1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/bitset.h> 62 #include <sys/domainset.h> 63 #include <sys/eventhandler.h> 64 #include <sys/kernel.h> 65 #include <sys/types.h> 66 #include <sys/limits.h> 67 #include <sys/queue.h> 68 #include <sys/malloc.h> 69 #include <sys/ktr.h> 70 #include <sys/lock.h> 71 #include <sys/sysctl.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/random.h> 75 #include <sys/rwlock.h> 76 #include <sys/sbuf.h> 77 #include <sys/sched.h> 78 #include <sys/smp.h> 79 #include <sys/taskqueue.h> 80 #include <sys/vmmeter.h> 81 82 #include <vm/vm.h> 83 #include <vm/vm_domainset.h> 84 #include <vm/vm_object.h> 85 #include <vm/vm_page.h> 86 #include <vm/vm_pageout.h> 87 #include <vm/vm_param.h> 88 #include <vm/vm_phys.h> 89 #include <vm/vm_pagequeue.h> 90 #include <vm/vm_map.h> 91 #include <vm/vm_kern.h> 92 #include <vm/vm_extern.h> 93 #include <vm/uma.h> 94 #include <vm/uma_int.h> 95 #include <vm/uma_dbg.h> 96 97 #include <ddb/ddb.h> 98 99 #ifdef DEBUG_MEMGUARD 100 #include <vm/memguard.h> 101 #endif 102 103 /* 104 * This is the zone and keg from which all zones are spawned. 105 */ 106 static uma_zone_t kegs; 107 static uma_zone_t zones; 108 109 /* This is the zone from which all offpage uma_slab_ts are allocated. */ 110 static uma_zone_t slabzone; 111 112 /* 113 * The initial hash tables come out of this zone so they can be allocated 114 * prior to malloc coming up. 115 */ 116 static uma_zone_t hashzone; 117 118 /* The boot-time adjusted value for cache line alignment. */ 119 int uma_align_cache = 64 - 1; 120 121 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 122 123 /* 124 * Are we allowed to allocate buckets? 125 */ 126 static int bucketdisable = 1; 127 128 /* Linked list of all kegs in the system */ 129 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 130 131 /* Linked list of all cache-only zones in the system */ 132 static LIST_HEAD(,uma_zone) uma_cachezones = 133 LIST_HEAD_INITIALIZER(uma_cachezones); 134 135 /* This RW lock protects the keg list */ 136 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 137 138 /* 139 * Pointer and counter to pool of pages, that is preallocated at 140 * startup to bootstrap UMA. 141 */ 142 static char *bootmem; 143 static int boot_pages; 144 145 static struct sx uma_drain_lock; 146 147 /* 148 * kmem soft limit, initialized by uma_set_limit(). Ensure that early 149 * allocations don't trigger a wakeup of the reclaim thread. 150 */ 151 static unsigned long uma_kmem_limit = LONG_MAX; 152 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0, 153 "UMA kernel memory soft limit"); 154 static unsigned long uma_kmem_total; 155 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0, 156 "UMA kernel memory usage"); 157 158 /* Is the VM done starting up? */ 159 static enum { BOOT_COLD = 0, BOOT_STRAPPED, BOOT_PAGEALLOC, BOOT_BUCKETS, 160 BOOT_RUNNING } booted = BOOT_COLD; 161 162 /* 163 * This is the handle used to schedule events that need to happen 164 * outside of the allocation fast path. 165 */ 166 static struct callout uma_callout; 167 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 168 169 /* 170 * This structure is passed as the zone ctor arg so that I don't have to create 171 * a special allocation function just for zones. 172 */ 173 struct uma_zctor_args { 174 const char *name; 175 size_t size; 176 uma_ctor ctor; 177 uma_dtor dtor; 178 uma_init uminit; 179 uma_fini fini; 180 uma_import import; 181 uma_release release; 182 void *arg; 183 uma_keg_t keg; 184 int align; 185 uint32_t flags; 186 }; 187 188 struct uma_kctor_args { 189 uma_zone_t zone; 190 size_t size; 191 uma_init uminit; 192 uma_fini fini; 193 int align; 194 uint32_t flags; 195 }; 196 197 struct uma_bucket_zone { 198 uma_zone_t ubz_zone; 199 char *ubz_name; 200 int ubz_entries; /* Number of items it can hold. */ 201 int ubz_maxsize; /* Maximum allocation size per-item. */ 202 }; 203 204 /* 205 * Compute the actual number of bucket entries to pack them in power 206 * of two sizes for more efficient space utilization. 207 */ 208 #define BUCKET_SIZE(n) \ 209 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 210 211 #define BUCKET_MAX BUCKET_SIZE(256) 212 213 struct uma_bucket_zone bucket_zones[] = { 214 { NULL, "4 Bucket", BUCKET_SIZE(4), 4096 }, 215 { NULL, "6 Bucket", BUCKET_SIZE(6), 3072 }, 216 { NULL, "8 Bucket", BUCKET_SIZE(8), 2048 }, 217 { NULL, "12 Bucket", BUCKET_SIZE(12), 1536 }, 218 { NULL, "16 Bucket", BUCKET_SIZE(16), 1024 }, 219 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 220 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 221 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 222 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 223 { NULL, NULL, 0} 224 }; 225 226 /* 227 * Flags and enumerations to be passed to internal functions. 228 */ 229 enum zfreeskip { 230 SKIP_NONE = 0, 231 SKIP_CNT = 0x00000001, 232 SKIP_DTOR = 0x00010000, 233 SKIP_FINI = 0x00020000, 234 }; 235 236 #define UMA_ANYDOMAIN -1 /* Special value for domain search. */ 237 238 /* Prototypes.. */ 239 240 int uma_startup_count(int); 241 void uma_startup(void *, int); 242 void uma_startup1(void); 243 void uma_startup2(void); 244 245 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 246 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 247 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 248 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 249 static void page_free(void *, vm_size_t, uint8_t); 250 static void pcpu_page_free(void *, vm_size_t, uint8_t); 251 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int); 252 static void cache_drain(uma_zone_t); 253 static void bucket_drain(uma_zone_t, uma_bucket_t); 254 static void bucket_cache_drain(uma_zone_t zone); 255 static int keg_ctor(void *, int, void *, int); 256 static void keg_dtor(void *, int, void *); 257 static int zone_ctor(void *, int, void *, int); 258 static void zone_dtor(void *, int, void *); 259 static int zero_init(void *, int, int); 260 static void keg_small_init(uma_keg_t keg); 261 static void keg_large_init(uma_keg_t keg); 262 static void zone_foreach(void (*zfunc)(uma_zone_t)); 263 static void zone_timeout(uma_zone_t zone); 264 static int hash_alloc(struct uma_hash *, u_int); 265 static int hash_expand(struct uma_hash *, struct uma_hash *); 266 static void hash_free(struct uma_hash *hash); 267 static void uma_timeout(void *); 268 static void uma_startup3(void); 269 static void *zone_alloc_item(uma_zone_t, void *, int, int); 270 static void *zone_alloc_item_locked(uma_zone_t, void *, int, int); 271 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 272 static void bucket_enable(void); 273 static void bucket_init(void); 274 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 275 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 276 static void bucket_zone_drain(void); 277 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int, int); 278 static uma_slab_t zone_fetch_slab(uma_zone_t, uma_keg_t, int, int); 279 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 280 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item); 281 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 282 uma_fini fini, int align, uint32_t flags); 283 static int zone_import(uma_zone_t, void **, int, int, int); 284 static void zone_release(uma_zone_t, void **, int); 285 static void uma_zero_item(void *, uma_zone_t); 286 287 void uma_print_zone(uma_zone_t); 288 void uma_print_stats(void); 289 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 290 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 291 292 #ifdef INVARIANTS 293 static bool uma_dbg_kskip(uma_keg_t keg, void *mem); 294 static bool uma_dbg_zskip(uma_zone_t zone, void *mem); 295 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 296 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 297 298 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD, 0, 299 "Memory allocation debugging"); 300 301 static u_int dbg_divisor = 1; 302 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor, 303 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0, 304 "Debug & thrash every this item in memory allocator"); 305 306 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER; 307 static counter_u64_t uma_skip_cnt = EARLY_COUNTER; 308 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD, 309 &uma_dbg_cnt, "memory items debugged"); 310 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD, 311 &uma_skip_cnt, "memory items skipped, not debugged"); 312 #endif 313 314 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 315 316 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 317 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 318 319 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 320 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 321 322 static int zone_warnings = 1; 323 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 324 "Warn when UMA zones becomes full"); 325 326 /* Adjust bytes under management by UMA. */ 327 static inline void 328 uma_total_dec(unsigned long size) 329 { 330 331 atomic_subtract_long(&uma_kmem_total, size); 332 } 333 334 static inline void 335 uma_total_inc(unsigned long size) 336 { 337 338 if (atomic_fetchadd_long(&uma_kmem_total, size) > uma_kmem_limit) 339 uma_reclaim_wakeup(); 340 } 341 342 /* 343 * This routine checks to see whether or not it's safe to enable buckets. 344 */ 345 static void 346 bucket_enable(void) 347 { 348 bucketdisable = vm_page_count_min(); 349 } 350 351 /* 352 * Initialize bucket_zones, the array of zones of buckets of various sizes. 353 * 354 * For each zone, calculate the memory required for each bucket, consisting 355 * of the header and an array of pointers. 356 */ 357 static void 358 bucket_init(void) 359 { 360 struct uma_bucket_zone *ubz; 361 int size; 362 363 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 364 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 365 size += sizeof(void *) * ubz->ubz_entries; 366 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 367 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 368 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | UMA_ZONE_NUMA); 369 } 370 } 371 372 /* 373 * Given a desired number of entries for a bucket, return the zone from which 374 * to allocate the bucket. 375 */ 376 static struct uma_bucket_zone * 377 bucket_zone_lookup(int entries) 378 { 379 struct uma_bucket_zone *ubz; 380 381 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 382 if (ubz->ubz_entries >= entries) 383 return (ubz); 384 ubz--; 385 return (ubz); 386 } 387 388 static int 389 bucket_select(int size) 390 { 391 struct uma_bucket_zone *ubz; 392 393 ubz = &bucket_zones[0]; 394 if (size > ubz->ubz_maxsize) 395 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 396 397 for (; ubz->ubz_entries != 0; ubz++) 398 if (ubz->ubz_maxsize < size) 399 break; 400 ubz--; 401 return (ubz->ubz_entries); 402 } 403 404 static uma_bucket_t 405 bucket_alloc(uma_zone_t zone, void *udata, int flags) 406 { 407 struct uma_bucket_zone *ubz; 408 uma_bucket_t bucket; 409 410 /* 411 * This is to stop us from allocating per cpu buckets while we're 412 * running out of vm.boot_pages. Otherwise, we would exhaust the 413 * boot pages. This also prevents us from allocating buckets in 414 * low memory situations. 415 */ 416 if (bucketdisable) 417 return (NULL); 418 /* 419 * To limit bucket recursion we store the original zone flags 420 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 421 * NOVM flag to persist even through deep recursions. We also 422 * store ZFLAG_BUCKET once we have recursed attempting to allocate 423 * a bucket for a bucket zone so we do not allow infinite bucket 424 * recursion. This cookie will even persist to frees of unused 425 * buckets via the allocation path or bucket allocations in the 426 * free path. 427 */ 428 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 429 udata = (void *)(uintptr_t)zone->uz_flags; 430 else { 431 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 432 return (NULL); 433 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 434 } 435 if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY) 436 flags |= M_NOVM; 437 ubz = bucket_zone_lookup(zone->uz_count); 438 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 439 ubz++; 440 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 441 if (bucket) { 442 #ifdef INVARIANTS 443 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 444 #endif 445 bucket->ub_cnt = 0; 446 bucket->ub_entries = ubz->ubz_entries; 447 } 448 449 return (bucket); 450 } 451 452 static void 453 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 454 { 455 struct uma_bucket_zone *ubz; 456 457 KASSERT(bucket->ub_cnt == 0, 458 ("bucket_free: Freeing a non free bucket.")); 459 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 460 udata = (void *)(uintptr_t)zone->uz_flags; 461 ubz = bucket_zone_lookup(bucket->ub_entries); 462 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 463 } 464 465 static void 466 bucket_zone_drain(void) 467 { 468 struct uma_bucket_zone *ubz; 469 470 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 471 zone_drain(ubz->ubz_zone); 472 } 473 474 static uma_bucket_t 475 zone_try_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom, const bool ws) 476 { 477 uma_bucket_t bucket; 478 479 ZONE_LOCK_ASSERT(zone); 480 481 if ((bucket = LIST_FIRST(&zdom->uzd_buckets)) != NULL) { 482 MPASS(zdom->uzd_nitems >= bucket->ub_cnt); 483 LIST_REMOVE(bucket, ub_link); 484 zdom->uzd_nitems -= bucket->ub_cnt; 485 if (ws && zdom->uzd_imin > zdom->uzd_nitems) 486 zdom->uzd_imin = zdom->uzd_nitems; 487 zone->uz_bkt_count -= bucket->ub_cnt; 488 } 489 return (bucket); 490 } 491 492 static void 493 zone_put_bucket(uma_zone_t zone, uma_zone_domain_t zdom, uma_bucket_t bucket, 494 const bool ws) 495 { 496 497 ZONE_LOCK_ASSERT(zone); 498 KASSERT(zone->uz_bkt_count < zone->uz_bkt_max, ("%s: zone %p overflow", 499 __func__, zone)); 500 501 LIST_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); 502 zdom->uzd_nitems += bucket->ub_cnt; 503 if (ws && zdom->uzd_imax < zdom->uzd_nitems) 504 zdom->uzd_imax = zdom->uzd_nitems; 505 zone->uz_bkt_count += bucket->ub_cnt; 506 } 507 508 static void 509 zone_log_warning(uma_zone_t zone) 510 { 511 static const struct timeval warninterval = { 300, 0 }; 512 513 if (!zone_warnings || zone->uz_warning == NULL) 514 return; 515 516 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 517 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 518 } 519 520 static inline void 521 zone_maxaction(uma_zone_t zone) 522 { 523 524 if (zone->uz_maxaction.ta_func != NULL) 525 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 526 } 527 528 /* 529 * Routine called by timeout which is used to fire off some time interval 530 * based calculations. (stats, hash size, etc.) 531 * 532 * Arguments: 533 * arg Unused 534 * 535 * Returns: 536 * Nothing 537 */ 538 static void 539 uma_timeout(void *unused) 540 { 541 bucket_enable(); 542 zone_foreach(zone_timeout); 543 544 /* Reschedule this event */ 545 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 546 } 547 548 /* 549 * Update the working set size estimate for the zone's bucket cache. 