * zone Unused 967 * bytes The number of bytes requested 968 * wait Shall we wait? 969 * 970 * Returns: 971 * A pointer to the alloced memory or possibly 972 * NULL if M_NOWAIT is set. 973 */ 974 static void * 975 obj_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait) 976 { 977 vm_object_t object; 978 vm_offset_t retkva, zkva; 979 vm_page_t p; 980 int pages, startpages; 981 982 object = zone->uz_keg->uk_obj; 983 retkva = 0; 984 985 /* 986 * This looks a little weird since we're getting one page at a time. 987 */ 988 VM_OBJECT_LOCK(object); 989 p = TAILQ_LAST(&object->memq, pglist); 990 pages = p != NULL ? p->pindex + 1 : 0; 991 startpages = pages; 992 zkva = zone->uz_keg->uk_kva + pages * PAGE_SIZE; 993 for (; bytes > 0; bytes -= PAGE_SIZE) { 994 p = vm_page_alloc(object, pages, 995 VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED); 996 if (p == NULL) { 997 if (pages != startpages) 998 pmap_qremove(retkva, pages - startpages); 999 while (pages != startpages) { 1000 pages--; 1001 p = TAILQ_LAST(&object->memq, pglist); 1002 vm_page_lock_queues(); 1003 vm_page_unwire(p, 0); 1004 vm_page_free(p); 1005 vm_page_unlock_queues(); 1006 } 1007 retkva = 0; 1008 goto done; 1009 } 1010 pmap_qenter(zkva, &p, 1); 1011 if (retkva == 0) 1012 retkva = zkva; 1013 zkva += PAGE_SIZE; 1014 pages += 1; 1015 } 1016 done: 1017 VM_OBJECT_UNLOCK(object); 1018 *flags = UMA_SLAB_PRIV; 1019 1020 return ((void *)retkva); 1021 } 1022 1023 /* 1024 * Frees a number of pages to the system 1025 * 1026 * Arguments: 1027 * mem A pointer to the memory to be freed 1028 * size The size of the memory being freed 1029 * flags The original p->us_flags field 1030 * 1031 * Returns: 1032 * Nothing 1033 */ 1034 static void 1035 page_free(void *mem, int size, u_int8_t flags) 1036 { 1037 vm_map_t map; 1038 1039 if (flags & UMA_SLAB_KMEM) 1040 map = kmem_map; 1041 else 1042 panic("UMA: page_free used with invalid flags %d\n", flags); 1043 1044 kmem_free(map, (vm_offset_t)mem, size); 1045 } 1046 1047 /* 1048 * Zero fill initializer 1049 * 1050 * Arguments/Returns follow uma_init specifications 1051 */ 1052 static int 1053 zero_init(void *mem, int size, int flags) 1054 { 1055 bzero(mem, size); 1056 return (0); 1057 } 1058 1059 /* 1060 * Finish creating a small uma zone. This calculates ipers, and the zone size. 1061 * 1062 * Arguments 1063 * zone The zone we should initialize 1064 * 1065 * Returns 1066 * Nothing 1067 */ 1068 static void 1069 zone_small_init(uma_zone_t zone) 1070 { 1071 uma_keg_t keg; 1072 u_int rsize; 1073 u_int memused; 1074 u_int wastedspace; 1075 u_int shsize; 1076 1077 keg = zone->uz_keg; 1078 KASSERT(keg != NULL, ("Keg is null in zone_small_init")); 1079 rsize = keg->uk_size; 1080 1081 if (rsize < UMA_SMALLEST_UNIT) 1082 rsize = UMA_SMALLEST_UNIT; 1083 if (rsize & keg->uk_align) 1084 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1085 1086 keg->uk_rsize = rsize; 1087 keg->uk_ppera = 1; 1088 1089 if (keg->uk_flags & UMA_ZONE_REFCNT) { 1090 rsize += UMA_FRITMREF_SZ; /* linkage & refcnt */ 1091 shsize = sizeof(struct uma_slab_refcnt); 1092 } else { 1093 rsize += UMA_FRITM_SZ; /* Account for linkage */ 1094 shsize = sizeof(struct uma_slab); 1095 } 1096 1097 keg->uk_ipers = (UMA_SLAB_SIZE - shsize) / rsize; 1098 KASSERT(keg->uk_ipers != 0, ("zone_small_init: ipers is 0")); 1099 memused = keg->uk_ipers * rsize + shsize; 1100 wastedspace = UMA_SLAB_SIZE - memused; 1101 1102 /* 1103 * We can't do OFFPAGE if we're internal or if we've been 1104 * asked to not go to the VM for buckets. If we do this we 1105 * may end up going to the VM (kmem_map) for slabs which we 1106 * do not want to do if we're UMA_ZFLAG_CACHEONLY as a 1107 * result of UMA_ZONE_VM, which clearly forbids it. 1108 */ 1109 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1110 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1111 return; 1112 1113 if ((wastedspace >= UMA_MAX_WASTE) && 1114 (keg->uk_ipers < (UMA_SLAB_SIZE / keg->uk_rsize))) { 1115 keg->uk_ipers = UMA_SLAB_SIZE / keg->uk_rsize; 1116 KASSERT(keg->uk_ipers <= 255, 1117 ("zone_small_init: keg->uk_ipers too high!")); 1118 #ifdef UMA_DEBUG 1119 printf("UMA decided we need offpage slab headers for " 1120 "zone: %s, calculated wastedspace = %d, " 1121 "maximum wasted space allowed = %d, " 1122 "calculated ipers = %d, " 1123 "new wasted space = %d\n", zone->uz_name, wastedspace, 1124 UMA_MAX_WASTE, keg->uk_ipers, 1125 UMA_SLAB_SIZE - keg->uk_ipers * keg->uk_rsize); 1126 #endif 1127 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1128 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1129 keg->uk_flags |= UMA_ZONE_HASH; 1130 } 1131 } 1132 1133 /* 1134 * Finish creating a large (> UMA_SLAB_SIZE) uma zone. Just give in and do 1135 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1136 * more complicated. 1137 * 1138 * Arguments 1139 * zone The zone we should initialize 1140 * 1141 * Returns 1142 * Nothing 1143 */ 1144 static void 1145 zone_large_init(uma_zone_t zone) 1146 { 1147 uma_keg_t keg; 1148 int pages; 1149 1150 keg = zone->uz_keg; 1151 1152 KASSERT(keg != NULL, ("Keg is null in zone_large_init")); 1153 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0, 1154 ("zone_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY zone")); 1155 1156 pages = keg->uk_size / UMA_SLAB_SIZE; 1157 1158 /* Account for remainder */ 1159 if ((pages * UMA_SLAB_SIZE) < keg->uk_size) 1160 pages++; 1161 1162 keg->uk_ppera = pages; 1163 keg->uk_ipers = 1; 1164 1165 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1166 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1167 keg->uk_flags |= UMA_ZONE_HASH; 1168 1169 keg->uk_rsize = keg->uk_size; 1170 } 1171 1172 /* 1173 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1174 * the keg onto the global keg list. 1175 * 1176 * Arguments/Returns follow uma_ctor specifications 1177 * udata Actually uma_kctor_args 1178 */ 1179 static int 1180 keg_ctor(void *mem, int size, void *udata, int flags) 1181 { 1182 struct uma_kctor_args *arg = udata; 1183 uma_keg_t keg = mem; 1184 uma_zone_t zone; 1185 1186 bzero(keg, size); 1187 keg->uk_size = arg->size; 1188 keg->uk_init = arg->uminit; 1189 keg->uk_fini = arg->fini; 1190 keg->uk_align = arg->align; 1191 keg->uk_free = 0; 1192 keg->uk_pages = 0; 1193 keg->uk_flags = arg->flags; 1194 keg->uk_allocf = page_alloc; 1195 keg->uk_freef = page_free; 1196 keg->uk_recurse = 0; 1197 keg->uk_slabzone = NULL; 1198 1199 /* 1200 * The master zone is passed to us at keg-creation time. 1201 */ 1202 zone = arg->zone; 1203 zone->uz_keg = keg; 1204 1205 if (arg->flags & UMA_ZONE_VM) 1206 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1207 1208 if (arg->flags & UMA_ZONE_ZINIT) 1209 keg->uk_init = zero_init; 1210 1211 /* 1212 * The +UMA_FRITM_SZ added to uk_size is to account for the 1213 * linkage that is added to the size in zone_small_init(). If 1214 * we don't account for this here then we may end up in 1215 * zone_small_init() with a calculated 'ipers' of 0. 