1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/bitset.h> 62 #include <sys/domainset.h> 63 #include <sys/eventhandler.h> 64 #include <sys/kernel.h> 65 #include <sys/types.h> 66 #include <sys/limits.h> 67 #include <sys/queue.h> 68 #include <sys/malloc.h> 69 #include <sys/ktr.h> 70 #include <sys/lock.h> 71 #include <sys/sysctl.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/random.h> 75 #include <sys/rwlock.h> 76 #include <sys/sbuf.h> 77 #include <sys/sched.h> 78 #include <sys/smp.h> 79 #include <sys/taskqueue.h> 80 #include <sys/vmmeter.h> 81 82 #include <vm/vm.h> 83 #include <vm/vm_domainset.h> 84 #include <vm/vm_object.h> 85 #include <vm/vm_page.h> 86 #include <vm/vm_pageout.h> 87 #include <vm/vm_param.h> 88 #include <vm/vm_phys.h> 89 #include <vm/vm_pagequeue.h> 90 #include <vm/vm_map.h> 91 #include <vm/vm_kern.h> 92 #include <vm/vm_extern.h> 93 #include <vm/uma.h> 94 #include <vm/uma_int.h> 95 #include <vm/uma_dbg.h> 96 97 #include <ddb/ddb.h> 98 99 #ifdef DEBUG_MEMGUARD 100 #include <vm/memguard.h> 101 #endif 102 103 /* 104 * This is the zone and keg from which all zones are spawned. 105 */ 106 static uma_zone_t kegs; 107 static uma_zone_t zones; 108 109 /* This is the zone from which all offpage uma_slab_ts are allocated. */ 110 static uma_zone_t slabzone; 111 112 /* 113 * The initial hash tables come out of this zone so they can be allocated 114 * prior to malloc coming up. 115 */ 116 static uma_zone_t hashzone; 117 118 /* The boot-time adjusted value for cache line alignment. */ 119 int uma_align_cache = 64 - 1; 120 121 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 122 123 /* 124 * Are we allowed to allocate buckets? 125 */ 126 static int bucketdisable = 1; 127 128 /* Linked list of all kegs in the system */ 129 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 130 131 /* Linked list of all cache-only zones in the system */ 132 static LIST_HEAD(,uma_zone) uma_cachezones = 133 LIST_HEAD_INITIALIZER(uma_cachezones); 134 135 /* This RW lock protects the keg list */ 136 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 137 138 /* 139 * Pointer and counter to pool of pages, that is preallocated at 140 * startup to bootstrap UMA. 141 */ 142 static char *bootmem; 143 static int boot_pages; 144 145 static struct sx uma_drain_lock; 146 147 /* kmem soft limit. */ 148 static unsigned long uma_kmem_limit = LONG_MAX; 149 static volatile unsigned long uma_kmem_total; 150 151 /* Is the VM done starting up? */ 152 static enum { BOOT_COLD = 0, BOOT_STRAPPED, BOOT_PAGEALLOC, BOOT_BUCKETS, 153 BOOT_RUNNING } booted = BOOT_COLD; 154 155 /* 156 * This is the handle used to schedule events that need to happen 157 * outside of the allocation fast path. 158 */ 159 static struct callout uma_callout; 160 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 161 162 /* 163 * This structure is passed as the zone ctor arg so that I don't have to create 164 * a special allocation function just for zones. 165 */ 166 struct uma_zctor_args { 167 const char *name; 168 size_t size; 169 uma_ctor ctor; 170 uma_dtor dtor; 171 uma_init uminit; 172 uma_fini fini; 173 uma_import import; 174 uma_release release; 175 void *arg; 176 uma_keg_t keg; 177 int align; 178 uint32_t flags; 179 }; 180 181 struct uma_kctor_args { 182 uma_zone_t zone; 183 size_t size; 184 uma_init uminit; 185 uma_fini fini; 186 int align; 187 uint32_t flags; 188 }; 189 190 struct uma_bucket_zone { 191 uma_zone_t ubz_zone; 192 char *ubz_name; 193 int ubz_entries; /* Number of items it can hold. */ 194 int ubz_maxsize; /* Maximum allocation size per-item. */ 195 }; 196 197 /* 198 * Compute the actual number of bucket entries to pack them in power 199 * of two sizes for more efficient space utilization. 200 */ 201 #define BUCKET_SIZE(n) \ 202 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 203 204 #define BUCKET_MAX BUCKET_SIZE(256) 205 206 struct uma_bucket_zone bucket_zones[] = { 207 { NULL, "4 Bucket", BUCKET_SIZE(4), 4096 }, 208 { NULL, "6 Bucket", BUCKET_SIZE(6), 3072 }, 209 { NULL, "8 Bucket", BUCKET_SIZE(8), 2048 }, 210 { NULL, "12 Bucket", BUCKET_SIZE(12), 1536 }, 211 { NULL, "16 Bucket", BUCKET_SIZE(16), 1024 }, 212 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 213 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 214 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 215 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 216 { NULL, NULL, 0} 217 }; 218 219 /* 220 * Flags and enumerations to be passed to internal functions. 221 */ 222 enum zfreeskip { 223 SKIP_NONE = 0, 224 SKIP_CNT = 0x00000001, 225 SKIP_DTOR = 0x00010000, 226 SKIP_FINI = 0x00020000, 227 }; 228 229 #define UMA_ANYDOMAIN -1 /* Special value for domain search. */ 230 231 /* Prototypes.. */ 232 233 int uma_startup_count(int); 234 void uma_startup(void *, int); 235 void uma_startup1(void); 236 void uma_startup2(void); 237 238 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 239 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 240 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 241 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 242 static void page_free(void *, vm_size_t, uint8_t); 243 static void pcpu_page_free(void *, vm_size_t, uint8_t); 244 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int); 245 static void cache_drain(uma_zone_t); 246 static void bucket_drain(uma_zone_t, uma_bucket_t); 247 static void bucket_cache_drain(uma_zone_t zone); 248 static int keg_ctor(void *, int, void *, int); 249 static void keg_dtor(void *, int, void *); 250 static int zone_ctor(void *, int, void *, int); 251 static void zone_dtor(void *, int, void *); 252 static int zero_init(void *, int, int); 253 static void keg_small_init(uma_keg_t keg); 254 static void keg_large_init(uma_keg_t keg); 255 static void zone_foreach(void (*zfunc)(uma_zone_t)); 256 static void zone_timeout(uma_zone_t zone); 257 static int hash_alloc(struct uma_hash *); 258 static int hash_expand(struct uma_hash *, struct uma_hash *); 259 static void hash_free(struct uma_hash *hash); 260 static void uma_timeout(void *); 261 static void uma_startup3(void); 262 static void *zone_alloc_item(uma_zone_t, void *, int, int); 263 static void *zone_alloc_item_locked(uma_zone_t, void *, int, int); 264 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 265 static void bucket_enable(void); 266 static void bucket_init(void); 267 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 268 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 269 static void bucket_zone_drain(void); 270 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int, int); 271 static uma_slab_t zone_fetch_slab(uma_zone_t, uma_keg_t, int, int); 272 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 273 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item); 274 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 275 uma_fini fini, int align, uint32_t flags); 276 static int zone_import(uma_zone_t, void **, int, int, int); 277 static void zone_release(uma_zone_t, void **, int); 278 static void uma_zero_item(void *, uma_zone_t); 279 280 void uma_print_zone(uma_zone_t); 281 void uma_print_stats(void); 282 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 283 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 284 285 #ifdef INVARIANTS 286 static bool uma_dbg_kskip(uma_keg_t keg, void *mem); 287 static bool uma_dbg_zskip(uma_zone_t zone, void *mem); 288 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 289 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 290 291 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD, 0, 292 "Memory allocation debugging"); 293 294 static u_int dbg_divisor = 1; 295 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor, 296 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0, 297 "Debug & thrash every this item in memory allocator"); 298 299 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER; 300 static counter_u64_t uma_skip_cnt = EARLY_COUNTER; 301 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD, 302 &uma_dbg_cnt, "memory items debugged"); 303 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD, 304 &uma_skip_cnt, "memory items skipped, not debugged"); 305 #endif 306 307 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 308 309 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 310 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 311 312 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 313 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 314 315 static int zone_warnings = 1; 316 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 317 "Warn when UMA zones becomes full"); 318 319 /* Adjust bytes under management by UMA. */ 320 static inline void 321 uma_total_dec(unsigned long size) 322 { 323 324 atomic_subtract_long(&uma_kmem_total, size); 325 } 326 327 static inline void 328 uma_total_inc(unsigned long size) 329 { 330 331 if (atomic_fetchadd_long(&uma_kmem_total, size) > uma_kmem_limit) 332 uma_reclaim_wakeup(); 333 } 334 335 /* 336 * This routine checks to see whether or not it's safe to enable buckets. 337 */ 338 static void 339 bucket_enable(void) 340 { 341 bucketdisable = vm_page_count_min(); 342 } 343 344 /* 345 * Initialize bucket_zones, the array of zones of buckets of various sizes. 346 * 347 * For each zone, calculate the memory required for each bucket, consisting 348 * of the header and an array of pointers. 349 */ 350 static void 351 bucket_init(void) 352 { 353 struct uma_bucket_zone *ubz; 354 int size; 355 356 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 357 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 358 size += sizeof(void *) * ubz->ubz_entries; 359 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 360 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 361 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | UMA_ZONE_NUMA); 362 } 363 } 364 365 /* 366 * Given a desired number of entries for a bucket, return the zone from which 367 * to allocate the bucket. 368 */ 369 static struct uma_bucket_zone * 370 bucket_zone_lookup(int entries) 371 { 372 struct uma_bucket_zone *ubz; 373 374 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 375 if (ubz->ubz_entries >= entries) 376 return (ubz); 377 ubz--; 378 return (ubz); 379 } 380 381 static int 382 bucket_select(int size) 383 { 384 struct uma_bucket_zone *ubz; 385 386 ubz = &bucket_zones[0]; 387 if (size > ubz->ubz_maxsize) 388 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 389 390 for (; ubz->ubz_entries != 0; ubz++) 391 if (ubz->ubz_maxsize < size) 392 break; 393 ubz--; 394 return (ubz->ubz_entries); 395 } 396 397 static uma_bucket_t 398 bucket_alloc(uma_zone_t zone, void *udata, int flags) 399 { 400 struct uma_bucket_zone *ubz; 401 uma_bucket_t bucket; 402 403 /* 404 * This is to stop us from allocating per cpu buckets while we're 405 * running out of vm.boot_pages. Otherwise, we would exhaust the 406 * boot pages. This also prevents us from allocating buckets in 407 * low memory situations. 408 */ 409 if (bucketdisable) 410 return (NULL); 411 /* 412 * To limit bucket recursion we store the original zone flags 413 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 414 * NOVM flag to persist even through deep recursions. We also 415 * store ZFLAG_BUCKET once we have recursed attempting to allocate 416 * a bucket for a bucket zone so we do not allow infinite bucket 417 * recursion. This cookie will even persist to frees of unused 418 * buckets via the allocation path or bucket allocations in the 419 * free path. 420 */ 421 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 422 udata = (void *)(uintptr_t)zone->uz_flags; 423 else { 424 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 425 return (NULL); 426 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 427 } 428 if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY) 429 flags |= M_NOVM; 430 ubz = bucket_zone_lookup(zone->uz_count); 431 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 432 ubz++; 433 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 434 if (bucket) { 435 #ifdef INVARIANTS 436 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 437 #endif 438 bucket->ub_cnt = 0; 439 bucket->ub_entries = ubz->ubz_entries; 440 } 441 442 return (bucket); 443 } 444 445 static void 446 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 447 { 448 struct uma_bucket_zone *ubz; 449 450 KASSERT(bucket->ub_cnt == 0, 451 ("bucket_free: Freeing a non free bucket.")); 452 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 453 udata = (void *)(uintptr_t)zone->uz_flags; 454 ubz = bucket_zone_lookup(bucket->ub_entries); 455 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 456 } 457 458 static void 459 bucket_zone_drain(void) 460 { 461 struct uma_bucket_zone *ubz; 462 463 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 464 zone_drain(ubz->ubz_zone); 465 } 466 467 static uma_bucket_t 468 zone_try_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom, const bool ws) 469 { 470 uma_bucket_t bucket; 471 472 ZONE_LOCK_ASSERT(zone); 473 474 if ((bucket = LIST_FIRST(&zdom->uzd_buckets)) != NULL) { 475 MPASS(zdom->uzd_nitems >= bucket->ub_cnt); 476 LIST_REMOVE(bucket, ub_link); 477 zdom->uzd_nitems -= bucket->ub_cnt; 478 if (ws && zdom->uzd_imin > zdom->uzd_nitems) 479 zdom->uzd_imin = zdom->uzd_nitems; 480 zone->uz_bkt_count -= bucket->ub_cnt; 481 } 482 return (bucket); 483 } 484 485 static void 486 zone_put_bucket(uma_zone_t zone, uma_zone_domain_t zdom, uma_bucket_t bucket, 487 const bool ws) 488 { 489 490 ZONE_LOCK_ASSERT(zone); 491 KASSERT(zone->uz_bkt_count < zone->uz_bkt_max, ("%s: zone %p overflow", 492 __func__, zone)); 493 494 LIST_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); 495 zdom->uzd_nitems += bucket->ub_cnt; 496 if (ws && zdom->uzd_imax < zdom->uzd_nitems) 497 zdom->uzd_imax = zdom->uzd_nitems; 498 zone->uz_bkt_count += bucket->ub_cnt; 499 } 500 501 static void 502 zone_log_warning(uma_zone_t zone) 503 { 504 static const struct timeval warninterval = { 300, 0 }; 505 506 if (!zone_warnings || zone->uz_warning == NULL) 507 return; 508 509 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 510 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 511 } 512 513 static inline void 514 zone_maxaction(uma_zone_t zone) 515 { 516 517 if (zone->uz_maxaction.ta_func != NULL) 518 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 519 } 520 521 /* 522 * Routine called by timeout which is used to fire off some time interval 523 * based calculations. (stats, hash size, etc.) 524 * 525 * Arguments: 526 * arg Unused 527 * 528 * Returns: 529 * Nothing 530 */ 531 static void 532 uma_timeout(void *unused) 533 { 534 bucket_enable(); 535 zone_foreach(zone_timeout); 536 537 /* Reschedule this event */ 538 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 539 } 540 541 /* 542 * Update the working set size estimate for the zone's bucket cache. 