550 * The constants chosen here are somewhat arbitrary. With an update period of 551 * 20s (UMA_TIMEOUT), this estimate is dominated by zone activity over the 552 * last 100s. 553 */ 554 static void 555 zone_domain_update_wss(uma_zone_domain_t zdom) 556 { 557 long wss; 558 559 MPASS(zdom->uzd_imax >= zdom->uzd_imin); 560 wss = zdom->uzd_imax - zdom->uzd_imin; 561 zdom->uzd_imax = zdom->uzd_imin = zdom->uzd_nitems; 562 zdom->uzd_wss = (3 * wss + 2 * zdom->uzd_wss) / 5; 563 } 564 565 /* 566 * Routine to perform timeout driven calculations. This expands the 567 * hashes and does per cpu statistics aggregation. 568 * 569 * Returns nothing. 570 */ 571 static void 572 zone_timeout(uma_zone_t zone) 573 { 574 uma_keg_t keg = zone->uz_keg; 575 u_int slabs; 576 577 KEG_LOCK(keg); 578 /* 579 * Expand the keg hash table. 580 * 581 * This is done if the number of slabs is larger than the hash size. 582 * What I'm trying to do here is completely reduce collisions. This 583 * may be a little aggressive. Should I allow for two collisions max? 584 */ 585 if (keg->uk_flags & UMA_ZONE_HASH && 586 (slabs = keg->uk_pages / keg->uk_ppera) > 587 keg->uk_hash.uh_hashsize) { 588 struct uma_hash newhash; 589 struct uma_hash oldhash; 590 int ret; 591 592 /* 593 * This is so involved because allocating and freeing 594 * while the keg lock is held will lead to deadlock. 595 * I have to do everything in stages and check for 596 * races. 597 */ 598 KEG_UNLOCK(keg); 599 ret = hash_alloc(&newhash, 1 << fls(slabs)); 600 KEG_LOCK(keg); 601 if (ret) { 602 if (hash_expand(&keg->uk_hash, &newhash)) { 603 oldhash = keg->uk_hash; 604 keg->uk_hash = newhash; 605 } else 606 oldhash = newhash; 607 608 KEG_UNLOCK(keg); 609 hash_free(&oldhash); 610 return; 611 } 612 } 613 614 for (int i = 0; i < vm_ndomains; i++) 615 zone_domain_update_wss(&zone->uz_domain[i]); 616 617 KEG_UNLOCK(keg); 618 } 619 620 /* 621 * Allocate and zero fill the next sized hash table from the appropriate 622 * backing store. 623 * 624 * Arguments: 625 * hash A new hash structure with the old hash size in uh_hashsize 626 * 627 * Returns: 628 * 1 on success and 0 on failure. 629 */ 630 static int 631 hash_alloc(struct uma_hash *hash, u_int size) 632 { 633 size_t alloc; 634 635 KASSERT(powerof2(size), ("hash size must be power of 2")); 636 if (size > UMA_HASH_SIZE_INIT) { 637 hash->uh_hashsize = size; 638 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 639 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 640 M_UMAHASH, M_NOWAIT); 641 } else { 642 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 643 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 644 UMA_ANYDOMAIN, M_WAITOK); 645 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 646 } 647 if (hash->uh_slab_hash) { 648 bzero(hash->uh_slab_hash, alloc); 649 hash->uh_hashmask = hash->uh_hashsize - 1; 650 return (1); 651 } 652 653 return (0); 654 } 655 656 /* 657 * Expands the hash table for HASH zones. This is done from zone_timeout 658 * to reduce collisions. This must not be done in the regular allocation 659 * path, otherwise, we can recurse on the vm while allocating pages. 660 * 661 * Arguments: 662 * oldhash The hash you want to expand 663 * newhash The hash structure for the new table 664 * 665 * Returns: 666 * Nothing 667 * 668 * Discussion: 669 */ 670 static int 671 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 672 { 673 uma_slab_t slab; 674 u_int hval; 675 u_int idx; 676 677 if (!newhash->uh_slab_hash) 678 return (0); 679 680 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 681 return (0); 682 683 /* 684 * I need to investigate hash algorithms for resizing without a 685 * full rehash. 686 */ 687 688 for (idx = 0; idx < oldhash->uh_hashsize; idx++) 689 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[idx])) { 690 slab = SLIST_FIRST(&oldhash->uh_slab_hash[idx]); 691 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[idx], us_hlink); 692 hval = UMA_HASH(newhash, slab->us_data); 693 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 694 slab, us_hlink); 695 } 696 697 return (1); 698 } 699 700 /* 701 * Free the hash bucket to the appropriate backing store. 702 * 703 * Arguments: 704 * slab_hash The hash bucket we're freeing 705 * hashsize The number of entries in that hash bucket 706 * 707 * Returns: 708 * Nothing 709 */ 710 static void 711 hash_free(struct uma_hash *hash) 712 { 713 if (hash->uh_slab_hash == NULL) 714 return; 715 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 716 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 717 else 718 free(hash->uh_slab_hash, M_UMAHASH); 719 } 720 721 /* 722 * Frees all outstanding items in a bucket 723 * 724 * Arguments: 725 * zone The zone to free to, must be unlocked. 726 * bucket The free/alloc bucket with items, cpu queue must be locked. 727 * 728 * Returns: 729 * Nothing 730 */ 731 732 static void 733 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 734 { 735 int i; 736 737 if (bucket == NULL) 738 return; 739 740 if (zone->uz_fini) 741 for (i = 0; i < bucket->ub_cnt; i++) 742 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 743 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 744 if (zone->uz_max_items > 0) { 745 ZONE_LOCK(zone); 746 zone->uz_items -= bucket->ub_cnt; 747 if (zone->uz_sleepers && zone->uz_items < zone->uz_max_items) 748 wakeup_one(zone); 749 ZONE_UNLOCK(zone); 750 } 751 bucket->ub_cnt = 0; 752 } 753 754 /* 755 * Drains the per cpu caches for a zone. 756 * 757 * NOTE: This may only be called while the zone is being turn down, and not 758 * during normal operation. This is necessary in order that we do not have 759 * to migrate CPUs to drain the per-CPU caches. 760 * 761 * Arguments: 762 * zone The zone to drain, must be unlocked. 763 * 764 * Returns: 765 * Nothing 766 */ 767 static void 768 cache_drain(uma_zone_t zone) 769 { 770 uma_cache_t cache; 771 int cpu; 772 773 /* 774 * XXX: It is safe to not lock the per-CPU caches, because we're 775 * tearing down the zone anyway. I.e., there will be no further use 776 * of the caches at this point. 777 * 778 * XXX: It would good to be able to assert that the zone is being 779 * torn down to prevent improper use of cache_drain(). 780 * 781 * XXX: We lock the zone before passing into bucket_cache_drain() as 782 * it is used elsewhere. Should the tear-down path be made special 783 * there in some form? 784 */ 785 CPU_FOREACH(cpu) { 786 cache = &zone->uz_cpu[cpu]; 787 bucket_drain(zone, cache->uc_allocbucket); 788 bucket_drain(zone, cache->uc_freebucket); 789 if (cache->uc_allocbucket != NULL) 790 bucket_free(zone, cache->uc_allocbucket, NULL); 791 if (cache->uc_freebucket != NULL) 792 bucket_free(zone, cache->uc_freebucket, NULL); 793 cache->uc_allocbucket = cache->uc_freebucket = NULL; 794 } 795 ZONE_LOCK(zone); 796 bucket_cache_drain(zone); 797 ZONE_UNLOCK(zone); 798 } 799 800 static void 801 cache_shrink(uma_zone_t zone) 802 { 803 804 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 805 return; 806 807 ZONE_LOCK(zone); 808 zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2; 809 ZONE_UNLOCK(zone); 810 } 811 812 static void 813 cache_drain_safe_cpu(uma_zone_t zone) 814 { 815 uma_cache_t cache; 816 uma_bucket_t b1, b2; 817 int domain; 818 819 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 820 return; 821 822 b1 = b2 = NULL; 823 ZONE_LOCK(zone); 824 critical_enter(); 825 if (zone->uz_flags & UMA_ZONE_NUMA) 826 domain = PCPU_GET(domain); 827 else 828 domain = 0; 829 cache = &zone->uz_cpu[curcpu]; 830 if (cache->uc_allocbucket) { 831 if (cache->uc_allocbucket->ub_cnt != 0) 832 zone_put_bucket(zone, &zone->uz_domain[domain], 833 cache->uc_allocbucket, false); 834 else 835 b1 = cache->uc_allocbucket; 836 cache->uc_allocbucket = NULL; 837 } 838 if (cache->uc_freebucket) { 839 if (cache->uc_freebucket->ub_cnt != 0) 840 zone_put_bucket(zone, &zone->uz_domain[domain], 841 cache->uc_freebucket, false); 842 else 843 b2 = cache->uc_freebucket; 844 cache->uc_freebucket = NULL; 845 } 846 critical_exit(); 847 ZONE_UNLOCK(zone); 848 if (b1) 849 bucket_free(zone, b1, NULL); 850 if (b2) 851 bucket_free(zone, b2, NULL); 852 } 853 854 /* 855 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 856 * This is an expensive call because it needs to bind to all CPUs 857 * one by one and enter a critical section on each of them in order 858 * to safely access their cache buckets. 859 * Zone lock must not be held on call this function. 860 */ 861 static void 862 cache_drain_safe(uma_zone_t zone) 863 { 864 int cpu; 865 866 /* 867 * Polite bucket sizes shrinking was not enouth, shrink aggressively. 868 */ 869 if (zone) 870 cache_shrink(zone); 871 else 872 zone_foreach(cache_shrink); 873 874 CPU_FOREACH(cpu) { 875 thread_lock(curthread); 876 sched_bind(curthread, cpu); 877 thread_unlock(curthread); 878 879 if (zone) 880 cache_drain_safe_cpu(zone); 881 else 882 zone_foreach(cache_drain_safe_cpu); 883 } 884 thread_lock(curthread); 885 sched_unbind(curthread); 886 thread_unlock(curthread); 887 } 888 889 /* 890 * Drain the cached buckets from a zone. Expects a locked zone on entry. 891 */ 892 static void 893 bucket_cache_drain(uma_zone_t zone) 894 { 895 uma_zone_domain_t zdom; 896 uma_bucket_t bucket; 897 int i; 898 899 /* 900 * Drain the bucket queues and free the buckets. 901 */ 902 for (i = 0; i < vm_ndomains; i++) { 903 zdom = &zone->uz_domain[i]; 904 while ((bucket = zone_try_fetch_bucket(zone, zdom, false)) != 905 NULL) { 906 ZONE_UNLOCK(zone); 907 bucket_drain(zone, bucket); 908 bucket_free(zone, bucket, NULL); 909 ZONE_LOCK(zone); 910 } 911 } 912 913 /* 914 * Shrink further bucket sizes. Price of single zone lock collision 915 * is probably lower then price of global cache drain. 916 */ 917 if (zone->uz_count > zone->uz_count_min) 918 zone->uz_count--; 919 } 920 921 static void 922 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 923 { 924 uint8_t *mem; 925 int i; 926 uint8_t flags; 927 928 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 929 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 930 931 mem = slab->us_data; 932 flags = slab->us_flags; 933 i = start; 934 if (keg->uk_fini != NULL) { 935 for (i--; i > -1; i--) 936 #ifdef INVARIANTS 937 /* 938 * trash_fini implies that dtor was trash_dtor. trash_fini 939 * would check that memory hasn't been modified since free, 940 * which executed trash_dtor. 941 * That's why we need to run uma_dbg_kskip() check here, 942 * albeit we don't make skip check for other init/fini 943 * invocations. 944 */ 945 if (!uma_dbg_kskip(keg, slab->us_data + (keg->uk_rsize * i)) || 946 keg->uk_fini != trash_fini) 947 #endif 948 keg->uk_fini(slab->us_data + (keg->uk_rsize * i), 949 keg->uk_size); 950 } 951 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 952 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 953 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 954 uma_total_dec(PAGE_SIZE * keg->uk_ppera); 955 } 956 957 /* 958 * Frees pages from a keg back to the system. This is done on demand from 959 * the pageout daemon. 960 * 961 * Returns nothing. 962 */ 963 static void 964 keg_drain(uma_keg_t keg) 965 { 966 struct slabhead freeslabs = { 0 }; 967 uma_domain_t dom; 968 uma_slab_t slab, tmp; 969 int i; 970 971 /* 972 * We don't want to take pages from statically allocated kegs at this 973 * time 974 */ 975 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 976 return; 977 978 CTR3(KTR_UMA, "keg_drain %s(%p) free items: %u", 979 keg->uk_name, keg, keg->uk_free); 980 KEG_LOCK(keg); 981 if (keg->uk_free == 0) 982 goto finished; 983 984 for (i = 0; i < vm_ndomains; i++) { 985 dom = &keg->uk_domain[i]; 986 LIST_FOREACH_SAFE(slab, &dom->ud_free_slab, us_link, tmp) { 987 /* We have nowhere to free these to. */ 988 if (slab->us_flags & UMA_SLAB_BOOT) 989 continue; 990 991 LIST_REMOVE(slab, us_link); 992 keg->uk_pages -= keg->uk_ppera; 993 keg->uk_free -= keg->uk_ipers; 994 995 if (keg->uk_flags & UMA_ZONE_HASH) 996 UMA_HASH_REMOVE(&keg->uk_hash, slab, 997 slab->us_data); 998 999 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 1000 } 1001 } 1002 1003 finished: 1004 KEG_UNLOCK(keg); 1005 1006 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 1007 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 1008 keg_free_slab(keg, slab, keg->uk_ipers); 1009 } 1010 } 1011 1012 static void 1013 zone_drain_wait(uma_zone_t zone, int waitok) 1014 { 1015 1016 /* 1017 * Set draining to interlock with zone_dtor() so we can release our 1018 * locks as we go. Only dtor() should do a WAITOK call since it 1019 * is the only call that knows the structure will still be available 1020 * when it wakes up. 1021 */ 1022 ZONE_LOCK(zone); 1023 while (zone->uz_flags & UMA_ZFLAG_DRAINING) { 1024 if (waitok == M_NOWAIT) 1025 goto out; 1026 msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1); 1027 } 1028 zone->uz_flags |= UMA_ZFLAG_DRAINING; 1029 bucket_cache_drain(zone); 1030 ZONE_UNLOCK(zone); 1031 /* 1032 * The DRAINING flag protects us from being freed while 1033 * we're running. Normally the uma_rwlock would protect us but we 1034 * must be able to release and acquire the right lock for each keg. 1035 */ 1036 keg_drain(zone->uz_keg); 1037 ZONE_LOCK(zone); 1038 zone->uz_flags &= ~UMA_ZFLAG_DRAINING; 1039 wakeup(zone); 1040 out: 1041 ZONE_UNLOCK(zone); 1042 } 1043 1044 void 1045 zone_drain(uma_zone_t zone) 1046 { 1047 1048 zone_drain_wait(zone, M_NOWAIT); 1049 } 1050 1051 /* 1052 * Allocate a new slab for a keg. This does not insert the slab onto a list. 1053 * If the allocation was successful, the keg lock will be held upon return, 1054 * otherwise the keg will be left unlocked. 1055 * 1056 * Arguments: 1057 * flags Wait flags for the item initialization routine 1058 * aflags Wait flags for the slab allocation 1059 * 1060 * Returns: 1061 * The slab that was allocated or NULL if there is no memory and the 1062 * caller specified M_NOWAIT. 