1216 */ 1217 if (keg->uk_flags & UMA_ZONE_REFCNT) { 1218 if ((keg->uk_size+UMA_FRITMREF_SZ) > 1219 (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt))) 1220 zone_large_init(zone); 1221 else 1222 zone_small_init(zone); 1223 } else { 1224 if ((keg->uk_size+UMA_FRITM_SZ) > 1225 (UMA_SLAB_SIZE - sizeof(struct uma_slab))) 1226 zone_large_init(zone); 1227 else 1228 zone_small_init(zone); 1229 } 1230 1231 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 1232 if (keg->uk_flags & UMA_ZONE_REFCNT) 1233 keg->uk_slabzone = slabrefzone; 1234 else 1235 keg->uk_slabzone = slabzone; 1236 } 1237 1238 /* 1239 * If we haven't booted yet we need allocations to go through the 1240 * startup cache until the vm is ready. 1241 */ 1242 if (keg->uk_ppera == 1) { 1243 #ifdef UMA_MD_SMALL_ALLOC 1244 keg->uk_allocf = uma_small_alloc; 1245 keg->uk_freef = uma_small_free; 1246 #endif 1247 if (booted == 0) 1248 keg->uk_allocf = startup_alloc; 1249 } 1250 1251 /* 1252 * Initialize keg's lock (shared among zones) through 1253 * Master zone 1254 */ 1255 zone->uz_lock = &keg->uk_lock; 1256 if (arg->flags & UMA_ZONE_MTXCLASS) 1257 ZONE_LOCK_INIT(zone, 1); 1258 else 1259 ZONE_LOCK_INIT(zone, 0); 1260 1261 /* 1262 * If we're putting the slab header in the actual page we need to 1263 * figure out where in each page it goes. This calculates a right 1264 * justified offset into the memory on an ALIGN_PTR boundary. 1265 */ 1266 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1267 u_int totsize; 1268 1269 /* Size of the slab struct and free list */ 1270 if (keg->uk_flags & UMA_ZONE_REFCNT) 1271 totsize = sizeof(struct uma_slab_refcnt) + 1272 keg->uk_ipers * UMA_FRITMREF_SZ; 1273 else 1274 totsize = sizeof(struct uma_slab) + 1275 keg->uk_ipers * UMA_FRITM_SZ; 1276 1277 if (totsize & UMA_ALIGN_PTR) 1278 totsize = (totsize & ~UMA_ALIGN_PTR) + 1279 (UMA_ALIGN_PTR + 1); 1280 keg->uk_pgoff = UMA_SLAB_SIZE - totsize; 1281 1282 if (keg->uk_flags & UMA_ZONE_REFCNT) 1283 totsize = keg->uk_pgoff + sizeof(struct uma_slab_refcnt) 1284 + keg->uk_ipers * UMA_FRITMREF_SZ; 1285 else 1286 totsize = keg->uk_pgoff + sizeof(struct uma_slab) 1287 + keg->uk_ipers * UMA_FRITM_SZ; 1288 1289 /* 1290 * The only way the following is possible is if with our 1291 * UMA_ALIGN_PTR adjustments we are now bigger than 1292 * UMA_SLAB_SIZE. I haven't checked whether this is 1293 * mathematically possible for all cases, so we make 1294 * sure here anyway. 1295 */ 1296 if (totsize > UMA_SLAB_SIZE) { 1297 printf("zone %s ipers %d rsize %d size %d\n", 1298 zone->uz_name, keg->uk_ipers, keg->uk_rsize, 1299 keg->uk_size); 1300 panic("UMA slab won't fit.\n"); 1301 } 1302 } 1303 1304 if (keg->uk_flags & UMA_ZONE_HASH) 1305 hash_alloc(&keg->uk_hash); 1306 1307 #ifdef UMA_DEBUG 1308 printf("%s(%p) size = %d ipers = %d ppera = %d pgoff = %d\n", 1309 zone->uz_name, zone, 1310 keg->uk_size, keg->uk_ipers, 1311 keg->uk_ppera, keg->uk_pgoff); 1312 #endif 1313 1314 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1315 1316 mtx_lock(&uma_mtx); 1317 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1318 mtx_unlock(&uma_mtx); 1319 return (0); 1320 } 1321 1322 /* 1323 * Zone header ctor. This initializes all fields, locks, etc. 1324 * 1325 * Arguments/Returns follow uma_ctor specifications 1326 * udata Actually uma_zctor_args 1327 */ 1328 1329 static int 1330 zone_ctor(void *mem, int size, void *udata, int flags) 1331 { 1332 struct uma_zctor_args *arg = udata; 1333 uma_zone_t zone = mem; 1334 uma_zone_t z; 1335 uma_keg_t keg; 1336 1337 bzero(zone, size); 1338 zone->uz_name = arg->name; 1339 zone->uz_ctor = arg->ctor; 1340 zone->uz_dtor = arg->dtor; 1341 zone->uz_init = NULL; 1342 zone->uz_fini = NULL; 1343 zone->uz_allocs = 0; 1344 zone->uz_fills = zone->uz_count = 0; 1345 1346 if (arg->flags & UMA_ZONE_SECONDARY) { 1347 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 1348 keg = arg->keg; 1349 zone->uz_keg = keg; 1350 zone->uz_init = arg->uminit; 1351 zone->uz_fini = arg->fini; 1352 zone->uz_lock = &keg->uk_lock; 1353 mtx_lock(&uma_mtx); 1354 ZONE_LOCK(zone); 1355 keg->uk_flags |= UMA_ZONE_SECONDARY; 1356 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 1357 if (LIST_NEXT(z, uz_link) == NULL) { 1358 LIST_INSERT_AFTER(z, zone, uz_link); 1359 break; 1360 } 1361 } 1362 ZONE_UNLOCK(zone); 1363 mtx_unlock(&uma_mtx); 1364 } else if (arg->keg == NULL) { 1365 if (uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 1366 arg->align, arg->flags) == NULL) 1367 return (ENOMEM); 1368 } else { 1369 struct uma_kctor_args karg; 1370 int error; 1371 1372 /* We should only be here from uma_startup() */ 1373 karg.size = arg->size; 1374 karg.uminit = arg->uminit; 1375 karg.fini = arg->fini; 1376 karg.align = arg->align; 1377 karg.flags = arg->flags; 1378 karg.zone = zone; 1379 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 1380 flags); 1381 if (error) 1382 return (error); 1383 } 1384 keg = zone->uz_keg; 1385 zone->uz_lock = &keg->uk_lock; 1386 1387 /* 1388 * Some internal zones don't have room allocated for the per cpu 1389 * caches. If we're internal, bail out here. 1390 */ 1391 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { 1392 KASSERT((keg->uk_flags & UMA_ZONE_SECONDARY) == 0, 1393 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 1394 return (0); 1395 } 1396 1397 if (keg->uk_flags & UMA_ZONE_MAXBUCKET) 1398 zone->uz_count = BUCKET_MAX; 1399 else if (keg->uk_ipers <= BUCKET_MAX) 1400 zone->uz_count = keg->uk_ipers; 1401 else 1402 zone->uz_count = BUCKET_MAX; 1403 return (0); 1404 } 1405 1406 /* 1407 * Keg header dtor. This frees all data, destroys locks, frees the hash 1408 * table and removes the keg from the global list. 1409 * 1410 * Arguments/Returns follow uma_dtor specifications 1411 * udata unused 1412 */ 1413 static void 1414 keg_dtor(void *arg, int size, void *udata) 1415 { 1416 uma_keg_t keg; 1417 1418 keg = (uma_keg_t)arg; 1419 mtx_lock(&keg->uk_lock); 1420 if (keg->uk_free != 0) { 1421 printf("Freed UMA keg was not empty (%d items). " 1422 " Lost %d pages of memory.