543 * The constants chosen here are somewhat arbitrary. With an update period of 544 * 20s (UMA_TIMEOUT), this estimate is dominated by zone activity over the 545 * last 100s. 546 */ 547 static void 548 zone_domain_update_wss(uma_zone_domain_t zdom) 549 { 550 long wss; 551 552 MPASS(zdom->uzd_imax >= zdom->uzd_imin); 553 wss = zdom->uzd_imax - zdom->uzd_imin; 554 zdom->uzd_imax = zdom->uzd_imin = zdom->uzd_nitems; 555 zdom->uzd_wss = (3 * wss + 2 * zdom->uzd_wss) / 5; 556 } 557 558 /* 559 * Routine to perform timeout driven calculations. This expands the 560 * hashes and does per cpu statistics aggregation. 561 * 562 * Returns nothing. 563 */ 564 static void 565 zone_timeout(uma_zone_t zone) 566 { 567 uma_keg_t keg = zone->uz_keg; 568 569 KEG_LOCK(keg); 570 /* 571 * Expand the keg hash table. 572 * 573 * This is done if the number of slabs is larger than the hash size. 574 * What I'm trying to do here is completely reduce collisions. This 575 * may be a little aggressive. Should I allow for two collisions max? 576 */ 577 if (keg->uk_flags & UMA_ZONE_HASH && 578 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) { 579 struct uma_hash newhash; 580 struct uma_hash oldhash; 581 int ret; 582 583 /* 584 * This is so involved because allocating and freeing 585 * while the keg lock is held will lead to deadlock. 586 * I have to do everything in stages and check for 587 * races. 588 */ 589 newhash = keg->uk_hash; 590 KEG_UNLOCK(keg); 591 ret = hash_alloc(&newhash); 592 KEG_LOCK(keg); 593 if (ret) { 594 if (hash_expand(&keg->uk_hash, &newhash)) { 595 oldhash = keg->uk_hash; 596 keg->uk_hash = newhash; 597 } else 598 oldhash = newhash; 599 600 KEG_UNLOCK(keg); 601 hash_free(&oldhash); 602 return; 603 } 604 } 605 606 for (int i = 0; i < vm_ndomains; i++) 607 zone_domain_update_wss(&zone->uz_domain[i]); 608 609 KEG_UNLOCK(keg); 610 } 611 612 /* 613 * Allocate and zero fill the next sized hash table from the appropriate 614 * backing store. 615 * 616 * Arguments: 617 * hash A new hash structure with the old hash size in uh_hashsize 618 * 619 * Returns: 620 * 1 on success and 0 on failure. 621 */ 622 static int 623 hash_alloc(struct uma_hash *hash) 624 { 625 u_int oldsize; 626 size_t alloc; 627 628 oldsize = hash->uh_hashsize; 629 630 /* We're just going to go to a power of two greater */ 631 if (oldsize) { 632 hash->uh_hashsize = oldsize * 2; 633 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 634 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 635 M_UMAHASH, M_NOWAIT); 636 } else { 637 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 638 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 639 UMA_ANYDOMAIN, M_WAITOK); 640 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 641 } 642 if (hash->uh_slab_hash) { 643 bzero(hash->uh_slab_hash, alloc); 644 hash->uh_hashmask = hash->uh_hashsize - 1; 645 return (1); 646 } 647 648 return (0); 649 } 650 651 /* 652 * Expands the hash table for HASH zones. This is done from zone_timeout 653 * to reduce collisions. This must not be done in the regular allocation 654 * path, otherwise, we can recurse on the vm while allocating pages. 655 * 656 * Arguments: 657 * oldhash The hash you want to expand 658 * newhash The hash structure for the new table 659 * 660 * Returns: 661 * Nothing 662 * 663 * Discussion: 664 */ 665 static int 666 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 667 { 668 uma_slab_t slab; 669 u_int hval; 670 u_int idx; 671 672 if (!newhash->uh_slab_hash) 673 return (0); 674 675 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 676 return (0); 677 678 /* 679 * I need to investigate hash algorithms for resizing without a 680 * full rehash. 681 */ 682 683 for (idx = 0; idx < oldhash->uh_hashsize; idx++) 684 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[idx])) { 685 slab = SLIST_FIRST(&oldhash->uh_slab_hash[idx]); 686 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[idx], us_hlink); 687 hval = UMA_HASH(newhash, slab->us_data); 688 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 689 slab, us_hlink); 690 } 691 692 return (1); 693 } 694 695 /* 696 * Free the hash bucket to the appropriate backing store. 697 * 698 * Arguments: 699 * slab_hash The hash bucket we're freeing 700 * hashsize The number of entries in that hash bucket 701 * 702 * Returns: 703 * Nothing 704 */ 705 static void 706 hash_free(struct uma_hash *hash) 707 { 708 if (hash->uh_slab_hash == NULL) 709 return; 710 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 711 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 712 else 713 free(hash->uh_slab_hash, M_UMAHASH); 714 } 715 716 /* 717 * Frees all outstanding items in a bucket 718 * 719 * Arguments: 720 * zone The zone to free to, must be unlocked. 721 * bucket The free/alloc bucket with items, cpu queue must be locked. 722 * 723 * Returns: 724 * Nothing 725 */ 726 727 static void 728 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 729 { 730 int i; 731 732 if (bucket == NULL) 733 return; 734 735 if (zone->uz_fini) 736 for (i = 0; i < bucket->ub_cnt; i++) 737 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 738 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 739 if (zone->uz_max_items > 0) { 740 ZONE_LOCK(zone); 741 zone->uz_items -= bucket->ub_cnt; 742 if (zone->uz_sleepers && zone->uz_items < zone->uz_max_items) 743 wakeup_one(zone); 744 ZONE_UNLOCK(zone); 745 } 746 bucket->ub_cnt = 0; 747 } 748 749 /* 750 * Drains the per cpu caches for a zone. 751 * 752 * NOTE: This may only be called while the zone is being turn down, and not 753 * during normal operation. This is necessary in order that we do not have 754 * to migrate CPUs to drain the per-CPU caches. 755 * 756 * Arguments: 757 * zone The zone to drain, must be unlocked. 758 * 759 * Returns: 760 * Nothing 761 */ 762 static void 763 cache_drain(uma_zone_t zone) 764 { 765 uma_cache_t cache; 766 int cpu; 767 768 /* 769 * XXX: It is safe to not lock the per-CPU caches, because we're 770 * tearing down the zone anyway. I.e., there will be no further use 771 * of the caches at this point. 772 * 773 * XXX: It would good to be able to assert that the zone is being 774 * torn down to prevent improper use of cache_drain(). 775 * 776 * XXX: We lock the zone before passing into bucket_cache_drain() as 777 * it is used elsewhere. Should the tear-down path be made special 778 * there in some form? 779 */ 780 CPU_FOREACH(cpu) { 781 cache = &zone->uz_cpu[cpu]; 782 bucket_drain(zone, cache->uc_allocbucket); 783 bucket_drain(zone, cache->uc_freebucket); 784 if (cache->uc_allocbucket != NULL) 785 bucket_free(zone, cache->uc_allocbucket, NULL); 786 if (cache->uc_freebucket != NULL) 787 bucket_free(zone, cache->uc_freebucket, NULL); 788 cache->uc_allocbucket = cache->uc_freebucket = NULL; 789 } 790 ZONE_LOCK(zone); 791 bucket_cache_drain(zone); 792 ZONE_UNLOCK(zone); 793 } 794 795 static void 796 cache_shrink(uma_zone_t zone) 797 { 798 799 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 800 return; 801 802 ZONE_LOCK(zone); 803 zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2; 804 ZONE_UNLOCK(zone); 805 } 806 807 static void 808 cache_drain_safe_cpu(uma_zone_t zone) 809 { 810 uma_cache_t cache; 811 uma_bucket_t b1, b2; 812 int domain; 813 814 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 815 return; 816 817 b1 = b2 = NULL; 818 ZONE_LOCK(zone); 819 critical_enter(); 820 if (zone->uz_flags & UMA_ZONE_NUMA) 821 domain = PCPU_GET(domain); 822 else 823 domain = 0; 824 cache = &zone->uz_cpu[curcpu]; 825 if (cache->uc_allocbucket) { 826 if (cache->uc_allocbucket->ub_cnt != 0) 827 zone_put_bucket(zone, &zone->uz_domain[domain], 828 cache->uc_allocbucket, false); 829 else 830 b1 = cache->uc_allocbucket; 831 cache->uc_allocbucket = NULL; 832 } 833 if (cache->uc_freebucket) { 834 if (cache->uc_freebucket->ub_cnt != 0) 835 zone_put_bucket(zone, &zone->uz_domain[domain], 836 cache->uc_freebucket, false); 837 else 838 b2 = cache->uc_freebucket; 839 cache->uc_freebucket = NULL; 840 } 841 critical_exit(); 842 ZONE_UNLOCK(zone); 843 if (b1) 844 bucket_free(zone, b1, NULL); 845 if (b2) 846 bucket_free(zone, b2, NULL); 847 } 848 849 /* 850 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 851 * This is an expensive call because it needs to bind to all CPUs 852 * one by one and enter a critical section on each of them in order 853 * to safely access their cache buckets. 854 * Zone lock must not be held on call this function. 855 */ 856 static void 857 cache_drain_safe(uma_zone_t zone) 858 { 859 int cpu; 860 861 /* 862 * Polite bucket sizes shrinking was not enouth, shrink aggressively. 863 */ 864 if (zone) 865 cache_shrink(zone); 866 else 867 zone_foreach(cache_shrink); 868 869 CPU_FOREACH(cpu) { 870 thread_lock(curthread); 871 sched_bind(curthread, cpu); 872 thread_unlock(curthread); 873 874 if (zone) 875 cache_drain_safe_cpu(zone); 876 else 877 zone_foreach(cache_drain_safe_cpu); 878 } 879 thread_lock(curthread); 880 sched_unbind(curthread); 881 thread_unlock(curthread); 882 } 883 884 /* 885 * Drain the cached buckets from a zone. Expects a locked zone on entry. 886 */ 887 static void 888 bucket_cache_drain(uma_zone_t zone) 889 { 890 uma_zone_domain_t zdom; 891 uma_bucket_t bucket; 892 int i; 893 894 /* 895 * Drain the bucket queues and free the buckets. 896 */ 897 for (i = 0; i < vm_ndomains; i++) { 898 zdom = &zone->uz_domain[i]; 899 while ((bucket = zone_try_fetch_bucket(zone, zdom, false)) != 900 NULL) { 901 ZONE_UNLOCK(zone); 902 bucket_drain(zone, bucket); 903 bucket_free(zone, bucket, NULL); 904 ZONE_LOCK(zone); 905 } 906 } 907 908 /* 909 * Shrink further bucket sizes. Price of single zone lock collision 910 * is probably lower then price of global cache drain. 911 */ 912 if (zone->uz_count > zone->uz_count_min) 913 zone->uz_count--; 914 } 915 916 static void 917 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 918 { 919 uint8_t *mem; 920 int i; 921 uint8_t flags; 922 923 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 924 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 925 926 mem = slab->us_data; 927 flags = slab->us_flags; 928 i = start; 929 if (keg->uk_fini != NULL) { 930 for (i--; i > -1; i--) 931 #ifdef INVARIANTS 932 /* 933 * trash_fini implies that dtor was trash_dtor. trash_fini 934 * would check that memory hasn't been modified since free, 935 * which executed trash_dtor. 936 * That's why we need to run uma_dbg_kskip() check here, 937 * albeit we don't make skip check for other init/fini 938 * invocations. 939 */ 940 if (!uma_dbg_kskip(keg, slab->us_data + (keg->uk_rsize * i)) || 941 keg->uk_fini != trash_fini) 942 #endif 943 keg->uk_fini(slab->us_data + (keg->uk_rsize * i), 944 keg->uk_size); 945 } 946 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 947 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 948 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 949 uma_total_dec(PAGE_SIZE * keg->uk_ppera); 950 } 951 952 /* 953 * Frees pages from a keg back to the system. This is done on demand from 954 * the pageout daemon. 955 * 956 * Returns nothing. 957 */ 958 static void 959 keg_drain(uma_keg_t keg) 960 { 961 struct slabhead freeslabs = { 0 }; 962 uma_domain_t dom; 963 uma_slab_t slab, tmp; 964 int i; 965 966 /* 967 * We don't want to take pages from statically allocated kegs at this 968 * time 969 */ 970 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 971 return; 972 973 CTR3(KTR_UMA, "keg_drain %s(%p) free items: %u", 974 keg->uk_name, keg, keg->uk_free); 975 KEG_LOCK(keg); 976 if (keg->uk_free == 0) 977 goto finished; 978 979 for (i = 0; i < vm_ndomains; i++) { 980 dom = &keg->uk_domain[i]; 981 LIST_FOREACH_SAFE(slab, &dom->ud_free_slab, us_link, tmp) { 982 /* We have nowhere to free these to. */ 983 if (slab->us_flags & UMA_SLAB_BOOT) 984 continue; 985 986 LIST_REMOVE(slab, us_link); 987 keg->uk_pages -= keg->uk_ppera; 988 keg->uk_free -= keg->uk_ipers; 989 990 if (keg->uk_flags & UMA_ZONE_HASH) 991 UMA_HASH_REMOVE(&keg->uk_hash, slab, 992 slab->us_data); 993 994 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 995 } 996 } 997 998 finished: 999 KEG_UNLOCK(keg); 1000 1001 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 1002 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 1003 keg_free_slab(keg, slab, keg->uk_ipers); 1004 } 1005 } 1006 1007 static void 1008 zone_drain_wait(uma_zone_t zone, int waitok) 1009 { 1010 1011 /* 1012 * Set draining to interlock with zone_dtor() so we can release our 1013 * locks as we go. Only dtor() should do a WAITOK call since it 1014 * is the only call that knows the structure will still be available 1015 * when it wakes up. 1016 */ 1017 ZONE_LOCK(zone); 1018 while (zone->uz_flags & UMA_ZFLAG_DRAINING) { 1019 if (waitok == M_NOWAIT) 1020 goto out; 1021 msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1); 1022 } 1023 zone->uz_flags |= UMA_ZFLAG_DRAINING; 1024 bucket_cache_drain(zone); 1025 ZONE_UNLOCK(zone); 1026 /* 1027 * The DRAINING flag protects us from being freed while 1028 * we're running. Normally the uma_rwlock would protect us but we 1029 * must be able to release and acquire the right lock for each keg. 1030 */ 1031 keg_drain(zone->uz_keg); 1032 ZONE_LOCK(zone); 1033 zone->uz_flags &= ~UMA_ZFLAG_DRAINING; 1034 wakeup(zone); 1035 out: 1036 ZONE_UNLOCK(zone); 1037 } 1038 1039 void 1040 zone_drain(uma_zone_t zone) 1041 { 1042 1043 zone_drain_wait(zone, M_NOWAIT); 1044 } 1045 1046 /* 1047 * Allocate a new slab for a keg. This does not insert the slab onto a list. 1048 * If the allocation was successful, the keg lock will be held upon return, 1049 * otherwise the keg will be left unlocked. 1050 * 1051 * Arguments: 1052 * flags Wait flags for the item initialization routine 1053 * aflags Wait flags for the slab allocation 1054 * 1055 * Returns: 1056 * The slab that was allocated or NULL if there is no memory and the 1057 * caller specified M_NOWAIT. 1058 */ 1059 static uma_slab_t 1060 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags, 1061 int aflags) 1062 { 1063 uma_alloc allocf; 1064 uma_slab_t slab; 1065 unsigned long size; 1066 uint8_t *mem; 1067 uint8_t sflags; 1068 int i; 1069 1070 KASSERT(domain >= 0 && domain < vm_ndomains, 1071 ("keg_alloc_slab: domain %d out of range", domain)); 1072 KEG_LOCK_ASSERT(keg); 1073 MPASS(zone->uz_lockptr == &keg->uk_lock); 1074 1075 allocf = keg->uk_allocf; 1076 KEG_UNLOCK(keg); 1077 1078 slab = NULL; 1079 mem = NULL; 1080 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 1081 slab = zone_alloc_item(keg->uk_slabzone, NULL, domain, aflags); 1082 if (slab == NULL) 1083 goto out; 1084 } 1085 1086 /* 1087 * This reproduces the old vm_zone behavior of zero filling pages the 1088 * first time they are added to a zone. 1089 * 1090 * Malloced items are zeroed in uma_zalloc. 