1063 */ 1064 static uma_slab_t 1065 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags, 1066 int aflags) 1067 { 1068 uma_alloc allocf; 1069 uma_slab_t slab; 1070 unsigned long size; 1071 uint8_t *mem; 1072 uint8_t sflags; 1073 int i; 1074 1075 KASSERT(domain >= 0 && domain < vm_ndomains, 1076 ("keg_alloc_slab: domain %d out of range", domain)); 1077 KEG_LOCK_ASSERT(keg); 1078 MPASS(zone->uz_lockptr == &keg->uk_lock); 1079 1080 allocf = keg->uk_allocf; 1081 KEG_UNLOCK(keg); 1082 1083 slab = NULL; 1084 mem = NULL; 1085 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 1086 slab = zone_alloc_item(keg->uk_slabzone, NULL, domain, aflags); 1087 if (slab == NULL) 1088 goto out; 1089 } 1090 1091 /* 1092 * This reproduces the old vm_zone behavior of zero filling pages the 1093 * first time they are added to a zone. 1094 * 1095 * Malloced items are zeroed in uma_zalloc. 1096 */ 1097 1098 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1099 aflags |= M_ZERO; 1100 else 1101 aflags &= ~M_ZERO; 1102 1103 if (keg->uk_flags & UMA_ZONE_NODUMP) 1104 aflags |= M_NODUMP; 1105 1106 /* zone is passed for legacy reasons. */ 1107 size = keg->uk_ppera * PAGE_SIZE; 1108 mem = allocf(zone, size, domain, &sflags, aflags); 1109 if (mem == NULL) { 1110 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1111 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 1112 slab = NULL; 1113 goto out; 1114 } 1115 uma_total_inc(size); 1116 1117 /* Point the slab into the allocated memory */ 1118 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 1119 slab = (uma_slab_t )(mem + keg->uk_pgoff); 1120 1121 if (keg->uk_flags & UMA_ZONE_VTOSLAB) 1122 for (i = 0; i < keg->uk_ppera; i++) 1123 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 1124 1125 slab->us_keg = keg; 1126 slab->us_data = mem; 1127 slab->us_freecount = keg->uk_ipers; 1128 slab->us_flags = sflags; 1129 slab->us_domain = domain; 1130 BIT_FILL(SLAB_SETSIZE, &slab->us_free); 1131 #ifdef INVARIANTS 1132 BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree); 1133 #endif 1134 1135 if (keg->uk_init != NULL) { 1136 for (i = 0; i < keg->uk_ipers; i++) 1137 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 1138 keg->uk_size, flags) != 0) 1139 break; 1140 if (i != keg->uk_ipers) { 1141 keg_free_slab(keg, slab, i); 1142 slab = NULL; 1143 goto out; 1144 } 1145 } 1146 KEG_LOCK(keg); 1147 1148 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1149 slab, keg->uk_name, keg); 1150 1151 if (keg->uk_flags & UMA_ZONE_HASH) 1152 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1153 1154 keg->uk_pages += keg->uk_ppera; 1155 keg->uk_free += keg->uk_ipers; 1156 1157 out: 1158 return (slab); 1159 } 1160 1161 /* 1162 * This function is intended to be used early on in place of page_alloc() so 1163 * that we may use the boot time page cache to satisfy allocations before 1164 * the VM is ready. 1165 */ 1166 static void * 1167 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1168 int wait) 1169 { 1170 uma_keg_t keg; 1171 void *mem; 1172 int pages; 1173 1174 keg = zone->uz_keg; 1175 /* 1176 * If we are in BOOT_BUCKETS or higher, than switch to real 1177 * allocator. Zones with page sized slabs switch at BOOT_PAGEALLOC. 1178 */ 1179 switch (booted) { 1180 case BOOT_COLD: 1181 case BOOT_STRAPPED: 1182 break; 1183 case BOOT_PAGEALLOC: 1184 if (keg->uk_ppera > 1) 1185 break; 1186 case BOOT_BUCKETS: 1187 case BOOT_RUNNING: 1188 #ifdef UMA_MD_SMALL_ALLOC 1189 keg->uk_allocf = (keg->uk_ppera > 1) ? 1190 page_alloc : uma_small_alloc; 1191 #else 1192 keg->uk_allocf = page_alloc; 1193 #endif 1194 return keg->uk_allocf(zone, bytes, domain, pflag, wait); 1195 } 1196 1197 /* 1198 * Check our small startup cache to see if it has pages remaining. 1199 */ 1200 pages = howmany(bytes, PAGE_SIZE); 1201 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1202 if (pages > boot_pages) 1203 panic("UMA zone \"%s\": Increase vm.boot_pages", zone->uz_name); 1204 #ifdef DIAGNOSTIC 1205 printf("%s from \"%s\", %d boot pages left\n", __func__, zone->uz_name, 1206 boot_pages); 1207 #endif 1208 mem = bootmem; 1209 boot_pages -= pages; 1210 bootmem += pages * PAGE_SIZE; 1211 *pflag = UMA_SLAB_BOOT; 1212 1213 return (mem); 1214 } 1215 1216 /* 1217 * Allocates a number of pages from the system 1218 * 1219 * Arguments: 1220 * bytes The number of bytes requested 1221 * wait Shall we wait? 1222 * 1223 * Returns: 1224 * A pointer to the alloced memory or possibly 1225 * NULL if M_NOWAIT is set. 1226 */ 1227 static void * 1228 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1229 int wait) 1230 { 1231 void *p; /* Returned page */ 1232 1233 *pflag = UMA_SLAB_KERNEL; 1234 p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait); 1235 1236 return (p); 1237 } 1238 1239 static void * 1240 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1241 int wait) 1242 { 1243 struct pglist alloctail; 1244 vm_offset_t addr, zkva; 1245 int cpu, flags; 1246 vm_page_t p, p_next; 1247 #ifdef NUMA 1248 struct pcpu *pc; 1249 #endif 1250 1251 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE); 1252 1253 TAILQ_INIT(&alloctail); 1254 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1255 malloc2vm_flags(wait); 1256 *pflag = UMA_SLAB_KERNEL; 1257 for (cpu = 0; cpu <= mp_maxid; cpu++) { 1258 if (CPU_ABSENT(cpu)) { 1259 p = vm_page_alloc(NULL, 0, flags); 1260 } else { 1261 #ifndef NUMA 1262 p = vm_page_alloc(NULL, 0, flags); 1263 #else 1264 pc = pcpu_find(cpu); 1265 p = vm_page_alloc_domain(NULL, 0, pc->pc_domain, flags); 1266 if (__predict_false(p == NULL)) 1267 p = vm_page_alloc(NULL, 0, flags); 1268 #endif 1269 } 1270 if (__predict_false(p == NULL)) 1271 goto fail; 1272 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1273 } 1274 if ((addr = kva_alloc(bytes)) == 0) 1275 goto fail; 1276 zkva = addr; 1277 TAILQ_FOREACH(p, &alloctail, listq) { 1278 pmap_qenter(zkva, &p, 1); 1279 zkva += PAGE_SIZE; 1280 } 1281 return ((void*)addr); 1282 fail: 1283 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1284 vm_page_unwire_noq(p); 1285 vm_page_free(p); 1286 } 1287 return (NULL); 1288 } 1289 1290 /* 1291 * Allocates a number of pages from within an object 1292 * 1293 * Arguments: 1294 * bytes The number of bytes requested 1295 * wait Shall we wait? 1296 * 1297 * Returns: 1298 * A pointer to the alloced memory or possibly 1299 * NULL if M_NOWAIT is set. 1300 */ 1301 static void * 1302 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 1303 int wait) 1304 { 1305 TAILQ_HEAD(, vm_page) alloctail; 1306 u_long npages; 1307 vm_offset_t retkva, zkva; 1308 vm_page_t p, p_next; 1309 uma_keg_t keg; 1310 1311 TAILQ_INIT(&alloctail); 1312 keg = zone->uz_keg; 1313 1314 npages = howmany(bytes, PAGE_SIZE); 1315 while (npages > 0) { 1316 p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT | 1317 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1318 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK : 1319 VM_ALLOC_NOWAIT)); 1320 if (p != NULL) { 1321 /* 1322 * Since the page does not belong to an object, its 1323 * listq is unused. 1324 */ 1325 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1326 npages--; 1327 continue; 1328 } 1329 /* 1330 * Page allocation failed, free intermediate pages and 1331 * exit. 1332 */ 1333 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1334 vm_page_unwire_noq(p); 1335 vm_page_free(p); 1336 } 1337 return (NULL); 1338 } 1339 *flags = UMA_SLAB_PRIV; 1340 zkva = keg->uk_kva + 1341 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1342 retkva = zkva; 1343 TAILQ_FOREACH(p, &alloctail, listq) { 1344 pmap_qenter(zkva, &p, 1); 1345 zkva += PAGE_SIZE; 1346 } 1347 1348 return ((void *)retkva); 1349 } 1350 1351 /* 1352 * Frees a number of pages to the system 1353 * 1354 * Arguments: 1355 * mem A pointer to the memory to be freed 1356 * size The size of the memory being freed 1357 * flags The original p->us_flags field 1358 * 1359 * Returns: 1360 * Nothing 1361 */ 1362 static void 1363 page_free(void *mem, vm_size_t size, uint8_t flags) 1364 { 1365 1366 if ((flags & UMA_SLAB_KERNEL) == 0) 1367 panic("UMA: page_free used with invalid flags %x", flags); 1368 1369 kmem_free((vm_offset_t)mem, size); 1370 } 1371 1372 /* 1373 * Frees pcpu zone allocations 1374 * 1375 * Arguments: 1376 * mem A pointer to the memory to be freed 1377 * size The size of the memory being freed 1378 * flags The original p->us_flags field 1379 * 1380 * Returns: 1381 * Nothing 1382 */ 1383 static void 1384 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags) 1385 { 1386 vm_offset_t sva, curva; 1387 vm_paddr_t paddr; 1388 vm_page_t m; 1389 1390 MPASS(size == (mp_maxid+1)*PAGE_SIZE); 1391 sva = (vm_offset_t)mem; 1392 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) { 1393 paddr = pmap_kextract(curva); 1394 m = PHYS_TO_VM_PAGE(paddr); 1395 vm_page_unwire_noq(m); 1396 vm_page_free(m); 1397 } 1398 pmap_qremove(sva, size >> PAGE_SHIFT); 1399 kva_free(sva, size); 1400 } 1401 1402 1403 /* 1404 * Zero fill initializer 1405 * 1406 * Arguments/Returns follow uma_init specifications 1407 */ 1408 static int 1409 zero_init(void *mem, int size, int flags) 1410 { 1411 bzero(mem, size); 1412 return (0); 1413 } 1414 1415 /* 1416 * Finish creating a small uma keg. This calculates ipers, and the keg size. 1417 * 1418 * Arguments 1419 * keg The zone we should initialize 1420 * 1421 * Returns 1422 * Nothing 1423 */ 1424 static void 1425 keg_small_init(uma_keg_t keg) 1426 { 1427 u_int rsize; 1428 u_int memused; 1429 u_int wastedspace; 1430 u_int shsize; 1431 u_int slabsize; 1432 1433 if (keg->uk_flags & UMA_ZONE_PCPU) { 1434 u_int ncpus = (mp_maxid + 1) ? (mp_maxid + 1) : MAXCPU; 1435 1436 slabsize = UMA_PCPU_ALLOC_SIZE; 1437 keg->uk_ppera = ncpus; 1438 } else { 1439 slabsize = UMA_SLAB_SIZE; 1440 keg->uk_ppera = 1; 1441 } 1442 1443 /* 1444 * Calculate the size of each allocation (rsize) according to 1445 * alignment. If the requested size is smaller than we have 1446 * allocation bits for we round it up. 1447 */ 1448 rsize = keg->uk_size; 1449 if (rsize < slabsize / SLAB_SETSIZE) 1450 rsize = slabsize / SLAB_SETSIZE; 1451 if (rsize & keg->uk_align) 1452 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1453 keg->uk_rsize = rsize; 1454 1455 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 1456 keg->uk_rsize < UMA_PCPU_ALLOC_SIZE, 1457 ("%s: size %u too large", __func__, keg->uk_rsize)); 1458 1459 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1460 shsize = 0; 1461 else 1462 shsize = SIZEOF_UMA_SLAB; 1463 1464 if (rsize <= slabsize - shsize) 1465 keg->uk_ipers = (slabsize - shsize) / rsize; 1466 else { 1467 /* Handle special case when we have 1 item per slab, so 1468 * alignment requirement can be relaxed. */ 1469 KASSERT(keg->uk_size <= slabsize - shsize, 1470 ("%s: size %u greater than slab", __func__, keg->uk_size)); 1471 keg->uk_ipers = 1; 1472 } 1473 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1474 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1475 1476 memused = keg->uk_ipers * rsize + shsize; 1477 wastedspace = slabsize - memused; 1478 1479 /* 1480 * We can't do OFFPAGE if we're internal or if we've been 1481 * asked to not go to the VM for buckets. If we do this we 1482 * may end up going to the VM for slabs which we do not 1483 * want to do if we're UMA_ZFLAG_CACHEONLY as a result 1484 * of UMA_ZONE_VM, which clearly forbids it. 1485 */ 1486 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1487 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1488 return; 1489 1490 /* 1491 * See if using an OFFPAGE slab will limit our waste. Only do 1492 * this if it permits more items per-slab. 1493 * 1494 * XXX We could try growing slabsize to limit max waste as well. 1495 * Historically this was not done because the VM could not 1496 * efficiently handle contiguous allocations. 1497 */ 1498 if ((wastedspace >= slabsize / UMA_MAX_WASTE) && 1499 (keg->uk_ipers < (slabsize / keg->uk_rsize))) { 1500 keg->uk_ipers = slabsize / keg->uk_rsize; 1501 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1502 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1503 CTR6(KTR_UMA, "UMA decided we need offpage slab headers for " 1504 "keg: %s(%p), calculated wastedspace = %d, " 1505 "maximum wasted space allowed = %d, " 1506 "calculated ipers = %d, " 1507 "new wasted space = %d\n", keg->uk_name, keg, wastedspace, 1508 slabsize / UMA_MAX_WASTE, keg->uk_ipers, 1509 slabsize - keg->uk_ipers * keg->uk_rsize); 1510 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1511 } 1512 1513 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1514 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1515 keg->uk_flags |= UMA_ZONE_HASH; 1516 } 1517 1518 /* 1519 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do 1520 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1521 * more complicated. 1522 * 1523 * Arguments 1524 * keg The keg we should initialize 1525 * 1526 * Returns 1527 * Nothing 1528 */ 1529 static void 1530 keg_large_init(uma_keg_t keg) 1531 { 1532 1533 KASSERT(keg != NULL, ("Keg is null in keg_large_init")); 1534 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1535 ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__)); 1536 1537 keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE); 1538 keg->uk_ipers = 1; 1539 keg->uk_rsize = keg->uk_size; 1540 1541 /* Check whether we have enough space to not do OFFPAGE. */ 1542 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0 && 1543 PAGE_SIZE * keg->uk_ppera - keg->uk_rsize < SIZEOF_UMA_SLAB) { 1544 /* 1545 * We can't do OFFPAGE if we're internal, in which case 1546 * we need an extra page per allocation to contain the 1547 * slab header. 