\n", 1423 keg->uk_free, keg->uk_pages); 1424 } 1425 mtx_unlock(&keg->uk_lock); 1426 1427 if (keg->uk_flags & UMA_ZONE_HASH) 1428 hash_free(&keg->uk_hash); 1429 1430 mtx_destroy(&keg->uk_lock); 1431 } 1432 1433 /* 1434 * Zone header dtor. 1435 * 1436 * Arguments/Returns follow uma_dtor specifications 1437 * udata unused 1438 */ 1439 static void 1440 zone_dtor(void *arg, int size, void *udata) 1441 { 1442 uma_zone_t zone; 1443 uma_keg_t keg; 1444 1445 zone = (uma_zone_t)arg; 1446 keg = zone->uz_keg; 1447 1448 if (!(keg->uk_flags & UMA_ZFLAG_INTERNAL)) 1449 cache_drain(zone); 1450 1451 mtx_lock(&uma_mtx); 1452 zone_drain(zone); 1453 if (keg->uk_flags & UMA_ZONE_SECONDARY) { 1454 LIST_REMOVE(zone, uz_link); 1455 /* 1456 * XXX there are some races here where 1457 * the zone can be drained but zone lock 1458 * released and then refilled before we 1459 * remove it... we dont care for now 1460 */ 1461 ZONE_LOCK(zone); 1462 if (LIST_EMPTY(&keg->uk_zones)) 1463 keg->uk_flags &= ~UMA_ZONE_SECONDARY; 1464 ZONE_UNLOCK(zone); 1465 mtx_unlock(&uma_mtx); 1466 } else { 1467 LIST_REMOVE(keg, uk_link); 1468 LIST_REMOVE(zone, uz_link); 1469 mtx_unlock(&uma_mtx); 1470 uma_zfree_internal(kegs, keg, NULL, SKIP_NONE); 1471 } 1472 zone->uz_keg = NULL; 1473 } 1474 1475 /* 1476 * Traverses every zone in the system and calls a callback 1477 * 1478 * Arguments: 1479 * zfunc A pointer to a function which accepts a zone 1480 * as an argument. 1481 * 1482 * Returns: 1483 * Nothing 1484 */ 1485 static void 1486 zone_foreach(void (*zfunc)(uma_zone_t)) 1487 { 1488 uma_keg_t keg; 1489 uma_zone_t zone; 1490 1491 mtx_lock(&uma_mtx); 1492 LIST_FOREACH(keg, &uma_kegs, uk_link) { 1493 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 1494 zfunc(zone); 1495 } 1496 mtx_unlock(&uma_mtx); 1497 } 1498 1499 /* Public functions */ 1500 /* See uma.h */ 1501 void 1502 uma_startup(void *bootmem) 1503 { 1504 struct uma_zctor_args args; 1505 uma_slab_t slab; 1506 u_int slabsize; 1507 u_int objsize, totsize, wsize; 1508 int i; 1509 1510 #ifdef UMA_DEBUG 1511 printf("Creating uma keg headers zone and keg.\n"); 1512 #endif 1513 /* 1514 * The general UMA lock is a recursion-allowed lock because 1515 * there is a code path where, while we're still configured 1516 * to use startup_alloc() for backend page allocations, we 1517 * may end up in uma_reclaim() which calls zone_foreach(zone_drain), 1518 * which grabs uma_mtx, only to later call into startup_alloc() 1519 * because while freeing we needed to allocate a bucket. Since 1520 * startup_alloc() also takes uma_mtx, we need to be able to 1521 * recurse on it. 1522 */ 1523 mtx_init(&uma_mtx, "UMA lock", NULL, MTX_DEF | MTX_RECURSE); 1524 1525 /* 1526 * Figure out the maximum number of items-per-slab we'll have if 1527 * we're using the OFFPAGE slab header to track free items, given 1528 * all possible object sizes and the maximum desired wastage 1529 * (UMA_MAX_WASTE). 1530 * 1531 * We iterate until we find an object size for 1532 * which the calculated wastage in zone_small_init() will be 1533 * enough to warrant OFFPAGE. Since wastedspace versus objsize 1534 * is an overall increasing see-saw function, we find the smallest 1535 * objsize such that the wastage is always acceptable for objects 1536 * with that objsize or smaller. Since a smaller objsize always 1537 * generates a larger possible uma_max_ipers, we use this computed 1538 * objsize to calculate the largest ipers possible. Since the 1539 * ipers calculated for OFFPAGE slab headers is always larger than 1540 * the ipers initially calculated in zone_small_init(), we use 1541 * the former's equation (UMA_SLAB_SIZE / keg->uk_rsize) to 1542 * obtain the maximum ipers possible for offpage slab headers. 1543 * 1544 * It should be noted that ipers versus objsize is an inversly 1545 * proportional function which drops off rather quickly so as 1546 * long as our UMA_MAX_WASTE is such that the objsize we calculate 1547 * falls into the portion of the inverse relation AFTER the steep 1548 * falloff, then uma_max_ipers shouldn't be too high (~10 on i386). 1549 * 1550 * Note that we have 8-bits (1 byte) to use as a freelist index 1551 * inside the actual slab header itself and this is enough to 1552 * accomodate us. In the worst case, a UMA_SMALLEST_UNIT sized 1553 * object with offpage slab header would have ipers = 1554 * UMA_SLAB_SIZE / UMA_SMALLEST_UNIT (currently = 256), which is 1555 * 1 greater than what our byte-integer freelist index can 1556 * accomodate, but we know that this situation never occurs as 1557 * for UMA_SMALLEST_UNIT-sized objects, we will never calculate 1558 * that we need to go to offpage slab headers. Or, if we do, 1559 * then we trap that condition below and panic in the INVARIANTS case. 1560 */ 1561 wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab) - UMA_MAX_WASTE; 1562 totsize = wsize; 1563 objsize = UMA_SMALLEST_UNIT; 1564 while (totsize >= wsize) { 1565 totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab)) / 1566 (objsize + UMA_FRITM_SZ); 1567 totsize *= (UMA_FRITM_SZ + objsize); 1568 objsize++; 1569 } 1570 if (objsize > UMA_SMALLEST_UNIT) 1571 objsize--; 1572 uma_max_ipers = UMA_SLAB_SIZE / objsize; 1573 1574 wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt) - UMA_MAX_WASTE; 1575 totsize = wsize; 1576 objsize = UMA_SMALLEST_UNIT; 1577 while (totsize >= wsize) { 1578 totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt)) / 1579 (objsize + UMA_FRITMREF_SZ); 1580 totsize *= (UMA_FRITMREF_SZ + objsize); 1581 objsize++; 1582 } 1583 if (objsize > UMA_SMALLEST_UNIT) 1584 objsize--; 1585 uma_max_ipers_ref = UMA_SLAB_SIZE / objsize; 1586 1587 KASSERT((uma_max_ipers_ref <= 255) && (uma_max_ipers <= 255), 1588 ("uma_startup: calculated uma_max_ipers values too large!")); 1589 1590 #ifdef UMA_DEBUG 1591 printf("Calculated uma_max_ipers (for OFFPAGE) is %d\n", uma_max_ipers); 1592 printf("Calculated uma_max_ipers_slab (for OFFPAGE) is %d\n", 1593 uma_max_ipers_ref); 1594 #endif 1595 1596 /* "manually" create the initial zone */ 1597 args.name = "UMA Kegs"; 1598 args.size = sizeof(struct uma_keg); 1599 args.ctor = keg_ctor; 1600 args.dtor = keg_dtor; 1601 args.uminit = zero_init; 1602 args.fini = NULL; 1603 args.keg = &masterkeg; 1604 args.align = 32 - 1; 1605 args.flags = UMA_ZFLAG_INTERNAL; 1606 /* The initial zone has no Per cpu queues so it's smaller */ 1607 zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK); 1608 1609 #ifdef UMA_DEBUG 1610 printf("Filling boot free list.