1091 */ 1092 1093 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1094 aflags |= M_ZERO; 1095 else 1096 aflags &= ~M_ZERO; 1097 1098 if (keg->uk_flags & UMA_ZONE_NODUMP) 1099 aflags |= M_NODUMP; 1100 1101 /* zone is passed for legacy reasons. */ 1102 size = keg->uk_ppera * PAGE_SIZE; 1103 mem = allocf(zone, size, domain, &sflags, aflags); 1104 if (mem == NULL) { 1105 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1106 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 1107 slab = NULL; 1108 goto out; 1109 } 1110 uma_total_inc(size); 1111 1112 /* Point the slab into the allocated memory */ 1113 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 1114 slab = (uma_slab_t )(mem + keg->uk_pgoff); 1115 1116 if (keg->uk_flags & UMA_ZONE_VTOSLAB) 1117 for (i = 0; i < keg->uk_ppera; i++) 1118 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 1119 1120 slab->us_keg = keg; 1121 slab->us_data = mem; 1122 slab->us_freecount = keg->uk_ipers; 1123 slab->us_flags = sflags; 1124 slab->us_domain = domain; 1125 BIT_FILL(SLAB_SETSIZE, &slab->us_free); 1126 #ifdef INVARIANTS 1127 BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree); 1128 #endif 1129 1130 if (keg->uk_init != NULL) { 1131 for (i = 0; i < keg->uk_ipers; i++) 1132 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 1133 keg->uk_size, flags) != 0) 1134 break; 1135 if (i != keg->uk_ipers) { 1136 keg_free_slab(keg, slab, i); 1137 slab = NULL; 1138 goto out; 1139 } 1140 } 1141 KEG_LOCK(keg); 1142 1143 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1144 slab, keg->uk_name, keg); 1145 1146 if (keg->uk_flags & UMA_ZONE_HASH) 1147 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1148 1149 keg->uk_pages += keg->uk_ppera; 1150 keg->uk_free += keg->uk_ipers; 1151 1152 out: 1153 return (slab); 1154 } 1155 1156 /* 1157 * This function is intended to be used early on in place of page_alloc() so 1158 * that we may use the boot time page cache to satisfy allocations before 1159 * the VM is ready. 1160 */ 1161 static void * 1162 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1163 int wait) 1164 { 1165 uma_keg_t keg; 1166 void *mem; 1167 int pages; 1168 1169 keg = zone->uz_keg; 1170 /* 1171 * If we are in BOOT_BUCKETS or higher, than switch to real 1172 * allocator. Zones with page sized slabs switch at BOOT_PAGEALLOC. 1173 */ 1174 switch (booted) { 1175 case BOOT_COLD: 1176 case BOOT_STRAPPED: 1177 break; 1178 case BOOT_PAGEALLOC: 1179 if (keg->uk_ppera > 1) 1180 break; 1181 case BOOT_BUCKETS: 1182 case BOOT_RUNNING: 1183 #ifdef UMA_MD_SMALL_ALLOC 1184 keg->uk_allocf = (keg->uk_ppera > 1) ? 1185 page_alloc : uma_small_alloc; 1186 #else 1187 keg->uk_allocf = page_alloc; 1188 #endif 1189 return keg->uk_allocf(zone, bytes, domain, pflag, wait); 1190 } 1191 1192 /* 1193 * Check our small startup cache to see if it has pages remaining. 1194 */ 1195 pages = howmany(bytes, PAGE_SIZE); 1196 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1197 if (pages > boot_pages) 1198 panic("UMA zone \"%s\": Increase vm.boot_pages", zone->uz_name); 1199 #ifdef DIAGNOSTIC 1200 printf("%s from \"%s\", %d boot pages left\n", __func__, zone->uz_name, 1201 boot_pages); 1202 #endif 1203 mem = bootmem; 1204 boot_pages -= pages; 1205 bootmem += pages * PAGE_SIZE; 1206 *pflag = UMA_SLAB_BOOT; 1207 1208 return (mem); 1209 } 1210 1211 /* 1212 * Allocates a number of pages from the system 1213 * 1214 * Arguments: 1215 * bytes The number of bytes requested 1216 * wait Shall we wait? 1217 * 1218 * Returns: 1219 * A pointer to the alloced memory or possibly 1220 * NULL if M_NOWAIT is set. 1221 */ 1222 static void * 1223 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1224 int wait) 1225 { 1226 void *p; /* Returned page */ 1227 1228 *pflag = UMA_SLAB_KERNEL; 1229 p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait); 1230 1231 return (p); 1232 } 1233 1234 static void * 1235 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1236 int wait) 1237 { 1238 struct pglist alloctail; 1239 vm_offset_t addr, zkva; 1240 int cpu, flags; 1241 vm_page_t p, p_next; 1242 #ifdef NUMA 1243 struct pcpu *pc; 1244 #endif 1245 1246 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE); 1247 1248 TAILQ_INIT(&alloctail); 1249 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1250 malloc2vm_flags(wait); 1251 *pflag = UMA_SLAB_KERNEL; 1252 for (cpu = 0; cpu <= mp_maxid; cpu++) { 1253 if (CPU_ABSENT(cpu)) { 1254 p = vm_page_alloc(NULL, 0, flags); 1255 } else { 1256 #ifndef NUMA 1257 p = vm_page_alloc(NULL, 0, flags); 1258 #else 1259 pc = pcpu_find(cpu); 1260 p = vm_page_alloc_domain(NULL, 0, pc->pc_domain, flags); 1261 if (__predict_false(p == NULL)) 1262 p = vm_page_alloc(NULL, 0, flags); 1263 #endif 1264 } 1265 if (__predict_false(p == NULL)) 1266 goto fail; 1267 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1268 } 1269 if ((addr = kva_alloc(bytes)) == 0) 1270 goto fail; 1271 zkva = addr; 1272 TAILQ_FOREACH(p, &alloctail, listq) { 1273 pmap_qenter(zkva, &p, 1); 1274 zkva += PAGE_SIZE; 1275 } 1276 return ((void*)addr); 1277 fail: 1278 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1279 vm_page_unwire(p, PQ_NONE); 1280 vm_page_free(p); 1281 } 1282 return (NULL); 1283 } 1284 1285 /* 1286 * Allocates a number of pages from within an object 1287 * 1288 * Arguments: 1289 * bytes The number of bytes requested 1290 * wait Shall we wait? 1291 * 1292 * Returns: 1293 * A pointer to the alloced memory or possibly 1294 * NULL if M_NOWAIT is set. 1295 */ 1296 static void * 1297 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 1298 int wait) 1299 { 1300 TAILQ_HEAD(, vm_page) alloctail; 1301 u_long npages; 1302 vm_offset_t retkva, zkva; 1303 vm_page_t p, p_next; 1304 uma_keg_t keg; 1305 1306 TAILQ_INIT(&alloctail); 1307 keg = zone->uz_keg; 1308 1309 npages = howmany(bytes, PAGE_SIZE); 1310 while (npages > 0) { 1311 p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT | 1312 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1313 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK : 1314 VM_ALLOC_NOWAIT)); 1315 if (p != NULL) { 1316 /* 1317 * Since the page does not belong to an object, its 1318 * listq is unused. 1319 */ 1320 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1321 npages--; 1322 continue; 1323 } 1324 /* 1325 * Page allocation failed, free intermediate pages and 1326 * exit. 1327 */ 1328 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1329 vm_page_unwire(p, PQ_NONE); 1330 vm_page_free(p); 1331 } 1332 return (NULL); 1333 } 1334 *flags = UMA_SLAB_PRIV; 1335 zkva = keg->uk_kva + 1336 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1337 retkva = zkva; 1338 TAILQ_FOREACH(p, &alloctail, listq) { 1339 pmap_qenter(zkva, &p, 1); 1340 zkva += PAGE_SIZE; 1341 } 1342 1343 return ((void *)retkva); 1344 } 1345 1346 /* 1347 * Frees a number of pages to the system 1348 * 1349 * Arguments: 1350 * mem A pointer to the memory to be freed 1351 * size The size of the memory being freed 1352 * flags The original p->us_flags field 1353 * 1354 * Returns: 1355 * Nothing 1356 */ 1357 static void 1358 page_free(void *mem, vm_size_t size, uint8_t flags) 1359 { 1360 1361 if ((flags & UMA_SLAB_KERNEL) == 0) 1362 panic("UMA: page_free used with invalid flags %x", flags); 1363 1364 kmem_free((vm_offset_t)mem, size); 1365 } 1366 1367 /* 1368 * Frees pcpu zone allocations 1369 * 1370 * Arguments: 1371 * mem A pointer to the memory to be freed 1372 * size The size of the memory being freed 1373 * flags The original p->us_flags field 1374 * 1375 * Returns: 1376 * Nothing 1377 */ 1378 static void 1379 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags) 1380 { 1381 vm_offset_t sva, curva; 1382 vm_paddr_t paddr; 1383 vm_page_t m; 1384 1385 MPASS(size == (mp_maxid+1)*PAGE_SIZE); 1386 sva = (vm_offset_t)mem; 1387 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) { 1388 paddr = pmap_kextract(curva); 1389 m = PHYS_TO_VM_PAGE(paddr); 1390 vm_page_unwire(m, PQ_NONE); 1391 vm_page_free(m); 1392 } 1393 pmap_qremove(sva, size >> PAGE_SHIFT); 1394 kva_free(sva, size); 1395 } 1396 1397 1398 /* 1399 * Zero fill initializer 1400 * 1401 * Arguments/Returns follow uma_init specifications 1402 */ 1403 static int 1404 zero_init(void *mem, int size, int flags) 1405 { 1406 bzero(mem, size); 1407 return (0); 1408 } 1409 1410 /* 1411 * Finish creating a small uma keg. This calculates ipers, and the keg size. 1412 * 1413 * Arguments 1414 * keg The zone we should initialize 1415 * 1416 * Returns 1417 * Nothing 1418 */ 1419 static void 1420 keg_small_init(uma_keg_t keg) 1421 { 1422 u_int rsize; 1423 u_int memused; 1424 u_int wastedspace; 1425 u_int shsize; 1426 u_int slabsize; 1427 1428 if (keg->uk_flags & UMA_ZONE_PCPU) { 1429 u_int ncpus = (mp_maxid + 1) ? (mp_maxid + 1) : MAXCPU; 1430 1431 slabsize = UMA_PCPU_ALLOC_SIZE; 1432 keg->uk_ppera = ncpus; 1433 } else { 1434 slabsize = UMA_SLAB_SIZE; 1435 keg->uk_ppera = 1; 1436 } 1437 1438 /* 1439 * Calculate the size of each allocation (rsize) according to 1440 * alignment. If the requested size is smaller than we have 1441 * allocation bits for we round it up. 1442 */ 1443 rsize = keg->uk_size; 1444 if (rsize < slabsize / SLAB_SETSIZE) 1445 rsize = slabsize / SLAB_SETSIZE; 1446 if (rsize & keg->uk_align) 1447 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1448 keg->uk_rsize = rsize; 1449 1450 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 1451 keg->uk_rsize < UMA_PCPU_ALLOC_SIZE, 1452 ("%s: size %u too large", __func__, keg->uk_rsize)); 1453 1454 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1455 shsize = 0; 1456 else 1457 shsize = SIZEOF_UMA_SLAB; 1458 1459 if (rsize <= slabsize - shsize) 1460 keg->uk_ipers = (slabsize - shsize) / rsize; 1461 else { 1462 /* Handle special case when we have 1 item per slab, so 1463 * alignment requirement can be relaxed. */ 1464 KASSERT(keg->uk_size <= slabsize - shsize, 1465 ("%s: size %u greater than slab", __func__, keg->uk_size)); 1466 keg->uk_ipers = 1; 1467 } 1468 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1469 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1470 1471 memused = keg->uk_ipers * rsize + shsize; 1472 wastedspace = slabsize - memused; 1473 1474 /* 1475 * We can't do OFFPAGE if we're internal or if we've been 1476 * asked to not go to the VM for buckets. If we do this we 1477 * may end up going to the VM for slabs which we do not 1478 * want to do if we're UMA_ZFLAG_CACHEONLY as a result 1479 * of UMA_ZONE_VM, which clearly forbids it. 1480 */ 1481 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1482 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1483 return; 1484 1485 /* 1486 * See if using an OFFPAGE slab will limit our waste. Only do 1487 * this if it permits more items per-slab. 1488 * 1489 * XXX We could try growing slabsize to limit max waste as well. 1490 * Historically this was not done because the VM could not 1491 * efficiently handle contiguous allocations. 1492 */ 1493 if ((wastedspace >= slabsize / UMA_MAX_WASTE) && 1494 (keg->uk_ipers < (slabsize / keg->uk_rsize))) { 1495 keg->uk_ipers = slabsize / keg->uk_rsize; 1496 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1497 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1498 CTR6(KTR_UMA, "UMA decided we need offpage slab headers for " 1499 "keg: %s(%p), calculated wastedspace = %d, " 1500 "maximum wasted space allowed = %d, " 1501 "calculated ipers = %d, " 1502 "new wasted space = %d\n", keg->uk_name, keg, wastedspace, 1503 slabsize / UMA_MAX_WASTE, keg->uk_ipers, 1504 slabsize - keg->uk_ipers * keg->uk_rsize); 1505 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1506 } 1507 1508 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1509 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1510 keg->uk_flags |= UMA_ZONE_HASH; 1511 } 1512 1513 /* 1514 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do 1515 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1516 * more complicated. 1517 * 1518 * Arguments 1519 * keg The keg we should initialize 1520 * 1521 * Returns 1522 * Nothing 1523 */ 1524 static void 1525 keg_large_init(uma_keg_t keg) 1526 { 1527 1528 KASSERT(keg != NULL, ("Keg is null in keg_large_init")); 1529 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1530 ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__)); 1531 1532 keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE); 1533 keg->uk_ipers = 1; 1534 keg->uk_rsize = keg->uk_size; 1535 1536 /* Check whether we have enough space to not do OFFPAGE. */ 1537 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0 && 1538 PAGE_SIZE * keg->uk_ppera - keg->uk_rsize < SIZEOF_UMA_SLAB) { 1539 /* 1540 * We can't do OFFPAGE if we're internal, in which case 1541 * we need an extra page per allocation to contain the 1542 * slab header. 