1548 */ 1549 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) == 0) 1550 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1551 else 1552 keg->uk_ppera++; 1553 } 1554 1555 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1556 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1557 keg->uk_flags |= UMA_ZONE_HASH; 1558 } 1559 1560 static void 1561 keg_cachespread_init(uma_keg_t keg) 1562 { 1563 int alignsize; 1564 int trailer; 1565 int pages; 1566 int rsize; 1567 1568 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1569 ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__)); 1570 1571 alignsize = keg->uk_align + 1; 1572 rsize = keg->uk_size; 1573 /* 1574 * We want one item to start on every align boundary in a page. To 1575 * do this we will span pages. We will also extend the item by the 1576 * size of align if it is an even multiple of align. Otherwise, it 1577 * would fall on the same boundary every time. 1578 */ 1579 if (rsize & keg->uk_align) 1580 rsize = (rsize & ~keg->uk_align) + alignsize; 1581 if ((rsize & alignsize) == 0) 1582 rsize += alignsize; 1583 trailer = rsize - keg->uk_size; 1584 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE; 1585 pages = MIN(pages, (128 * 1024) / PAGE_SIZE); 1586 keg->uk_rsize = rsize; 1587 keg->uk_ppera = pages; 1588 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize; 1589 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1590 KASSERT(keg->uk_ipers <= SLAB_SETSIZE, 1591 ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__, 1592 keg->uk_ipers)); 1593 } 1594 1595 /* 1596 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1597 * the keg onto the global keg list. 1598 * 1599 * Arguments/Returns follow uma_ctor specifications 1600 * udata Actually uma_kctor_args 1601 */ 1602 static int 1603 keg_ctor(void *mem, int size, void *udata, int flags) 1604 { 1605 struct uma_kctor_args *arg = udata; 1606 uma_keg_t keg = mem; 1607 uma_zone_t zone; 1608 1609 bzero(keg, size); 1610 keg->uk_size = arg->size; 1611 keg->uk_init = arg->uminit; 1612 keg->uk_fini = arg->fini; 1613 keg->uk_align = arg->align; 1614 keg->uk_free = 0; 1615 keg->uk_reserve = 0; 1616 keg->uk_pages = 0; 1617 keg->uk_flags = arg->flags; 1618 keg->uk_slabzone = NULL; 1619 1620 /* 1621 * We use a global round-robin policy by default. Zones with 1622 * UMA_ZONE_NUMA set will use first-touch instead, in which case the 1623 * iterator is never run. 1624 */ 1625 keg->uk_dr.dr_policy = DOMAINSET_RR(); 1626 keg->uk_dr.dr_iter = 0; 1627 1628 /* 1629 * The master zone is passed to us at keg-creation time. 1630 */ 1631 zone = arg->zone; 1632 keg->uk_name = zone->uz_name; 1633 1634 if (arg->flags & UMA_ZONE_VM) 1635 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1636 1637 if (arg->flags & UMA_ZONE_ZINIT) 1638 keg->uk_init = zero_init; 1639 1640 if (arg->flags & UMA_ZONE_MALLOC) 1641 keg->uk_flags |= UMA_ZONE_VTOSLAB; 1642 1643 if (arg->flags & UMA_ZONE_PCPU) 1644 #ifdef SMP 1645 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1646 #else 1647 keg->uk_flags &= ~UMA_ZONE_PCPU; 1648 #endif 1649 1650 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) { 1651 keg_cachespread_init(keg); 1652 } else { 1653 if (keg->uk_size > UMA_SLAB_SPACE) 1654 keg_large_init(keg); 1655 else 1656 keg_small_init(keg); 1657 } 1658 1659 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1660 keg->uk_slabzone = slabzone; 1661 1662 /* 1663 * If we haven't booted yet we need allocations to go through the 1664 * startup cache until the vm is ready. 1665 */ 1666 if (booted < BOOT_PAGEALLOC) 1667 keg->uk_allocf = startup_alloc; 1668 #ifdef UMA_MD_SMALL_ALLOC 1669 else if (keg->uk_ppera == 1) 1670 keg->uk_allocf = uma_small_alloc; 1671 #endif 1672 else if (keg->uk_flags & UMA_ZONE_PCPU) 1673 keg->uk_allocf = pcpu_page_alloc; 1674 else 1675 keg->uk_allocf = page_alloc; 1676 #ifdef UMA_MD_SMALL_ALLOC 1677 if (keg->uk_ppera == 1) 1678 keg->uk_freef = uma_small_free; 1679 else 1680 #endif 1681 if (keg->uk_flags & UMA_ZONE_PCPU) 1682 keg->uk_freef = pcpu_page_free; 1683 else 1684 keg->uk_freef = page_free; 1685 1686 /* 1687 * Initialize keg's lock 1688 */ 1689 KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS)); 1690 1691 /* 1692 * If we're putting the slab header in the actual page we need to 1693 * figure out where in each page it goes. See SIZEOF_UMA_SLAB 1694 * macro definition. 1695 */ 1696 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1697 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - SIZEOF_UMA_SLAB; 1698 /* 1699 * The only way the following is possible is if with our 1700 * UMA_ALIGN_PTR adjustments we are now bigger than 1701 * UMA_SLAB_SIZE. I haven't checked whether this is 1702 * mathematically possible for all cases, so we make 1703 * sure here anyway. 1704 */ 1705 KASSERT(keg->uk_pgoff + sizeof(struct uma_slab) <= 1706 PAGE_SIZE * keg->uk_ppera, 1707 ("zone %s ipers %d rsize %d size %d slab won't fit", 1708 zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size)); 1709 } 1710 1711 if (keg->uk_flags & UMA_ZONE_HASH) 1712 hash_alloc(&keg->uk_hash, 0); 1713 1714 CTR5(KTR_UMA, "keg_ctor %p zone %s(%p) out %d free %d\n", 1715 keg, zone->uz_name, zone, 1716 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 1717 keg->uk_free); 1718 1719 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1720 1721 rw_wlock(&uma_rwlock); 1722 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1723 rw_wunlock(&uma_rwlock); 1724 return (0); 1725 } 1726 1727 static void 1728 zone_alloc_counters(uma_zone_t zone) 1729 { 1730 1731 zone->uz_allocs = counter_u64_alloc(M_WAITOK); 1732 zone->uz_frees = counter_u64_alloc(M_WAITOK); 1733 zone->uz_fails = counter_u64_alloc(M_WAITOK); 1734 } 1735 1736 /* 1737 * Zone header ctor. This initializes all fields, locks, etc. 1738 * 1739 * Arguments/Returns follow uma_ctor specifications 1740 * udata Actually uma_zctor_args 1741 */ 1742 static int 1743 zone_ctor(void *mem, int size, void *udata, int flags) 1744 { 1745 struct uma_zctor_args *arg = udata; 1746 uma_zone_t zone = mem; 1747 uma_zone_t z; 1748 uma_keg_t keg; 1749 1750 bzero(zone, size); 1751 zone->uz_name = arg->name; 1752 zone->uz_ctor = arg->ctor; 1753 zone->uz_dtor = arg->dtor; 1754 zone->uz_init = NULL; 1755 zone->uz_fini = NULL; 1756 zone->uz_sleeps = 0; 1757 zone->uz_count = 0; 1758 zone->uz_count_min = 0; 1759 zone->uz_count_max = BUCKET_MAX; 1760 zone->uz_flags = 0; 1761 zone->uz_warning = NULL; 1762 /* The domain structures follow the cpu structures. */ 1763 zone->uz_domain = (struct uma_zone_domain *)&zone->uz_cpu[mp_ncpus]; 1764 zone->uz_bkt_max = ULONG_MAX; 1765 timevalclear(&zone->uz_ratecheck); 1766 1767 if (__predict_true(booted == BOOT_RUNNING)) 1768 zone_alloc_counters(zone); 1769 else { 1770 zone->uz_allocs = EARLY_COUNTER; 1771 zone->uz_frees = EARLY_COUNTER; 1772 zone->uz_fails = EARLY_COUNTER; 1773 } 1774 1775 /* 1776 * This is a pure cache zone, no kegs. 1777 */ 1778 if (arg->import) { 1779 if (arg->flags & UMA_ZONE_VM) 1780 arg->flags |= UMA_ZFLAG_CACHEONLY; 1781 zone->uz_flags = arg->flags; 1782 zone->uz_size = arg->size; 1783 zone->uz_import = arg->import; 1784 zone->uz_release = arg->release; 1785 zone->uz_arg = arg->arg; 1786 zone->uz_lockptr = &zone->uz_lock; 1787 ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS)); 1788 rw_wlock(&uma_rwlock); 1789 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 1790 rw_wunlock(&uma_rwlock); 1791 goto out; 1792 } 1793 1794 /* 1795 * Use the regular zone/keg/slab allocator. 1796 */ 1797 zone->uz_import = (uma_import)zone_import; 1798 zone->uz_release = (uma_release)zone_release; 1799 zone->uz_arg = zone; 1800 keg = arg->keg; 1801 1802 if (arg->flags & UMA_ZONE_SECONDARY) { 1803 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 1804 zone->uz_init = arg->uminit; 1805 zone->uz_fini = arg->fini; 1806 zone->uz_lockptr = &keg->uk_lock; 1807 zone->uz_flags |= UMA_ZONE_SECONDARY; 1808 rw_wlock(&uma_rwlock); 1809 ZONE_LOCK(zone); 1810 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 1811 if (LIST_NEXT(z, uz_link) == NULL) { 1812 LIST_INSERT_AFTER(z, zone, uz_link); 1813 break; 1814 } 1815 } 1816 ZONE_UNLOCK(zone); 1817 rw_wunlock(&uma_rwlock); 1818 } else if (keg == NULL) { 1819 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 1820 arg->align, arg->flags)) == NULL) 1821 return (ENOMEM); 1822 } else { 1823 struct uma_kctor_args karg; 1824 int error; 1825 1826 /* We should only be here from uma_startup() */ 1827 karg.size = arg->size; 1828 karg.uminit = arg->uminit; 1829 karg.fini = arg->fini; 1830 karg.align = arg->align; 1831 karg.flags = arg->flags; 1832 karg.zone = zone; 1833 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 1834 flags); 1835 if (error) 1836 return (error); 1837 } 1838 1839 zone->uz_keg = keg; 1840 zone->uz_size = keg->uk_size; 1841 zone->uz_flags |= (keg->uk_flags & 1842 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 1843 1844 /* 1845 * Some internal zones don't have room allocated for the per cpu 1846 * caches. If we're internal, bail out here. 1847 */ 1848 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { 1849 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 1850 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 1851 return (0); 1852 } 1853 1854 out: 1855 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != 1856 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), 1857 ("Invalid zone flag combination")); 1858 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) 1859 zone->uz_count = BUCKET_MAX; 1860 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) 1861 zone->uz_count = 0; 1862 else 1863 zone->uz_count = bucket_select(zone->uz_size); 1864 zone->uz_count_min = zone->uz_count; 1865 1866 return (0); 1867 } 1868 1869 /* 1870 * Keg header dtor. This frees all data, destroys locks, frees the hash 1871 * table and removes the keg from the global list. 1872 * 1873 * Arguments/Returns follow uma_dtor specifications 1874 * udata unused 1875 */ 1876 static void 1877 keg_dtor(void *arg, int size, void *udata) 1878 { 1879 uma_keg_t keg; 1880 1881 keg = (uma_keg_t)arg; 1882 KEG_LOCK(keg); 1883 if (keg->uk_free != 0) { 1884 printf("Freed UMA keg (%s) was not empty (%d items). " 1885 " Lost %d pages of memory.\n", 1886 keg->uk_name ? keg->uk_name : "", 1887 keg->uk_free, keg->uk_pages); 1888 } 1889 KEG_UNLOCK(keg); 1890 1891 hash_free(&keg->uk_hash); 1892 1893 KEG_LOCK_FINI(keg); 1894 } 1895 1896 /* 1897 * Zone header dtor. 1898 * 1899 * Arguments/Returns follow uma_dtor specifications 1900 * udata unused 1901 */ 1902 static void 1903 zone_dtor(void *arg, int size, void *udata) 1904 { 1905 uma_zone_t zone; 1906 uma_keg_t keg; 1907 1908 zone = (uma_zone_t)arg; 1909 1910 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 1911 cache_drain(zone); 1912 1913 rw_wlock(&uma_rwlock); 1914 LIST_REMOVE(zone, uz_link); 1915 rw_wunlock(&uma_rwlock); 1916 /* 1917 * XXX there are some races here where 1918 * the zone can be drained but zone lock 1919 * released and then refilled before we 1920 * remove it... we dont care for now 1921 */ 1922 zone_drain_wait(zone, M_WAITOK); 1923 /* 1924 * We only destroy kegs from non secondary/non cache zones. 1925 */ 1926 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { 1927 keg = zone->uz_keg; 1928 rw_wlock(&uma_rwlock); 1929 LIST_REMOVE(keg, uk_link); 1930 rw_wunlock(&uma_rwlock); 1931 zone_free_item(kegs, keg, NULL, SKIP_NONE); 1932 } 1933 counter_u64_free(zone->uz_allocs); 1934 counter_u64_free(zone->uz_frees); 1935 counter_u64_free(zone->uz_fails); 1936 if (zone->uz_lockptr == &zone->uz_lock) 1937 ZONE_LOCK_FINI(zone); 1938 } 1939 1940 /* 1941 * Traverses every zone in the system and calls a callback 1942 * 1943 * Arguments: 1944 * zfunc A pointer to a function which accepts a zone 1945 * as an argument. 1946 * 1947 * Returns: 1948 * Nothing 1949 */ 1950 static void 1951 zone_foreach(void (*zfunc)(uma_zone_t)) 1952 { 1953 uma_keg_t keg; 1954 uma_zone_t zone; 1955 1956 /* 1957 * Before BOOT_RUNNING we are guaranteed to be single 1958 * threaded, so locking isn't needed. Startup functions 1959 * are allowed to use M_WAITOK. 1960 */ 1961 if (__predict_true(booted == BOOT_RUNNING)) 1962 rw_rlock(&uma_rwlock); 1963 LIST_FOREACH(keg, &uma_kegs, uk_link) { 1964 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 1965 zfunc(zone); 1966 } 1967 if (__predict_true(booted == BOOT_RUNNING)) 1968 rw_runlock(&uma_rwlock); 1969 } 1970 1971 /* 1972 * Count how many pages do we need to bootstrap. VM supplies 1973 * its need in early zones in the argument, we add up our zones, 1974 * which consist of: UMA Slabs, UMA Hash and 9 Bucket zones. The 1975 * zone of zones and zone of kegs are accounted separately. 1976 */ 1977 #define UMA_BOOT_ZONES 11 1978 /* Zone of zones and zone of kegs have arbitrary alignment. */ 1979 #define UMA_BOOT_ALIGN 32 1980 static int zsize, ksize; 1981 int 1982 uma_startup_count(int vm_zones) 1983 { 1984 int zones, pages; 1985 1986 ksize = sizeof(struct uma_keg) + 1987 (sizeof(struct uma_domain) * vm_ndomains); 1988 zsize = sizeof(struct uma_zone) + 1989 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 1990 (sizeof(struct uma_zone_domain) * vm_ndomains); 1991 1992 /* 1993 * Memory for the zone of kegs and its keg, 1994 * and for zone of zones. 1995 */ 1996 pages = howmany(roundup(zsize, CACHE_LINE_SIZE) * 2 + 1997 roundup(ksize, CACHE_LINE_SIZE), PAGE_SIZE); 1998 1999 #ifdef UMA_MD_SMALL_ALLOC 2000 zones = UMA_BOOT_ZONES; 2001 #else 2002 zones = UMA_BOOT_ZONES + vm_zones; 2003 vm_zones = 0; 2004 #endif 2005 2006 /* Memory for the rest of startup zones, UMA and VM, ... */ 2007 if (zsize > UMA_SLAB_SPACE) { 2008 /* See keg_large_init(). */ 2009 u_int ppera; 2010 2011 ppera = howmany(roundup2(zsize, UMA_BOOT_ALIGN), PAGE_SIZE); 2012 if (PAGE_SIZE * ppera - roundup2(zsize, UMA_BOOT_ALIGN) < 2013 SIZEOF_UMA_SLAB) 2014 ppera++; 2015 pages += (zones + vm_zones) * ppera; 2016 } else if (roundup2(zsize, UMA_BOOT_ALIGN) > UMA_SLAB_SPACE) 2017 /* See keg_small_init() special case for uk_ppera = 1. */ 2018 pages += zones; 2019 else 2020 pages += howmany(zones, 2021 UMA_SLAB_SPACE / roundup2(zsize, UMA_BOOT_ALIGN)); 2022 2023 /* ... and their kegs. Note that zone of zones allocates a keg! */ 2024 pages += howmany(zones + 1, 2025 UMA_SLAB_SPACE / roundup2(ksize, UMA_BOOT_ALIGN)); 2026 2027 /* 2028 * Most of startup zones are not going to be offpages, that's 2029 * why we use UMA_SLAB_SPACE instead of UMA_SLAB_SIZE in all 2030 * calculations. Some large bucket zones will be offpage, and 2031 * thus will allocate hashes. We take conservative approach 2032 * and assume that all zones may allocate hash. This may give 2033 * us some positive inaccuracy, usually an extra single page. 2034 */ 2035 pages += howmany(zones, UMA_SLAB_SPACE / 2036 (sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT)); 2037 2038 return (pages); 2039 } 2040 2041 void 2042 uma_startup(void *mem, int npages) 2043 { 2044 struct uma_zctor_args args; 2045 uma_keg_t masterkeg; 2046 uintptr_t m; 2047 2048 #ifdef DIAGNOSTIC 2049 printf("Entering %s with %d boot pages configured\n", __func__, npages); 2050 #endif 2051 2052 rw_init(&uma_rwlock, "UMA lock"); 2053 2054 /* Use bootpages memory for the zone of zones and zone of kegs. */ 2055 m = (uintptr_t)mem; 2056 zones = (uma_zone_t)m; 2057 m += roundup(zsize, CACHE_LINE_SIZE); 2058 kegs = (uma_zone_t)m; 2059 m += roundup(zsize, CACHE_LINE_SIZE); 2060 masterkeg = (uma_keg_t)m; 2061 m += roundup(ksize, CACHE_LINE_SIZE); 2062 m = roundup(m, PAGE_SIZE); 2063 npages -= (m - (uintptr_t)mem) / PAGE_SIZE; 2064 mem = (void *)m; 2065 2066 /* "manually" create the initial zone */ 2067 memset(&args, 0, sizeof(args)); 2068 args.name = "UMA Kegs"; 2069 args.size = ksize; 2070 args.ctor = keg_ctor; 2071 args.dtor = keg_dtor; 2072 args.uminit = zero_init; 2073 args.fini = NULL; 2074 args.keg = masterkeg; 2075 args.align = UMA_BOOT_ALIGN - 1; 2076 args.flags = UMA_ZFLAG_INTERNAL; 2077 zone_ctor(kegs, zsize, &args, M_WAITOK); 2078 2079 bootmem = mem; 2080 boot_pages = npages; 2081 2082 args.name = "UMA Zones"; 2083 args.size = zsize; 2084 args.ctor = zone_ctor; 2085 args.dtor = zone_dtor; 2086 args.uminit = zero_init; 2087 args.fini = NULL; 