\n"); 1611 #endif 1612 for (i = 0; i < UMA_BOOT_PAGES; i++) { 1613 slab = (uma_slab_t)((u_int8_t *)bootmem + (i * UMA_SLAB_SIZE)); 1614 slab->us_data = (u_int8_t *)slab; 1615 slab->us_flags = UMA_SLAB_BOOT; 1616 LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link); 1617 uma_boot_free++; 1618 } 1619 1620 #ifdef UMA_DEBUG 1621 printf("Creating uma zone headers zone and keg.\n"); 1622 #endif 1623 args.name = "UMA Zones"; 1624 args.size = sizeof(struct uma_zone) + 1625 (sizeof(struct uma_cache) * (mp_maxid + 1)); 1626 args.ctor = zone_ctor; 1627 args.dtor = zone_dtor; 1628 args.uminit = zero_init; 1629 args.fini = NULL; 1630 args.keg = NULL; 1631 args.align = 32 - 1; 1632 args.flags = UMA_ZFLAG_INTERNAL; 1633 /* The initial zone has no Per cpu queues so it's smaller */ 1634 zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK); 1635 1636 #ifdef UMA_DEBUG 1637 printf("Initializing pcpu cache locks.\n"); 1638 #endif 1639 /* Initialize the pcpu cache lock set once and for all */ 1640 for (i = 0; i <= mp_maxid; i++) 1641 CPU_LOCK_INIT(i); 1642 1643 #ifdef UMA_DEBUG 1644 printf("Creating slab and hash zones.\n"); 1645 #endif 1646 1647 /* 1648 * This is the max number of free list items we'll have with 1649 * offpage slabs. 1650 */ 1651 slabsize = uma_max_ipers * UMA_FRITM_SZ; 1652 slabsize += sizeof(struct uma_slab); 1653 1654 /* Now make a zone for slab headers */ 1655 slabzone = uma_zcreate("UMA Slabs", 1656 slabsize, 1657 NULL, NULL, NULL, NULL, 1658 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1659 1660 /* 1661 * We also create a zone for the bigger slabs with reference 1662 * counts in them, to accomodate UMA_ZONE_REFCNT zones. 1663 */ 1664 slabsize = uma_max_ipers_ref * UMA_FRITMREF_SZ; 1665 slabsize += sizeof(struct uma_slab_refcnt); 1666 slabrefzone = uma_zcreate("UMA RCntSlabs", 1667 slabsize, 1668 NULL, NULL, NULL, NULL, 1669 UMA_ALIGN_PTR, 1670 UMA_ZFLAG_INTERNAL); 1671 1672 hashzone = uma_zcreate("UMA Hash", 1673 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 1674 NULL, NULL, NULL, NULL, 1675 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1676 1677 bucket_init(); 1678 1679 #ifdef UMA_MD_SMALL_ALLOC 1680 booted = 1; 1681 #endif 1682 1683 #ifdef UMA_DEBUG 1684 printf("UMA startup complete.\n"); 1685 #endif 1686 } 1687 1688 /* see uma.h */ 1689 void 1690 uma_startup2(void) 1691 { 1692 booted = 1; 1693 bucket_enable(); 1694 #ifdef UMA_DEBUG 1695 printf("UMA startup2 complete.\n"); 1696 #endif 1697 } 1698 1699 /* 1700 * Initialize our callout handle 1701 * 1702 */ 1703 1704 static void 1705 uma_startup3(void) 1706 { 1707 #ifdef UMA_DEBUG 1708 printf("Starting callout.\n"); 1709 #endif 1710 callout_init(&uma_callout, CALLOUT_MPSAFE); 1711 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 1712 #ifdef UMA_DEBUG 1713 printf("UMA startup3 complete.\n"); 1714 #endif 1715 } 1716 1717 static uma_zone_t 1718 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 1719 int align, u_int16_t flags) 1720 { 1721 struct uma_kctor_args args; 1722 1723 args.size = size; 1724 args.uminit = uminit; 1725 args.fini = fini; 1726 args.align = align; 1727 args.flags = flags; 1728 args.zone = zone; 1729 return (uma_zalloc_internal(kegs, &args, M_WAITOK)); 1730 } 1731 1732 /* See uma.h */ 1733 uma_zone_t 1734 uma_zcreate(char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 1735 uma_init uminit, uma_fini fini, int align, u_int16_t flags) 1736 1737 { 1738 struct uma_zctor_args args; 1739 1740 /* This stuff is essential for the zone ctor */ 1741 args.name = name; 1742 args.size = size; 1743 args.ctor = ctor; 1744 args.dtor = dtor; 1745 args.uminit = uminit; 1746 args.fini = fini; 1747 args.align = align; 1748 args.flags = flags; 1749 args.keg = NULL; 1750 1751 return (uma_zalloc_internal(zones, &args, M_WAITOK)); 1752 } 1753 1754 /* See uma.h */ 1755 uma_zone_t 1756 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 1757 uma_init zinit, uma_fini zfini, uma_zone_t master) 1758 { 1759 struct uma_zctor_args args; 1760 1761 args.name = name; 1762 args.size = master->uz_keg->uk_size; 1763 args.ctor = ctor; 1764 args.dtor = dtor; 1765 args.uminit = zinit; 1766 args.fini = zfini; 1767 args.align = master->uz_keg->uk_align; 1768 args.flags = master->uz_keg->uk_flags | UMA_ZONE_SECONDARY; 1769 args.keg = master->uz_keg; 1770 1771 return (uma_zalloc_internal(zones, &args, M_WAITOK)); 1772 } 1773 1774 /* See uma.h */ 1775 void 1776 uma_zdestroy(uma_zone_t zone) 1777 { 1778 uma_zfree_internal(zones, zone, NULL, SKIP_NONE); 1779 } 1780 1781 /* See uma.h */ 1782 void * 1783 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 1784 { 1785 void *item; 1786 uma_cache_t cache; 1787 uma_bucket_t bucket; 1788 int cpu; 1789 int badness; 1790 1791 /* This is the fast path allocation */ 1792 #ifdef UMA_DEBUG_ALLOC_1 1793 printf("Allocating one item from %s(%p)\n", zone->uz_name, zone); 1794 #endif 1795 CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread, 1796 zone->uz_name, flags); 1797 1798 if (!(flags & M_NOWAIT)) { 1799 KASSERT(curthread->td_intr_nesting_level == 0, 1800 ("malloc(M_WAITOK) in interrupt context")); 1801 if (nosleepwithlocks) { 1802 #ifdef WITNESS 1803 badness = WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, 1804 NULL, 1805 "malloc(M_WAITOK) of \"%s\", forcing M_NOWAIT", 1806 zone->uz_name); 1807 #else 1808 badness = 1; 1809 #endif 1810 } else { 1811 badness = 0; 1812 #ifdef WITNESS 1813 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 1814 "malloc(M_WAITOK) of \"%s\"", zone->uz_name); 1815 #endif 1816 } 1817 if (badness) { 1818 flags &= ~M_WAITOK; 1819 flags |= M_NOWAIT; 1820 } 1821 } 1822 1823 zalloc_restart: 1824 cpu = PCPU_GET(cpuid); 1825 CPU_LOCK(cpu); 1826 cache = &zone->uz_cpu[cpu]; 1827 1828 zalloc_start: 1829 bucket = cache->uc_allocbucket; 1830 1831 if (bucket) { 1832 if (bucket->ub_cnt > 0) { 1833 bucket->ub_cnt--; 1834 item = bucket->ub_bucket[bucket->ub_cnt]; 1835 #ifdef INVARIANTS 1836 bucket->ub_bucket[bucket->ub_cnt] = NULL; 1837 #endif 1838 KASSERT(item != NULL, 1839 ("uma_zalloc: Bucket pointer mangled.")); 1840 cache->uc_allocs++; 1841 #ifdef INVARIANTS 1842 ZONE_LOCK(zone); 1843 uma_dbg_alloc(zone, NULL, item); 1844 ZONE_UNLOCK(zone); 1845 #endif 1846 CPU_UNLOCK(cpu); 1847 if (zone->uz_ctor != NULL) { 1848 if (zone->uz_ctor(item, zone->uz_keg->uk_size, 1849 udata, flags) != 0) { 1850 uma_zfree_internal(zone, item, udata, 1851 SKIP_DTOR); 1852 return (NULL); 1853 } 1854 } 1855 if (flags & M_ZERO) 1856 bzero(item, zone->uz_keg->uk_size); 1857 return (item); 1858 } else if (cache->uc_freebucket) { 1859 /* 1860 * We have run out of items in our allocbucket. 