1543 */ 1544 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) == 0) 1545 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1546 else 1547 keg->uk_ppera++; 1548 } 1549 1550 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1551 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1552 keg->uk_flags |= UMA_ZONE_HASH; 1553 } 1554 1555 static void 1556 keg_cachespread_init(uma_keg_t keg) 1557 { 1558 int alignsize; 1559 int trailer; 1560 int pages; 1561 int rsize; 1562 1563 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1564 ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__)); 1565 1566 alignsize = keg->uk_align + 1; 1567 rsize = keg->uk_size; 1568 /* 1569 * We want one item to start on every align boundary in a page. To 1570 * do this we will span pages. We will also extend the item by the 1571 * size of align if it is an even multiple of align. Otherwise, it 1572 * would fall on the same boundary every time. 1573 */ 1574 if (rsize & keg->uk_align) 1575 rsize = (rsize & ~keg->uk_align) + alignsize; 1576 if ((rsize & alignsize) == 0) 1577 rsize += alignsize; 1578 trailer = rsize - keg->uk_size; 1579 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE; 1580 pages = MIN(pages, (128 * 1024) / PAGE_SIZE); 1581 keg->uk_rsize = rsize; 1582 keg->uk_ppera = pages; 1583 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize; 1584 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1585 KASSERT(keg->uk_ipers <= SLAB_SETSIZE, 1586 ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__, 1587 keg->uk_ipers)); 1588 } 1589 1590 /* 1591 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1592 * the keg onto the global keg list. 1593 * 1594 * Arguments/Returns follow uma_ctor specifications 1595 * udata Actually uma_kctor_args 1596 */ 1597 static int 1598 keg_ctor(void *mem, int size, void *udata, int flags) 1599 { 1600 struct uma_kctor_args *arg = udata; 1601 uma_keg_t keg = mem; 1602 uma_zone_t zone; 1603 1604 bzero(keg, size); 1605 keg->uk_size = arg->size; 1606 keg->uk_init = arg->uminit; 1607 keg->uk_fini = arg->fini; 1608 keg->uk_align = arg->align; 1609 keg->uk_free = 0; 1610 keg->uk_reserve = 0; 1611 keg->uk_pages = 0; 1612 keg->uk_flags = arg->flags; 1613 keg->uk_slabzone = NULL; 1614 1615 /* 1616 * We use a global round-robin policy by default. Zones with 1617 * UMA_ZONE_NUMA set will use first-touch instead, in which case the 1618 * iterator is never run. 1619 */ 1620 keg->uk_dr.dr_policy = DOMAINSET_RR(); 1621 keg->uk_dr.dr_iter = 0; 1622 1623 /* 1624 * The master zone is passed to us at keg-creation time. 1625 */ 1626 zone = arg->zone; 1627 keg->uk_name = zone->uz_name; 1628 1629 if (arg->flags & UMA_ZONE_VM) 1630 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1631 1632 if (arg->flags & UMA_ZONE_ZINIT) 1633 keg->uk_init = zero_init; 1634 1635 if (arg->flags & UMA_ZONE_MALLOC) 1636 keg->uk_flags |= UMA_ZONE_VTOSLAB; 1637 1638 if (arg->flags & UMA_ZONE_PCPU) 1639 #ifdef SMP 1640 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1641 #else 1642 keg->uk_flags &= ~UMA_ZONE_PCPU; 1643 #endif 1644 1645 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) { 1646 keg_cachespread_init(keg); 1647 } else { 1648 if (keg->uk_size > UMA_SLAB_SPACE) 1649 keg_large_init(keg); 1650 else 1651 keg_small_init(keg); 1652 } 1653 1654 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1655 keg->uk_slabzone = slabzone; 1656 1657 /* 1658 * If we haven't booted yet we need allocations to go through the 1659 * startup cache until the vm is ready. 1660 */ 1661 if (booted < BOOT_PAGEALLOC) 1662 keg->uk_allocf = startup_alloc; 1663 #ifdef UMA_MD_SMALL_ALLOC 1664 else if (keg->uk_ppera == 1) 1665 keg->uk_allocf = uma_small_alloc; 1666 #endif 1667 else if (keg->uk_flags & UMA_ZONE_PCPU) 1668 keg->uk_allocf = pcpu_page_alloc; 1669 else 1670 keg->uk_allocf = page_alloc; 1671 #ifdef UMA_MD_SMALL_ALLOC 1672 if (keg->uk_ppera == 1) 1673 keg->uk_freef = uma_small_free; 1674 else 1675 #endif 1676 if (keg->uk_flags & UMA_ZONE_PCPU) 1677 keg->uk_freef = pcpu_page_free; 1678 else 1679 keg->uk_freef = page_free; 1680 1681 /* 1682 * Initialize keg's lock 1683 */ 1684 KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS)); 1685 1686 /* 1687 * If we're putting the slab header in the actual page we need to 1688 * figure out where in each page it goes. See SIZEOF_UMA_SLAB 1689 * macro definition. 1690 */ 1691 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1692 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - SIZEOF_UMA_SLAB; 1693 /* 1694 * The only way the following is possible is if with our 1695 * UMA_ALIGN_PTR adjustments we are now bigger than 1696 * UMA_SLAB_SIZE. I haven't checked whether this is 1697 * mathematically possible for all cases, so we make 1698 * sure here anyway. 1699 */ 1700 KASSERT(keg->uk_pgoff + sizeof(struct uma_slab) <= 1701 PAGE_SIZE * keg->uk_ppera, 1702 ("zone %s ipers %d rsize %d size %d slab won't fit", 1703 zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size)); 1704 } 1705 1706 if (keg->uk_flags & UMA_ZONE_HASH) 1707 hash_alloc(&keg->uk_hash); 1708 1709 CTR5(KTR_UMA, "keg_ctor %p zone %s(%p) out %d free %d\n", 1710 keg, zone->uz_name, zone, 1711 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 1712 keg->uk_free); 1713 1714 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1715 1716 rw_wlock(&uma_rwlock); 1717 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1718 rw_wunlock(&uma_rwlock); 1719 return (0); 1720 } 1721 1722 static void 1723 zone_alloc_counters(uma_zone_t zone) 1724 { 1725 1726 zone->uz_allocs = counter_u64_alloc(M_WAITOK); 1727 zone->uz_frees = counter_u64_alloc(M_WAITOK); 1728 zone->uz_fails = counter_u64_alloc(M_WAITOK); 1729 } 1730 1731 /* 1732 * Zone header ctor. This initializes all fields, locks, etc. 1733 * 1734 * Arguments/Returns follow uma_ctor specifications 1735 * udata Actually uma_zctor_args 1736 */ 1737 static int 1738 zone_ctor(void *mem, int size, void *udata, int flags) 1739 { 1740 struct uma_zctor_args *arg = udata; 1741 uma_zone_t zone = mem; 1742 uma_zone_t z; 1743 uma_keg_t keg; 1744 1745 bzero(zone, size); 1746 zone->uz_name = arg->name; 1747 zone->uz_ctor = arg->ctor; 1748 zone->uz_dtor = arg->dtor; 1749 zone->uz_init = NULL; 1750 zone->uz_fini = NULL; 1751 zone->uz_sleeps = 0; 1752 zone->uz_count = 0; 1753 zone->uz_count_min = 0; 1754 zone->uz_count_max = BUCKET_MAX; 1755 zone->uz_flags = 0; 1756 zone->uz_warning = NULL; 1757 /* The domain structures follow the cpu structures. */ 1758 zone->uz_domain = (struct uma_zone_domain *)&zone->uz_cpu[mp_ncpus]; 1759 zone->uz_bkt_max = ULONG_MAX; 1760 timevalclear(&zone->uz_ratecheck); 1761 1762 if (__predict_true(booted == BOOT_RUNNING)) 1763 zone_alloc_counters(zone); 1764 else { 1765 zone->uz_allocs = EARLY_COUNTER; 1766 zone->uz_frees = EARLY_COUNTER; 1767 zone->uz_fails = EARLY_COUNTER; 1768 } 1769 1770 /* 1771 * This is a pure cache zone, no kegs. 1772 */ 1773 if (arg->import) { 1774 if (arg->flags & UMA_ZONE_VM) 1775 arg->flags |= UMA_ZFLAG_CACHEONLY; 1776 zone->uz_flags = arg->flags; 1777 zone->uz_size = arg->size; 1778 zone->uz_import = arg->import; 1779 zone->uz_release = arg->release; 1780 zone->uz_arg = arg->arg; 1781 zone->uz_lockptr = &zone->uz_lock; 1782 ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS)); 1783 rw_wlock(&uma_rwlock); 1784 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 1785 rw_wunlock(&uma_rwlock); 1786 goto out; 1787 } 1788 1789 /* 1790 * Use the regular zone/keg/slab allocator. 1791 */ 1792 zone->uz_import = (uma_import)zone_import; 1793 zone->uz_release = (uma_release)zone_release; 1794 zone->uz_arg = zone; 1795 keg = arg->keg; 1796 1797 if (arg->flags & UMA_ZONE_SECONDARY) { 1798 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 1799 zone->uz_init = arg->uminit; 1800 zone->uz_fini = arg->fini; 1801 zone->uz_lockptr = &keg->uk_lock; 1802 zone->uz_flags |= UMA_ZONE_SECONDARY; 1803 rw_wlock(&uma_rwlock); 1804 ZONE_LOCK(zone); 1805 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 1806 if (LIST_NEXT(z, uz_link) == NULL) { 1807 LIST_INSERT_AFTER(z, zone, uz_link); 1808 break; 1809 } 1810 } 1811 ZONE_UNLOCK(zone); 1812 rw_wunlock(&uma_rwlock); 1813 } else if (keg == NULL) { 1814 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 1815 arg->align, arg->flags)) == NULL) 1816 return (ENOMEM); 1817 } else { 1818 struct uma_kctor_args karg; 1819 int error; 1820 1821 /* We should only be here from uma_startup() */ 1822 karg.size = arg->size; 1823 karg.uminit = arg->uminit; 1824 karg.fini = arg->fini; 1825 karg.align = arg->align; 1826 karg.flags = arg->flags; 1827 karg.zone = zone; 1828 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 1829 flags); 1830 if (error) 1831 return (error); 1832 } 1833 1834 zone->uz_keg = keg; 1835 zone->uz_size = keg->uk_size; 1836 zone->uz_flags |= (keg->uk_flags & 1837 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 1838 1839 /* 1840 * Some internal zones don't have room allocated for the per cpu 1841 * caches. If we're internal, bail out here. 1842 */ 1843 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { 1844 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 1845 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 1846 return (0); 1847 } 1848 1849 out: 1850 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != 1851 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), 1852 ("Invalid zone flag combination")); 1853 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) 1854 zone->uz_count = BUCKET_MAX; 1855 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) 1856 zone->uz_count = 0; 1857 else 1858 zone->uz_count = bucket_select(zone->uz_size); 1859 zone->uz_count_min = zone->uz_count; 1860 1861 return (0); 1862 } 1863 1864 /* 1865 * Keg header dtor. This frees all data, destroys locks, frees the hash 1866 * table and removes the keg from the global list. 1867 * 1868 * Arguments/Returns follow uma_dtor specifications 1869 * udata unused 1870 */ 1871 static void 1872 keg_dtor(void *arg, int size, void *udata) 1873 { 1874 uma_keg_t keg; 1875 1876 keg = (uma_keg_t)arg; 1877 KEG_LOCK(keg); 1878 if (keg->uk_free != 0) { 1879 printf("Freed UMA keg (%s) was not empty (%d items). " 1880 " Lost %d pages of memory.\n", 1881 keg->uk_name ? keg->uk_name : "", 1882 keg->uk_free, keg->uk_pages); 1883 } 1884 KEG_UNLOCK(keg); 1885 1886 hash_free(&keg->uk_hash); 1887 1888 KEG_LOCK_FINI(keg); 1889 } 1890 1891 /* 1892 * Zone header dtor. 1893 * 1894 * Arguments/Returns follow uma_dtor specifications 1895 * udata unused 1896 */ 1897 static void 1898 zone_dtor(void *arg, int size, void *udata) 1899 { 1900 uma_zone_t zone; 1901 uma_keg_t keg; 1902 1903 zone = (uma_zone_t)arg; 1904 1905 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 1906 cache_drain(zone); 1907 1908 rw_wlock(&uma_rwlock); 1909 LIST_REMOVE(zone, uz_link); 1910 rw_wunlock(&uma_rwlock); 1911 /* 1912 * XXX there are some races here where 1913 * the zone can be drained but zone lock 1914 * released and then refilled before we 1915 * remove it... we dont care for now 1916 */ 1917 zone_drain_wait(zone, M_WAITOK); 1918 /* 1919 * We only destroy kegs from non secondary zones. 1920 */ 1921 if ((keg = zone->uz_keg) != NULL && 1922 (zone->uz_flags & UMA_ZONE_SECONDARY) == 0) { 1923 rw_wlock(&uma_rwlock); 1924 LIST_REMOVE(keg, uk_link); 1925 rw_wunlock(&uma_rwlock); 1926 zone_free_item(kegs, keg, NULL, SKIP_NONE); 1927 } 1928 counter_u64_free(zone->uz_allocs); 1929 counter_u64_free(zone->uz_frees); 1930 counter_u64_free(zone->uz_fails); 1931 if (zone->uz_lockptr == &zone->uz_lock) 1932 ZONE_LOCK_FINI(zone); 1933 } 1934 1935 /* 1936 * Traverses every zone in the system and calls a callback 1937 * 1938 * Arguments: 1939 * zfunc A pointer to a function which accepts a zone 1940 * as an argument. 1941 * 1942 * Returns: 1943 * Nothing 1944 */ 1945 static void 1946 zone_foreach(void (*zfunc)(uma_zone_t)) 1947 { 1948 uma_keg_t keg; 1949 uma_zone_t zone; 1950 1951 /* 1952 * Before BOOT_RUNNING we are guaranteed to be single 1953 * threaded, so locking isn't needed. Startup functions 1954 * are allowed to use M_WAITOK. 1955 */ 1956 if (__predict_true(booted == BOOT_RUNNING)) 1957 rw_rlock(&uma_rwlock); 1958 LIST_FOREACH(keg, &uma_kegs, uk_link) { 1959 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 1960 zfunc(zone); 1961 } 1962 if (__predict_true(booted == BOOT_RUNNING)) 1963 rw_runlock(&uma_rwlock); 1964 } 1965 1966 /* 1967 * Count how many pages do we need to bootstrap. VM supplies 1968 * its need in early zones in the argument, we add up our zones, 1969 * which consist of: UMA Slabs, UMA Hash and 9 Bucket zones. The 1970 * zone of zones and zone of kegs are accounted separately. 1971 */ 1972 #define UMA_BOOT_ZONES 11 1973 /* Zone of zones and zone of kegs have arbitrary alignment. */ 1974 #define UMA_BOOT_ALIGN 32 1975 static int zsize, ksize; 1976 int 1977 uma_startup_count(int vm_zones) 1978 { 1979 int zones, pages; 1980 1981 ksize = sizeof(struct uma_keg) + 1982 (sizeof(struct uma_domain) * vm_ndomains); 1983 zsize = sizeof(struct uma_zone) + 1984 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 1985 (sizeof(struct uma_zone_domain) * vm_ndomains); 1986 1987 /* 1988 * Memory for the zone of kegs and its keg, 1989 * and for zone of zones. 1990 */ 1991 pages = howmany(roundup(zsize, CACHE_LINE_SIZE) * 2 + 1992 roundup(ksize, CACHE_LINE_SIZE), PAGE_SIZE); 1993 1994 #ifdef UMA_MD_SMALL_ALLOC 1995 zones = UMA_BOOT_ZONES; 1996 #else 1997 zones = UMA_BOOT_ZONES + vm_zones; 1998 vm_zones = 0; 1999 #endif 2000 2001 /* Memory for the rest of startup zones, UMA and VM, ... */ 2002 if (zsize > UMA_SLAB_SPACE) { 2003 /* See keg_large_init(). */ 2004 u_int ppera; 2005 2006 ppera = howmany(roundup2(zsize, UMA_BOOT_ALIGN), PAGE_SIZE); 2007 if (PAGE_SIZE * ppera - roundup2(zsize, UMA_BOOT_ALIGN) < 2008 SIZEOF_UMA_SLAB) 2009 ppera++; 2010 pages += (zones + vm_zones) * ppera; 2011 } else if (roundup2(zsize, UMA_BOOT_ALIGN) > UMA_SLAB_SPACE) 2012 /* See keg_small_init() special case for uk_ppera = 1. */ 2013 pages += zones; 2014 else 2015 pages += howmany(zones, 2016 UMA_SLAB_SPACE / roundup2(zsize, UMA_BOOT_ALIGN)); 2017 2018 /* ... and their kegs. Note that zone of zones allocates a keg! */ 2019 pages += howmany(zones + 1, 2020 UMA_SLAB_SPACE / roundup2(ksize, UMA_BOOT_ALIGN)); 2021 2022 /* 2023 * Most of startup zones are not going to be offpages, that's 2024 * why we use UMA_SLAB_SPACE instead of UMA_SLAB_SIZE in all 2025 * calculations. Some large bucket zones will be offpage, and 2026 * thus will allocate hashes. We take conservative approach 2027 * and assume that all zones may allocate hash. This may give 2028 * us some positive inaccuracy, usually an extra single page. 2029 */ 2030 pages += howmany(zones, UMA_SLAB_SPACE / 2031 (sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT)); 2032 2033 return (pages); 2034 } 2035 2036 void 2037 uma_startup(void *mem, int npages) 2038 { 2039 struct uma_zctor_args args; 2040 uma_keg_t masterkeg; 2041 uintptr_t m; 2042 2043 #ifdef DIAGNOSTIC 2044 printf("Entering %s with %d boot pages configured\n", __func__, npages); 2045 #endif 2046 2047 rw_init(&uma_rwlock, "UMA lock"); 2048 2049 /* Use bootpages memory for the zone of zones and zone of kegs. */ 2050 m = (uintptr_t)mem; 2051 zones = (uma_zone_t)m; 2052 m += roundup(zsize, CACHE_LINE_SIZE); 2053 kegs = (uma_zone_t)m; 2054 m += roundup(zsize, CACHE_LINE_SIZE); 2055 masterkeg = (uma_keg_t)m; 2056 m += roundup(ksize, CACHE_LINE_SIZE); 2057 m = roundup(m, PAGE_SIZE); 2058 npages -= (m - (uintptr_t)mem) / PAGE_SIZE; 2059 mem = (void *)m; 2060 2061 /* "manually" create the initial zone */ 2062 memset(&args, 0, sizeof(args)); 2063 args.name = "UMA Kegs"; 2064 args.size = ksize; 2065 args.ctor = keg_ctor; 2066 args.dtor = keg_dtor; 2067 args.uminit = zero_init; 2068 args.fini = NULL; 2069 args.keg = masterkeg; 2070 args.align = UMA_BOOT_ALIGN - 1; 2071 args.flags = UMA_ZFLAG_INTERNAL; 2072 zone_ctor(kegs, zsize, &args, M_WAITOK); 2073 2074 bootmem = mem; 2075 boot_pages = npages; 2076 2077 args.name = "UMA Zones"; 2078 args.size = zsize; 2079 args.ctor = zone_ctor; 2080 args.dtor = zone_dtor; 2081 args.uminit = zero_init; 2082 args.fini = NULL; 2083 args.keg = NULL; 2084 args.align = UMA_BOOT_ALIGN - 1; 2085 args.flags = UMA_ZFLAG_INTERNAL; 2086 zone_ctor(zones, zsize, &args, M_WAITOK); 