2088 args.keg = NULL; 2089 args.align = UMA_BOOT_ALIGN - 1; 2090 args.flags = UMA_ZFLAG_INTERNAL; 2091 zone_ctor(zones, zsize, &args, M_WAITOK); 2092 2093 /* Now make a zone for slab headers */ 2094 slabzone = uma_zcreate("UMA Slabs", 2095 sizeof(struct uma_slab), 2096 NULL, NULL, NULL, NULL, 2097 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2098 2099 hashzone = uma_zcreate("UMA Hash", 2100 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 2101 NULL, NULL, NULL, NULL, 2102 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2103 2104 bucket_init(); 2105 2106 booted = BOOT_STRAPPED; 2107 } 2108 2109 void 2110 uma_startup1(void) 2111 { 2112 2113 #ifdef DIAGNOSTIC 2114 printf("Entering %s with %d boot pages left\n", __func__, boot_pages); 2115 #endif 2116 booted = BOOT_PAGEALLOC; 2117 } 2118 2119 void 2120 uma_startup2(void) 2121 { 2122 2123 #ifdef DIAGNOSTIC 2124 printf("Entering %s with %d boot pages left\n", __func__, boot_pages); 2125 #endif 2126 booted = BOOT_BUCKETS; 2127 sx_init(&uma_drain_lock, "umadrain"); 2128 bucket_enable(); 2129 } 2130 2131 /* 2132 * Initialize our callout handle 2133 * 2134 */ 2135 static void 2136 uma_startup3(void) 2137 { 2138 2139 #ifdef INVARIANTS 2140 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor); 2141 uma_dbg_cnt = counter_u64_alloc(M_WAITOK); 2142 uma_skip_cnt = counter_u64_alloc(M_WAITOK); 2143 #endif 2144 zone_foreach(zone_alloc_counters); 2145 callout_init(&uma_callout, 1); 2146 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 2147 booted = BOOT_RUNNING; 2148 } 2149 2150 static uma_keg_t 2151 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 2152 int align, uint32_t flags) 2153 { 2154 struct uma_kctor_args args; 2155 2156 args.size = size; 2157 args.uminit = uminit; 2158 args.fini = fini; 2159 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 2160 args.flags = flags; 2161 args.zone = zone; 2162 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 2163 } 2164 2165 /* Public functions */ 2166 /* See uma.h */ 2167 void 2168 uma_set_align(int align) 2169 { 2170 2171 if (align != UMA_ALIGN_CACHE) 2172 uma_align_cache = align; 2173 } 2174 2175 /* See uma.h */ 2176 uma_zone_t 2177 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 2178 uma_init uminit, uma_fini fini, int align, uint32_t flags) 2179 2180 { 2181 struct uma_zctor_args args; 2182 uma_zone_t res; 2183 bool locked; 2184 2185 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 2186 align, name)); 2187 2188 /* This stuff is essential for the zone ctor */ 2189 memset(&args, 0, sizeof(args)); 2190 args.name = name; 2191 args.size = size; 2192 args.ctor = ctor; 2193 args.dtor = dtor; 2194 args.uminit = uminit; 2195 args.fini = fini; 2196 #ifdef INVARIANTS 2197 /* 2198 * If a zone is being created with an empty constructor and 2199 * destructor, pass UMA constructor/destructor which checks for 2200 * memory use after free. 2201 */ 2202 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOFREE))) && 2203 ctor == NULL && dtor == NULL && uminit == NULL && fini == NULL) { 2204 args.ctor = trash_ctor; 2205 args.dtor = trash_dtor; 2206 args.uminit = trash_init; 2207 args.fini = trash_fini; 2208 } 2209 #endif 2210 args.align = align; 2211 args.flags = flags; 2212 args.keg = NULL; 2213 2214 if (booted < BOOT_BUCKETS) { 2215 locked = false; 2216 } else { 2217 sx_slock(&uma_drain_lock); 2218 locked = true; 2219 } 2220 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2221 if (locked) 2222 sx_sunlock(&uma_drain_lock); 2223 return (res); 2224 } 2225 2226 /* See uma.h */ 2227 uma_zone_t 2228 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 2229 uma_init zinit, uma_fini zfini, uma_zone_t master) 2230 { 2231 struct uma_zctor_args args; 2232 uma_keg_t keg; 2233 uma_zone_t res; 2234 bool locked; 2235 2236 keg = master->uz_keg; 2237 memset(&args, 0, sizeof(args)); 2238 args.name = name; 2239 args.size = keg->uk_size; 2240 args.ctor = ctor; 2241 args.dtor = dtor; 2242 args.uminit = zinit; 2243 args.fini = zfini; 2244 args.align = keg->uk_align; 2245 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 2246 args.keg = keg; 2247 2248 if (booted < BOOT_BUCKETS) { 2249 locked = false; 2250 } else { 2251 sx_slock(&uma_drain_lock); 2252 locked = true; 2253 } 2254 /* XXX Attaches only one keg of potentially many. */ 2255 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2256 if (locked) 2257 sx_sunlock(&uma_drain_lock); 2258 return (res); 2259 } 2260 2261 /* See uma.h */ 2262 uma_zone_t 2263 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor, 2264 uma_init zinit, uma_fini zfini, uma_import zimport, 2265 uma_release zrelease, void *arg, int flags) 2266 { 2267 struct uma_zctor_args args; 2268 2269 memset(&args, 0, sizeof(args)); 2270 args.name = name; 2271 args.size = size; 2272 args.ctor = ctor; 2273 args.dtor = dtor; 2274 args.uminit = zinit; 2275 args.fini = zfini; 2276 args.import = zimport; 2277 args.release = zrelease; 2278 args.arg = arg; 2279 args.align = 0; 2280 args.flags = flags | UMA_ZFLAG_CACHE; 2281 2282 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 2283 } 2284 2285 /* See uma.h */ 2286 void 2287 uma_zdestroy(uma_zone_t zone) 2288 { 2289 2290 sx_slock(&uma_drain_lock); 2291 zone_free_item(zones, zone, NULL, SKIP_NONE); 2292 sx_sunlock(&uma_drain_lock); 2293 } 2294 2295 void 2296 uma_zwait(uma_zone_t zone) 2297 { 2298 void *item; 2299 2300 item = uma_zalloc_arg(zone, NULL, M_WAITOK); 2301 uma_zfree(zone, item); 2302 } 2303 2304 void * 2305 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags) 2306 { 2307 void *item; 2308 #ifdef SMP 2309 int i; 2310 2311 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 2312 #endif 2313 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO); 2314 if (item != NULL && (flags & M_ZERO)) { 2315 #ifdef SMP 2316 for (i = 0; i <= mp_maxid; i++) 2317 bzero(zpcpu_get_cpu(item, i), zone->uz_size); 2318 #else 2319 bzero(item, zone->uz_size); 2320 #endif 2321 } 2322 return (item); 2323 } 2324 2325 /* 2326 * A stub while both regular and pcpu cases are identical. 2327 */ 2328 void 2329 uma_zfree_pcpu_arg(uma_zone_t zone, void *item, void *udata) 2330 { 2331 2332 #ifdef SMP 2333 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 2334 #endif 2335 uma_zfree_arg(zone, item, udata); 2336 } 2337 2338 /* See uma.h */ 2339 void * 2340 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 2341 { 2342 uma_zone_domain_t zdom; 2343 uma_bucket_t bucket; 2344 uma_cache_t cache; 2345 void *item; 2346 int cpu, domain, lockfail, maxbucket; 2347 #ifdef INVARIANTS 2348 bool skipdbg; 2349 #endif 2350 2351 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2352 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 2353 2354 /* This is the fast path allocation */ 2355 CTR4(KTR_UMA, "uma_zalloc_arg thread %x zone %s(%p) flags %d", 2356 curthread, zone->uz_name, zone, flags); 2357 2358 if (flags & M_WAITOK) { 2359 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2360 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 2361 } 2362 KASSERT((flags & M_EXEC) == 0, ("uma_zalloc_arg: called with M_EXEC")); 2363 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2364 ("uma_zalloc_arg: called with spinlock or critical section held")); 2365 if (zone->uz_flags & UMA_ZONE_PCPU) 2366 KASSERT((flags & M_ZERO) == 0, ("allocating from a pcpu zone " 2367 "with M_ZERO passed")); 2368 2369 #ifdef DEBUG_MEMGUARD 2370 if (memguard_cmp_zone(zone)) { 2371 item = memguard_alloc(zone->uz_size, flags); 2372 if (item != NULL) { 2373 if (zone->uz_init != NULL && 2374 zone->uz_init(item, zone->uz_size, flags) != 0) 2375 return (NULL); 2376 if (zone->uz_ctor != NULL && 2377 zone->uz_ctor(item, zone->uz_size, udata, 2378 flags) != 0) { 2379 zone->uz_fini(item, zone->uz_size); 2380 return (NULL); 2381 } 2382 return (item); 2383 } 2384 /* This is unfortunate but should not be fatal. */ 2385 } 2386 #endif 2387 /* 2388 * If possible, allocate from the per-CPU cache. There are two 2389 * requirements for safe access to the per-CPU cache: (1) the thread 2390 * accessing the cache must not be preempted or yield during access, 2391 * and (2) the thread must not migrate CPUs without switching which 2392 * cache it accesses. We rely on a critical section to prevent 2393 * preemption and migration. We release the critical section in 2394 * order to acquire the zone mutex if we are unable to allocate from 2395 * the current cache; when we re-acquire the critical section, we 2396 * must detect and handle migration if it has occurred. 2397 */ 2398 zalloc_restart: 2399 critical_enter(); 2400 cpu = curcpu; 2401 cache = &zone->uz_cpu[cpu]; 2402 2403 zalloc_start: 2404 bucket = cache->uc_allocbucket; 2405 if (bucket != NULL && bucket->ub_cnt > 0) { 2406 bucket->ub_cnt--; 2407 item = bucket->ub_bucket[bucket->ub_cnt]; 2408 #ifdef INVARIANTS 2409 bucket->ub_bucket[bucket->ub_cnt] = NULL; 2410 #endif 2411 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 2412 cache->uc_allocs++; 2413 critical_exit(); 2414 #ifdef INVARIANTS 2415 skipdbg = uma_dbg_zskip(zone, item); 2416 #endif 2417 if (zone->uz_ctor != NULL && 2418 #ifdef INVARIANTS 2419 (!skipdbg || zone->uz_ctor != trash_ctor || 2420 zone->uz_dtor != trash_dtor) && 2421 #endif 2422 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2423 counter_u64_add(zone->uz_fails, 1); 2424 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT); 2425 return (NULL); 2426 } 2427 #ifdef INVARIANTS 2428 if (!skipdbg) 2429 uma_dbg_alloc(zone, NULL, item); 2430 #endif 2431 if (flags & M_ZERO) 2432 uma_zero_item(item, zone); 2433 return (item); 2434 } 2435 2436 /* 2437 * We have run out of items in our alloc bucket. 2438 * See if we can switch with our free bucket. 2439 */ 2440 bucket = cache->uc_freebucket; 2441 if (bucket != NULL && bucket->ub_cnt > 0) { 2442 CTR2(KTR_UMA, 2443 "uma_zalloc: zone %s(%p) swapping empty with alloc", 2444 zone->uz_name, zone); 2445 cache->uc_freebucket = cache->uc_allocbucket; 2446 cache->uc_allocbucket = bucket; 2447 goto zalloc_start; 2448 } 2449 2450 /* 2451 * Discard any empty allocation bucket while we hold no locks. 2452 */ 2453 bucket = cache->uc_allocbucket; 2454 cache->uc_allocbucket = NULL; 2455 critical_exit(); 2456 if (bucket != NULL) 2457 bucket_free(zone, bucket, udata); 2458 2459 if (zone->uz_flags & UMA_ZONE_NUMA) { 2460 domain = PCPU_GET(domain); 2461 if (VM_DOMAIN_EMPTY(domain)) 2462 domain = UMA_ANYDOMAIN; 2463 } else 2464 domain = UMA_ANYDOMAIN; 2465 2466 /* Short-circuit for zones without buckets and low memory. */ 2467 if (zone->uz_count == 0 || bucketdisable) { 2468 ZONE_LOCK(zone); 2469 goto zalloc_item; 2470 } 2471 2472 /* 2473 * Attempt to retrieve the item from the per-CPU cache has failed, so 2474 * we must go back to the zone. This requires the zone lock, so we 2475 * must drop the critical section, then re-acquire it when we go back 2476 * to the cache. Since the critical section is released, we may be 2477 * preempted or migrate. As such, make sure not to maintain any 2478 * thread-local state specific to the cache from prior to releasing 2479 * the critical section. 2480 */ 2481 lockfail = 0; 2482 if (ZONE_TRYLOCK(zone) == 0) { 2483 /* Record contention to size the buckets. */ 2484 ZONE_LOCK(zone); 2485 lockfail = 1; 2486 } 2487 critical_enter(); 2488 cpu = curcpu; 2489 cache = &zone->uz_cpu[cpu]; 2490 2491 /* See if we lost the race to fill the cache. */ 2492 if (cache->uc_allocbucket != NULL) { 2493 ZONE_UNLOCK(zone); 2494 goto zalloc_start; 2495 } 2496 2497 /* 2498 * Check the zone's cache of buckets. 2499 */ 2500 if (domain == UMA_ANYDOMAIN) 2501 zdom = &zone->uz_domain[0]; 2502 else 2503 zdom = &zone->uz_domain[domain]; 2504 if ((bucket = zone_try_fetch_bucket(zone, zdom, true)) != NULL) { 2505 KASSERT(bucket->ub_cnt != 0, 2506 ("uma_zalloc_arg: Returning an empty bucket.")); 2507 cache->uc_allocbucket = bucket; 2508 ZONE_UNLOCK(zone); 2509 goto zalloc_start; 2510 } 2511 /* We are no longer associated with this CPU. */ 2512 critical_exit(); 2513 2514 /* 2515 * We bump the uz count when the cache size is insufficient to 2516 * handle the working set. 2517 */ 2518 if (lockfail && zone->uz_count < zone->uz_count_max) 2519 zone->uz_count++; 2520 2521 if (zone->uz_max_items > 0) { 2522 if (zone->uz_items >= zone->uz_max_items) 2523 goto zalloc_item; 2524 maxbucket = MIN(zone->uz_count, 2525 zone->uz_max_items - zone->uz_items); 2526 zone->uz_items += maxbucket; 2527 } else 2528 maxbucket = zone->uz_count; 2529 ZONE_UNLOCK(zone); 2530 2531 /* 2532 * Now lets just fill a bucket and put it on the free list. If that 2533 * works we'll restart the allocation from the beginning and it 2534 * will use the just filled bucket. 2535 */ 2536 bucket = zone_alloc_bucket(zone, udata, domain, flags, maxbucket); 2537 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 2538 zone->uz_name, zone, bucket); 2539 ZONE_LOCK(zone); 2540 if (bucket != NULL) { 2541 if (zone->uz_max_items > 0 && bucket->ub_cnt < maxbucket) { 2542 MPASS(zone->uz_items >= maxbucket - bucket->ub_cnt); 2543 zone->uz_items -= maxbucket - bucket->ub_cnt; 2544 if (zone->uz_sleepers > 0 && 2545 zone->uz_items < zone->uz_max_items) 2546 wakeup_one(zone); 2547 } 2548 critical_enter(); 2549 cpu = curcpu; 2550 cache = &zone->uz_cpu[cpu]; 2551 2552 /* 2553 * See if we lost the race or were migrated. Cache the 2554 * initialized bucket to make this less likely or claim 2555 * the memory directly. 2556 */ 2557 if (cache->uc_allocbucket == NULL && 2558 ((zone->uz_flags & UMA_ZONE_NUMA) == 0 || 2559 domain == PCPU_GET(domain))) { 2560 cache->uc_allocbucket = bucket; 2561 zdom->uzd_imax += bucket->ub_cnt; 2562 } else if (zone->uz_bkt_count >= zone->uz_bkt_max) { 2563 critical_exit(); 2564 ZONE_UNLOCK(zone); 2565 bucket_drain(zone, bucket); 2566 bucket_free(zone, bucket, udata); 2567 goto zalloc_restart; 2568 } else 2569 zone_put_bucket(zone, zdom, bucket, false); 2570 ZONE_UNLOCK(zone); 2571 goto zalloc_start; 2572 } else if (zone->uz_max_items > 0) { 2573 zone->uz_items -= maxbucket; 2574 if (zone->uz_sleepers > 0 && 2575 zone->uz_items + 1 < zone->uz_max_items) 2576 wakeup_one(zone); 2577 } 2578 2579 /* 2580 * We may not be able to get a bucket so return an actual item. 2581 */ 2582 zalloc_item: 2583 item = zone_alloc_item_locked(zone, udata, domain, flags); 2584 2585 return (item); 2586 } 2587 2588 void * 2589 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 2590 { 2591 2592 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2593 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 2594 2595 /* This is the fast path allocation */ 2596 CTR5(KTR_UMA, 2597 "uma_zalloc_domain thread %x zone %s(%p) domain %d flags %d", 2598 curthread, zone->uz_name, zone, domain, flags); 2599 2600 if (flags & M_WAITOK) { 2601 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2602 "uma_zalloc_domain: zone \"%s\"", zone->uz_name); 2603 } 2604 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2605 ("uma_zalloc_domain: called with spinlock or critical section held")); 2606 2607 return (zone_alloc_item(zone, udata, domain, flags)); 2608 } 2609 2610 /* 2611 * Find a slab with some space. Prefer slabs that are partially used over those 2612 * that are totally full. This helps to reduce fragmentation. 