1861 * See if we can switch with our free bucket. 1862 */ 1863 if (cache->uc_freebucket->ub_cnt > 0) { 1864 #ifdef UMA_DEBUG_ALLOC 1865 printf("uma_zalloc: Swapping empty with" 1866 " alloc.\n"); 1867 #endif 1868 bucket = cache->uc_freebucket; 1869 cache->uc_freebucket = cache->uc_allocbucket; 1870 cache->uc_allocbucket = bucket; 1871 1872 goto zalloc_start; 1873 } 1874 } 1875 } 1876 ZONE_LOCK(zone); 1877 /* Since we have locked the zone we may as well send back our stats */ 1878 zone->uz_allocs += cache->uc_allocs; 1879 cache->uc_allocs = 0; 1880 1881 /* Our old one is now a free bucket */ 1882 if (cache->uc_allocbucket) { 1883 KASSERT(cache->uc_allocbucket->ub_cnt == 0, 1884 ("uma_zalloc_arg: Freeing a non free bucket.")); 1885 LIST_INSERT_HEAD(&zone->uz_free_bucket, 1886 cache->uc_allocbucket, ub_link); 1887 cache->uc_allocbucket = NULL; 1888 } 1889 1890 /* Check the free list for a new alloc bucket */ 1891 if ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) { 1892 KASSERT(bucket->ub_cnt != 0, 1893 ("uma_zalloc_arg: Returning an empty bucket.")); 1894 1895 LIST_REMOVE(bucket, ub_link); 1896 cache->uc_allocbucket = bucket; 1897 ZONE_UNLOCK(zone); 1898 goto zalloc_start; 1899 } 1900 /* We are no longer associated with this cpu!!! */ 1901 CPU_UNLOCK(cpu); 1902 1903 /* Bump up our uz_count so we get here less */ 1904 if (zone->uz_count < BUCKET_MAX) 1905 zone->uz_count++; 1906 1907 /* 1908 * Now lets just fill a bucket and put it on the free list. If that 1909 * works we'll restart the allocation from the begining. 1910 */ 1911 if (uma_zalloc_bucket(zone, flags)) { 1912 ZONE_UNLOCK(zone); 1913 goto zalloc_restart; 1914 } 1915 ZONE_UNLOCK(zone); 1916 /* 1917 * We may not be able to get a bucket so return an actual item. 1918 */ 1919 #ifdef UMA_DEBUG 1920 printf("uma_zalloc_arg: Bucketzone returned NULL\n"); 1921 #endif 1922 1923 return (uma_zalloc_internal(zone, udata, flags)); 1924 } 1925 1926 static uma_slab_t 1927 uma_zone_slab(uma_zone_t zone, int flags) 1928 { 1929 uma_slab_t slab; 1930 uma_keg_t keg; 1931 1932 keg = zone->uz_keg; 1933 1934 /* 1935 * This is to prevent us from recursively trying to allocate 1936 * buckets. The problem is that if an allocation forces us to 1937 * grab a new bucket we will call page_alloc, which will go off 1938 * and cause the vm to allocate vm_map_entries. If we need new 1939 * buckets there too we will recurse in kmem_alloc and bad 1940 * things happen. So instead we return a NULL bucket, and make 1941 * the code that allocates buckets smart enough to deal with it 1942 * 1943 * XXX: While we want this protection for the bucket zones so that 1944 * recursion from the VM is handled (and the calling code that 1945 * allocates buckets knows how to deal with it), we do not want 1946 * to prevent allocation from the slab header zones (slabzone 1947 * and slabrefzone) if uk_recurse is not zero for them. The 1948 * reason is that it could lead to NULL being returned for 1949 * slab header allocations even in the M_WAITOK case, and the 1950 * caller can't handle that. 1951 */ 1952 if (keg->uk_flags & UMA_ZFLAG_INTERNAL && keg->uk_recurse != 0) 1953 if ((zone != slabzone) && (zone != slabrefzone)) 1954 return (NULL); 1955 1956 slab = NULL; 1957 1958 for (;;) { 1959 /* 1960 * Find a slab with some space. Prefer slabs that are partially 1961 * used over those that are totally full. This helps to reduce 1962 * fragmentation. 1963 */ 1964 if (keg->uk_free != 0) { 1965 if (!LIST_EMPTY(&keg->uk_part_slab)) { 1966 slab = LIST_FIRST(&keg->uk_part_slab); 1967 } else { 1968 slab = LIST_FIRST(&keg->uk_free_slab); 1969 LIST_REMOVE(slab, us_link); 1970 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, 1971 us_link); 1972 } 1973 return (slab); 1974 } 1975 1976 /* 1977 * M_NOVM means don't ask at all! 1978 */ 1979 if (flags & M_NOVM) 1980 break; 1981 1982 if (keg->uk_maxpages && 1983 keg->uk_pages >= keg->uk_maxpages) { 1984 keg->uk_flags |= UMA_ZFLAG_FULL; 1985 1986 if (flags & M_NOWAIT) 1987 break; 1988 else 1989 msleep(keg, &keg->uk_lock, PVM, 1990 "zonelimit", 0); 1991 continue; 1992 } 1993 keg->uk_recurse++; 1994 slab = slab_zalloc(zone, flags); 1995 keg->uk_recurse--; 1996 1997 /* 1998 * If we got a slab here it's safe to mark it partially used 1999 * and return. We assume that the caller is going to remove 2000 * at least one item. 2001 */ 2002 if (slab) { 2003 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2004 return (slab); 2005 } 2006 /* 2007 * We might not have been able to get a slab but another cpu 2008 * could have while we were unlocked. Check again before we 2009 * fail. 2010 */ 2011 if (flags & M_NOWAIT) 2012 flags |= M_NOVM; 2013 } 2014 return (slab); 2015 } 2016 2017 static void * 2018 uma_slab_alloc(uma_zone_t zone, uma_slab_t slab) 2019 { 2020 uma_keg_t keg; 2021 uma_slabrefcnt_t slabref; 2022 void *item; 2023 u_int8_t freei; 2024 2025 keg = zone->uz_keg; 2026 2027 freei = slab->us_firstfree; 2028 if (keg->uk_flags & UMA_ZONE_REFCNT) { 2029 slabref = (uma_slabrefcnt_t)slab; 2030 slab->us_firstfree = slabref->us_freelist[freei].us_item; 2031 } else { 2032 slab->us_firstfree = slab->us_freelist[freei].us_item; 2033 } 2034 item = slab->us_data + (keg->uk_rsize * freei); 2035 2036 slab->us_freecount--; 2037 keg->uk_free--; 2038 #ifdef INVARIANTS 2039 uma_dbg_alloc(zone, slab, item); 2040 #endif 2041 /* Move this slab to the full list */ 2042 if (slab->us_freecount == 0) { 2043 LIST_REMOVE(slab, us_link); 2044 LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link); 2045 } 2046 2047 return (item); 2048 } 2049 2050 static int 2051 uma_zalloc_bucket(uma_zone_t zone, int flags) 2052 { 2053 uma_bucket_t bucket; 2054 uma_slab_t slab; 2055 int16_t saved; 2056 int max, origflags = flags; 2057 2058 /* 2059 * Try this zone's free list first so we don't allocate extra buckets. 