2087 2088 /* Now make a zone for slab headers */ 2089 slabzone = uma_zcreate("UMA Slabs", 2090 sizeof(struct uma_slab), 2091 NULL, NULL, NULL, NULL, 2092 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2093 2094 hashzone = uma_zcreate("UMA Hash", 2095 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 2096 NULL, NULL, NULL, NULL, 2097 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2098 2099 bucket_init(); 2100 2101 booted = BOOT_STRAPPED; 2102 } 2103 2104 void 2105 uma_startup1(void) 2106 { 2107 2108 #ifdef DIAGNOSTIC 2109 printf("Entering %s with %d boot pages left\n", __func__, boot_pages); 2110 #endif 2111 booted = BOOT_PAGEALLOC; 2112 } 2113 2114 void 2115 uma_startup2(void) 2116 { 2117 2118 #ifdef DIAGNOSTIC 2119 printf("Entering %s with %d boot pages left\n", __func__, boot_pages); 2120 #endif 2121 booted = BOOT_BUCKETS; 2122 sx_init(&uma_drain_lock, "umadrain"); 2123 bucket_enable(); 2124 } 2125 2126 /* 2127 * Initialize our callout handle 2128 * 2129 */ 2130 static void 2131 uma_startup3(void) 2132 { 2133 2134 #ifdef INVARIANTS 2135 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor); 2136 uma_dbg_cnt = counter_u64_alloc(M_WAITOK); 2137 uma_skip_cnt = counter_u64_alloc(M_WAITOK); 2138 #endif 2139 zone_foreach(zone_alloc_counters); 2140 callout_init(&uma_callout, 1); 2141 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 2142 booted = BOOT_RUNNING; 2143 } 2144 2145 static uma_keg_t 2146 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 2147 int align, uint32_t flags) 2148 { 2149 struct uma_kctor_args args; 2150 2151 args.size = size; 2152 args.uminit = uminit; 2153 args.fini = fini; 2154 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 2155 args.flags = flags; 2156 args.zone = zone; 2157 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 2158 } 2159 2160 /* Public functions */ 2161 /* See uma.h */ 2162 void 2163 uma_set_align(int align) 2164 { 2165 2166 if (align != UMA_ALIGN_CACHE) 2167 uma_align_cache = align; 2168 } 2169 2170 /* See uma.h */ 2171 uma_zone_t 2172 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 2173 uma_init uminit, uma_fini fini, int align, uint32_t flags) 2174 2175 { 2176 struct uma_zctor_args args; 2177 uma_zone_t res; 2178 bool locked; 2179 2180 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 2181 align, name)); 2182 2183 /* This stuff is essential for the zone ctor */ 2184 memset(&args, 0, sizeof(args)); 2185 args.name = name; 2186 args.size = size; 2187 args.ctor = ctor; 2188 args.dtor = dtor; 2189 args.uminit = uminit; 2190 args.fini = fini; 2191 #ifdef INVARIANTS 2192 /* 2193 * If a zone is being created with an empty constructor and 2194 * destructor, pass UMA constructor/destructor which checks for 2195 * memory use after free. 2196 */ 2197 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOFREE))) && 2198 ctor == NULL && dtor == NULL && uminit == NULL && fini == NULL) { 2199 args.ctor = trash_ctor; 2200 args.dtor = trash_dtor; 2201 args.uminit = trash_init; 2202 args.fini = trash_fini; 2203 } 2204 #endif 2205 args.align = align; 2206 args.flags = flags; 2207 args.keg = NULL; 2208 2209 if (booted < BOOT_BUCKETS) { 2210 locked = false; 2211 } else { 2212 sx_slock(&uma_drain_lock); 2213 locked = true; 2214 } 2215 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2216 if (locked) 2217 sx_sunlock(&uma_drain_lock); 2218 return (res); 2219 } 2220 2221 /* See uma.h */ 2222 uma_zone_t 2223 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 2224 uma_init zinit, uma_fini zfini, uma_zone_t master) 2225 { 2226 struct uma_zctor_args args; 2227 uma_keg_t keg; 2228 uma_zone_t res; 2229 bool locked; 2230 2231 keg = master->uz_keg; 2232 memset(&args, 0, sizeof(args)); 2233 args.name = name; 2234 args.size = keg->uk_size; 2235 args.ctor = ctor; 2236 args.dtor = dtor; 2237 args.uminit = zinit; 2238 args.fini = zfini; 2239 args.align = keg->uk_align; 2240 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 2241 args.keg = keg; 2242 2243 if (booted < BOOT_BUCKETS) { 2244 locked = false; 2245 } else { 2246 sx_slock(&uma_drain_lock); 2247 locked = true; 2248 } 2249 /* XXX Attaches only one keg of potentially many. */ 2250 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2251 if (locked) 2252 sx_sunlock(&uma_drain_lock); 2253 return (res); 2254 } 2255 2256 /* See uma.h */ 2257 uma_zone_t 2258 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor, 2259 uma_init zinit, uma_fini zfini, uma_import zimport, 2260 uma_release zrelease, void *arg, int flags) 2261 { 2262 struct uma_zctor_args args; 2263 2264 memset(&args, 0, sizeof(args)); 2265 args.name = name; 2266 args.size = size; 2267 args.ctor = ctor; 2268 args.dtor = dtor; 2269 args.uminit = zinit; 2270 args.fini = zfini; 2271 args.import = zimport; 2272 args.release = zrelease; 2273 args.arg = arg; 2274 args.align = 0; 2275 args.flags = flags | UMA_ZFLAG_CACHE; 2276 2277 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 2278 } 2279 2280 /* See uma.h */ 2281 void 2282 uma_zdestroy(uma_zone_t zone) 2283 { 2284 2285 sx_slock(&uma_drain_lock); 2286 zone_free_item(zones, zone, NULL, SKIP_NONE); 2287 sx_sunlock(&uma_drain_lock); 2288 } 2289 2290 void 2291 uma_zwait(uma_zone_t zone) 2292 { 2293 void *item; 2294 2295 item = uma_zalloc_arg(zone, NULL, M_WAITOK); 2296 uma_zfree(zone, item); 2297 } 2298 2299 void * 2300 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags) 2301 { 2302 void *item; 2303 #ifdef SMP 2304 int i; 2305 2306 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 2307 #endif 2308 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO); 2309 if (item != NULL && (flags & M_ZERO)) { 2310 #ifdef SMP 2311 for (i = 0; i <= mp_maxid; i++) 2312 bzero(zpcpu_get_cpu(item, i), zone->uz_size); 2313 #else 2314 bzero(item, zone->uz_size); 2315 #endif 2316 } 2317 return (item); 2318 } 2319 2320 /* 2321 * A stub while both regular and pcpu cases are identical. 2322 */ 2323 void 2324 uma_zfree_pcpu_arg(uma_zone_t zone, void *item, void *udata) 2325 { 2326 2327 #ifdef SMP 2328 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 2329 #endif 2330 uma_zfree_arg(zone, item, udata); 2331 } 2332 2333 /* See uma.h */ 2334 void * 2335 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 2336 { 2337 uma_zone_domain_t zdom; 2338 uma_bucket_t bucket; 2339 uma_cache_t cache; 2340 void *item; 2341 int cpu, domain, lockfail, maxbucket; 2342 #ifdef INVARIANTS 2343 bool skipdbg; 2344 #endif 2345 2346 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2347 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 2348 2349 /* This is the fast path allocation */ 2350 CTR4(KTR_UMA, "uma_zalloc_arg thread %x zone %s(%p) flags %d", 2351 curthread, zone->uz_name, zone, flags); 2352 2353 if (flags & M_WAITOK) { 2354 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2355 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 2356 } 2357 KASSERT((flags & M_EXEC) == 0, ("uma_zalloc_arg: called with M_EXEC")); 2358 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2359 ("uma_zalloc_arg: called with spinlock or critical section held")); 2360 if (zone->uz_flags & UMA_ZONE_PCPU) 2361 KASSERT((flags & M_ZERO) == 0, ("allocating from a pcpu zone " 2362 "with M_ZERO passed")); 2363 2364 #ifdef DEBUG_MEMGUARD 2365 if (memguard_cmp_zone(zone)) { 2366 item = memguard_alloc(zone->uz_size, flags); 2367 if (item != NULL) { 2368 if (zone->uz_init != NULL && 2369 zone->uz_init(item, zone->uz_size, flags) != 0) 2370 return (NULL); 2371 if (zone->uz_ctor != NULL && 2372 zone->uz_ctor(item, zone->uz_size, udata, 2373 flags) != 0) { 2374 zone->uz_fini(item, zone->uz_size); 2375 return (NULL); 2376 } 2377 return (item); 2378 } 2379 /* This is unfortunate but should not be fatal. */ 2380 } 2381 #endif 2382 /* 2383 * If possible, allocate from the per-CPU cache. There are two 2384 * requirements for safe access to the per-CPU cache: (1) the thread 2385 * accessing the cache must not be preempted or yield during access, 2386 * and (2) the thread must not migrate CPUs without switching which 2387 * cache it accesses. We rely on a critical section to prevent 2388 * preemption and migration. We release the critical section in 2389 * order to acquire the zone mutex if we are unable to allocate from 2390 * the current cache; when we re-acquire the critical section, we 2391 * must detect and handle migration if it has occurred. 2392 */ 2393 zalloc_restart: 2394 critical_enter(); 2395 cpu = curcpu; 2396 cache = &zone->uz_cpu[cpu]; 2397 2398 zalloc_start: 2399 bucket = cache->uc_allocbucket; 2400 if (bucket != NULL && bucket->ub_cnt > 0) { 2401 bucket->ub_cnt--; 2402 item = bucket->ub_bucket[bucket->ub_cnt]; 2403 #ifdef INVARIANTS 2404 bucket->ub_bucket[bucket->ub_cnt] = NULL; 2405 #endif 2406 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 2407 cache->uc_allocs++; 2408 critical_exit(); 2409 #ifdef INVARIANTS 2410 skipdbg = uma_dbg_zskip(zone, item); 2411 #endif 2412 if (zone->uz_ctor != NULL && 2413 #ifdef INVARIANTS 2414 (!skipdbg || zone->uz_ctor != trash_ctor || 2415 zone->uz_dtor != trash_dtor) && 2416 #endif 2417 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2418 counter_u64_add(zone->uz_fails, 1); 2419 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT); 2420 return (NULL); 2421 } 2422 #ifdef INVARIANTS 2423 if (!skipdbg) 2424 uma_dbg_alloc(zone, NULL, item); 2425 #endif 2426 if (flags & M_ZERO) 2427 uma_zero_item(item, zone); 2428 return (item); 2429 } 2430 2431 /* 2432 * We have run out of items in our alloc bucket. 2433 * See if we can switch with our free bucket. 2434 */ 2435 bucket = cache->uc_freebucket; 2436 if (bucket != NULL && bucket->ub_cnt > 0) { 2437 CTR2(KTR_UMA, 2438 "uma_zalloc: zone %s(%p) swapping empty with alloc", 2439 zone->uz_name, zone); 2440 cache->uc_freebucket = cache->uc_allocbucket; 2441 cache->uc_allocbucket = bucket; 2442 goto zalloc_start; 2443 } 2444 2445 /* 2446 * Discard any empty allocation bucket while we hold no locks. 2447 */ 2448 bucket = cache->uc_allocbucket; 2449 cache->uc_allocbucket = NULL; 2450 critical_exit(); 2451 if (bucket != NULL) 2452 bucket_free(zone, bucket, udata); 2453 2454 if (zone->uz_flags & UMA_ZONE_NUMA) { 2455 domain = PCPU_GET(domain); 2456 if (VM_DOMAIN_EMPTY(domain)) 2457 domain = UMA_ANYDOMAIN; 2458 } else 2459 domain = UMA_ANYDOMAIN; 2460 2461 /* Short-circuit for zones without buckets and low memory. */ 2462 if (zone->uz_count == 0 || bucketdisable) { 2463 ZONE_LOCK(zone); 2464 goto zalloc_item; 2465 } 2466 2467 /* 2468 * Attempt to retrieve the item from the per-CPU cache has failed, so 2469 * we must go back to the zone. This requires the zone lock, so we 2470 * must drop the critical section, then re-acquire it when we go back 2471 * to the cache. Since the critical section is released, we may be 2472 * preempted or migrate. As such, make sure not to maintain any 2473 * thread-local state specific to the cache from prior to releasing 2474 * the critical section. 2475 */ 2476 lockfail = 0; 2477 if (ZONE_TRYLOCK(zone) == 0) { 2478 /* Record contention to size the buckets. */ 2479 ZONE_LOCK(zone); 2480 lockfail = 1; 2481 } 2482 critical_enter(); 2483 cpu = curcpu; 2484 cache = &zone->uz_cpu[cpu]; 2485 2486 /* See if we lost the race to fill the cache. */ 2487 if (cache->uc_allocbucket != NULL) { 2488 ZONE_UNLOCK(zone); 2489 goto zalloc_start; 2490 } 2491 2492 /* 2493 * Check the zone's cache of buckets. 2494 */ 2495 if (domain == UMA_ANYDOMAIN) 2496 zdom = &zone->uz_domain[0]; 2497 else 2498 zdom = &zone->uz_domain[domain]; 2499 if ((bucket = zone_try_fetch_bucket(zone, zdom, true)) != NULL) { 2500 KASSERT(bucket->ub_cnt != 0, 2501 ("uma_zalloc_arg: Returning an empty bucket.")); 2502 cache->uc_allocbucket = bucket; 2503 ZONE_UNLOCK(zone); 2504 goto zalloc_start; 2505 } 2506 /* We are no longer associated with this CPU. */ 2507 critical_exit(); 2508 2509 /* 2510 * We bump the uz count when the cache size is insufficient to 2511 * handle the working set. 2512 */ 2513 if (lockfail && zone->uz_count < zone->uz_count_max) 2514 zone->uz_count++; 2515 2516 if (zone->uz_max_items > 0) { 2517 if (zone->uz_items >= zone->uz_max_items) 2518 goto zalloc_item; 2519 maxbucket = MIN(zone->uz_count, 2520 zone->uz_max_items - zone->uz_items); 2521 zone->uz_items += maxbucket; 2522 } else 2523 maxbucket = zone->uz_count; 2524 ZONE_UNLOCK(zone); 2525 2526 /* 2527 * Now lets just fill a bucket and put it on the free list. If that 2528 * works we'll restart the allocation from the beginning and it 2529 * will use the just filled bucket. 2530 */ 2531 bucket = zone_alloc_bucket(zone, udata, domain, flags, maxbucket); 2532 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 2533 zone->uz_name, zone, bucket); 2534 ZONE_LOCK(zone); 2535 if (bucket != NULL) { 2536 if (zone->uz_max_items > 0 && bucket->ub_cnt < maxbucket) { 2537 MPASS(zone->uz_items >= maxbucket - bucket->ub_cnt); 2538 zone->uz_items -= maxbucket - bucket->ub_cnt; 2539 if (zone->uz_sleepers > 0 && 2540 zone->uz_items < zone->uz_max_items) 2541 wakeup_one(zone); 2542 } 2543 critical_enter(); 2544 cpu = curcpu; 2545 cache = &zone->uz_cpu[cpu]; 2546 2547 /* 2548 * See if we lost the race or were migrated. Cache the 2549 * initialized bucket to make this less likely or claim 2550 * the memory directly. 2551 */ 2552 if (cache->uc_allocbucket == NULL && 2553 ((zone->uz_flags & UMA_ZONE_NUMA) == 0 || 2554 domain == PCPU_GET(domain))) { 2555 cache->uc_allocbucket = bucket; 2556 zdom->uzd_imax += bucket->ub_cnt; 2557 } else if (zone->uz_bkt_count >= zone->uz_bkt_max) { 2558 critical_exit(); 2559 ZONE_UNLOCK(zone); 2560 bucket_drain(zone, bucket); 2561 bucket_free(zone, bucket, udata); 2562 goto zalloc_restart; 2563 } else 2564 zone_put_bucket(zone, zdom, bucket, false); 2565 ZONE_UNLOCK(zone); 2566 goto zalloc_start; 2567 } else if (zone->uz_max_items > 0) { 2568 zone->uz_items -= maxbucket; 2569 if (zone->uz_sleepers > 0 && 2570 zone->uz_items + 1 < zone->uz_max_items) 2571 wakeup_one(zone); 2572 } 2573 2574 /* 2575 * We may not be able to get a bucket so return an actual item. 2576 */ 2577 zalloc_item: 2578 item = zone_alloc_item_locked(zone, udata, domain, flags); 2579 2580 return (item); 2581 } 2582 2583 void * 2584 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 2585 { 2586 2587 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2588 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 2589 2590 /* This is the fast path allocation */ 2591 CTR5(KTR_UMA, 2592 "uma_zalloc_domain thread %x zone %s(%p) domain %d flags %d", 2593 curthread, zone->uz_name, zone, domain, flags); 2594 2595 if (flags & M_WAITOK) { 2596 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2597 "uma_zalloc_domain: zone \"%s\"", zone->uz_name); 2598 } 2599 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2600 ("uma_zalloc_domain: called with spinlock or critical section held")); 2601 2602 return (zone_alloc_item(zone, udata, domain, flags)); 2603 } 2604 2605 /* 2606 * Find a slab with some space. Prefer slabs that are partially used over those 2607 * that are totally full. This helps to reduce fragmentation. 