2613 * 2614 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 2615 * only 'domain'. 2616 */ 2617 static uma_slab_t 2618 keg_first_slab(uma_keg_t keg, int domain, bool rr) 2619 { 2620 uma_domain_t dom; 2621 uma_slab_t slab; 2622 int start; 2623 2624 KASSERT(domain >= 0 && domain < vm_ndomains, 2625 ("keg_first_slab: domain %d out of range", domain)); 2626 KEG_LOCK_ASSERT(keg); 2627 2628 slab = NULL; 2629 start = domain; 2630 do { 2631 dom = &keg->uk_domain[domain]; 2632 if (!LIST_EMPTY(&dom->ud_part_slab)) 2633 return (LIST_FIRST(&dom->ud_part_slab)); 2634 if (!LIST_EMPTY(&dom->ud_free_slab)) { 2635 slab = LIST_FIRST(&dom->ud_free_slab); 2636 LIST_REMOVE(slab, us_link); 2637 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 2638 return (slab); 2639 } 2640 if (rr) 2641 domain = (domain + 1) % vm_ndomains; 2642 } while (domain != start); 2643 2644 return (NULL); 2645 } 2646 2647 static uma_slab_t 2648 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags) 2649 { 2650 uint32_t reserve; 2651 2652 KEG_LOCK_ASSERT(keg); 2653 2654 reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve; 2655 if (keg->uk_free <= reserve) 2656 return (NULL); 2657 return (keg_first_slab(keg, domain, rr)); 2658 } 2659 2660 static uma_slab_t 2661 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags) 2662 { 2663 struct vm_domainset_iter di; 2664 uma_domain_t dom; 2665 uma_slab_t slab; 2666 int aflags, domain; 2667 bool rr; 2668 2669 restart: 2670 KEG_LOCK_ASSERT(keg); 2671 2672 /* 2673 * Use the keg's policy if upper layers haven't already specified a 2674 * domain (as happens with first-touch zones). 2675 * 2676 * To avoid races we run the iterator with the keg lock held, but that 2677 * means that we cannot allow the vm_domainset layer to sleep. Thus, 2678 * clear M_WAITOK and handle low memory conditions locally. 2679 */ 2680 rr = rdomain == UMA_ANYDOMAIN; 2681 if (rr) { 2682 aflags = (flags & ~M_WAITOK) | M_NOWAIT; 2683 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 2684 &aflags); 2685 } else { 2686 aflags = flags; 2687 domain = rdomain; 2688 } 2689 2690 for (;;) { 2691 slab = keg_fetch_free_slab(keg, domain, rr, flags); 2692 if (slab != NULL) { 2693 MPASS(slab->us_keg == keg); 2694 return (slab); 2695 } 2696 2697 /* 2698 * M_NOVM means don't ask at all! 2699 */ 2700 if (flags & M_NOVM) 2701 break; 2702 2703 KASSERT(zone->uz_max_items == 0 || 2704 zone->uz_items <= zone->uz_max_items, 2705 ("%s: zone %p overflow", __func__, zone)); 2706 2707 slab = keg_alloc_slab(keg, zone, domain, flags, aflags); 2708 /* 2709 * If we got a slab here it's safe to mark it partially used 2710 * and return. We assume that the caller is going to remove 2711 * at least one item. 2712 */ 2713 if (slab) { 2714 MPASS(slab->us_keg == keg); 2715 dom = &keg->uk_domain[slab->us_domain]; 2716 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 2717 return (slab); 2718 } 2719 KEG_LOCK(keg); 2720 if (rr && vm_domainset_iter_policy(&di, &domain) != 0) { 2721 if ((flags & M_WAITOK) != 0) { 2722 KEG_UNLOCK(keg); 2723 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask); 2724 KEG_LOCK(keg); 2725 goto restart; 2726 } 2727 break; 2728 } 2729 } 2730 2731 /* 2732 * We might not have been able to get a slab but another cpu 2733 * could have while we were unlocked. Check again before we 2734 * fail. 2735 */ 2736 if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL) { 2737 MPASS(slab->us_keg == keg); 2738 return (slab); 2739 } 2740 return (NULL); 2741 } 2742 2743 static uma_slab_t 2744 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int domain, int flags) 2745 { 2746 uma_slab_t slab; 2747 2748 if (keg == NULL) { 2749 keg = zone->uz_keg; 2750 KEG_LOCK(keg); 2751 } 2752 2753 for (;;) { 2754 slab = keg_fetch_slab(keg, zone, domain, flags); 2755 if (slab) 2756 return (slab); 2757 if (flags & (M_NOWAIT | M_NOVM)) 2758 break; 2759 } 2760 KEG_UNLOCK(keg); 2761 return (NULL); 2762 } 2763 2764 static void * 2765 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 2766 { 2767 uma_domain_t dom; 2768 void *item; 2769 uint8_t freei; 2770 2771 MPASS(keg == slab->us_keg); 2772 KEG_LOCK_ASSERT(keg); 2773 2774 freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1; 2775 BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free); 2776 item = slab->us_data + (keg->uk_rsize * freei); 2777 slab->us_freecount--; 2778 keg->uk_free--; 2779 2780 /* Move this slab to the full list */ 2781 if (slab->us_freecount == 0) { 2782 LIST_REMOVE(slab, us_link); 2783 dom = &keg->uk_domain[slab->us_domain]; 2784 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 2785 } 2786 2787 return (item); 2788 } 2789 2790 static int 2791 zone_import(uma_zone_t zone, void **bucket, int max, int domain, int flags) 2792 { 2793 uma_slab_t slab; 2794 uma_keg_t keg; 2795 #ifdef NUMA 2796 int stripe; 2797 #endif 2798 int i; 2799 2800 slab = NULL; 2801 keg = NULL; 2802 /* Try to keep the buckets totally full */ 2803 for (i = 0; i < max; ) { 2804 if ((slab = zone_fetch_slab(zone, keg, domain, flags)) == NULL) 2805 break; 2806 keg = slab->us_keg; 2807 #ifdef NUMA 2808 stripe = howmany(max, vm_ndomains); 2809 #endif 2810 while (slab->us_freecount && i < max) { 2811 bucket[i++] = slab_alloc_item(keg, slab); 2812 if (keg->uk_free <= keg->uk_reserve) 2813 break; 2814 #ifdef NUMA 2815 /* 2816 * If the zone is striped we pick a new slab for every 2817 * N allocations. Eliminating this conditional will 2818 * instead pick a new domain for each bucket rather 2819 * than stripe within each bucket. The current option 2820 * produces more fragmentation and requires more cpu 2821 * time but yields better distribution. 2822 */ 2823 if ((zone->uz_flags & UMA_ZONE_NUMA) == 0 && 2824 vm_ndomains > 1 && --stripe == 0) 2825 break; 2826 #endif 2827 } 2828 /* Don't block if we allocated any successfully. */ 2829 flags &= ~M_WAITOK; 2830 flags |= M_NOWAIT; 2831 } 2832 if (slab != NULL) 2833 KEG_UNLOCK(keg); 2834 2835 return i; 2836 } 2837 2838 static uma_bucket_t 2839 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags, int max) 2840 { 2841 uma_bucket_t bucket; 2842 2843 CTR1(KTR_UMA, "zone_alloc:_bucket domain %d)", domain); 2844 2845 /* Don't wait for buckets, preserve caller's NOVM setting. */ 2846 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 2847 if (bucket == NULL) 2848 return (NULL); 2849 2850 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 2851 MIN(max, bucket->ub_entries), domain, flags); 2852 2853 /* 2854 * Initialize the memory if necessary. 2855 */ 2856 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 2857 int i; 2858 2859 for (i = 0; i < bucket->ub_cnt; i++) 2860 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 2861 flags) != 0) 2862 break; 2863 /* 2864 * If we couldn't initialize the whole bucket, put the 2865 * rest back onto the freelist. 2866 */ 2867 if (i != bucket->ub_cnt) { 2868 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 2869 bucket->ub_cnt - i); 2870 #ifdef INVARIANTS 2871 bzero(&bucket->ub_bucket[i], 2872 sizeof(void *) * (bucket->ub_cnt - i)); 2873 #endif 2874 bucket->ub_cnt = i; 2875 } 2876 } 2877 2878 if (bucket->ub_cnt == 0) { 2879 bucket_free(zone, bucket, udata); 2880 counter_u64_add(zone->uz_fails, 1); 2881 return (NULL); 2882 } 2883 2884 return (bucket); 2885 } 2886 2887 /* 2888 * Allocates a single item from a zone. 2889 * 2890 * Arguments 2891 * zone The zone to alloc for. 2892 * udata The data to be passed to the constructor. 2893 * domain The domain to allocate from or UMA_ANYDOMAIN. 2894 * flags M_WAITOK, M_NOWAIT, M_ZERO. 2895 * 2896 * Returns 2897 * NULL if there is no memory and M_NOWAIT is set 2898 * An item if successful 2899 */ 2900 2901 static void * 2902 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 2903 { 2904 2905 ZONE_LOCK(zone); 2906 return (zone_alloc_item_locked(zone, udata, domain, flags)); 2907 } 2908 2909 /* 2910 * Returns with zone unlocked. 2911 */ 2912 static void * 2913 zone_alloc_item_locked(uma_zone_t zone, void *udata, int domain, int flags) 2914 { 2915 void *item; 2916 #ifdef INVARIANTS 2917 bool skipdbg; 2918 #endif 2919 2920 ZONE_LOCK_ASSERT(zone); 2921 2922 if (zone->uz_max_items > 0) { 2923 if (zone->uz_items >= zone->uz_max_items) { 2924 zone_log_warning(zone); 2925 zone_maxaction(zone); 2926 if (flags & M_NOWAIT) { 2927 ZONE_UNLOCK(zone); 2928 return (NULL); 2929 } 2930 zone->uz_sleeps++; 2931 zone->uz_sleepers++; 2932 while (zone->uz_items >= zone->uz_max_items) 2933 mtx_sleep(zone, zone->uz_lockptr, PVM, 2934 "zonelimit", 0); 2935 zone->uz_sleepers--; 2936 if (zone->uz_sleepers > 0 && 2937 zone->uz_items + 1 < zone->uz_max_items) 2938 wakeup_one(zone); 2939 } 2940 zone->uz_items++; 2941 } 2942 ZONE_UNLOCK(zone); 2943 2944 if (domain != UMA_ANYDOMAIN) { 2945 /* avoid allocs targeting empty domains */ 2946 if (VM_DOMAIN_EMPTY(domain)) 2947 domain = UMA_ANYDOMAIN; 2948 } 2949 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 2950 goto fail; 2951 2952 #ifdef INVARIANTS 2953 skipdbg = uma_dbg_zskip(zone, item); 2954 #endif 2955 /* 2956 * We have to call both the zone's init (not the keg's init) 2957 * and the zone's ctor. This is because the item is going from 2958 * a keg slab directly to the user, and the user is expecting it 2959 * to be both zone-init'd as well as zone-ctor'd. 2960 */ 2961 if (zone->uz_init != NULL) { 2962 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 2963 zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT); 2964 goto fail; 2965 } 2966 } 2967 if (zone->uz_ctor != NULL && 2968 #ifdef INVARIANTS 2969 (!skipdbg || zone->uz_ctor != trash_ctor || 2970 zone->uz_dtor != trash_dtor) && 2971 #endif 2972 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2973 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT); 2974 goto fail; 2975 } 2976 #ifdef INVARIANTS 2977 if (!skipdbg) 2978 uma_dbg_alloc(zone, NULL, item); 2979 #endif 2980 if (flags & M_ZERO) 2981 uma_zero_item(item, zone); 2982 2983 counter_u64_add(zone->uz_allocs, 1); 2984 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 2985 zone->uz_name, zone); 2986 2987 return (item); 2988 2989 fail: 2990 if (zone->uz_max_items > 0) { 2991 ZONE_LOCK(zone); 2992 zone->uz_items--; 2993 ZONE_UNLOCK(zone); 2994 } 2995 counter_u64_add(zone->uz_fails, 1); 2996 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 2997 zone->uz_name, zone); 2998 return (NULL); 2999 } 3000 3001 /* See uma.h */ 3002 void 3003 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 3004 { 3005 uma_cache_t cache; 3006 uma_bucket_t bucket; 3007 uma_zone_domain_t zdom; 3008 int cpu, domain; 3009 bool lockfail; 3010 #ifdef INVARIANTS 3011 bool skipdbg; 3012 #endif 3013 3014 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3015 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3016 3017 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 3018 zone->uz_name); 3019 3020 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3021 ("uma_zfree_arg: called with spinlock or critical section held")); 3022 3023 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 3024 if (item == NULL) 3025 return; 3026 #ifdef DEBUG_MEMGUARD 3027 if (is_memguard_addr(item)) { 3028 if (zone->uz_dtor != NULL) 3029 zone->uz_dtor(item, zone->uz_size, udata); 3030 if (zone->uz_fini != NULL) 3031 zone->uz_fini(item, zone->uz_size); 3032 memguard_free(item); 3033 return; 3034 } 3035 #endif 3036 #ifdef INVARIANTS 3037 skipdbg = uma_dbg_zskip(zone, item); 3038 if (skipdbg == false) { 3039 if (zone->uz_flags & UMA_ZONE_MALLOC) 3040 uma_dbg_free(zone, udata, item); 3041 else 3042 uma_dbg_free(zone, NULL, item); 3043 } 3044 if (zone->uz_dtor != NULL && (!skipdbg || 3045 zone->uz_dtor != trash_dtor || zone->uz_ctor != trash_ctor)) 3046 #else 3047 if (zone->uz_dtor != NULL) 3048 #endif 3049 zone->uz_dtor(item, zone->uz_size, udata); 3050 3051 /* 3052 * The race here is acceptable. If we miss it we'll just have to wait 3053 * a little longer for the limits to be reset. 3054 */ 3055 if (zone->uz_sleepers > 0) 3056 goto zfree_item; 3057 3058 /* 3059 * If possible, free to the per-CPU cache. There are two 3060 * requirements for safe access to the per-CPU cache: (1) the thread 3061 * accessing the cache must not be preempted or yield during access, 3062 * and (2) the thread must not migrate CPUs without switching which 3063 * cache it accesses. We rely on a critical section to prevent 3064 * preemption and migration. We release the critical section in 3065 * order to acquire the zone mutex if we are unable to free to the 3066 * current cache; when we re-acquire the critical section, we must 3067 * detect and handle migration if it has occurred. 3068 */ 3069 zfree_restart: 3070 critical_enter(); 3071 cpu = curcpu; 3072 cache = &zone->uz_cpu[cpu]; 3073 3074 zfree_start: 3075 /* 3076 * Try to free into the allocbucket first to give LIFO ordering 3077 * for cache-hot datastructures. Spill over into the freebucket 3078 * if necessary. Alloc will swap them if one runs dry. 3079 */ 3080 bucket = cache->uc_allocbucket; 3081 if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries) 3082 bucket = cache->uc_freebucket; 3083 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 3084 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 3085 ("uma_zfree: Freeing to non free bucket index.")); 3086 bucket->ub_bucket[bucket->ub_cnt] = item; 3087 bucket->ub_cnt++; 3088 cache->uc_frees++; 3089 critical_exit(); 3090 return; 3091 } 3092 3093 /* 3094 * We must go back the zone, which requires acquiring the zone lock, 3095 * which in turn means we must release and re-acquire the critical 3096 * section. Since the critical section is released, we may be 3097 * preempted or migrate. As such, make sure not to maintain any 3098 * thread-local state specific to the cache from prior to releasing 3099 * the critical section. 