2060 */ 2061 if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) { 2062 KASSERT(bucket->ub_cnt == 0, 2063 ("uma_zalloc_bucket: Bucket on free list is not empty.")); 2064 LIST_REMOVE(bucket, ub_link); 2065 } else { 2066 int bflags; 2067 2068 bflags = (flags & ~M_ZERO); 2069 if (zone->uz_keg->uk_flags & UMA_ZFLAG_CACHEONLY) 2070 bflags |= M_NOVM; 2071 2072 ZONE_UNLOCK(zone); 2073 bucket = bucket_alloc(zone->uz_count, bflags); 2074 ZONE_LOCK(zone); 2075 } 2076 2077 if (bucket == NULL) 2078 return (0); 2079 2080 #ifdef SMP 2081 /* 2082 * This code is here to limit the number of simultaneous bucket fills 2083 * for any given zone to the number of per cpu caches in this zone. This 2084 * is done so that we don't allocate more memory than we really need. 2085 */ 2086 if (zone->uz_fills >= mp_ncpus) 2087 goto done; 2088 2089 #endif 2090 zone->uz_fills++; 2091 2092 max = MIN(bucket->ub_entries, zone->uz_count); 2093 /* Try to keep the buckets totally full */ 2094 saved = bucket->ub_cnt; 2095 while (bucket->ub_cnt < max && 2096 (slab = uma_zone_slab(zone, flags)) != NULL) { 2097 while (slab->us_freecount && bucket->ub_cnt < max) { 2098 bucket->ub_bucket[bucket->ub_cnt++] = 2099 uma_slab_alloc(zone, slab); 2100 } 2101 2102 /* Don't block on the next fill */ 2103 flags |= M_NOWAIT; 2104 } 2105 2106 /* 2107 * We unlock here because we need to call the zone's init. 2108 * It should be safe to unlock because the slab dealt with 2109 * above is already on the appropriate list within the keg 2110 * and the bucket we filled is not yet on any list, so we 2111 * own it. 2112 */ 2113 if (zone->uz_init != NULL) { 2114 int i; 2115 2116 ZONE_UNLOCK(zone); 2117 for (i = saved; i < bucket->ub_cnt; i++) 2118 if (zone->uz_init(bucket->ub_bucket[i], 2119 zone->uz_keg->uk_size, origflags) != 0) 2120 break; 2121 /* 2122 * If we couldn't initialize the whole bucket, put the 2123 * rest back onto the freelist. 2124 */ 2125 if (i != bucket->ub_cnt) { 2126 int j; 2127 2128 for (j = i; j < bucket->ub_cnt; j++) { 2129 uma_zfree_internal(zone, bucket->ub_bucket[j], 2130 NULL, SKIP_FINI); 2131 #ifdef INVARIANTS 2132 bucket->ub_bucket[j] = NULL; 2133 #endif 2134 } 2135 bucket->ub_cnt = i; 2136 } 2137 ZONE_LOCK(zone); 2138 } 2139 2140 zone->uz_fills--; 2141 if (bucket->ub_cnt != 0) { 2142 LIST_INSERT_HEAD(&zone->uz_full_bucket, 2143 bucket, ub_link); 2144 return (1); 2145 } 2146 #ifdef SMP 2147 done: 2148 #endif 2149 bucket_free(bucket); 2150 2151 return (0); 2152 } 2153 /* 2154 * Allocates an item for an internal zone 2155 * 2156 * Arguments 2157 * zone The zone to alloc for. 2158 * udata The data to be passed to the constructor. 2159 * flags M_WAITOK, M_NOWAIT, M_ZERO. 2160 * 2161 * Returns 2162 * NULL if there is no memory and M_NOWAIT is set 2163 * An item if successful 2164 */ 2165 2166 static void * 2167 uma_zalloc_internal(uma_zone_t zone, void *udata, int flags) 2168 { 2169 uma_keg_t keg; 2170 uma_slab_t slab; 2171 void *item; 2172 2173 item = NULL; 2174 keg = zone->uz_keg; 2175 2176 #ifdef UMA_DEBUG_ALLOC 2177 printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone); 2178 #endif 2179 ZONE_LOCK(zone); 2180 2181 slab = uma_zone_slab(zone, flags); 2182 if (slab == NULL) { 2183 ZONE_UNLOCK(zone); 2184 return (NULL); 2185 } 2186 2187 item = uma_slab_alloc(zone, slab); 2188 2189 ZONE_UNLOCK(zone); 2190 2191 /* 2192 * We have to call both the zone's init (not the keg's init) 2193 * and the zone's ctor. This is because the item is going from 2194 * a keg slab directly to the user, and the user is expecting it 2195 * to be both zone-init'd as well as zone-ctor'd. 2196 */ 2197 if (zone->uz_init != NULL) { 2198 if (zone->uz_init(item, keg->uk_size, flags) != 0) { 2199 uma_zfree_internal(zone, item, udata, SKIP_FINI); 2200 return (NULL); 2201 } 2202 } 2203 if (zone->uz_ctor != NULL) { 2204 if (zone->uz_ctor(item, keg->uk_size, udata, flags) != 0) { 2205 uma_zfree_internal(zone, item, udata, SKIP_DTOR); 2206 return (NULL); 2207 } 2208 } 2209 if (flags & M_ZERO) 2210 bzero(item, keg->uk_size); 2211 2212 return (item); 2213 } 2214 2215 /* See uma.h */ 2216 void 2217 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 2218 { 2219 uma_keg_t keg; 2220 uma_cache_t cache; 2221 uma_bucket_t bucket; 2222 int bflags; 2223 int cpu; 2224 enum zfreeskip skip; 2225 2226 /* This is the fast path free */ 2227 skip = SKIP_NONE; 2228 keg = zone->uz_keg; 2229 2230 #ifdef UMA_DEBUG_ALLOC_1 2231 printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone); 2232 #endif 2233 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 2234 zone->uz_name); 2235 2236 /* 2237 * The race here is acceptable. If we miss it we'll just have to wait 2238 * a little longer for the limits to be reset. 2239 */ 2240 2241 if (keg->uk_flags & UMA_ZFLAG_FULL) 2242 goto zfree_internal; 2243 2244 if (zone->uz_dtor) { 2245 zone->uz_dtor(item, keg->uk_size, udata); 2246 skip = SKIP_DTOR; 2247 } 2248 2249 zfree_restart: 2250 cpu = PCPU_GET(cpuid); 2251 CPU_LOCK(cpu); 2252 cache = &zone->uz_cpu[cpu]; 2253 2254 zfree_start: 2255 bucket = cache->uc_freebucket; 2256 2257 if (bucket) { 2258 /* 2259 * Do we have room in our bucket? It is OK for this uz count 2260 * check to be slightly out of sync. 2261 */ 2262 2263 if (bucket->ub_cnt < bucket->ub_entries) { 2264 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 2265 ("uma_zfree: Freeing to non free bucket index.")); 2266 bucket->ub_bucket[bucket->ub_cnt] = item; 2267 bucket->ub_cnt++; 2268 #ifdef INVARIANTS 2269 ZONE_LOCK(zone); 2270 if (keg->uk_flags & UMA_ZONE_MALLOC) 2271 uma_dbg_free(zone, udata, item); 2272 else 2273 uma_dbg_free(zone, NULL, item); 2274 ZONE_UNLOCK(zone); 2275 #endif 2276 CPU_UNLOCK(cpu); 2277 return; 2278 } else if (cache->uc_allocbucket) { 2279 #ifdef UMA_DEBUG_ALLOC 2280 printf("uma_zfree: Swapping buckets.\n"); 2281 #endif 2282 /* 2283 * We have run out of space in our freebucket. 2284 * See if we can switch with our alloc bucket. 2285 */ 2286 if (cache->uc_allocbucket->ub_cnt < 2287 cache->uc_freebucket->ub_cnt) { 2288 bucket = cache->uc_freebucket; 2289 cache->uc_freebucket = cache->uc_allocbucket; 2290 cache->uc_allocbucket = bucket; 2291 goto zfree_start; 2292 } 2293 } 2294 } 2295 /* 2296 * We can get here for two reasons: 2297 * 2298 * 1) The buckets are NULL 2299 * 2) The alloc and free buckets are both somewhat full. 2300 */ 2301 2302 ZONE_LOCK(zone); 2303 2304 bucket = cache->uc_freebucket; 2305 cache->uc_freebucket = NULL; 2306 2307 /* Can we throw this on the zone full list? */ 2308 if (bucket != NULL) { 2309 #ifdef UMA_DEBUG_ALLOC 2310 printf("uma_zfree: Putting old bucket on the free list.