2608 * 2609 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 2610 * only 'domain'. 2611 */ 2612 static uma_slab_t 2613 keg_first_slab(uma_keg_t keg, int domain, bool rr) 2614 { 2615 uma_domain_t dom; 2616 uma_slab_t slab; 2617 int start; 2618 2619 KASSERT(domain >= 0 && domain < vm_ndomains, 2620 ("keg_first_slab: domain %d out of range", domain)); 2621 KEG_LOCK_ASSERT(keg); 2622 2623 slab = NULL; 2624 start = domain; 2625 do { 2626 dom = &keg->uk_domain[domain]; 2627 if (!LIST_EMPTY(&dom->ud_part_slab)) 2628 return (LIST_FIRST(&dom->ud_part_slab)); 2629 if (!LIST_EMPTY(&dom->ud_free_slab)) { 2630 slab = LIST_FIRST(&dom->ud_free_slab); 2631 LIST_REMOVE(slab, us_link); 2632 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 2633 return (slab); 2634 } 2635 if (rr) 2636 domain = (domain + 1) % vm_ndomains; 2637 } while (domain != start); 2638 2639 return (NULL); 2640 } 2641 2642 static uma_slab_t 2643 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags) 2644 { 2645 uint32_t reserve; 2646 2647 KEG_LOCK_ASSERT(keg); 2648 2649 reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve; 2650 if (keg->uk_free <= reserve) 2651 return (NULL); 2652 return (keg_first_slab(keg, domain, rr)); 2653 } 2654 2655 static uma_slab_t 2656 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags) 2657 { 2658 struct vm_domainset_iter di; 2659 uma_domain_t dom; 2660 uma_slab_t slab; 2661 int aflags, domain; 2662 bool rr; 2663 2664 restart: 2665 KEG_LOCK_ASSERT(keg); 2666 2667 /* 2668 * Use the keg's policy if upper layers haven't already specified a 2669 * domain (as happens with first-touch zones). 2670 * 2671 * To avoid races we run the iterator with the keg lock held, but that 2672 * means that we cannot allow the vm_domainset layer to sleep. Thus, 2673 * clear M_WAITOK and handle low memory conditions locally. 2674 */ 2675 rr = rdomain == UMA_ANYDOMAIN; 2676 if (rr) { 2677 aflags = (flags & ~M_WAITOK) | M_NOWAIT; 2678 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 2679 &aflags); 2680 } else { 2681 aflags = flags; 2682 domain = rdomain; 2683 } 2684 2685 for (;;) { 2686 slab = keg_fetch_free_slab(keg, domain, rr, flags); 2687 if (slab != NULL) { 2688 MPASS(slab->us_keg == keg); 2689 return (slab); 2690 } 2691 2692 /* 2693 * M_NOVM means don't ask at all! 2694 */ 2695 if (flags & M_NOVM) 2696 break; 2697 2698 KASSERT(zone->uz_max_items == 0 || 2699 zone->uz_items <= zone->uz_max_items, 2700 ("%s: zone %p overflow", __func__, zone)); 2701 2702 slab = keg_alloc_slab(keg, zone, domain, flags, aflags); 2703 /* 2704 * If we got a slab here it's safe to mark it partially used 2705 * and return. We assume that the caller is going to remove 2706 * at least one item. 2707 */ 2708 if (slab) { 2709 MPASS(slab->us_keg == keg); 2710 dom = &keg->uk_domain[slab->us_domain]; 2711 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 2712 return (slab); 2713 } 2714 KEG_LOCK(keg); 2715 if (rr && vm_domainset_iter_policy(&di, &domain) != 0) { 2716 if ((flags & M_WAITOK) != 0) { 2717 KEG_UNLOCK(keg); 2718 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask); 2719 KEG_LOCK(keg); 2720 goto restart; 2721 } 2722 break; 2723 } 2724 } 2725 2726 /* 2727 * We might not have been able to get a slab but another cpu 2728 * could have while we were unlocked. Check again before we 2729 * fail. 2730 */ 2731 if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL) { 2732 MPASS(slab->us_keg == keg); 2733 return (slab); 2734 } 2735 return (NULL); 2736 } 2737 2738 static uma_slab_t 2739 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int domain, int flags) 2740 { 2741 uma_slab_t slab; 2742 2743 if (keg == NULL) { 2744 keg = zone->uz_keg; 2745 KEG_LOCK(keg); 2746 } 2747 2748 for (;;) { 2749 slab = keg_fetch_slab(keg, zone, domain, flags); 2750 if (slab) 2751 return (slab); 2752 if (flags & (M_NOWAIT | M_NOVM)) 2753 break; 2754 } 2755 KEG_UNLOCK(keg); 2756 return (NULL); 2757 } 2758 2759 static void * 2760 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 2761 { 2762 uma_domain_t dom; 2763 void *item; 2764 uint8_t freei; 2765 2766 MPASS(keg == slab->us_keg); 2767 KEG_LOCK_ASSERT(keg); 2768 2769 freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1; 2770 BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free); 2771 item = slab->us_data + (keg->uk_rsize * freei); 2772 slab->us_freecount--; 2773 keg->uk_free--; 2774 2775 /* Move this slab to the full list */ 2776 if (slab->us_freecount == 0) { 2777 LIST_REMOVE(slab, us_link); 2778 dom = &keg->uk_domain[slab->us_domain]; 2779 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 2780 } 2781 2782 return (item); 2783 } 2784 2785 static int 2786 zone_import(uma_zone_t zone, void **bucket, int max, int domain, int flags) 2787 { 2788 uma_slab_t slab; 2789 uma_keg_t keg; 2790 #ifdef NUMA 2791 int stripe; 2792 #endif 2793 int i; 2794 2795 slab = NULL; 2796 keg = NULL; 2797 /* Try to keep the buckets totally full */ 2798 for (i = 0; i < max; ) { 2799 if ((slab = zone_fetch_slab(zone, keg, domain, flags)) == NULL) 2800 break; 2801 keg = slab->us_keg; 2802 #ifdef NUMA 2803 stripe = howmany(max, vm_ndomains); 2804 #endif 2805 while (slab->us_freecount && i < max) { 2806 bucket[i++] = slab_alloc_item(keg, slab); 2807 if (keg->uk_free <= keg->uk_reserve) 2808 break; 2809 #ifdef NUMA 2810 /* 2811 * If the zone is striped we pick a new slab for every 2812 * N allocations. Eliminating this conditional will 2813 * instead pick a new domain for each bucket rather 2814 * than stripe within each bucket. The current option 2815 * produces more fragmentation and requires more cpu 2816 * time but yields better distribution. 2817 */ 2818 if ((zone->uz_flags & UMA_ZONE_NUMA) == 0 && 2819 vm_ndomains > 1 && --stripe == 0) 2820 break; 2821 #endif 2822 } 2823 /* Don't block if we allocated any successfully. */ 2824 flags &= ~M_WAITOK; 2825 flags |= M_NOWAIT; 2826 } 2827 if (slab != NULL) 2828 KEG_UNLOCK(keg); 2829 2830 return i; 2831 } 2832 2833 static uma_bucket_t 2834 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags, int max) 2835 { 2836 uma_bucket_t bucket; 2837 2838 CTR1(KTR_UMA, "zone_alloc:_bucket domain %d)", domain); 2839 2840 /* Don't wait for buckets, preserve caller's NOVM setting. */ 2841 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 2842 if (bucket == NULL) 2843 return (NULL); 2844 2845 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 2846 MIN(max, bucket->ub_entries), domain, flags); 2847 2848 /* 2849 * Initialize the memory if necessary. 2850 */ 2851 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 2852 int i; 2853 2854 for (i = 0; i < bucket->ub_cnt; i++) 2855 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 2856 flags) != 0) 2857 break; 2858 /* 2859 * If we couldn't initialize the whole bucket, put the 2860 * rest back onto the freelist. 2861 */ 2862 if (i != bucket->ub_cnt) { 2863 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 2864 bucket->ub_cnt - i); 2865 #ifdef INVARIANTS 2866 bzero(&bucket->ub_bucket[i], 2867 sizeof(void *) * (bucket->ub_cnt - i)); 2868 #endif 2869 bucket->ub_cnt = i; 2870 } 2871 } 2872 2873 if (bucket->ub_cnt == 0) { 2874 bucket_free(zone, bucket, udata); 2875 counter_u64_add(zone->uz_fails, 1); 2876 return (NULL); 2877 } 2878 2879 return (bucket); 2880 } 2881 2882 /* 2883 * Allocates a single item from a zone. 2884 * 2885 * Arguments 2886 * zone The zone to alloc for. 2887 * udata The data to be passed to the constructor. 2888 * domain The domain to allocate from or UMA_ANYDOMAIN. 2889 * flags M_WAITOK, M_NOWAIT, M_ZERO. 2890 * 2891 * Returns 2892 * NULL if there is no memory and M_NOWAIT is set 2893 * An item if successful 2894 */ 2895 2896 static void * 2897 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 2898 { 2899 2900 ZONE_LOCK(zone); 2901 return (zone_alloc_item_locked(zone, udata, domain, flags)); 2902 } 2903 2904 /* 2905 * Returns with zone unlocked. 2906 */ 2907 static void * 2908 zone_alloc_item_locked(uma_zone_t zone, void *udata, int domain, int flags) 2909 { 2910 void *item; 2911 #ifdef INVARIANTS 2912 bool skipdbg; 2913 #endif 2914 2915 ZONE_LOCK_ASSERT(zone); 2916 2917 if (zone->uz_max_items > 0) { 2918 if (zone->uz_items >= zone->uz_max_items) { 2919 zone_log_warning(zone); 2920 zone_maxaction(zone); 2921 if (flags & M_NOWAIT) { 2922 ZONE_UNLOCK(zone); 2923 return (NULL); 2924 } 2925 zone->uz_sleeps++; 2926 zone->uz_sleepers++; 2927 while (zone->uz_items >= zone->uz_max_items) 2928 mtx_sleep(zone, zone->uz_lockptr, PVM, 2929 "zonelimit", 0); 2930 zone->uz_sleepers--; 2931 if (zone->uz_sleepers > 0 && 2932 zone->uz_items + 1 < zone->uz_max_items) 2933 wakeup_one(zone); 2934 } 2935 zone->uz_items++; 2936 } 2937 ZONE_UNLOCK(zone); 2938 2939 if (domain != UMA_ANYDOMAIN) { 2940 /* avoid allocs targeting empty domains */ 2941 if (VM_DOMAIN_EMPTY(domain)) 2942 domain = UMA_ANYDOMAIN; 2943 } 2944 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 2945 goto fail; 2946 2947 #ifdef INVARIANTS 2948 skipdbg = uma_dbg_zskip(zone, item); 2949 #endif 2950 /* 2951 * We have to call both the zone's init (not the keg's init) 2952 * and the zone's ctor. This is because the item is going from 2953 * a keg slab directly to the user, and the user is expecting it 2954 * to be both zone-init'd as well as zone-ctor'd. 2955 */ 2956 if (zone->uz_init != NULL) { 2957 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 2958 zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT); 2959 goto fail; 2960 } 2961 } 2962 if (zone->uz_ctor != NULL && 2963 #ifdef INVARIANTS 2964 (!skipdbg || zone->uz_ctor != trash_ctor || 2965 zone->uz_dtor != trash_dtor) && 2966 #endif 2967 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2968 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT); 2969 goto fail; 2970 } 2971 #ifdef INVARIANTS 2972 if (!skipdbg) 2973 uma_dbg_alloc(zone, NULL, item); 2974 #endif 2975 if (flags & M_ZERO) 2976 uma_zero_item(item, zone); 2977 2978 counter_u64_add(zone->uz_allocs, 1); 2979 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 2980 zone->uz_name, zone); 2981 2982 return (item); 2983 2984 fail: 2985 if (zone->uz_max_items > 0) { 2986 ZONE_LOCK(zone); 2987 zone->uz_items--; 2988 ZONE_UNLOCK(zone); 2989 } 2990 counter_u64_add(zone->uz_fails, 1); 2991 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 2992 zone->uz_name, zone); 2993 return (NULL); 2994 } 2995 2996 /* See uma.h */ 2997 void 2998 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 2999 { 3000 uma_cache_t cache; 3001 uma_bucket_t bucket; 3002 uma_zone_domain_t zdom; 3003 int cpu, domain; 3004 bool lockfail; 3005 #ifdef INVARIANTS 3006 bool skipdbg; 3007 #endif 3008 3009 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3010 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3011 3012 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 3013 zone->uz_name); 3014 3015 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3016 ("uma_zfree_arg: called with spinlock or critical section held")); 3017 3018 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 3019 if (item == NULL) 3020 return; 3021 #ifdef DEBUG_MEMGUARD 3022 if (is_memguard_addr(item)) { 3023 if (zone->uz_dtor != NULL) 3024 zone->uz_dtor(item, zone->uz_size, udata); 3025 if (zone->uz_fini != NULL) 3026 zone->uz_fini(item, zone->uz_size); 3027 memguard_free(item); 3028 return; 3029 } 3030 #endif 3031 #ifdef INVARIANTS 3032 skipdbg = uma_dbg_zskip(zone, item); 3033 if (skipdbg == false) { 3034 if (zone->uz_flags & UMA_ZONE_MALLOC) 3035 uma_dbg_free(zone, udata, item); 3036 else 3037 uma_dbg_free(zone, NULL, item); 3038 } 3039 if (zone->uz_dtor != NULL && (!skipdbg || 3040 zone->uz_dtor != trash_dtor || zone->uz_ctor != trash_ctor)) 3041 #else 3042 if (zone->uz_dtor != NULL) 3043 #endif 3044 zone->uz_dtor(item, zone->uz_size, udata); 3045 3046 /* 3047 * The race here is acceptable. If we miss it we'll just have to wait 3048 * a little longer for the limits to be reset. 3049 */ 3050 if (zone->uz_sleepers > 0) 3051 goto zfree_item; 3052 3053 /* 3054 * If possible, free to the per-CPU cache. There are two 3055 * requirements for safe access to the per-CPU cache: (1) the thread 3056 * accessing the cache must not be preempted or yield during access, 3057 * and (2) the thread must not migrate CPUs without switching which 3058 * cache it accesses. We rely on a critical section to prevent 3059 * preemption and migration. We release the critical section in 3060 * order to acquire the zone mutex if we are unable to free to the 3061 * current cache; when we re-acquire the critical section, we must 3062 * detect and handle migration if it has occurred. 3063 */ 3064 zfree_restart: 3065 critical_enter(); 3066 cpu = curcpu; 3067 cache = &zone->uz_cpu[cpu]; 3068 3069 zfree_start: 3070 /* 3071 * Try to free into the allocbucket first to give LIFO ordering 3072 * for cache-hot datastructures. Spill over into the freebucket 3073 * if necessary. Alloc will swap them if one runs dry. 3074 */ 3075 bucket = cache->uc_allocbucket; 3076 if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries) 3077 bucket = cache->uc_freebucket; 3078 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 3079 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 3080 ("uma_zfree: Freeing to non free bucket index.")); 3081 bucket->ub_bucket[bucket->ub_cnt] = item; 3082 bucket->ub_cnt++; 3083 cache->uc_frees++; 3084 critical_exit(); 3085 return; 3086 } 3087 3088 /* 3089 * We must go back the zone, which requires acquiring the zone lock, 3090 * which in turn means we must release and re-acquire the critical 3091 * section. Since the critical section is released, we may be 3092 * preempted or migrate. As such, make sure not to maintain any 3093 * thread-local state specific to the cache from prior to releasing 3094 * the critical section. 