3100 */ 3101 critical_exit(); 3102 if (zone->uz_count == 0 || bucketdisable) 3103 goto zfree_item; 3104 3105 lockfail = false; 3106 if (ZONE_TRYLOCK(zone) == 0) { 3107 /* Record contention to size the buckets. */ 3108 ZONE_LOCK(zone); 3109 lockfail = true; 3110 } 3111 critical_enter(); 3112 cpu = curcpu; 3113 cache = &zone->uz_cpu[cpu]; 3114 3115 bucket = cache->uc_freebucket; 3116 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 3117 ZONE_UNLOCK(zone); 3118 goto zfree_start; 3119 } 3120 cache->uc_freebucket = NULL; 3121 /* We are no longer associated with this CPU. */ 3122 critical_exit(); 3123 3124 if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) { 3125 domain = PCPU_GET(domain); 3126 if (VM_DOMAIN_EMPTY(domain)) 3127 domain = UMA_ANYDOMAIN; 3128 } else 3129 domain = 0; 3130 zdom = &zone->uz_domain[0]; 3131 3132 /* Can we throw this on the zone full list? */ 3133 if (bucket != NULL) { 3134 CTR3(KTR_UMA, 3135 "uma_zfree: zone %s(%p) putting bucket %p on free list", 3136 zone->uz_name, zone, bucket); 3137 /* ub_cnt is pointing to the last free item */ 3138 KASSERT(bucket->ub_cnt == bucket->ub_entries, 3139 ("uma_zfree: Attempting to insert not full bucket onto the full list.\n")); 3140 if (zone->uz_bkt_count >= zone->uz_bkt_max) { 3141 ZONE_UNLOCK(zone); 3142 bucket_drain(zone, bucket); 3143 bucket_free(zone, bucket, udata); 3144 goto zfree_restart; 3145 } else 3146 zone_put_bucket(zone, zdom, bucket, true); 3147 } 3148 3149 /* 3150 * We bump the uz count when the cache size is insufficient to 3151 * handle the working set. 3152 */ 3153 if (lockfail && zone->uz_count < zone->uz_count_max) 3154 zone->uz_count++; 3155 ZONE_UNLOCK(zone); 3156 3157 bucket = bucket_alloc(zone, udata, M_NOWAIT); 3158 CTR3(KTR_UMA, "uma_zfree: zone %s(%p) allocated bucket %p", 3159 zone->uz_name, zone, bucket); 3160 if (bucket) { 3161 critical_enter(); 3162 cpu = curcpu; 3163 cache = &zone->uz_cpu[cpu]; 3164 if (cache->uc_freebucket == NULL && 3165 ((zone->uz_flags & UMA_ZONE_NUMA) == 0 || 3166 domain == PCPU_GET(domain))) { 3167 cache->uc_freebucket = bucket; 3168 goto zfree_start; 3169 } 3170 /* 3171 * We lost the race, start over. We have to drop our 3172 * critical section to free the bucket. 3173 */ 3174 critical_exit(); 3175 bucket_free(zone, bucket, udata); 3176 goto zfree_restart; 3177 } 3178 3179 /* 3180 * If nothing else caught this, we'll just do an internal free. 3181 */ 3182 zfree_item: 3183 zone_free_item(zone, item, udata, SKIP_DTOR); 3184 } 3185 3186 void 3187 uma_zfree_domain(uma_zone_t zone, void *item, void *udata) 3188 { 3189 3190 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3191 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3192 3193 CTR2(KTR_UMA, "uma_zfree_domain thread %x zone %s", curthread, 3194 zone->uz_name); 3195 3196 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3197 ("uma_zfree_domain: called with spinlock or critical section held")); 3198 3199 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 3200 if (item == NULL) 3201 return; 3202 zone_free_item(zone, item, udata, SKIP_NONE); 3203 } 3204 3205 static void 3206 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item) 3207 { 3208 uma_keg_t keg; 3209 uma_domain_t dom; 3210 uint8_t freei; 3211 3212 keg = zone->uz_keg; 3213 MPASS(zone->uz_lockptr == &keg->uk_lock); 3214 KEG_LOCK_ASSERT(keg); 3215 MPASS(keg == slab->us_keg); 3216 3217 dom = &keg->uk_domain[slab->us_domain]; 3218 3219 /* Do we need to remove from any lists? */ 3220 if (slab->us_freecount+1 == keg->uk_ipers) { 3221 LIST_REMOVE(slab, us_link); 3222 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 3223 } else if (slab->us_freecount == 0) { 3224 LIST_REMOVE(slab, us_link); 3225 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3226 } 3227 3228 /* Slab management. */ 3229 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3230 BIT_SET(SLAB_SETSIZE, freei, &slab->us_free); 3231 slab->us_freecount++; 3232 3233 /* Keg statistics. */ 3234 keg->uk_free++; 3235 } 3236 3237 static void 3238 zone_release(uma_zone_t zone, void **bucket, int cnt) 3239 { 3240 void *item; 3241 uma_slab_t slab; 3242 uma_keg_t keg; 3243 uint8_t *mem; 3244 int i; 3245 3246 keg = zone->uz_keg; 3247 KEG_LOCK(keg); 3248 for (i = 0; i < cnt; i++) { 3249 item = bucket[i]; 3250 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) { 3251 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 3252 if (zone->uz_flags & UMA_ZONE_HASH) { 3253 slab = hash_sfind(&keg->uk_hash, mem); 3254 } else { 3255 mem += keg->uk_pgoff; 3256 slab = (uma_slab_t)mem; 3257 } 3258 } else { 3259 slab = vtoslab((vm_offset_t)item); 3260 MPASS(slab->us_keg == keg); 3261 } 3262 slab_free_item(zone, slab, item); 3263 } 3264 KEG_UNLOCK(keg); 3265 } 3266 3267 /* 3268 * Frees a single item to any zone. 3269 * 3270 * Arguments: 3271 * zone The zone to free to 3272 * item The item we're freeing 3273 * udata User supplied data for the dtor 3274 * skip Skip dtors and finis 3275 */ 3276 static void 3277 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 3278 { 3279 #ifdef INVARIANTS 3280 bool skipdbg; 3281 3282 skipdbg = uma_dbg_zskip(zone, item); 3283 if (skip == SKIP_NONE && !skipdbg) { 3284 if (zone->uz_flags & UMA_ZONE_MALLOC) 3285 uma_dbg_free(zone, udata, item); 3286 else 3287 uma_dbg_free(zone, NULL, item); 3288 } 3289 3290 if (skip < SKIP_DTOR && zone->uz_dtor != NULL && 3291 (!skipdbg || zone->uz_dtor != trash_dtor || 3292 zone->uz_ctor != trash_ctor)) 3293 #else 3294 if (skip < SKIP_DTOR && zone->uz_dtor != NULL) 3295 #endif 3296 zone->uz_dtor(item, zone->uz_size, udata); 3297 3298 if (skip < SKIP_FINI && zone->uz_fini) 3299 zone->uz_fini(item, zone->uz_size); 3300 3301 zone->uz_release(zone->uz_arg, &item, 1); 3302 3303 if (skip & SKIP_CNT) 3304 return; 3305 3306 counter_u64_add(zone->uz_frees, 1); 3307 3308 if (zone->uz_max_items > 0) { 3309 ZONE_LOCK(zone); 3310 zone->uz_items--; 3311 if (zone->uz_sleepers > 0 && 3312 zone->uz_items < zone->uz_max_items) 3313 wakeup_one(zone); 3314 ZONE_UNLOCK(zone); 3315 } 3316 } 3317 3318 /* See uma.h */ 3319 int 3320 uma_zone_set_max(uma_zone_t zone, int nitems) 3321 { 3322 struct uma_bucket_zone *ubz; 3323 3324 /* 3325 * If limit is very low we may need to limit how 3326 * much items are allowed in CPU caches. 3327 */ 3328 ubz = &bucket_zones[0]; 3329 for (; ubz->ubz_entries != 0; ubz++) 3330 if (ubz->ubz_entries * 2 * mp_ncpus > nitems) 3331 break; 3332 if (ubz == &bucket_zones[0]) 3333 nitems = ubz->ubz_entries * 2 * mp_ncpus; 3334 else 3335 ubz--; 3336 3337 ZONE_LOCK(zone); 3338 zone->uz_count_max = zone->uz_count = ubz->ubz_entries; 3339 if (zone->uz_count_min > zone->uz_count_max) 3340 zone->uz_count_min = zone->uz_count_max; 3341 zone->uz_max_items = nitems; 3342 ZONE_UNLOCK(zone); 3343 3344 return (nitems); 3345 } 3346 3347 /* See uma.h */ 3348 int 3349 uma_zone_set_maxcache(uma_zone_t zone, int nitems) 3350 { 3351 3352 ZONE_LOCK(zone); 3353 zone->uz_bkt_max = nitems; 3354 ZONE_UNLOCK(zone); 3355 3356 return (nitems); 3357 } 3358 3359 /* See uma.h */ 3360 int 3361 uma_zone_get_max(uma_zone_t zone) 3362 { 3363 int nitems; 3364 3365 ZONE_LOCK(zone); 3366 nitems = zone->uz_max_items; 3367 ZONE_UNLOCK(zone); 3368 3369 return (nitems); 3370 } 3371 3372 /* See uma.h */ 3373 void 3374 uma_zone_set_warning(uma_zone_t zone, const char *warning) 3375 { 3376 3377 ZONE_LOCK(zone); 3378 zone->uz_warning = warning; 3379 ZONE_UNLOCK(zone); 3380 } 3381 3382 /* See uma.h */ 3383 void 3384 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 3385 { 3386 3387 ZONE_LOCK(zone); 3388 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 3389 ZONE_UNLOCK(zone); 3390 } 3391 3392 /* See uma.h */ 3393 int 3394 uma_zone_get_cur(uma_zone_t zone) 3395 { 3396 int64_t nitems; 3397 u_int i; 3398 3399 ZONE_LOCK(zone); 3400 nitems = counter_u64_fetch(zone->uz_allocs) - 3401 counter_u64_fetch(zone->uz_frees); 3402 CPU_FOREACH(i) { 3403 /* 3404 * See the comment in uma_vm_zone_stats() regarding the 3405 * safety of accessing the per-cpu caches. With the zone lock 3406 * held, it is safe, but can potentially result in stale data. 3407 */ 3408 nitems += zone->uz_cpu[i].uc_allocs - 3409 zone->uz_cpu[i].uc_frees; 3410 } 3411 ZONE_UNLOCK(zone); 3412 3413 return (nitems < 0 ? 0 : nitems); 3414 } 3415 3416 /* See uma.h */ 3417 void 3418 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 3419 { 3420 uma_keg_t keg; 3421 3422 KEG_GET(zone, keg); 3423 KEG_LOCK(keg); 3424 KASSERT(keg->uk_pages == 0, 3425 ("uma_zone_set_init on non-empty keg")); 3426 keg->uk_init = uminit; 3427 KEG_UNLOCK(keg); 3428 } 3429 3430 /* See uma.h */ 3431 void 3432 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 3433 { 3434 uma_keg_t keg; 3435 3436 KEG_GET(zone, keg); 3437 KEG_LOCK(keg); 3438 KASSERT(keg->uk_pages == 0, 3439 ("uma_zone_set_fini on non-empty keg")); 3440 keg->uk_fini = fini; 3441 KEG_UNLOCK(keg); 3442 } 3443 3444 /* See uma.h */ 3445 void 3446 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 3447 { 3448 3449 ZONE_LOCK(zone); 3450 KASSERT(zone->uz_keg->uk_pages == 0, 3451 ("uma_zone_set_zinit on non-empty keg")); 3452 zone->uz_init = zinit; 3453 ZONE_UNLOCK(zone); 3454 } 3455 3456 /* See uma.h */ 3457 void 3458 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 3459 { 3460 3461 ZONE_LOCK(zone); 3462 KASSERT(zone->uz_keg->uk_pages == 0, 3463 ("uma_zone_set_zfini on non-empty keg")); 3464 zone->uz_fini = zfini; 3465 ZONE_UNLOCK(zone); 3466 } 3467 3468 /* See uma.h */ 3469 /* XXX uk_freef is not actually used with the zone locked */ 3470 void 3471 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 3472 { 3473 uma_keg_t keg; 3474 3475 KEG_GET(zone, keg); 3476 KASSERT(keg != NULL, ("uma_zone_set_freef: Invalid zone type")); 3477 KEG_LOCK(keg); 3478 keg->uk_freef = freef; 3479 KEG_UNLOCK(keg); 3480 } 3481 3482 /* See uma.h */ 3483 /* XXX uk_allocf is not actually used with the zone locked */ 3484 void 3485 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 3486 { 3487 uma_keg_t keg; 3488 3489 KEG_GET(zone, keg); 3490 KEG_LOCK(keg); 3491 keg->uk_allocf = allocf; 3492 KEG_UNLOCK(keg); 3493 } 3494 3495 /* See uma.h */ 3496 void 3497 uma_zone_reserve(uma_zone_t zone, int items) 3498 { 3499 uma_keg_t keg; 3500 3501 KEG_GET(zone, keg); 3502 KEG_LOCK(keg); 3503 keg->uk_reserve = items; 3504 KEG_UNLOCK(keg); 3505 } 3506 3507 /* See uma.h */ 3508 int 3509 uma_zone_reserve_kva(uma_zone_t zone, int count) 3510 { 3511 uma_keg_t keg; 3512 vm_offset_t kva; 3513 u_int pages; 3514 3515 KEG_GET(zone, keg); 3516 3517 pages = count / keg->uk_ipers; 3518 if (pages * keg->uk_ipers < count) 3519 pages++; 3520 pages *= keg->uk_ppera; 3521 3522 #ifdef UMA_MD_SMALL_ALLOC 3523 if (keg->uk_ppera > 1) { 3524 #else 3525 if (1) { 3526 #endif 3527 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 3528 if (kva == 0) 3529 return (0); 3530 } else 3531 kva = 0; 3532 3533 ZONE_LOCK(zone); 3534 MPASS(keg->uk_kva == 0); 3535 keg->uk_kva = kva; 3536 keg->uk_offset = 0; 3537 zone->uz_max_items = pages * keg->uk_ipers; 3538 #ifdef UMA_MD_SMALL_ALLOC 3539 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 3540 #else 3541 keg->uk_allocf = noobj_alloc; 3542 #endif 3543 keg->uk_flags |= UMA_ZONE_NOFREE; 3544 ZONE_UNLOCK(zone); 3545 3546 return (1); 3547 } 3548 3549 /* See uma.h */ 3550 void 3551 uma_prealloc(uma_zone_t zone, int items) 3552 { 3553 struct vm_domainset_iter di; 3554 uma_domain_t dom; 3555 uma_slab_t slab; 3556 uma_keg_t keg; 3557 int aflags, domain, slabs; 3558 3559 KEG_GET(zone, keg); 3560 KEG_LOCK(keg); 3561 slabs = items / keg->uk_ipers; 3562 if (slabs * keg->uk_ipers < items) 3563 slabs++; 3564 while (slabs-- > 0) { 3565 aflags = M_NOWAIT; 3566 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 3567 &aflags); 3568 for (;;) { 3569 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK, 3570 aflags); 3571 if (slab != NULL) { 3572 MPASS(slab->us_keg == keg); 3573 dom = &keg->uk_domain[slab->us_domain]; 3574 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, 3575 us_link); 3576 break; 3577 } 3578 KEG_LOCK(keg); 3579 if (vm_domainset_iter_policy(&di, &domain) != 0) { 3580 KEG_UNLOCK(keg); 3581 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask); 3582 KEG_LOCK(keg); 3583 } 3584 } 3585 } 3586 KEG_UNLOCK(keg); 3587 } 3588 3589 /* See uma.h */ 3590 static void 3591 uma_reclaim_locked(bool kmem_danger) 3592 { 3593 3594 CTR0(KTR_UMA, "UMA: vm asked us to release pages!"); 3595 sx_assert(&uma_drain_lock, SA_XLOCKED); 3596 bucket_enable(); 3597 zone_foreach(zone_drain); 3598 if (vm_page_count_min() || kmem_danger) { 3599 cache_drain_safe(NULL); 3600 zone_foreach(zone_drain); 3601 } 3602 3603 /* 3604 * Some slabs may have been freed but this zone will be visited early 3605 * we visit again so that we can free pages that are empty once other 3606 * zones are drained. We have to do the same for buckets. 3607 */ 3608 zone_drain(slabzone); 3609 bucket_zone_drain(); 3610 } 3611 3612 void 3613 uma_reclaim(void) 3614 { 3615 3616 sx_xlock(&uma_drain_lock); 3617 uma_reclaim_locked(false); 3618 sx_xunlock(&uma_drain_lock); 3619 } 3620 3621 static volatile int uma_reclaim_needed; 3622 3623 void 3624 uma_reclaim_wakeup(void) 3625 { 3626 3627 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 3628 wakeup(uma_reclaim); 3629 } 3630 3631 void 3632 uma_reclaim_worker(void *arg __unused) 3633 { 3634 3635 for (;;) { 3636 sx_xlock(&uma_drain_lock); 3637 while (atomic_load_int(&uma_reclaim_needed) == 0) 3638 sx_sleep(uma_reclaim, &uma_drain_lock, PVM, "umarcl", 3639 hz); 3640 sx_xunlock(&uma_drain_lock); 3641 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 3642 sx_xlock(&uma_drain_lock); 3643 uma_reclaim_locked(true); 3644 atomic_store_int(&uma_reclaim_needed, 0); 3645 sx_xunlock(&uma_drain_lock); 3646 /* Don't fire more than once per-second. */ 3647 pause("umarclslp", hz); 3648 } 3649 } 3650 3651 /* See uma.h */ 3652 int 3653 uma_zone_exhausted(uma_zone_t zone) 3654 { 3655 int full; 3656 3657 ZONE_LOCK(zone); 3658 full = zone->uz_sleepers > 0; 3659 ZONE_UNLOCK(zone); 3660 return (full); 3661 } 3662 3663 int 3664 uma_zone_exhausted_nolock(uma_zone_t zone) 3665 { 3666 return (zone->uz_sleepers > 0); 3667 } 3668 3669 void * 3670 uma_large_malloc_domain(vm_size_t size, int domain, int wait) 3671 { 3672 struct domainset *policy; 3673 vm_offset_t addr; 3674 uma_slab_t slab; 3675 3676 if (domain != UMA_ANYDOMAIN) { 3677 /* avoid allocs targeting empty domains */ 3678 if (VM_DOMAIN_EMPTY(domain)) 3679 domain = UMA_ANYDOMAIN; 3680 } 3681 slab = zone_alloc_item(slabzone, NULL, domain, wait); 3682 if (slab == NULL) 3683 return (NULL); 3684 policy = (domain == UMA_ANYDOMAIN) ? DOMAINSET_RR() : 3685 DOMAINSET_FIXED(domain); 3686 addr = kmem_malloc_domainset(policy, size, wait); 3687 if (addr != 0) { 3688 vsetslab(addr, slab); 3689 slab->us_data = (void *)addr; 3690 slab->us_flags = UMA_SLAB_KERNEL | UMA_SLAB_MALLOC; 3691 slab->us_size = size; 3692 slab->us_domain = vm_phys_domain(PHYS_TO_VM_PAGE( 3693 pmap_kextract(addr))); 3694 uma_total_inc(size); 3695 } else { 3696 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3697 } 3698 3699 return ((void *)addr); 3700 } 3701 3702 void * 3703 uma_large_malloc(vm_size_t size, int wait) 3704 { 