\n"); 2311 #endif 2312 /* ub_cnt is pointing to the last free item */ 2313 KASSERT(bucket->ub_cnt != 0, 2314 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n")); 2315 LIST_INSERT_HEAD(&zone->uz_full_bucket, 2316 bucket, ub_link); 2317 } 2318 if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) { 2319 LIST_REMOVE(bucket, ub_link); 2320 ZONE_UNLOCK(zone); 2321 cache->uc_freebucket = bucket; 2322 goto zfree_start; 2323 } 2324 /* We're done with this CPU now */ 2325 CPU_UNLOCK(cpu); 2326 2327 /* And the zone.. */ 2328 ZONE_UNLOCK(zone); 2329 2330 #ifdef UMA_DEBUG_ALLOC 2331 printf("uma_zfree: Allocating new free bucket.\n"); 2332 #endif 2333 bflags = M_NOWAIT; 2334 2335 if (keg->uk_flags & UMA_ZFLAG_CACHEONLY) 2336 bflags |= M_NOVM; 2337 bucket = bucket_alloc(zone->uz_count, bflags); 2338 if (bucket) { 2339 ZONE_LOCK(zone); 2340 LIST_INSERT_HEAD(&zone->uz_free_bucket, 2341 bucket, ub_link); 2342 ZONE_UNLOCK(zone); 2343 goto zfree_restart; 2344 } 2345 2346 /* 2347 * If nothing else caught this, we'll just do an internal free. 2348 */ 2349 2350 zfree_internal: 2351 2352 #ifdef INVARIANTS 2353 /* 2354 * If we need to skip the dtor and the uma_dbg_free in 2355 * uma_zfree_internal because we've already called the dtor 2356 * above, but we ended up here, then we need to make sure 2357 * that we take care of the uma_dbg_free immediately. 2358 */ 2359 if (skip) { 2360 ZONE_LOCK(zone); 2361 if (keg->uk_flags & UMA_ZONE_MALLOC) 2362 uma_dbg_free(zone, udata, item); 2363 else 2364 uma_dbg_free(zone, NULL, item); 2365 ZONE_UNLOCK(zone); 2366 } 2367 #endif 2368 uma_zfree_internal(zone, item, udata, skip); 2369 2370 return; 2371 } 2372 2373 /* 2374 * Frees an item to an INTERNAL zone or allocates a free bucket 2375 * 2376 * Arguments: 2377 * zone The zone to free to 2378 * item The item we're freeing 2379 * udata User supplied data for the dtor 2380 * skip Skip dtors and finis 2381 */ 2382 static void 2383 uma_zfree_internal(uma_zone_t zone, void *item, void *udata, 2384 enum zfreeskip skip) 2385 { 2386 uma_slab_t slab; 2387 uma_slabrefcnt_t slabref; 2388 uma_keg_t keg; 2389 u_int8_t *mem; 2390 u_int8_t freei; 2391 2392 keg = zone->uz_keg; 2393 2394 if (skip < SKIP_DTOR && zone->uz_dtor) 2395 zone->uz_dtor(item, keg->uk_size, udata); 2396 if (skip < SKIP_FINI && zone->uz_fini) 2397 zone->uz_fini(item, keg->uk_size); 2398 2399 ZONE_LOCK(zone); 2400 2401 if (!(keg->uk_flags & UMA_ZONE_MALLOC)) { 2402 mem = (u_int8_t *)((unsigned long)item & (~UMA_SLAB_MASK)); 2403 if (keg->uk_flags & UMA_ZONE_HASH) 2404 slab = hash_sfind(&keg->uk_hash, mem); 2405 else { 2406 mem += keg->uk_pgoff; 2407 slab = (uma_slab_t)mem; 2408 } 2409 } else { 2410 slab = (uma_slab_t)udata; 2411 } 2412 2413 /* Do we need to remove from any lists? */ 2414 if (slab->us_freecount+1 == keg->uk_ipers) { 2415 LIST_REMOVE(slab, us_link); 2416 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 2417 } else if (slab->us_freecount == 0) { 2418 LIST_REMOVE(slab, us_link); 2419 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2420 } 2421 2422 /* Slab management stuff */ 2423 freei = ((unsigned long)item - (unsigned long)slab->us_data) 2424 / keg->uk_rsize; 2425 2426 #ifdef INVARIANTS 2427 if (!skip) 2428 uma_dbg_free(zone, slab, item); 2429 #endif 2430 2431 if (keg->uk_flags & UMA_ZONE_REFCNT) { 2432 slabref = (uma_slabrefcnt_t)slab; 2433 slabref->us_freelist[freei].us_item = slab->us_firstfree; 2434 } else { 2435 slab->us_freelist[freei].us_item = slab->us_firstfree; 2436 } 2437 slab->us_firstfree = freei; 2438 slab->us_freecount++; 2439 2440 /* Zone statistics */ 2441 keg->uk_free++; 2442 2443 if (keg->uk_flags & UMA_ZFLAG_FULL) { 2444 if (keg->uk_pages < keg->uk_maxpages) 2445 keg->uk_flags &= ~UMA_ZFLAG_FULL; 2446 2447 /* We can handle one more allocation */ 2448 wakeup_one(keg); 2449 } 2450 2451 ZONE_UNLOCK(zone); 2452 } 2453 2454 /* See uma.h */ 2455 void 2456 uma_zone_set_max(uma_zone_t zone, int nitems) 2457 { 2458 uma_keg_t keg; 2459 2460 keg = zone->uz_keg; 2461 ZONE_LOCK(zone); 2462 if (keg->uk_ppera > 1) 2463 keg->uk_maxpages = nitems * keg->uk_ppera; 2464 else 2465 keg->uk_maxpages = nitems / keg->uk_ipers; 2466 2467 if (keg->uk_maxpages * keg->uk_ipers < nitems) 2468 keg->uk_maxpages++; 2469 2470 ZONE_UNLOCK(zone); 2471 } 2472 2473 /* See uma.h */ 2474 void 2475 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 2476 { 2477 ZONE_LOCK(zone); 2478 KASSERT(zone->uz_keg->uk_pages == 0, 2479 ("uma_zone_set_init on non-empty keg")); 2480 zone->uz_keg->uk_init = uminit; 2481 ZONE_UNLOCK(zone); 2482 } 2483 2484 /* See uma.h */ 2485 void 2486 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 2487 { 2488 ZONE_LOCK(zone); 2489 KASSERT(zone->uz_keg->uk_pages == 0, 2490 ("uma_zone_set_fini on non-empty keg")); 2491 zone->uz_keg->uk_fini = fini; 2492 ZONE_UNLOCK(zone); 2493 } 2494 2495 /* See uma.h */ 2496 void 2497 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 2498 { 2499 ZONE_LOCK(zone); 2500 KASSERT(zone->uz_keg->uk_pages == 0, 2501 ("uma_zone_set_zinit on non-empty keg")); 2502 zone->uz_init = zinit; 2503 ZONE_UNLOCK(zone); 2504 } 2505 2506 /* See uma.h */ 2507 void 2508 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 2509 { 2510 ZONE_LOCK(zone); 2511 KASSERT(zone->uz_keg->uk_pages == 0, 2512 ("uma_zone_set_zfini on non-empty keg")); 2513 zone->uz_fini = zfini; 2514 ZONE_UNLOCK(zone); 2515 } 2516 2517 /* See uma.h */ 2518 /* XXX uk_freef is not actually used with the zone locked */ 2519 void 2520 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 2521 { 2522 ZONE_LOCK(zone); 2523 zone->uz_keg->uk_freef = freef; 2524 ZONE_UNLOCK(zone); 2525 } 2526 2527 /* See uma.h */ 2528 /* XXX uk_allocf is not actually used with the zone locked */ 2529 void 2530 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 2531 { 2532 ZONE_LOCK(zone); 2533 zone->uz_keg->uk_flags |= UMA_ZFLAG_PRIVALLOC; 2534 zone->uz_keg->uk_allocf = allocf; 2535 ZONE_UNLOCK(zone); 2536 } 2537 2538 /* See uma.h */ 2539 int 2540 uma_zone_set_obj(uma_zone_t zone, struct vm_object *obj, int count) 2541 { 2542 uma_keg_t keg; 2543 vm_offset_t kva; 2544 int pages; 2545 2546 keg = zone->uz_keg; 2547 pages = count / keg->uk_ipers; 2548 2549 if (pages * keg->uk_ipers < count) 2550 pages++; 2551 2552 kva = kmem_alloc_nofault(kernel_map, pages * UMA_SLAB_SIZE); 2553 2554 if (kva == 0) 2555 return (0); 2556 if (obj == NULL) { 2557 obj = vm_object_allocate(OBJT_DEFAULT, 2558 pages); 2559 } else { 2560 VM_OBJECT_LOCK_INIT(obj, "uma object"); 2561 _vm_object_allocate(OBJT_DEFAULT, 2562 pages, obj); 2563 } 2564 ZONE_LOCK(zone); 2565 keg->uk_kva = kva; 2566 keg->uk_obj = obj; 2567 keg->uk_maxpages = pages; 2568 keg->uk_allocf = obj_alloc; 