3095 */ 3096 critical_exit(); 3097 if (zone->uz_count == 0 || bucketdisable) 3098 goto zfree_item; 3099 3100 lockfail = false; 3101 if (ZONE_TRYLOCK(zone) == 0) { 3102 /* Record contention to size the buckets. */ 3103 ZONE_LOCK(zone); 3104 lockfail = true; 3105 } 3106 critical_enter(); 3107 cpu = curcpu; 3108 cache = &zone->uz_cpu[cpu]; 3109 3110 bucket = cache->uc_freebucket; 3111 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 3112 ZONE_UNLOCK(zone); 3113 goto zfree_start; 3114 } 3115 cache->uc_freebucket = NULL; 3116 /* We are no longer associated with this CPU. */ 3117 critical_exit(); 3118 3119 if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) { 3120 domain = PCPU_GET(domain); 3121 if (VM_DOMAIN_EMPTY(domain)) 3122 domain = UMA_ANYDOMAIN; 3123 } else 3124 domain = 0; 3125 zdom = &zone->uz_domain[0]; 3126 3127 /* Can we throw this on the zone full list? */ 3128 if (bucket != NULL) { 3129 CTR3(KTR_UMA, 3130 "uma_zfree: zone %s(%p) putting bucket %p on free list", 3131 zone->uz_name, zone, bucket); 3132 /* ub_cnt is pointing to the last free item */ 3133 KASSERT(bucket->ub_cnt == bucket->ub_entries, 3134 ("uma_zfree: Attempting to insert not full bucket onto the full list.\n")); 3135 if (zone->uz_bkt_count >= zone->uz_bkt_max) { 3136 ZONE_UNLOCK(zone); 3137 bucket_drain(zone, bucket); 3138 bucket_free(zone, bucket, udata); 3139 goto zfree_restart; 3140 } else 3141 zone_put_bucket(zone, zdom, bucket, true); 3142 } 3143 3144 /* 3145 * We bump the uz count when the cache size is insufficient to 3146 * handle the working set. 3147 */ 3148 if (lockfail && zone->uz_count < zone->uz_count_max) 3149 zone->uz_count++; 3150 ZONE_UNLOCK(zone); 3151 3152 bucket = bucket_alloc(zone, udata, M_NOWAIT); 3153 CTR3(KTR_UMA, "uma_zfree: zone %s(%p) allocated bucket %p", 3154 zone->uz_name, zone, bucket); 3155 if (bucket) { 3156 critical_enter(); 3157 cpu = curcpu; 3158 cache = &zone->uz_cpu[cpu]; 3159 if (cache->uc_freebucket == NULL && 3160 ((zone->uz_flags & UMA_ZONE_NUMA) == 0 || 3161 domain == PCPU_GET(domain))) { 3162 cache->uc_freebucket = bucket; 3163 goto zfree_start; 3164 } 3165 /* 3166 * We lost the race, start over. We have to drop our 3167 * critical section to free the bucket. 3168 */ 3169 critical_exit(); 3170 bucket_free(zone, bucket, udata); 3171 goto zfree_restart; 3172 } 3173 3174 /* 3175 * If nothing else caught this, we'll just do an internal free. 3176 */ 3177 zfree_item: 3178 zone_free_item(zone, item, udata, SKIP_DTOR); 3179 } 3180 3181 void 3182 uma_zfree_domain(uma_zone_t zone, void *item, void *udata) 3183 { 3184 3185 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3186 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3187 3188 CTR2(KTR_UMA, "uma_zfree_domain thread %x zone %s", curthread, 3189 zone->uz_name); 3190 3191 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3192 ("uma_zfree_domain: called with spinlock or critical section held")); 3193 3194 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 3195 if (item == NULL) 3196 return; 3197 zone_free_item(zone, item, udata, SKIP_NONE); 3198 } 3199 3200 static void 3201 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item) 3202 { 3203 uma_keg_t keg; 3204 uma_domain_t dom; 3205 uint8_t freei; 3206 3207 keg = zone->uz_keg; 3208 MPASS(zone->uz_lockptr == &keg->uk_lock); 3209 KEG_LOCK_ASSERT(keg); 3210 MPASS(keg == slab->us_keg); 3211 3212 dom = &keg->uk_domain[slab->us_domain]; 3213 3214 /* Do we need to remove from any lists? */ 3215 if (slab->us_freecount+1 == keg->uk_ipers) { 3216 LIST_REMOVE(slab, us_link); 3217 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 3218 } else if (slab->us_freecount == 0) { 3219 LIST_REMOVE(slab, us_link); 3220 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3221 } 3222 3223 /* Slab management. */ 3224 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3225 BIT_SET(SLAB_SETSIZE, freei, &slab->us_free); 3226 slab->us_freecount++; 3227 3228 /* Keg statistics. */ 3229 keg->uk_free++; 3230 } 3231 3232 static void 3233 zone_release(uma_zone_t zone, void **bucket, int cnt) 3234 { 3235 void *item; 3236 uma_slab_t slab; 3237 uma_keg_t keg; 3238 uint8_t *mem; 3239 int i; 3240 3241 keg = zone->uz_keg; 3242 KEG_LOCK(keg); 3243 for (i = 0; i < cnt; i++) { 3244 item = bucket[i]; 3245 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) { 3246 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 3247 if (zone->uz_flags & UMA_ZONE_HASH) { 3248 slab = hash_sfind(&keg->uk_hash, mem); 3249 } else { 3250 mem += keg->uk_pgoff; 3251 slab = (uma_slab_t)mem; 3252 } 3253 } else { 3254 slab = vtoslab((vm_offset_t)item); 3255 MPASS(slab->us_keg == keg); 3256 } 3257 slab_free_item(zone, slab, item); 3258 } 3259 KEG_UNLOCK(keg); 3260 } 3261 3262 /* 3263 * Frees a single item to any zone. 3264 * 3265 * Arguments: 3266 * zone The zone to free to 3267 * item The item we're freeing 3268 * udata User supplied data for the dtor 3269 * skip Skip dtors and finis 3270 */ 3271 static void 3272 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 3273 { 3274 #ifdef INVARIANTS 3275 bool skipdbg; 3276 3277 skipdbg = uma_dbg_zskip(zone, item); 3278 if (skip == SKIP_NONE && !skipdbg) { 3279 if (zone->uz_flags & UMA_ZONE_MALLOC) 3280 uma_dbg_free(zone, udata, item); 3281 else 3282 uma_dbg_free(zone, NULL, item); 3283 } 3284 3285 if (skip < SKIP_DTOR && zone->uz_dtor != NULL && 3286 (!skipdbg || zone->uz_dtor != trash_dtor || 3287 zone->uz_ctor != trash_ctor)) 3288 #else 3289 if (skip < SKIP_DTOR && zone->uz_dtor != NULL) 3290 #endif 3291 zone->uz_dtor(item, zone->uz_size, udata); 3292 3293 if (skip < SKIP_FINI && zone->uz_fini) 3294 zone->uz_fini(item, zone->uz_size); 3295 3296 zone->uz_release(zone->uz_arg, &item, 1); 3297 3298 if (skip & SKIP_CNT) 3299 return; 3300 3301 counter_u64_add(zone->uz_frees, 1); 3302 3303 if (zone->uz_max_items > 0) { 3304 ZONE_LOCK(zone); 3305 zone->uz_items--; 3306 if (zone->uz_sleepers > 0 && 3307 zone->uz_items < zone->uz_max_items) 3308 wakeup_one(zone); 3309 ZONE_UNLOCK(zone); 3310 } 3311 } 3312 3313 /* See uma.h */ 3314 int 3315 uma_zone_set_max(uma_zone_t zone, int nitems) 3316 { 3317 struct uma_bucket_zone *ubz; 3318 3319 /* 3320 * If limit is very low we may need to limit how 3321 * much items are allowed in CPU caches. 3322 */ 3323 ubz = &bucket_zones[0]; 3324 for (; ubz->ubz_entries != 0; ubz++) 3325 if (ubz->ubz_entries * 2 * mp_ncpus > nitems) 3326 break; 3327 if (ubz == &bucket_zones[0]) 3328 nitems = ubz->ubz_entries * 2 * mp_ncpus; 3329 else 3330 ubz--; 3331 3332 ZONE_LOCK(zone); 3333 zone->uz_count_max = zone->uz_count = ubz->ubz_entries; 3334 if (zone->uz_count_min > zone->uz_count_max) 3335 zone->uz_count_min = zone->uz_count_max; 3336 zone->uz_max_items = nitems; 3337 ZONE_UNLOCK(zone); 3338 3339 return (nitems); 3340 } 3341 3342 /* See uma.h */ 3343 int 3344 uma_zone_set_maxcache(uma_zone_t zone, int nitems) 3345 { 3346 3347 ZONE_LOCK(zone); 3348 zone->uz_bkt_max = nitems; 3349 ZONE_UNLOCK(zone); 3350 3351 return (nitems); 3352 } 3353 3354 /* See uma.h */ 3355 int 3356 uma_zone_get_max(uma_zone_t zone) 3357 { 3358 int nitems; 3359 3360 ZONE_LOCK(zone); 3361 nitems = zone->uz_max_items; 3362 ZONE_UNLOCK(zone); 3363 3364 return (nitems); 3365 } 3366 3367 /* See uma.h */ 3368 void 3369 uma_zone_set_warning(uma_zone_t zone, const char *warning) 3370 { 3371 3372 ZONE_LOCK(zone); 3373 zone->uz_warning = warning; 3374 ZONE_UNLOCK(zone); 3375 } 3376 3377 /* See uma.h */ 3378 void 3379 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 3380 { 3381 3382 ZONE_LOCK(zone); 3383 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 3384 ZONE_UNLOCK(zone); 3385 } 3386 3387 /* See uma.h */ 3388 int 3389 uma_zone_get_cur(uma_zone_t zone) 3390 { 3391 int64_t nitems; 3392 u_int i; 3393 3394 ZONE_LOCK(zone); 3395 nitems = counter_u64_fetch(zone->uz_allocs) - 3396 counter_u64_fetch(zone->uz_frees); 3397 CPU_FOREACH(i) { 3398 /* 3399 * See the comment in sysctl_vm_zone_stats() regarding the 3400 * safety of accessing the per-cpu caches. With the zone lock 3401 * held, it is safe, but can potentially result in stale data. 3402 */ 3403 nitems += zone->uz_cpu[i].uc_allocs - 3404 zone->uz_cpu[i].uc_frees; 3405 } 3406 ZONE_UNLOCK(zone); 3407 3408 return (nitems < 0 ? 0 : nitems); 3409 } 3410 3411 /* See uma.h */ 3412 void 3413 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 3414 { 3415 uma_keg_t keg; 3416 3417 KEG_GET(zone, keg); 3418 KEG_LOCK(keg); 3419 KASSERT(keg->uk_pages == 0, 3420 ("uma_zone_set_init on non-empty keg")); 3421 keg->uk_init = uminit; 3422 KEG_UNLOCK(keg); 3423 } 3424 3425 /* See uma.h */ 3426 void 3427 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 3428 { 3429 uma_keg_t keg; 3430 3431 KEG_GET(zone, keg); 3432 KEG_LOCK(keg); 3433 KASSERT(keg->uk_pages == 0, 3434 ("uma_zone_set_fini on non-empty keg")); 3435 keg->uk_fini = fini; 3436 KEG_UNLOCK(keg); 3437 } 3438 3439 /* See uma.h */ 3440 void 3441 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 3442 { 3443 3444 ZONE_LOCK(zone); 3445 KASSERT(zone->uz_keg->uk_pages == 0, 3446 ("uma_zone_set_zinit on non-empty keg")); 3447 zone->uz_init = zinit; 3448 ZONE_UNLOCK(zone); 3449 } 3450 3451 /* See uma.h */ 3452 void 3453 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 3454 { 3455 3456 ZONE_LOCK(zone); 3457 KASSERT(zone->uz_keg->uk_pages == 0, 3458 ("uma_zone_set_zfini on non-empty keg")); 3459 zone->uz_fini = zfini; 3460 ZONE_UNLOCK(zone); 3461 } 3462 3463 /* See uma.h */ 3464 /* XXX uk_freef is not actually used with the zone locked */ 3465 void 3466 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 3467 { 3468 uma_keg_t keg; 3469 3470 KEG_GET(zone, keg); 3471 KASSERT(keg != NULL, ("uma_zone_set_freef: Invalid zone type")); 3472 KEG_LOCK(keg); 3473 keg->uk_freef = freef; 3474 KEG_UNLOCK(keg); 3475 } 3476 3477 /* See uma.h */ 3478 /* XXX uk_allocf is not actually used with the zone locked */ 3479 void 3480 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 3481 { 3482 uma_keg_t keg; 3483 3484 KEG_GET(zone, keg); 3485 KEG_LOCK(keg); 3486 keg->uk_allocf = allocf; 3487 KEG_UNLOCK(keg); 3488 } 3489 3490 /* See uma.h */ 3491 void 3492 uma_zone_reserve(uma_zone_t zone, int items) 3493 { 3494 uma_keg_t keg; 3495 3496 KEG_GET(zone, keg); 3497 KEG_LOCK(keg); 3498 keg->uk_reserve = items; 3499 KEG_UNLOCK(keg); 3500 } 3501 3502 /* See uma.h */ 3503 int 3504 uma_zone_reserve_kva(uma_zone_t zone, int count) 3505 { 3506 uma_keg_t keg; 3507 vm_offset_t kva; 3508 u_int pages; 3509 3510 KEG_GET(zone, keg); 3511 3512 pages = count / keg->uk_ipers; 3513 if (pages * keg->uk_ipers < count) 3514 pages++; 3515 pages *= keg->uk_ppera; 3516 3517 #ifdef UMA_MD_SMALL_ALLOC 3518 if (keg->uk_ppera > 1) { 3519 #else 3520 if (1) { 3521 #endif 3522 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 3523 if (kva == 0) 3524 return (0); 3525 } else 3526 kva = 0; 3527 3528 ZONE_LOCK(zone); 3529 MPASS(keg->uk_kva == 0); 3530 keg->uk_kva = kva; 3531 keg->uk_offset = 0; 3532 zone->uz_max_items = pages * keg->uk_ipers; 3533 #ifdef UMA_MD_SMALL_ALLOC 3534 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 3535 #else 3536 keg->uk_allocf = noobj_alloc; 3537 #endif 3538 keg->uk_flags |= UMA_ZONE_NOFREE; 3539 ZONE_UNLOCK(zone); 3540 3541 return (1); 3542 } 3543 3544 /* See uma.h */ 3545 void 3546 uma_prealloc(uma_zone_t zone, int items) 3547 { 3548 struct vm_domainset_iter di; 3549 uma_domain_t dom; 3550 uma_slab_t slab; 3551 uma_keg_t keg; 3552 int aflags, domain, slabs; 3553 3554 KEG_GET(zone, keg); 3555 KEG_LOCK(keg); 3556 slabs = items / keg->uk_ipers; 3557 if (slabs * keg->uk_ipers < items) 3558 slabs++; 3559 while (slabs-- > 0) { 3560 aflags = M_NOWAIT; 3561 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 3562 &aflags); 3563 for (;;) { 3564 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK, 3565 aflags); 3566 if (slab != NULL) { 3567 MPASS(slab->us_keg == keg); 3568 dom = &keg->uk_domain[slab->us_domain]; 3569 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, 3570 us_link); 3571 break; 3572 } 3573 KEG_LOCK(keg); 3574 if (vm_domainset_iter_policy(&di, &domain) != 0) { 3575 KEG_UNLOCK(keg); 3576 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask); 3577 KEG_LOCK(keg); 3578 } 3579 } 3580 } 3581 KEG_UNLOCK(keg); 3582 } 3583 3584 /* See uma.h */ 3585 static void 3586 uma_reclaim_locked(bool kmem_danger) 3587 { 3588 3589 CTR0(KTR_UMA, "UMA: vm asked us to release pages!"); 3590 sx_assert(&uma_drain_lock, SA_XLOCKED); 3591 bucket_enable(); 3592 zone_foreach(zone_drain); 3593 if (vm_page_count_min() || kmem_danger) { 3594 cache_drain_safe(NULL); 3595 zone_foreach(zone_drain); 3596 } 3597 3598 /* 3599 * Some slabs may have been freed but this zone will be visited early 3600 * we visit again so that we can free pages that are empty once other 3601 * zones are drained. We have to do the same for buckets. 3602 */ 3603 zone_drain(slabzone); 3604 bucket_zone_drain(); 3605 } 3606 3607 void 3608 uma_reclaim(void) 3609 { 3610 3611 sx_xlock(&uma_drain_lock); 3612 uma_reclaim_locked(false); 3613 sx_xunlock(&uma_drain_lock); 3614 } 3615 3616 static volatile int uma_reclaim_needed; 3617 3618 void 3619 uma_reclaim_wakeup(void) 3620 { 3621 3622 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 3623 wakeup(uma_reclaim); 3624 } 3625 3626 void 3627 uma_reclaim_worker(void *arg __unused) 3628 { 3629 3630 for (;;) { 3631 sx_xlock(&uma_drain_lock); 3632 while (atomic_load_int(&uma_reclaim_needed) == 0) 3633 sx_sleep(uma_reclaim, &uma_drain_lock, PVM, "umarcl", 3634 hz); 3635 sx_xunlock(&uma_drain_lock); 3636 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 3637 sx_xlock(&uma_drain_lock); 3638 uma_reclaim_locked(true); 3639 atomic_store_int(&uma_reclaim_needed, 0); 3640 sx_xunlock(&uma_drain_lock); 3641 /* Don't fire more than once per-second. */ 3642 pause("umarclslp", hz); 3643 } 3644 } 3645 3646 /* See uma.h */ 3647 int 3648 uma_zone_exhausted(uma_zone_t zone) 3649 { 3650 int full; 3651 3652 ZONE_LOCK(zone); 3653 full = zone->uz_sleepers > 0; 3654 ZONE_UNLOCK(zone); 3655 return (full); 3656 } 3657 3658 int 3659 uma_zone_exhausted_nolock(uma_zone_t zone) 3660 { 3661 return (zone->uz_sleepers > 0); 3662 } 3663 3664 void * 3665 uma_large_malloc_domain(vm_size_t size, int domain, int wait) 3666 { 3667 struct domainset *policy; 3668 vm_offset_t addr; 3669 uma_slab_t slab; 3670 3671 if (domain != UMA_ANYDOMAIN) { 3672 /* avoid allocs targeting empty domains */ 3673 if (VM_DOMAIN_EMPTY(domain)) 3674 domain = UMA_ANYDOMAIN; 3675 } 3676 slab = zone_alloc_item(slabzone, NULL, domain, wait); 3677 if (slab == NULL) 3678 return (NULL); 3679 policy = (domain == UMA_ANYDOMAIN) ? DOMAINSET_RR() : 3680 DOMAINSET_FIXED(domain); 3681 addr = kmem_malloc_domainset(policy, size, wait); 3682 if (addr != 0) { 3683 vsetslab(addr, slab); 3684 slab->us_data = (void *)addr; 3685 slab->us_flags = UMA_SLAB_KERNEL | UMA_SLAB_MALLOC; 3686 slab->us_size = size; 3687 slab->us_domain = vm_phys_domain(PHYS_TO_VM_PAGE( 3688 pmap_kextract(addr))); 3689 uma_total_inc(size); 3690 } else { 3691 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3692 } 3693 3694 return ((void *)addr); 3695 } 3696 3697 void * 3698 uma_large_malloc(vm_size_t size, int wait) 3699 { 3700 3701 return