3705 3706 return uma_large_malloc_domain(size, UMA_ANYDOMAIN, wait); 3707 } 3708 3709 void 3710 uma_large_free(uma_slab_t slab) 3711 { 3712 3713 KASSERT((slab->us_flags & UMA_SLAB_KERNEL) != 0, 3714 ("uma_large_free: Memory not allocated with uma_large_malloc.")); 3715 kmem_free((vm_offset_t)slab->us_data, slab->us_size); 3716 uma_total_dec(slab->us_size); 3717 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3718 } 3719 3720 static void 3721 uma_zero_item(void *item, uma_zone_t zone) 3722 { 3723 3724 bzero(item, zone->uz_size); 3725 } 3726 3727 unsigned long 3728 uma_limit(void) 3729 { 3730 3731 return (uma_kmem_limit); 3732 } 3733 3734 void 3735 uma_set_limit(unsigned long limit) 3736 { 3737 3738 uma_kmem_limit = limit; 3739 } 3740 3741 unsigned long 3742 uma_size(void) 3743 { 3744 3745 return (atomic_load_long(&uma_kmem_total)); 3746 } 3747 3748 long 3749 uma_avail(void) 3750 { 3751 3752 return (uma_kmem_limit - uma_size()); 3753 } 3754 3755 void 3756 uma_print_stats(void) 3757 { 3758 zone_foreach(uma_print_zone); 3759 } 3760 3761 static void 3762 slab_print(uma_slab_t slab) 3763 { 3764 printf("slab: keg %p, data %p, freecount %d\n", 3765 slab->us_keg, slab->us_data, slab->us_freecount); 3766 } 3767 3768 static void 3769 cache_print(uma_cache_t cache) 3770 { 3771 printf("alloc: %p(%d), free: %p(%d)\n", 3772 cache->uc_allocbucket, 3773 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, 3774 cache->uc_freebucket, 3775 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0); 3776 } 3777 3778 static void 3779 uma_print_keg(uma_keg_t keg) 3780 { 3781 uma_domain_t dom; 3782 uma_slab_t slab; 3783 int i; 3784 3785 printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d " 3786 "out %d free %d\n", 3787 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags, 3788 keg->uk_ipers, keg->uk_ppera, 3789 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 3790 keg->uk_free); 3791 for (i = 0; i < vm_ndomains; i++) { 3792 dom = &keg->uk_domain[i]; 3793 printf("Part slabs:\n"); 3794 LIST_FOREACH(slab, &dom->ud_part_slab, us_link) 3795 slab_print(slab); 3796 printf("Free slabs:\n"); 3797 LIST_FOREACH(slab, &dom->ud_free_slab, us_link) 3798 slab_print(slab); 3799 printf("Full slabs:\n"); 3800 LIST_FOREACH(slab, &dom->ud_full_slab, us_link) 3801 slab_print(slab); 3802 } 3803 } 3804 3805 void 3806 uma_print_zone(uma_zone_t zone) 3807 { 3808 uma_cache_t cache; 3809 int i; 3810 3811 printf("zone: %s(%p) size %d maxitems %ju flags %#x\n", 3812 zone->uz_name, zone, zone->uz_size, (uintmax_t)zone->uz_max_items, 3813 zone->uz_flags); 3814 if (zone->uz_lockptr != &zone->uz_lock) 3815 uma_print_keg(zone->uz_keg); 3816 CPU_FOREACH(i) { 3817 cache = &zone->uz_cpu[i]; 3818 printf("CPU %d Cache:\n", i); 3819 cache_print(cache); 3820 } 3821 } 3822 3823 #ifdef DDB 3824 /* 3825 * Generate statistics across both the zone and its per-cpu cache's. Return 3826 * desired statistics if the pointer is non-NULL for that statistic. 3827 * 3828 * Note: does not update the zone statistics, as it can't safely clear the 3829 * per-CPU cache statistic. 3830 * 3831 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't 3832 * safe from off-CPU; we should modify the caches to track this information 3833 * directly so that we don't have to. 3834 */ 3835 static void 3836 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp, 3837 uint64_t *freesp, uint64_t *sleepsp) 3838 { 3839 uma_cache_t cache; 3840 uint64_t allocs, frees, sleeps; 3841 int cachefree, cpu; 3842 3843 allocs = frees = sleeps = 0; 3844 cachefree = 0; 3845 CPU_FOREACH(cpu) { 3846 cache = &z->uz_cpu[cpu]; 3847 if (cache->uc_allocbucket != NULL) 3848 cachefree += cache->uc_allocbucket->ub_cnt; 3849 if (cache->uc_freebucket != NULL) 3850 cachefree += cache->uc_freebucket->ub_cnt; 3851 allocs += cache->uc_allocs; 3852 frees += cache->uc_frees; 3853 } 3854 allocs += counter_u64_fetch(z->uz_allocs); 3855 frees += counter_u64_fetch(z->uz_frees); 3856 sleeps += z->uz_sleeps; 3857 if (cachefreep != NULL) 3858 *cachefreep = cachefree; 3859 if (allocsp != NULL) 3860 *allocsp = allocs; 3861 if (freesp != NULL) 3862 *freesp = frees; 3863 if (sleepsp != NULL) 3864 *sleepsp = sleeps; 3865 } 3866 #endif /* DDB */ 3867 3868 static int 3869 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 3870 { 3871 uma_keg_t kz; 3872 uma_zone_t z; 3873 int count; 3874 3875 count = 0; 3876 rw_rlock(&uma_rwlock); 3877 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3878 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3879 count++; 3880 } 3881 LIST_FOREACH(z, &uma_cachezones, uz_link) 3882 count++; 3883 3884 rw_runlock(&uma_rwlock); 3885 return (sysctl_handle_int(oidp, &count, 0, req)); 3886 } 3887 3888 static void 3889 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf, 3890 struct uma_percpu_stat *ups, bool internal) 3891 { 3892 uma_zone_domain_t zdom; 3893 uma_cache_t cache; 3894 int i; 3895 3896 3897 for (i = 0; i < vm_ndomains; i++) { 3898 zdom = &z->uz_domain[i]; 3899 uth->uth_zone_free += zdom->uzd_nitems; 3900 } 3901 uth->uth_allocs = counter_u64_fetch(z->uz_allocs); 3902 uth->uth_frees = counter_u64_fetch(z->uz_frees); 3903 uth->uth_fails = counter_u64_fetch(z->uz_fails); 3904 uth->uth_sleeps = z->uz_sleeps; 3905 /* 3906 * While it is not normally safe to access the cache 3907 * bucket pointers while not on the CPU that owns the 3908 * cache, we only allow the pointers to be exchanged 3909 * without the zone lock held, not invalidated, so 3910 * accept the possible race associated with bucket 3911 * exchange during monitoring. 3912 */ 3913 for (i = 0; i < mp_maxid + 1; i++) { 3914 bzero(&ups[i], sizeof(*ups)); 3915 if (internal || CPU_ABSENT(i)) 3916 continue; 3917 cache = &z->uz_cpu[i]; 3918 if (cache->uc_allocbucket != NULL) 3919 ups[i].ups_cache_free += 3920 cache->uc_allocbucket->ub_cnt; 3921 if (cache->uc_freebucket != NULL) 3922 ups[i].ups_cache_free += 3923 cache->uc_freebucket->ub_cnt; 3924 ups[i].ups_allocs = cache->uc_allocs; 3925 ups[i].ups_frees = cache->uc_frees; 3926 } 3927 } 3928 3929 static int 3930 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 3931 { 3932 struct uma_stream_header ush; 3933 struct uma_type_header uth; 3934 struct uma_percpu_stat *ups; 3935 struct sbuf sbuf; 3936 uma_keg_t kz; 3937 uma_zone_t z; 3938 int count, error, i; 3939 3940 error = sysctl_wire_old_buffer(req, 0); 3941 if (error != 0) 3942 return (error); 3943 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 3944 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 3945 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 3946 3947 count = 0; 3948 rw_rlock(&uma_rwlock); 3949 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3950 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3951 count++; 3952 } 3953 3954 LIST_FOREACH(z, &uma_cachezones, uz_link) 3955 count++; 3956 3957 /* 3958 * Insert stream header. 3959 */ 3960 bzero(&ush, sizeof(ush)); 3961 ush.ush_version = UMA_STREAM_VERSION; 3962 ush.ush_maxcpus = (mp_maxid + 1); 3963 ush.ush_count = count; 3964 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 3965 3966 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3967 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3968 bzero(&uth, sizeof(uth)); 3969 ZONE_LOCK(z); 3970 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 3971 uth.uth_align = kz->uk_align; 3972 uth.uth_size = kz->uk_size; 3973 uth.uth_rsize = kz->uk_rsize; 3974 if (z->uz_max_items > 0) 3975 uth.uth_pages = (z->uz_items / kz->uk_ipers) * 3976 kz->uk_ppera; 3977 else 3978 uth.uth_pages = kz->uk_pages; 3979 uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) * 3980 kz->uk_ppera; 3981 uth.uth_limit = z->uz_max_items; 3982 uth.uth_keg_free = z->uz_keg->uk_free; 3983 3984 /* 3985 * A zone is secondary is it is not the first entry 3986 * on the keg's zone list. 3987 */ 3988 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 3989 (LIST_FIRST(&kz->uk_zones) != z)) 3990 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 3991 uma_vm_zone_stats(&uth, z, &sbuf, ups, 3992 kz->uk_flags & UMA_ZFLAG_INTERNAL); 3993 ZONE_UNLOCK(z); 3994 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 3995 for (i = 0; i < mp_maxid + 1; i++) 3996 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 3997 } 3998 } 3999 LIST_FOREACH(z, &uma_cachezones, uz_link) { 4000 bzero(&uth, sizeof(uth)); 4001 ZONE_LOCK(z); 4002 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 4003 uth.uth_size = z->uz_size; 4004 uma_vm_zone_stats(&uth, z, &sbuf, ups, false); 4005 ZONE_UNLOCK(z); 4006 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 4007 for (i = 0; i < mp_maxid + 1; i++) 4008 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 4009 } 4010 4011 rw_runlock(&uma_rwlock); 4012 error = sbuf_finish(&sbuf); 4013 sbuf_delete(&sbuf); 4014 free(ups, M_TEMP); 4015 return (error); 4016 } 4017 4018 int 4019 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 4020 { 4021 uma_zone_t zone = *(uma_zone_t *)arg1; 4022 int error, max; 4023 4024 max = uma_zone_get_max(zone); 4025 error = sysctl_handle_int(oidp, &max, 0, req); 4026 if (error || !req->newptr) 4027 return (error); 4028 4029 uma_zone_set_max(zone, max); 4030 4031 return (0); 4032 } 4033 4034 int 4035 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 4036 { 4037 uma_zone_t zone = *(uma_zone_t *)arg1; 4038 int cur; 4039 4040 cur = uma_zone_get_cur(zone); 4041 return (sysctl_handle_int(oidp, &cur, 0, req)); 4042 } 4043 4044 #ifdef INVARIANTS 4045 static uma_slab_t 4046 uma_dbg_getslab(uma_zone_t zone, void *item) 4047 { 4048 uma_slab_t slab; 4049 uma_keg_t keg; 4050 uint8_t *mem; 4051 4052 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 4053 if (zone->uz_flags & UMA_ZONE_VTOSLAB) { 4054 slab = vtoslab((vm_offset_t)mem); 4055 } else { 4056 /* 4057 * It is safe to return the slab here even though the 4058 * zone is unlocked because the item's allocation state 4059 * essentially holds a reference. 4060 */ 4061 if (zone->uz_lockptr == &zone->uz_lock) 4062 return (NULL); 4063 ZONE_LOCK(zone); 4064 keg = zone->uz_keg; 4065 if (keg->uk_flags & UMA_ZONE_HASH) 4066 slab = hash_sfind(&keg->uk_hash, mem); 4067 else 4068 slab = (uma_slab_t)(mem + keg->uk_pgoff); 4069 ZONE_UNLOCK(zone); 4070 } 4071 4072 return (slab); 4073 } 4074 4075 static bool 4076 uma_dbg_zskip(uma_zone_t zone, void *mem) 4077 { 4078 4079 if (zone->uz_lockptr == &zone->uz_lock) 4080 return (true); 4081 4082 return (uma_dbg_kskip(zone->uz_keg, mem)); 4083 } 4084 4085 static bool 4086 uma_dbg_kskip(uma_keg_t keg, void *mem) 4087 { 4088 uintptr_t idx; 4089 4090 if (dbg_divisor == 0) 4091 return (true); 4092 4093 if (dbg_divisor == 1) 4094 return (false); 4095 4096 idx = (uintptr_t)mem >> PAGE_SHIFT; 4097 if (keg->uk_ipers > 1) { 4098 idx *= keg->uk_ipers; 4099 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize; 4100 } 4101 4102 if ((idx / dbg_divisor) * dbg_divisor != idx) { 4103 counter_u64_add(uma_skip_cnt, 1); 4104 return (true); 4105 } 4106 counter_u64_add(uma_dbg_cnt, 1); 4107 4108 return (false); 4109 } 4110 4111 /* 4112 * Set up the slab's freei data such that uma_dbg_free can function. 4113 * 4114 */ 4115 static void 4116 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 4117 { 4118 uma_keg_t keg; 4119 int freei; 4120 4121 if (slab == NULL) { 4122 slab = uma_dbg_getslab(zone, item); 4123 if (slab == NULL) 4124 panic("uma: item %p did not belong to zone %s\n", 4125 item, zone->uz_name); 4126 } 4127 keg = slab->us_keg; 4128 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 4129 4130 if (BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 4131 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n", 4132 item, zone, zone->uz_name, slab, freei); 4133 BIT_SET_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 4134 4135 return; 4136 } 4137 4138 /* 4139 * Verifies freed addresses. Checks for alignment, valid slab membership 4140 * and duplicate frees. 4141 * 4142 */ 4143 static void 4144 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 4145 { 4146 uma_keg_t keg; 4147 int freei; 4148 4149 if (slab == NULL) { 4150 slab = uma_dbg_getslab(zone, item); 4151 if (slab == NULL) 4152 panic("uma: Freed item %p did not belong to zone %s\n", 4153 item, zone->uz_name); 4154 } 4155 keg = slab->us_keg; 4156 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 4157 4158 if (freei >= keg->uk_ipers) 4159 panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n", 4160 item, zone, zone->uz_name, slab, freei); 4161 4162 if (((freei * keg->uk_rsize) + slab->us_data) != item) 4163 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n", 4164 item, zone, zone->uz_name, slab, freei); 4165 4166 if (!BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 4167 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n", 4168 item, zone, zone->uz_name, slab, freei); 4169 4170 BIT_CLR_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 4171 } 4172 #endif /* INVARIANTS */ 4173 4174 #ifdef DDB 4175 DB_SHOW_COMMAND(uma, db_show_uma) 4176 { 4177 uma_keg_t kz; 4178 uma_zone_t z; 4179 uint64_t allocs, frees, sleeps; 4180 long cachefree; 4181 int i; 4182 4183 db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used", 4184 "Free", "Requests", "Sleeps", "Bucket"); 4185 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4186 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 4187 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 4188 allocs = counter_u64_fetch(z->uz_allocs); 4189 frees = counter_u64_fetch(z->uz_frees); 4190 sleeps = z->uz_sleeps; 4191 cachefree = 0; 4192 } else 4193 uma_zone_sumstat(z, &cachefree, &allocs, 4194 &frees, &sleeps); 4195 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 4196 (LIST_FIRST(&kz->uk_zones) != z))) 4197 cachefree += kz->uk_free; 4198 for (i = 0; i < vm_ndomains; i++) 4199 cachefree += z->uz_domain[i].uzd_nitems; 4200 4201 db_printf("%18s %8ju %8jd %8ld %12ju %8ju %8u\n", 4202 z->uz_name, (uintmax_t)kz->uk_size, 4203 (intmax_t)(allocs - frees), cachefree, 4204 (uintmax_t)allocs, sleeps, z->uz_count); 4205 if (db_pager_quit) 4206 return; 4207 } 4208 } 4209 } 4210 4211 DB_SHOW_COMMAND(umacache, db_show_umacache) 4212 { 4213 uma_zone_t z; 4214 uint64_t allocs, frees; 4215 long cachefree; 4216 int i; 4217 4218 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 4219 "Requests", "Bucket"); 4220 LIST_FOREACH(z, &uma_cachezones, uz_link) { 4221 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL); 4222 for (i = 0; i < vm_ndomains; i++) 4223 cachefree += z->uz_domain[i].uzd_nitems; 4224 db_printf("%18s %8ju %8jd %8ld %12ju %8u\n", 4225 z->uz_name, (uintmax_t)z->uz_size, 4226 (intmax_t)(allocs - frees), cachefree, 4227 (uintmax_t)allocs, z->uz_count); 4228 if (db_pager_quit) 4229 return; 4230 } 4231 } 4232 #endif /* DDB */ 4233