2569 keg->uk_flags |= UMA_ZONE_NOFREE | UMA_ZFLAG_PRIVALLOC; 2570 ZONE_UNLOCK(zone); 2571 return (1); 2572 } 2573 2574 /* See uma.h */ 2575 void 2576 uma_prealloc(uma_zone_t zone, int items) 2577 { 2578 int slabs; 2579 uma_slab_t slab; 2580 uma_keg_t keg; 2581 2582 keg = zone->uz_keg; 2583 ZONE_LOCK(zone); 2584 slabs = items / keg->uk_ipers; 2585 if (slabs * keg->uk_ipers < items) 2586 slabs++; 2587 while (slabs > 0) { 2588 slab = slab_zalloc(zone, M_WAITOK); 2589 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 2590 slabs--; 2591 } 2592 ZONE_UNLOCK(zone); 2593 } 2594 2595 /* See uma.h */ 2596 u_int32_t * 2597 uma_find_refcnt(uma_zone_t zone, void *item) 2598 { 2599 uma_slabrefcnt_t slabref; 2600 uma_keg_t keg; 2601 u_int32_t *refcnt; 2602 int idx; 2603 2604 keg = zone->uz_keg; 2605 slabref = (uma_slabrefcnt_t)vtoslab((vm_offset_t)item & 2606 (~UMA_SLAB_MASK)); 2607 KASSERT(slabref != NULL && slabref->us_keg->uk_flags & UMA_ZONE_REFCNT, 2608 ("uma_find_refcnt(): zone possibly not UMA_ZONE_REFCNT")); 2609 idx = ((unsigned long)item - (unsigned long)slabref->us_data) 2610 / keg->uk_rsize; 2611 refcnt = &slabref->us_freelist[idx].us_refcnt; 2612 return refcnt; 2613 } 2614 2615 /* See uma.h */ 2616 void 2617 uma_reclaim(void) 2618 { 2619 #ifdef UMA_DEBUG 2620 printf("UMA: vm asked us to release pages!\n"); 2621 #endif 2622 bucket_enable(); 2623 zone_foreach(zone_drain); 2624 /* 2625 * Some slabs may have been freed but this zone will be visited early 2626 * we visit again so that we can free pages that are empty once other 2627 * zones are drained. We have to do the same for buckets. 2628 */ 2629 zone_drain(slabzone); 2630 zone_drain(slabrefzone); 2631 bucket_zone_drain(); 2632 } 2633 2634 void * 2635 uma_large_malloc(int size, int wait) 2636 { 2637 void *mem; 2638 uma_slab_t slab; 2639 u_int8_t flags; 2640 2641 slab = uma_zalloc_internal(slabzone, NULL, wait); 2642 if (slab == NULL) 2643 return (NULL); 2644 mem = page_alloc(NULL, size, &flags, wait); 2645 if (mem) { 2646 vsetslab((vm_offset_t)mem, slab); 2647 slab->us_data = mem; 2648 slab->us_flags = flags | UMA_SLAB_MALLOC; 2649 slab->us_size = size; 2650 } else { 2651 uma_zfree_internal(slabzone, slab, NULL, 0); 2652 } 2653 2654 return (mem); 2655 } 2656 2657 void 2658 uma_large_free(uma_slab_t slab) 2659 { 2660 vsetobj((vm_offset_t)slab->us_data, kmem_object); 2661 page_free(slab->us_data, slab->us_size, slab->us_flags); 2662 uma_zfree_internal(slabzone, slab, NULL, 0); 2663 } 2664 2665 void 2666 uma_print_stats(void) 2667 { 2668 zone_foreach(uma_print_zone); 2669 } 2670 2671 static void 2672 slab_print(uma_slab_t slab) 2673 { 2674 printf("slab: keg %p, data %p, freecount %d, firstfree %d\n", 2675 slab->us_keg, slab->us_data, slab->us_freecount, 2676 slab->us_firstfree); 2677 } 2678 2679 static void 2680 cache_print(uma_cache_t cache) 2681 { 2682 printf("alloc: %p(%d), free: %p(%d)\n", 2683 cache->uc_allocbucket, 2684 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, 2685 cache->uc_freebucket, 2686 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0); 2687 } 2688 2689 void 2690 uma_print_zone(uma_zone_t zone) 2691 { 2692 uma_cache_t cache; 2693 uma_keg_t keg; 2694 uma_slab_t slab; 2695 int i; 2696 2697 keg = zone->uz_keg; 2698 printf("%s(%p) size %d(%d) flags %d ipers %d ppera %d out %d free %d\n", 2699 zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags, 2700 keg->uk_ipers, keg->uk_ppera, 2701 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free); 2702 printf("Part slabs:\n"); 2703 LIST_FOREACH(slab, &keg->uk_part_slab, us_link) 2704 slab_print(slab); 2705 printf("Free slabs:\n"); 2706 LIST_FOREACH(slab, &keg->uk_free_slab, us_link) 2707 slab_print(slab); 2708 printf("Full slabs:\n"); 2709 LIST_FOREACH(slab, &keg->uk_full_slab, us_link) 2710 slab_print(slab); 2711 for (i = 0; i <= mp_maxid; i++) { 2712 if (CPU_ABSENT(i)) 2713 continue; 2714 cache = &zone->uz_cpu[i]; 2715 printf("CPU %d Cache:\n", i); 2716 cache_print(cache); 2717 } 2718 } 2719 2720 /* 2721 * Sysctl handler for vm.zone 2722 * 2723 * stolen from vm_zone.c 2724 */ 2725 static int 2726 sysctl_vm_zone(SYSCTL_HANDLER_ARGS) 2727 { 2728 int error, len, cnt; 2729 const int linesize = 128; /* conservative */ 2730 int totalfree; 2731 char *tmpbuf, *offset; 2732 uma_zone_t z; 2733 uma_keg_t zk; 2734 char *p; 2735 int cpu; 2736 int cachefree; 2737 uma_bucket_t bucket; 2738 uma_cache_t cache; 2739 2740 cnt = 0; 2741 mtx_lock(&uma_mtx); 2742 LIST_FOREACH(zk, &uma_kegs, uk_link) { 2743 LIST_FOREACH(z, &zk->uk_zones, uz_link) 2744 cnt++; 2745 } 2746 mtx_unlock(&uma_mtx); 2747 MALLOC(tmpbuf, char *, (cnt == 0 ? 1 : cnt) * linesize, 2748 M_TEMP, M_WAITOK); 2749 len = snprintf(tmpbuf, linesize, 2750 "\nITEM SIZE LIMIT USED FREE REQUESTS\n\n"); 2751 if (cnt == 0) 2752 tmpbuf[len - 1] = '\0'; 2753 error = SYSCTL_OUT(req, tmpbuf, cnt == 0 ? len-1 : len); 2754 if (error || cnt == 0) 2755 goto out; 2756 offset = tmpbuf; 2757 mtx_lock(&uma_mtx); 2758 LIST_FOREACH(zk, &uma_kegs, uk_link) { 2759 LIST_FOREACH(z, &zk->uk_zones, uz_link) { 2760 if (cnt == 0) /* list may have changed size */ 2761 break; 2762 if (!(zk->uk_flags & UMA_ZFLAG_INTERNAL)) { 2763 for (cpu = 0; cpu <= mp_maxid; cpu++) { 2764 if (CPU_ABSENT(cpu)) 2765 continue; 2766 CPU_LOCK(cpu); 2767 } 2768 } 2769 ZONE_LOCK(z); 2770 cachefree = 0; 2771 if (!(zk->uk_flags & UMA_ZFLAG_INTERNAL)) { 2772 for (cpu = 0; cpu <= mp_maxid; cpu++) { 2773 if (CPU_ABSENT(cpu)) 2774 continue; 2775 cache = &z->uz_cpu[cpu]; 2776 if (cache->uc_allocbucket != NULL) 2777 cachefree += cache->uc_allocbucket->ub_cnt; 2778 if (cache->uc_freebucket != NULL) 2779 cachefree += cache->uc_freebucket->ub_cnt; 2780 CPU_UNLOCK(cpu); 2781 } 2782 } 2783 LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link) { 2784 cachefree += bucket->ub_cnt; 2785 } 2786 totalfree = zk->uk_free + cachefree; 2787 len = snprintf(offset, linesize, 2788 "%-12.12s %6.6u, %8.8u, %6.6u, %6.6u, %8.8llu\n", 2789 z->uz_name, zk->uk_size, 2790 zk->uk_maxpages * zk->uk_ipers, 2791 (zk->uk_ipers * (zk->uk_pages / zk->uk_ppera)) - totalfree, 2792 totalfree, 2793 (unsigned long long)z->uz_allocs); 2794 ZONE_UNLOCK(z); 2795 for (p = offset + 12; p > offset && *p == ' '; --p) 2796 /* nothing */ ; 2797 p[1] = ':'; 2798 cnt--; 2799 offset += len; 2800 } 2801 } 2802 mtx_unlock(&uma_mtx); 2803 *offset++ = '\0'; 2804 error = SYSCTL_OUT(req, tmpbuf, offset - tmpbuf); 2805 out: 2806 FREE(tmpbuf, M_TEMP); 2807 return (error); 2808 } 2809