uma_large_malloc_domain(size, UMA_ANYDOMAIN, wait); 3702 } 3703 3704 void 3705 uma_large_free(uma_slab_t slab) 3706 { 3707 3708 KASSERT((slab->us_flags & UMA_SLAB_KERNEL) != 0, 3709 ("uma_large_free: Memory not allocated with uma_large_malloc.")); 3710 kmem_free((vm_offset_t)slab->us_data, slab->us_size); 3711 uma_total_dec(slab->us_size); 3712 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3713 } 3714 3715 static void 3716 uma_zero_item(void *item, uma_zone_t zone) 3717 { 3718 3719 bzero(item, zone->uz_size); 3720 } 3721 3722 unsigned long 3723 uma_limit(void) 3724 { 3725 3726 return (uma_kmem_limit); 3727 } 3728 3729 void 3730 uma_set_limit(unsigned long limit) 3731 { 3732 3733 uma_kmem_limit = limit; 3734 } 3735 3736 unsigned long 3737 uma_size(void) 3738 { 3739 3740 return (uma_kmem_total); 3741 } 3742 3743 long 3744 uma_avail(void) 3745 { 3746 3747 return (uma_kmem_limit - uma_kmem_total); 3748 } 3749 3750 void 3751 uma_print_stats(void) 3752 { 3753 zone_foreach(uma_print_zone); 3754 } 3755 3756 static void 3757 slab_print(uma_slab_t slab) 3758 { 3759 printf("slab: keg %p, data %p, freecount %d\n", 3760 slab->us_keg, slab->us_data, slab->us_freecount); 3761 } 3762 3763 static void 3764 cache_print(uma_cache_t cache) 3765 { 3766 printf("alloc: %p(%d), free: %p(%d)\n", 3767 cache->uc_allocbucket, 3768 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, 3769 cache->uc_freebucket, 3770 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0); 3771 } 3772 3773 static void 3774 uma_print_keg(uma_keg_t keg) 3775 { 3776 uma_domain_t dom; 3777 uma_slab_t slab; 3778 int i; 3779 3780 printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d " 3781 "out %d free %d\n", 3782 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags, 3783 keg->uk_ipers, keg->uk_ppera, 3784 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 3785 keg->uk_free); 3786 for (i = 0; i < vm_ndomains; i++) { 3787 dom = &keg->uk_domain[i]; 3788 printf("Part slabs:\n"); 3789 LIST_FOREACH(slab, &dom->ud_part_slab, us_link) 3790 slab_print(slab); 3791 printf("Free slabs:\n"); 3792 LIST_FOREACH(slab, &dom->ud_free_slab, us_link) 3793 slab_print(slab); 3794 printf("Full slabs:\n"); 3795 LIST_FOREACH(slab, &dom->ud_full_slab, us_link) 3796 slab_print(slab); 3797 } 3798 } 3799 3800 void 3801 uma_print_zone(uma_zone_t zone) 3802 { 3803 uma_cache_t cache; 3804 int i; 3805 3806 printf("zone: %s(%p) size %d maxitems %ju flags %#x\n", 3807 zone->uz_name, zone, zone->uz_size, (uintmax_t)zone->uz_max_items, 3808 zone->uz_flags); 3809 if (zone->uz_lockptr != &zone->uz_lock) 3810 uma_print_keg(zone->uz_keg); 3811 CPU_FOREACH(i) { 3812 cache = &zone->uz_cpu[i]; 3813 printf("CPU %d Cache:\n", i); 3814 cache_print(cache); 3815 } 3816 } 3817 3818 #ifdef DDB 3819 /* 3820 * Generate statistics across both the zone and its per-cpu cache's. Return 3821 * desired statistics if the pointer is non-NULL for that statistic. 3822 * 3823 * Note: does not update the zone statistics, as it can't safely clear the 3824 * per-CPU cache statistic. 3825 * 3826 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't 3827 * safe from off-CPU; we should modify the caches to track this information 3828 * directly so that we don't have to. 3829 */ 3830 static void 3831 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp, 3832 uint64_t *freesp, uint64_t *sleepsp) 3833 { 3834 uma_cache_t cache; 3835 uint64_t allocs, frees, sleeps; 3836 int cachefree, cpu; 3837 3838 allocs = frees = sleeps = 0; 3839 cachefree = 0; 3840 CPU_FOREACH(cpu) { 3841 cache = &z->uz_cpu[cpu]; 3842 if (cache->uc_allocbucket != NULL) 3843 cachefree += cache->uc_allocbucket->ub_cnt; 3844 if (cache->uc_freebucket != NULL) 3845 cachefree += cache->uc_freebucket->ub_cnt; 3846 allocs += cache->uc_allocs; 3847 frees += cache->uc_frees; 3848 } 3849 allocs += counter_u64_fetch(z->uz_allocs); 3850 frees += counter_u64_fetch(z->uz_frees); 3851 sleeps += z->uz_sleeps; 3852 if (cachefreep != NULL) 3853 *cachefreep = cachefree; 3854 if (allocsp != NULL) 3855 *allocsp = allocs; 3856 if (freesp != NULL) 3857 *freesp = frees; 3858 if (sleepsp != NULL) 3859 *sleepsp = sleeps; 3860 } 3861 #endif /* DDB */ 3862 3863 static int 3864 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 3865 { 3866 uma_keg_t kz; 3867 uma_zone_t z; 3868 int count; 3869 3870 count = 0; 3871 rw_rlock(&uma_rwlock); 3872 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3873 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3874 count++; 3875 } 3876 LIST_FOREACH(z, &uma_cachezones, uz_link) 3877 count++; 3878 3879 rw_runlock(&uma_rwlock); 3880 return (sysctl_handle_int(oidp, &count, 0, req)); 3881 } 3882 3883 static void 3884 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf, 3885 struct uma_percpu_stat *ups, bool internal) 3886 { 3887 uma_zone_domain_t zdom; 3888 uma_cache_t cache; 3889 int i; 3890 3891 3892 for (i = 0; i < vm_ndomains; i++) { 3893 zdom = &z->uz_domain[i]; 3894 uth->uth_zone_free += zdom->uzd_nitems; 3895 } 3896 uth->uth_allocs = counter_u64_fetch(z->uz_allocs); 3897 uth->uth_frees = counter_u64_fetch(z->uz_frees); 3898 uth->uth_fails = counter_u64_fetch(z->uz_fails); 3899 uth->uth_sleeps = z->uz_sleeps; 3900 /* 3901 * While it is not normally safe to access the cache 3902 * bucket pointers while not on the CPU that owns the 3903 * cache, we only allow the pointers to be exchanged 3904 * without the zone lock held, not invalidated, so 3905 * accept the possible race associated with bucket 3906 * exchange during monitoring. 3907 */ 3908 for (i = 0; i < mp_maxid + 1; i++) { 3909 bzero(&ups[i], sizeof(*ups)); 3910 if (internal || CPU_ABSENT(i)) 3911 continue; 3912 cache = &z->uz_cpu[i]; 3913 if (cache->uc_allocbucket != NULL) 3914 ups[i].ups_cache_free += 3915 cache->uc_allocbucket->ub_cnt; 3916 if (cache->uc_freebucket != NULL) 3917 ups[i].ups_cache_free += 3918 cache->uc_freebucket->ub_cnt; 3919 ups[i].ups_allocs = cache->uc_allocs; 3920 ups[i].ups_frees = cache->uc_frees; 3921 } 3922 } 3923 3924 static int 3925 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 3926 { 3927 struct uma_stream_header ush; 3928 struct uma_type_header uth; 3929 struct uma_percpu_stat *ups; 3930 struct sbuf sbuf; 3931 uma_keg_t kz; 3932 uma_zone_t z; 3933 int count, error, i; 3934 3935 error = sysctl_wire_old_buffer(req, 0); 3936 if (error != 0) 3937 return (error); 3938 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 3939 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 3940 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 3941 3942 count = 0; 3943 rw_rlock(&uma_rwlock); 3944 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3945 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3946 count++; 3947 } 3948 3949 LIST_FOREACH(z, &uma_cachezones, uz_link) 3950 count++; 3951 3952 /* 3953 * Insert stream header. 3954 */ 3955 bzero(&ush, sizeof(ush)); 3956 ush.ush_version = UMA_STREAM_VERSION; 3957 ush.ush_maxcpus = (mp_maxid + 1); 3958 ush.ush_count = count; 3959 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 3960 3961 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3962 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3963 bzero(&uth, sizeof(uth)); 3964 ZONE_LOCK(z); 3965 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 3966 uth.uth_align = kz->uk_align; 3967 uth.uth_size = kz->uk_size; 3968 uth.uth_rsize = kz->uk_rsize; 3969 if (z->uz_max_items > 0) 3970 uth.uth_pages = (z->uz_items / kz->uk_ipers) * 3971 kz->uk_ppera; 3972 else 3973 uth.uth_pages = kz->uk_pages; 3974 uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) * 3975 kz->uk_ppera; 3976 uth.uth_limit = z->uz_max_items; 3977 uth.uth_keg_free = z->uz_keg->uk_free; 3978 3979 /* 3980 * A zone is secondary is it is not the first entry 3981 * on the keg's zone list. 3982 */ 3983 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 3984 (LIST_FIRST(&kz->uk_zones) != z)) 3985 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 3986 uma_vm_zone_stats(&uth, z, &sbuf, ups, 3987 kz->uk_flags & UMA_ZFLAG_INTERNAL); 3988 ZONE_UNLOCK(z); 3989 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 3990 for (i = 0; i < mp_maxid + 1; i++) 3991 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 3992 } 3993 } 3994 LIST_FOREACH(z, &uma_cachezones, uz_link) { 3995 bzero(&uth, sizeof(uth)); 3996 ZONE_LOCK(z); 3997 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 3998 uth.uth_size = z->uz_size; 3999 uma_vm_zone_stats(&uth, z, &sbuf, ups, false); 4000 ZONE_UNLOCK(z); 4001 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 4002 for (i = 0; i < mp_maxid + 1; i++) 4003 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 4004 } 4005 4006 rw_runlock(&uma_rwlock); 4007 error = sbuf_finish(&sbuf); 4008 sbuf_delete(&sbuf); 4009 free(ups, M_TEMP); 4010 return (error); 4011 } 4012 4013 int 4014 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 4015 { 4016 uma_zone_t zone = *(uma_zone_t *)arg1; 4017 int error, max; 4018 4019 max = uma_zone_get_max(zone); 4020 error = sysctl_handle_int(oidp, &max, 0, req); 4021 if (error || !req->newptr) 4022 return (error); 4023 4024 uma_zone_set_max(zone, max); 4025 4026 return (0); 4027 } 4028 4029 int 4030 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 4031 { 4032 uma_zone_t zone = *(uma_zone_t *)arg1; 4033 int cur; 4034 4035 cur = uma_zone_get_cur(zone); 4036 return (sysctl_handle_int(oidp, &cur, 0, req)); 4037 } 4038 4039 #ifdef INVARIANTS 4040 static uma_slab_t 4041 uma_dbg_getslab(uma_zone_t zone, void *item) 4042 { 4043 uma_slab_t slab; 4044 uma_keg_t keg; 4045 uint8_t *mem; 4046 4047 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 4048 if (zone->uz_flags & UMA_ZONE_VTOSLAB) { 4049 slab = vtoslab((vm_offset_t)mem); 4050 } else { 4051 /* 4052 * It is safe to return the slab here even though the 4053 * zone is unlocked because the item's allocation state 4054 * essentially holds a reference. 4055 */ 4056 if (zone->uz_lockptr == &zone->uz_lock) 4057 return (NULL); 4058 ZONE_LOCK(zone); 4059 keg = zone->uz_keg; 4060 if (keg->uk_flags & UMA_ZONE_HASH) 4061 slab = hash_sfind(&keg->uk_hash, mem); 4062 else 4063 slab = (uma_slab_t)(mem + keg->uk_pgoff); 4064 ZONE_UNLOCK(zone); 4065 } 4066 4067 return (slab); 4068 } 4069 4070 static bool 4071 uma_dbg_zskip(uma_zone_t zone, void *mem) 4072 { 4073 4074 if (zone->uz_lockptr == &zone->uz_lock) 4075 return (true); 4076 4077 return (uma_dbg_kskip(zone->uz_keg, mem)); 4078 } 4079 4080 static bool 4081 uma_dbg_kskip(uma_keg_t keg, void *mem) 4082 { 4083 uintptr_t idx; 4084 4085 if (dbg_divisor == 0) 4086 return (true); 4087 4088 if (dbg_divisor == 1) 4089 return (false); 4090 4091 idx = (uintptr_t)mem >> PAGE_SHIFT; 4092 if (keg->uk_ipers > 1) { 4093 idx *= keg->uk_ipers; 4094 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize; 4095 } 4096 4097 if ((idx / dbg_divisor) * dbg_divisor != idx) { 4098 counter_u64_add(uma_skip_cnt, 1); 4099 return (true); 4100 } 4101 counter_u64_add(uma_dbg_cnt, 1); 4102 4103 return (false); 4104 } 4105 4106 /* 4107 * Set up the slab's freei data such that uma_dbg_free can function. 4108 * 4109 */ 4110 static void 4111 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 4112 { 4113 uma_keg_t keg; 4114 int freei; 4115 4116 if (slab == NULL) { 4117 slab = uma_dbg_getslab(zone, item); 4118 if (slab == NULL) 4119 panic("uma: item %p did not belong to zone %s\n", 4120 item, zone->uz_name); 4121 } 4122 keg = slab->us_keg; 4123 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 4124 4125 if (BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 4126 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n", 4127 item, zone, zone->uz_name, slab, freei); 4128 BIT_SET_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 4129 4130 return; 4131 } 4132 4133 /* 4134 * Verifies freed addresses. Checks for alignment, valid slab membership 4135 * and duplicate frees. 4136 * 4137 */ 4138 static void 4139 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 4140 { 4141 uma_keg_t keg; 4142 int freei; 4143 4144 if (slab == NULL) { 4145 slab = uma_dbg_getslab(zone, item); 4146 if (slab == NULL) 4147 panic("uma: Freed item %p did not belong to zone %s\n", 4148 item, zone->uz_name); 4149 } 4150 keg = slab->us_keg; 4151 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 4152 4153 if (freei >= keg->uk_ipers) 4154 panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n", 4155 item, zone, zone->uz_name, slab, freei); 4156 4157 if (((freei * keg->uk_rsize) + slab->us_data) != item) 4158 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n", 4159 item, zone, zone->uz_name, slab, freei); 4160 4161 if (!BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 4162 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n", 4163 item, zone, zone->uz_name, slab, freei); 4164 4165 BIT_CLR_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 4166 } 4167 #endif /* INVARIANTS */ 4168 4169 #ifdef DDB 4170 DB_SHOW_COMMAND(uma, db_show_uma) 4171 { 4172 uma_keg_t kz; 4173 uma_zone_t z; 4174 uint64_t allocs, frees, sleeps; 4175 long cachefree; 4176 int i; 4177 4178 db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used", 4179 "Free", "Requests", "Sleeps", "Bucket"); 4180 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4181 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 4182 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 4183 allocs = counter_u64_fetch(z->uz_allocs); 4184 frees = counter_u64_fetch(z->uz_frees); 4185 sleeps = z->uz_sleeps; 4186 cachefree = 0; 4187 } else 4188 uma_zone_sumstat(z, &cachefree, &allocs, 4189 &frees, &sleeps); 4190 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 4191 (LIST_FIRST(&kz->uk_zones) != z))) 4192 cachefree += kz->uk_free; 4193 for (i = 0; i < vm_ndomains; i++) 4194 cachefree += z->uz_domain[i].uzd_nitems; 4195 4196 db_printf("%18s %8ju %8jd %8ld %12ju %8ju %8u\n", 4197 z->uz_name, (uintmax_t)kz->uk_size, 4198 (intmax_t)(allocs - frees), cachefree, 4199 (uintmax_t)allocs, sleeps, z->uz_count); 4200 if (db_pager_quit) 4201 return; 4202 } 4203 } 4204 } 4205 4206 DB_SHOW_COMMAND(umacache, db_show_umacache) 4207 { 4208 uma_zone_t z; 4209 uint64_t allocs, frees; 4210 long cachefree; 4211 int i; 4212 4213 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 4214 "Requests", "Bucket"); 4215 LIST_FOREACH(z, &uma_cachezones, uz_link) { 4216 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL); 4217 for (i = 0; i < vm_ndomains; i++) 4218 cachefree += z->uz_domain[i].uzd_nitems; 4219 db_printf("%18s %8ju %8jd %8ld %12ju %8u\n", 4220 z->uz_name, (uintmax_t)z->uz_size, 4221 (intmax_t)(allocs - frees), cachefree, 4222 (uintmax_t)allocs, z->uz_count); 4223 if (db_pager_quit) 4224 return; 4225 } 4226 } 4227 #endif /* DDB */ 4228